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Abstract

Accurate forecasting of photovoltaic (PV) power production is crucial for the integration of

more renewable energy sources into the power grid. PV power production is highly intermit-

tent, due to the stochastic cloud behaviour and cloud dynamics. Previous works focused on

predicting the dynamics by combining inputs from ground-based cameras, satellite images

and numerical weather predictions with physical or statistical models. However, they are

costly or have coarse resolution.

The focus of this thesis is to advance the state-of-the-art on short-term solar resources fore-

casting. We take past PV power from a dense network of PV stations as the main input for

forecasting. We leverage a graph signal processing perspective and model multi-site PV pro-

duction data as signals on a graph to capture their spatio-temporal dependencies and achieve

higher spatial and temporal resolution forecasts. In our first contribution two graph neural

networks, based on graph convolutional layers to exploit the spatial information, are proposed

for deterministic multi-site PV forecasting: the graph-convolutional long short-term memory

(GCLSTM) and the graph-convolutional transformer (GCTrafo). These methods rely only

on production data and exploit the intuition that PV systems provide a network of virtual

weather stations. We show that the proposed models outperform state-of-the-art methods for

intra-day forecasting with high spatial and temporal resolution. However, they are difficult to

interpret.

Utility operators and grid managers could use insights derived from interpretable models

to make more informed decisions. Therefore, we introduce a novel interpretable temporal-

spatial multi-windows graph attention network (TSM-GAT) for predicting future PV power.

TSM-GAT captures different dynamical spatio-temporal correlations for different parts of the

forecasting horizon. Thus, it is possible to interpret which PV stations have the most influence

when making a prediction for short-, medium- and long-term intra-day forecasts. We show

that the proposed model outperforms multi-site state-of-the-art models for four to six hours

ahead predictions and that it yields predicted signals with a closer shape to ground truth.

Although machine learning models for PV production achieve high resolution forecasts with-

out loss in accuracy using only PV power data, they are often black box models, leading to

overly smoothed predictions. These models might overlook the impact of variable weather

conditions on PV power, indicating the model cannot fully capture cloud dynamics. Since

physically informed neural networks have shown great success when modelling physical

phenomena, we introduce a physics-informed graph neural network (PING) for forecasting

the future concentrations in the advection-diffusion processes on an irregular grid. PING
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Abstract

captures the dynamics by estimating historical velocities. It outperforms baseline models

for forecasting cloud concentration index and when combined with GCLSTM outperforms

baselines for forecasting PV production.

In this thesis, we introduce state-of-the-art models for high resolution and interpretable PV

power production forecasts. Even though the accuracy of the physics-informed model is

not better than state of the art, it provides insight into the physical behaviour of the cloud

dynamics. This insight into cloud dynamics holds potential for future integration with deep

learning models to further enhance forecasting capabilities.

Keywords: Photovoltaic systems, time-series forecasting, machine learning, graph signal

processing, graph neural networks, physics informed neural networks, advection-diffusion

processes
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Résumé

La prévision précise de la production d’énergie photovoltaïque (PV) est cruciale pour promou-

voir l’intégration d’un plus grand nombre de sources d’énergie renouvelables dans le réseau

électrique. La production d’énergie photovoltaïque est fortement intermittente, en raison du

comportement stochastique et de la dynamique des nuages. Les travaux antérieurs se sont

concentrés sur la prévision de la dynamique en combinant des données provenant de caméras

au sol, d’images satellite et de prévisions numériques du temps avec des modèles physiques

ou statistiques. Cependant, ces modèles sont coûteux ou ont une résolution grossière.

L’objectif de cette thèse est de faire progresser l’état de l’art en matière de prévision des res-

sources solaires à court terme. Nous prenons la puissance photovoltaïque passée d’un réseau

dense de stations photovoltaïques comme principale donnée d’entrée pour les prévisions.

Nous nous appuyons sur une perspective de traitement des signaux sur graphe et modélisons

les données de production photovoltaïque multi-sites comme des signaux sur un graphe afin

de capturer leurs dépendances spatio-temporelles et d’obtenir des prévisions à plus haute

résolution spatiale et temporelle. Dans notre première contribution, deux réseaux neuronaux

graphiques, basés sur des couches convolutives graphiques pour exploiter les informations

spatiales, sont proposés pour la prévision déterministe de l’énergie photovoltaïque sur plu-

sieurs sites : la mémoire à long terme grapho-convolutionnelle (GCLSTM) et le transformateur

grapho-convolutionnel (GCTrafo). Ces méthodes reposent uniquement sur les données de

production et exploitent l’intuition selon laquelle les systèmes photovoltaïques constituent

un réseau de stations météorologiques virtuelles. Nous montrons que les modèles proposés

sont plus performants que les méthodes de l’état de l’art pour les prévisions intra-journalières

à haute résolution spatiale et temporelle. Cependant, ils sont difficiles à interpréter.

