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“They will marvel at how vulnerable the repository of all our potential once was,
how perilous our infancy, how humble our beginnings, how many rivers we had to
cross, before we found our way.”

Carl Sagan, Pale Blue Dot
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Abstract

This thesis has been carried out in the context of a worldwide effort to develop nu-
clear fusion as a viable energy source of the future. As of today, the most promising
state-of-the-art test reactors are tokamaks, where plasmas of 10 to 100 million degree
Kelvin are confined in a toroidal magnetic cage for a few seconds. The success of
future fusion power plants relies on the complete understanding of various physical
aspects of the reactor-plasma configuration, one of which is turbulent transport. In
order to achieve ignition, particle and heat transport need to be kept low. It turns
out that neoclassical theory, which models transport via Coulomb collisions, severely
underestimates experimentally found transport coefficients. This enhanced anoma-
lous transport has been found to be caused by microturbulence, driven by free energy
associated to profile gradients. Amongst the zoo of various microinstabilities, the
electrostatic Ion-Temperature-Gradient (ITG) modes and Trapped-Electron modes
(TEM) play a significant role in enhancing particle and heat transport. The study of
these modes is conveniently based on the gyrokinetic model, involving an averaging
over the fast gyromotion of the particles. As a result, the distribution functions
describing plasma species represented in a reduced 5-dimensional phase space and
evolved according to the gyrokinetic Vlasov equation, coupled with Maxwell’s equa-
tions for the self-consistent fields. The Particle-In-Cell (PIC) scheme is known to
be one of the standard methods with which the aforementioned system of nonlinear
partial differential equations is solved numerically. To address the issue of numerical
sampling error inherent in this Monte Carlo approach, which would tend to drown
in noise the relatively small physical fluctuations in the core of fusion reactors, the
PIC scheme can be further refined using the so-called δf approach, which relies on
the assumption that the full distribution function f = f0 + δf does not deviate
significantly from a known background f0.

Verifying this condition becomes however challenging when modelling the plasma
edge where fluctuation amplitudes are high, or determining quasi-steady state pro-
files corresponding to given sources (flux-driven simulations) over long time scales,
where plasma profiles can evolve significantly, in which case the smallness condition
on δf would be violated if f0 remained stationary. This thesis addresses this sam-
pling noise problem by considering f0 as a time-evolving Maxwellian background
distribution, which in terms of configuration variables is assumed to be a magnetic
flux function. The evolution of the density and temperature of this Maxwellian is
achieved by absorbing via relaxation equations corresponding flux-surface-averaged
velocity moments growing in δf

The advantage of the adaptive scheme via a time-dependent ion temperature
is first studied using the global gyrokinetic code called GKengine with simplified
physics and geometry. Simulations involving ITG modes triggered by steep tem-
perature gradients in sheared-slab geometry are conducted. Sources/sinks are in-
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troduced to prevent profiles from relaxing below critical gradients. The adaptive
scheme, accounting in this case for the evolution of just the ion temperature profile,
is shown to be able to prevent an otherwise indefinite noise accumulation in the
zonal component, which ultimately would lead to the unphysical suppression of tur-
bulence. In most cases, similar or even better quality results can be obtained under
the adaptive scheme with marker numbers as low as 1/4 of that of the corresponding
non-adaptive simulation.

The adaptive scheme is subsequently developed in the framework of the global
gyrokinetic PIC code ORB5, where the time-dependent control variate is generalised
to adapt both density and temperature profiles in toroidal geometry. Two different
physical studies are done using TCV-like profiles and equilibrium magnetic fields.
The first involves flux-driven toroidal-ITG simulations with adiabatic electrons. In
this case, large heat sources are introduced, generating a strong ion temperature
profile deviation from initial values. Considering a local Maxwellian background
with time-dependent density and temperature, all simulations under the adaptive
scheme have noise kept at a low level, with the potential of reaching quasi-steady
state from a single marker-loading.

The second physical study involves a mixed ITG-TEM regime using an upgraded
hybrid electron model. Simulations of this study are conducted both in temperature-
gradient- and flux-driven modes. Here, the adaptive background involves time-
dependent density and temperature profiles for the ions and electrons separately.
Diagnostics of weight variance and phase-space sampling are further analysed for
these simulations, which all exhibit large profile deviations. Numerical sampling
problems near the magnetic axis for high-energy electrons as well as low-energy ions
are revealed and investigated. Despite these issues, for all studies conducted in this
work, results show that the adaptive scheme always performs better than those of
the corresponding non-adaptive ones, in the sense that numerical sampling noise is
significantly better controlled at long times, and physical quantities are found to be
closer to numerical convergence.

Despite its relative simplicity, the time-dependent f.s.a. Maxwellian control vari-
ate coupled with a set of relaxation equations, is shown to be a reliable adaptive
background scheme for collision-less electrostatic turbulence simulations. The ca-
pability of simulating situations with strong deviations from the initial background
has been demonstrated, including for long, up to cst/a ∼ 1300, flux-driven simula-
tions. Therefore, this work should therefore prove useful to the PIC community as a
first step towards extending it to global electromagnetic simulations, or developing
more sophisticated adaptive control variates to also handle simulations of edge and
Scrap-Off-Layer (SOL) conditions.

Keywords: gyrokinetic, PIC, control variate, background Maxwellian, noise
control, turbulence, magnetic confinement
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Résumé

Cette thèse a été réalisée dans le cadre d’un effort mondial visant à développer la fu-
sion nucléaire en tant que source d’énergie viable pour l’avenir. À l’heure actuelle, les
réacteurs d’essai de pointe les plus prometteurs sont les tokamaks, où des plasmas de
10 à 100 millions de degrés Kelvin sont confinés dans une cage magnétique toröıdale
pendant quelques secondes. Le succès des futures centrales de fusion repose sur la
compréhension complète de divers aspects physiques de la configuration du réacteur
de plasma, dont le transport turbulent. Pour obtenir l’allumage, le transport des
particules et de la chaleur doit être maintenu à un niveau faible. Il s’avère que la
théorie néoclassique, qui modélise le transport par des collisions de Coulomb, sous-
estime fortement les coefficients de transport trouvés expérimentalement. Il s’est
avéré que ce transport augmenté, dit anormal, est dû à la microturbulence, entrâınée
par l’énergie libre associée aux gradients de profil. Parmi diverses micro-instabilités,
les modes électrostatiques de gradient de température ionique (Ion-Temperature-
Gradient, ITG) et les modes d’électrons piégés (Trapped Electron Modes,TEM)
jouent un rôle important dans l’augmentation du transport des particules et de la
chaleur. L’étude de ces modes est basée sur le modèle gyrocinétique, impliquant une
moyenne sur le mouvement de gyration rapide des particules. En conséquence, les
fonctions de distribution décrivant les espèces du plasma sont représentées dans un
espace de phase réduit à 5 dimensions et évoluent selon l’équation gyrocinétique de
Vlasov, couplée aux équations de Maxwell pour les champs auto-cohérents.

Le schéma PIC (Particle-In-Cell) est connu pour être l’une des méthodes stan-
dard avec laquelle le système susmentionné d’équations différentielles partielles non
linéaires est résolu numériquement. Pour résoudre le problème de l’erreur d’échantillonnage
numérique inhérente à cette approche, qui tendrait à noyer dans le bruit les petites
fluctuations physiques relatives dans le cœur des réacteurs de fusion, le schéma PIC
peut être affiné en utilisant l’approche dite δf , qui repose sur l’hypothèse que la fonc-
tion de distribution complète f = f0 + δf ne s’écarte pas de manière significative
d’un arrière-plan connu f0.

La vérification de cette condition devient cependant difficile lorsqu’on effectue des
simulations dites forçées par les flux sur de longues échelles de temps, où les profils du
plasma peuvent évoluer de manière significative, auquel cas l’hypothèse de petitesse
de δf est violée si f0 reste stationnaire. Cette thèse aborde ce problème de bruit
d’échantillonnage en considérant f0 comme une distribution de fond maxwellienne
évoluant dans le temps, qui en termes de variables de configuration est supposée
être une fonction de flux magnétique. L’évolution de la densité et de la température
de cette maxwellienne est réalisée en absorbant, via des équations de relaxation, les
moments de vitesse correspondants moyennés sur les surfaces de flux de δf .

Comme le schéma utilise essentiellement l’intégration de Monte Carlo pour cal-
culer les sources des équations de Maxwell, les résultats sont noyés dans le bruit
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si cette hypothèse n’est pas respectée. Ceci est particulièrement vrai lors de la
modélisation du plasma de bord, où les amplitudes de fluctuation sont élevées, ou
lors de la détermination des profils d’état quasi-stationnaire correspondant à des
sources données (simulations forcées par le flux). Cette thèse aborde le problème du
bruit d’échantillonnage du schéma PIC en introduisant une variable de contrôle
adaptative. Grâce à un ensemble d’équations de relaxation, la distribution de
fond maxwellienne est rendue dépendante du temps via les profils de densité et de
température moyennés sur les surfaces de flux lors de la simulation de la turbulence
électrostatique sans collision.

L’avantage du schéma adaptatif via une température ionique dépendante du
temps est d’abord étudié en utilisant un code gyrocinétique global appelé GKengine
avec une physique et une géométrie simplifiées. Des simulations impliquant des
modes ITG déclenchés par de forts gradients de température dans une géométrie
plane cisaillée sont effectuées. Des sources et des puits sont introduits pour empêcher
la relaxation du profil. Le schéma adaptatif, qui tient compte dans ce cas de
l’évolution du seul profil de température des ions, permet d’éviter une accumula-
tion indéfinie de bruit dans la composante zonale, qui conduirait finalement à la
suppression non physique de la turbulence. Dans la plupart des cas, des résultats
similaires, ou même de meilleure qualité, peuvent être obtenus avec le schéma adap-
tatif avec des nombres de marqueurs aussi bas que 1/4 de ceux du schéma non
adaptatif correspondant.

Le schéma adaptatif est ensuite développé dans le cadre du code PIC gyrocinétique
global ORB5, où les variables de contrôle dépendant du temps sont généralisées pour
adapter les profils de densité et de température dans une géométrie toröıdale. Deux
études physiques différentes sont réalisées en utilisant des profils et des champs
magnétiques d’équilibre de type TCV. La première implique des simulations de
modes ITG toröıdaux forcées par le flux, avec des électrons adiabatiques. Dans ce
cas, de puissantes sources de chaleur sont introduites, générant une forte déviation
du profil de température des ions par rapport aux valeurs initiales. En considérant
un arrière-plan Maxwellien local avec une densité et une température dépendant du
temps, toutes les simulations avec le schéma adaptatif ont un bruit maintenu à un
faible niveau, avec le potentiel d’atteindre un état quasi-stationnaire à partir d’une
seule initialisation des marqueurs.

La deuxième étude physique concerne un régime mixte ITG-TEM utilisant un
modèle d’électrons hybrides amélioré. Les simulations de cette étude sont menées
à la fois en mode gradient de température et en mode de forçage de flux. Ici,
l’arrière-plan adaptatif implique des profils de densité et de température dépendant
du temps pour les ions et les électrons séparément. Les diagnostics de variance de
poids et d’échantillonnage de l’espace de phase sont analysés plus en détail pour ces
simulations, qui présentent toutes de grandes déviations de profil. Les problèmes
d’échantillonnage numérique près de l’axe magnétique pour les électrons à haute
énergie et les ions à basse énergie sont révélés et étudiés. Malgré ces problèmes,
pour toutes les études menées dans ce travail, les résultats obtenus avec le schéma
adaptatif sont toujours meilleurs que ceux des schémas non adaptatifs correspon-
dants, en ce sens que le bruit d’échantillonnage numérique est nettement mieux
contrôlé à long terme et que les quantités physiques sont plus proches de la conver-
gence numérique.

Malgré sa relative simplicité, la méthode des variables de contrôle maxwelliennes
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moyennées sur les surfaces de flux et dépendantes du temps, couplées à un ensemble
d’équations de relaxation, s’avère être un schéma d’arrière-plan adaptatif fiable pour
les simulations de turbulence électrostatique. La capacité de simuler des situations
avec de fortes déviations de l’arrière-plan initial a été démontrée, y compris pour
de longues simulations focées par le flux. Ce travail devrait donc s’avérer utile à
la communauté PIC en tant que première étape vers son extension aux simulations
électromagnétiques globales, ou vers le développement de méthodes de variables de
contrôle adaptatif plus sophistiquées pour gérer également les simulations du bord
et de la couche périphérique du plasma.

Mots-clés: gyrocinétique, PIC, variables de contrôle, maxwellienne, contrôle du
bruit, turbulence, confinement magnétique.

vii



viii



List of Acronyms

ETG electron-temperature-gradient
FEM finite element method
FLR finite Larmor radius
f.s.a. flux-surface-averaged
ITG ion-temperature-gradient
LCFS last-closed-flux-surface
l.h.s. left-hand-side
MRS mode rational surface
PIC particle-in-cell
QNE quasi-neutrality equation
r.h.s. right-hand-side
SOL scrape-off later
TEM trapped-electron-mode

ix



x



List of Figures

1.1 Fusion cross section of three nominations for fusion reactions. The
constituents D, T, and 3He represents deuterium, tritium and Helium-
3 respectively. c.o.m. represents ‘centre of mass’. Figure is taken
from Ref. [66]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Schematics illustrating how plasma is magnetically confined in a toka-
mak (a), and a cut-out of ITER (b). Figures (a) and (b) are taken
from Refs. [29] and [66] respectively. . . . . . . . . . . . . . . . . . . . 3

1.3 Schematics of the three numerical approaches commonly used in fu-
sion plasma simulations. Figures are taken from Ref. [28]. . . . . . . . 5

2.1 Cylindrical geometry (R,φ, Z) and tokamak geometry (r, φ, θ⋆). Fig-
ure is taken from Ref. [25]. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Poloidal cross-section showing the most dominant ITG mode n ≈ 28
at cst/a = 32 for the ITG case of Ch. 5. The balloon structure is
represented by the non-zonal perturbed potential (ϕ − ⟨ϕ⟩)/T0e(s0).
Contour curves represent constant s = [0.1, 0.2, · · · , 1.0] flux surfaces
(see Eq. (2.7)) of the magnetic field geometry of the TCV shot #43516
used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Passing (top) and trapped (bottom) guiding centre orbits. Drift mo-
tion causes guiding centres to deviate from a constant magnetic sur-
face as they travel along a field line. Besides parallel velocity reversal,
trapped particles further exhibit toroidal precession over bounce mo-
tion. Right sub-figures show the poloidal cross-section. Figure is
taken from Ref. [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 In the circle on the right, ‘energy return’ indicates the process of
energy return to drift waves. Figures are taken from Ref. [18]. . . . . 17

3.1 Fourier-filters for a fixed radial position s applied to the B-spline
coefficients of the r.h.s. of the QNE. These are defined on a discrete
grid of integer poloidal m and toroidal n Fourier modes. The band
F1 = |m + nq(s)| ≤ ∆m (green) of half-width ∆m, indicates modes
that are nearly field-aligned. Red dots represent the mode numbers
chosen to be resolved, which are found in the overlap region of F1 and
the box (m,n) ∈ [mmin,mmax] × [nmin, nmax]. The pink side bands
F2 are used for SNR diagnostics. They are of the same width, and
are at a distance of 3∆m from centre to centre w.r.t. F1, i.e. F2 :
|m± 3∆m+ nq(s)| ≤ ∆m. . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



LIST OF FIGURES

3.2 Overview of the ORB5 algorithm for 1 sub-step of a 4th order ex-
plicit Runge-Kutta (RK4) scheme. × and + represent marker data
structure (gyro-centre and Larmor points respectively), and cubes
represent fields on grid structure. Figure taken from Ref. [64]. . . . . 41

3.3 Flux-surface-averaged of b̂ · ∇ × b̂/Ωc for the singly charged ion, for
the magnetic equilibrium geometry used in this thesis, i.e. TCV shot
#43516. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Amplitude of the f.s.a. heating operator ŜH(ψ, E) of Eq. (3.82), at a
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Chapter 1

Introduction

1.1 Thermonuclear fusion as an energy source

The energy stored within atomic nuclei has served humankind as a valuable source
of energy for the century. This is because the energy release from nuclear reactions
is on the order of MeV per nuclei, where eV is the electron-volt, whereas those from
chemical reactions, for example by burning fossil fuels, is on the order of keV per
atom. Current existing nuclear power plants harness nuclear energy by the means
of nuclear fission. That is, by splitting a heavy elements, e.g. 235U and releasing
energy in the form of kinetic energy of its lighter constituents.

In cold war era, in tandem with the development of the hydrogen bomb, military
facilities in the United States and former Soviet Union were secretly advancing
research on the use of nuclear fusion as an energy source. In 1956, Soviet scientist I.
V. Kurchatov disclosed to the Western scientists the feasibility of controlled fusion
via the tokamak concept (see Sec. 1.2). Then in 1958, after the 2nd Atoms for
Peace Conference, scientists around the world shared research results and thus the
harnessing of nuclear fusion for energy as a global effort began [23]. Besides its
greater energy yield compared to that from nuclear fission, fusion does not result in
radioactive isotopes as waste.

As an example of a naturally occurring ‘fusion reactor’, Bethe and vonWeizsäcker
independently proposed, in 1938, that our Sun is powered by fusion. Under intense
gravitational pressure in its core, hydrogen fuses via the proton-proton cycle, re-
leasing energy. The proton-proton reaction, however, has such a small cross-section
that it could not even be measured in a laboratory. Scientists agreed that the D-T
reaction,

D2 + T3 → He4 (3.5MeV) + n (14.1MeV),

unlike that which occurs in the Sun’s core, is the reaction to lead fusion in labora-
tories due to its high fusion cross-section (see Fig. 1.1). Here, D and T represents
the hydrogen isotopes deuterium and tritium respectively, and the reactions prod-
ucts He and n represent the alpha particle and neutron, respectively. The number
in brackets represents their respective energies. The D-T reaction is chosen as it
exhibits the highest fusion cross-section at temperatures T around 10 keV to 100
keV, with 1 eV∼ 107 K. The figure of merit for fusion experiments is given by the
Lawson criterion [55]

nτE ≳ 1.5× 1020m−3s,
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1.2. MAGNETICALLY CONFINED PLASMA

at T ≃ 30 keV, for breakeven. The latter happens when the total amount of power
losses balance the total fusion power. Here, n is the number density, and τE is the
energy confinement time. There are currently two main approaches to fusion. The
first is via magnetic confinement, and the second is inertial fusion. This work con-
cerns with simulations of magnetically confined plasmas, and thus it is this method
which will be further elaborated.

Figure 1.1: Fusion cross section of three nominations for fusion reactions. The
constituents D, T, and 3He represents deuterium, tritium and Helium-3 respectively.
c.o.m. represents ‘centre of mass’. Figure is taken from Ref. [66].

1.2 Magnetically confined plasma

In order to initiate D-T reactions, at temperatures as high as T ∼ 108 K, the re-
actants, namely deuterium and tritium1, are in the plasma state. Also due to its
high T , the plasma is confined via magnetic fields in a vacuum chamber. Mag-
netic confinement is possible as charged particles gyrate around magnetic field lines,
thus confined in the perpendicular direction. As these particles are also free to flow
along field lines, most field lines should not terminate at reactor wall. The simplest
magnetic field geometry that exhibits closed field lines is the torus, and thus mag-
netically confined fusion reactors are toroidally symmetric vacuum chambers, called
the ‘tokamak’. Further analysis shows that particles drift across field lines due to
field-line curvature and perpendicular field strength gradient. Therefore, the con-
fining field has to have both toroidal and poloidal components. The toroidal fields
are generated by external poloidal superconducting solenoid coils, and the poloidal
field by running a current through the plasma. This current is induced by treating
the plasma volume as the secondary winding of a transformer (see Fig. 1.2a). This
entails that the tokamak concept can only operate in pulses. At the time of writing,
the largest tokamak reactor called ITER (see Fig. 1.2b), is being built in Cadarache.
Though it will still not be a nuclear power plant, this multi-national funded test re-
actor is designed to deliver at steady operations lasting ∼ 102s, a fusion power of

1Due to its short half-life, there is little naturally occurring tritium. The latter is bred when
neutrons hit a lithium blanket at the reactor wall.
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1.3. ANOMALOUS TRANSPORT

500 MW at

Q =
fusion power

heating power
= 10.

Note that given enough fuel, a burning plasma self-sustained by the resultant hot
alpha particles would lead toQ→∞. The experiments that will be conducted, along
with the physical knowledge and engineering know-how that ITER will encourage,
will benefit future fusion power plant designs.

(a) Tokamak as a transformer (b) ITER

Figure 1.2: Schematics illustrating how plasma is magnetically confined in a tokamak
(a), and a cut-out of ITER (b). Figures (a) and (b) are taken from Refs. [29] and
[66] respectively.

1.3 Anomalous transport

One of the main challenges of magnetically confined plasma is how to keep charged
particles and energy confined as long as possible. As described, charged particles gy-
rate around, and flow freely along, magnetic field lines. This creates great anisotropy
in terms of particle, momentum and energy transport, with higher transport along
the field lines. As field lines are toroidal by construction, what concerns us is radial
(perpendicular to the magnetic surfaces) transport. Neoclassical transport describes
radial transport via collisions in inhomogeneous and curved magnetic background
configurations. However, experimentally measured transport coefficients show that
these coefficients are one or two orders of magnitude higher than the neoclassical
prediction. This ‘anomalous transport’ is due to drift-waves instabilities driven by
a temperature and/or density gradients. As turbulence caused by these instabilities
have wavelengths of the order of the Larmor radius, they are also termed ‘microin-
stabities’2.

A wide variety of microinstabilities exists, and their properties are deduced from
reduced models characterised by their physical assumptions of the gyrokinetic equa-
tion [32]. Microinstabilites can be generally categorised by whether electromagnetic
perturbations are involved, namely, either electromagnetic or electrostatic. The

2To be distinguished from magnetohydrodynamic (MHD) instabilities caused by certain config-
uration of magnetic field geometry and macroscopic plasma profiles.
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1.4. SIMULATIONS OF FUSION PLASMAS

presence of collisions adds to the categorisation. Further categorisation included
the value of β, which is the ratio of plasma over magnetic field pressure. As this
work concerns only with collisionless low-β electrostatic microinstabilities, only the
ones common to toroidally confined fusion plasmas will be mentioned here. The
first is the toroidal ITG mode [37, 67], which is responsible for anomalous ion heat
transport. This instability is induced by the interaction of toroidal drifts and E×B
convection due to an ion temperature gradient. Its linear eigenmodes exhibit bal-
looning structures on the low-field-side of the torus. A good illustration of this
mechanism is given for example in Ref. [8]. Next, when trapped electrons are al-
lowed to complete several bounce periods in the presence of low collisionality, their
toroidal precession can be in phase with the toroidal phase velocity of perturbations,
which can lead to an instability in the presence of an electron temperature gradi-
ent, leading to turbulence driven by the Trapped-Electron-Modes (TEMs). These
modes have wavenumbers in a similar range as those of the ITG modes, have sim-
ilar ballooning structures, but have different instability gradient thresholds. TEM
and toroidal ITG modes usually occur in tandem, both having perpendicular spa-
tial scales of the order of the ion Larmor radius. The final instability that will be
mentioned here is the Electron-Temperature-Gradient (ETG) mode. These modes
have perpendicular wavelengths of the order of the electron Larmor radius and are
isomorphic to ITG modes, with ions having an adiabatic response [12]. Both TEM
and ETG modes are thought to contribute to electron heat transport, though the
significance of the latter contribution is still up for debate [57].

The simulations of this work concerns only the toroidal ITG modes and TEM.
Therefore, their characteristics will be further elaborated in Ch. 2. Nonetheless, a
good overview of drift wave instabilities can found for example in Ref. [36].

1.4 Simulations of fusion plasmas

The task of simulating magnetically confined fusion plasmas involves obtaining
the solution of the Vlasov-Boltzmann equation for the species distribution func-
tions. This equation is closed with Maxwell’s equations for the self-consistent fields,
along with appropriate boundary conditions. On the outset, there exists multi-scale
physics, both in space and time, along with strong anisotropy due to the strong
magnetic field. To simplify the problem, one introduces reduced physical models,
depending on the regime one is interested in. Therefore, the common framework
when describing the plasma species is either fully kinetic, gyrokinetic, or (gyro-)fluid.
Kinetic descriptions lead to equations of motion for the particle trajectories. They
are useful when one wishes to study processes relating to velocity space dependence
of the distribution, e.g. wave-particle interactions. This description is generally more
computationally expensive than the fluid description. The latter lead to coupled par-
tial differential equations of various moments of the distribution. This thesis works
within the gyrokinetic framework, where the fast gyration motion of the particles is
averaged out. This does not only reduce the phase space dimension from six to five,
but also allows for a larger time step in integration.

There are three main numerical approaches for gyrokinetic simulations of fusion
plasmas. The first is the Particle-In-Cell (PIC) scheme. This scheme relies on rep-
resenting particles as Lagrangian ‘markers’, whose characteristics are dictated by
the equations of motion. This approach solves for the fields via Monte Carlo in-
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tegration, thus giving the distribution a statistical interpretation. This also means
that it inherits the main problems of Monte Carlo sampling, notably the statistical
sampling error problem called ‘noise’ in the following. Unless appropriate noise con-
trol measures are implemented, this problem severely limits simulation time. This is
especially true for cases that exhibit significant deviation from initial profiles and/or
large fluctuation amplitudes. Nonetheless, PIC schemes are easily parallelised and
extended to problems with higher dimensions. Gyrokinetic codes which use the
Lagrangian-PIC scheme include XGC [49, 50], GTC [58], GT3D [38], GEM [15],
EUTERPE [46] (for stellarators), and ORB5 [54]. The latter is the code used in
this work. The next approach is the Eulerian scheme. This approach defines the dis-
tribution function on a grid, and solves the Boltzmann-Maxwell equation via a finite
difference scheme. Though this approach does not suffer from statistical noise, it is
severely limited in time integration by the CFL condition unless an implicit time-
stepping scheme is used. A compromise between numerical dissipation and overshoot
needs also to be made when choosing the finite-difference scheme. Gyrokinetic codes
which use the Eulerian approach include GENE [42, 30], GYRO[14], GS2 [47, 21]
and GT5D [40, 39]. The third approach is the semi-Lagrangian method [71], which
aims to combine the benefits of the Lagrangian and Eulerian approaches. It ad-
vances the distribution by back-projecting along characteristics to a point on a
mesh of the distribution at the previous time step. This circumvents the CFL re-
striction. Nonetheless, this scheme still faces the problem of the use of appropriate
interpolation methods to evaluate distribution values between grid points, and prob-
lems of particle conservation. An example of a gyrokinetic semi-Lagrangian code is
GYSELA [31]. An overview of the use of these approaches to simulate turbulent
transport can be found in Ref. [28].

(a) Lagrangian-PIC (b) Eulerian (c) Semi-Lagrangian

Figure 1.3: Schematics of the three numerical approaches commonly used in fusion
plasma simulations. Figures are taken from Ref. [28].

1.5 Contribution of this thesis

The aim of this work is to improve the statistical sampling noise problem of the
PIC scheme in order to apply it to long simulations, targeting cases with strong
gradients and/or large deviations from initial profiles. For plasma simulations where
the distribution function f does not deviate more than a few percent from its initial
state finit over characteristic time scales of microinstabilities and turbulent processes,
one usually adopts the delta-f splitting. The approach splits f into a stationary (and
often analytic) distribution f0, and a time-dependent perturbation part δf , which
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is represented by numerical markers. This delta-f PIC method is to be contrasted
with the full-f PIC scheme, which represents the whole f in terms of markers. The
gain in noise reduction of the delta-f scheme relies on the reduced variance of the
marker weights, provided that the assumption ∥δf∥/∥f∥ ≪ 1 for some definition of
the norm ∥ · ∥ is met. However, for plasma simulations exhibiting a large perturbed
component δf , one usually falls back to the full-f scheme, which entails using high
marker numbers to achieve low noise levels. This is the case, for example, when
simulating the plasma edge with steep profile gradients and low-density levels, which
often leads to conditions with fluctuation levels as large as the background. As
marker numbers typically need to be at least at the order of 10− 100 per grid cell,
an adequate simulation of the core of a medium-sized tokamak plasma, like that of
the Tokamak à Configuration Variable (TCV) at EPFL [76] is feasible, but larger
marker numbers may approach the computational limits of most computers, even
more so for particularly large plasma volumes like that of ITER. In order to still
possibly retain some advantage of the delta-f scheme, one could also evolve f0, albeit
at a longer timescale than that of the fluctuating δf . This approach has for example
been suggested in Refs. [13, 2, 50]. This work explores the implications of a specific
implementation of this approach. Namely, to have a time-evolving background by
constraining f0 to be a flux-surface-dependent Maxwellian which is furthermore
time-dependent via its evolving density and temperature profiles. Another source
of statistical sampling noise is due to ‘weight-spreading’ [13, 16] as a result of the
implementation of collision operators using a Langevin approach. However, this
problem will be not addressed in this work as collisions are not considered. The
study on the advantages of the evolving background is done in three stages.

As a first step and a proof-of-principle, the adaptive scheme is implemented in
the gyrokineitc GKengine code [65] which simulates a single kinetic ion species in
sheared-slab geometry with simplified physics. That is, the configuration space is
Cartesian, with periodic boundaries for the ‘poloidal’ and ’toroidal’ directions. The
equilibrium magnetic field is only a function of the radial coordinate. No curvature
drift is considered, and adiabatic electrons are assumed. As this assumption results
in no particle transport, the adaptive scheme implemented here only exhibits time
dependence through the flux-surface-averaged (f.s.a. ) ion gyrocentre temperature
profile. All simulations performed with this code involves setting up a steep temper-
ature gradient to induce a slab-ITG instability. These profiles are chosen motivated
by the potential use of the adaptive scheme at the plasma edge, which is charac-
terised by steep gradients. As there are no sources, the profiles are clamped at the
high and low ends of the temperature profile to prevent relaxation below critical
gradient. The resulting large temperature deviation from the initial profile indeed
increased the statistical sampling noise of the non-adaptive scheme. However, under
the adaptive scheme, noise is shown to be kept at low values. Implications on the
behaviour of zonal flows, which play a crucial role in turbulent regulation, will be
studied in detail.

In the next stage, the adaptive scheme is implemented in toroidal geometry via
the global gyrokinetic ORB5 code [54]. Here, realistic physics for simulating from
the plasma core to the last closed flux surface (LCFS) is afforded. In an attempt to
still work with an adaptive temperature profile, simulations are done with a kinetic
ion species with adiabatic electrons. Also, a generalisation of the adaptive scheme
from Cartesian to toroidal geometry is made. The simulations run are flux-driven,
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with input fluxes having twice the integrated source power of a previously done
temperature-gradient run. This results in large temperature profile deviations from
initial state, turbulence driven by toroidal-ITG modes. Like cases with sheared-slab
geometry, the adaptive scheme is shown to be able to maintain low statistical noise
for long times. However, it turns out that one needs to also adapt the gyrocentre
density, and correct for the parallel flow coming from the perturbed distribution, in
order to keep the adaptive scheme stable. This may be due to the limitations of
the Maxwellian control variate assumption. Nonetheless, using a coarse grid for the
adapting background profiles solves the instability issue.

In the final stage of this work, the adiabatic assumption for the electrons is
relaxed. A hybrid electron response allows particle transport, thus resulting in
gyrocentre density profile deviations as well as those of temperature. This allows
for the merits of an adaptive scheme for both density and temperature, for both ions
and electrons separately, to be demonstrated. Both temperature-gradient- and flux-
driven simulations are conducted, with instabilities now driven by both electrons
and ions, in a mixed ITG-TEM regime. Unlike the case with adiabatic electrons,
the adaptive scheme under such conditions is stable, thus allowing for the study
of the implementation of various corrections terms, along with the importance of
various components that make up the adaptive scheme. When compared to non-
adaptive cases, results of the adaptive scheme are shown to once again exhibit low
errors resulting from statistical sampling noise. Evolved profiles under the adaptive
scheme with much lower marker numbers are shown to match those of the non-
adaptive cases.

1.6 Thesis outline

This thesis manuscript is organised as follows. Ch. 2 introduces the magnetic ge-
ometry of the ORB5 code used in this work, which is followed by a description
of the two main instabilities involved in this work, namely the toroidal ITG and
TEM. A brief recapitulation of the gyrokinetic model is also given. This leads to
the description of the equations of motion for the gyrocentre. As this works deals
with electrostatic turbulence, a discussion of the quasi-neutrality equation (QNE),
along with the various electron response models, conclude the chapter. Ch. 3 begins
the discussion of the numerical models by explaining the PIC method (Sec. 3.1). It
explains how a control variate leads to better integral evaluation in the Monte Carlo
sense. The discussion continues with marker loading in phase space, followed by the
discretisation of the δf , namely to represent it as a Klimontovich distribution. The
concept of marker weights introduced leads to the discussion of the main diagnos-
tic that measures its variance, which is the Signal-to-Noise ratio. An overview of
ORB5 then follows. Sec. 3.2 then details the adaptive scheme, which is the focus of
this work. It begins by motivating the starting relaxation equations, and enumerat-
ing all assumptions made. This is followed by the scheme’s implementation in the
ORB5 code. This also involves various correction calculations to the right-hand-side
(r.h.s. ) to the QNE. A short discussion on the possibility of partly ‘de-linearising’
the ion polarisation density afforded by the adapting background follows. The chap-
ter concludes with a description on the noise control and all sources used in this work
in Sec. 3.3 and normalisations used in Sec. 3.4. The remaining chapters deals with
results pertaining to the implementation of the adaptive scheme.
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Chapter 4 describes the work done leading to Ref. [63]. It begins by describing the
simplified physics of GKengine in Sec. 4.1, and the basic formalism of the adaptive
scheme with evolving f.s.a. background temperature in Sec. 4.2. This is followed
by the description on the periodic radial profile and parameters used in Sec. 4.3.
Results comparing the standard (non-adaptive) to the adaptive approach then begins
in Sec. 4.4. Marker convergence analysis is first conducted. A discussion on the
significance of an adaptive control variate, as opposed to an ‘adaptive’ noise control
operator is investigated, which is followed by a study on the effects of noise control
strengths and adaptive rates on simulation results. This is followed by an analysis
of how modifications to the electron adiabatic response can lead to non-decreasing
heat flux driven by slab-ITG modes.

Chapter 5 explores the use of the temperature adaptation scheme in toroidal
geometry using the global gyrokinetic ORB5 code [54]. Sec. 5.2 introduces the
heat flux radial profiles used to induce large temperature profile deviation from
initial state. Sec. 5.3 then compares transport time traces of the non-adaptive and
adaptive cases. Next, Sec. 5.4 shows how the adaptive reduces weight variance
with time. Sec. 5.5 considers the time evolved profiles time-averaged over two time
windows and compares the results from the non-adaptive and adaptive cases. This
is followed by Sec. 5.6 which exposes the limitations of the simulations settings on
long time simulations.

Chapter 6 explores the implications of a control variate with both time-dependent
density and temperature profiles. It is split into two parts: temperature-gradient-
, and flux- driven results analysis. Sec. 6.2.3 describes the profiles, along with
sources/sinks which are used for all simulations of this chapter. Sec. 6.2 analysis
the results from gradient-driven-runs with the use of a time-dependent density back-
ground profile. Comparisons between the non-adaptive and adaptive cases are made
for the heat and particle transport time-traces, along with weight variance diagnos-
tics. Time-evolved profiles of both cases are compared, along with their respective
zonal flow shearing rate. The final part of this section introduces the phase-space
volume diagnostic. Sec. 6.3 discusses the results of flux-driven runs. Similar anal-
ysis procedure is done here as those for Sec. 6.2. Due to large profile deviations
from initial state, time evolved profiles are studied in two distinct time windows.
The problem of energetic electron accumulation near magnetic axis is discussed, and
comparison of various methods of calculating the correction term on the r.h.s. of the
QNE is conducted.

Chapter 7 concludes this work by recounting the main achievements, and suggests
possible extensions of the current adaptation scheme.
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Chapter 2

Physical model

Here, we give an overview of the physical concepts and models used in this work.
As the plasma turbulence simulated is highly anisotropic, we begin by describing
the toroidal magnetic field geometry in Sec. 2.1. This is followed by a discussion
on the main microinstabilities involved in the simulations in Sec. 2.2, namely, the
ITG and TEM modes, along with the role of zonal flows. Sec. 2.3 then gives a brief
overview of gyrokinetic theory and its equations of motion. Then, the important
ideas of equilibrium and background distributions are introduced in Sec. 2.4. Fi-
nally, Sec. 2.5 discusses the quasi-neutrality-equation (QNE), along with the various
electron models used in this thesis.

2.1 Magnetic field geometry

Figure 2.1: Cylindrical geometry (R,φ, Z) and tokamak geometry (r, φ, θ⋆). Figure
is taken from Ref. [25].

Let (R,φ, Z) be a right-handed cylindrical coordinate system, as shown in Fig. 2.1.
Here, R is the radial coordinate, φ the azimuthal (toroidal) angle, and Z the vertical.

Then, a toroidally symmetric magnetic field B⃗ that is also divergent-free, ∇· B⃗ = 0,
may be written in the form

B⃗(R,Z) = F (ψ)∇φ+∇ψ ×∇φ. (2.1)
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Here, F is the poloidal current function indexed by ψ. The latter is the poloidal
flux function, defined by

ψ(R,Z) =
1

2π

∫
Σ

d2r n̂ · B⃗(R,Z) (2.2)

where Σ(R,Z) is a toroidal ribbon emanating from the magnetic axis with surface

unit normal n̂. From Eq. (2.1), we see that B⃗ · ∇ψ = 0. This means that each field

line described by B⃗ lies on a particular magnetic surface, which is labelled by ψ. As
field lines cannot overlap, flux functions labelled by ψ(R,Z) = const can be used as

a radial coordinate with origin at the magnetic axis. The magnetic field B⃗ is fur-
ther described by Ampère’s law, and the condition for ideal magnetohydrodynamic
(MHD) equilibrium, given respectively by

∇× B⃗ = µ0J⃗ (2.3)

and

J⃗ × B⃗ = ∇p. (2.4)

µ0 here is the magnetic permeability of free space, J⃗ the current density, and p
the isotropic pressure. We have employed Ampère’s law neglecting the displacement
current as we only consider phase velocities of field perturbation very small w.r.t. the
speed of light. Furthermore, it can be shown [25] that p = p(ψ), and therefore

both field lines of J⃗ and B⃗ lie on flux surfaces ψ = const, on which p is constant.
Eliminating J⃗ by inserting Eq. (2.3) into (2.4), and replacing B⃗ from Eq. (2.1) into
the resulting equation, leads to the Grad-Shafranov equation:

∇ ·
(

1

R2
∇ψ
)

= −µ0p
′(ψ)− (F 2)′

2R2
. (2.5)

Equation (2.5) is used to solve for ψ = ψ(R,Z) given the pressure p and poloidal
current profile F , with appropriate boundary conditions. The poloidal cross-section
of ψ = const contours are generally not circular (e.g. the contour lines of Fig. 2.2).
In order to define a radial coordinate more closely related to the geometrical minor
radius, we consider the following. An example of an analytic solution to Eq. (2.5)
with F ′ = 0 and p′ = const, is the Solovev equilibrium [41]

ψ(R,Z) =
ψedge

(R0a)2

[
(RZ)2 +

1

4
(R2 −R2

0)

]
, (2.6)

with a the minor radius, R0 the major radius (see Fig. 2.1) and ψedge the value of
ψ on the boundary. In the large aspect ratio R0/a ≫ 1 limit, Eq. (2.6) becomes
ψ = ψedger

2/a2, implying circular ψ = const surfaces with radius r from the magnetic
axis. This suggests a new radial label

s =

√
ψ

ψedge

, (2.7)

which will be used extensively through this work. However, equilibrium B⃗ field
geometries usually do not have circular cross-sections, e.g. exhibit finite triangularity,

10



2.1. MAGNETIC FIELD GEOMETRY

nor have finite Shafranov shift [29]. This leads to s2 not being proportional to the
enclosed volume V . Thus an alternative radial label commonly used in the literature
is defined by

ρV =

√
V (ψ)

V (ψedge)
.

Nonetheless, only radial labels s and ψ/ψedge will be used throughout this work,
depending on the profile under study.