Les opérateurs de services publics et les gestionnaires de réseaux pourraient utiliser les infor-

mations dérivées de modèles interprétable pour prendre des décisions plus informées. Nous

présentons donc un nouveau réseau d’attention graphique multi-fenêtres temporel-spatial

interprétable (TSM-GAT) pour prédire la production future d’énergie photovoltaïque. Le TSM-

GAT capture différentes corrélations dynamiques spatio-temporelles pour différentes parties

de l’horizon de prévision. Ainsi, il est possible d’interpréter quelles stations photovoltaïques

ont le plus d’influence sur les prévisions intrajournalières à court, moyen et long terme. Nous

montrons que le modèle proposé est plus performant que les modèles multisites de pointe

pour les prévisions de quatre ou six heures et qu’il produit des signaux prédits dont la forme

est plus proche de la réalité de terrain.

Bien que les modèles d’apprentissage automatique pour la production d’énergie photovol-
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Résumé

taïque permettent d’obtenir des prévisions à haute résolution sans perte de précision en

utilisant uniquement des données sur l’énergie photovoltaïque, il s’agit souvent de modèles à

boîte noire, ce qui conduit à des prévisions trop lissées. Ces modèles peuvent négliger l’impact

des conditions météorologiques variables sur la puissance photovoltaïque, ce qui indique

que le modèle ne peut pas saisir pleinement la dynamique des nuages. Étant donné que les

réseaux neuronaux à information physique ont fait leurs preuves dans la modélisation des

phénomènes physiques, nous introduisons un réseau neuronal graphique à information phy-

sique (PING) pour prévoir les concentrations futures dans les processus d’advection-diffusion

sur une grille irrégulière. Le modèle PING capture la dynamique en estimant les vitesses

historiques. Il surpasse les modèles de référence pour la prévision de l’indice de concentration

des nuages et, lorsqu’il est combiné avec GCLSTM, il surpasse les modèles de référence pour

la prévision de la production photovoltaïque.

Dans cette thèse, nous introduisons un modèle pour les prévisions de puissance photovol-

taïque intra-journalière à haute résolution et interprétables. Même si la précision du modèle

informé par la physique n’est pas meilleure que celle de l’état de l’art, il donne un aperçu du

comportement physique de la dynamique des nuages. Cet aperçu de la dynamique des nuages

offre la possibilité d’une intégration future avec des modèles d’apprentissage profond afin

d’améliorer les capacités de prévision.

Mots clés : Systèmes photovoltaïques, prévision de séries temporelles, apprentissage auto-

matique, traitement du signal sur graphe, réseaux neuronaux graphique, réseaux neuronaux

informés par la physique, processus d’advection-diffusion
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Zusammenfassung

Eine genaue Vorhersage der Photovoltaik (PV) Produktion ist entscheidend für die Integrati-

on weiterer erneuerbarer Energiequellen in das Stromnetz. Die PV-Erzeugung ist aufgrund

des stochastischen Wolkenverhaltens und der Wolkendynamik stark schwankend. Frühere

Arbeiten konzentrierten sich auf die Vorhersage der Dynamik durch die Kombination von

Daten aus bodengestützten Kameras, Satellitenbildern und numerischen Wettervorhersagen

(NWP) mit physikalischen oder statistischen Modellen. Allerdings sind diese kostspielig oder

sie haben eine grobe Auflösung.

Der Fokus dieser Arbeit liegt auf der Weiterentwicklung des Stands der Technik bei der

kurzfristigen Vorhersage von Solarressourcen. Wir nehmen die vergangene PV-Leistung aus

einem dichten Netz von PV-Stationen als Hauptinput für die Vorhersage. Wir nutzen die

Perspektive der Graphen-Signalverarbeitung und modellieren Zeitreihen der Photovoltaik

(PV)-Produktion an mehreren Standorten als Signale auf einem Graphen, um ihre räumlich-

zeitlichen Abhängigkeiten zu erfassen und Vorhersagen mit höherer räumlicher und zeitlicher

Auflösung zu erzielen. In unserem ersten Beitrag werden zwei Graph-Neuronale Netze vor-

geschlagen, die auf Graph-Faltungsschichten basieren, um die räumlichen Informationen

für deterministische PV-Vorhersagen für mehrere Standorte zu nutzen: die Modelle „Graph-

Convolutional Long Short Term Memory“ (GCLSTM) und „Graph-Convolutional Transformer“

(GCTrafo). Diese Methoden basieren ausschließlich auf Produktionsdaten und nutzen die

Intuition, dass PV-Systeme ein Netzwerk virtueller Wetterstationen darstellen. Wir zeigen, dass

die vorgeschlagenen Modelle die modernsten standortübergreifenden Vorhersagemethoden

für Vorhersagehorizonte von sechs Stunden mit hoher räumlicher und zeitlicher Auflösung

übertreffen. Sie sind jedoch schwer zu interpretieren

Energieversorgungsunternehmen und Netzbetreiber könnten die aus interpretierbaren Mo-

dellen gewonnenen Erkenntnisse nutzen, um fundiertere Entscheidungen zu treffen. Die

Beteiligten, wie Versorgungsunternehmen und Netzbetreiber, können jedoch die aus einem in-

terpretierbaren Modell gewonnenen Erkenntnisse nutzen, um fundiertere Entscheidungen zu

treffen. Daher stellen wir ein neuartiges interpretierbares zeitlich-räumliches Multi-Windows-

Graph-Attention-Network (TSM-GAT) zur Vorhersage der zukünftigen PV-Stromproduktion

vor. TSM-GAT kann sich an die Dynamik des Problems anpassen und erfasst unterschiedliche

dynamische räumlich-zeitliche Korrelationen für verschiedene Teile des Vorhersagehorizonts.

So ist es möglich zu interpretieren, welche PV-Stationen den größten Einfluss auf die Vorher-

sage für kurz-, mittel- und langfristige tagesinterne Vorhersagen haben. Wir zeigen, dass das

vorgeschlagene Modell die modernsten Multi-Site-Modelle für Vorhersagen von vier bis sechs
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Zusammenfassung

Stunden im Voraus übertrifft und dass es Vorhersagesignale liefert, deren Form näher an der

Wirklichkeit liegt als der Stand der Technik.

Obwohl Modelle des maschinellen Lernens für die PV-Stromerzeugung hochauflösende Vor-

hersagen ohne Genauigkeitsverluste erzielen, indem sie nur PV-Stromdaten verwenden, han-

delt es sich häufig um Black-Box-Modelle, die zu übermäßig geglätteten Vorhersagen führen.

Diese Modelle übersehen möglicherweise die Auswirkungen variabler Wetterbedingungen auf

die PV-Leistung, was darauf hinweist, dass das Modell die Wolkendynamik nicht vollständig

erfassen kann. Da physikalisch informierte neuronale Netze (PINNs) großen Erfolg bei der Mo-

dellierung physikalischer Phänomene gezeigt haben, führen wir ein physikalisch informiertes

Graph-Neuronales Netz (PInG) ein, um die zukünftigen Konzentrationen in den auf Advektion

und Diffusion basierenden Prozessen vorherzusagen, die auf einem unregelmäßigen Gitter

liegen. Das PING erfasst die Dynamik durch Schätzung der historischen Geschwindigkeiten.

Es übertrifft die Basismodelle bei der Vorhersage des Wolkenkonzentrationsindex und in

Kombination mit GCLSTM die Basismodelle bei der Vorhersage der PV-Produktion.

In dieser Arbeit stellen wir ein hochmodernes Modell für hochauflösende und interpretier-

bare Intra-Day-PV-Leistungsprognosen vor. UAuch wenn die Genauigkeit des physikalisch

informierten Modells nicht besser ist als der Stand der Technik, bietet es doch einen Einblick

in das physikalische Verhalten der Wolkendynamik. Dieser Einblick in die Wolkendynamik

birgt Potenzial für die zukünftige Integration mit Deep-Learning-Modellen, um die Vorhersa-

gefähigkeiten weiter zu verbessern.