Coming back to the geometry of B⃗, we first define the geometrical poloidal angle
θ with reference at the magnetic axis (see Fig. 2.1). It turns out [25] that B⃗ cannot
be perfectly toroidal. Let us for the moment consider only toroidal field lines. As
the guiding centres travel along these field lines toroidally, they will experience a
radially-outward centrifugal force. The latter will cause guiding centres to drift
vertically. Furthermore, the direction of this drift is charge sign dependent, thus
resulting in a vertical charge separation. This charge separation in turn creates a
vertical electric field, which leads to an E × B force on all particles. As this force
is charge sign independent, the bulk plasma is ejected radially outwards, leading to
lost of confinement. Therefore, the remedy of this is to have the B⃗ field lines ‘twist’
poloidally as it goes around toroidally, thus short-circuiting the charge separation.
This field-line twist on each ψ = const surface is described by the safety factor q(ψ),
defined by

q(ψ) =
1

2π

∫ 2π

0

dθ
B⃗ · ∇φ
B⃗ · ∇θ

. (2.8)

It is useful to define a ‘straight-field-line’ poloidal angle θ⋆ on each ψ surface,
which relates to θ by

θ⋆ =
1

q(ψ)

∫ θ

0

dθ′
B⃗ · ∇φ
B⃗ · ∇θ′

. (2.9)

The term ‘straight-field-line’ derives from the fact that B⃗ field lines are straight
when projected on the (θ⋆, φ) plane at ψ = const. This is shown simply by

B⃗ · ∇θ⋆

B⃗ · ∇φ
=

B⃗ · ∇θ
B⃗ · ∇φ

dθ⋆

dθ
=

1

q(ψ)
,

where use has been made of Eq. (2.9). The configuration space coordinate system
(s, θ⋆, φ) is termed the ‘straight-field-line’ coordinate system, and is used thoroughly
in this work. The motivation for the use of θ⋆ instead of θ is that micro-instabilities
tend to be field-aligned. The configuration space under study allows us to express
any perturbed field quantity as

ϕ(s, θ⋆, φ, t) =
∑
mn

ϕmn(s, t)e
imθ⋆+inφ, (2.10)

with poloidal and toroidal mode numbers m and n respectively. Then, the pertur-
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2.2. ELECTROSTATIC MICROINSTABILITIES

bation that aligns with B⃗ is proportional to

B⃗ · ∇ϕ = (F∇φ+∇ψ ×∇φ) ·
(
∇s ∂

∂s
+∇θ⋆ ∂

∂θ⋆
+∇φ ∂

∂φ

)
ϕ

=
∑
mn

(F∇φ+∇ψ ×∇φ) ·
(
∇s 1

ϕmn

∂ϕmn
∂s

+ im∇θ⋆ + in∇φ
)
ϕmne

imθ⋆+inφ

=
∑
mn

(
nF |∇φ|2 +m∇ψ ×∇φ · ∇θ⋆

)
iϕmne

imθ⋆+inφ

=
∑
mn

[nq(s)−m]
i

Js
ϕmne

imθ⋆+inφ,

where use has been made of Eqs. (2.1), (2.9) and (2.11) for the Jacobian (see below).
Using (s, θ⋆, φ), the expression in the bracket, nq − m depends only on ψ, and
is amenable to a Fourier filter on each ψ-surface to enforce k∥/k⊥ ∼ small (see
Sec. 3.1.4.1).

Finally, using Eqs. (2.1) and (2.9), with |∇φ|2 = 1/R2, the Jacobian [17] of the
configuration space in straight-field-line coordinate system is given explicitly by

Js(s, θ
⋆) =

1

|∇s×∇θ⋆ · ∇φ|

=
1

|∇ψ ×∇θ⋆ · ∇φ|

∣∣∣∣ dψds
∣∣∣∣

=
1

|B⃗ · ∇θ⋆|
dψ

ds

=
q(s)R2(s, θ⋆)

F [ψ(s)]

dψ(s)

ds
. (2.11)

An operator that is used throughout this work, especially in diagnostics, is the
flux-surface-averaged operator ⟨·⟩, defined for a g in configuration space by

⟨g⟩ (s) =

∫
dθ⋆ dφ g(s, θ⋆, φ)Js(s, θ

⋆)∫
dθ⋆ dφJs(s, θ⋆)

. (2.12)

2.2 Electrostatic microinstabilities

This section summarises the properties of the two examples of electrostatic mi-
croinstabilities that will be encountered in this work. Turbulence driven by these
modes generate fluxes of particle, momentum and heat, which can result in signifi-
cant profile deviation from the initial state. Handling such strong profile evolution
is a challenge for gyrokinetic simulations. Our intent is to prove the merit of an
evolving background scheme. Nonetheless, the reader interested in a more thorough
discussion on this topic may consult references like Refs. [12], [8], [43], and [19], from
which this summary is made.

2.2.1 Ion-Temperature-Gradient driven instabilities

We consider a collisionless plasma, consisting of a single ion species of unit charge e
and electron species in slab geometry. We use Cartesian coordinates in configuration
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2.2. ELECTROSTATIC MICROINSTABILITIES

space r⃗ = [x, y, z], with respective unit vectors {ex, ey, ez}. We designate z as

the direction of the magnetic field everywhere, i.e. B⃗ = B(x)ez. We allow for
perpendicular x-variation of the ion density N = N(x) and temperature Ti = Ti(x)
respectively. On the other hand, the electrons are assumed to be adiabatic with
density N and temperature Te respectively. Finally, we consider a constant force

F⃗ = Fex = −m

(
v2∥
2

+ v2⊥

)
∂

∂x
logBez,

with m the ion mass, and v∥ = vz and v⊥ =
√
v2x + v2y the parallel and perpendicular

velocities respectively. This force mimicks the effects of the ∇B drift force. This
also implies a constraint on B(x) to be linear in x. The Vlasov equation[

∂

∂t
+ v⃗ · ∇r +

1

m
(−∇ϕ+ v⃗ × B⃗ + F⃗ ) · ∇v

]
f = 0 (2.13)

is then solved by decomposing the ion distribution function f into f = f0 + δf ,
i.e. an equilibrium distribution f0, and a perturbed distribution δf . f0 is assumed
to be a Maxwellian function of the constants of motion, and δf assumes the form

δf = δf̂(x) exp[i(kyy + kzz − ωt)].

Here, the perturbed wave has wave vector k⃗ = kyey + kzez and angular frequency

ω. The potential ϕ also assumes the form akin to δf with identical k⃗ and ω. After
some algebra, by solving for the dielectric function via the quasi-neutrality equation,
leads one to the dispersion relation

0 =
Ti
Te

+ 1 + (ω − ωNi)
∫

d3v
f0
N

J2
0 (ξ)

ωFi − ω + kzv∥
−

ωT i

∫
d3v

f0
N

(
E

Ti
− 3

2

)
J2
0 (ξ)

ωFi − ω + kzv∥
. (2.14)

Here, the ion drift frequencies are ωNi = Tiky/(eB)/ d logN/ dx due to a den-
sity gradient, ωT i = Tiky/(eB) dTi/ dx due to a temperature gradient, and ωFi =
−kyF (v⃗)/(eB) due to a constant perpendicular force, respectively. E = mv2/2−Fx
is the ion kinetic energy. J0 is the zero-th order Bessel function of the first kind, with
argument ξ = kyv⊥/Ω, were Ω is the ion cyclotron frequency. To arrive at Eq. (2.14)
we have considered only the zero-th order cyclotron harmonic. The J2

0 term repre-
sents the lowest order Finite-Larmor-Radius (FLR) effects. The denominator with
frequency shifted by ωFi constitutes Landau-damping.

By considering the fluid limit, i.e. |ω/(kzvthi)| ≪ 1, with vthi =
√
Ti/mi the ion

thermal velocity, and |ω/ωFi| ≫ 1, and neglecting FLR effects, Eq. (2.14) simplifies
to1

0 = 1−
(
1− ωT i

ω

)[(kzcs
ω

)2

+
Teω̄Fi
Tiω

]
,

1The absence of a force F⃗ , and therefore ωFi = 0, leads to the dispersion relation for the
slab-ITG mode.

13



2.2. ELECTROSTATIC MICROINSTABILITIES

where cs =
√
Te/m is the ion sound speed and ω̄Fi = 2Tiky/(eBR) is the velocity

averaged ωFi, with R the gradient length of B, i.e. R = −( d logB/ dx)−1. Consid-
ering only the effect of large ion temperature gradient i.e. |ωT i/ω| ≫ 1, and letting
kz → 0, leads to the well-known relation

ω = ±

√
−2Te

Ti

(
kyTi
eB

)2
∂ log Ti
∂x

∂ logB

∂x
(2.15)

for the growth rate of the toroidal ITG mode. Eq. (2.15) states that (in the absence
of a density gradient) toroidal ITG modes will only be unstable where ∇ log Ti ·
∇ logB > 0, giving rise to ‘ballooning’ structures, as shown in Fig. 2.2. This region
is also known as the bad curvature region.

When Eq. (2.14) is solved numerically for typical values like Te = Ti, |∇ log Ti|/|∇ logN | >
1, and kz → 0, the maximum growth rate for the toroidal ITG mode is located at
kyvthi/Ω ≈ 0.5. The growth rate also increases with increasing Ti logarithmic gra-
dient for a fixed N logarithmic gradient. At short wavelengths kyvthi/Ω ≈ 1, FLR
effects stabilise the toroidal ITG mode. ITG modes are known to be the main drive
in ion heat transport.

Figure 2.2: Poloidal cross-section showing the most dominant ITG mode n ≈ 28 at
cst/a = 32 for the ITG case of Ch. 5. The balloon structure is represented by the
non-zonal perturbed potential (ϕ−⟨ϕ⟩)/T0e(s0). Contour curves represent constant
s = [0.1, 0.2, · · · , 1.0] flux surfaces (see Eq. (2.7)) of the magnetic field geometry of
the TCV shot #43516 used in this work.
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2.2.2 Trapped-Electron-Mode driven instabilities and its cou-
pling to ITG modes

This work considers plasma magnetically confined by a toroidal magnetic field (see

Sec. 2.1). This B⃗ field is generated by a combination of a central solenoid and an
induced current in the plasma (see Fig. 1.2a). The resulting field thus exhibit strong
1/R inhomogeneity in the radial direction, and curvature in field lines. For a guiding
centre travelling along a field line toroidally, it experiences varying B strength as the
field line has a poloidal component. This leads to a ‘magnetic mirror’ force, which
reverses the direction of parallel flow at the strong B region, i.e. the High-Field-Side
(HFS), and thus ‘trapping’ particles to the region of low B, i.e. the Low-Field-Side
(LFS). These particles are thus termed ‘trapped’. When projected on the poloidal
plane, these closed ‘banana’ orbits lie on the LFS, leading once again to ballooning
structures at the bad curvature region. The distance from the toroidal axis of the
reflection point depends on the magnitude of the parallel flow, and has its shortest
value at the in-board mid-plane. Therefore, if a guiding centre has a large enough
parallel velocity component, it will only suffer a parallel deceleration there, but
not a reversal, as it travels toroidally along a field line. Particles of this category
are termed ‘passing’ (see Fig. 2.3), and the ratio of their parallel to perpendicular
velocities satisfy

∣∣∣∣ v∥v⊥
∣∣∣∣ >

√
Bmax(ψ)

B(s, θ⋆)
− 1,

with Bmax the maximum magnetic field strength on the ψ-surface on which each
particle lie.

Trapped electrons executing oscillatory motion along a magnetic field-line do
not undergo Landau damping. Furthermore, these electrons do not return to the
same poloidal plane after one bounce period, but execute a toroidal precession.
This precession drift can interact with a perturbation which results in the Trapped-
Electron-Mode (TEM) microinstability, which propagates in the electron diamag-
netic direction. The TEM can be destabilised with wavenumber in the same range
of that of the toroidal ITG mode, though with a lower stability threshold [67]. As
these modes are not sensitive to FLR effects due to the small electron Larmor radius,
these modes can also exist at much shorter wavelength.

As it stands, the ‘1’ term in the dispersion relation Eq. (2.14) for the toroidal
ITG mode represents the electrons’ fully adiabatic response. This can be modified
to include passive drift-kinetic trapped electrons, and passing electrons with an
adiabatic response. The fraction of trapped electron population is introduced into
Eq. (2.14) via the trapped electron fraction αT . The result is that trapped electrons
reduces the total electron population’s adiabatic response, thus destabilising ITG
modes at a lower threshold. These ITG modes have a larger linear growth rate and
are also destabilised at longer wavelengths. Though dominant ITG turbulence does
lead to electron heat transport, TEM still remains to be the dominant drive. On the
other hand, particle transport occurs for both ITG-dominant and TEM-dominant
regimes [5].
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Figure 2.3: Passing (top) and trapped (bottom) guiding centre orbits. Drift motion
causes guiding centres to deviate from a constant magnetic surface as they travel
along a field line. Besides parallel velocity reversal, trapped particles further exhibit
toroidal precession over bounce motion. Right sub-figures show the poloidal cross-
section. Figure is taken from Ref. [28].

2.2.3 Zonal flows, GAMs and turbulence regulation

Zonal flows are sheared E×B plasma flow with (m,n) = (0, 0), which are generated
through Reynolds stress in the drift wave turbulence. In toroidal geometry, the
(m,n) = (0, 0) mode can couple with the n = 0 and m ̸= 0 which results in the
generation of Geodesic-Acoustic-Modes [80] (GAMs). Both of these modes can be
understood via the zonal flow linear response function [69]. It was shown that in
the presence of a source, the response function can be separated into short-time
GAMs and long-time residual zonal flow. In the absence of collisions, residual zonal
flows are undamped. GAMs on the other hand are oscillatory, with a characteristic
frequency given [26] by ωGAM ≃

√
7/2 + 2(Te/Ti)vthi/R. Unlike residual zonal flow,

they are Landau-damped. This damping is however weaker at higher safety factor
q, leading to their presence predominantly at the plasma edge.

Zonal flows play an important role in ITG turbulence regulation. Visually, they
can be thought of as sheared flows that destroy turbulent eddies or the ballooning
structures of the ITG modes (see Fig. 2.4a). The result is the reduction in ion heat
transport. On the other hand, the role of zonal flows in the saturation of TEMs
has been the subject of debate and appears to be case-dependent [51]. Zonal flows
themselves are damped by either collisions, or via nonlinear damping, though these
topics are beyond the scope of this thesis. This interactive system is summarised in
Fig. 2.4b. The interested reader may consult Ref. [18] for a thorough overview on
zonal flows.

In this work, the effect of zonal flows in turbulence regulation is determined via
the zonal flow E×B shearing rate ωE×B (see Eq. (3.87)), which is derived from the
f.s.a. electrostatic potential ⟨ϕ⟩. As a rule of thumb, ωE×B has to be at least as large
as the instability linear growth rate for turbulence suppression [78]. Simulations of
zonal-flow-turbulence interactions using particle codes can be delicate: numerical
sampling noise can accumulate in the undamped component of the zonal flows,
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creating in the long run high amplitudes of ωE×B and consequently suppressing
turbulence in an unphysical way. This phenomenon is shown and analysed in Ch. 4.

(a) Turbulent eddy shredding (b) Zonal flow interaction

Figure 2.4: In the circle on the right, ‘energy return’ indicates the process of energy
return to drift waves. Figures are taken from Ref. [18].

2.3 Gyrokinetic theory

2.3.1 Fully kinetic model

The most vigorous method to solve for the motion of charge particles in a magnetic
field is the fully kinetic theory. Let each particle be described by a point Z⃗ = R⃗, V⃗
in a six-dimensional phase space, with position R⃗ = [X, Y, Z] and velocity V⃗ =
[Vx, Vy, Vz]. The equations are simply given by Newton’s second law:

dR⃗

dt
=

V⃗

mj

,
dV⃗

dt
=

σj
mj

V⃗ × B⃗.

with mj and σj the mass and charge of the jth species respectively. We have also

omitted the force by an electric field σjE⃗ to account for the fact that a plasma is
quasi-neutral. The distribution function for each jth species is then described by the
Vlasov equation

∂fj
∂t

+
dR⃗

dt
· ∇Rfj +

dV⃗

dt
· ∇V fj = 0, ∀j,

with ∇R = [∂X , ∂Y , ∂Z ] and ∇V = [∂V x, ∂V y, ∂V z], where we have assumed no sources
or collisions for this discussion. These equations are closed via the Maxwell equations
with

ρ =
∑
j

σj

∫
d3v fj, J⃗ =

∑
j

σj

∫
d3v v⃗fj

which are the charge and current densities, respectively. Here,
∫
d3v =

∫
dVx dVy dVz

represents the integration over velocity space. Before discussing further simplifica-
tions, let us identify two constants of motion. The first is the particle energy per
mass E = v2/2, with

dE
dt

= σj v⃗ · v⃗ × B⃗ = 0.
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For the second constant of motion, let us consider the jth species particle Lagrangian
in cylindrical coordinates (see Fig. 2.1),

Lj =
mj

2
(Ṙ2 +R2φ̇2 + Ż2) + σj(ARṘ + AφRφ̇+ AZŻ).

Here, A⃗ = [AR, Aφ, AZ ] is the vector potential B⃗ = ∇× A⃗, and ·̇ represents the total
time derivative. The conjugate momentum to the cyclic variable φ in axisymmetric
geometry is called the ‘toroidal canonical momentum’

ψ0j =
1

σj

∂Lj
∂φ̇

= ψ +
v∥
Ωj

F (ψ), (2.16)

which is a constant of motion, where v∥ is the particle velocity parallel to the local B⃗

field, and Ωj = σjB/mj is the cyclotron frequency. Despite having each B⃗ field line
lying on a particular ψ = const. surface, the particles do not strictly gyrate around
that field line, but drift perpendicularly due to ∇B and curvature drifts. The ψ
deviation resulting from orbit drifts is represented by the second term of Eq. (2.16).

2.3.2 Phase space reduction by averaging out gyration phase

Now, modelling magnetically confined fusion plasma using the six-dimensional ki-
netic model is a numerically expensive task. This is because the plasma exhibits
multi-scale behavior, both in space and in time. Turbulent eddies induced by MHD
instabilities are typically on the order of 1m (the size of the tokamak minor radius),
whereas those induced by micro-instabilities studies in this work are on the order
of 10−3m (the size of the ion Larmor radius). On the other hand, drift frequencies
of these micro-instabilities are on the order of 106s−1, whereas the ion cyclotron
frequency is on the order of 108s−1. In view of this large time-scale separation, gy-
rokinetic theory allows one to average out the fast ion cyclotron motion, and only
solve for the particle guiding centre trajectories. This reduces the dimension of
phase space from six to five, and also allows for longer time step-size for particle
orbit integration. Various formalisms of averaging out cyclotron motion and their
respective orderings of small parameters exist. In this work, we shall employ the
gyrokinetic equations as derived by Hahm [32]. These equations of motion are de-
rived from a Hamiltonian formalism that preserves energy and canonical toroidal
momentum conservation. Furthermore, to preserve the magnetic moment µ as an
adiabatic invariant under field perturbations, a coordinate transformation from par-
ticle guiding centres to gyrocentres has been derived by the use of Lie perturbation
theory. Visually, particle gyrocentre is the shifted guiding-centre to account for
circular Larmor orbit distortion due to perturbations. A complete tutorial on the
derivation of the gyrokinetic model used in this work can be found in references like
Refs. [72],[73] and [27]. An overview of the use of gyrokinetics for modelling plasma
turbulence can be found in Ref. [28].

Hahm’s nonlinear gyrokinetic theory employs the parameters ϵg and ϵB for small-
ness ordering:

ϵg ∼
ω

Ωi

∼ eϕ

Te
∼
k∥
k⊥
∼ ρL
Ln
∼ ρL
LT

, ϵB ∼
ρL
LB

,

where ω is the typical frequency of the instability under study and Ωi the ion cy-
clotron frequency. eϕ/Te is the ratio of the perturbed field energy and the electron
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temperature, which implies small drift velocities vdrift w.r.t. the electron thermal
velocity vthe. k∥/k⊥ is the ratio of the parallel and perpendicular component of

the wave vector w.r.t. the local magnetic field B⃗, respectively. It implies turbu-
lence eddies are mostly field aligned. ρL is the reference ion Larmor radius, and Lg
is the average global gradient length scale of the profile g, which are the density
n, temperature T , and magnetic field B. Measure of ρL/Lg implies that gradient
length scales should be at least a few Larmor radius in length. For tokamak plas-
mas, the difference between ϵB and ϵg is the inverse of the aspect ratio ϵa = a/R0,
i.e. ϵB/ϵg ∼ ϵa.

Under the gyrokinetic theory, magnetically confined plasma is modeled by de-
scribing the time evolution of species’ distribution function f in a five-dimensional
phase space Ω. Each point in Ω is described by Z⃗ = [R⃗, v∥, µ], which represents
the particle gyrocentre position, parallel velocity, and magnetic moment per mass,
respectively. µ relates to the perpendicular velocity via µ = v2⊥/2B. The gyroki-
netic Boltzmann-Maxwell equation for the distribution function fj of the j

th species
(subscript omitted), is given by

df

dt
=

(
∂

∂t
+

dR⃗

dt
· ∇R⃗ +

dv∥
dt

∂

∂v∥
+

dµ

dt

∂

∂µ

)
f = S. (2.17)

Here, S is the a general source term. We have dropped the collision operator C
as all simulations of this work are collision-less. The equations of motion of the
gyrocentre position in phase space when studying electrostatic turbulence are given
by

dR⃗

dt
= v∥b̂+

1

B⋆
∥

[
µB + v2∥

Ωc

b̂×∇B −
v2∥
Ωc

b̂× (b̂×∇× B⃗)−∇ϕ̃× b̂

]
(2.18)

dv∥
dt

= −µ∇B ·

[
b̂−

v∥
B⋆

∥Ωc

b̂× (b̂×∇× B⃗)

]
−

∇ϕ̃
Ωc

·

{
B⃗ +

Bv∥
B⋆

∥Ωc

[b̂×∇B − b̂× (b̂×∇× B⃗)]

}
(2.19)

dµ

dt
= 0. (2.20)

All fields like the magnetic field B⃗ = Bb̂ and the potential ϕ are functions of
the gyrocentre coordinate Z⃗, on which the spatial gradient ∇ operator also act.
Ωc = σB(R⃗)/m is the species local cyclotron frequency. The term ϕ̃ is ϕ under the
gyroaveraging operator ·̃, given by

ϕ̃(R⃗, µ, t) =
1

2π

∫ 2π

0

dαϕ(R⃗ + ρ⃗L(µ, α), t), (2.21)

where α is the gyroangle, and ρ⃗L is the local Larmor radius with magnitude ρL =√
2µB. The term B⋆

∥ is the component parallel to B⃗ of the vector

B⃗⋆ = B⃗ +
Bv∥
Ωc

∇× b̂, (2.22)
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i.e. B⋆
∥ = B⃗⋆ · b̂ = B(1+v∥b̂ ·∇× b̂/Ωc). Looking at Eqs. (2.18) and (2.19), the terms

involving b̂× (b̂×∇× B⃗) represents the diamagnetic drift induced by a pressure p
gradient, i.e.

b̂× (b̂×∇× B⃗) =
1

B2
B⃗ × (B⃗ × J⃗) = ∇p× B⃗

B2
.

Based on Eq. (2.18), the velocity of R⃗ is determined, by successive terms, the parallel
component, the ∇B and curvature drifts, the diamagnetic drift, and the E×B drift.
As for Eq. (2.19), the parallel acceleration is determined by the magnetic mirror
term, the interaction of the magnetic field gradient with the diamagnetic drift, the
parallel acceleration by electric field, and the interaction between the electric field
and the curvature and diamagnetic drifts. Finally, Eq. (2.20) is the statement of µ
being an adiabatic invariant. Eqs. (2.18), (2.19) and (2.20) are derived up to order
O(ϵgϵB), i.e. drift terms on the order of O(ϵ2B) are neglected. These equations are
closed by the self-consistent electrostatic potential ϕ by solving Poisson’s equation,
which will be discussed in Sec. 2.5. Thus, terms in Eqs. (2.18) and (2.19) that
involve the perturbed field ϕ make them nonlinear.

Finally, B⋆
∥ appears in the Jacobian determinant for the velocity transformation,

as in∫
d3v =

∫
dVx dVy dVz =

∫
dv∥ dµ dαB

⋆
∥ ≡

∫
dv∥ dµ, 2πB

⋆
∥ =

∫
dv∥ dµJv

(2.23)

where α is the gyroangle, Jv = 2πB⋆
∥ is the velocity Jacobian for the gyrocentre

velocity variables.

2.4 Equilibrium and background distributions

Let us for the moment consider the homogeneous form of Eq. (2.17), termed the
gyrokinetic Vlasov-Maxwell equation. It is useful to separate the un-perturbed and
perturbed trajectories, i.e.

df

dt
=

df

dt

∣∣∣∣
0

+
df

dt

∣∣∣∣
1

= 0. (2.24)

The operator d
dt
|1 ( d

dt
|0) that describes the perturbed (unperturbed) trajectories

contains only terms with (without) ϕ in Eqs. (2.18), (2.19) and (2.20). Furthermore,
the distribution f = feq that describes a system in gyrokinetic equilibrium is defined
by

dfeq
dt

∣∣∣∣
0

= 0. (2.25)

In order for Eq. (2.25) to be satisfied, feq must be function of the constants of
motion of the unperturbed system only. Namely, the canonical toroidal momentum
ψ̂0 (Eq. (2.16)), the energy per mass

E =
v2

2
=
v2∥
2

+ µB(R⃗), (2.26)
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and the magnetic moment µ. That is feq = feq(ψ̂0, E, µ). If we could postulate that
throughout the simulation, the distribution f will not deviate too much from an
initially known distribution finit, we could in all generality introduce the ‘delta-f’
splitting

f = finit + δf, (2.27)

where δf represents the deviation f from finit. Note that this splitting does not
require finit to describe a gyrokinetic equilibrium feq. To solve for δf , we then insert
Eq. (2.27) into Eq. (2.24) leading to

dδf

dt
= − dfinit

dt

∣∣∣∣
0

− dfinit
dt

∣∣∣∣
1

. (2.28)

Thus, if finit = feq, the first term of the r.h.s. of Eq. (2.28), the ‘neo-classical’ term,
vanishes.

A common choice for the functional form of finit is the Maxwellian function fM ,
with density and temperature profiles constant on magnetic surfaces, i.e. functions
of the radial coordinate ψ,

fM(ψ, E) =
n0(ψ)

[2πT0(ψ)/m]3/2
exp

[
− E
T0(ψ)/m

]
, (2.29)

where n0 and T0 are the f.s.a. gyrocentre number density and temperature of the
species respectively2. Here, an isotropic temperature profile is assumed. This choice
of the ‘local’ Maxwellian is motivated by the fact that given high enough collision-
ality, plasma distributions tend to be close to fM . However, Eq. (2.29) does not
describe a gyrokinetic equilibrium and thus the neoclassical term of Eq. (2.28) has
to be included. Unfortunately, when Eq. (2.29) is used for finit, this leads to spurious
zonal flow drive [38] at the beginning of the simulation. Nonetheless, it is common
practice in the PIC community to drop the neoclassical term. An alternative is to
have finit = fM , and using ψ0 (see Eq. (2.16)) instead of ψ as the radial coordinate,

fM(ψ0, E) =
n0(ψ0)

[2πT0(ψ0)/m]3/2
exp

[
− E
T0(ψ0)/m

]
. (2.30)

We shall call this a ‘canonical Maxwellian’3. Using Eq. (2.30) as finit, the neo-
classical term can now be dropped. Note that, the distinction between Eq. (2.29)
and Eq. (2.30) for finit is only important for the ion species, as the term accounting
for particle drift away from magnetic surface ψ is small for the electrons in Eq. (2.16).
Therefore, finit for electrons in this work will always assume Eq. (2.29) and also
dropping the electron neo-classical term.

The idea of delta-f splitting can be generalised to

f = f0 + δf (2.31)

with f0 representing the ‘background’ distribution, i.e. the distribution appropri-
ately time-averaged over turbulent fluctuation time-scales, and δf representing the

2Here, we assumed zero parallel flow.
3Strictly speaking, this is no longer a Maxwellian function as ψ0 depends also on the velocity

variables.
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fast fluctuating part. In this approach, which is at the core of the adaptive scheme
presented in more detail in Sec. 3.2, f0 is a slowly evolving time-dependent distribu-
tion, and is thus in principle distinct from finit and is furthermore not necessarily an
equilibrium distribution feq. Especially for a Particle-In-Cell scheme (see Sec.3.1)
used in this work, f0 is taken to be a smooth analytic function with only few, non-
zero, low-order velocity moments, and thus δf accounts for all the fine details of
f in phase space, e.g. higher order moments of velocity, represented by numerical
particles or ‘markers’ (see Sec. 3.1.3). In this context, f0 plays the role of the control
variate (see Sec. 3.1.1).

2.5 Quasi-neutrality equation

The work of this thesis deals with a single ion species of single charge σi = e,
and electrons. Functions of these species will be denoted by subscripts i and e
respectively.

2.5.1 Cancellation of the initial ion and electron densities

The general statement of the quasi-neutrality equation is that ni−ne = 0. Namely,
that the ion and electron number density cancel each other at all times. Before
discussing in detail the various forms of this equation, we first concern ourselves
with the initial distributions for the ions finiti and electrons finite. For this work,
we take finite to be Eq. (2.29). We now wish to use finite to describe a gyrokinetic
equilibrium, Eq. (2.30). The problem is that, even when the n0i and n0e share the
same functional form, the densities obtained after integrating Eq. (2.29) and (2.30)
do not match4. A better radial coordinate for ions, which is also a constant of
motion [3], is

ψ̂0 = ψ +
v∥F (ψ)

Ωc

− sign[v∥]
miR0

e

√
2[E − µBmax(ψ0)]H[E − µBmax(ψ0)],

(2.32)

where Bmax(ψ) is the maximum magnitude of B⃗ on the flux surface ψ, and H is the
Heaviside function. Here, we have used ψ0 as the radial coordinate for Bmax, and it
is taken specifically to be Bmax = B(s =

√
ψ0, θ = π). Thus, finiti now adopts

fM(ψ̂0, E) =
n0(ψ̂0)

[2πT0(ψ̂0)/m]3/2
exp

[
− E
T0(ψ̂0)/m

]
. (2.33)

The specific form of the quasi-neutrality equation (QNE) used to solved for the
self-consistent electrostatic potential as a function of straight-field-line coordinates
(see Eq. (2.9)) ϕ = ϕ(r⃗, t) with r⃗ = [s, θ⋆, φ], of Eqs. (2.17), (2.18), (2.19), and (2.20)

4Precisely, in the presence of negligible perturbed fields at initial time, it is the ion gyrodensity
and electron density that have to match.
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is [54]

−∇⊥ ·
(
min0i(ψ)

eB2
∇⊥ϕ

)
=

∫
dα

2π

∫
dΩ fi(R⃗, v∥, µ, t)δ[R⃗ + ρ⃗L(µ, α)− r⃗]−∫

dΩ fe(R⃗, v∥, µ, t)δ[R⃗− r⃗]

=

∫
d3vf̃i −

∫
d3v fe. (2.34)

The term on the left is the ion polarisation density in the long-wavelength limit
k⊥ρthi ≪ 1, with ρthi the thermal ion Larmor radius. In the present of the ion po-
larisation density, the ∇2ϕ term from the Poisson equation from which Eq. (2.34) is
derived is (λD/ρthi)

2-smaller, where λD is the Debye length. Therefore, under fusion
parameters, the ∇2ϕ term is dropped. The ion polarisation density is linearised by
replacing the ion density ni with that of the initial density n0i. Specifically, it is the
function n0 in Eq. (2.29) or (2.33) indexed by the radial coordinate ψ. Eq. (2.34)
can be solved as a linear system with finite elements (see Sec. 3.1.5). ∇⊥ is the

gradient perpendicular to the local B⃗ field, and is approximated to be the gradient
in the poloidal plane [43], i.e.

∇⊥ = ∇s ∂
∂s

+∇θ⋆ ∂

∂θ⋆
+∇φ ∂

∂φ
− b̂F (ψ)

R2B

[
∂

∂φ
+

1

q(ψ)

∂

∂θ⋆

]
≈ ∇s ∂

∂s
+∇θ⋆ ∂

∂θ⋆
.

The terms on the r.h.s. of Eq. (2.34) constitute the difference between the ion gy-
rodensity and the electron density. Owing to the relatively small electron Larmor
radius ρLe/ρLi = me/mi ≪ 1, the electron gyrodensity is approximated as the elec-
tron total density. dΩ is the gyrocentre phase-space differential,∫

dΩ =

∫
d3R d3v =

∫
2πB⋆

∥(s, θ
⋆, v∥)Js(s, θ

⋆) ds dθ⋆ dφ dv∥ dµ, (2.35)

with Js given by Eq. (2.11).
Replacing Eq. (2.31) into Eq. (2.34) leads to

−∇⊥ ·
(
min0i(ψ)

eB2
∇⊥ϕ

)
= ñ0i + δñi − n0e − δne. (2.36)

In order to further simplify the r.h.s. of Eq. (2.36), the reader is reminded that we
take Eq. (2.33) and Eq. (2.29) as the initial distributions for the ions f0i and electrons
f0e respectively. In this work, n0i and n0e is also chosen such that they have the same
functional form, denoted by n0. Since f0i and f0e describe gyrokinetic equilibria, the
ion polarisation density vanishes at initial time ϕ(t = 0) = 0. However, ñ0i is not
constant on ψ-surfaces as a consequence of using Eq. (2.33) and thus cannot cancel
n0e everywhere. We now make the assumption that

n0i(t = 0) = n0e(t = 0) +O(ρ⋆2) ≈ n0e(t = 0).

Under these circumstances, Eq. (2.36) becomes

−∇⊥ ·
(
min0i(ψ)

eB2
∇⊥ϕ

)
= δñi − δne. (2.37)

23



2.5. QUASI-NEUTRALITY EQUATION

2.5.2 Electron models used in this work

Depending on the type of electrostatic instability under study, the electron re-
sponse can be further classified. Eq. (2.37) as it stands, describes electrons as
fully drift-kinetic. The problem when using the fully drift kinetic electron re-
sponse to study TEM turbulence is that the ωH mode, which is the electrostatic
limit of the kinetic Alfvén wave is present in the spectrum [56]. It has frequency
ωH = (k∥/k⊥)

√
mi/meΩci, where Ωci is the ion cyclotron frequency, and becomes

large for long perpendicular wavelengths. Resolving the small time-scales of the ωH
mode severely limits the time integration step size. To circumvent this problem, a
so-called ‘upgraded hybrid electron model’ has been devised in Ref. [39]. This model
features:

1. All electron orbits are followed according to the drift-kinetic assumption.

2. Trapped electrons contribute fully to the r.h.s. of the QNE.

3. Passing electrons contribute only to the zonal (i.e. flux-surface-average) com-
ponent of the r.h.s. of the QNE

4. For the non-zonal modes, the passing electrons contribution to the QNE is
assumed adiabatic.

Property (2) allows for the description of TEMs. Property (3), together with (1),
allow for the model to satisfy the ambipolarity condition. Indeed, it was shown in
Ref. [39] that neglecting the zonal response of passing electrons results in a violation
of the ambipolarity condition. Property (3) also ensures to correctly capture [53, 52]
the frequency of the GAM [80]. Property (4) implies that, on the other hand, ETG
modes cannot be described by this model. Thus, the QNE Eq. (2.37), is modified
to

αP (ψ, θ
⋆)
en0e(ψ)

T0e(ψ)
(ϕ− ⟨ϕ⟩)−∇⊥ ·

(
min0i(ψ)

eB2
∇⊥ϕ

)
= δñi − δne,T − δne,P |(m,n)=(0,0)

=

∫
dΩ

∫
dα

2π
δ[R⃗ + ρ⃗L − r⃗] δfi −

∫
dΩ δ[R⃗− r⃗] δfe,T −

∫
dΩ δ[R⃗− r⃗] δfe,P

∣∣∣∣
(m,n)=(0,0)

(2.38)

Here, the subscripts P and T represent the passing and trapped populations of
electrons, respectively. m and n are the poloidal and toroidal mode numbers of the
electrostatic potential ϕ, Eq. (2.10) respectively. αP is the electron passing fraction,
which is given by

αP (ψ, θ
⋆) = 1−

√
1− B(ψ, θ⋆)

Bmax(ψ)
,

where Bmax(ψ) is the maximum of B⃗ on the ψ-surface. The term en0e(ϕ− ⟨ϕ⟩)/T0e
is the Boltzmann response with reference to initial electron f.s.a. density and tem-
perature. The zonal passing electrons are given a kinetic response to correctly
capture [53, 52] the frequency of the GAM [80].
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Finally, Eq. (2.38) can be simplified even further when studying instabilities
driven by ITG modes. It consists in considering all electrons as adiabatic. Note
that with this assumption, no particle transport is expected because the perturbed
potential is in phase with the perturbed density. Another practical consequence is
that electron orbits do not need to be computed, which allows for using larger time
steps. Eq. (2.38) then reduces to

en0e(ψ)

T0e(ψ)
(ϕ− ⟨ϕ⟩)−∇⊥ ·

(
min0i(ψ)

eB2
∇⊥ϕ

)
=

∫
dΩ

∫
dα

2π
δ[R⃗ + ρ⃗L − r⃗] δfi.

(2.39)
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Chapter 3

Numerical methods

This chapter develops the central focus of this thesis, namely the implementation of
an adaptive background scheme using a flux-surface-averaged Maxwellian as control
variate. Sec. 3.1 begins by introducing the PIC approach as a method to solve for
the distribution function of plasma species. Sec. 3.1.1 introduces the basic ideas of
Monte Carlo integration, along with the use of control variates to reduce variance.
Sec. 3.1.2 describes how phase space is sampled in ORB5. This is followed by the
discretisation of distribution functions, representing them as markers in Sec. 3.1.3.
Sec. 3.1.4 then introduces the two main diagnostics particularly useful to a PIC
scheme. Sec. 3.1.5 briefly describes how the QNE is solved in ORB5, which is then
followed by an overview of the ORB5 algorithm in Sec. 3.1.6. Sec. 3.2 introduces
the adaptive scheme by first presenting its central ideas in Sec. 3.2.1. Sec. 3.2.2 then
delves into the relaxation equations that governs the time-dependence of adaptive
background profiles along with two proposed algorithms. Sec. 3.2.7 then illustrates
the implementation of the said algorithms via the example of the adaptation of the
kinetic energy. Sec. 3.2.10 then details calculation of the necessary correction to
the r.h.s. of the QNE due to a time-dependent background. Discussion around the
QNE continues with Sec. 3.2.11 mentioning ideas on delinearising the polarisation
density and updates to the l.h.s. of the QNE in light of time-dependent background
profiles. The chapter concludes with Sec. 3.3 mentioning the sources/sinks used in
this work, and Sec. 3.4 giving an overview of normalisations used.

3.1 Particle-In-Cell scheme

The Particle-In-Cell (PIC) scheme solves for the distribution function fj of each
species j via a collection of ‘computational particles’ called markers or tracers [7,
35], moving in the phase space that fj occupies. For gyrokinetic simulations, the

phase space is 5-dimensional, describing the gyrocentre coordinates Z⃗ = [R⃗, v∥, µ],
and the motion of each marker is defined by the gyrokinetic equations of motion
Eqs. (2.18)-(2.20). In the so-called standard ‘full-f’ PIC scheme, the full distribution
f is sampled with markers. In the so-called ‘delta-f’ PIC scheme, the full distribution
is split into a known function f0 and a δf part, f = f0 + δf . In this case, only δf
is sampled with markers.We shall see that an adequate choice for f0 can reduce
the sampling error, hence the name ‘control variate’ PIC scheme. The rest of this
section analyses the PIC scheme under the Monte Carlo framework, following very
closely the interpretation of Ref. [6].
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3.1.1 Discretisation: a Monte Carlo interpretation

The two main sources of error1 for a PIC scheme are the numerical integration of
the marker trajectories according to the equations of motion Eqs. (2.18)-(2.20), and
the numerical integration of the various moments of the distribution function on the
r.h.s. of the field equations. The former results from the truncation error made at
each time-step of the numerical integration scheme used, which for this work is the
4th order explicit Runge-Kutta method (RK4), whereas the latter results from the
error of using a finite number of samples from a distribution to evaluate integrals.
This work focuses on minimising the error resulting from the latter and therefore a
discussion on evaluation of integrals using the Monte Carlo method follows.

3.1.1.1 Solution to integrals via random samples

Let Z⃗ be an n-dimensional random variable in phase space Ω, sampled according to
the probability distribution PΩ(Z⃗), normalised to∫

dΩPΩ(Z⃗) =

∫
dnZ JZ(Z⃗)PΩ(Z⃗) :=

∫
dnZ PZ(Z⃗) = 1,

with dΩ = JZ(Z⃗) d
nZ the differential phase-space volume element, with the Ja-

cobian JZ(Z⃗) resulting from the transformation to the variables Z⃗ from Cartesian
ones. We have also made the assignment for the effective probability distribution in
Z⃗, PZ(Z⃗) = PΩ(Z⃗)JZ(Z⃗). The expectation value of a function G of the variable Z⃗
is given by

E[G] =

∫
dΩG(Z⃗)PΩ(Z⃗). (3.1)

Also, the variance of G is thus given by

Var[G] =

∫
dΩ (G(Z⃗)− E[G])2PΩ(Z⃗)

= E[G2]− E[G]2. (3.2)

Now, we can approximate the integral on the r.h.s. of Eq. (3.1) using the sample
mean

Ḡ =
1

Np

Np∑
p=1

G(Z⃗p), (3.3)

with Np identical independent (idd) random variables Z⃗p labeled by p, all with the

same PZ(Z⃗). Eq. (3.3) is an example of an unbiased estimator (E[Ḡ] = E[G]), that

1The discretisation of the self-consistent fields, e.g. via an FEM representation, constitutes
another source of error.
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leads to

Var[Ḡ] =
1

N2
p

Var

[
Np∑
p=1

G(Z⃗p)

]

=
1

Np

Var[G], (this is true when Z⃗ are idd random variables

=⇒ σ[Ḡ] =
√

Var[Ḡ]

=
σ[G]√
Np

. (3.4)

which reveals the famous 1/
√
Np law for the Monte Carlo sampling error. From

Eq. (3.4), there are two ways to reduce the error to Eq. (3.1). The first is to
increase the number of markers Np, which requires more computational memory
and operations. The second is to reduce the variance Var[G]. This work focuses on
the latter.

3.1.1.2 Variance reduction via a control variate

Integrals involving the distribution f occur in the PIC approach when evaluating
field quantities, e.g. on the r.h.s. of the QNE. The general form of such an integral
can be expressed as

If (r⃗, t) =

∫
dΩ f(Z⃗, t)A(Z⃗)

=

∫
dΩPΩ(Z⃗)

f(Z⃗, t)A(Z⃗)

PΩ(Z⃗)
, (3.5)

for some distribution A(Z⃗). Eq. (3.5) can be calculated based on the expectation
value of the following estimator:

Īf =
1

Np

Np∑
p=1

,
f(Z⃗p, t)A(Z⃗p)

PΩ(Z⃗p)
, (3.6)

=⇒ Var[Īf ] =
1

Np

Var

[
f A

PΩ

]
≃ f A

Np

,

where every pth realisation of the random variable Z⃗p is termed a ‘marker’. However,
Eq. (3.6) will potentially have large variance resulting from the large variations of
amplitudes of fA/PΩ throughout the phase-space volume Ω. We now introduce the
control variate f0 so that f = f0+δf (c.f. Eq. (2.27)) We assume that the functional
form of f0 is simple so that If0 can be evaluated analytically (or by means of grid-
based numerical quadratures). Then, consider the following new estimator [68] for
Eq. (3.5):

Ī ′f =
1

N

N∑
p=1

δf(Z⃗p, t)A(Z⃗p)

PΩ(Z⃗p)
+ If0 (3.7)
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which has identical expectation value, i.e. E[Īf ] = E[Ī ′f ] = If . However, the variance
is now given by

Var[Ī ′f ] =
1

Np

Var

[
δf A

PΩ

]
≃ δf A

Np

following same derivation as for obtaining Eq. (3.4). Therefore, if the delta-f as-
sumption

∥δf∥
∥f∥

≪ 1, (3.8)

is met at all times, the new estimator Eq. (3.7) for a given sample size N will lead
to more accurate evaluation of Eq. (3.5). The function f0 used in this context of
variance reduction, is termed the ‘control variate’.

3.1.1.3 Variance reduction via importance sampling

An alternative method to reduce the variance is importance sampling. Returning
to Eq. (3.6), if PΩ(Z⃗) can be suitably chosen so that the variance of Eq. (3.6)

Var[Īf ] =
1

Np

Var

[
f(Z⃗, t)A(Z⃗)

PΩ(Z⃗)

]
is small for all times, Īf will serve as an estimator with small errors. For example,

the choice of PΩ(Z⃗) = f(Z⃗, 0) can be made, if sampling from f(Z⃗, 0) is achievable. A

potential problem arises if f(Z⃗, t) deviates significantly from f(Z⃗, 0) with simulation
time. Then, in order keep the variance of Īf low, resampling has to be periodically
done according to new PΩ’s.

In this work, resampling is not done, i.e. PΩ(Z⃗) is not modified mid-simulation,
and an improvement on the control variate method for variance deduction is pursued.
Attempts at applying importance sampling can be found in Ref. [34].

3.1.2 Initial loading and marker probability distribution

3.1.2.1 Configuration space loading

Let PR(R⃗) be the initial probability distribution of markers in configuration space,

with position given by R⃗ and spanning the volume enclosed by the last closed flux
surface. In practice it is chosen to be uniform over this whole domain:

1 =

∫
d3RPR(R⃗)

PR(R⃗) =
1

V
,

with V =
∫

d3R the total volume of configuration space. In this work, configura-
tion space is represented using the curvilinear magnetic coordinates (s, θ⋆, φ) with
Jacobian Js(s, θ

⋆) = ∇S ×∇θ⋆ · ∇φ. Here, the radial coordinate S is defined as in
Eq. (2.7) and θ⋆ is the straight-field-line poloidal angle as in Eq. (2.9). Therefore,
the expression for the configuration space volume is

V = 2π

∫ 1

0

ds

∫ 2π

0

dθ⋆ Js(s, θ
⋆).
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3.1.2.2 Velocity space loading

Let P ′
v(R⃗, v∥, v⊥) and Pv(R⃗, v∥, µ) be the marker probability distributions in the

[R⃗, v∥, v⊥]- and [R⃗, v∥, µ]-space respectively, such that

dv∥ dv⊥ P
′
v(R⃗, v∥, v⊥) = d3v Pv(R⃗, v∥, µ) (3.9)

with d3v = dv∥ dµJv, where Jv = 2πB⋆
∥(R⃗, v∥) is the velocity Jacobian (Eq. (2.23)).

For each configuration space point R⃗, P ′
v is chosen to be uniform in the semi-circle

of radius κvvth in the [v∥, v⊥]-plane, where vth =
√
T0/m is the local background

thermal velocity, function of the radial coordinate s, and κv = 5 in this work. This
implies

1 =

∫
dv∥ dv⊥P

′
v(R⃗, v∥, v⊥)

= P ′
v(R⃗, v∥, v⊥)

∫
dv∥ dv⊥

P ′
v(R⃗, v∥, v⊥) =

1
π
2
[κvvth]2

.

Given that µ = v2⊥/(2B), one has dµ/ dv⊥ = v⊥/B, so that from Eq. (3.9) one
obtains

Pv(R⃗, v∥, µ) =
B(R⃗)P ′

v(R⃗, v∥, µ)

2πB⋆
∥(R⃗, v∥)v⊥(R⃗, µ)

=
B

B⋆
∥v⊥[πκvvth]

2
. (3.10)

Therefore, the total marker probability distribution function of Eq. (3.1) with

Z⃗ = [s, θ⋆, φ, v∥, µ] is

PΩ(s, θ
⋆, φ, v∥, µ) = PRPv =

B

V B⋆
∥v⊥[πκvvth]

2
. (3.11)

We now demonstrate that PΩ is constant along marker trajectories. Let the
number of markers in an infinitesimal volume in phase space be PΩ dΩ = PΩJZ d

5Z
with Jacobian JZ = JsJv, with Js and Jv given respectively by Eqs. (2.11) and
(2.23). Then, by the conservation of markers,

0 =
∂

∂t
(PΩJZ) +∇Z · (

˙⃗
ZPΩJZ)

= JZ

[
∂PΩ

∂t
+ Z⃗ · ∇ZPΩ

]
+

[
∂JZ
∂t

+∇Z · (
˙⃗
ZJZ)

]
PΩ

= JZ
dPΩ

dt
,

where use has been made of Liouville’s theorem (incompressibility of phase space)

∂JZ
∂t

+∇Z · (
˙⃗
ZJZ) = 0,

as markers follow Hamiltonian flow, described by Eqs. (2.18), (2.19) and (2.20).
Therefore, the marker distribution is constant along marker trajectories, i.e.

dPΩ

dt
=

∂PΩ

∂t
+

˙⃗
Z · ∇ZPΩ = 0. (3.12)

31



3.1. PARTICLE-IN-CELL SCHEME

A useful diagnostics of a PIC simulation is the distribution of marker count
in the (s, v2)-coordinate space. As markers are initially loaded with probability
distribution PΩ, denoting Np as the total number of markers for the ith species, the
differential number of ith species markers dN in the bin at (s, v2) of differential area
ds dv2 is

dN = Np ds

∫ 2π

0

dθ⋆
∫ 2π

0

dφJs(s, θ
⋆) dv∥ dµ2πB

⋆
∥(s, θ

⋆, v∥)PΩ

=
NpV

′
s (s) ds

V B⋆
∥v⊥(πκvvth)

2
dv∥

v⊥ dv⊥
B

2πB⋆
∥

=
2πNpV

′
s ds

V (πκvvth)2
π dv2

2

= ds dv2
Np

V

V ′
s (s)

(κvvth(s))2
, (3.13)

where Vs(s) is the configuration space volume enclosed by the magnetic surface
labelled by s and

V ′
s (s) =

dVs
ds

= 2π

∫ 2π

0

dθ⋆ Js(s, θ
⋆). (3.14)

3.1.3 Discretising δf

3.1.3.1 The phase-space volume element

The definition for the infinitesimal phase space volume occupied by the pth marker
at gyrocentre phase point Z⃗p is the infinitesimal phase space volume around the pth

marker divided by the average number of marker in that volume,

Ωp = lim
|⃗ϵ|→0

∫
Z⃗p+ϵ⃗

dΩ

Np

∫
Z⃗p+ϵ⃗

d5ZPΩ

=
1

NpPΩ(Z⃗p)

=
V B⋆

∥pv⊥p[πκvvthp]
2

NpBp

, (3.15)

with the subscript p indicating the evaluation of that function at Z⃗p (except for Np,
which is a constant).

To ensure that all relevant regions of phase space are sampled at a given time, a
useful diagnostic [52] is to evaluate numerically with the markers volumes of bins in
phase space, and comparing these estimates to the corresponding exact analytical
values. To this end, we consider the configuration space coordinates used by ORB5,
(s, θ⋆, φ), with corresponding Jacobian Js(s, θ

⋆). Here, s is the radial coordinate.
Let v2 = v2∥ + 2µB be twice the kinetic energy per mass. The phase-space volume

diagnostic involves binning in the two-dimensional (s, v2)-space. The radial coordi-
nate is s ∈ [0, 1] discretised into ns bins, whereas the energy per mass coordinate
is v2 ∈ [0, 1.2κ2vTmaxj/mj] is discretised into nv2 bins. Here, Tmaxj is the global
maximum temperature at time t = 0 for the jth species. In this work, we consider
(ns, nv2) = (64, 64).
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3.1. PARTICLE-IN-CELL SCHEME

The marker estimate of the phase space region Γij = [si, si+1] × [v2j , v
2
j+1], is

simply given by

Ω(i, j, t) =
∑
p∈Γij

Ωp(t). (3.16)

where the sum is over all markers within the bin Γij at time t. On the other hand,
we can analytically exactly calculate the corresponding phase-space volume:

Ω(a)(i, j) =

∫
Γij

dΩ

=

∫ si+1

si

ds dθ⋆ dφJs

∫ vj+1

vj

dv∥ dµJv

=

∫ si+1

si

ds V ′
s (s)

∫ vj+1

vj

dv∥ dv⊥
2πB⋆

∥

B
v⊥

≡ 2π

∫ si+1

si

ds V ′
s (s)

∫ vj+1

vj

dv∥ dv⊥ v⊥

= 2π

∫ si+1

si

ds V ′
s (s)

∫ vj+1

vj

dv v2
∫ π

0

dζ sin ζ

=
4π(v3j+1 − v3j )

3

∫ si+1

si

ds V ′
s (s), (3.17)

where we have used Eq. (3.14), and ζ is the pitch angle. In the limit Np →∞, one
expects Ω(i, j, t) = Ω(a)(i, j) at all times t. In practice Ω(i, j, t) and Ω(a)(i, j) differ,
not only as a result of Np being finite, but also because not all regions of phase space
are initially sampled. Discretisation errors in the marker trajectory integration, the
practical implementation of the heating operator and collision operators are some of
the causes why the quality of marker sampling in critical regions of phase space may
deteriorate over time. Comparing Ω(a)(i, j) and Ω(i, j, t) provides a useful diagnostic
of the quality of phase-space sampling.
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3.1. PARTICLE-IN-CELL SCHEME

3.1.3.2 Klimontovich distribution and marker w-weights

Consider the integral similar to Eq. (3.5) involving δf and using the sample mean
Eq. (3.3) as the estimator,

Iδf (r⃗) =

∫
dΩ δf(Z⃗, t)A(Z⃗)

=

∫
dΩPΩ(Z⃗)

δf(Z⃗, t)A(Z⃗)

PΩ(Z⃗)
,

Īδf (r⃗) =
1

Np

Np∑
p=1

δf(Z⃗p, t)A(Z⃗p)

PΩ(Z⃗p)

=

∫
dΩA(Z⃗)

Np∑
p=1

δf(Z⃗p, t)

NpJ(Z⃗p)PΩ(Z⃗p)
δ(Z⃗ − Z⃗p)

=

∫
dΩA(Z⃗)

Np∑
p=1

δf(Z⃗p, t)

2πB⋆
∥pNpPΩ(Z⃗p)

δ(R⃗− R⃗p)δ(v∥ − v∥p)δ(µ− µp),

(3.18)

where R⃗p is Cartesian, and dΩ = 2πB⋆
∥ dv∥ dµ d

3R. We now define the Klimontovich
distribution

δf̂(R⃗, v∥, µ, t) =
Nph

Np

Np∑
p=1

wp(t)

2πB⋆
∥p
δ(R⃗− R⃗p(t))δ(v∥ − v∥p(t))δ(µ− µp(t)),

(3.19)

with Nph is the total number of physical particles of the species for which δf is the
fluctuation part of the distribution. It is given by

Nph =

∫
ds dθ⋆ dφJs(s, θ

⋆)n0(s), (3.20)

with n0(s) the initial density profile prescribed by the user. The w-weight of the pth

marker weight is defined as:

wp(t) =
δf(Z⃗p, t)

NphPΩ(Z⃗p)
=

Np

Nph

δf(Z⃗p, t)Ωp, (3.21)

where Eq. (3.15) was used2. The introduction of Nph is to normalise the w-weights
so that they do not scale with Nph. Inserting Eq. (3.19) into Eq. (3.18) leads to

Īδf =

∫
dΩ δf̂ A(Z⃗)

=

∫
dΩA(Z⃗)

Nph

Np

[
Np∑
p=1

wp(t)

2πB⋆
∥p
δ(R⃗− R⃗p(t))δ(v∥ − v∥p(t))δ(µ− µp(t))

]

=
Nph

Np

Np∑
p=1

wp(t)A(Z⃗p).

2In ORB5, the phase-space volume assigned to the pth marker is in fact defined such that
Ωp ← ΩpNp/Nph so that wp = δf(Z⃗p, t)Ωp.
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3.1. PARTICLE-IN-CELL SCHEME

It must be noted Eq. (3.19) is only defined under the integral
∫
dΩ over phase-

space volume, and E[Īδf ] = Iδf .

3.1.3.3 Marker p-weights

If the Klimontovich definition Eq. (3.19) were to be applied to the control variate
f0, this would result in

f̂0(R⃗, v∥, µ, t) =
Nph

Np

Np∑
q=1

pq(t)

2πB⋆
∥
δ(R⃗− R⃗q)δ(v∥ − v∥q)δ(µ− µq),

with p-weights of the qth marker defined similarly to Eq. (3.21),

pq(t) =
f0(Z⃗q, t)

NphPΩ(Z⃗q)
=

Np

Nph

f0(Z⃗q, t)Ωq. (3.22)

The use of p-weights in tandem with w-weights in a PIC approach constitutes a
‘two-weight’ scheme. It is useful when collisions are considered (see Ref.[74]). As
this work deals with collision-less dynamics, the ‘single-weight’ scheme is used. That
is, δf is represented as Eq. (3.19), and f0 as an analytical function. The use of p-
weights is occasionally used to represent profiles in diagnostics only, e.g. Figs. 6.9
and 6.25.

3.1.3.4 Delta-f marker weights evolution

Taking the total time derivative of Eq. (3.21) and using Eqs. (2.31) and (2.24) leads
to

d

dt
wp(t) = − N

Nph

Ωp
d

dt
f0(Z⃗p, t). (3.23)

In anticipation of the adaptive f0 scheme we have allowed for a time-dependent f0
(see Sec. 3.2). This means that once loaded, each marker only needs to carry its
associated initial phase-space volume Ωp, which is given explicitly by Eq. (3.15),
and remains constant along its trajectory. In ORB5, the time evolution of wp(t)
is done in a time-splitting fashion, first solving for the homogeneous gyrokinetic
Vlasov equation df/ dt = 0, and then correcting wp for sources S (see Eq. (2.24)).
Therefore, for the first part, one has

d

dt
wp(t) = − N

Nph

Ωp
d

dt
f0(Z⃗p, t). (3.24)

Given that Ωp =const, this leads to

∆wp = − N

Nph

Ωp∆f0(Z⃗p, t), (3.25)

where ∆ stands here for the change in value along marker trajectories over a given
time step. The actual implementation of Eq. (3.25) is referred to as the ‘direct-
δf ’ approach [2], and it is used for all nonlinear simulations of this thesis. This
approach avoids the explicit calculation of the time derivative df0/ dt on the r.h.s. of
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3.1. PARTICLE-IN-CELL SCHEME

Eq. (3.24), which involves the evaluation of profile gradients. This latter approach
is termed the ‘standard δf ’ method. In this thesis, the standard δf approach is used
in Ch. 5, and in linear simulations (to calculate maximum linear growth rates, for
example), where the nonlinear terms of Eqs. (2.18) and (2.19) are dropped, i.e.

d

dt
wp(t)

∣∣∣∣
0

= − N

Nph

Ωp
d

dt

∣∣∣∣
1

f0(Z⃗p, t). (linear simulations)

Note for this particular case that we define d
dt

∣∣
0
PΩ(Z⃗p) = 0 to be true, even though

marker density is not conserved (c.f. Eq. (3.12)).

3.1.4 Relation between weight variance and field equation

Based on the discussion of Sec. 3.1.1, the measure of the weight variance gives an
indication to the amount of statistical sampling noise accumulated in the simulation.
To that end, we will discuss two diagnostics used in this work.

3.1.4.1 Signal-to-noise-ratio diagnostic

Figure 3.1: Fourier-filters for a fixed radial position s applied to the B-spline co-
efficients of the r.h.s. of the QNE. These are defined on a discrete grid of integer
poloidal m and toroidal n Fourier modes. The band F1 = |m+nq(s)| ≤ ∆m (green)
of half-width ∆m, indicates modes that are nearly field-aligned. Red dots represent
the mode numbers chosen to be resolved, which are found in the overlap region of
F1 and the box (m,n) ∈ [mmin,mmax] × [nmin, nmax]. The pink side bands F2 are
used for SNR diagnostics. They are of the same width, and are at a distance of
3∆m from centre to centre w.r.t. F1, i.e. F2 : |m± 3∆m+ nq(s)| ≤ ∆m.

A useful diagnostic derives from the discrete Fourier transform of the B-spline co-
efficients bI , b̂imn, of the r.h.s. of the QNE, of Eq. (3.35). It can be shown [9] the
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3.1. PARTICLE-IN-CELL SCHEME

variance related to the finite sampling error is

Var[bI ] =
Nm

Np

G
∑
p

w2
p, (3.26)

where Nm is the number of (m,n) Fourier modes that the simulation resolves, and
G is a fixed simulation-dependent parameter (depends in particular on the order of
splines considered in FEM). In order to separate the physical origin of the increase
of
∑
w2 from the numerical one, we shall calculate the relative squared ampli-

tudes |bI |2 related to field-aligned modes against non-field-aligned modes. This is in
accordance with the gyrokinetic ordering O(k∥/k⊥) ∼ ϵ, and the fact that non-field-
aligned modes tend to be strongly Landau-damped. The field-aligned modes are thus
described by a band F1 in the Fourier (m,n)-space defined by |m + nq(s)| < ∆m,
where q(s) is the radially dependent safety factor, and ∆m the half-width of F1, a
user-defined parameter taken to be ∆m = 5 in this work, which was shown to be
enough to converge the numerical results [45]. The |bI |2 amplitudes in F1 are thus
termed the ‘signal’, though it still includes the discretised noise also present in the
field-aligned modes [9]. Next, the ‘noise’ is described by the |bI |2 amplitudes in the
band F2, which are two side-bands of distance 3∆m apart from the centre of F1,
each of half-width ∆m, i.e. F2 : |m±3∆m+nq(s)| ≤ ∆m, see Fig. 3.1. Furthermore,
all the (m,n) Fourier modes constituting signal and noise for this diagnostic lies in
the intersect of regions n ∈ [nmin, nmax] (purple) and m ∈ [mmin,mmax] (yellow).
nmax ≤ Nφ/2 and mmax ≤ Nθ⋆ are determined via the Nyquist limits, with Nφ and
Nθ⋆ the number of toroidal and poloidal grid intervals, respectively3, in the FEM
representation of ϕ. Given that sampling noise tends to in particular accumulate in
the undamped zonal (m,n) = (0, 0) component, it is interesting to separate it out
from the signal. The construction of the signal-to-noise (SNR) diagnostic is thus

signal =

∑
i

∑
(m,n)∈F1

|b̂imn|2∑
i

∑
(m,n)∈F1

1
,

signal without ZF =

∑
i

∑
(m,n)∈F1/(0,0)

|b̂imn|2∑
i

∑
(m,n)∈F1/(0,0)

1
,

noise =

∑
i

∑
(m,n)∈F2

|b̂imn|2∑
i

∑
(m,n)∈F2

1
,

SNR =
signal

noise
, (3.27)

SNR without ZF =
signal without ZF

noise
. (3.28)

For ORB5 PIC simulations with ∆m = 5, an SNR above the critical threshold
of 10 was empirically found to be an indicative measure of the reliability of the
simulated results [9, 44, 45].

3.1.4.2 Local f.s.a. weight standard deviation

The effectiveness of the adaptive control variate can be measured by estimating
the standard deviation of the marker w-weights. The standard deviation indeed

3In linear simulations: nmin = nmax = n; nonlinear simulations: nmin = 0 < nmax, with
nmaxq(s0)/s0 ∼ 1/ρ⋆.

37



3.1. PARTICLE-IN-CELL SCHEME

provides a measure of the ratio ∥δf∥/∥f∥, which should remain low for the δf -PIC
scheme to be statistically advantageous over a full-PIC approach. The ultimate goal
of introducing an adaptive control variate is thus to keep the standard deviation of
the w-weights as low as possible throughout the simulation time. As a diagnostic, we
thus calculate the standard deviation of the weights in different radial bins. Given
a radial grid {s}, the ith bin is defined as si ≤ s < si+1, ∀θ⋆ and ∀φ. We then define
the local weight standard deviations within each bin a follows:

(σw)bin =

√
⟨w2⟩bin − ⟨w⟩

2
bin, (3.29)

with ⟨w⟩bin =
∑

p∈binwp/Nbin and ⟨w2⟩bin =
∑

p∈binw
2
p/Nbin the expectation value

of w and w2 within that bin, respectively. Here, Nbin is the number of markers
belonging to the bin. Note that, as the definition of w-weights given by Eq. (3.21)
does not depend on the marker number Np, one expects convergence of σw with Np

at a given time t.

In a collision-less PIC simulation without any dissipation, the variance of marker
weights (not necessarily binned radially) will increase indefinitely due to phase space
filamentation which in turn leads to increased statistical sampling noise accumula-
tion [48]. Reaching quasi-steady state is therefore strictly speaking impossible. Even
when simulations reach an apparent quasi-steady state, e.g. with roughly steady tur-
bulent fluxes, noise continues to accumulate in higher velocity moments of δf and
causes numerical problems for long times. As will be explained in Sec. 3.3, in our
simulations, a dissipative term in the form of a Krook operator is used to control
noise, and therefore limiting the growth of weight variance which can be seen as
related to the fluctuation entropy δS =

∫
dΩδf 2/f0 [44]. For a sufficiently strong

dissipation, weight variance is expected to level-off at quasi-steady state.

3.1.5 Solving the field equation with a B-spline finite ele-
ment method

In ORB5, the field equations, i.e. the QNE and Ampère’s law, are solved using
the Galerkin formulation with B-spline finite elements. As this work considers only
electrostatic dynamics, the only field equation that needs to be solved is the QNE
for the electrostatic potential ϕ. Here, we will use the QNE with hydrid electrons,
Eq. (2.38), as an example. The formulation for the case with fully adiabatic or drift
kinetic electrons are simpler. For this discussion, we shall omit the explicit time
dependence of ϕ for notation simplicity and assume one singly-charged (Z = 1)
ion species. We first express Eq. (2.38) in the weak form, i.e. projected on a test
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function ϕ̂(r⃗)∫
d3r

{
αP

en0e

T0e

[
ϕ̂(r⃗)−

〈
ϕ̂
〉
(s)
]
ϕ̂(r⃗) +

min0i

eB2
∇⊥ϕ̂(r⃗) · ∇⊥ϕ(r⃗)

}
=

∫
d3Ω

{∫
dα

2π
ϕ(r⃗ + ρ⃗) δfi(r⃗, v∥, µ)−

ϕ(r⃗) δfe,T (r⃗, v∥, µ)− ϕ(r⃗) δfe,P (r⃗, v∥, µ)
∣∣
(m,n)=(0,0)

}
≃

Np,i∑
p

∫
dα

2π
ϕ(R⃗p + ρ⃗p)wp,i −

Np,e,T∑
p

ϕ(R⃗p)wp,e,T −
Np,e,P∑
p

ϕ(R⃗p)|(m,n)=(0,0)wp,e,P .

(3.30)

Here, we have dropped the surface term resulting from the integration by parts of the
ion polarisation density by assuming ϕ̂ = 0 at the boundaries of the volume integra-
tion. The last equality in Eq. (3.30) is obtained using the marker representation of
δf , Eq. (3.19). In the upgraded hybrid electron model, both the passing and trapped
electrons have marker representation, whose weights are given by we,T and we,P re-
spectively. The Np values are the marker number for each species, which need not be

equal. In the first term on the r.h.s. of Eq.(3.30),
∫
dαwp,iϕ̂(R⃗p+ ρ⃗p)/2π represents

the contribution of the pth ion marker over corresponding gyro-ring R⃗ = R⃗p + ρ⃗p.
The evaluation of this quantity is done by building Larmor rings for each of the ion
markers (see Sec. 3.1.6). Next, we define the B-spline finite element basis in the
configuration space (s, θ⋆, φ) to be

Λijk(r⃗) = Λi(s)Λj(θ
⋆)Λk(φ), (3.31)

which is a tensor product of 1-dimensional basis functions relative to each of the
three dimensions of configuration space. The number of Λ basis functions for each
of the s-, θ⋆- and φ-dimensions are Ns, Nθ⋆ and Nφ respectively. We then express
the electrostatic potential ϕ in the space spanned by this basis

ϕ(r⃗) =

Ns+Nspl∑
i′=1

Nθ⋆+Nspl∑
j′=1

Nφ+Nspl∑
k′=1

ϕ̄i′j′k′Λi′j′k′(r⃗), (3.32)

where ϕ̄i′j′k′ are the coefficients of this decomposition. For this work, B-spline ele-
ments of orderNspl = 3 are considered. For the Galerkin approach, the test functions

will be the same set as the basis functions: ϕ̂ = Λijk(r⃗). Continuing the develop-

ment of Eq. (3.30) with this choice of ϕ̂ along with Eq. (3.32), using I = (ijk) and
I ′ = (i, j′, k′) to lighten notation, leads to

∑
I′

∫
d3r

{
αP

en0e

T0e
[ΛI′(r⃗)− ⟨ΛI′⟩ (s)]ΛI(r⃗) +

min0i

eB2
∇⊥ΛI′(r⃗) · ∇⊥ΛI(r⃗)

}
ϕ̄I′

=

∫
dα

2π

Np,i∑
p

ΛI(R⃗p + ρ⃗p)wp,i −
Np,e,T∑
p

ΛI(R⃗p)wp,e,T −
Np,e,P∑
p

ΛI(R⃗p)|(m,n)=(0,0)wp,e,P ,

(3.33)
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which, defining bI the r.h.s. of Eq. (3.33), can be expressed as a linear system to be
solved for the B-spline coefficients ϕ̄I′ ,∑

I′

F I′

I ϕ̄I′ = bI , (3.34)

To take advantage of the periodicity of the (θ⋆, φ)-dimensions, we perform a discrete
Fourier transform of Eq. (3.34). This in particular involves taking the DFT of the
r.h.s. :

b̂imn =
1

Nθ⋆Nφ

Nθ⋆+Nspl−1∑
j=0

Nφ+Nspl−1∑
k=0

bijk exp

[
−2πi

(
mj

Nθ⋆
+
nk

Nφ

)]

=

∫
dα

2π

Np,i∑
p

Λ̂imn(R⃗p + ρ⃗p)wp,i −

Np,e,T∑
p

Λ̂imn(R⃗p)wp,e,T −
Np,e,P∑
p

δ
(mn)
(0,0) Λ̂imn(R⃗p)wp,e,P ,

where m and n stand for the poloidal and toroidal Fourier mode numbers. Λ̂imn
is the discrete Fourier transform of the B-spline basis function in the poloidal and
toroidal spline indices

Λ̂imn =
1

Nθ⋆Nφ

Nθ⋆+Nspl−1∑
j=0

Nφ+Nspl−1∑
k=0

Λijk exp

[
−2πi

(
mj

Nθ⋆
+
nk

Nφ

)]
,

and δ
(mn)
(0,0) is the Kronecker delta. Eq. (3.34) then transforms to∑

i′m′n′

F̂ i′m′n′

imn ϕ̄i′m′n′ = b̂imn, (3.35)

with

F̂ i′m′n′

imn =
1

Nθ⋆Nφ

Nθ⋆+Nspl−1∑
j,j′=0

Nφ+Nspl−1∑
k,k′=0

F i′j′k′

ijk exp

[
−2πi

(
mj

Nθ⋆
+
nk

Nφ

)]
· exp

[
2πi

(
m′j′

Nθ⋆
+
n′k′

Nφ

)]
.

Before solving Eq. (3.35) for ϕ̄I′ , a Fourier filter (see Sec. 3.1.4.1) is applied to both
sides of Eq. (3.35). Taking the r.h.s. of Eq. (3.35) as an example, this means that

b̂imn →

{
b̂imn for |m+ nq(si)| ≤ ∆m

0 else,

with si the radial coordinate that represents the radial position where the B-spline
element Λi(s) is centred.

This section is an overview of the solution method of the QNE. For a more
detailed discussion, including evaluation of F I′

I , toroidal mode parallelisation, and
implementation of the upgrade hybrid electron model, the interested reader is invited
to consult Refs. [8, 43, 54, 64].
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3.1. PARTICLE-IN-CELL SCHEME

3.1.6 Overview of ORB5

Figure 3.2: Overview of the ORB5 algorithm for 1 sub-step of a 4th order explicit
Runge-Kutta (RK4) scheme. × and + represent marker data structure (gyro-centre
and Larmor points respectively), and cubes represent fields on grid structure. Figure
taken from Ref. [64].

Here, we briefly describe how the ORB5 code advances each species’ distribution
function f in a single time step. For more in-depth analysis, the interested reader is
encouraged to read the theses [43, 52, 64]. A thorough overview is given in Ref. [54].

The sequence of operations in the time loop for evolving the markers according
to the gyrokinetic Eqs. (2.18)-(2.20) is illustrated in Fig. 3.2. We begin the descrip-
tion of the time loop just after the pushing of markers. At this point the goal is
to form the self-consistent fields, which requires the calculation of the gyrodensities
(see Eq. (2.34)). To that end, the weight of each marker is uniformly distributed
on NL points on a Larmor ring (‘build Larmor’). These rings have as centres the

marker positions R⃗p, and radii ρ⃗L determined by the markers’ magnetic moment µp.
NL is determined in such a way as to ensure the distance between points on the
circumference is roughly constant, and is thus dependent on the Larmor radius with
the additional constraint of never being set below a minimum 4. For this work, the
Larmor rings, a priori perpendicular to the magnetic field, are approximated to lie
in the poloidal plane. After this, the Np×NL points are deposited (‘deposit’) on a 3-
dimensional grid in (s, θ⋆, φ) and the corresponding gyrodensities finally computed.
Having formed the r.h.s. , the QNE is back-solved (‘solve’) for the electrostatic po-
tential ϕ. The process of back-solving involves the projection of the QNE on finite
elements, and applying a Fourier filter (see Fig. 3.1). The subsequent remaining
operations leading up to the marker push involves forming the gyroaveraged po-
tential ϕ̃ evaluated at marker positions, which is required in both Eqs. (2.18) and
(2.19). The step ‘get fields’ evaluates the ϕ represented by FEM at the previous NL

Larmor points belonging to each marker. The ‘gyro-average’ operation appears as
the reverse of ‘build Larmor’, that assigns the average of ϕ over the Larmor ring to
its centre. Finally, each marker phase-space coordinate Z⃗p is pushed via an explicit
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3.2. ADAPTIVE BACKGROUND SCHEME

RK4 scheme (‘push’). To complete a full RK4 step, the whole cycle of Fig. 3.2 is
repeated four times, one for each RK4 sub-step.

3.2 Adaptive background scheme

3.2.1 Motivation and idea

Let us start considering the estimator with the control variate, Eq. (3.7), as well as
Eq. (2.27). As ORB5 is a δf PIC code, one may make use of the initial function finit
as control variate to δf . Such an estimator gives low variance values so long as the
delta-f assumption Eq. (3.8) holds. In simulations describing collision-less physics,
the canonical Maxwellian distribution give by Eq. (2.33), which is stationary state
to the Vlasov Eq. (2.24), is usually considered as the initial distribution finit. In this
case Eq. (3.7) becomes:

Īf = Īδf + Iinit,

Īδf =
1

Np

Np∑
p=1

δf(Z⃗p, t)A(Z⃗p), (3.36)

which one expects to be a good estimator4. The explicit evaluation of Eq. (3.36)
using the Klimontovich distribution is given by Eq. (3.18).

For a typical flux-driven simulation, profiles exhibit O(1) deviation w.r.t. their
initial values over transport time scales. Furthermore, O(1) variations of f are
also found at the plasma edge, characterised by strong profile gradients where the
relative fluctuation amplitude of density is high. Such situations lead to the violation
of Eq. (3.8), and thus render the estimator defined by Eq. (3.36) inappropriate.

We now consider the possibility of a time-dependent control variate f0(Z⃗, t) with

f0(Z⃗, 0) = finit, so that f = f0(t) + δf and revising our estimator of Eq. (3.7) to be

Ī ′f =
1

Np

Np∑
p=1

{ f(Z⃗p, t)A(Z⃗p)− [f0(Z⃗p, t)A(Z⃗p)− E[f0A](t)] } = Iinit + Ī ′δf

=⇒ Ī ′δf =
1

Np

Np∑
p=1

{ f(Z⃗p, t)A(Z⃗p)− [f0(Z⃗p, t)A(Z⃗p)− E[f0A](t)] } − E[f0A](0),

(3.37)

with E[f0A](0) = Iinit. Eq. (3.37) clearly reduces to Eq. (3.36) for a stationary

control variate, i.e. f0(Z⃗, t) = finit(Z⃗). Defining f0(Z⃗, t) = f0(Z⃗, 0) + ∆f0(Z⃗, t), we

4We have Îinit = Iinit as we assume that f̃init can be analytically integrated, without the use of
an estimator.
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continue the development of Eq. (3.37),

Ī ′δf =
1

Np

Np∑
p=1

{ finit(Z⃗p)A(Z⃗p) + δf(Z⃗p, t)A(Z⃗p)− [f0(Z⃗p, t)A(Z⃗p)− E[f0A](t)] } −

E[f0A](0)

=
1

Np

Np∑
p=1

{ δf(Z⃗p, t)A(Z⃗p) + f0(Z⃗p, 0)A(Z⃗p)− f0(Z⃗p, t)A(Z⃗p) }+ E[∆f0A](t)

=
1

Np

Np∑
p=1

{ δf(Z⃗p, t)A(Z⃗p)−∆f0(Z⃗p, t)A(Z⃗p) }+ E[∆f0A](t). (3.38)

Comparing Eq. (3.38) with Eq. (3.36), if we identify

δf ′(Z⃗, t) = δf(Z⃗, t)−∆f0(Z⃗, t), (3.39)

so that for our new problem becomes

Ī ′δf =
1

Np

Np∑
p=1

δf ′(Z⃗p, t)A(Z⃗p) + E[∆f0A](t), (3.40)

with variance

Var[Ī ′δf ] =
Var[δf ′A]

N
. (3.41)

Therefore, for a fixed marker number Np, we can reduce the variance Eq. (3.41) of
the new estimate by continuously ‘adapting’ f0 in Eq. (3.39) to minimise Var[δf̃ ′A].

3.2.2 Starting equations

In this work, the approach of a time-dependent control variate is to only address
the relaxation of profiles in the core, not in the case of O(1) fluctuations at the
edge5. Allowing for O(1) variations of the background, assuming near-Maxwellian,
we consider as time-dependent control variate to be

f0(Z⃗, t) = fM(Z⃗, t) =
n0(ψ, t)

[2πT0(ψ, t)/m]3/2
exp

[
−
[v∥ − u0(ψ, t)]2/2 + µB(s, θ⋆)

T0(ψ, t)/m

]
.

(3.42)

The subscript 0 denotes background6 quantities, and the n0, u0 and T0 are the
f.s.a. gyrocentre background density, parallel velocity and temperature, respectively.
With such an evolving control variate, the full distribution f is separated via the
delta-f splitting

f = f0 + δf. (3.43)

5This is due to the fast time scales of high relative fluctuation amplitudes. No suitable control
variate is thus available at any one period of time, unless the time step-size is severely limited

6The control variate does not necessarily correspond to the physical background. A discussion
follows in Sec. 3.2.9.
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3.2. ADAPTIVE BACKGROUND SCHEME

Given f , this relation alone clearly does not uniquely set f0 of the form Eq. (3.42),
in other words n0(ψ, t), u0(ψ, t) and T0(ψ, t) remain undetermined. So as to avoid
a secular growth of δf as a result of density and temperature profile relaxation as
well as form the possible development of parallel flow, one could uniquely define the
separation Eq. (3.43) by imposing the three constraints on δf :〈∫

d3v δf

 1
v∥
v2/2

〉 = 0, (3.44)

In other words, allowing no growth in δf of f.s.a. mass, parallel momentum or kinetic
energy. In this case, taking the same velocity moments and f.s.a. of Eq. (3.43) one
then obtains〈∫

d3v f

〉
=

〈∫
d3v f0

〉
= n0

(
1 +

b̂ · ∇ × b̂
Ωc

u0

)
〈∫

d3v v∥f

〉
=

〈∫
d3v v∥f0

〉
= n0

[
u0 +

b̂ · ∇ × b̂
Ωc

(
T0
m

+ u20

)]
〈∫

d3v
v2

2
f

〉
=

〈∫
d3v

v2

2
f0

〉
= n0

[
3T0
2m

+
u20
2

+
b̂ · ∇ × b̂

Ωc

u0

(
5T0
2m

+
u20
2

)]
,

with terms multiple of b̂ · ∇ × b̂/Ωc appearing due to the velocity Jacobian (see
Eqs. (2.22) and (2.23)). This clearly providing a set of three equations uniquely
defining n0(ψ, t), u0(ψ, t) and T0(ψ, t). Such a rigid separation of f into f0 and δf
may be difficult to implement in practice. It is in fact advantageous to make use
of the flexibility of the separation Eq. (3.43) and consider evolution equations for
n0(ψ, t), u0(ψ, t) and T0(ψ, t), resulting from progressively feeding into the control
variate any non-zero growth in δf of one of the three velocity moments on the
r.h.s. of Eq. (3.44) as follows:

∂

∂t

{
n0

(
1 +

b̂ · ∇ × b̂
Ωc

u0

)}
= αn

〈∫
d3v δf

〉
,

∂

∂t

{
n0

[
u0 +

b̂ · ∇ × b̂
Ωc

(
T0
m

+ u20

)]}
= αu

〈∫
d3v v∥ δf

〉
,

∂

∂t

{
n0

[
3T0
2m

+
u20
2

+
b̂ · ∇ × b̂

Ωc

u0

(
5T0
2m

+
u20
2

)]}
= αE

〈∫
d3v

v2

2
δf

〉
.