Stichwörter: Photovoltaikanlagen, Zeitreihenvorhersage, maschinelles Lernen, Graphen -

Signalverarbeitung, Graph-Neuronale Netze, physikalisch informierte Neuronale Netze, Ad-

vektions - Diffusionsprozesse
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1 Introduction

Motivation

Improving power predictions of intermittent and non-dispatchable energy sources is one of

the key elements contributing to increasing the penetration of variable renewable energy in

the power grid. Accurate time-series forecasting of renewable power generation is vital for

improving electricity management, power system scheduling and trading on the electricity

market (Gonçalves et al., 2021). It is challenging to integrate variable solar power sources into

the existing power grid due to the dynamics of their production and the dependence of their

production on weather conditions, including irradiance and cloud movements. Thus, it is

crucial to accurately forecast PV power generation on all horizons, including intra-hour (up

to one hour ahead), intra-day (from one hour up to six hours ahead), day-ahead (six hours

to twenty-four hours ahead) and long term forecasts (from two days to year(s) ahead). This

thesis focuses on the deterministic intra-day PV production forecasts on a dense network of

PV stations since they are essential for grid congestion management and energy trading.

The main challenges of predicting PV power generation are related to its volatile character-

istics and the temporal and spatial dependencies of the irradiance and cloud patterns. The

intermittency of solar production has a deterministic origin, coming from the earth and sun’s

astronomical parameters, and a stochastic one, whose significant daily contribution varies

with the cloud dynamics. In order to address the variability of cloud dynamics, substantial

research endeavours are dedicated to extracting and predicting the cloud motion vectors from

ground-based cameras, satellite images, and numerical weather prediction (NWP) (Antonan-

zas et al., 2016; Li et al., 2016; Sirch et al., 2016; Song et al., 2022). Although ground-based

cameras provide precise local information, they are expensive to deploy and maintain over

many PV stations. On the other hand, satellite-based images or numerical weather predictions

provide wide-area observational data but are computationally highly expensive. A question

arises whether multi-site data-driven methods that rely solely on past production data can

provide better intra-day forecasts than those incorporating additional sensors or numerical

weather forecasts.
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Different machine learning models investigated this question using only the past PV data from

multiple sites (Benavides Cesar et al., 2022). Both linear and non-linear models had consider-

able success modelling the spatio-temporal correlations between PV power production data

(Vyas et al., 2022; Lai et al., 2018). Furthermore, different non-linear models employed recur-

rent neural networks or attention mechanisms to capture the temporal correlations (Agoua

et al., 2018; Dai et al., 2023; Harrou et al., 2020). Attention mechanisms and convolutional

neural networks are often utilized to capture spatial correlations (Shih et al., 2019). However,

these models only partially exploit the spatio-temporal relations from multiple PV stations. In

order to improve the accuracy of the model and capture better spatio-temporal correlation

between the PV stations, a Graph signal processing (GSP) perspective has been taken. GSP is

an emerging field that allows the processing of signals on irregular domains, leveraging graphs

to capture their spatial relationships (Sahili and Awad, 2023). While spatio-temporal graph

forecasting is studied in various fields, the application for deterministic multi-site PV power is

yet to be explored. Hence, the graph signal processing perspective should be leveraged to fully

exploit spatio-temporal correlations among PV stations and infer part of the cloud dynamics.

Graph-based models for time series forecasting tasks successfully improved the accuracy of

the forecast in different domains. However, these models predominantly employ predefined

graph architectures, confining their correlation detection to a limited set of predefined nodes

(Khodayar et al., 2019; Khodayar and Wang, 2019). This limitation emerges when graphs utilize

predefined k-neighbours; they inherently restrict correlation discovery to those specific nodes

and neglect the impact of the further away nodes. Moreover, we model physical phenomena

when modelling PV power production, and an interpretable model is desirable. However, state-

of-the-art graph-based models utilize recurrent and graph convolutional neural networks,

which are difficult to interpret. This limitation highlights the need for an interpretable graph

neural network for time-series forecasting in the PV power generation domain.