We now make a further simplification by dropping terms proportional to b̂·∇× b̂/Ωc,
as it is predominantly small except near the magnetic axis (see Fig. 3.3) where
fluctuations are also expected to be small. We therefore have

∂n0

∂t
(ψ, t) = αnQn(ψ, t), (3.45)

∂n0u0
∂t

(ψ, t) = αuQu(ψ, t), (3.46)

∂

∂t

{
3n0T0
2m

+
1

2
n0u

2
0

}
(ψ, t) = αEQE(ψ, t), (3.47)
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where we have made the assignment

Qn =

〈∫
d3v δf

〉
, Qu =

〈∫
d3v v∥ δf

〉
, QE =

〈∫
d3v

v2

2
δf

〉
.

For notation simplicity for subsequent discussions, we define the l.h.s. of Eq. (3.47)
as the time derivative of the kinetic energy (per mass)

Ekin0 =
3n0T0
2m

+
1

2
n0u

2
0. (3.48)

We notice that Eqs. (3.45)-(3.47) for n0, u0 and T0 are coupled. Two methods of
solution are used in this work, and are sketched in Sec. 3.2.3 and 3.2.4. Common
to both methods is that the r.h.s. of Eqs. (3.45)-(3.47), i.e. {Q} are time averaged
(see Eq. (3.59)) . Therefore, we set a time averaging window of duration Nt∆t,
consisting of Nt time steps, in which {Q} are accumulated in these Nt steps, and
will be divided by Nt after. Eqs. (3.45)-(3.47) are then solved as an explicit Euler
scheme of step size Nt∆t.
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Figure 3.3: Flux-surface-averaged of b̂ · ∇ × b̂/Ωc for the singly charged ion, for the
magnetic equilibrium geometry used in this thesis, i.e. TCV shot #43516.

3.2.3 Interleaved scheme

Equations (3.45)-(3.47) are solved sequentially. Such an execution is carried out
throughout the simulation. Below is one cycle for the adaptation of the back-
ground gyrocentre density, parallel flow, and temperature, which spans a total time
of 3Nt∆t:

1. Qn ← 0, do Nt time steps:

• Advance markers according to Eqs. (2.18)-(2.20)

• Estimate Qn and accumulate

2. Calculate time averaged Qn ← Qn/Nt
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3.2. ADAPTIVE BACKGROUND SCHEME

3. Solve for n
(new)
0 ← n0 + αnNt∆tQn

4. Qu ← 0, do Nt time steps:

• Advance markers according to Eqs. (2.18)-(2.20)

• Estimate Qu and accumulate

5. Calculate time averaged Qu ← Qu/Nt

6. Solve for u
(new)
0 ← u0 + αn(Nt∆tQu)/n

(new)
0

7. QE ← 0, do Nt time steps:

• Advance markers according to Eqs. (2.18)-(2.20)

• Estimate QE and accumulate

8. Calculate time averaged QE ← QE/Nt

9. Solve for T
(new)
0 ← T0 +∆T0:

3n
(new)
0

2m

∂T0
∂t

+
1

2
n
(new)
0 (u

(new)
0 )2 = αE QE

=⇒ 3n
(new)
0

2m
∆T0 =

[
αE QE −

1

2
n
(new)
0 (u

(new)
0 )2

]
Nt∆t

∆T0 =
2m

3n
(new)
0

[
αE QE −

1

2
n
(new)
0 (u

(new)
0 )2

]
Nt∆t.

3.2.4 Simultaneous scheme

Let us reconsider Qu =
〈∫

d3v v∥ δf
〉
. It can be the case that even when δf has

no parallel flow component δu, the existence of density perturbations δn, could
contribute to Qu ̸= 0, thus leading to a change in u0 if one naively applies #6 of the
above scheme. This can also happen to the incorrect adaptation of T0 due to nonzero
δn and δu, which leads toQE ̸= 0. The interleaved scheme can thus lead to distortion
in the background profiles with time, as is demonstrated in App. C. Therefore, we
seek to determine the individual components δn, δu and δT in terms of {Q}, and only
consider these measures for the adaptation of n0, u0 and T0 respectively. Specifically,
we seek background adaptive scheme of the form:

∂n0

∂t
= αn ⟨δn⟩ ,

∂u0
∂t

= αu ⟨δu⟩ ,
∂

∂t

T0
m

= αE

〈
δT

m

〉
.

Note that in this discussion all background profiles are flux-surface-averaged. To
that end, we begin with the delta-f splitting: f = f0 + δf , and seek to determine
⟨δn⟩, ⟨δu⟩, and ⟨δT ⟩. Taking the 0th-order velocity moment, and then flux-surface-
averaging for the density:

⟨n⟩ = n0 + ⟨δn⟩ , (3.49)

and therefore,

⟨δn⟩ = Qn.
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For the next two velocity moments, for algorithmic simplicity we shall express them
in the total f.s.a. density ⟨n⟩, as it is involved in higher order velocity moments and
is invariant throughout the f.s.a. adaptation process. Taking the 1st-order velocity
moment and subsequently flux-surface-averaging for the parallel flow:

nu = (n0 + δn)(u0 + δu)

= n0u0 + δnu0 + nδu

⟨nu⟩ = n0u0 + u0Qn + ⟨nδu⟩ ,

and therefore

Qu = u0Qn + ⟨nδu⟩
⟨nδu⟩ = Qu − u0Qn. (3.50)

Finally, for the 2nd-order velocity moment for the kinetic energy (per mass):

Ekin =
3

2
(n0 + δn)

(
T0
m

+
δT

m

)
+

1

2
(n0 + δn)(u0 + δu)2

=
3

2
n0
T0
m

+
1

2
n0u

2
0 +

(
3

2

T0
m

+
1

2
u20

)
δn+ nu0δu+

1

2
n(δu)2 +

3

2
n
δT

m
,

and taking the flux-surface-average, and subsequently using Eq. (3.50) therefore
leads to

QE =

(
3

2

T0
m

+
1

2
u20

)
Qn + u0 ⟨nδu⟩+

1

2

〈
n(δu)2

〉
+

3

2

〈
n
δT

m

〉
=

(
3

2

T0
m

+
1

2
u20

)
Qn + u0(Qu − u0Qn) +

1

2

〈
(Qu − u0Qn)

2

n

〉
+

3

2

〈
n
δT

m

〉
3

2

〈
n
δT

m

〉
= QE −

(
3

2

T0
m
− 1

2
u20

)
Qn − u0Qu −

1

2

(Qu − u0Qn)
2

⟨n⟩
. (3.51)

In order to isolate ⟨δu⟩ in Eq. (3.50) and ⟨δT ⟩ in Eq. (3.51), we make the approxi-
mation:

⟨δu⟩ ≈ Qu − u0Qn

⟨n⟩
,〈

δT

m

〉
≈ 2

3 ⟨n⟩

[
QE −

(
3

2

T0
m
− 1

2
u20

)
Qn − u0Qu −

1

2

(Qu − u0Qn)
2

⟨n⟩

]
.

(3.52)

Therefore, the following is one cycle for the adaptation of all three moments, which
spans time Nt∆t:

1. Qn, Qu, QE ← 0, do Nt time steps:

• Advance markers according to Eqs. (2.18)-(2.20)

• Estimate Qn,Qu,QE and accumulate individually

2. Calculate time averages: Qn ← Qn/Nt, Qu ← Qu/Nt, QE ← QE/Nt
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3. Calculate the correction terms:

ϵu ← −Qnu0

ϵE ← −
(
3T0
2m
− 1

2
u20

)
Qn − u0Qu −

1

2

(Qu − u0Qn)
2

⟨n⟩

4. Solve for n
(new)
0 ← n0 + αnNt∆tQn

5. Solve for u
(new)
0 ← u0 + αuNt∆t(Qu + ϵu)/ ⟨n⟩

6. Solve for T
(new)
0 ← T0 + 2mαENt∆t(QE + ϵE)/(3 ⟨n⟩)

An alternative simultaneous scheme which does not involve the approximation
Eq. (3.52) is presented in App. A. This alternative scheme did not show distinguish-
able results of Chs. 5 and 6 from the one presented here.

3.2.5 Application to a canonical Maxwellian as control vari-
ate

The adapted background profiles n0 and T0 obtained by integrating Eqs. (3.45) and
(3.54) are expressed as a function of ψ (used in Ch. 5). However, this work also uses
the canonical Maxwellian function as a control variate (for Ch. 6), i.e.

f0(Z⃗, t) =
n0(ψ̂0, t)

[2πT0(ψ̂0, t)/m]3/2
exp

[
−
[v∥ − u0(ψ̂0, t)]

2/2 + µB(s, θ⋆)

T0(ψ̂0, t)/m

]
.

(3.53)

Note that for this work u0(ψ̂0, 0) = 0, thus at initial time Eq. (3.53) is still close
to the gyrokinetic equilibrium of the unperturbed system, i.e. f0 ∼ f0(ψ̂0, E, t) (see
Sec. 2.4). In order to be able to use the canonical Maxwellian function as an adaptive
control variate, we make the following assignments after solving Eqs. (3.45) and
(3.54):

n0(ψ̂0, t) ← n0(ψ, t), u0(ψ̂0, t)← u0(ψ, t), T0(ψ̂0, t)← T0(ψ, t).

That is, the adapted canonical background profiles acquire the same functional
form as that of the local profiles under the adaptive scheme. Note that a canonical
Maxwellian with n0(ψ̂0, t) and T0(ψ̂0, t) reduces to a local Maxwellian with n0(ψ, t)
and T0(ψ, t) in the limit ρ∗ → 0. This assignment slightly distorts the effective
background gyrocentre density and temperature profiles, which are no longer simple
magnetic flux functions but also acquire some poloidal angle dependence.

The reader is reminded that there is some flexibility in the choice of the back-
ground adaptation which is thus not unique. As long as the adaptation leads to
a reduction in variance according to Eq. (3.41), the adaptive scheme will prove to
have served its purpose.
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3.2.6 No parallel flow adaptation

For the work done in this thesis, we will not consider any background parallel flow
profile adaptation, αu = 0. The Maxwellian background is thus assumed having
parallel velocity u0 = 0. We further assume that〈∫

d3v v∥ δf

〉
(ψ, t) ≪ δn(ψ, t)vth(ψ, t)

on every ψ-surface. Under this assumption, the background is limited to the adap-
tation of its density and temperature profiles, and simplifies to

∂

∂t

{
3n0T0
2m

}
= αEQE. (3.54)

Furthermore Steps #4-#6 and Step #5 are skipped for the interleaved and simul-
taneous schemes respectively.

3.2.7 Implementation of the adaptive scheme

Here, we discuss the implementation for the temperature adaptation scheme consid-
ering a density profile that is fixed in time. The adaptation scheme for the density
is analogous. Consider two time-stamps ti and tj = ti + Nt∆t, with an arbitrary
time interval Nt∆t (see Eq. (3.59)). The change in the temperature is done via the
time-dependent background f.s.a. kinetic energy density, defined to be

Ekin0(ψ, tj)− Ekin0(ψ, ti) =

Nψ+Nspl∑
k=1

ξkΛk(s),

where the change in Ekin0 from t = ti to t = tj is expanded in terms of Nspl-order
B-splines in the radial coordinate s, {Λ(s)}, with coefficients {ξ} which need to be
solved. The radial resolution is set by Nψ, the number of radial intervals. Then,
discretising Eq. (3.54) in time using a forward-Euler approach (first order accurate
in t) leads to

Nψ+Nspl∑
k=1

ξkΛk(s) = αENt∆t

〈∫
d3v

v2

2
δf(Z⃗, ti)

〉
. (3.55)

In order to solve Eq. (3.55) for {ξ}, consider the objective function O parameterised
by τ ,

O({ξ}, τ) =

∫
d3R

1

2

αENt∆t

〈∫
d3v

v2

2
δf(Z⃗, ti)

〉
−

Nψ+Nspl∑
k=1

ξkΛk(s)

2

+

τ

2

Nψ+Nspl∑
k=1

ξkΛ
′′

k(s)

2 , (3.56)

with d3R = Js ds dθ
⋆ dφ representing the configuration space volume differential,

and using the prime notation for the derivative of a function with respect to the
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argument. Eq. (3.56) represents the error for the representation of Eq. (3.55), and
τ is introduced as a penalty factor for the tension. This introduces smoothing into
the background profile change. Now, minimising the error w.r.t. {ξ} leads to

∂O

∂ξk
= 0, ∀k

Nψ+Nspl∑
k=1

Mlk(τ)ξk = αENt∆t

∫
d3RΛl(s)

〈∫
d3v

v2

2
δf(Z⃗, ti)

〉

= αENt∆t

∫
d3RΛl(s)

∫
dθ⋆ dφJs(s, θ

⋆, φ)
∫
d3v v2/2 δf(Z⃗, ti)∫

dθ⋆′ dφ′′ Js(s, θ⋆
′)

= αENt∆t

∫
d3RΛl(s)

∫
d3v

v2

2
δf(Z⃗, ti)

= αENt∆t

∫
dΩΛl(s)

v2

2
δf(Z⃗, ti),

which can be written in compact matrix notation:

M(τ)ξ⃗ = h⃗, (3.57)

with solution ξ⃗ = M−1h⃗. In the above relations, we have defined the matrix M as
the vector h⃗ w.r.t. elements

Mlk(τ) =

∫
d3R {Λl(s)Λk(s) + τΛ

′′

l (s)Λ
′′

k(s)},

hl = αENt∆t

∫
dΩΛl(s)

v2

2
δf(Z⃗, ti).

Here, M is the ‘mass matrix’ for the one-dimensional radial B-splines modified by
the smoothing term (if τ ̸= 0). The integrals required for computing the coefficients
are done based on the marker representation of δf , while the integral of Mkl is
calculated via Gauss-Legendre quadratures. The B-spline expansion in Eq. (3.55)
is represented on a uniformly spaced ψ(s)-grid, which thus corresponds to a non-
uniform grid in s with decreasing interval size going from the magnetic axis towards
the plasma edge. This representation enables improved marker count per interval
near the magnetic axis ψ = 0.

3.2.7.1 Homogeneous Neumann boundary condition on axis

We first transform the first B-spline elements near s = 0 from {Λ(s)}Ni to {Λ̂(s)}N ′
j

so that functions expanded in such a set {Λ̂(s)}N ′
j , N ′ < N can conveniently be

imposed the homogeneous Neumann boundary condition at s = 0. Such a condition
reflects the continuity of the derivative of profiles across the magnetic axis. The
transformation matrix C,

Λ̂i(s) =
N∑
j

C
(d)
ij Λj(s) ∀i,
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depends on the B-spline order d. Namely, for d = 2, 3,

C(2) =

[
1 0
1 1

]

C(3) =

1 0 0
0 1 0
1 0 1

 .
Such transformation leaves only the first transformed element having non-zero deriva-
tive at s = 0, whose associated expansion coefficient will be set to zero.

The solution to {ξ} of Eq. (3.57) is as follows. Firstly, the coefficients {ξ}
transform to {ξ̂} as ∑

i

ξ̂iΛ̂i =
∑
j

ξjΛj

=
∑
jk

ξjC
−1
jk CklΛl

=
∑
j

ξjC
−1
jk Λ̂k

∴ ⃗̂
ξ = (CT )−1ξ⃗

Applying this transformation to the linear system leading to Eq. (3.57) leads to

Mξ⃗ = h⃗

(CT )−1MCT (CT )−1ξ⃗ =
⃗̂
h

(CT )−1MCT ⃗̂ξ =
⃗̂
h

ξ⃗ = CT (M̂)−1⃗̂h, (3.58)

where the first element of
⃗̂
h = (CT )−1h⃗ is set to zero, and the first row and column

of M̂ = (CT )−1MCT has been set to zero, with the top-left element set to one,
respectively, before the back-solve of Eq.(3.58). This indeed ensures the first element

of ξ⃗ is zero.

3.2.7.2 Time-averaging

Besides choosing sufficiently large radial intervals to increase the number of markers
per radial bin, to further reduce marker sampling noise being incorporated into the
adapted background profile, the linear system leading to Eq. (3.57) is only solved at

periodic time intervals, within which
∫
dΩΛl(s) δf(Z⃗, t) is time-averaged. Assuming

uniform time-stepping ti = i∆t for some fixed time-step ∆t, and let

E(i,j)[g(t)] =
1

j − i+ 1

j∑
k=i

g(tk),

for some function g(t) of time. Then, if the fixed adaptive period is set to Nt∆t, i.e.
j = i+Nt in Eq. (3.55), from Eq. (3.57),

ξk = αENt∆tM
−1
kl E(i,i+Nt)

[∫
dΩΛl(s)

v2

2
δf(Z⃗, t)

]
. (3.59)
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The change in Ekin0 after every N
th
t time-step involves the combination of Eqs. (3.58)

and (3.59). Assuming ∥δf∥ < ∥f0∥ at any point in time, it is necessary that

αENt∆t < 1. (3.60)

In practice, Nt is fixed, and αE is a fraction of the maximum linear growth rate
γmax, e.g. Nt = 10 and αE = 0.1γmax.

3.2.8 Weight redefinition

After the adaptation step, the background will have changed either via n0 or T0, or
both. In order to ensure constancy of f along each of the pth marker’s trajectory,
the marker weight wp must have a change according to

d

dt
f(Z⃗p, t) =

d

dt
[f0(Z⃗p, t) + δf(Z⃗p, t)]

0 = ∆f0(Z⃗p, t) + ∆δf(Z⃗p, t)

∆wp = −Ωp∆f0(Z⃗p, t), (3.61)

with7 ∆f0 = f
(new)
0 − f (old)

0 .

3.2.9 Control variate and background

The discussion here supplement the discussion in Sec. 2.4. So far, the terms ‘control
variate’ and ‘background distribution’ have been used interchangeably. Despite the
time-averaging operator for the evolution of the ‘background’ profiles, the control
variate defined via Eq. (3.42) or (3.53) in this work is not necessarily the physical
background distribution. Firstly, we have assumed a Maxwellian form for our time-
dependent control variate. This choice allows for straight-forward interpretation of
the gyrocentre density, parallel flow, and temperature. Secondly, we have limited
our adaptive control variate formalism to work with time-dependent f.s.a. profiles.
Besides its simplicity, this has the benefit of having enough markers per radial
bin, thus leading to accurate calculation of the r.h.s. of Eqs. (3.45)-(3.47). These
restrictions on the control variate make it less likely to correspond to the physical
background. On the other hand, if the delta-f assumption Eq. (3.8) is satisfied over
turbulent time-scales, the distinction between adapted control variate and physical
background becomes negligible.

3.2.10 Correction to the r.h.s. of the QNE

Consider again the singly charged perturbed ion gyrodensity term on the r.h.s. of
the QNE,

δñi(r⃗) =
1

2π

∫
dα dΩ δ[R⃗ + ρ⃗L(R⃗, µ, α)− r⃗] δfi(Z⃗, t), (3.62)

whose δfi is represented by markers. According to Eq. (3.61), δñi(r⃗) will change after
adaptation. Since the adaptation scheme is numerical and the total density should

7Note that for a two-weight scheme with p and w weights: ∆wp = −∆pp (see Eq. (3.22)).
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not change, this implies that ñ0i(r⃗) will change as well. Therefore, a correction
term is required on the r.h.s of the QNE (c.f. the second term of Eq. (3.40)). As

δf
(old)
i = δf

(new)
i +∆f0i, the ion gyrodensity with correction term is thus

δñi(r⃗) =
1

2π

∫
dα dΩ δ[R⃗ + ρ⃗L(R⃗, µ, α)− r⃗] [δf (new)

i (Z⃗, t) + ∆f0i(Z⃗, t)]

=
1

2π

∫
dα dΩ δ[R⃗ + ρ⃗L(R⃗, µ, α)− r⃗] δf (new)

i (Z⃗, t) +

ñ
(new)
0i (r⃗, t)− ñ(old)

0i (r⃗, t). (3.63)

The remainder of this section concerns the explicit calculation of the correction
due to the ion background change ñ′

0i(r⃗, t) − ñ0i(r⃗, t). The corresponding term for
the electron is similar, and in fact easier, as it does not involve gyroaveraging, in
accordance to the drift-kinetic electron assumption.

3.2.10.1 Exact calculation of the correction term

As the QNE is solved by first projecting it onto B-spline basis elements

ΛI(r⃗) = Λi(s)Λj(θ
⋆)Λk(φ)

defined on a uniform spatial grid r⃗ = [s, θ⋆, φ] with index I = [i, j, k], the evaluation
of the correction term of Eq. (3.63) in the framework of the QNE, implies the
evaluation of integrals of the form

RHSI(t) =

∫
d3rΛI(r⃗)ñ0(r⃗, t).

Distinguishing r⃗ = [s, θ⋆, φ] and R⃗ = [S,Θ⋆,Φ] as the field and gyrocentre spatial
point respectively,

RHSI(t) =
1

2π

∫
d3r dα d3R d3vΛI(r⃗) f0(R⃗, v∥, µ) δ[R⃗ + ρ⃗L(R⃗, µ, α)− r⃗]

=
1

2π

∫
dα d3R d3vΛI(R⃗ + ρ⃗L) f0(R⃗, v∥, µ)

RHSijk(t) =
1

2π

∫
dα dS dΘ⋆ dΦdv∥ dµΛi[SL(S, µ, α)] Λj[Θ

⋆
L(Θ

⋆, µ, α)] Λk(Φ) ·

Js(S,Θ
⋆) 2πB⋆

∥(S,Θ
⋆, v∥) f0(R⃗, v∥, µ)

= ∆φ

∫
dα dS dΘ⋆ dv∥ dµΛi(SL) Λj(Θ

⋆
L) JsB

⋆
∥ f0(R⃗, v∥, µ), (3.64)

where use has been made of ∫ 2π

0

dΦΛk(Φ) = ∆φ,

for any kth basis element Λk periodic in the φ-direction, with ∆φ the uniform grid
spacing. The Larmor-averaging of the basis element ΛI(R⃗ + ρ⃗) is done only in the
(s, θ⋆)-plane, to be consistent with the formation of Larmor rings for the markers.
The variables SL and Θ⋆

L of Eq. (3.64) are the (s, θ⋆)-coordinates on those Larmor
rings, and are given as follows.

53



3.2. ADAPTIVE BACKGROUND SCHEME

The idea is that, first we transform the point (s, θ⋆) on to a pseudo-Cartesian
plane (ξ, η), form the Larmor-rings, and then transforming points on those Larmor-
rings back. The transformation is given by

ξ = s cos(θ⋆) η = s sin(θ⋆),

with

∇ξ = ∇s cos(θ⋆)−∇θ⋆s sin(θ⋆)
∇η = ∇s sin(θ⋆) +∇θ⋆s cos(θ⋆).

Then, the local Larmor vector on the (s, θ⋆)-plane approximated to be perpendicular

to B⃗, up to first order O(1/LB), is given by

ρ⃗L(µ, α) = ρL(µ, α)

(
cos(α)

∇s
|∇s|

+ sin(α)
B⃗ ×∇s
|B⃗ ×∇s|

)
.

The points on the Larmor ring are then given by

ξL(S,Θ
⋆, µ, α) = ξGC + ρ⃗L · ∇ξ|GC

ηL(S,Θ
⋆, µ, α) = ηGC + ρ⃗L · ∇η|GC

ρ⃗L · ∇ξ|GC = ρL

[
cos(α)

(
cos(Θ⋆)|∇S| − S sin(Θ⋆)

∇S · ∇Θ⋆

|∇S|

)
−

S sin(Θ⋆) sin(α)
F

JsB|∇S|

]
ρ⃗L · ∇η|GC = ρL

[
cos(α)

(
sin(Θ⋆)|∇S|+ S cos(Θ⋆)

∇S · ∇Θ⋆

|∇S|

)
+

S cos(Θ⋆) sin(α)
F

JsB|∇S|

]
,

with the subscript GC representing the evaluation at the gyrocentre, and finally
transforming back,

SL(S,Θ
⋆, µ, α) =

√
ξ2L + η2L, Θ⋆

L(S,Θ
⋆, µ, α) = arctan

(
ηL
ξL

)
. (3.65)

To proceed further with the integration of Eq. (3.64), let Tb be a f.s.a. tempera-
ture function to be assigned later. We then normalise the perpendicular and parallel
velocities at fixed S, by defining the new variables

λ =
µB

Tb/m
, σ2 =

v2∥
2Tb/m

. (3.66)

This leads to easy application of Gaussian quadrature formulas for their respective
integration. Gauss-Laguerre and Gauss-Hermite quadratures are chosen for λ and σ
due to their semi-infinite and infinite integration ranges, respectively. For a general
function G, the Gauss-Laguerre and Gauss-Hermite quadratures are given by∫ ∞

0

dλ e−λG(λ, · · · ) ≈
∑
l

wlG(ql, · · · ),∑
l

wl = 1, (3.67)
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and ∫ ∞

−∞
dλ e−σ

2

G(σ, · · · ) ≈
∑
h

whG(qh, · · · ),∑
h

wh =
√
π, (3.68)

respectively. Here, {q} and {w} are respectively the quadrature point and weight
sets. In the following, for ease of notation, we will use the indices l and h to indicate
the type of quadrature used. Returning to Eq. (3.64),

RHSijk(t) = ∆φ

∫
dα dS dΘ⋆ dv∥ dµΛi(SL) Λj(Θ

⋆
L) JsB

⋆
∥ f0(R⃗, v∥, µ, t)

=
∆φ

2π
√
π

∫
dα dS dΘ⋆ dσ dλ

(
2πTb(ψ(S))

m

)3/2

·

Λi

[
SL

(
S,Θ⋆,

Tb(ψ(S))

mB
λ, α

)]
Λj

[
Θ⋆
L

(
S,Θ⋆,

Tb(ψ(S))

mB
λ, α

)]
·

JsB
⋆
∥

(
S,Θ⋆,

√
2Tb(ψ(S))

m
σ

)
B

f0

(
R⃗,

√
2Tb(ψ(S))

m
σ,
Tb(ψ(S))

mB
λ, t

)

=
∆φ

2π
√
π

∑
lh

wle
qlwhe

q2h

∫
dα dS dΘ⋆

(
2πTb
m

)3/2

·

Λi [SL (S,Θ
⋆, µl, α)] Λj [Θ

⋆
L (S,Θ

⋆, µl, α)] ·
JsB

⋆
∥
(
S,Θ⋆, v∥h

)
B

f0(R⃗, v∥h, µl, t), (3.69)

where

µl =
Tb(ψ(S))

m
ql, v∥h =

√
2Tb(ψ(S))

m
qh (3.70)

for notation simplicity.

3.2.10.2 Expansion approximation to the integral

The evaluation of Eq. (3.69) is computationally expensive. Namely, it takes N2
s ×

N2
θ⋆ × N5

q integrand evaluations, where Nq is the average number of quadrature

points per interval. The 5th power of Nq corresponds to the 5 dimensions of the
{S,Θ⋆, v∥, µ, α} space. We now make the approximation, assuming a canonical
Maxwellian background

f0(ψ̂0, E, t) =
n0(ψ̂0, t)

[2πT0(ψ̂0, t)/m]3/2
exp

[
− E
T0(ψ̂0, t)/m

]
≈ f̂0(ψ̂0, Ê, t),

f̂0(ψ̂0, Ê, t) =

NψNE∑
xy

axy(t)Λx(ψ̂0)Λy(Ê)e−Ê , (3.71)
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with

Ê =
E

Tb(ψ̂0)/m
,

E =
v2∥
2

+ µB(S,Θ⋆),

ψ̂0 = ψ(S) +
v∥F (ψ(S))

Ωc(S,Θ⋆)
− sgn(v∥)

mR0

e

√
2[E − µBmax(ψ(S))]H(E − µBmax(ψ(S))).

Looking at Eq. (3.71), the time dependence of f0 is now only expressed via the
{axy(t)} coefficients. Then, after every adaptation step, one only needs to solve
for these time-dependent coefficients via a cheap back-solve on a linear system,
compared to solving the integral of Eq. (3.69). The reference function Tb is the
same as that of Eq. (3.69). In Eq. (3.71), ψ̂0 and Ê are treated as independent
variables, spanning the space [0, 1] × [0, 1.2κ2v]. The domain of ψ̂0 is restricted to
[0, 1], whereas the upper limit of Ê is indeed 20% more than the limit of marker
sampling at v2 ≤ κ2vv

2
th(S), defined using the initial temperature profile for the local

thermal velocity vth(s) = T0(ψ(s), t = 0)/m. This extension is to accommodate for
large temperature deviations from T0(s, t = 0) with simulation time. The number of
basis functions in the ψ̂0 and Ê dimensions are taken to be Nψ and NE , respectively.
The size of Nψ and NE is usually determined so that the maximum local fractional
error of the approximation of Eq. (3.71) is taken to be less than 1%.

The time-dependent coefficients {axy(t)} are retrieved by back-solving the linear
system∑

x′y′

M
(ψ̂0)
xx′ M

(Ê)
yy′ ax′y′(t)

=

∫ 1

0

dψ̂0

∫ 1.2κ2v

0

dÊ Λx′(ψ̂0)Λy′(Ê)
n0(ψ̂0, t)

[2πT0(ψ̂0, t)/m]3/2
exp

[
−Ê

(
Tb(ψ̂0)

T0(ψ̂0, t)
− 1

)]
,

(3.72)

with ‘mass matrices’ of size Nψ ×Nψ and NE ×NE are respectively

M
(ψ̂0)
xx′ =

∫ 1

0

dψ̂0Λx(ψ̂0)Λx′(ψ̂0), M
(Ê)
yy′ =

∫ 1.2κ2v

0

dÊΛy(Ê)Λy′(Ê).

By expressing f0 as in Eq. (3.71), one needs to compute the time-independent
integral only ‘once’, from Eq. (3.69)

RHSxyijk =
∆φ

2π
√
π

∑
lh

wlwh

∫
dα dS dΘ⋆

(
2πTb
m

)3/2

·

Λi [SL (S,Θ
⋆, µl, α)] Λj [Θ

⋆
L (S,Θ

⋆, µl, α)] ·
JsB

⋆
∥
(
S,Θ⋆, v∥h

)
B

Λx(ψ̂0)Λy(Êlh)e−Êlh+ql+q2h

=
∆φ

2π
√
π

∑
lh

wlwh

∫
dα dS dΘ⋆

(
2πTb(ψ(S))

m

)3/2 JsB
⋆
∥

B
·

Λi(SL)Λj(Θ
⋆
L) Λx(ψ̂0) Λy(Êlh) · exp

[
− Elh
Tb(ψ̂0)/m

+
Elh

Tb(ψ(S))/m

]
,

(3.73)
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so that

RHSijk(t) ≈
∑
xy

axy(t) RHS
xy
ijk. (3.74)

Therefore, after every adaptation step, one needs to only evaluate Eqs. (3.72) and
(3.74), both of which are numerically cheap.

Now, the determination of Tb remains to be addressed. One could fix Tb to the
functional form of T0 at time t = 0. However, looking at Eq. (3.71), the expansion
gives a poor approximation for Tb very different from T0 at later times, which will
be true for an evolving background temperature T0. Therefore, the algorithm for
computing the correction term of Eq. (3.63) requires one to periodically update Tb
to have the functional form of the current T0 through time. This involves the re-
evaluation of Eqs. (3.73), though this could be done on a longer period compared to
that of the background adaptation. The number of time steps after which Eq. (3.73)
is re-evaluated is denoted by Neval.

The algorithm described so far applies identically to the second term of the
correction term in Eq. (3.63). The implementation in ORB5 stores the correction
term in a buffer in a cumulative way, so that only one evaluation is required after
every adaptation step.

Finally, for the case of a time-dependent local Maxwellian background,

f0(ψ, E, µ, t) =
n0(ψ, t)

[2πT0(ψ, t)/m]3/2
exp

[
− E
T0(ψ, t)/m

]
,

one just needs to replace all ψ̂0 terms with ψ in the algorithm described.

3.2.10.3 Coupled electron background density to ion gyrodensities

Consider the r.h.s. of the QNE involving a singly charged kinetic ion species and a
fully drift-kinetic electron species after adaptive step, cross-referencing Eq. (3.63),

δñi(r⃗)− δne(r⃗) =
1

2π

∫
dα dΩ δ[R⃗ + ρ⃗L(R⃗, µ, α)− r⃗] [δf (new)

i (Z⃗, t) + ∆f0i(Z⃗, t)]−∫
dΩ δ[R⃗− r⃗] [δf (new)

e (Z⃗, t) + ∆f0e(Z⃗, t)]

=
1

2π

∫
dα dΩ δ[R⃗ + ρ⃗L(R⃗, µ, α)− r⃗] δf (new)

i (Z⃗, t) +

[ñ
(new)
0i (r⃗, t)− ñ(old)

0i (r⃗, t)]−∫
dΩ δ[R⃗− r⃗] δf (new)

e (Z⃗, t)− [n
(new)
0e (r⃗, t)− n(old)

0e (r⃗, t)].

In this case, the correction term from the adaptation step is

[ñ
(new)
0i (r⃗, t)− ñ(old)

0i (r⃗, t)]− [n
(new)
0e (r⃗, t)− n(old)

0e (r⃗, t)]. (3.75)

The expression above can be set to zero by having the change in electron background
density equal to the change in ion background gyrodensity. Namely, for all times
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(after t = 0), we enforce

n0e(r⃗, t) =
1

2π

∫
dα dΩ δ[R⃗ + ρ⃗L(R⃗, µ, α)− r⃗] f0i(Z⃗, t)

=
1

2π

∫
dα dv∥ dµB

⋆
∥ [r⃗ − ρ⃗L(R⃗, µ, α), v∥] f0i[r⃗ − ρ⃗L(µ, α), t]

≈ 1

2π

∫
dα dv∥ dµB

⋆
∥(r⃗, v∥) f0i[r⃗ − ρ⃗L(R⃗, µ, α), t],

whose approximation in the last line being consistent with the building of Larmor-
rings using the velocity Jacobian evaluated at gyrocentre positions. Introducing the
substitutions, Eq. (3.66),

n0e(r⃗, t) =
1

2π3/2

∫
dα dλ dσ

B⋆
∥ [s, θ

⋆, v∥(σ)]

B(s, θ⋆)

(
2πTb(ψ(s))

m

)3/2

f0i

[
r⃗ − ρ⃗L(R⃗, µ(λ), α), t

]
=

1

2π3/2

∫
dα

(
2πTb(ψ(s))

m

)3/2

·

∑
lh

wlwhe
qleq

2
h

B⋆
∥(s, θ

⋆, v∥h)

B(s, θ⋆)
f0i[sL(s, θ

⋆, µl, α), θ
⋆
L(s, θ

⋆, µl, α), t], (3.76)

where we have used quadratures Eqs. (3.67) and (3.68) for the velocity variables
λ and σ integration, respectively. The sL and θ⋆L expressions are given identically
to the treatment leading up to Eq. (3.65), and the notation of Eq. (3.70) has been
used.

Eq. (3.76) is much cheaper in terms of memory and computation as compared
to that of Eq. (3.69). However, the electron background density profile used in this
work is the f.s.a.. Therefore, we must have

n0e(ψ, t) = ⟨n0e(r⃗, t)⟩ ,

which will result in the cancellation of Eq. (3.75) only in the f.s.a. sense.

3.2.11 Update on the l.h.s. of the QNE

As background profiles are now time-dependent, this allows us to update the l.h.s. of
the QNE. For this discussion, we shall use the form with electrons with hybrid
response, Eq. (2.38) as an example as it contains all the relevant background terms,

niniti(ψ) +∇⊥ ·
(
mininiti(ψ)

eB2
∇⊥ϕ

)
+ δñi

= ninite(ψ) + αP
eninite(ψ)

Tinite(ψ)
(ϕ− ⟨ϕ⟩) + δne,P |(m,n)=(0,0) + δne,T (3.77)

Here, we have rearranged the ion and electron contributions to the left and right
of the equal sign respectively. We have also reintroduced the use of initial profiles,
denoted by the superscript (init). Under the adaptive scheme, with the assignment
n0(ψ, 0) = ninit for the respective species, Eq. (3.77) can be written equivalently as

ni0(ψ, t) +∇⊥ ·
(
mininiti(ψ)

eB2
∇⊥ϕ

)
+ δñ

(new)
i

= ne0(ψ, t) + αP
eninite(ψ)

Tinite(ψ)
(ϕ− ⟨ϕ⟩) + δn

(new)
e,P |(m,n)=(0,0) + δn

(new)
e,T . (3.78)
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3.3. HEAT SOURCES AND NOISE CONTROL

Perturbation quantities are now w.r.t. the updated background at time t. Since,
Eqs. (3.77) and (3.78) are identical, they have the same solution ϕ. We recall that
in ORB5 the second term on the l.h.s. of Eq. (3.78) is the linearised polarisation
density. That is, niniti has been used instead of ni(r⃗, t). This assumption becomes
questionable in particular when profiles exhibit significant evolution from their initial
values. In such situations, one would need for example to restart a completely new
simulation, using the time-averaged final profiles of the old simulation as initial
profile of the new one. This was done in the past, e.g. in Ref. [4]. The disadvantage
is that the new simulation has to go again through the transient phase of growth,
overshoot, saturation, before reaching a new quasi-steady state. An alternative is
to periodically adapt the density appearing in the QNE:

ni0(ψ, t) +∇⊥ ·
(
mini0(ψ, t)

eB2
∇⊥ϕ

)
+ δñ

(new)
i

= ne0(ψ, t) + αP
ene0(ψ, t)

Te0(ψ, t)
(ϕ− ⟨ϕ⟩) + δn

(new)
e,P |(m,n)=(0,0) + δn

(new)
e,T .

This requires rebuilding the matrix (see Eq. (3.34)) of the l.h.s. of the QNE every
so often with the new background profiles n0 and T0. For the ion case, we now
see that a time-dependent background gyrocentre density adds nonlinearity to the
polarisation density. As for the electrons, the interpretation of the time-dependent
profiles in the adiabatic term is not straightforward. This is because updated profiles
are derived from the contributions of both passing and trapped perturbed electrons.
Hence, a more accurate change to the adiabatic term would require the distinction
between passing and trapped background profiles. Nonetheless, for simplicity, this
work does not make that distinction.

3.3 Heat sources and noise control

In this work, there are three inhomogeneous terms to the Vlasov equation used,

df

dt
= ŜK + ŜH + SB. (3.79)

Here, ŜK is Krook operator that will serve as noise control. ŜH is a f.s.a. heating
operator parameterised by user-defined density and temperature profiles. And γK is
the source/sink that represents the buffer that damps all fluctuations at the s = 1
boundary. These operators will be discussed below. Under the direct-δf scheme
(see Sec. 3.1.6) used in this work, the r.h.s. of Eq. (3.79) is implemented in a time-
splitting fashion, one inhomogeneous term at a time.

3.3.1 Krook operator as noise control and heat source

In a PIC scheme, noise-control is essential to reduce the rate of statistical sampling
noise accumulation when representing δf with markers, and is important to act as a
source of dissipation to allow a source-less and collision-less system to reach quasi-
steady state [48]. The noise control used in this work in in the form of a Krook
operator,

ŜK(Z⃗, t) = −γK(f − fK) + ScK (3.80)
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3.3. HEAT SOURCES AND NOISE CONTROL

where fK is a reference distribution function, which is usually taken to be the con-
trol variate f0(t) for noise control, which is not necessarily the initial equilibrium
distribution in light of the adaptive scheme. The strength constant γK should not be
too large as it will damp out essential physics from the time evolution, and not too
small that it will be too weak as a noise control. A good compromise for γK is 10%
of the maximum linear growth rate of the case under study. However, no matter
how small γK is, over long simulation-times persistent profiles like the f.s.a. density
and temperature profiles, as well as zonal flow structures, will be effected. There-
fore, a correction term ScK is included in Eq. (3.80) to conserve the moments of
density, parallel momentum, residual zonal flows, and the kinetic energy to machine
precision on each flux surface. The method of calculation for correction terms is
elaborated in Sec. 3.3.3.

For temperature-gradient-driven simulations in this work, the Krook operator is
used as a nonlinear heat source with fK = finit, as

ŜK(Z⃗, t) = −γK(f − finit) + ScK
= −γK [δf + f0(t)− finit] + ScK , (3.81)

where the extra term f0(t)− finit accounts for the change in the background. Since
Eq. (3.81) now serves as a heat source, ScK will not account for f.s.a. kinetic en-
ergy correction, but keep the density, parallel momentum and residual zonal flow
conservation.

3.3.2 Fixed heat source and edge buffer sink

0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

Figure 3.4: Amplitude of the f.s.a. heating operator ŜH(ψ, E) of Eq. (3.82), at a
fixed radial position ψ.

For flux-driven runs of this work, the f.s.a. heat source used is of the form

ŜH(ψ, E) = γHGH(ψ)
1

TH(ψ)/m

(
E

TH(ψ)/m
− 3

2

)
nH(ψ)

[2πTH(ψ))/m]3/2
exp

(
− E
TH(ψ)/m

)
+ ScH ,

(3.82)
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3.3. HEAT SOURCES AND NOISE CONTROL

with nH and TH the reference f.s.a. density and temperature profiles, GH the radial
profile for the heat source used for localised heating, and the constant γH its strength.
The first term is proportional to the temperature derivative of a reference local
Maxwellian function fL,

∂fL
∂TH

. The consequence is that this term is not a source of
density in the infinite marker limit,∫

d3R
∂fL
∂TH

=
∂

∂TH

∫
d3RfL

=
∂

∂TH
nH(ψ)

= 0.

Nonetheless, like the Krook noise control operator of Eq. (3.80), we include a correc-
tion term ScH to ensure the conservation of not only the the parallel momentum and
residual zonal flows, but also the density to machine precision on each flux surface.

Two insights can be made of ŜH . The first is that for a fixed radial position ψ,
the amplitude of ŜH as a function of E

TH/m
is shown in Fig. 3.4. One can see that

ŜH decreases the distribution function for gyrocentres with energies lower than the
internal kinetic energy density at temperature TH , E < 3TH/(2m), and increases the
distribution function of gyrocentres that are above this energy threshold. Secondly,
again at fixed ψ, if we approximate the derivative ∂

∂TH
for Eq. (3.82) as

ŜH(ψ, E) = γHGH(ψ)
fL(nH , T +∆T )− fL(nH , T )

∆T (ψ)

∣∣∣∣
T=TH

+ ScH ,

we can interpret G(ψ)
∆T (ψ)

as the dimensionless radial positive envelope profile for heat-
ing, to increase the temperature from TH to TH +∆T . This also ensures that γH of
Eq. (3.82) retains the correct units of Ωci.

Finally, to eliminate all turbulence at the edge, a (non-conserving) Krook buffer
which acts as a sink in the form of

SB(s) = −γB
(
s− sB
1− sB

)4

δf (3.83)

is used, with user-defined buffer radial edge sB, and strength constant γB applicable
only in s ∈ [sB, 1].

3.3.3 Source correction term

Let the correction term Sc be of the form [43]

Sc(Z⃗) =
Nmom∑
i

gi(s)f0(Z⃗)Mi(Z⃗), (3.84)

with f0 the control variate, and {M} the set of moments from Table. 3.1 to be
simultaneously conserved on each flux surface ψ. Here, we have omitted the explicit
time dependence in Eq. (3.84), keeping in mind that Eqs. (3.80) and (3.82) are
implemented in a time-splitting fashion after the marker push, and the re-evaluation
of Eq. (3.84) needs to be done.
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Like Eqs. (3.80) and (3.82), consider the inhomogeneous term of the Vlasov
equation, of the form Ŝ = S + Sc. The simultaneous conservation on each flux
surface ψ = s2ψedge requires that

0 =

〈∫
d3vMi(Z⃗)(S + Sc)

〉
∀i

Nmom∑
j

Sij(s)gj(s) = Si(s) ∀i, (3.85)

with

Sij(s) =

〈∫
d3vMiMjf0

〉
, Si(s) = −

〈∫
d3vMiS

〉
.

The r.h.s. of the linear system of Eq. (3.85) is formed by binning the markers into
radial bins s ∈ [sk, sk +∆s], ∀k, and solving for the coefficients {g} in each of those
bins.

Moment Expression M(Z⃗)

Density 1
Parallel velocity v∥

zonal flows
v∥

B(s,θ⋆)
−
〈

v∥
B(s,θ⋆)

〉
b.a.

energy per mass
v2∥
2
+ µB(s, θ⋆)

Table 3.1: Possible moments M to simultaneously conserve on every flux surface ψ
via the correction term Sc. The operator ⟨·⟩b.a. represents the bounce average.

3.4 Normalisations and transport measures

Quantity Reference unit
First ion mass mi

First ion charge σi
Magnetic field at axis B0

Electron temperature at s = s0 T0e(s0)

Table 3.2: Reference units of ORB5. s = s0 is a user-specified reference flux surface
label, s0 ∈ [0, 1].

Quantity Derived unit
Ion cyclotron frequency Ωci = σiB0/mi

Ion sound speed at s = s0 cs =
√
T0e(s0)/mi

Ion sound Larmor radius ρs cs/Ωci

jth species volume-averaged density n̄j

Table 3.3: Common derived quantities of ORB5. The ion species is the reference
(first) ion species of Tab. 3.2.
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3.4. NORMALISATIONS AND TRANSPORT MEASURES

Table 3.2 shows the four reference units used in ORB5. Units for other quantities are
derived from these. In view of the adaptive background scheme, the normalisation
unit for temperature T0e(s0) is specifically T0e(s0, t = 0). Furthermore in this thesis,
Ti0(s0, t = 0) = T0e(s0, t = 0) is always chosen. Tab. 3.3 shows examples of derived
quantities and their respective units. For density normalisation, the average density
of the jth species is used, i.e.

n̄j =

∫
ds dθ⋆ dφJs(s, θ

⋆)n0j(t = 0)∫
ds dθ⋆ dφJs(s, θ⋆)

=
Nphj

V
, (3.86)

with the integration done over the whole configuration space of total volume V , and
Eq. (3.20) has been used. Note that this normalisation is unique to the jth species,
and uses the initial density n0j(t = 0) as reference. Under this normalisation, with
δfj approximated by markers Eq. (3.19),∫

dΩ δf̂j =
V

Np,j

.

Quantity ORB5 unit Physical unit
Shearing rate ωE×B Ωci cs/a
Heat diffusivity χ ρscs χGB0 = ρ2scs/a

Heat flux through surface ⟨q⃗H · ∇ψ/|∇ψ|⟩S n̄csT0e(s0) n̄χGB0T0e(s0)/a

Particle flux through surface
〈
Γ⃗ · ∇ψ/|∇ψ|

〉
S

n̄cs n̄χGB0/a

Table 3.4: Diagnostic quantities in ORB5 and physical units

We now define diagnostics commonly used in Chs. 5 and 6.

1. Zonal flow E ×B shearing rate [77]:

ωE×B =
s

2ψedgeq(s)

∂

∂s

(
1

s

∂ ⟨ϕ⟩
∂s

)
(3.87)

2. Particle flux:

Γ⃗ =

∫
d3v
−⟨∇ϕ⟩ × B⃗

BB⋆
∥

δf (3.88)

3. Heat flux:

q⃗kin =

∫
d3v

mv2

2

−⟨∇ϕ⟩ × B⃗
BB⋆

∥
δf

q⃗pot =

∫
d3vσϕ

−⟨∇ϕ⟩ × B⃗
BB⋆

∥
δf

q⃗H = q⃗kin + q⃗pot −
5

2
mv2thΓ⃗.
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3.4. NORMALISATIONS AND TRANSPORT MEASURES

In diagnostics the average heat flux through a magnetic surface is usually
shown. Let the averaging operator ⟨·⟩S for a function G on a flux surface be

⟨G⟩S =
⟨G|∇ψ|⟩
⟨|∇ψ|⟩

. (3.89)

The denominator represents the area of the flux surface in question. Note that
Eq. (3.89) is not the same as the flux-surface average operator Eq. (2.12). The
power through magnetic surface ψ is then defined to be〈

q⃗H ·
∇ψ
|∇ψ|

〉
S

=
⟨q⃗H · ∇ψ⟩
⟨|∇ψ|⟩

. (3.90)

4. Heat diffusivity:
We start from its definition,

q⃗H = −nχ∇T

⟨q⃗H · ∇ψ⟩ = −nχ∂T
∂ψ

〈
|∇ψ|2

〉
χ = −

〈
q⃗H · ∇ψ

|∇ψ|

〉
S

n ∂T/∂ψ

⟨|∇ψ|⟩
⟨|∇ψ|2⟩

, (3.91)

where use has been made of Eq.(3.89) and we assumed that χ is constant on
flux surfaces.

5. Logarithmic gradient [75] of profile T , R/LT :

R

LT
=

R0

T

dT/ dψ

dVψ/ dψ
⟨|∇ψ|⟩ , (3.92)

where R0 is the major radius, and Vψ is the volume enclosed by the flux surface
ψ.

64



Chapter 4

GKengine ITG adiabatic electrons

The GKegine code is used as a test bed for the adaptive scheme. Sec. 4.1 first
introduces the code used in this chapter, along with its simplifying assumptions.
Sec. 4.2 then presents a simplified version of the adaptive scheme for the background
temperature in sheared-slab geometry. Sec. 4.3 gives an overview of the profiles and
parameters that are used in this chapter. The main results are shown in Sec. 4.4,
comparing the adaptive cases against the standard ones. Further analysis is done
by varying parameters of the adaptive scheme to study their relative importance,
including an attempt to increase heat transport by modifying the electron adiabatic
response. Sec. 4.5 concludes this chapter with final remarks on the improvement
brought by this simple temperature adaptation scheme. The contents of this chapter
are largely based on Ref. [63].

4.1 Simplified physical model

The GKengine code [65] solves for the distribution function f of a singly charged
(Z = 1) kinetic ion species via the gyrokinetic equation Eq. (2.24), with general
source term. The electrons for this chapter are assumed to be adiabatic. The l.h.s.
of Eq. (2.24) still reads as

df

dt
=

{
∂

∂t
+

dR⃗

dt
· ∇R⃗ +

dv∥
dt

∂

∂v∥
+

dµ

dt

∂

∂µ

}
f,

with gyrocentre coordinates Z⃗ = [R⃗, v∥, µ], where R⃗ is the configuration space vector,
v∥ the parallel velocity and µ = v2⊥/2B the magnetic moment per mass of the
gyrocentre. The configuration space r⃗ = [x, y, z] has a 3D sheared-slab geometry
which spans r⃗ ∈ [0, Lx]×[0, Ly]×[0, Lz], where the Cartesian coordinates [x, y, z] can
be related to the radial, poloidal, and toroidal directions, respectively, of a tokamak
system. Periodic boundary conditions are thus imposed in the y- and z- directions,
which span Ly = πa and Lz = 2πR0, respectively, with a the minor radius and R0

the major radius. The sheared equilibrium magnetic field as illustrated in Fig. 4.1
is given analytically by

B⃗(x) = By(x)ey +Bzez

Bb̂ = Bz

[
Ly

Lzq(x)
ey + ez

]
, (4.1)
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4.1. SIMPLIFIED PHYSICAL MODEL

where b̂ is its direction, and q(x) is the safety factor profile. Like B⃗(x), all back-
ground profiles of this chapter will only depend on the radial position x, plus time
t where relevant.

Figure 4.1: The sheared-slab magnetic geometry (see Eq. (4.1)) used for simulations
of this chapter.

All fluctuations considered are electrostatic, and therefore the evolution of the
gyrocentre phase space coordinates are given by

dR⃗

dt
= v∥b̂+

µ

eB⋆
∥
b̂×∇B +

1

B⋆
∥
b̂×∇ϕ̃,

dv∥
dt

= − e

mi

b̂ · ∇ϕ̃,

dµ

dt
= 0. (4.2)

Here B⋆
∥ = B[1 + miB

′
yBzv∥/(eB

3)], and ·̃ is the gyroaveraging operator given by

Eq. (2.21). The set of Eq. (4.2) is nonlinear as these equations depend on the self-
consistent electrostatic potential ϕ(x, y, z) satisfying the quasi-neutrality equation,
Eq. (2.39).

In order to simulate physics under strong profile gradients in quasi-steady state,
heat sources are implemented to clamp ion temperature Ti at profile edges to prevent
relaxation below critical gradients. This Krook-like source SH of Eq. (3.81) with
associated relaxation rate γh(x) is stationary and radially dependent, maintaining
over time the high and low ends of the Ti profile of the initial background distribution
function f0(t = 0). Particle sources are not needed as there is no density profile
relaxation. The assumed adiabatic electron response indeed enables no particle
transport. Therefore, the correction term ScH of Eq. (3.84) to SH includes the
density and parallel momentum v∥ conservation. A Krook noise control operator
SK is also used here, with fK the distribution function towards which it relaxes, a
correction term ScK that conserves density, parallel momentum v∥ and energy v2.

Taken these sources together, the Vlasov equation, Eq. (2.24) expands to{
∂

∂t
+

dR⃗

dt
· ∇R⃗ +

dv∥
dt

∂

∂v∥
+

dµ

dt

∂

∂µ

}
f

= −γh(x)[f − f0(t = 0)] + ScH − γK(f − fK) + ScK .
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4.2 Time-dependent control variate

The control variate for the work of this chapter has the form of a (local) Maxwellian
function

f0 = fM(X, v∥, µ, t)

=
n0i(X)

[2πT0i(X, t)/m]3/2
exp

[
−
v2∥/2 + µB(X)

T0i(X, t)/mi

]
, (4.3)

with a background ion temperature profile T0i(X, t) as a function of the gyrocentre
radial coordinate X and time t. Indeed, no density adaptation is necessary as no
particle transport is expected. The time-dependence of f0 thus only appears through
T0i(X, t), which is governed by the ad-hoc equation, similar to Eq. (3.47),

∂

∂t

(
3

2
n0i(X)T0i(X, t)

)
= αE

〈∫
d3v

(
v2∥
2

+ µB

)〉
, (4.4)

which l.h.s. represents the variation in time of the background ion kinetic energy
density Ekin0(x, t) (per mass) related to f0,

Ekin0(x, t) =
3

2
n0i(x)T0i(x, t),

with

T0i(x, t) = T0i(x, 0) + δT0i(x, t)

and

δEkin0(x, t) =
3

2
n0i(x)δT0i(x, t).

Here, δEkin0(x, t) and δT0i(x, t) are the deviations of the background ion kinetic
energy and temperature profiles from their initial states Ekin0(x, 0) and T0i(x, 0),
respectively. The flux-surface-averaging operator ⟨·⟩ in sheared-slab geometry sim-
plifies (see Eq. (2.12)) to

⟨ϕ⟩ (x, t) =
1

LyLz

∫ Ly

0

dy

∫ Lz

0

dz ϕ(x, y, z, t).

The explicit contributions from f0 and δf to the QNE with an adiabatic electron
response then becomes

en0(x)

Te(x)
[ϕ(x, y, z, t)− ⟨ϕ⟩ (x, t)]−∇⊥ ·

(
min0i(x)

eB2(x)

)
=

∫
dα

2π

∫
dΩ δ[R⃗ + ρ⃗− r⃗] · [f0(X, v∥, µ, t)− f0(X, v∥, µ, 0) + δf(Z⃗, t)].

(4.5)

As with Eq. (2.34) the perpendicular gradient of Eq. (4.5), ∇⊥ ≈ ∇pol = ex∂x+ey∂y
has been approximated to the gradient in the (x, y)-plane (corresponding to the
poloidal plane in a tokamak) due to the fact that micro-instabilities align along field
lines and assuming By/Bz = Ly/[Lzq(x)]≪ 1. Since f0 of Eq. (4.3) has an analytic
form, the v∥-integration is carried out analytically, and the µ- and α- integrations
are done using quadratures. The convergence of this integration scheme is detailed
in App. B. For this work, 30 quadrature points for each of these two dimensions
were used.
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4.3 Profiles and simulation parameters

Let the normalised radial coordinate be s = x/Lx ∈ [0, 1]. The profiles representing
the initial unperturbed ion and electron background densities, n0, as well as their
temperatures T0i and T0e, respectively, are parametrised by three parameters given
by amplitude A, the normalised absolute maximum logarithmic gradient κ̄, and the
slope half-width ∆̄. For s ∈ [0, 0.5], such a profile G(s) is given explicitly by

G(s;κ,∆) =


A exp

(
2κ̄∆̄
3

)
0 ≤ s < s0 − ∆̄,

A exp
[
−κ̄(s− s0) + κ̄(s−s0)3

3∆̄2

]
|s− s0| ≤ ∆̄,

A exp
(
−2κ̄∆̄

3

)
s0 + ∆̄ < s ≤ 0.5.

Note that this definition ensures that g(s) and dg
ds

are both continuous. At the
reference radial position s = s0, it has a value of A, and its parabolic normalised
logarithmic gradient peaks at this same point with value κ̄.

The heat source radial profile γh is parameterised by the amplitude AH , and the
half-widths δ̄c and δ̄s of the clamp maximum and edge-slope regions, respectively.,
with δ̄c ≥ δ̄s. This profile for s ∈ [0.0, 0.5] is given explicitly by

γh(s; δ̄c, δ̄s) =



AH 0 ≤ s < δ̄c − δ̄s
AH
2

[
1− 3

2

(
s−δ̄c
δ̄s

)
+ 1

2

(
s−δ̄c
δ̄s

)3]
|s− δ̄c| ≤ δ̄s

0 δ̄c + δ̄s < s ≤ 1
2
− (δ̄c + δ̄s)

AH
2

[
1 + 3

2

(
s−(1/2−δ̄c)

δ̄s

)
− 1

2

(
s−(1/2−δ̄c)

δ̄s

)3] ∣∣s− (1
2
− δ̄c

)∣∣ ≤ δ̄s

AH
1
2
− (δ̄c − δ̄s) < s ≤ 0.5.

(4.6)

The noise control profile is uniform and is parameterised by as single parameter
γn = An.

Figure 4.2: Symmetrised profiles used for this chapter. Blue: Initial (solid) and
typical final (dashed) Ti. Red: Heat γh (solid) and noise control γn (dashed).
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4.3. PROFILES AND SIMULATION PARAMETERS

To avoid spurious marker build-up at the radial domain boundaries for long-time
simulations with large κ under Dirichlet boundary conditions ϕ(s = 0) = ϕ(s = 1) =
0, all radial profiles are mirrored about s = 0.5, and periodic boundary conditions
are imposed. Examples of such profiles, along with heat source and noise control
operator profiles, are shown in Fig. 4.2. Henceforth for this chapter, only profiles
from the left half will be shown, i.e. for s ∈ [0.0, 0.5].

The GKengine code works in units such that time and speeds are normalised
to Ω−1

c = mi/eB(s0) and cs =
√
Te(s0)/mi (Z = 1), representing the inverse ion

cyclotron frequency and ion sound speed at s0 = 0.25, respectively, which together
gives the ion sound Larmor radius ρs = cs/Ωci for units of length. The magnetic
and potential fields are normalised to Bz, and T0e(s0)/e respectively. To simulate
slab-ITG instabilities, we use the major and minor radii values of R0 = 243.5ρs and
a = 66.4ρs. The spatial domain is Lx = 2a for an x-periodic profile, Ly = πa and
Lz = 2πR0. The grid-cells number for ϕ is (Nx, Ny, Nz) = (256, 512, 128). The time
step used here is ∆t = 20Ω−1

c = 0.15Lx/cs. The safety factor is given by q(s) =
1.25+12s2 for the half-domain s ∈ [0.0, 0.5], and mirrored in the other half-domain.
All normalised parameters describing profiles are converted to physical units via a
multiplication/division by Lx. The initial profile gradients used in this paper are
summarised in Tab. 4.1. These parameters correspond to ηi(s0) =

κ̄T
κ̄n

= 10, and a
peak value of ion temperature Ti logarithmic gradient of | d log Ti(s0)/ dx| = 4.0/a,
that is, R0/LT = 14.6.

Parameter Value
κ̄n 0.800
δ̄n 0.300
κ̄T 8.000
δ̄T 0.150

AH/γmax 1.000
δ̄c 0.025
δ̄s 0.025

An/γmax 0.030

Table 4.1: Equilibrium and heating profile parameters. Ions and electrons share
identical equilibrium density and temperature profiles. The maximum linear growth
rate γmax = 1.169× 10−3Ωci = 0.155cs/Lx is assumed, based on Fig. 4.3.

For the ‘toroidal’ direction (z), we chose to resolve modes in the range of [nmin, nmax] =
[0, 32], and ‘poloidal’ modes m determined by the field-aligned Fourier-filter |nq(s)+
m| ≤ ∆m, with ∆m = 5 [45]. All simulations are initialised with f00 + δf(t = 0).

The initial background is taken to be f00 = fM0, where fM0 = fM(R⃗, v∥,µ, 0). The
control variate at initial time is also taken to be the initial background f0(t = 0) =
f00. δf(t = 0) represents a density perturbation of amplitude 10−4 and toroidal
mode number n = 7 corresponding to the strongest growing linear mode. The
poloidal modes initialised are those within the field-aligned filter at s = s0, i.e.
|7q(s0) +m| ≤ 5.

Unless otherwise stated, all cases in this chapter are run with Np = 256M (which
is about 15 markers per cell) and adaptive background cases consider the relax-
ation rate αE = 1.92γmax. The number of time steps after which the background
temperature profile is adapted via Eq. (4.4), is set to Nα = 10 for all cases.
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4.4. RESULTS

Figure 4.3: Maximum growth rate of linear modes as a function of each toroidal mode
number n, for normalised ion temperature logarithmic gradient a | d log Ti/ dx| = 4.0
and ( d log Ti/ dx)/( d log n/ dx) = 10. The poloidal mode number m is radially
dependent and is determined by the Fourier filter.

4.4 Results

4.4.1 Marker convergence

(a) Heat diffusivity χH (b) Zonal flow shearing rate ωE×B

Figure 4.4: Time traces for various marker numbers, considering the non-adaptive
and adaptive cases. The adaptive rate is set to αE = 1.92γmax where applicable.
A moving time-averaging window of half-width cst/Lx = 10, which is equivalent to
γmaxt = 1.6, has been implemented.

Characteristic of all simulations is a turbulent burst in the initial phase of the
simulation (0 < cst/Lx < 300) represented by a spike in the radially averaged heat
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flux qH and diffusivity χH , expressed by

χH(t) =

〈∣∣∣∣∣ qH(x, t)

n0i(x)
∂Ti(x,t)
∂x

∣∣∣∣∣
〉
x

.

χH is represented in gyroBohm units, χGB = ρ2scs/Lx with reference to the radial
position of steepest initial profile gradient, i.e. s = s0. All radial averaging in this
paper is done outside the heat source profile of Eq. (4.6), namely s ∈ [0.025, 0.475]∪
[0.525, 0.975]. Fig. 4.4 shows how turbulence is quenched for the non-adaptive cases
by increasing zonal flow shearing rate ωE×B. The latter is estimated by

ωE×B =
1

B

d2ϕ00

dx2
,

where, ϕmn(x) is in general the Fourier component of the electrostatic field corre-
sponding to poloidal (y) mode m and toroidal (z) mode n, ϕ00(x) thus being the
zonal component. As can be seen in Fig. 4.4b, the very significant rise in |ωE×B| for
non-adaptive simulations is dependent on the number of markers, Np, and is thus
of numerical origin. We note that even though the rise is reduced by increasing Np,
the simulation is far from having converged even for the largest Np = 512M con-
sidered. We interpret the rise in |ωE×B| as resulting from the statistical sampling
noise accumulation in the zonal components, which are not physically damped [18].
As expected, the accumulated noise is highest for the case with lowest Np. Corre-
sponding un-physically large ωE×B levels lead to large eddy shearing and reduced
transport. The time of χH collapse is correlated to |ωE×B|, reaching a value com-
parable to 3γmaxLx/cs, thus the sequence of rises of ωE×B in Fig. 4.4b correspond
to the sequence of falls of χH in Fig. 4.4a for the three non-adaptive cases. On the
other hand, for the adaptive case, the converged results show that ωE×B increases
at a much slower rate with time, resulting in a somewhat longer sustained flux.
One notes that these converged fluxes nonetheless ultimately drop to zero as seen
in Fig. 4.4a.

To further confirm that low marker numbers lead to an increase in zonal ωE×B
levels due to noise accumulation, Fig. 4.5a shows the radially averaged absolute value
of ωE×B at the initial time t = 0 against marker number Np. All simulations are
initialised with a density perturbation defined as including only n ̸= 0 Fourier modes.
Despite that, due to the finite and random marker number representation of δf , there
is a resulting spurious finite zonal, (m,n) = (0, 0), ωE×B profile, whose amplitude
increases with decreasing number of markers as ∼ 1/

√
Np, as expected due to

statistical sampling error. The magnitude of the corresponding zonal flow shearing
rate ωE×B is then further increased at every time step. Thus, lower marker numbers
lead to larger noise accumulation in ωE×B with time, which leads to Fig. 4.5b for
end-time values of ωE×B. Assuming linear increment, Fig. 4.5 indicates that the
rate of increase of ωE×B is dωE×B/ dt ≈ 2.12× 10−3c2s/L

2
x for Np = 256M. For non-

adaptive cases, the general trend of lower zonal E×B shearing with increasing Np is
apparent. The end-time ωE×B value is expected to plateau at higher Np values, but
this limit is not reached for the maximum marker number considered, Np = 512M.
This converged value would represent the zonal ωE×B derived from the physics of
the problem, and not the result of the accumulation of noise. On the other hand,
the adaptive cases show much lower and similar end-time ωE×B values throughout
all Np values considered in the different simulations.
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(a) (b)

Figure 4.5: Radial averaged absolute value of the zonal flow shearing rate ωE×B at
(a) initial time cst/Lx = 0 and (b) end-time cst/Lx = 753, as a function of the
inverse square root of marker number Np. The adaptive case (orange) adapts at a
rate αE = 1.92γmax. All simulations are initialised with perturbations with toroidal
mode n ̸= 0.

(a) Signal including zonal mode (b) Signal excluding zonal mode

Figure 4.6: Signal-to-noise ratio (SNR) time traces for signal (a) including (see
Eqs. (3.27)) and (b) excluding (see Eq. (3.28)), the (m,n) = (0, 0) mode, for in-
creasing marker number Np, and considering both the non-adaptive (solid line) and
adaptive (dashed line) cases.

From Fig. 4.6a, non-adaptive cases start from high SNR values and gradually
drop to their respective lowest point after the initial burst cst/Lx ∼ 300. Np is
reflected in the maximum of SNR values for each case, which the latter seem to scale
as 1/Np. The adaptive cases follow a similar trend, but do not fall as low. From
past works [62, 9], the rule-of-thumb SNR threshold of 10 is a value above which
the results can be deemed reliable. Therefore, we can see that only the adaptive
cases with Np = 256M, 512M meet this criterion throughout the whole simulation.
All SNR values eventually rise with time, with the non-adaptive case at Np = 128M
rising the quickest. This reflects the noise accumulation in the physically undamped
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zonal component. Indeed, by subtracting the zonal component from the signal,
Fig. 4.6b shows that the non-adaptive case with Np = 128M gives the lowest SNR
value throughout the simulation. Thus, for this set of parameters, only the results
from the adaptive case with Np = 256M or Np = 512M may be deemed reliable.

(a) Ti local fractional differ-
ence

(b) Ti logarithmic gradient (c) Zonal flow shearing rate

Figure 4.7: F.s.a. profiles at quasi-steady state averaged over a time interval of
cst/Lx ∈ [1030, 1130] for various marker numbers Np under the non-adaptive scheme
for the ion temperature (a) relative deviation with respect to background [⟨Ti⟩ (s)−
T0i(s)]/T0i(s) and its (b) logarithmic gradient −∂ log Ti(s)∂s, and the (c) zonal flow
shearing rate ωE×B.

Figs. 4.7 and 4.8 show the f.s.a. profiles at the end of the simulations for the zonal
flow shearing rate ωE×B, the ion temperature ⟨Ti⟩ relative deviation (⟨Ti⟩−T0i)/T0i,
and its logarithmic gradient for different total number Np of markers, under the non-
adaptive and adaptive cases, respectively. It should be noted that the maximum
relative deviation value for Ti of around 60% in Fig. 4.7a for the non-adaptive cases
challenges the δf assumption of ∥δf∥/∥f0∥ ≪ 1. For the adaptive case in Fig. 4.8a
however, the relative deviation of ⟨Ti⟩ from the adapted background temperature
T0i(t), which remains low at all times, qualifies. One notes also that the adaptive
cases in fact resulted in f.s.a. Ti profiles with a larger deviation of 100%, from its
initial state, as shown in Fig. 4.8b. This shows that the adaptive scheme appears to
allow for simulations with more accurate profile evolution in case of large deviations,
not afforded by the standard scheme. One notes also the development of strong Ti
gradients at s = 0.05, just outside the heat source for the non-adaptive case (see
Fig. 4.7). This is suspected to be related to spurious marker accumulation by error in
drift calculation, whose magnitude reduces with increasing Np. Under the adaptive
scheme, this problem does not occur.
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(a) (b)

(c) (d)

Figure 4.8: F.s.a. profiles at quasi-steady state averaged over a time interval of
cst/Lx ∈ [1030, 1130] for various marker numbers Np under the adaptive scheme
with adaptive rate αE = 1.92γmax for the ion temperature (a) relative deviation with
respect to adapted background, (b) relative deviation with respect to background
at initial time t = 0, its (c) logarithmic gradient, and the (d) zonal flow shearing
rate.

4.4.2 Adaptive control variate and noise control

Tentatively, two mechanisms contribute to the improvement of SNR with the adap-
tive scheme: (a) the adapted f0(t) as a good control variate; (b) the noise control
operator Sn of the non-adapted scheme, which tends to bring f back1 towards the
initial distribution f00, whereas in the adapted scheme it tends to relax f towards
the time-evolved f0, which is closer to the time-averaged f , especially at late times.
To study the relative importance of the adaptive scheme and the noise control, we
varied in this section the control variate f0, both in the framework of the adap-
tive delta-f scheme, Eq. (2.31), and in the reference function fn of the noise control
operator i.e. Sn = −γn(f − fn).

All simulations begin with f = fM0 + δf(t = 0), where δf(t = 0) represents a
small perturbation and the control variate f0 is taken to be fM (see Eq. (4.3)). By
choosing different f0 and fn, four different adaptive scenarios can be constructed,
depending on whether the adaptive scheme is used (f0 = fM0 or f0 = fM(t)) and
whether adaptive noise control scheme is used (fn = fM0 or fn = fM(t)). Below,
except for scenario 3, fM(t) adapts via T0i from Eq. (4.3) according to Eq. (4.4).

1Nonetheless, the noise control operator conserves lower order velocity moments (see Sec. ??
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1. non-adaptive δf scheme, non-adaptive fn, labeled (no,no)

• (f0, fn) = (fM0, fM0)

2. adaptive δf scheme, non-adaptive fn, labeled (yes,no)

• (f0, fn) = (fM(t), fM0)

3. non-adaptive δf scheme, adaptive fn, labeled (no,yes)

• (f0, fn) = (fM0, fM(t))

• fn = f0(t) is adaptive according to

∂

∂t

(
3

2
n0iT0i

)
= αE

〈∫
dΩ[δf − (fM(t)− fM0)]

〉

• the adaptive scheme is run in the background to update fn = fM(t), but
the control variate f0 = fM0 remains time-independent.

4. adaptive δf scheme, adaptive fn labeled (yes,yes)

• (f0, fn) = (fM(t), fM(t))
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(a) Heat diffusivity χH (b) Zonal flow shearing rate ωE×B

(c) Global SNR, with signal includ-
ing zonal component

(d) Global SNR, with signal exclud-
ing zonal component

Figure 4.9: Diagnostics under four different adaptive scenarios (see description in
text) for the radially averaged absolute (a) heat diffusivity χH and (b) zonal flow
shearing rate ωE×B, and the signal-to-noise (SNR) ratio with signal (c) including
and (d) excluding, the (m,n) = (0, 0) mode. Marker number set to Np = 256M, and
adaptive rate to αE = 1.92γmax where applicable. A moving time-averaging window
of half-width cst/Lx = 10 has been implemented.

Viewing the adaptive scheme as essentially a means to reduce noise, considering
the different scenarios described allows one to determine which strategy is the most
effective in this respect. Fig. 4.9 shows the effect of different adaptive scenarios on
the simulation results. The adaptation of f0 and/or fn for the different scenarios
are done at the same rate αE. It can be seen that the full adaptive scheme with
adaptive f0 and fn [scenario (yes,yes)], implying weight transfer from δf to f0 of
Eq. (3.61) and noise control only on the fluctuating part δf respectively, is necessary
for effective noise control, as indicated by a reasonably high SNR value and a zonal
flow shearing rate ωE×B value that does not increase indefinitely. For scenario
(yes,no) with only the adaptive f0, noise control is effective only at an early stage
when f is close to fM0. As the former deviates away from the latter, Sn acts as a
weak source, thus enlarging the δf component. The larger the portion of f that
is represented by markers, the more noise accumulates. The weak improvement of
scenario (no,yes), which is the stationary f0 scheme with a time-dependent reference
function fn = fM(t), indicates that the improvement from weight transfer from δf
to f0 far out-weights an adaptive Sn.
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(a) (no,no),
αE = 0.00γmax

(b) (no,yes),
αE = 1.92γmax

(c) (yes,no),
αE = 1.92γmax

(d) (yes,no),
αE = 0.12γmax

(e) (yes,yes),
αE = 1.92γmax

Figure 4.10: Local f.s.a. weight standard deviation σw through time under four
different adaptive scenarios (see description in text), illustrated with the cases of
(a) (no,no), (b) (no,yes) with αE = 1.92γmax, (c) (yes,no) with αE = 1.92γmax, (d)
(yes,no) with αE = 0.12γmax, and (e) (yes,yes) with αE = 1.92γmax. σw is defined by√
Σp∈iw2

p/Ni − (Σp∈iwp/Ni)2, with Ni = Np/Nx the average number of markers of

the ith radial bin, taken to be uniform for all bins. Marker number set to Np = 256M.
All figures share the same colour scale.

Noise can also be approached from the standard deviation of the f.s.a. weights
σw, as shown in Fig. 4.10. Based on this measure, the full adaptive scheme (yes,yes)
once again gives the best results, with low values of σw right after the burst at around
cst/Lx = 150. One can see that σw as already plateaued for the non-adaptive case
(no,no), whereas for the case (yes,no), the Sn acting as weak source continues to
relax the distribution towards that at initial time. This is proved to be the case
when see that a lower αE value gives a smaller yet increasing σw value. Finally, the
scenario (no,yes) with an adaptive noise control is able to continuously decrease σw
values, but these values remain high after the burst, which may affect the results at
late times.

A note on the inclusion of the f0(t)−f0(t = 0) term in Eq. (4.5) is in order. While
some cases studied in this chapter do not involve a time-dependent background
density, with reference to the full adaptive scheme [scenario (yes,yes)] described
above, the exclusion of this extra term leads to a lower heat diffusivity, and a 17%
increase in the zonal flow shearing rate at quasi-steady state, which in turn resulted
in a lower final ion temperature deviation. Nonetheless, similar improvement in
SNR and local f.s.a. weight standard deviation (see Fig. 4.10) have been observed.
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4.4.3 Noise control strength and adaptive rate variations

(a) Heat diffusivity χH (b) Zonal flow shearing rate ωE×B

(c) Global SNR, with signal excluding the
(m,n) = (0, 0) mode

(d) Sum of f.s.a. weight standard deviation

Figure 4.11: Diagnostics for various noise control strength γn considering both the
non-adaptive and adaptive cases. Marker number set to Np = 256M. The sum of
f.s.a. weight standard deviation is calculated by summing the standard deviations
of f.s.a. weights from each radial bin, and multiplying by the sum by Lx/Nx.

The purpose of the conservative noise control is to reduce the weight standard devi-
ation at the expense of introducing numerical diffusion, thus affecting the validity of
the simulation by adding artificial damping on the main instability drive and zonal
flows. From Fig. 4.11a and 4.11b, it can be seen that at a larger γn value, both
χH and ωE×B values are lower. Therefore, its amplitude γn should be adjusted just
high enough to maintain a good SNR value throughout the simulation, taken in this
work to be 10. Fig. 4.11c shows that γn = 0.03γmax for the adaptive case is just
enough, and it is this value of γn that is used in all other sections of the paper.
For the non-adaptive case, it is seen that a high γn value only postpones the even-
tual decrease in SNR, implying that noise control alone, despite a time-dependent
reference function fn, is insufficient to prevent simulations being drowned in noise.
Finally, the reduced weight standard deviation is shown in Fig. 4.11d. It is shown
that Sn alone is insufficient to control noise to acceptable levels, while the adaptive
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scheme is able to do so even in the presence of minimal noise control relaxation rate
γn.

(a) αE =
0.00γmax

(b) αE =
0.03γmax

(c) αE =
0.12γmax

(d) αE =
0.48γmax

(e) αE =
1.92γmax

Figure 4.12: Time evolution of f.s.a. ion temperature relative deviation from its time-
evolved adapted T0i(t), (⟨Ti⟩(x, t)−T0i(x, t))/T0i(t) under various adaptive rates αE.
Marker number set to Np = 256M.

Turning now to the choice of the adaptive rate αE, from Eq. (4.4), the greater
the αE value, the greater the rate of transfer of the second velocity moment of the
f.s.a. δf to the control variate, in this case, f0 = fM(t). Fig. 4.12 shows that the
maximum relative deviation of Ti from its time evolved adapted profile T0i(x, t) is
lower with higher values of αE. Also the decrease of the relative deviation after
the initial burst is faster with increasing αE. More specifically, Figs. 4.13a and
4.13b show that for αE = 0.12γmax or higher, the simulation under given parameters
is sufficient in terms of low zonal flow shearing rate ωE×B and high enough SNR
values respectively. Therefore, under the parameters studied in this paper, any αE
value satisfying αE > 0.12γmax and αENα∆t ≤ 2 gives results with the lowest noise
accumulation. Here, Nα is the adaptation period.

(a) Radially averaged absolute zonal shear-
ing rate ωE×B

(b) Global SNR with signal excluding the
(m,n) = (0, 0) mode

Figure 4.13: Time traces with varying adaptation rates αE. Marker number set to
Np = 256M.
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4.4.4 Adjusting the f.s.a. potential term

(a) Heat diffusivity χH : non-adaptive case (b) Heat diffusivity χH : adaptive case

(c) Zonal flow shearing rate ωE×B: non-
adaptive case

(d) Zonal flow shearing rate ωE×B: adaptive
case

Figure 4.14: Time traces under various tuning parameter λ (see Eq. (4.7)). The
adaptive rate is set to αE = 1.92γmax. A moving time-averaging window of half-
width cst/Lx = 10 has been implemented. Total number of markers is set to Np =
256M.

In sheared-slab geometry with adiabatic electrons on the magnetic surfaces, ITG
turbulence is strongly suppressed by zonal flows, resulting in a quasi-steady state
with relatively low heat fluxes. In a real tokamak, much stronger heat fluxes and
large relative fluctuation amplitudes are present in the plasma edge. In order to
emulate such a situation but staying in slab geometry, the f.s.a. potential term ⟨ϕ⟩
of the adiabatic electron response of Eq. (4.5) is tuned by defining a multiplicative
parameter λ:

en0

Te
(ϕ− λ ⟨ϕ⟩)−∇⊥ ·

(min0

eB2
∇⊥ϕ

)
=

∫
d3R dα dv∥ dµB

⋆
∥δ[r⃗ − (R⃗ + ρ⃗L(µ, α))]×

[f0(R⃗, v∥,µ, t)− f0(R⃗, v∥,µ, 0) + δf ]. (4.7)
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With λ = 0.00 [33, 79], the electrons respond adiabatically in all directions, i.e.
not only in the magnetic surface, but also radially. This results in much lower E×B
flows and thus higher turbulent heat fluxes.

Figure. 4.14 shows the effect of tuning λ on the heat diffusitivity χH and zonal
shearing rate ωE×B. One can see that fluxes are sustained longer and higher due
to a lower zonal flow shearing rate ωE×B from a greater attenuation of ⟨ϕ⟩. This
trend also exists for the adaptive cases, though ωE×B levels there are generally low
as compared to the non-adaptive cases, see Fig. 4.14d. From Fig. 4.14b for the
adaptive cases, the value of λ = 0.95 seems to be just sufficient to sustain the flux.
Therefore, looking at the case of λ = 0.95 specifically, Fig. 4.15 shows that the
result trend is similar to that of Fig. 4.4, albeit with lower levels of ωE×B. Under
this tuning, the non-adaptive cases (continuous lines) seem to evolve towards low
χH values at long times, whereas the adaptive cases (dashed lines) are maintained
at a higher χH value as compared to Fig. 4.4a. The adaptive cases seem to have
converged already with Np = 128M markers whereas the non-adaptive case is still
subject to collapse even with Np = 512M markers.

Fig. 4.16 shows that λ only affects the SNR values of the non-adaptive cases.
Taking the standard non-adaptive case of λ = 1.00 as reference, the effect of higher
attenuation of ⟨ϕ⟩ only delays the eventual collapse of SNR values for each case,
except for the case of complete ⟨ϕ⟩ suppression, in which high SNR value and sus-
tained flux (see Fig. 4.14a) are achieved. For a fixed value of λ = 0.95, besides the
delayed fall of SNR values for the non-adaptive cases, Fig. 4.15b reflects the SNR
value proportional to Np relation, as was already shown in Fig. 4.6b. This conver-
gence, instead of

√
Np, is a result of taking the noise as a quadratic measure (see

Eq. (3.27)).