Another challenge encountered by most of the data-driven machine learning methods, which

rely solely on PV power production data when making a forecast, is that they are used as

black-box models. The forecasts from these models are usually too smooth and, as such,

do not fully capture cloud dynamics. Thus, physical processes guiding the cloud dynamics,

advection-diffusion processes, are entirely neglected in these models. Although PV power

forecasting models that use numerical weather predictions use physical models, they require

numerical methods to solve the set of physical equations, making them highly computationally

expensive. On the other hand, satellite images can extract and propagate the cloud motion,

but they utilize optical flow or particle image velocimetry (Quesada-Ruiz et al., 2014; Yang

et al., 2020), which are more suitable for rigid bodies. In addition, cloud vector detection

and propagation require analyzing and processing images, which can be computationally

expensive for a wide area. Oppositely, methods that utilize only ground-based PV power data

can accelerate 100 times the forecast computation (Carrillo et al., 2022). These outcomes

lead us to conclude that the knowledge of advection-diffusion processes should be utilized in

data-driven PV forecasting models with ground-based PV power data.
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The accurate forecasting of spatio-temporal PV power production with high spatial and tem-

poral resolution using only ground-based PV power data, remains a predominant challenge

in the field today. Similarly, designing an interpretable machine learning model tailored for

intra-day PV power prediction is yet another complex endeavour that has to be addressed. An

equally significant challenge is the development of a physically informed machine learning

model that captures cloud dynamics and can accurately forecast PV power production. This

thesis seeks to address previously mentioned challenges.

Thesis Outline

This thesis exploits a Graph Signal Processing perspective and machine learning for PV power

generation forecasting on a dense network of PV stations. The work is organized in four main

objectives: background analysis, exploiting spatio-temporal relations between PV power data

using graph-based neural network, building an interpretable graph-based model for PV power

forecasting and studying if introduction of the advection-diffusion physical laws improve

capturing the cloud dynamics and PV power forecast. The schematic representation of these

objectives is given in Figure 1.1. Each of these objectives are described in the dedicated

chapters:

Chapter 2 covers the background analysis of the multi-site PV power generation forecast-

ing. It discusses the main advantages and drawbacks of the models that incorporate

additional information besides ground-based PV power data, satellite images, NWP and

meteorological data. It introduces the traditional PV forecasting models, persistence

and smart persistence, as well as the state-of-the-art models for photovoltaic power

production. Then, it presents the foundational concepts in graph signal processing and

different neural networks, including graph convolution and graph attention networks,

and recurrent neural networks which serve as building blocks in the next chapters.

Chapter 3 answers whether multi-site data-driven methods that rely solely on past produc-

tion data can provide better intra-day forecasts than those incorporating additional

sensors or numerical weather forecasts. First, state-of-the-art machine learning meth-

ods for PV power forecasting are discussed in detail. Then, a graph signal processing

perspective is proposed to model PV production time series as signals on a graph for

high temporal and spatial resolution of the PV forecast. The proposed models utilize the

graph convolutional neural networks to model spatial correlations and recurrent and

transformer networks to model temporal relations between the data. They outperform

state-of-the-art multi-site models and single-site models that utilise numerical weather

predictions as additional source of information.

Chapter 4 addresses the challenge of creating an interpretable model for the PV power fore-

casting task in order to capture cloud dynamics. First, it discusses state-of-the-art graph-

based models for time-series forecasting and rises question of their interpretability. It
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Figure 1.1: Schematic representation of the objectives of the thesis.

proposes to model the time series on a dynamic graph and to utilize the multi-window

approach in order to capture cloud dynamics for short-, medium- and long-term part of

intra-day forecasting horizon. Interpretable graph-based model, which utilizes graph

attention, is proposed for intra-day PV power forecasting. Compared to the state of the

art, the proposed model’s shape of predicted signal is closer to the ground truth, indicat-

ing the model’s ability to capture cloud dynamics. The proposed model outperforms

state of the art for four to six hours ahead PV power prediction.

Chapter 5 tackles the question of capturing cloud dynamics by introducing physical laws

in the model for PV power forecasting. Particularly, a novel physically informed graph

neural network for forecasting advection-diffusion processes is proposed to address

the scenario when limited historical data is available on both regular and irregular

grid. First, the state-of-the-art physically inspired neural networks on regular grids and
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meshes are investigated. Then, it proposes to utilize the physical laws in conjecture with

graph neural networks to estimate historical velocity direction and forecast future fluid

concentration on regular and irregular domains. The proposed model is evaluated on

different advection-diffusion processes including cloud index, sea surface temperature,

synthetic datasets and PV power generation. When compared to state-of-the-art models,

the proposed model outperforms them for cloud index and PV power prediction dataset.

Chapter 6 contains a summary of the main outcomes and future perspectives.
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2 Background

In this Chapter, we introduce the main topics of the thesis and define the principal concepts.