(a) Zonal flow shearing rate ωE×B
(b) Global SNR, with signal excluding the
(m,n) = (0, 0) mode

Figure 4.15: Time traces for various marker numbers Np. The tuning parameter is
set to λ = 0.95, and the adaptive rate is set to αE = 1.92γmax where applicable. A
moving time-averaging window of half-width cst/Lx = 10 has been implemented.
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Figure 4.16: Global SNR time traces with signal excluding the (m,n) = (0, 0)
mode, under various tuning parameter λ (see Eq. (4.7)) considering the non-adaptive
and the adaptive cases. Marker number set to Np = 256M, and adaptive rate to
αE = 1.92γmax where applicable.

(a) λ = 1.00 (b) λ = 0.95

Figure 4.17: Time snapshot at cst/Lx = 2259 with tuning parameter λ of the ion
temperature Ti relative non-zonal deviation on each magnetic surface, expressed by
(δTi − ⟨δTi⟩)/⟨Ti⟩, where Ti = T0i + δTi, integrated over the toroidal z direction. sy
is the normalised poloidal y axis. Both quasi-steady state cases have adaptive rate
and marker number set to αE = 1.92γmax and Np = 256M, respectively.

We now consider simulations with λ = 0.95, which demonstrated high sustained
flux for the adaptive cases for the following analysis. Fig. 4.17 shows that the fixed-
time non-zonal Ti relative deviation across each magnetic surface increases towards
the low-end of the ⟨Ti⟩ profile at quasi-steady state. The case with λ = 0.95 has
relative deviation at least twice that of λ = 1.00, indicating the expected higher
levels of turbulence. Since the adaptive scheme implemented in this work adapts
its control variate T0i by its f.s.a. values as shown in Eq. (4.4), it is not expected
to further improve noise reduction for edge plasma simulations involving relative
non-zonal deviation much higher than 25%. However, a similar adaptive scheme
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could still be used for noise control, provided that f0 is now a function of all spatial
dimensions. This would allow for a transfer of non-zonal components of δf to f0,
though with lower Np statistics per spatial bin due to greater number of bins when
implementing Eq. (4.4).

Under the same simulation parameters, Fig. 4.18 further shows that the relative
fluctuation of Ti evaluated in an end-time window is derived mostly from its non-
zonal variations. There, the curves are calculated as follows. Let the j-th flux tube
on flux surface x occupy the space:

(y, z)j ∈
[
By(x)z

Bz
≤ y − j∆y < By(x)z

Bz
+∆y

0 ≤ z < Lz

]
.

Visually, these Ny flux tubes are the straight blue lines of Fig. 4.1 of y−width
∆y, spanning each x =constant plane. The j-th flux tube gives the value Ti(x, t; j).
It is assumed that the plasma reaches thermal equilibrium instantly along the flux
tube. Finally, let ⟨·⟩t be the averaging in time for t ∈ [t1, t2], and ⟨·⟩f.t. be the
flux-tube-average on the flux surface x, i.e.

⟨Ti(x, t; j)⟩f.t. =
1

Ny

Ny∑
j=1

Ti(x, t; j).

Then, referring to Fig. 4.18,

black :

√
⟨⟨Ti⟩2(x, t)⟩t − ⟨⟨Ti⟩(x, t)⟩2t

⟨⟨Ti⟩(x, t)⟩t

orange :

√
⟨⟨T 2

i (x, t; j)⟩f.t.⟩t − ⟨⟨Ti(x, t; j)⟩f.t.⟩2t
⟨⟨Ti(x, t; j)⟩f.t.⟩t

. (4.8)

For each fixed λ, the relative fluctuation when non-zonal variations are included
gives a value at least twice as high as that of the case when only the f.s.a. values
are considered. Consistent with Fig. 4.17, lower λ value gives higher fluctuation
levels. These results summarily show that non-zonal fluctuations are dominant at
quasi-steady state under current simulation parameters.

In conclusion, simulations using the adaptive scheme are shown to be better than
the non-adaptive ones under all scenarios considered. To further test the advantage
gained from the adaptive scheme under high fluctuation level scenarios would require
simulating instabilities in toroidal geometry, which is the subject of Chs. 5 and 6.
There, toroidal effects naturally results in higher fluxes and fluctuation levels, while
zonal flows are an important factor determining the turbulent flux levels.

4.5 Conclusion

The advantage gained using a simple adaptive control variate for the δf scheme has
been demonstrated in cases with high Ti gradients and simple physics in sheared-
slab geometry. The necessary implementation of the boundary conditions and a
stationary heat source has been done to further ensure simulations reach quasi-
steady state in reasonable integration time. The mechanism of the adaptive scheme
has been described in detail. Namely, the adaptation of Ti of the f.s.a. Maxwellian
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Figure 4.18: Relative fluctuation averaged over cst/Lx ∈ [1807, 2259] of ion temper-
ature Ti and its f.s.a. profile ⟨Ti⟩, as measured by its standard deviation over mean,
see Eq. (4.8), for the cases of λ = 1.00, 0.95 with adaptive rate αE = 1.92γmax and
marker number Np = 256M.

control variate f0 = fM via a relaxation equation, through which a fraction of the
ion kinetic energy density derived from the marker represented δf is periodically
transferred to f0.

For the cases considered, the adaptive scheme has shown to reduce the ion tem-
perature relative deviation with increasing adaptive rate. Maximum relative devia-
tion of 1% has been achieved from 100% of the non-adaptive case. Due to spurious
increase of the zonal flow shear with time, all non-adaptive cases show an eventual
collapse of the heat flux. Under the adaptive scheme, not only is quasi-steady state
achieved with non-collapsing heat fluxes, these fluxes have also been achieved using
marker numbers as low as 1/4 of that required with the non-adaptive one, allowing
for longer unquenched turbulence resulting in higher ion temperature deviation from
its initial state. The scheme is further shown to be effective in reducing noise accu-
mulation in the physically undamped zonal flow via the measure of ωE×B. Such noise
accumulation is shown to be the result of marker sampling. SNR values of adaptive
simulations remain high for long integration times. In contrast, the eventual drop
of SNR for the non-adaptive scheme is only postponed by increasing Np.

We have then investigated further to determine if conservative noise control alone
would suffice to produce a similar noise reduction advantage. Via a systematic
separation of adaptation and noise control, it is shown that the scheme with an
adaptive control variate f0 = fM(t), coupled with a noise control operator Sn which
relaxes f to the same f0, gives the best results. There, the former is proved to be
more important than the latter in noise control. Moreover, it is shown that further
increase in the strength of Sn not only unphysically damps zonal flows at early
times, but also is only able to delay the latter’s eventual indefinite rise due to noise
accumulation. The adaptation of f0 is therefore shown to be necessary, even with
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an adaptation rate as low as αE = 0.12γmax.
To mimick prolonged fluxes and high fluctuation levels not afforded by slab-ITG,

the ⟨ϕ⟩ term of the adiabatic electron response in the quasi-neutrality equation is
attenuated. Such a measure is done to better simulate edge-plasma conditions,
despite testing the adaptive scheme in sheared-slab geometry. This chapter has
shown that for slightly attenuated ⟨ϕ⟩, the adaptive scheme exhibited improved noise
control as before, for relative fluctuation in Ti as high as 20%. Such fluctuations
are shown to be non-zonal. Therefore, it hints to a more sophisticated f0, which
extends beyond a f.s.a. function that could prove to be useful for better noise control.
Despite that, the adaptive scheme still gives SNR values orders of magnitude higher
than that of the non-adaptive scheme, further increasing the credibility of simulated
results.
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Chapter 5

ITG turbulence with adiabatic
electrons

In this chapter, the adaptive background temperature scheme used in the previous
chapter to sheared-slab geometry is implemented in the ORB5 code in toroidal
geometry. Instead of strong profile gradients, strong fluxes will be imposed, which
results in large temperature profile deviation from its initial values, all done while
still retaining the adiabatic electron assumption. This chapter first introduces the
parameters and profiles in Sec. 5.1. Sec. 5.2 discusses the fixed heat source profile
used to introduce high fluxes in the simulations. An overview of heat transport over
long simulation times then discussed in Sec. 5.3. A discussion on the reduction of
weight variance brought by the adaptive scheme follows in Sec. 5.4. In order to
compare results of the standard and adaptive cases, time-evolved profile analysis
is separated into two time windows. These results are discussed in Sec. 5.5. In
Sec. 5.6, we then give a brief discussion on the limitations running simulations
under the settings of this chapter for longer times.
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5.1 Parameters and profiles
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Figure 5.1: Safety factor profile for the TCV shot #43516 used in this work.

For all simulations from this chapter and subsequent ones, the ideal MHD equilib-
rium is computed by the CHEASE code [59] based on the TCV shot #43516. It has
an aspect ratio of 3.64, an elongation of 1.44 and a triangularity of 0.20 at the last
closed flux surface. Its safety factor is shown in Fig. 5.1, the q = 1 flux-surface is
located at s = 0.538. The reference magnetic surface taken for normalisation is at
s0 = 1. For this chapter, we focus on turbulence driven by ITG modes. Therefore,
we consider a singly charged (Z = 1) kinetic ion species, and an adiabatic electron
species. ρ⋆(s0) = ρi(s0)/a = 1/245, where ρi(s) =

√
T0e(s)/mi is the ion sound

Larmor radius, and a the minor radius.

The profile for the background density and temperature for the ions and electrons
is described by the functional form of Eq. (5.1), designated by G.

G(ρV ) =


g0 + g2ρ

2
V for 0 ≤ ρV ≤ ρcore

Gped exp[−κT (ρV − ρped)] for ρcore < ρV ≤ ρped

G1 − µG(ρV − 1) for ρped < ρV ≤ 1

, (5.1)

where ρV is the radial coordinate ρV =
√
V (ψ)/V (ψedge), with V (ψ) the volume

enclosed by the flux surface label ψ. g0 and g2 are coefficients determined such that
G and dG/ dρV are continuous at ρV = ρcore, and Gped = G1 + µG(1 − ρped). Ions
and electrons share the same functional from Eq. (5.1) for profiles of density nsp and
temperature Tsp, sp = i, e respectively, whose parameters are shown in Tab. 5.1,
and profiles illustrated in Fig.5.2.
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Parameter Density Temperature
ρcore 0.4431 0.4431
ρped 0.8 0.8
κ 2.3 3.1
µ 5.0 12.0
G1 1.0 1.0

Table 5.1: Profile parameters of Eq. (5.1) for density and temperature profiles for
both background ions and electrons.
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Figure 5.2: Initial gyrocentre density and temperature profiles and its logarithmic
gradient for the ion and electrons used in Chs. 5 and 6.

The grid resolution for the radial s, poloidal θ⋆ and toroidal φ is taken to be
Ns × Nθ⋆ × Nφ = 256 × 512 × 256, where N represents the number of intervals.
Toroidal modes in the range of 0 ≤ n ≤ 64 will be simulated, with a Fourier filter
half-width of ∆m = 5, that is only poloidal modes m ∈ [nq(s)−∆m,nq(s) + ∆m]
will be resolved (see Sec. 3.1.4.1). The time resolution is Ωci∆t = 20, and the
maximum linear growth rate is found to be γmax/Ωci = 0.0085 (see Fig. 5.3). The
growth rates for the various n values are shown in Fig. 5.3.

Simulations are initially perturbed with a δf that represents a superposition of
modes in 48 ≤ m ≤ 64, 24 ≤ n ≤ 32, with markers populating the velocity space
up to κV = 5 (see Sec. 3.1.2). A Krook operator with strength γnΩci = 0.00085,
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which is around 10%γmax, for either temperature gradient drive and/or noise control
is always present. The specifications of the adaptive case of this chapter is shown
in Tab. 5.2.
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Figure 5.3: Maximum linear growth rate for each toroidal mode number n. The
maximum linear growth rate over all n is found to be γmax/Ωci = 0.00084 (γmaxa/cs =
0.2) for n = 28.

Parameter Value Reference
scheme simultaneous Sec. 3.2.4

control variate local Eq. (3.42)
adaptive rate, α 1.7× 10−4Ωci 20%γmax

time-averaging period, Nt 50 Eq. (3.59)
background profile grid resolution, Nψ 128 Eq. (3.55)
background profile B-spline order, Nspl 3 Eq. (3.55)

QNE r.h.s. calculation exact Sec. 3.2.10.1

Table 5.2: Parameters of the adaptive scheme used in this chapter. Adaptive rate
α is common for both gyrocentre density αn and energy (temperature) αE

The choice of using a local control variate and a ‘simultaneous’ scheme of adap-
tation (see Sec. 3.2.4) in this chapter is due to an unresolved numerical instability,
which occurs specifically when using adiabatic electrons and a canonical control
variate. This issue is briefly explored in App. C. As the background is now a lo-
cal Maxwellian function, we employ the standard δf scheme (see Sec. 3.1.3.4) and
neglecting the neoclassical term, i.e. df0

dt

∣∣
0
= 0 (see Sec. 2.4).
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5.2 Heat source radial profile
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Figure 5.4: Fixed heat source profile (see Eq. (3.82)) GH(ψ) (dotted line) fitted
to the effective flux-surface- and time- averaged heat source of the temperature-
gradient-driven run (black solid line) using the standard case with Np = 256M. The
orange line shows the source profile with twice the power, which is used for this
chapter. Buffer edge is taken to be sb = 0.745 (see Eq. (3.83)).

A specification of the radial ion heat source is required to run flux-driven simulations.
To that end, under the parameters of this chapter, we first run a ‘temperature-
gradient-driven’ simulation till it reaches quasi-steady state. This involves using the
Krook operator Eq. (3.81) as both noise control and heat source, accomplished by
not imposing the conservation of energy on each flux surface. The resulting end-
time radial distribution of the heat source is time averaged in an appropriate time
window to average out fluctuations. The aforementioned profile is shown in Fig. 5.4
as the black solid curve.

We fit a Gaussian curve to the single positive amplitude near the core peaked
around s = 0.4, illustrated with the dotted curve of Fig. 5.4. Indeed, the profiles of
Eq. (5.1) used in this work are chosen in such a way so that it results in a single
dominant heating source near the core. The Gaussian fit for the peak heat source is
done in such a way as to equate the power of the heat source in the positive region
(s ≲ 0.75). Furthermore, as the aim of this work is to verify the effectiveness of the
adaptive background scheme under large ion temperature profile deviation, we use
as heat source a profile with twice the power, which is shown as the orange curve in
Fig. 5.4. Towards the edge, we approximate the heat sink with a buffer of Eq. (3.83)
with edge sb = 0.745, as indicated by the vertical dashed line of Fig. 5.4. With such
an edge, we have found that the buffer amplitude of γb = 10%γmax is adequate to
suppress fluctuations almost completely at s = 1.

Finally, for flux-driven runs the Krook operator Eq. (3.80) is resumed to be
used only for noise control. A summary of the various parameters used for the
sources/sinks are shown in Tab. 5.3.
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Parameter Value
γn/γmax 0.100
γb/γmax 0.100
sb 0.745

Table 5.3: Parameters relating to sources of Eqs. (3.80) and (3.83) used in this
chapter.

For the simulations of this chapter, we split the analysis of the results in two
separate time windows. This is because adaptive cases allow for a much longer
simulation time. The first time window is cst/a ∈ [1225, 1430]. This time allows
us to compare results from both the standard and adaptive cases. The second time
window cst/a ∈ [4697, 4902] which is on average twice the simulation time of the
first, is to analyse results of the adaptive cases at late times.

5.3 Heat transport
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Figure 5.5: Radially averaged s ∈ [0.7, 0.9] ion heat diffusivity for various marker
numbers Np under the standard and adaptive schemes. Grey shaded areas represent
two time windows for profile analysis, considered in Sec. 5.5.
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Figure 5.6: Time dependence of absolute value of the radially averaged s ∈ [0.7, 0.9]
zonal flow shearing rate ωE×B. Grey shaded areas represent two time windows for
profile analysis, considered in Sec. 5.5.

Figure. 5.5 shows the radially averaged s ∈ [0.7, 0.9] ion heat diffusivity χi time
traces. This radial average window corresponds to the flat logarithmic gradient of
ion temperature (see Fig. 5.2d). We see that just after the initial burst at cst/a ≃
100, both the standard and adaptive cases converge to different χi values, with
the results of standard cases at 0.5χGB0 higher than that of the adaptive cases.
In cst/a ∈ [100, 1300], χi of all cases steadily increases, after which the results for
the standard cases diverges. The results of the adaptive cases however continue to
increase at the same rate.

The difference in χi values between the standard and adaptive scheme can be
explained by the difference in zonal flow shearing rate ωE×B. Fig. 5.6 shows the
radially averaged s ∈ [0.7, 0.9] absolute value of ωE×B. We see that for the time
cst/a ∈ [100, 1400], the results under the standard scheme gives consistently lower
| ⟨ωE×B⟩r |. The higher shearing rate under the adaptive scheme shears turbulent
eddies at a higher rate, thereby more effectively suppressing turbulence, which leads
to a lower heat transport indicated by a lower χi. Fig. 5.6 explains the divergence in
results for the standard cases. Compared with the case with Np = 128M markers,
the case with Np = 256M exhibits a sudden increase in ⟨|ωE×B|⟩r, thereby reducing
its heat diffusivity significantly. To investigate this difference between the cases with
Np = 128M and Np = 256M under the standard scheme further, Fig. 5.7 shows the
time evolution of the ωE×B profile for all cases discussed. Comparing Figs. 5.7a and
5.7b, we see that the increase of ⟨|ωE×B|⟩r for standard case with Np = 256M is
due to the radially outward migration of the ωE×B corrugation near the q = 1 flux
surface. Whereas for the standard case with Np = 128M, this migration is slower.
On the contrary, the results of Np = 128M and Np = 64M under the adaptive
scheme exhibit stationary ωE×B corrugation structure around q = 1 flux surface at
all times, shown in Figs. 5.7c and 5.7d respectively. For all cases of Fig. 5.7, the
negative ωE×B at the edge s = 0.9 is due to the buffer used.
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(a) Standard, Np = 256M (b) Standard, Np = 128M

(c) Adaptive, Np = 128M (d) Adaptive, Np = 64M

Figure 5.7: Time evolution up to cst/a = 2451 of the radial profile of the zonal
flow shearing rate, ωE×B(s, t), for various marker numbers Np under the standard
and adaptive schemes. Grey area indicates the first profile time-averaging window
cst/a ∈ [1225, 1430]. All plots share the same colour scale.
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5.4 Weight variance measure
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Figure 5.8: Time dependence of global Signal-to-Noise Ratio (SNR) values, for
various marker numbers Np under the standard and adaptive schemes. The signal
excludes the zonal component (m,n) = (0, 0). Horizontal dashed line indicates the
empirically set minimum value of 10 for quality simulations. Grey shaded areas
represent two time windows for profile analysis, considered in Sec. 5.5.

The difference between the results of the standard and adaptive schemes is attributed
to a statistical noise problem, diagnosed by the marker weight variance. Fig. 5.8
shows the time traces of the global Signal-to-Noise-Ratio (SNR) value for all cases
discussed. The SNR values shown here do not include the zonal component (m,n) =
(0, 0) in its signal (see Eq. (3.28)). The SNR values which includes this is consistently
higher by 20% for all cases. Considering first the standard cases (black and orange),
after the initial burst at cst/a ≃ 100, both standard cases have SNR values steadily
decrease. This is because, as the temperature profile increasingly deviates from its
initial values, the δf component gets increasingly large. Furthermore, the magnitude
of the SNR values scales with Np. The empirically chosen [9] minimum value of SNR
of 10 for quality simulations motivate of the first time window cst/a ∈ [1225, 1430].
Nonetheless, the divergence between results at Np = 128M and Np = 256M under
the standard scheme (see Figs. 5.7a and 5.7b) suggests that the results may already
have drown in noise by this simulation time.

We now turn to the adaptive case of Fig. 5.8. Once again, we see the Np scaling
of the respective SNR values. The main difference between standard and adaptive
cases is that the SNR values of the adaptive case maintain steady values, after the
initial burst at cst/a ≃ 100. The SNR values of the adaptive cases are maintained
at constant values because the weights are being continuously reduced by the back-
ground f0 with an adaptive temperature. The SNR diagnostic is only indicative,
and other PIC simulation quality diagnostics exist, to which we now discuss.
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(a) Standard, Np = 256M (b) Standard, Np = 128M

(c) Adaptive, Np = 128M (d) Adaptive, Np = 64M

Figure 5.9: Time evolution of the ion f.s.a. weight standard deviation profiles σw =√
⟨w2⟩ − ⟨w⟩2. All plots share the same colour scale.

Figure 5.9 shows the time evolution of the radial-bin-wise weight standard devia-

tion σw(s) =
√
⟨w2⟩ (s)− ⟨w⟩2 (s) for all cases discussed. Common to all cases is the

sudden increase in σw at cst/a ≃ 100 corresponding to the initial burst. Also, there
are small bursts in σw throughout simulation time. Considering first the standard
cases of Figs. 5.9a and 5.9b with marker numbers Np = 256M and Np = 128M, we
see that σw continuously increases with time, with maxima at s ≃ 0.6. Given a high
enough Np, σw values should converge to the same amplitude, which is not entirely
the case for Figs. 5.9a and 5.9b. Turning now to the adaptive case of Figs. 5.9c
and 5.9d with Np = 128M and Np = 64M, we see that after the initial burst, σw
values are kept low and quasi-constant. To determine how much improvement the
adaptive scheme brings us, Fig. 5.10 shows the s-cuts at s = 0.6 for Fig. 5.9 where
the σw peak of the standard cases are located. The σw values of the standard cases
are seen to increase almost linearly in time, at a much higher rate than the adaptive
cases. At time cst/a ≃ 2500, the σw values of the adaptive cases are at least twice
smaller than the standard cases. For the standard cases, we see that the σw values
are not entirely converged between Np = 256M (black) and Np = 128M (orange) at
late times. Furthermore, the σw values of the adaptive scheme have converged in
Np, and exhibit smaller bursts as compared to the standard cases.
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Figure 5.10: F.s.a. weight standard deviation profiles σw(s) =
√
⟨w2⟩ (s)− ⟨w⟩2 (s)

at s = 0.6, for various marker numbers under the standard and adaptive schemes.

5.5 Profile evolution

In this section, we discuss the time averaged f.s.a. profiles of the two time averaging
windows as indicated in Fig. 5.5.
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5.5.1 Time window #1
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Figure 5.11: Time averaged cst/a ∈ [1225, 1430] of f.s.a. ion gyrocentre profiles, for
various marker numbers Np under the standard and adaptive schemes. The dotted
liens indicate the initial profiles.

Figure. 5.11 shows the time and f.s.a. averaged ion gyrocentre profiles in the time
window cst/a ∈ [2246, 2451] for all cases discussed. These profiles are plotted by
binning the sum of p and w weights (see Eqs. (3.21) and (3.22)) into radial bins.
For the adaptive cases, the background profiles come so close to the total profiles
that they would superimpose at the scale of the plots (not shown). Fig. 5.11a shows
the ion temperature. We first note that the results under the respective schemes
seem to have converged in Np. The main difference is that under the standard
scheme (black and orange), we see a significant increase of ion temperature near
the magnetic axis. The time-averaged temperature profile of the standard cases are
shifted almost globally upwards, with smallest increase at the edge. The results
of the adaptive case (blue and green), on the other hand, exhibit a temperature
peak at s ≃ 0.35, with almost no evolution at the magnetic axis. These trends are
reflected in the logarithmic gradient of the ion temperatures shown in Fig. 5.11b.
Focusing first on the standard cases, we see that the logarithmic gradient remains
almost unchanged except for the flat region s ∈ [0.6, 0.9]. There, we see an increase
towards the edge. This increase is consistent with the higher ion heat diffusivity χi
values exhibited in Fig. 5.5 for the standard cases. The results under the adaptive
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scheme are very different, in that they exhibit, on top of an increased logarithmic
gradient, gradient corrugations around the q = 1 flux surface. Analysis on the
cause of such corrugation, which also occurs only under the adaptive scheme, has
not been done by the author. Lowest order Mode-Rational-Surfaces (MRSs) have
a role in creating mini-barriers with corrugated zonal flow shearing rate [1] (see
Fig. 5.12). However, it was shown in Ref. [20] that the non-adiabatic dynamics of
the passing electrons is essential in producing sharp corrugations near MRSs, and
here we do not include this dynamics. Another feature exhibited by the adaptive
cases is the negative peak at s ≃ 0.3, which corresponds to the rise in temperature
away from the magnetic axis, shown in Fig. 5.11a. Finally, under the adiabatic
electron assumption, one expects no particle transport as the perturbation field is
in phase with the perturbed density. Thus, unless polarisation density is large,
one expects no evolution of the gyrocentre density profile. Fig. 5.11c shows the
time-averaged ion gyrocentre density profile for all cases discussed. For all case, the
density profiles appears to have no evolution, expect for the region s ∈ [0.1, 0.25]. In
this region, the results for the standard cases deviate more from the initial values,
but improves with increasing marker number. The adaptive cases on the other hand
show even smaller deviation, with results converged in Np.

To further investigate the corrugation in the logarithmic gradient of the ion
temperature under the adaptive scheme (see Fig. 5.11b), Fig. 5.12 shows the time-
averaged cst/a ∈ [2246, 2451] zonal flow shearing rate profile ωE×B for all cases
discussed. Here, we can see that the adaptive cases (blue and green) do exhibit
strong shearing rate near the q = 1 flux surface, whereas it is absent under the
standard scheme because the ωE×B structure has drifted radially outwards as shown
in Fig. 5.12 at s ≃ 0.7 and s ≃ 0.65 for the standard cases with Np = 256M (black)
and Np = 128M (orange) respectively.
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Figure 5.12: Radial profile of the time-averaged cst/a ∈ [2246, 2451] zonal flow
shearing rate ωE×B, for various marker numbers under the standard and adaptive
schemes.

99



5.5. PROFILE EVOLUTION

5.5.2 Time window #2
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Figure 5.13: Time averaged cst/a ∈ [4697, 4902] of f.s.a. ion gyrocentre temperature
profile and its logarithmic gradient, for marker numbers Np = 128M and Np = 64M
under the adaptive scheme. Dashed lines show profiles at initial time.

Figure. 5.13 shows the time- and flux-surface- averaged ion temperature profiles
after twice the amount of simulation time past when the profiles of Fig. 5.11 was
averaged. Only adaptive cases are shown here, as the quality of standard cases have
deteriorated (simulation crashed) by cst/a ≃ 2500 (see Fig. 5.8). Once again results
of adaptive cases are converged in marker number Np. Considering first Figs. 5.11a
and 5.13a, we see that the temperature peak at s ≃ 0.35 has increased by 25%. The
slight increase around s ∈ [0, 0.1] is due to the corruption of phase-space volume
sampled, which gets worse with simulation time1. Considering now Fig. 5.13b with
reference to 5.11b, the only difference is that the increased peak at s ≃ 0.35 has led
to a more negative logarithmic gradient profile of the temperature. The corrugation
structure around the q = 1 flux surface remains unchanged with simulation time.

We now turn to the time-evolved ion gyrocentre density, as shown in Fig. 5.14a.
We note that the gyrocentre density values have approximately no deviation from
the previous time window (see Fig. 5.11c). On the other hand, one notices strong
corrugation in the logarithmic gradient profile of the density, as shown in Fig. 5.14b.
The location of maximum corrugation amplitudes occurs around the q = 1 flux sur-
face, and spreads radially inwards. Though not shown here, these corrugations grow
with simulation time up to the current time averaging window cst/a ∈ [4697, 4902].
Further work is necessary in order to analyse the cause of these corrugations, which
are probably unphysical. These high radial wavenumber kr variations in the density
profile might challenge the assumption on the use of the long-wavelength approxi-
mation for the ion polarisation density term in the QNE (see Eq. (2.34)). Work [20]
has indeed been done to implement an arbitrary wavelength solver due to corru-
gation structures around MRSs. This leads to the discussion on the limitations of
simulation setup of this chapter for long simulation time integration of the adaptive
cases.

1A detailed analysis of this phenomenon follows in Sec.6.3.7.2.
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Figure 5.14: Time averaged cst/a ∈ [4697, 4902] of f.s.a. ion gyrocentre density
profiles and its logarithmic gradient, for marker numbers Np = 128M and Np = 64M
under the adaptive scheme. Time-evolved background quantities contributed by f0
are not shown, as they coincide with the full measure contributed by f0 + δf .

5.6 Limitations of long time simulations

Figure 5.15: Time evolution up to cst/a = 4902 of the radial profile of the zonal
flow shearing rate, ωE×B(s, t), for marker numbers Np = 128M under the adaptive
scheme.

Figure 5.15 shows the time evolution of the radial profile of the zonal flow shearing
rate of the adaptive case with Np = 128M markers. This is an extended result
of Fig. 5.7c. Here, we see that while the main corrugation structure of ωE×B at
the q = 1 flux surface s = 0.538 remains, a perturbation resulting from the edge
buffer appears to drift radially inwards. Over long simulation times, this density
perturbation will interact with the corrugation structure, thereby destroying it. Un-
der strong fluxes in simulations of this chapter, a study on the length of the buffer
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region sb along with its strength γb on the effects of such radially inward drifting
perturbations has yet to be conducted.

Finally, we consider the issue of phase-space volume sampling. At the begin-
ning of every simulation, markers are uniformly distributed in configuration space
and in the half-disc in velocity space (v∥, v⊥) of radius κvvthi(s) with vthi(s) the
local ion sound velocity at initial time (see Eq. (3.11)). Each marker thus has a
phase-volume element with which it occupies (see Eq. (3.15)). As simulation time
passes, markers will be pushed in magnetic coordinates (s, θ⋆, φ) via the gyrokinetic
equations Eqs. (2.18)-(2.20), while phase-space volume evolves as an ‘incompressible
fluid’ (see Eq. (3.12)). Near the magnetic axis, in order to avoid the singularity at
s = 0 for the θ⋆ evolution (see Eq. (2.19)), a coordinate transformation is done in
ORB5, from magnetic coordinates to a pseudo-Cartesian (ξ, η), for markers within
the radial region s < spush from the magnetic axis. As markers being pushed in
(ξ, η) do not lead to accurate calculation of radial drifts ds/ dt, it turns out that
this leads to an accumulation of markers in the s < spush region. This is especially
true for high-energy markers, as the error committed in the RK4 scheme is larger.
Fig. 5.16 shows the ion marker count distribution difference from that at t = 0, over
the reduced (radius,energy) (s, v2)-phase space. The black dashed line indicates the
boundary of the initially loaded markers, capped by κ2vv

2
thi(s). We first note the

expected marker diffusion across this boundary, indicated by the blue regions just
under the dashed line and red just above. We also see an accumulation of markers
at low energy around s ∈ [0.3, 0.7]. Further diagnostic done for phase-space vol-
ume show that these migrations seem to still preserve the incompressibility of the
phase-space. Finally, we notice the high-energy ion marker accumulation just within
the radial region in which markers are pushed in (ξ, η). This accumulation will be
shown to corrupt phase-space volume in this region. It also explains to a certain
extent the slight elevation of the ion temperature profiles in Figs. 5.11a and 5.13a.
A more thorough in analysis of the cause and potential solutions for this problem
will be addressed in Sec. 6.3.5, where we will instead observe high-energy electron
accumulation, and not for the ions.
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Figure 5.16: Ion marker count fractional difference ∆Nv2th(s)/Vs(s)Nmax(t = 0) at
time cst/a = 4902, with Np = 128M under the adaptive scheme. Nmax(t = 0)
indicates the global maximum marker number per bin at initial time t = 0. spush is
the flux surface which pseudo-cartesian coordinates are used.
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Chapter 6

Mixed TEM/ITG regime in TCV

The use of the adaptive scheme is further extended to include density and tempera-
ture background profile adaptation of ions and electrons separately. The assumption
on fully adiabatic electrons of Ch. 5 is now relaxed, and the upgraded hybrid re-
sponse of the electrons is adopted. This allows for both density and temperature
evolution. The ultimate goal of this part of the thesis is to run flux-driven mixed
ITG-TEM regime turbulence simulations. To that end, this chapter begins by defin-
ing the initial background profiles in Sec. 6.1. Sec. 6.2 describes the first phase of
the stated goal: derive a source profile for the flux-driven runs, by first conduct-
ing temperature-gradient-driven simulations. The adaptive scheme of this section
is thus limited to density adaptation only. This section also introduces the main
diagnostics that are used throughout the chapter. Discussions on flux-driven runs
are contained in Sec. 6.3. It begins by describing the heat source profile derived
from the previous section, and gives an overview of the transport processes over the
whole simulated time. The results of this second phase are split into two time win-
dows. Sec. 6.3.4 discusses the first time window in which results of the standard and
adaptive schemes are compared. Sec. 6.3.5 investigates the problem of the observed
accumulation of high-energy electrons at the magnetic axis, and Sec. 6.3.6 describes
the various implementations of the r.h.s. correction of the QNE. This chapter fin-
ishes with a discussion of the results under the adaptive scheme in the second time
window in Sec. 6.3.7, with some concluding remarks in Sec. 6.4.

6.1 Parameters and profile

All simulations of this chapter use the the ideal MHD equilibrium of Ch. 5, i.e. the
TCV shot #43516. The gyrokinetic equilibrium density and temperature profiles
for both ions and electrons are still that of Eq. (5.1) with the parameters shown in
Tab. 6.1, and illustrated in Fig. 6.1.

The grid resolution and the modes to be resolved within the Fourier filter are
identical to Ch. 5. The electron mass is taken to be me/mi = 1/200, contributing
with a hybrid response to the QNE. The time resolution is set to Ωci∆t = 1.0
(cs∆t/a = 4.1×10−3), and the maximum linear growth rate is taken to be γmax/Ωci =
0.0038 (γmaxa/cs = 0.931). The growth rates for the various toroidal modes n are
shown in Fig. 6.2.
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Ions Electrons
Parameter Density Temperature Density Temperature

ρcore 0.4016 0.4016 0.4016 0.4016
ρped 0.8 0.8 0.8 0.8
κ 2.3 2.3 2.3 2.5
µ 5.0 6.0 5.0 10.0
G1 1.0 1.0 1.0 1.0

Table 6.1: Profile Eq. (5.1) parameters for initial density and temperature for both
background ions and electrons.
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Figure 6.2: Maximum linear growth rate for each toroidal mode number. Maximum
linear growth rate is found to be γmax/Ωci = 0.0038 (γmaxa/cs = 0.931).

Simulations are initially perturbed with a δf(t = 0) set as white noise1, with
markers populating the velocity space up to κV = 5 (see Sec. 3.1.2). The Krook
operator Eq. (3.80) with strength γKΩci = 4.2 × 10−4 (γKa/cs0 = 0.103), which
is around 11%γmax, for either temperature gradient drive and/or noise control, is
always present throughout the whole simulation volume.

For this chapter, unless stated otherwise, all time traces have a moving time
averaging window of cs∆t/a = 4.085. Radial averages of profiles are taken to be
for s ∈ [0.7, 0.9], which is within the constant logarithmic gradient regions in the
initial profiles, see Fig. 6.1. Marker numbers Np are displayed in millions (M).
Comparisons will be made between the standard case with Np = 256M, 128M and
the adaptive case with Np = 128M, 64M. All adaptive cases have parameters as
shown in Tab. 6.2. Adaptive scheme using the simultaneous scheme (see Sec. 3.2.4)
are indistinguishable with the results shown here under the current plot resolution.
Corrections to the r.h.s. of the QNE Eq. (2.36) resulting from/related to the evo-
lution of the background distribution is done by exact integration of the change in
each species’ background gyrodensity (see Sec. 3.2.10.1), except in Sec. 6.3.6, where

1White noise initialisation for δf(t = 0) is done by setting the marker weights w = 5×10−4(2U−
1), where U is a unit uniform random number
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Figure 6.1: Initial density and temperature profiles of both ions and electrons as
well as corresponding logarithmic gradients.

other calculation methods are compared. Adapted electron profiles include contri-
butions from both passing and trapped electrons. In all simulations, markers are
loaded only once at initial time t = 0.

Parameter Value Reference
scheme interleaved Sec. 3.2.3

control variate canonical Eq. (3.53)
adaptive rate, α 3.8× 10−4Ωci 10%γmax

time-averaging period, Nt 100 Eq. (3.59)
background profile grid resolution, Nψ 64 Eq. (3.55)

background profile B-spline order 3 Eq. (3.55)
QNE r.h.s. calculation exact (unless otherwise stated) Sec. 3.2.10.1

Table 6.2: Parameters of the adaptive scheme for both ions and electrons used in
this chapter. Adaptive rate α is common for both gyrocentre density αn and energy
(temperature) αE. Temperature adaptation is only done for Sec. 6.3.

6.2 Temperature-gradient-driven simulation

In order to prevent f.s.a. temperature profile relaxation, we use the Krook operator
Eq.( 3.80) as a δf dependent heating operator for each species. This is accomplished
by not conserving the energy moment on each flux surface, thus damping δf so that
f(t) is restored towards the target (initial) f.s.a. temperature profile. The heating
strength γK must be low enough to avoid unphysical damping of turbulence, and high
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enough to ensure noise control. The consequence of choosing low values of γK is some
level of relaxation of profiles w.r.t. reference ones. Since simulations presented in this
chapter involves hybrid electrons, density transport is expected as the potential and
density perturbations are no longer in phase. The Krook heating operator allows for
an unrestricted density evolution by conserving the f.s.a. density. For the adaptive
cases, background temperatures are not adapted as only small deviation is expected
in these temperature gradient driven simulations. Quasi-steady state is found to
have reached at cst/a ≈ 300.

6.2.1 Heat and particle transport

The simulations of this chapter use the hybrid electron model. That is, all passing
and trapped electrons are evolved according to the drift-kinetic trajectories. How-
ever, only the associated kinetic contribution to the r.h.s. of the QNE of the trapped
electrons is considered while the passing contribution is set to be adiabatic, except
for zonal contribution. Furthermore note that electrons can be trapped/detrapped,
not only as a result of collisions, but also due to E×B parallel non-linearity. Given
that one enforces the contribution to the QNE from passing electrons to be adiabatic,
one expects their distribution (evolved kinetically) to confirm this, else the model
is questionable. Non-zero contributions to fluxes from passing electrons provides a
measure of un-adiabaticity. Fig. 6.3 shows heat transport measured according to
the corresponding heat diffusivity (Eq. (3.91)) for ions χi, trapped electrons χe,T ,
as well as total electrons (passing + trapped) χe,P + χe,T . Specifically, the trapped
electron heat diffusivity χe,T is given by

χe,T =

〈
q⃗
(trapped)
H,e · ∇ψ

〉
ne dTe/ dψ ⟨|∇ψ|2⟩

,

where q⃗
(trapped)
H,e is the trapped electron heat flux. ne and Te are the density and

temperature profiles of all (passing and trapped) electrons respectively.

Figure. 6.3a illustrates the radially-averaged ion heat diffusivity χi. In quasi-
steady state, χi is maintained constant with intermittent turbulent bursts. As shown
in Fig. 6.3b, the heat diffusivity of the electrons χe behaves similarly. Although at
early times cst/a ≲ 100, one has χe > χi, reflecting that turbulence is at first domi-
nantly driven by TEM. At later times, χi ∼ χe, consistent with a mixed ITG/TEM
turbulence drive. Note that trapped electrons (dashed curves) contribute to only a
fraction of the total electron heat flux. This is an indication that the passing elec-
tron contribution is non-zero, and their response is therefore not truly adiabatic, as
assumed in the hybrid electron model. This discrepancy is probably enhanced due to
the large electron mass used in this work me/mi = 1/200. Fig. 6.3c shows the heat
diffusivity ratio χi/χe for χe including both the passing + trapped contributions
of electrons (solid curves) and trapped only (dotted curves) respectively. One can
estimate the contribution of passing electrons to be about 40% of the total heat flux
of this species. Fig. 6.3c also confirms that simulation has turbulence driven at early
times by trapped-electron-modes (TEM) (χi/χe < 1.0), but driven in a 50%− 50%
ITG-TEM mixed regime at quasi-steady state (χi/χe ≈ 1.0).
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Figure 6.3: Radially averaged s ∈ [0.7, 0.9] heat diffusivities χ and heat diffusivity
ratio χi/χe, for various marker numbers Np under the standard and the adaptive
schemes. Subscripts P and T for the electron heat diffusivity χe represent passing
and trapped contributions respectively. The grey time window is used to plot time-
averaged profiles of Figs. 6.9 and 6.10.
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Figure 6.4: Time traces of radially averaged s ∈ [0.7, 0.9] ion gyrocentre flux as well
as ion-electron gyrocentre flux difference Γi−Γe, for various marker numbers Np un-
der both the standard and the adaptive schemes. ’trapped’ and ‘passing+trapped’
curves use χe contributed by trapped only and passing and trapped electrons, re-
spectively.

The presence of drift-kinetic electrons allows for particle transport as the den-
sity and potential fluctuations are not necessarily in-phase. Fig. 6.4a shows the
ion gyrocentre flux Γi for all cases considered. Once again, the results under the
standard and adaptive schemes are similar. As expected, Γi reduces to negligible
values (i.e. ∼ 5% of initial peak flux) as the system reaches quasi-steady state.
As quasi-neutrality is imposed, the ion and electron particle fluxes is expected to
be ambipolar, i.e. exactly equal. The f.s.a. gyrocentre fluxes will however only be
equal when averaged over a time window. Indeed, the f.s.a. particle and gyrocen-
tre fluxes differ by the polarisation drift contribution which cancels averaged over
time[11, 20]. Fig. 6.4b shows the difference between these fluxes Γi − Γe. We see
that particle fluxes of ions and trapped electrons are roughly equal throughout time.
Consistent with QNE including zonal (n = 0) contribution of all electrons (pass-
ing+trapped), one expects that ambipolarity is ensured by electron flux including
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both trapped + passing contributions as well. Nonetheless according to Fig. 6.4b,
the difference between the gyrocentre fluxes Γi−Γe seem to converged to a value of
Γi − Γe = 1n̄χGB0/a.
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Figure 6.5: Time-averaged volume integrated heat source
∫ s
0
ds′
〈∫

d3v mv2

2
S
〉
and

heat flux through flux surface
〈
q⃗H · ∇ψ

|∇ψ|

〉
, for various marker numbers Np under the

standard and the adaptive schemes. The electron heat flux includes both passing and
trapped contributions. The time averaging window is taken to be cst/a ∈ [273, 286].

Finally, at quasi-steady state the volume integrated and time-averaged heat
sources should be balanced by the time-averaged heat flux passing through the mag-
netic surface which encloses the considered volume. Fig. 6.5 show such balance for
both the ions and electrons, separately and combined, for the time window indicated
by the grey shaded region of Fig. 6.3. The volume integrated heat source (dotted
curves) is estimated by binning weight variations per unit time resulting from the
heating operator (see Eq. (3.81)) on a ψ grid. As we can see, these time-averaged
quantities are approximately equal in the species-separated cases. The adaptive
scheme seems to lead to a larger and radially wider heat source as compared to
the standard approach. The Krook operator acts differently for both standard and
adaptive cases as the correction term ScK , which conserves the f.s.a. density, par-
allel velocity and zonal flow, is calculated based on the binning of marker weights,
which are different between both schemes. That is, weight amplitudes along with
their variance are usually smaller under the adaptive scheme as compared to that
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under the standard scheme. Therefore, though f.s.a. kinetic energy is conserved up
to machine precision in each radial bin, the variance in these bin will be larger under
the standard scheme. This will be confirmed by the analysis of the Signal-to-Noise
Ratio (see Sec. 6.2.2).

6.2.2 Signal-to-noise and weight variance
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Figure 6.6: Time dependence of global Signal-to-Noise ratio (SNR) values, for vari-
ous marker numbers Np under the standard and the adaptive schemes. The signal
includes the zonal component (m,n) = (0, 0).

We now turn to the diagnostics relating to weight variance. Fig. 6.6 shows the
global Signal-to-Noise Ratio (SNR) (see Eq. (3.27)) value time trace for all four cases
discussed in this chapter. One observes firstly that for a given scheme (standard
or adaptive), the SNR values scale roughly as Np after the initial burst at around

cst/a = 10, as this diagnostic uses the square of the spline coefficient amplitudes b̂imn
of the r.h.s. of the QNE (see Sec. 3.1.4.1). That is, b̂imn scales as N0

p and 1/
√
Np in

the signal F1 and noise F2, respectively (see Fig. 3.1). Focusing then on the standard
cases, we see that the SNR values continue to drop as simulation time passes. As the
noise is proportional to the weights squared, Eq. (3.26), as the system approaches
quasi-stead state characterised by absence of secular profile evolution, the rate of
drop is expected to reduce. Towards the end of the simulations for the standard
cases, the simulation is deemed to be drowned in noise, and a restart (resampling of
markers) would be required. For the adaptive cases, SNR values are maintained at a
nearly constant level over long times as long as our computing resources allowed us to
follow only a small drop after the initial burst. Comparing the standard and adaptive
cases, we see that after around cst/a = 140, adaptive cases with half the number
of markers compared to the standard cases already present larger SNR values. At
the end of simulations cst/a ≈ 280, the adaptive case with Np = 64M has an SNR
value as high as the Np = 256M non-adaptive case. For this particular temperature-
gradient-driven study, the considered Np values have been chosen such that all cases
maintain acceptable SNR values over at least the length of the simulation. This is
done to allow for comparison between results from the standard and adaptive cases.
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SNR values of the standard cases will usually continue to drop, while those of the
adaptive cases are maintained approximately at a constant value.

(a) Standard scheme, Np = 256M (b) Standard scheme, Np = 128M

(c) Adaptive scheme, Np = 128M (d) Adaptive scheme, Np = 64M

Figure 6.7: Time evolution of ion f.s.a weight standard deviation profiles√
⟨w2⟩ − ⟨w⟩2. All plots share the same colour scale. Corresponding results for

electrons give similar trends.

Taking a closer look at how the local f.s.a. weight standard deviation σw (see
Eq. (3.29) changes, Fig. 6.7 shows the time evolution of the ion σw(sbin) for the
consider standard and adaptive cases. We first note that for the standard cases the
ion σw is greatest around s = [0.3, 0.5]. Comparing Figs. 6.7a and 6.7b, for cases
with marker numbers Np = 256M and Np = 128M respectively, we can deduce that
σw is converged with Np. Comparing with Fig. 6.9. This radially local increase of
σw can be explained by local density profile deviations (see Fig. 6.9), which leads to
generally large local weights {w}. On the other hand, the adaptive cases Figs. 6.7c
and 6.7d show reduced σw. The location of maxima for these cases are also located
at s ∈ [0.6, 0.7]. σw of the adaptive cases are gradually reduced with time as the
control variate, i.e. the background f.s.a ion density profile adapts.
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Figure 6.8: s-cuts of ion f.s.a. weight standard deviation profiles σw =
√
⟨w2⟩ − ⟨w⟩2.

Electrons give similar trends.

To compare the amount of reduction in σw as a result of an adaptive control
variate, Fig. 6.8 shows radial s-cuts at locations s = 0.38, 0.65, of the results of
Fig. 6.7. Focusing first on the s = 0.38 cut corresponding to the peak σw of the
standard cases, we see that the adaptive scheme (blue and green) reduces this value
by about 3-fold. In fact, the result from the adaptive case seem to further decrease
with time. The s = 0.65 cut corresponds to the location of maximum for the
adaptive cases. We see that, though σw is small, with reference to the standard
cases, the adaptive control variate nonetheless further reduces this value. Though
not shown here, the σw results for the electrons, corresponding to Figs. 6.7 and 6.8,
give similar trends.
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6.2.3 Profile evolution
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Figure 6.9: End-time time-averaged cst/a = [273, 286] gyrocentre density profiles,
for various marker numbers Np under the standard and adaptive schemes. ‘back-
ground’ and ‘background + deviation’ represent the profile contributed by f0 and
f0+δf , respectively. (c) shows gyrocentre density difference contributed by f0+δf .

Looking first at the final radial electron density profile in Fig. 6.9b, we can see that
the adaptive cases allowed for a larger density deviation compared to all standard
cases. Also, the background densities of the adaptive cases represented as dashed
lines actually coincide with the end-time total (background plus deviation) densities,
as they are being adapted at a sufficiently high rate.

A similar analysis can be done for the ion gyrocentre density of Fig. 6.9a. Com-
paring with Fig. 6.9b, the ion gyrodensity density evolution does not have to be
exactly equal to that of the electrons as the ion polarisation density and FLR con-
tributions are not included, which actually represent a significant fraction of the
total density, see Fig. 6.9c. This applies especially around s = 0.1. Gyrocentre
profiles of Figs. 6.9a and 6.9b are the fully relaxed profiles corresponding to the zero
particle flux condition (see Fig. 6.4b). Nonetheless, we see better equality between
the gyrocentre densities of ions and electrons under the adaptive scheme. It is in-
teresting to observe that near the magnetic axis, the background densities of the
standard cases which a priori do not evolve do not coincide with the initial density
when constructed using p-weights, i.e. f0(Z⃗p)Ωp. Under this construction, lower Np
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results in a larger discrepancy. This is because the profiles shown in Fig. 6.9, and all
subsequent radial profiles are represented, only as diagnostics, by marker sampling
on radial bins and not analytical functions. The background density deviation for
the standard cases could be explained (see Sec. 6.2.5) by phase-space volume not
being conserved for low energy markers near the magnetic axis. This problem is
more pronounced for the ions than the electrons. As will be shown, this problem is
not present for simulations under the adaptive scheme.
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Figure 6.10: Time-averaged cst/a ∈ [273, 286] logarithmic gradient profiles of gyro-
centre temperature, for various marker numbers Np under the standard and adap-
tive schemes. ‘background’ and ‘background + deviation’ represent the profile con-
tributed by f0 and f0 + δf , respectively.

Figure 6.10 shows the end-time logarithmic gradients profiles of gyrocentre tem-
perature for both ions and electrons. As these simulations are temperature-gradient-
driven, only a weak relaxation is expected. It is interesting to note the corrugation
of the gradients around s = 0.55 for both ions and electrons, though more se-
vere for the latter. This region is close to the q = 1 rational flux surface (see
Fig. 5.1). For both species, the corrugation is only captured by the δf component
even with the adaptive scheme, as the background temperature is not adapted in
these temperature-gradient simulations, only the density profile is adapted. The de-
viation in the ion gradient near the magnetic axis s ∈ [0, 0.3] in the standard cases
is once again due to low local marker sampling statistics.
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6.2.4 Zonal flow shearing rate
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Figure 6.11: E × B zonal flow shearing rate ωE×B, for various marker numbers Np

under the standard and the adaptive schemes. ‘correction’ refers to the r.h.s. of
the QNE. The time-averaging window for (a) is cst/a ∈ [274, 286] and the radial
averaging window for (b) is s ∈ [0.1, 0.9].

Figure 6.11a shows the zonal flow shearing rate ωE×B profile, time averaged over the
interval cst/a ∈ [274, 286] from both the standard and adaptive schemes. The results
from the adaptive scheme with QNE r.h.s. correction coincide with results obtained
using the standard approach around the q(s = 0.538) = 1.0 region, characterised
by a well defined corrugation. For the adaptive case without the correction (dashed
blue curve), compared to the other simulations we see that it does not include the
corrugation at q = 1.0 and has globally lower ωE×B amplitudes as can be seen by
the time traces of Fig. 6.11b. Even in the expected quasi-steady state, this case with
no correction presents decreasing radially averaged shearing rate ⟨|ωE×B|⟩r seem to
continue to have even smaller ωE×B.
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(a) Standard Np = 256M (b) Standard Np = 128M

(c) Adaptive Np = 128M (d) Adaptive Np = 64M

(e) Adaptive Np = 128M without QNE
r.h.s. correction

Figure 6.12: Time evolution of zonal flow shearing rate profile ωE×B(s, t), for various
marker numbers Np under the standard and the adaptive schemes. All plots share
the same colour scale.

To further illustrate the differences between all cases, Fig. 6.12 shows the time
evolution of the ωE×B radial profile. The first point to note is that negative (blue)
and positive (red) ωE×B corresponds to an outward and inward direction of avalanches
respectively, in agreement with Ref. [61]. As we can see, cases under the adaptive
scheme with the r.h.s. correction exhibit outward travelling avalanches that extend
more to the right of s = 0.55 as compared to the standard cases. These adap-
tive cases also show prolonged intermittent inward travelling avalanches around
s ∈ [0.1, 0.3]. Nonetheless, for all cases discussed, except for the adaptive case with-
out correction, the magnitude of the local ωE×B remains similar in the final phase
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of the simulation, as already shown in Fig. 6.11a.

Henceforth, all adaptive scheme results presented in this thesis will involve the
r.h.s. correction term. Thus far, the calculation of this term is based on the exact
method of Sec. 3.2.10.1. No noticeable difference was found between the various
methods (see Sec. 3.2.10.1,3.2.10.2 and 3.2.10.3), as will be shown in Sec. 6.3.6.

6.2.5 Phase-space volume diagnostic
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Figure 6.13: Phase-space volume diagnostic applied to Cartesian bins in (s, v2)
space for the standard case with Np = 128M at cstend/a = 286. Shown is the ratio
Ω(tend)/Ω

(a), of which values near 1 reflect good sampling, while ratios deviating
significantly from 1 reflect poor/deficient sampling. The red dashed line on the
contour plots indicate the energy upper-bound during initial marker loading, given
by mκ2v2th(s). As Ω

(a) appears in the denominator, it is taken without the v2-cut-off
to avoid singularities (see Eq. (3.17)). The dashed lines in (c) and (d) are taken at
t = 0.

At the beginning of each simulation, markers representing gyrocentres are populated
in phase-space according to Eq. (3.17). This means that in velocity space, markers
are initially distributed uniformly in the two-dimensional semi-circular domain of
radius κvvth in the (v∥, v⊥)-plane: v

2
∥ + v2⊥ ≤ κ2vv

2
th with v⊥ ≥ 0. In configuration

space, markers are initially distributed uniformly (see Sec. 3.1.2). As the simulation
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evolves over time, markers move in phase space governed by the gyrokinetic equa-
tions of motion Eqs. (2.18)-(2.20), and the overall marker distribution should behave
like an incompressible fluid (Eq. (3.12)). Due to RK4 time-integration inaccuracies,
markers will deviate from their characteristic trajectories, and phase space may not
be well sampled with simulation time. This is particularly true near the magnetic
axis r = 0 where, according to the current loading, there are very few markers per
s-bin. We now employ the phase-space volume diagnostic described in Sec. 3.1.3.1.
We divide Ω by its initial value Ω(a)(t = 0) to even out an otherwise large Ω variation
for better illustration, and it also gives a better gauge of fractional change.

Figure. 6.13 shows the phase-space volume diagnostic, at time cst/a = 286, for
the ions and electrons under the standard scheme. To aid analysis, various radial
s-cuts are also shown. Focusing first on the ions shown in Figs. 6.13a and 6.13c, we
notice the expected phase-space diffusion near the step-like upper boundary of the
initial marker loading in velocity space, represented by the dashed red line in the
contour plot. This diffusion is particularly high around s = 0.6. As the current case
study does not exhibit large temperature profile variations, this should not result in
under-sampling for high energy markers. Next, we observe a strange lack of sampling
of the ion phase-space at very low energies around s = 0.1. This is the result of either
markers migrating away from said region and not being replaced by new ones, or
the incompressibility of phase-space Eq. (3.12) being violated. We now turn to the
electron phase-space diagnostic shown in Figs. 6.13b and 6.13d. Once again, we note
the diffusion at the high velocity cut-off. The ‘kink’ in the radial diffusion pattern
at s ∼ 0.5 coincides with the corrugation in the electron temperature logarithmic
gradient (see Fig. 6.10b). We also note an over-sampling at high energies near the
magnetic axis (below s = 0.1). However, no under-sampling at low energies near
magnetic axis is seen as for the ions. However, there is a dent in the distribution at
high energies at s = 0.1. This is related to how ORB5 uses different coordinates near
axis for particle orbit time-integration, which will be further explained in Sec. 6.3.5.

To further analyse the respective sampling problems of ions and electrons near
axis under the standard scheme, we look into the actual marker distribution by
diagnosing the actual marker count in different phase-space bins, shown in Fig. 6.14.
The marker count is normalised by Vs(s)/v

2
th(s) to display a uniform distribution

at loading, i.e. such that N(t = 0)v2th/Vs is a constant, the global bin maximum of
which is Nmax(t = 0) (see Eq. (3.13)). Here, N is the number of markers in each
bin. The common feature of both species is that we do see the expected marker
diffusion across the high velocity loading boundary. We also see an accumulation
of markers at low energies in the region s ∈ [0.1, 0.8], with the accumulation of
ion markers stronger than that of electrons. This has already been observed in
Ref. [8]. Focusing now on the ions represented by Fig. 6.14a, we do no see a lack
of markers at the under-sampling region near axis of Fig. 6.13a. For the case of the
electrons, we see an accumulation of markers at high energies around s < 0.1. This
accumulation of markers is however unphysical as associated phase-space volume is
too large according to Fig. 6.13b. As mentioned, this will be discussed in Sec. 6.3.5.
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(b) Electron marker difference ∆N̄v2th/Vs
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Figure 6.14: Normalised marker count N̄ = N/Nmax(t = 0) for the standard case
with Np = 128M at time cst/a = 286. Here, Nmax(t = 0) is the global maximum
marker count per (s, v2)-bin at initial time t = 0. (a) and (b) show marker count
differences ∆N̄ = N̄(tend)− N̄(t = 0). Subplots (c) and (d) show different s-cuts at
time t = 0 (dashed lines) and at t (full lines).

Having discussed the phase-space diagnostic and marker distribution results for
the standard case with Np = 128M, we now consider the result for the adaptive case
with Np = 128M, shown in Figs. 6.15 and 6.16. We once again observe the diffusion
of phase-space volume and markers across the high velocity loading threshold for
both ions and electrons. Looking in particular at Figs. 6.15d and 6.16d, the problem
of electron marker accumulation at high energies towards the left of s = 0.1 with
unphysical increase of associated phase-space volume is also present for the adaptive
case. Looking at Fig. 6.15a, the under-sampling problem for ions at lower energies
near the magnetic axis seen in the standard case is not however present here. The
main difference is revealed by comparing N s-cuts of Figs. 6.14c and 6.16c for the
standard and adaptive cases, respectively. Focusing in particular on the s = 0.02
(black) curves, we see that there is an accumulation of markers at lower energies for
the adaptive case, which is not observed for the standard case. This accumulation
also spreads over a wider radial region, e.g. compare Figs. 6.14a, 6.14b against 6.16a,
6.16b. This higher accumulation of the adaptive case clearly compensates for the
under-sampling problem of ion observed in Fig. 6.13a.
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Figure 6.15: Phase-space volume diagnostic applied to Cartesian bins in (s, v2)
space for the adaptive case with Np = 128M at cstend/a = 286. Shown is the ratio
Ω(tend)/Ω

(a), of which values near 1 reflect good sampling, while ratios deviating
significantly from 1 reflect poor/deficient sampling. The red dashed line on the
contour plots indicate the energy upper-bound during initial marker loading, given
by mκ2v2th(s). As Ω

(a) appears in the denominator, it is taken without the v2-cut-off
to avoid singularities (see Eq. (3.17)). The dashed lines in (c) and (d) are taken at
t = 0.

122



6.3. FLUX-DRIVEN SIMULATIONS

0.2 0.4 0.6 0.8

50

100

150

200

(a) Ion marker difference ∆N̄v2th/Vs

0.2 0.4 0.6 0.8

1

2

3

4

5

6

7
104

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Electron marker difference ∆N̄v2th/Vs

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

(c) Ion marker N̄v2th/Vs s-cuts

0 2 4 6 8

104

0

0.5

1

1.5

2

2.5

(d) Electron marker N̄v2th/Vs s-cuts

Figure 6.16: Normalised marker count N̄ = N/Nmax(t = 0) for the adaptive case
with Np = 128M at time cstend/a = 286. Here, Nmax(t = 0) is the global maximum
marker count per (s, v2)-bin at initial time t = 0. (a) and (b) show marker count
differences ∆N̄ = N̄(tend) − N̄(t = 0)). Subplots (c) and (d) show different s-cuts
at time t = 0 (dashed lines) and t = tend (full lines).

6.3 Flux-driven simulations

6.3.1 Heat source radial profile

In order to run flux-driven simulations with similar quasi-steady state with that of
the previous temperature-gradient-driven runs of this chapter, the effective f.s.a. heat
source resulting from the Krook operator Eq. (3.81) will be replaced by the fixed
heat source operator Eq. (3.82). This is done separately for each species (ions and
electrons). The radial heat source profile GH(ψ) of Eq. (3.82) is approximated by
fitting a Gaussian function around the peak of the time-averaged effective heat source
of the gradient-driven run, considering here the standard case with Np = 256M. The
sink at the edge will be replaced by a non-conserving Krook buffer Eq. (3.83). The
effective heat source/sink profile in the gradient-driven simulations is estimated by
flux surface and time averaging the second order velocity moment of the Krook

operator Eq. (3.81),
〈〈∫

d3vmv
2

2
Ŝn

〉〉
t
. An example of the heat source profile for

each species is shown in Fig. 6.17. The peaks of the fitted Gaussian are lower than
the corresponding peaks of the source profiles of the gradient-driven runs to ensure
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that the area under the curves (heating powers) are approximately equal. The radial
regions where the fitted curve is above (below) the heat source will tend to result
in an increase (decrease) of the quasi-steady state temperature profile. The dashed
lines represent the beginning of the buffer region. It is found that a relaxation rate
for the Krook buffer of γB = 10%γmax (see Eq. (3.83)) is sufficient to efficiently
damp all turbulence at the edge given the strength of the considered heat sources.
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Figure 6.17: Fixed heat source profiles GH(ψ) (orange) for the flux-driven sim-
ulations fitted to the effective flux surface and time-averaged heat source of the
temperature-gradient-driven run using the standard case with Np = 256M. Buffer
edges for the ions and electrons are taken to be sB = 0.75 and sB = 0.80, respec-
tively (see Eq. (3.83)).

The subsequent flux-driven simulations discussed in this chapter are run with
these fixed heat sources till they reach quasi-steady state, or for as long as is ap-
propriate based on a single initial marker loading. Whether the former is reached
is judged by comparing the power through magnetic surfaces calculated from the
fluxes and the volume-integrated heat source and identifying when they become
equal. As will be shown, despite the approach taken to set these heat sources, they
result in large f.s.a. density and temperature profile deviations, thus prohibiting
standard runs from reaching quasi-steady state. In order to allow for comparison
between results under the standard and the adaptive schemes, we split the analysis
of the results into two sections, Secs. 6.3.4 and 6.3.7. They correspond respectively
to the two time windows represented by shaded grey areas of the time traces of
Fig. 6.18. The first time window then contains transient profiles under the standard
and adaptive schemes, while the second time window contains only profiles under
the adaptive scheme at quasi-steady state.

6.3.2 Transport time traces

Figure 6.18a shows the ion heat diffusivity χi for all cases. The first observation
to be made is that under the respective standard and adaptive schemes, all results
have converged in Np. Secondly, χ of the adaptive case are consistently higher than
that of the standard cases. This is especially obvious at comparing the standard
case with Np = 256M and any of the adaptive cases for times cst/a ≳ 700, for which
one approaches a quasi-steady turbulent state. Note that the latter have 1.5-times
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the χ of the former. This is despite the fact that the adaptive cases exhibit lower
temperature gradients in s ∈ [0, 7, 0.9] (see Fig. 6.37) as compared to the standard
case. This difference between results of the two schemes can be explained by looking
at the shearing rate. Fig. 6.19 shows the s ∈ [0.7, 0.9] radially averaged absolute
value of the E×B zonal flow shearing rate ωE×B for all the cases discussed. We see
that the shearing rate for the standard cases are consistently lower than that of the
adaptive cases. As ωE×B amplitudes indicate the rate of turbulent eddies shearing,
higher ωE×B amplitudes of the standard case suppress turbulence more than in the
adaptive cases at s ∈ [0.7, 0.9]. This thus explains the consistent higher χi of the
adaptive cases as compared to the standard cases (see Fig. 6.18a). As the system
finally reaches quasi-steady state for cst/a ≳ 1000, simulations under both standard
and adaptive schemes show signs of asymptoting to the same χ and |ωE×B| values.
This is not conclusive as a standard simulation with Np > 256M needs to be run for
an even longer simulation time in order to reach quasi-steady state for comparison
with the adaptive cases presented here.
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(b) Ion and electron heat diffusivities with Np = 128M
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Figure 6.18: Radially averaged s ∈ [0.7, 0.9] ion and electron heat diffusivities as
well as ion-electron heat diffusivity ratio χi/χe, for various marker numbers Np

under the standard and the adaptive schemes. ’trapped’ and ‘all’ curves use χe
contributed by trapped only and passing and trapped electrons, respectively. Grey
shaded areas represent two time windows for profile analysis, given in Sec. 6.3.4 and
6.3.7 respectively.
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To see how electron diffusivity χe compares to χi, Fig. 6.18c shows the ratio
χi/χe for all cases considered. Dashed and solid curves represent χe contributed by
trapped, and passing and trapped, electrons respectively. During cst/a ∈ [0, 100],
the edge (at s ∈ [0.7, 0.9]) with almost constant gradient is predominantly driven by
trapped electron modes (TEM). From cst/a = 200 onwards, the system is in a mixed
regime of instabilities driven by TEM and Ion-Temperature-Gradient (ITG) modes.
In the latter, χi and χe go in-step. The discrepancy between different converged
values of χe with and without passing electrons contribution might be due to the
large electron mass used in this work, me/mi = 1/200. Studies with more realistic
values of me should be conducted to investigate passing electron contribution to
transport.
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Figure 6.19: Radially averaged s ∈ [0.7, 0.9] absolute value of the E × B zonal
flow shearing rate ωE×B, for various marker numbers Np under the standard and
the adaptive schemes. Grey shaded areas represent two time windows for profile
analysis, given in Secs. 6.3.4 and 6.3.7 respectively.

As the system approaches quasi-steady state, with the buffer being the only
source/sink of particles, the particle flux reduces and plateaus to low values, as shown
in Fig. 6.20 for the ion gyrocentre flux Γi. All cases, whether under the standard
or adaptive scheme, show no distinction in the reducing trend of Γi. To ensure
quasi-neutrality, ion gyrocentre flux Γi should approximately cancel the electron
flux Γe (with near perfect cancellation with ion particle flux). Fig. 6.20b shows the
difference between between Γi and Γe. We see that quasi-steady state reached by the
adaptive scheme, there is good cancellation for Γe contributed only by the trapped
electrons. Contribution of passing electrons is once again expected to reduce with
decreasing me/mi.
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Figure 6.20: Radially averaged s ∈ [0.7, 0.9] ion gyrocentre flux and ion-electron
particle flux difference, for various marker numbers Np under the standard and the
adaptive schemes. ’trapped’ and ‘passing+trapped’ curves use χe contributed by
trapped only and passing and trapped electrons, respectively.

6.3.3 Weight variance

We now examine how the adaptive scheme reduces weight standard deviation σw(sbin)
of Eq. (3.29). We begin by comparing σw radial profiles for cases of varying marker
numbers Np and using either a fixed or an adaptive background. Fig. 6.21 shows σw
for all cases with marker number Np = 128M, up to a simulation time of cst/a = 600.
From Figs. 6.21a and 6.21b, we see that both the ions and electrons have similar
trend in σw under the standard scheme. Though not shown, these σw values have
converged with marker numbers for both species, just like in Fig. 6.7 for the ions.
The radial location of increasing maxima for both the ions and electrons are once
again located where profile deviation is the greatest. For gradient simulations of
Sec. 6.2, it is only the density profiles of both the ions and electrons that devi-
ated significantly from its initial values. Whereas for the flux-drive cases of this
section, the temperature profiles for both species also evolve. This explains the
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wider radial region s ∈ [0.2, 0.8] of maxima of σw for both the ions and electrons
for the flux-driven case, e.g. compare Figs. 6.7b and 6.21a. Turning now to the
flux-driven case with marker number Np = 128M under the adaptive scheme, we see
in Figs. 6.21c and 6.21d that the maxima for both the ions and electrons occurs at
around s ∈ [0.4, 0.8]. The main difference between the standard and adaptive cases
is that σw for the adaptive case does not increase indefinitely. This is due to the
adaptive control variate, with adaptive density and temperature profiles. Further-
more for the adaptive cases, we see a drop in σw for the electrons that is around
cst/a = 50, compared to that of the ions, where σw is gradually decreased. This is
can be explained by analysing Fig. 6.18b, where we see that for cst/a ∈ [0, 50], the
electron diffusivity χe is more than 200% that of the ion χi. This suggests a quicker
evolving electron temperature profile Te during this period. Thus, as the adaptive
rate is sufficiently high for this case, the electron σw is reduced at a shorter time
scale.

To estimate the improvement via an adaptive control variate, Fig. 6.22 shows
radial s-cut s = 0.534, where maxima of all cases illustrated in Fig. 6.21 coincide.
Here, we see that the adaptive case have 15% the value of σw compared to that of
the standard cases. Furthermore, at cst/a = 600, σw for the standard cases still
increase linearly, while that of the adaptive cases exhibit a steady value of around
0.2.

(a) Standard scheme, ions (b) Standard scheme, electrons

(c) Adaptive scheme, ions (d) Adaptive scheme, electrons

Figure 6.21: F.s.a. weight standard deviation profiles σw(s) =
√
⟨w2⟩(s)− ⟨w⟩2(s)

for marker number Np = 128M, under both the standard and adaptive schemes.
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Figure 6.22: F.s.a. weight standard deviation profiles σw(s) =
√
⟨w2⟩(s)− ⟨w⟩2(s)

at s = 0.534 for marker number Np = 128M, under both the standard and adaptive
schemes.
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Figure 6.23: Time dependence of global Signal-to-Noise Ratio (SNR) values, for
various marker numbers Np under the standard and the adaptive schemes. The
signal includes the zonal component (m,n) = (0, 0). Horizontal dashed line indicates
the empirically set minimum value of 10 for quality simulations. Grey shaded areas
represent two time windows for profile analysis, considered in Secs. 6.3.4 and 6.3.7
respectively.

Next, we look at radially averaged measures of squared weight w2 via the Signal-
to-Noise Ratio (SNR) values. Fig. 6.23 shows the SNR time trace for all cases
discussed in this section. These results include the zonal component in the signal
(see Eqs. (3.27) and (3.28)). The corresponding values without the zonal component
are about 10% lower for all cases and for all times. The SNR values of the two
standard cases with Np = 256M (black) and Np = 128M (orange) can be seen to
fall continuously with similar rates as simulation time passes. The gain in SNR
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value achieved by increasing Np is proportional to Np, owing to the fact that this
diagnostic is based on fluctuation amplitudes and in particular the noise estimate
which scales as 1/Np (see Sec. 3.1.4.1). Simulations are stopped when SNR values
reach the empirically set minimum threshold of 10 due to degrading simulation
quality. With this trend, we can predict that a simulation with Np = 512M would
get us to a simulation time comparable to the adaptive case with Np = 64M shown
here. The adaptive cases have their SNR values drop at a much lower rate compared
to the standard cases. This drop happens mostly at the initial phase cst/a ≲ 50 of
the simulation when profiles evolve the most. This drop rate is once again similar
for the cases of Np = 128M and Np = 64M. This rate of SNR value reduction
could be somewhat further reduced by increasing the adaptation rates αn and αE,
though improvements via increasing adaptive rates are marginal. This is because
the adaptive scheme discussed in this work is based on a f.s.a. control variate. Any
variation of weights in the poloidal direction for example will not be accounted
for. Nonetheless, for the cases study of this chapter, we see a simulation run with
Np = 64M, or even potentially Np = 32M, gives us results otherwise, i.e. with
standard scheme, only obtained with at least Np = 512M.

6.3.4 Transient results: first time window

6.3.4.1 Profiles

Figure 6.24 shows the time-averaged gyrocentre densities of the ions and electrons.
Focusing first on Fig. 6.24a for ions, we can see that at the considered stage of the
simulation, the non-adapted background density of the standard case has a lower
value near the magnetic axis as compared to the initial profile, which should not
be the case. This was already observed with the gradient-driven simulations of
Sec. 6.2.3. But for the current considered flux-driven runs, the drop in background
density for both standard cases is more severe, with the case with a higher marker
number Np = 256M being slightly better than that with Np = 128M. This is once
again due to the ‘hole’ developing in the ion phase space volume, as will be discussed
later together with Fig. 6.27 in Sec. 6.3.4.2. The f0 contributed density (dashed
curve) of the adaptive cases is on top of the one including the δf contribution,
which indicates that the time-dependent background density has captured the total
density evolution correctly.
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Figure 6.24: Time-averaged cst/a = [592, 613] gyrocentre density profiles, for var-
ious marker numbers Np under the standard and adaptive schemes. ‘background’
and ‘background + deviation’ represent the profile contributed by f0 and f0 + δf ,
respectively. (c) shows gyrocentre density difference contributed by f0 + δf . All
profiles are the result of binning markers with the appropriate weights, f0Ω and w
for f0 and δf contributions respectively.

Turning now to Fig. 6.24b, we first note that the deterioration of the electron
background density near the magnetic axis for the standard cases is once again (as
for gradient-driven runs) not as severe as that of the ions. We also see that the
density of the standard and adaptive cases respectively converge to different values.
Given the fact that the electron f0 + δf density of the standard scheme appear
converged w.r.t. Np, we conclude that the discrepancy between the ion densities
with Np = 128M and Np = 256M for the standard case is due to the aforementioned
deterioration in ion phase space volume. The difference between the ion gyrocentre
and electron densities is accounted for by the ion polarisation density and ion FLR
contributions. Fig. 6.24c shows the difference between ion gyrocentre and electron
densities, where we see a larger difference between these densities for the standard
scheme. And between these standard cases, the case with Np = 128M shows a larger
density difference as compared to that with Np = 256M, thus indicating that this
density difference is partly due to sampling noise. On the other hand, we see that
the results of the adaptive scheme is mostly converged in Np. The larger difference
between the densities for the standard case than the adaptive case is already hinted
at in Fig.6.19. Though the radial average is not taken near the magnetic axis, a high

132



6.3. FLUX-DRIVEN SIMULATIONS

shearing rate of the standard case is indicative of a large ion polarisation density
contribution to the ion density.
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Figure 6.25: Time-averaged cst/a ∈ [592, 613] f.s.a. gyrocentre temperature profile
and its logarithmic gradient, for various marker numbers Np under the standard and
adaptive schemes. ‘background’ and ‘background + deviation’ represent contribu-
tions from f0 (dashed curves) and f0 + δf (solid curves) to the profile, respectively.
All profiles are the result of binning markers with the appropriate weights, f0Ω and
w for f0 and δf contributions respectively.

Next, we consider the ion and electron temperature profiles as shown in Figs. 6.25a
and 6.25b respectively. The initial profiles are indicated by the dotted curves. We
first note that there is an increase in ion temperature at the magnetic axis under
the standard scheme, with the Np = 128M case having a larger increase than that of
Np = 256M. This effect is not observed for electrons. Hence, we can attribute this
to the same problem of the ion phase space volume. Taking a broader look, we see
that the temperature has risen more under the standard scheme as compared to the
adaptive scheme. All profiles converged in Np under the respective schemes. Note
that while at this point in time, there is no off-axis peak ion temperature profile,
there is one for the electron temperature under the standard scheme, at around
s = 0.45. This is interesting because the peak of the heat source for the electrons
(see Fig. 6.17) is at around s = 0.55.

The slight corrugation of the electron temperature in the vicinity of s = 0.55
for all cases, which is not observed for the ion temperature, perhaps due to ion
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inertia, is magnified by looking at the respective logarithmic temperature gradients
in Figs. 6.25c and 6.25d. The corrugation location for the electron temperature
coincides with the q = 1 flux surface. Unlike that of the temperature-gradient-
driven case (see Fig. 6.10a), Fig. 6.25c shows no corrugation at s = 0.55 for the
ions. The corrugation does however appear for the electrons, and, as can be seen in
Fig. 6.25d, in the case of the adaptive scheme, the background electron temperature
also exhibits such corrugation, illustrating the ability of the evolving background to
capture such fine profile features. The feature common to both ions and electrons is
that there is a drop in gradient around s = 0.35, and an increase in gradient around
the pedestal region s ∈ [0.9, 1.0]. The dip at s = 0.35 is expected to translate to
the magnetic axis at a later time as the heat is transported from the heat source
peak towards the core, thus flattening the temperature profiles in this region (as
seen in Figs. 6.25a and 6.25b). All cases under the adaptive scheme show a greater
flattening of the temperature gradient in the region s ∈ [0.5, 0.8] than the standard
scheme.
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Figure 6.26: Time-averaged volume integrated heat source
∫ s
0
ds′
〈∫

d3v mv2

2
S
〉
and

heat flux through flux surface
〈
q⃗H · ∇ψ

|∇ψ|

〉
, for various marker numbers Np under the

standard and the adaptive schemes. The electron heat flux includes both passing and
trapped contributions. The time averaging window is taken to be cst/a ∈ [592, 613].

To investigate the difference in temperature deviation between the standard and
adaptive schemes, we now consider plotting Figs. 6.26a and 6.26b the balance be-
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tween the f.s.a. integrated heat source
∫ s
0
ds′
〈∫

d3v mv2

2
S
〉

(dashed curves), and

the heat flux through magnetic surfaces ⟨q⃗H · ∇ψ
|∇ψ|⟩ (solid curves), for the ions and

electrons respectively. Since quasi-steady state has not yet been reached at this
point, equality between these two quantities is not expected. This is especially true
when we consider the sum of both the ion and electron contributions to the heat
flux and integrated heat source in Fig. 6.26c. The tapering to negative values of
the integrated heat source is due to the buffer placed at the edge, starting from
s = 0.75 and s = 0.80 for the ions and electrons, respectively. In quasi-steady state,
which is not the case, one expects the integrated source to go to zero at the LCFS.
In this case, the negative heat source near s = 1.0 is only the result of the strong
cooling of the buffer at the edge region in order to keep the temperature profile
stationary there. The trends for both ions and electrons are similar, all cases under
the adaptive scheme converging globally to larger heat fluxes than that under the
standard scheme. This is reflected in the previously mentioned temperature profile
flattening for the adaptive cases. Heat fluxes for all cases peak at the respective
buffer entrances, and dip at around s = 0.4, indicating an inward flux, right next to
the inner side of the peak of the heat source.

One important final point to be noted is that the standard and adaptive cases are
not entirely equivalent due to the Krook operator used as noise control. For the stan-
dard case, this operator attempts to restore f(t) to its initial f.s.a. Maxwellian distri-
bution f0(t = 0) = finit albeit allowing for f.s.a. density and temperature variations
via conservation of lower order moments. On the other hand in the adaptive case,
the Krook operator restores f(t) to the time-evolving background f0(t). Nonethe-
less, with a time-dependent background in this case still being a f.s.a. Maxwellian
distribution, under the action of a Krook noise control operator that conserves the
f.s.a. density and energy (amongst other low order velocity moments), the difference
in the effect of the Krook operator between the standard and adaptive cases lies in
the correction term Scn (see Eq. (3.80)). Firstly, the conservation is done in each
radial bin up to machine precision. However, this does not take in to account the
variance of conserved velocity moment contributed by δf in each radial bin, which
will lead to inexact conservation once markers migrate across radial bins after each
time-step. Secondly, due to the difference in δf under the standard and adaptive
schemes, Scn may introduce distortion effects in the higher order moments. Studies
on higher order moments of δf have not be performed.
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6.3.4.2 Phase-space diagnostic and marker distribution
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Figure 6.27: Ion phase-space volume diagnostic applied to Cartesian bins in (s, v2)-
space for the standard and adaptive cases for various marker numbers Np at cst/a =
612. Shown is the ratio Ω(tend)/Ω

(a), of which values near 1 reflect good sampling,
while ratios deviating significantly from 1 reflect poor/deficient sampling. The red
dashed line on the contour plots indicate the energy upper-bound during initial
marker loading, given by mκ2vv

2
th(s), i.e. v

2 = κ2vv
2
th(s, t = 0). As Ω(a) appears in the

denominator, it is taken without the v2-cut-off to avoid singularities (see Eq. (3.17)).
All plots share the same colour scale.

To see how the adaptive scheme deals with phase space volume representation, and
in view of the discrepancies we identified in Sec. 6.3.4.1, we now consider the ion
phase-space volume diagnostic at cst/a = 612 for all cases discussed. Fig. 6.27 shows
the result of this diagnostic for ion when applied to bins in (s, v2)-space, same as in
Figs. 6.13 and 6.15. A feature common to all cases is that there is a diffusion of Ω
around the velocity cut-off, as expected, with greatest diffusion around s ∈ [0.5, 0.6].
Focusing now on the standard cases, Figs. 6.27a and 6.27b, we see an under-sampling
in Ω around s ∈ [0, 0.3] at low energies. We also see that the situation is improved
with higherNp, indicating that this problem is of numerical origin. This Ω hole could
explain the background ion density-drop in Fig. 6.24a and temperature overshoot
near the magnetic axis in Fig. 6.25a under the standard cases. Turning to the
adaptive cases of Figs. 6.27c and 6.27d, we see that the aforementioned hole has a
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smaller span and depth, which appears to be more pronounced for the case with
very low marker number Np = 64M.