We first introduce the concept of PV power forecasting. Then, the Chapter focuses on Graph

Signal Processing as the foundation for processing signals on irregular domains, such as sen-

sory networks and PV stations. We introduce two machine learning architectures inspired by

Graph Signal Processing (GSP) concepts: the Graph Convolutional Network (GCN) and the

Graph Attention Network (GAT). These architectures effectively model spatial correlations

present in time-series data. Then for capturing temporal correlations, recurrent neural net-

works can be employed. Among them, the Long Short-Term Memory (LSTM) network stands

out as one of the most frequently utilized methods.

2.1 PV power forecasting

PV power forecasting is essential to ensure grid stability when integrating highly variable solar

energy sources. Accurate forecasts are important for different aspects of grid management,

including optimization of energy distribution, managing peak demand to avoid grid conges-

tion and cost reduction. Research in PV power forecasting can be categorized based on the

temporal horizon of the forecast on intra-hour forecast or nowcasting, intra-day or short-term,

day-ahead or medium-term and long-term forecasts (Antonanzas et al., 2016). Intra-hour

forecasting (nowcasting) addresses immediate dynamics, and the prediction span is from

a few seconds to up to an hour ahead. They are used in real-time optimization for energy

management systems (Moreno et al., 2021). Intra-day forecasting focuses on predictions up to

six hours ahead, and they are used for intra-day market participation and day-ahead operation

optimization to ensure commitment, scheduling, and dispatch of generated electrical power

(Iheanetu, 2022). Day-ahead forecasts cover the horizon from six hours to a day ahead, which

is essential in grid management and energy trading strategies. Long-term forecasts are focused

on periods longer than two days ahead, providing a broader perspective for strategic planning,

transmission and distribution management. According to the origin of the inputs, forecasting

models could be divided into models that use outputs from sky imagers, satellite images,

NWP, meteorological measurements and information from nearby PV plants. In Table 2.1,
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Table 2.1: Classification of data sources for PV power forecasting according to temporal horizon

Intra-hour (0-1h) Short-term (1-6h) Medium-term (6-48h) Long-term (2+ days)

Data sources

- Sky-imagers

- Satellite images

- NWP

- Meteorological data

- Neighbouring PV plants

- Satellite image

- NWP

- Meteorological data

- Neighbouring PV plants

- NWP

- Meteorological data

- Neighbouring PV plants

- NWP

- Neighbouring PV plants

Application

- Grid quality

- Grid stability

- Scheduling reserves

- Demand response

- Load - following

- Control of different load zones

- Trading

- Planning

- Unit commitment

- Transmission management

- Trading and Planning

- Asset optimization

-Planning plant maintenance

forecasting methods are classified according to the time horizon, input data sources, and the

role they play in a grid operation.

Precise local meteorological data, including irradiance, may be available from meteorological

providers, however, procurement of the high-resolution weather data might be expensive,

and it requires constant communication with weather providers, which might fail. Good

quality meteorological data might not be available for every location where a PV system

is installed. In the state of the art, they are used for intra-hour, short- and medium-term

forecasts. Clear-sky models are usually fed with meteorological variables to the model. Clear-

sky irradiance is the maximum theoretical irradiance at a certain point in space and time

under clear-sky conditions. It is calculated as a deterministic variable (Ineichen, 2006), based

on the geographical location and time of the year. Clear-sky irradiance contributes to more

accurate PV power forecasting models by offering insights into the daily trends and seasonal

effects.

2.1.1 Sky-imagers

Since the variability of PV power generation is correlated with cloud dynamics, different data

sources have been used to track cloud movement and improve the accuracy of PV power

forecasts. Ground-based cameras offer high spatial resolution of the images, which are anal-

ysed in order to identify and classify clouds. Then, the cloud motion is estimated, and the

cloud location and velocity data are obtained (Kuhn et al., 2018; Song et al., 2022; Le Guen and

Thome, 2020). Real-time irradiance measurements or clear-sky irradiance values are utilised

with cloud motion vectors to predict solar irradiance and PV power production. They are often

used for intra-hour forecasting due to their high spatial and temporal resolution. However,

they are cite-specific, lack spatial coverage for a wide forecast area, and have high installation

and maintenance costs (Si et al., 2021; Kumar et al., 2020).
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2.1 PV power forecasting

Figure 2.1: Schematic representation of the steps in irradiance forecasting using satellite
images. Reproduced from Mitra et al. (2022).