To consider the problem of the ion phase-space hole further, Fig. 6.28 shows
various radial cuts of each sub-plot of Fig. 6.27. We see clearly the under-sampling
problem at low energies for the standard cases Figs. 6.28a and 6.28b, represented
by the cuts s = 0.02 (black) and s = 0.10 (orange). By looking at all the s-cuts of
the adaptive cases Figs. 6.28c and 6.28d, we see that the phase-space hole is still
present, but of a shallower depth. This depth is reduced by having a larger number
of markers. Nonetheless under the adaptive scheme with Np = 64M, the under-
sampling problem is much better when compared to the standard case with 4-times
Np, i.e. Np = 256M.
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Figure 6.28: Ion phase-space volume diagnostic s-cuts, for various marker numbers
Np under the standard and adaptive schemes at cst/a = 612. Shown is the ratio
Ω/Ω(a). Ratio values near 1 reflect good sampling, while ratios deviating significantly
from 1 reflect poor/deficient sampling. As Ω(a) appears in the denominator, it is
taken without the v2-cut-off to avoid singularities (see Eq. (3.17)). The dashed lines
are taken at t = 0.

We continue the investigation by looking at the marker distribution at fixed
Np = 128M, under the standard and adaptive schemes. Fig. 6.29 shows the difference
∆N in the marker distribution and corresponding radial cuts for the ions. Focusing
first on the standard case, we see the diffusion of markers along the velocity cut-off
and its accumulation at lower velocities around s = 0.5. Given that the phase space
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representation Ω for this case (Fig. 6.27b) is roughly uniform around s = 0.5, it
implies that markers in this phase space region with low velocities on average must
have lower associate phase-space volume. This is the same result as discussed in
the previous temperature-gradient-driven runs of Sec. 6.2.5. As there are plenty
of markers near axis at low energies, taking Fig. 6.28b and 6.29c together, this
once again indicates a corruption in Ω, i.e. Eq. (3.12) is not satisfied. Comparing
Figs. 6.29c and 6.29d, we see that for the adaptive case, there is more marker
accumulation near the magnetic axis at low energies compared to the standard case.
This might have reduced the severity of the phase-space hole observed in Fig. 6.27c.

0.2 0.4 0.6 0.8

50

100

150

200

(a) Standard, marker difference ∆N̄v2th/Vs

0.2 0.4 0.6 0.8

50

100

150

200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Adaptive, marker difference ∆N̄v2th/Vs

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

(c) Standard, marker N̄v2th/Vs s-cuts

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

(d) Adaptive, marker N̄v2th/Vs s-cuts

Figure 6.29: Normalised ion marker count N̄ = N(t)/Nmax(t = 0) for the standard
and adaptive cases with Np = 128M at cst/a = 612. Here, Nmax(t = 0) is the global
maximum marker count per (s, v2)-bin at initial time t = 0. (a) and (b) show marker
count differences ∆N̄ = N̄(t)− N̄(t = 0). Subplots (c) and (d) show different s-cuts
at time t = 0 (dashed lines) and at t (full lines).

Considering Figs. 6.27, 6.28 and 6.29, we see that the adaptive scheme appears to
lead to different ion marker trajectories compared to the standard scheme, namely,
markers tend to accumulate more towards lower velocities. The problem of the
phase-space hole that appears in the standard cases (see Figs. 6.28a and 6.28b)
appears to be ameliorated by the higher accumulation of markers of the adaptive
cases (see Figs. 6.29c and 6.29d). In terms of the gyrokinetic equations of motion
Eqs. (2.18)-(2.20), the difference between the standard and adaptive schemes lies
in the evaluation of the E ×B drift term involving the self-consistent gyroaveraged
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electrostatic potential ϕ̃. The adaptive scheme allows for a more accurate evaluation
of the r.h.s. of the QNE (Eq. (2.38)) using a better control variate f0, thus leading
to a more accurate solution for the electrostatic potential ϕ. Moreover, under the
standard scheme, a better evaluation of ϕ requires a higher Np. Indeed, based on
Fig. 6.27, the case with Np = 256M improves the under-sampling situation at s = 0
compared to that of Np = 128M. However, the compressibility of phase space as
verified by Eq. (3.12) is verified for any field ϕ, whether it is accurately self-consistent
or not. Nonetheless, non-smooth solutions of ϕ as a result of poor integration can
lead to spurious E × B drifts, which leads ultimately to the difference in marker
trajectories between the standard and adaptive cases.

The phase-space diagnostic results for the electrons is similar to that of the ions
for all cases, however without the under-sampling problem around s = 0.1.
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Figure 6.30: Normalised electron marker count N̄ = N(t)/Nmax(t = 0) distribution
using Np = 128M markers, normalised to Vs/v

2
th, where Nmax is the global maximum

marker count per bin at marker loading, under the standard and adaptive schemes.
The normalisation factor Vs(s)/v

2
th(s) (see Eq. (3.13)) is used to display a uniform

distribution at marker loading. Marker difference is given by ∆N̄ = N̄(t) − N̄(t =
0) ≤ −1. The black dashed curve of (a) and (b) represents the marker loading
cut-off in velocity v2-space, i.e. v2 = κ2vv

2
th(s). Both (a) and (b) share the same

colour scale. The dashed and solid curves of (c) and (d) represent N at t = 0 and
at cst/a = 612, respectively.

139



6.3. FLUX-DRIVEN SIMULATIONS

Finally, we turn to the marker count N(s, v2) distribution for the electrons at
cst/a = 612 under the standard and adaptive schemes, shown in Fig. 6.30. Unlike for
the ions, the electrons share similar N(s, v2) under both schemes. For the adaptive
case, there is no global reduction in marker velocities, but there is a slightly higher
accumulation of markers at low velocities in the region s ≲ 0.5, as compared to the
standard case. As in the temperature-gradient-driven case (Sec. 6.2.5), there is an
accumulation of high velocity electrons near the magnetic axis under both schemes.
This is a numerical artifact, as will be explained in Sec. 6.3.5. The observations from
the phase-space diagnostic of the ions and electrons require further investigation. In
particular, a diagnostic that traces marker trajectories with time should prove useful.

6.3.5 Electron marker count at high energies
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Figure 6.31: Electron marker count fractional difference ∆Nv2th(s)/Vs(s)Nmax(t = 0)
at time cst/a = 75, with Np = 64M under the adaptive scheme, for three different
sets of marker push boundaries spush and RK4 step-size ∆t. Nmax(t = 0) indicates
the global maximum marker number per bin at initial time t = 0. All figures share
the same colour (saturated) scale.

To investigate the accumulation of high energy electrons at the axis, as already ob-
served in Fig. 6.14, 6.16 and 6.30, let us consider the results in Figs. 6.31 and 6.32
which show the marker distribution N(s, v2) with marker count Np = 64M under the
adaptive scheme for three different settings at time cst/a = 75. The two parameters
concerned here are spush and the time step-size ∆t. In ORB5, markers generally

140



6.3. FLUX-DRIVEN SIMULATIONS

are ‘pushed’ via the RK4 algorithm along their characteristics in the magnetic co-
ordinates (s, θ⋆, φ). However, to avoid the singularity of dθ⋆/ dt at s = 0, i.e. at
the magnetic axis, one sets a critical magnetic surface s = spush such that markers
within this surface are pushed according to a pseudo-Cartesian coordinate system
[ξ = s cos θ⋆, η = s sin θ⋆]. spush is estimated to be the maximum s-distance a marker
can cover in a time step in an unperturbed trajectory. The price to pay is that mark-
ers are pushed less accurately as radial drifts are not exactly 0, i.e. ds/ dt ≈ 0 when
integrated in (ξ, η). As the RK4 is not a symplectic scheme, for a given step size, er-
ror in trajectories are larger for more energetic particles. Therefore, it is no surprise
that the markers that are most affected by this are the electrons with high veloci-
ties. The situation of electron accumulation towards the magnetic axis, i.e. s = 0,
is akin to using the RK4 scheme for planetary motion. There, one observes gradual
radially-inward drifts of the orbiting planets. For our case, the electrons ‘orbit’ the
s = 0 axis by variation in θ⋆. As Figs. 6.31a and 6.31b illustrate, by shifting spush,
the region of accumulation of electrons at high energies, resulting from the error in
their trajectory integration, is also shifted. Fig. 6.31c illustrates that, by reducing
the time-step, the problem vanishes, as electrons trajectories are integrated more
accurately.
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Figure 6.32: s-cuts of the normalised electron marker count N̄ = N(t)/Nmax(t = 0)
for adaptive case with Np = 64M, for different radial positions, corresponding to
the 2D plots of Fig. 6.32. Here, Nmax(t = 0) is the global maximum marker count
per (s, v2)-bin at initial time t=0. Dashed and full lines correspond to results for
cst/a = 0 and cst/a = 75 respectively.

Figure. 6.32, presenting s-cuts of the 2D plots of Fig. 6.31, provides more detailed
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representation of the same results. It is interesting to note that reducing ∆t only
affects the time-integration of electron marker trajectories around s = spush at high
energies, leaving the marker accumulation at lower velocities unchanged. This hints
that the latter phenomenon is not of numerical origin.

6.3.6 QNE r.h.s. correction comparison
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Figure 6.33: Radial profile of the time averaged cst/a ∈ [102, 123] zonal flow E ×B
shearing rate ωE×Ba/cs with marker number Np = 128M for various QNE r.h.s. cor-
rection models: exact: using an exact f0 (Sec. 3.2.10.1), expansion: using an ex-
pansion in (ψ̂0, Ê) for f0 with (Nψ, NE , Neval) = (64, 32, 600) (Sec. 3.2.10.2), f.s.a.:
equates the electron background density to the f.s.a. ion background gyrodensity
(Sec. 3.2.10.3), no corr.: no r.h.s. correction. These adaptive cases are compared
against the standard: std.

All cases under the adaptive scheme thus far have the correction term due to the
background evolution (see Eq. (3.63)) in the r.h.s. of the QNE evaluated consider-
ing an exact expression for f0, which is then integrated using grid-based numerical
quadrature (see Sec. 3.2.10.1). However, alternative schemes exist (see Secs. 3.2.10.2,
3.2.10.3). The comparison between the different methods for evaluating this correc-
tion term is shown in Fig. 6.33, which shows the ωE×B radial profile time averaged
over cst/a ∈ [102, 123]. For comparison the result under the standard scheme is also
shown in black. First, by looking at the adaptive case with no correction (purple),
we see that it does not capture the corrugation at s = 0.538, which corresponds to
the location of the q = 1 flux surface (see Fig. 5.1). The other curves representing
results for various methods of the correction calculation roughly follow the standard
case. Amongst these, the case that deviates the most from the standard case is the
one which uses a (ψ̂0, Ê)-expansion for f0, with number of basis functions in the ψ̂0

and Ê dimensions given respectively by Nψ = 32 and NE = 32. The example (blue)
shown here periodically recalculates the basis functions after every Neval = 600 time
steps. These numbers are chosen to give a maximum of ∼ 1% relative error against
the exact f0(ψ̂0, E, t) at all times for an expected density and temperature profile
deviation. Smaller Neval values were shown to not alter the result at the current
adaptation rates of αn = αE = 10%γmax.
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6.3. FLUX-DRIVEN SIMULATIONS

Further considering Fig. 6.33, we see that the case with the f0 expansion over-
estimates the left positive peak of the corrugation at s = 0.538 compared to the
‘exact’ approach. This can be improved by choosing a smaller Neval at the expense
of computation time. Nonetheless, it captures the general trend of ωE×B. The
correction via the exact f0 and equating the electron background density to the
f.s.a. ion background gyrodensity perform equally well. The latter is represented by
ne(ψ, t) = ⟨ñi0⟩, where ñi0 is the ion background gyrodensity, which is a function of
(s, θ⋆). Despite dropping all poloidal dependence during the assignment of ne(ψ, t),
this method of QNE r.h.s. correction produces essentially the same results as the
other methods addressing the background correction term.

Figure 6.34 shows the time evolution up to the time cst/a = 123 of the zonal flow
shearing rate ωE×B for the five cases shown in Fig. 6.33. By comparing Fig. 6.34d to
the other cases, we can immediately see that the correction term is indeed necessary
to obtain the correct ωE×B profile after adaptation. Without the correction term,
the small transport barrier at s = 0.5 is almost vanishing.
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6.3. FLUX-DRIVEN SIMULATIONS

(a) Exact f0 (b) f0 =
∑
axyΛx(ψ̂0)Λy(Ê)

(c) ne(ψ, t) = ⟨n̄i0⟩ (d) No correction

(e) Standard scheme

Figure 6.34: Evolution up to time cst/a = 123 of the radial profile of the zonal flow
E×B shearing rate ωE×B, with marker number Np = 128M under various methods
of QNE r.h.s. correction calculation under the adaptive scheme (a)-(d). An identical
run under the standard scheme is shown in (e) for reference. All results are run with
marker number Np = 128M. All plots share the same colour scale.
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6.3.7 Quasi-steady state results: second time window

6.3.7.1 Profiles
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Figure 6.35: Time- and flux-surface- averaged gyrocentre density over the time
window cst/a ∈ [1246, 1266], for various marker numbers Np under the adaptive
scheme. Profiles are contributions from both the f0 and δf . Profiles contributed
by f0 only are indistinguishable to the respective f0 + δf ones. All profiles are the
result of binning of markers with f0Ω + w weights.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

(a) Ion ⟨R/Ln⟩

0 0.2 0.4 0.6 0.8 1
0

5

10

15

(b) Electron ⟨R/Ln⟩

Figure 6.36: Time- and flux-surface averaged logarithmic gradient profiles of gyro-
centre density over the time window cst/a ∈ [1246, 1266], for various marker numbers
Np under the adaptive scheme. Profiles are contributions from both the f0 and δf .
Profiles contributed by f0 only are indistinguishable to the respective f0 + δf ones.
All profiles are the result of binning of markers with f0Ω + w weights.

We begin this section by describing profiles that have reached quasi-steady state
with just one marker loading at initial time. For the given fluxes, only adaptive
cases maintain adequate simulation quality SNR levels to reach this simulation time
of cst/a = 1266 (see Fig. 6.18). Figs. 6.35 shows the density profiles contributed by
f0 (dashed curves) and f0+ δf (solid curves) for both species, with marker numbers
Np = 128M (blue) and Np = 64M (green) under the adaptive scheme. At quasi-
steady state, the density has deviated up to 60% from its initial values. This amount
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6.3. FLUX-DRIVEN SIMULATIONS

of deviation would certainly challenge the delta-f PIC constraint of ∥δf∥/∥f∥ ≪ 1
in the case of the standard method. Next, we see that all adaptive cases converge
to the same profile for both Np = 128M and Np = 64M. This indicates that already
with Np = 64M the simulation is close enough to numerical convergence. Though
not shown here, the background profiles are indistinguishable from the profiles con-
tributed by both the f0 and δf . This indicates that the adaptive rate αn is large
enough, and ⟨δf⟩ is very small. Considering Fig. 6.35a for ions, we see that there is
a difference between cases of Np = 128M and Np = 64M near axis. As was shown
in Sec. 6.3.7.2, this is due to ion phase-space volume corruption at low velocities
(c.f. Fig. 6.27). Fig. 6.35b shows the difference between f.s.a. ion gyrocentre and
electron densities, which is 10% for the case with Np = 128M. The reduction of
difference by increase in marker number is once again attributed to phase-space vol-
ume corruption. Nonetheless, perfect equality between ion gyrocentre and electron
densities is not expected one has to account for the ion FLR and polarisation den-
sity. To investigate density relaxation further around we consider Fig. 6.36, shows
the logarithmic gradient profiles of the ion gyrocentre and electron densities. We see
the results of Np = 128M and Np = 64M are converged in Np, and that at the flat
logarithmic gradient region s ∈ [0.5, 0.9], both species have much lower logarithm
gradient of density compared to the initial values. However, Fig. 6.36b shows that
the electron has density corrugation around the q = 1 surface, but not the ions (see
Fig. 6.36a). This is related to the assumption of the current hybrid electron model,
that passing electrons have an adiabatic response. This assumption breaks down
near Mode-Rational-Surfaces (MRS), and such density corrugations have already
been observed and studied in reference such as Ref. [19].

We now turn to the temperature profiles at quasi-steady state shown in Fig. 6.37.
The background temperature profiles are not shown as they visually coincide with
the profiles contributed by both the f0 and δf . Once again, except near the magnetic
axis for the same reason mentioned before when addressing the density profiles,
temperature profiles obtained with Np = 128M and Np = 64M for each species
converge to the same respective profiles. The most notable difference between ions
and electrons is that there is an increase in the ion temperature Ti near the magnetic
axis, but not for the electron temperature Te. Avoiding the sampling problems
near axis, by considering the region at s ∈ [0.1, 0.3], we see about a 5% Ti rise.
Nonetheless, when compared to the temperature profiles of the previous time window
cst/a ∈ [592, 613] shown in Figs. 6.25, we see that the temperature peaks have risen,
at s ≃ 0.3 and s ≃ 0.4 for the ion and electrons. respectively.
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Figure 6.37: Time- and flux-surface- averaged gyrocentre temperature and its log-
arithmic gradient over the time window cst/a ∈ [1246, 1266], for various marker
numbers Np under the adaptive scheme. Profiles are contributions from both the
f0 and δf . Profiles contributed by f0 only are indistinguishable to the respective
f0 + δf ones. All profiles are the result of binning of markers with f0Ω+w weights.

Next, considering the associated logarithmic gradients of these temperature pro-
files in Figs. 6.37c and 6.37d, we first note that compared to the initial profiles, both
ions and electrons have increased gradients in the ‘pedestal’ region (s ∈ [0.8, 1.0])
and a relaxation to lower gradients in the core (s ∈ [0.6, 0.8]). The increase in gradi-
ent at the pedestal is not explained by the effects of local heat sources as this region
is well within the buffer (see Fig. 6.17). Moving on to other features, the dip with a
negative minimum at s ∈ [0.25, 0.3] corresponds to the temperature peaks, and the
corrugation in Te gradient is once again located near the q = 1 flux surface. The
small spike in the Ti gradient around s = 0.1 is once again due to the aforementioned
sampling problem near axis.
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6.3.7.2 The near axis sampling problem
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Figure 6.38: Ion and electron phase-space volume diagnostic s-cuts, for marker
numbers Np = 128M and Np = 64M under the adaptive scheme at cst/a = 1266.
Shown is the ratio Ω/Ω(a). Ratio values near 1 reflect good sampling, while ratios
deviating significantly from 1 reflect poor/deficient sampling. As Ω(a) appears in the
denominator, it is taken without the v2-cut-off to avoid singularities (see Eq. (3.17)).
The dashed lines are taken at t = 0.

To explain the relative small differences between profiles of Np = 128M and Np =
64M for the ions and electrons respectively, we look to the phase-space volume
diagnostic at time cst/a = 1266, as shown in Fig. 6.38. Focusing first on the ions,
Figs.6.38a and 6.38b, we see that the same under-sampling problem of ion phase-
space volume near axis (e.g. s = 0.02) at low energies becomes more severe for the
Np = 64M compared to the Np = 128M case. Fig. 6.38b shows that for s = 0.02
(black), the sampled ion phase-space volume is already lower than that from the
initial marker loading. We therefore see that the adaptive scheme only postpones
this problem, which is expected to worsen at even longer simulation times. This is
evident when compared to the results at an earlier time window cst/a ∈ [592, 613] as
shown by Fig. 6.28c and 6.28d, where we see a ∼ 20% drop in phase-space volume
sampled for the adaptive cases of Np = 128M and Np = 64M at s = 0.02. Also in
this comparison, we note significant phase-space volume diffusion at s = 0.4 for the
adaptive cases
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Moving on to the case of the electrons, we again see the accumulation of sampled
phase-space volume at s = 0.02. As discussed in Sec. 6.3.5, this is due to marker
accumulation for s < spush, and can be remedied by reducing the time integration
step-size ∆t. Next, comparing the cases of Np = 128M and Np = 64M, shown by
Figs. 6.38c and 6.38d respectively, we see that for the Np = 64M case, we have
an under-sampling for s = 0.02 at lower energies. This sampling problem is also
expected to get worse with simulation time.

Taking the analysis of both ion and electrons together, the problem of low sam-
pling statistics near axis still persists under the adaptive scheme. Its severity can
however be postponed as compared to the standard scheme. But after significantly
long simulation times, a reloading of marker is needed eventually.

6.4 Results overview

Based on the gradient- and flux-driven simulations of this chapter, initial profiles
produce a TEM-dominant turbulent transport. As the density profile evolves, the
ion contribution increases, which results in a mixed ITG-TEM regime at quasi-
steady state (see Figs.6.3 and 6.18). The latter is characterised by vanishing particle
flux[22][60].

The role of lowest order Mode-Rational-Surfaces (MRS) is to create mini-barriers
with corrugated zonal flow shearing rate profiles. This effect is partially captured
by our trapped electron model that takes into account the f.s.a. passing electron
response. An accurate description of this effect would require the fully kinetic elec-
tron model. Nonetheless, the simulations show that passing electrons still contribute
a significant fraction to radial heat and particle transport, which could in part be
due to the large non-physical electron mass used (me/mi = 1/200). This enhances
the non-adiabatic response of the passing electrons and thus tends to violate the
conditions under which it is justified to apply the hybrid model. As a future work,
comparison between the hybrid and the fully kinetic models should be done to fur-
ther quantify the role of passing electrons in transport similar as in Ref. [19].

The flux-driven simulations of this chapter are accompanied with O(1) profile
evolution. The non-adaptive delta-f scheme, i.e. with fixed control variate, is un-
able to cope with these large profile deviations, resulting in simulations drowned
in noise. For the particular profiles and heat sources chosen, the adaptive scheme
allows simulations to reach quasi-steady state with only slowly decreasing SNR val-
ues (see Fig. 6.23). This is demonstrated to be feasible even with adaptive cases
having 1/4 of the numbers markers used by the standard cases (from 256M to 64M
markers). Nonetheless, both schemes still suffer from growing regions in phase space
due to marker diffusion that are potentially under-sampled as the simulations run
over transport time scales. For scenarios with even greater profile deviation, a re-
sampling of markers is expected to become necessary, due to marker diffusion and
the aforementioned hole in phase space.
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Chapter 7

Conclusion and outlook

The aim of this work was to extend the capability of global gyrokinetic turbulence
simulations to cases where strong deviations from the initial state occur. Such is
typically the case in regions of strong gradients or for long flux-driven simulations.
When a particle-based numerical approach is used, this requires to address the issue
of accumulation of sampling noise, which was done in this work by introducing
an adaptive f.s.a. background as control variate. Specifically, the background that
describes the gyrocentre distribution function assumes a Maxwellian form, with
time-dependent density and temperature profiles.

To that end, a simple model of an adaptive background temperature scheme
was first introduced. The background temperature was evolved through an ad-
hoc relaxation equation with associated relaxation rate. Along the simulation, the
f.s.a. second order velocity moment, the kinetic energy, that tends to accumulate
in the perturbed distribution function was kept low thanks to continuous transfer
to the background Maxwellian. This simple model was first tested with the global
gyrokinetic PIC code GKengine [65], which assumes fully adiabatic electrons and
sheared-slab geometry. Profiles characterised by steep gradients emulating condi-
tions near the plasma edge were used. In order to prevent edge losses, radial profiles
were modified to be periodic, and sources/sinks were introduced to prevent profile
relaxation beyond critical gradients. When simulating ITG-driven turbulence under
such conditions, temperature profiles exhibited relative deviations from initial val-
ues as high as 25%. Despite these challenging conditions, the computation with the
adaptive background temperature managed to keep the Signal-to-Noise-Ratio (SNR)
at quasi-steady values for as long as one could afford the simulations to run, whereas
the SNR was found to drop soon after the initial burst for the non-adapted cases.
Under this adaptive scheme, noise accumulation in the zonal component was kept to
a minimum, thereby preventing an artificial increase in the zonal flow shearing rate
which leads to unphysical suppression of turbulence. Convergence studies showed
that, under the adaptive scheme, marker numbers as low as 1/4 of the corresponding
standard case was sufficient to give even better results, in terms of sustained fluxes
and SNR values.

The adaptive scheme was subsequently generalised to be implemented in toroidal
geometry. The global gyrokinetic code ORB5 [54] was then used to test the adap-
tive temperature scheme when simulating toroidal-ITG driven turbulence with adi-
abatic electrons. These flux-driven simulations have strong heat sources to induce
large temperature deviations from initial values. A local control variate with time-
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dependent temperature was used, under an adaptive scheme that accounted for
possible finite density and parallel flow in delta-f when calculating the perturbed ki-
netic energy. Associated corrections were found to be necessary in order to keep the
adaptive scheme stable when working with adiabatic electrons. For the cases with
adaptive background temperature, quasi-steady SNR values and weight variance
levels as low as 1/4 those of the corresponding non-adaptive cases were achieved.
Similar to the study with the GKengine, the adaptive case with 64M markers was
shown to give better results than the corresponding non-adaptive case with 256M
markers, in terms of both stationary zonal structures and sustained ion heat diffu-
sivity.

The adaptive scheme was further generalised to adapt both temperature and
density of each species. Temperature-gradient- and flux-driven- simulations of tur-
bulence in the mixed ITG-TEM regime were conducted with electrons having an up-
graded hybrid response [53], i.e. when solving the quasi-neutrality-equation (QNE)
for the self-consistent electrostatic field the model takes into account the drift-kinetic
response of all electrons to the zonal perturbations, while for non-zonal perturba-
tions trapped electrons still respond drift-kinetically, the passing electrons however
adiabatically. For these runs, the TCV-like profiles [70] exhibited up to 50% devia-
tions from initials values. The adaptive scheme used a canonical Maxwellian control
variate, and adapted both density and temperature profiles of ions and electrons in-
dependently via an interleaving approach. A comparison of the various methods of
calculating the right-hand-side (r.h.s.) correction to the QNE was conducted, and it
was shown that the correction term is necessary to keep correct zonal flow structures.
Phase-space volume diagnostics developed in Ref. [52] were used to detect phase-
space volume depletion at low energies near the axis for ions. Though this problem
occurred for both non-adaptive and adaptive cases, the latter seemed to nonetheless
be less affected. When compared to the non-adaptive cases, results of the adap-
tive cases showed higher heat fluxes and lower zonal flow shearing rate amplitudes.
The adaptive cases kept the SNR at quasi-steady values, with greatly reduced stan-
dard deviation of marker weights. Under the settings of the flux-driven-simulations
conducted, though regions of ion phase-space got increasingly under-sampled with
simulation time. It was only the adaptive case that managed to reach quasi-steady
state.

As future work, a straightforward extension of the current adaptive f.s.a. Maxwellian
background to include parallel flow adaptation could be implemented. So as to also
extend the evolving background approach to electromagnetic simulations, a similar
correction term would need to be added to Ampère’s law as the one implemented in
the QNE. This would then allow efficient flux-driven simulations of kinetic balloon-
ing, tearing, and internal kink modes. In the presence of fast ions, a time-dependent
background could also be useful when simulating Alfvén or energetic particle modes.

Further sophistication to the control variate could be envisaged. One of the
methods used to evaluate the correction term of the r.h.s. on the QNE involved
expanding the background distribution in terms of basis functions in the canonical
toroidal angular momentum and energy. A control variate expanded in a set of ba-
sis functions could be pursued. Though only used as an offline diagnostic, Ref. [10]
has expressed in ORB5 the background distribution as an expansion in the space
of invariants of the unperturbed trajectories. Representing the background velocity
distribution velocity space in terms of Hermite and Laguerre polynomial basis func-

152



tions could be used in tandem with collision operators expressed in such a basis [24].
A mixed representation akin to the XGC code [49, 50], where the control variate
consists of an analytic function plus a correction term represented on a phase-space
grid could be an alternative. Nonetheless, complexity added to the background
translates to complexity added to the code as a whole. A highly complex control
variate carries the risk to inherit the disadvantages of both the particle- and grid-
based approaches. It may be best to fall-back to the full-f PIC approach for simula-
tions exhibiting high relative fluctuation amplitudes, i.e. in particular for simulating
edge/SOL conditions.
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Appendix A

Alternative simultaneous adaptive
scheme

Using the notation of Eqs. (3.45)-(3.47), and casting them into a linear system of
equations leads to

∂
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n0u0
3
2
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+ 1
2
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2
0

 (ψ, t) =
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If we now let

D(n0, u0, T0/m) =

 1 0 0
u0 n0 0

3T0
2m

+
u20
2

n0u0
3n0

2

 ,
and apply an explicit forward Euler scheme for the partial time derivatives with
time step Nt∆t (see end of Sec. 3.2.2), the system Eq. (A.1) becomes

∆

n0

u0
T0
m

 = Nt∆tD−1

αnQn

αuQu

αEQE

 . (A.2)

Here, ∆ on the l.h.s. of Eq. (A.2) represents the change in background quantities
and the matrix D on the r.h.s. is evaluated using pre-adapted background profiles.

The algorithm for implementation is straightforward. The following is one cycle
for the adaptation of all three moments, which spans time Nt∆t:

1. Qn, Qu, QE ← 0, do Nt time steps:

• Advance markers according to Eqs. (2.18)-(2.20)

• Estimate Qn,Qu,QE and accumulate individually

2. Calculate time averages: Qn ← Qn/Nt, Qu ← Qu/Nt, QE ← QE/Nt
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3. Back-solve Eq. (A.2)

4. Solve for

n
(new)
0 ← n0 +∆n0

u
(new)
0 ← u0 +∆u0

T
(new)
0 ← T0 +∆T0.
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Appendix B

Quadrature point convergence for
r.h.s. of QNE

The aim of this section is to determine the number of quadrature points sufficient
to integrate the r.h.s. of Eq. (4.5), formally written as

δñ =
1

2π

∫
d3R d3v dαδ[R⃗ + ρ⃗L − r⃗]δf(R⃗, v∥, µ, t). (B.1)

To proceed, we introduce a simple but non-trivial form of δf , so that Eq. (B.1)
can be solved analytically, namely,

δf =
cos(ξx)

(2πTi/mi)3/2
exp

[
−
v2∥/2 + µB

Ti/mi

]

=
cos(ξx)

(2π)3/2v3th
exp

[
−
v2∥ + v2⊥

2v2th

]
, (B.2)

with vth =
√
Ti/mi the local thermal velocity, µ = v2⊥/2B the magnetic moment,

and ξ a constant. To simplify further, we shall assume constant Ti and B. Further-
more, given that B⋆

∥ = B[1 +miB
′
y(x)Bzv∥/(eB

3)] and all velocity variables v∥ and
v⊥ are contained in δf and that δf is an even function of v∥, the velocity integration
effectively becomes

δf d3v = δf 2πB⋆
∥ dv∥ dµ

= δf 2πB dv∥ dµ

= δf 2πv⊥ dv⊥ dv∥. (B.3)

Inserting Eq. (B.2) into Eq. (B.1) gives

δñ(r⃗) = Re{I(x)},

with
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where ρth = vth/Ω is the thermal Larmor radius and J0 is the zero-th order Bessel
function of the first kind.

The evaluation of the field ϕ, which is represented by a B-spline expansion,
involves the contraction of the r.h.s. of Eq. (4.5) with a B-spline element of order p,
Λp(r⃗ − r⃗ijk) = Λp(x − xi)Λp(y − yj)Λp(z − zk). Here, the zero-th order B-spline is
defined as

Λ0(x) =

{
1 |x| < ∆x/2

0 else

so that
∫

dxΛ0(x) = ∆x, and the higher order elements by the recurrence
relation

Λp(x) =
1

∆x
Λp−1(x) ∗ Λ0(x) p ≥ 1,

where ∆x is the grid size of equidistant points along dimension x, and ∗ stands for
convolution. Therefore, we conduct a convergence analysis on the real part of the
expression:

∫
d3rΛp(r⃗ − r⃗ijk)δñ(x)

= ∆y∆z exp
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2

2
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×
∫
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(ξρth)
2

2

] [
2

ξ∆x
sin

(
ξ∆x

2

)]p
. (B.4)

In practice, the f0(R⃗, v∥, µ, t) − f0(R⃗, v∥, µ, 0) term of the r.h.s. of Eq. (4.5) is
calculated using Gaussian quadratures. Specifically, due to the limits of integration
for each of the variables, Nq Legendre points for the x integral, Nc Chebyshev
points for the α integral, and Nl Laguerre points for the µ integral have been used.
The convergence study for ξLx = 32π, which exceeds the typical wavelength of the
integrand for this work, is show in Fig. B.1.
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(a) x integration with Gauss-
Legrendre

(b) α integration with
Gauss-Chebyshev

(c) µ integration with Gauss-
Laguerre

Figure B.1: Convergence analysis with quadrature points of the f0(R⃗, v∥, µ, t) −
f0(R⃗, v∥, µ, 0) term of the r.h.s. of Eq. (4.5). (Nq, Nc, Nl) quadrature points are used
for the integration of the dimensions x, α and µ respectively. For each of the above
cases, the quadrature point number for a dimension is set to vary, while the other
two are fixed at either 32 or 64.
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Appendix C

Canonical control variate with
adiabatic electrons

C.1 Canonical control variate
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adaptive

Figure C.1: Radial profile of the time-averaged cst/a ∈ [531, 612] zonal flow shearing
rate ωE×B, for marker number Np = 128M under the standard (black) and adaptive
schemes. The adaptive scheme uses a canonical control variate (see Eq. (3.53)),
adapting only the temperature (see Eq. (3.54)). Nψ refers to the adaptive back-
ground profile radial grid resolution (see Eq. (3.48)).

In simulations with fully adiabatic electrons and a canonical control variate, an ap-
parent numerical instability occurs when one attempts to only adapt the f.s.a. ion
gyrocentre background temperature profile. The instability was first observed in
a form of a radially sinusoidal zonal flow shearing rate ωE×B profile with growing
amplitudes. Fig. C.1 shows an example of such an instability on the time-averaged
ωE×B radial profile. Plotted in black is the ωE×B profile of the standard case. This
sinusoidal pattern does not oscillate with time and appears to be around the q = 1
flux surface indicated by the vertical line. Nonetheless, this instability can be sup-
pressed if one chooses a coarse radial grid for the adaptive background temperature
profile (see Eq. (3.48)), i.e. Nψ ≤ 16 for the simulation parameters of Ch. 5. Above
this radial resolution, the ωE×B amplitudes grow. It is important to note that this
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is not a CFL-like instability as there are several grid points per sinusoidal period.
Furthermore, the instability seem to exhibit a fixed wave pattern for all cases above
Nψ = 16. This is with the exception of the adaptive case without the r.h.s. cor-
rection to the QNE, where it appears to be almost perfectly anti-phase. Fig. C.2
further shows more clearly the growth of the stationary sinusoidal pattern of ωE×B
for a selection of cases from Fig. C.1.

(a) Standard (b) Adaptive, with r.h.s. correction

(c) Adaptive, without r.h.s. correction

Figure C.2: Time evolution up to cst/a = 612 of the radial profile of the zonal flow
shearing rate, ωE×B(s, t), for marker numbers Np = 128M under the standard and
adaptive schemes, with and without r.h.s correction to the QNE (see Eq. (3.63)).
The adaptive scheme uses a canonical control variate (see Eq. (3.53)) with Nψ = 128
(see Eq. (3.48)), and for case (b), has correction to the r.h.s. of the QNE calculated
exactly (see Sec. 3.2.10.1). All plots share the same colour scale.
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Figure C.3: Radial profile of the time-averaged cst/a ∈ [1103, 1225] zonal flow shear-
ing rate ωE×B, for marker number Np = 128M under the standard (black) and adap-
tive schemes. The adaptive scheme uses a canonical control variate (see Eq. (3.53))
with Nψ = 128 (see Eq. (3.48)), and three different adaptive algorithms: adapt T
only (red), adapt both n and T with interleave (blue) and the simultaneous (green)
methods, see Sec. 3.2.4.

This problem motivated the development of the ‘simultaneous’ adaptation algo-
rithm (see Sec. 3.2.4). The idea is that the ion δf may contribute to a perturbed
gyrocentre density δn, which may produce a perturbed kinetic energy δEkin in-
terpreted by the interleaving algorithm at the temperature-only adaptive stage as
variation in the temperature (see Eq. (3.54)). This problem is avoided when changes
to δn and δEkin are simultaneously computed. A change in the perturbed parallel
flow δv∥ could also be wrongly interpreted as a temperature change. Note that for
the ‘simultaneous’ adaptive results of Fig. C.3, the contribution to δv∥ was also
simultaneously computed.

To correct for the perturbed density, along with any parallel momentum com-
ponent, all three velocity moments needed to calculated simultaneously in order to
determine correction terms to the temperature variation. Fig. C.3 shows the radial
profile of ωE×B, time-averaged after twice the simulation time of Fig. C.1. It shows
the results from the different ways of adaptation, using the standard case (black) as
reference. Nψ = 128 is set here to induce the instability. We see that adapting the
density and temperature in an interleaved fashion (blue) does not give the correct
ωE×B radial profile. While the method via simultaneous adaptation (green) does
come closer to the expected ωE×B. Fig. C.4 further shows the improvement of the
simultaneous algorithm. Comparing Figs. C.4a and C.4d, we note that it is only at
a later time cst/a > 1000 onwards that the instability begins to be noticeable.

Further analysis is required in order to better understand the cause of the insta-
bility of the adaptive scheme for a canonical control variate.
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(a) Standard Np = 256M (b) Adapt Ti only, Np = 64M

(c) n,Ti interleaved (d) ni,Ti simultaneous

Figure C.4: Time evolution up to cst/a = 1225 of the radial profile of the zonal
flow shearing rate, ωE×B(s, t), for various marker numbers Np under the standard
and adaptive schemes. The adaptive scheme uses a canonical control variate (see
Eq. (3.53)) with Nψ = 128 (see Eq. (3.48)). The adaptive scheme of: (b) adapts
the background temperature only; (c) adapts the density and temperature via the
interleaved algorithm (see Sec. 3.2.3); and (d) adapts the density and temperature
via the simultaneous algorithm.

C.2 Local control variate

The instability for an adaptive scheme using a local control variate with fully adia-
batic electrons is less severe than the option with canonical control variate. Though
not shown here, under an adaptive scheme which only adapts the f.s.a. background
ion gyrocentre temperature, the instability persists. However, with the simultane-
ous algorithm adapting both the density and temperature, the instability seems to
vanish for all values of Nψ. Fig. C.6 shows the radial profile of ωE×B, time averaged
over the same time window as Fig. C.3. We see that the adaptive cases (green and
purple) almost matches the result of the standard case (black). What remains in
the results of the adaptive scheme is a small non-growing interval-sized corrugation.
The two adaptive cases plotted differ by Nψ and the order of the basis functions
{Λ(s)} used (see Eq. (3.48)). This difference seem to have little effect on these fine
structures, which are related to the radial grid used for the quasi-neutrality-equation
(QNE) (Ns = 256, equidistant in s) and not the radial grid used for the adaptive
scheme (Nψ = 64 or Nψ = 128, equidistant in s2). Fig. C.7 shows the time evolution
of one of each of the standard and adaptive (green) cases of Fig. C.6. We see that
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at least for early times cst/a < 500, we have a good match with the standard case.
The slow radially outward drift of the corrugation structure of the standard case
may occur due to sampling noise, but this would require further studies.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

Figure C.5: Shearing rate ωE×B

Figure C.6: Radial profile of the time-averaged cst/a ∈ [1103, 1225] zonal flow shear-
ing rate ωE×B, for various marker numbers Np under the standard (black) and adap-
tive (green and purple) schemes. The adaptive scheme uses a local control variate
(see Eq. (3.53)) and adapts via the simultaneous algorithm (see Sec. 3.2.4). Nψ is
the adaptive background radial grid resolution (see Eq. (3.48). The 2nd (purple) and
3rd (green) order spline refers to the order of B-spline of the basis functions {Λ(s)}
of Eq. (3.48).

(a) Standard, Np = 256M (b) Adapt, Np = 64M

Figure C.7: Time evolution up to cst/a = 1225 of the radial profile of the zonal
flow shearing rate, ωE×B(s, t), for various marker numbers Np under the standard
(a) and adaptive (b) schemes. The adaptive scheme uses a local control variate
(see Eq. (3.42)) with Nψ = 128 with 3rd-order spline basis functions {Λ(s)} (see
Eq. (3.48)).
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C.3 Further notes

Three important comments are in order. The first is that the physics of the sim-
ulations for the use of the canonical and local control variate shown here are not
identical. The former uses the direct-δf approach (see Sec. 3.1.3.4), while the latter
uses the standard-δf approach neglecting the neoclassical term. The second is that
studies were not conducted to determined the extent to which the approximation
Eq. (3.52) effect the instability with canonical control variates. The third is that for
simulations with electrons having a hybrid response done in Ch. 6, both simultane-
ous and interleaved algorithms for the density and temperature adaptation seem to
give indistinguishable results.
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