2.1.2 Satellite-based images

Satellite-based images excel at intra-day forecasts, by addressing the problem of tracking

cloud motions in a large region. Like sky-imager methods, satellite image-based methods

first detect the clouds and calculate the cloud index as in Figure 2.1. Then, the particle

image velocimetry, optical flows and other cloud-motion vector models are used in order to

estimate the clouds (Quesada-Ruiz et al., 2014; Sirch et al., 2016). Once the cloud velocities are

estimated, they are used to obtain the future cloud cover, which subsequently is utilized for

forecasting solar irradiance or PV power generation. However, the assumption made is that

cloud features do not change between two consecutive images, thus treating the clouds as

rigid bodies which move in a straight line with a cloud motion vector (Si et al., 2021). Since

the cloud concentration and cloud shape are dynamically changing, a non-linear model is

needed to describe the cloud motion. What is more, the analysis and processing of satellite

images are computationally expensive processes, leading up to 100 times slower forecast

computations compared to non-linear machine learning models that utilize ground-based

information (Carrillo et al., 2022). Another challenge with satellite-based models is related to

cloud detection and representation of the PV station as a single pixel on the image. This might

lead to huge deviation in PV power forecasting due to the prediction error of a pixel (Cheng

et al., 2022). Satellite images do not have information about the irradiance and sun position,

making it difficult to dynamically detect which cloud region is blocking the sunlight at certain

PV station, thus requiring either ground-based measurement of irradiance or NWP data (Si

et al., 2021).
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2.1.3 Numerical weather predictions

Satellite images are often used in NWP models (Kumar et al., 2020). NWP uses atmospheric

physics knowledge to propagate the cloud dynamics and forecast the cloud index and other

weather variables. Traditionally, numerical models are employed to solve a set of differential

equations, describing the underlying physics, and they obtaining the evolution of the weather

conditions, including cloud movement, humidity, irradiance and temperature (Buizza, 2019).

Then, predicted weather data is used to forecast PV power production accurately. NWP model

are widely used in PV forecasting for medium- and long-term forecasts since they have a coarse

spatial and temporal resolution. However, for intra-hour and intra-day forecasts, data-driven

models are mostly preferred since they do not require prior assumptions, while offering short

inference time (Chu et al., 2021). Furthermore, they can provide a data-driven approach for

optimizing privacy-preserving data, which is highly important decentralized renewable energy

sources forecasting (Sweeney et al., 2020).

2.1.4 Benchmark of PV forecasting models

Persistence and smart persistence models are often used as benchmarks for PV power forecast-

ing tasks, due to their simplicity (Antonanzas et al., 2016). They represent traditional models

for PV power forecasts. The persistence model assumes that PV power production remains

the same between a time point t and t +∆t . It is assumed that the forecasted power for future

time horizon is the same as the last measured value, or the same value of the previous day, at

the same time of the day:

p(t +∆) = p(t ) (2.1)

where p(t ) represents the power produced at a specific PV plant at time t and p(t +∆t ) is the

future PV power production. However, this only holds for stationary time series. This is why

it is only applied for intra-hour forecasts (Antonanzas et al., 2016). Smart persistence was

developed for longer horizons and it is represented as sum of the stationary and stochastic

component of PV power production. In the work of Pedro and Coimbra (2012), it is defined as:

p(t +∆t ) =
pcl sk y (t +∆t ) if pcl sk y = 0

pcl sk y (t +∆t ) p(t )
pcl sk y (t ) otherwise

(2.2)

where pcl sk y (t +∆t ) is the future clear-sky irradiance at time t +∆t . However, it is not able to

adjust the angle of the sunlight when cloud conditions are persistent within the forecasting

time window (Kumler et al., 2019). In addition, it can not adapt to the advection since it

assumes that the sky conditions remain constant (Kumler et al., 2018; Huertas Tato and

Centeno Brito, 2018).
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2.1.5 Short-term PV power forecasting

Although persistence and smart persistence models are often used as benchmarks, they are

successful on intra-hour and short-term forecasts only when the consecutive power generation

values are correlated (Persson et al., 2017). These models relay on ground-based PV power

production data. Hence, many researchers for short-term PV power forecasting use additional

data sources, including: ground-based cameras, satellite images, and numerical weather

prediction (NWP) (Antonanzas et al., 2016). On one hand, NWP (Huang and Perry, 2015; Li

et al., 2016; Sperati et al., 2016; Pierro et al., 2017) excel in long-term forecasts, but they perform

rather poorly at short-term horizons and have coarse spatial and temporal resolution.On the

other hand, satellite images are computationally expensive to process (Schmidt et al., 2017),

whereas ground-based cameras are expensive to deploy and maintain over many PV stations,

as already discussed.

Plethora of machine learning models which relay solely on ground-based PV power data when

forecasting future production is developed. First linear models are developed, which include

simple linear auto-regressive methods for intra-day and longer-term forecasts (Carriere et al.,

2020). Linear models include vector autoregressive methods (Agoua et al., 2018; Vyas et al.,

2022), auto-regressive (AR) and auto-regressive moving-average (ARMA) (Singh and Pozo,

2019). However, these models can not capture complex non-linear temporal patterns in the

PV data (Zhang et al., 2022b). Moreover, the performance of linear and non-linear machine

learning methods are compared in the work of Lauret et al. (2015). They show that non-linear

machine learning methods outperform the simple linear models for forecasting horizons

larger than one hour ahead.

Different non-linear machine learning models are proposed to improve the accuracy of ground-

based PV power forecasting data. Non-linear models include different recurrent neural net-

works which are used to capture temporal patterns, particularly gated recurrent unit (GRU)

and long-short term memory network (LSTM). Since clouds affect neighbouring PV stations

sequentially, PV power production data is correlated in time and space. Thus, convolutional

networks are proposed, on top of the recurrent neural networks, to capture spatial correla-

tions (Lai et al., 2018; Dai et al., 2023). Furthermore, the attention mechanism, which had

demonstrated significant success in natural language processing and other domains such

as computer vision and machine translation, is also introduced in PV forecasting tasks. The

ability to dynamically weigh the importance of different parts of the input sequence based on

their relevance to observed value, enhanced the accuracy of PV forecasting tasks. Thus, it is

often coupled with recurrent and convolutional networks and applied in PV forecasting task

(Zhou et al., 2019; Shih et al., 2019).

While machine learning models achieved notable results in PV power forecasting, they often

do not fully exploit the spatio-temporal relations and improve the forecast accuracy. Graph

signal processing (GSP) perspective is taken in order to leverage data which lies on irregular

grid and to capture their spatial relationships Sahili and Awad (2023). Spatio-temporal graph
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forecasting is studied in various fields for spatio-temporal time series forecasting tasks, in-

cluding traffic forecasting (Kwak et al., 2021), weather forecasting (Keisler, 2022), irradiance

forecasting (Zhang et al., 2022a), wind speed and power forecasting (Li et al., 2023; Park and

Park, 2019) among others. These architectures use recurrent neural networks to capture

temporal correlation and graph convolution neural network to capture spatial correlations.

2.2 Graph Signal Processing

We review some relevant concepts in graph signal processing in order to formulate the PV

forecasting problem as a time-series forecasting problem on graphs. A weighted undirected

graph G is represented as a tuple G = (ν,ε,A), where ν = {v1, v2, . . . , vN } is its set of vertices

(nodes) and ε its set of edges (links). If nodes vi and v j are connected, the edge between

vi and v j is denoted by ei j ∈ ε. The topology of the graph is determined by its symmetric

adjacency matrix A of size N ×N . The matrix element Ai j gives the edge weight between

vertices vi and v j and is zero in the absence of an edge ei j . Another important operator is the

Laplacian matrix L, defined by

L = D−A, (2.3)

where D is the degree matrix. It represents the diagonal matrix of nodes’ degrees:

Di i =
∑

j
Ai j . (2.4)

where Di i represents an entry of diagonal matrix. Normalised Graph Laplacian is usually used

in the machine learning models:

Ln = D−1/2AD−1/2 (2.5)

Laplacian matrix is positive semidefinite and its eigendecomposition is defined with:

L = UΛUT , (2.6)

where U is a unitary matrix of eigenvectors andΛ ∈RN×N is the diagonal matrix of associated

eigenvalues λi , i = 1, . . . , N . Finally, we define a graph signal as a mapping x : ν→R, such that

xv ∈R is the signal value at node v . The graph Fourier transform of a signal x is defined as

ẋ = UTx. (2.7)

The inverse Fourier transform is then obtained as

x = Uẋ. (2.8)

The graph Fourier transform of signal x enables the principles developed in classical signal

processing to be extended on graphs, such as graph signal filtering, sampling graph signals

and spectral analysis of graph signal. Therefore, we can define filtering of a graph signal x by
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filter h as:

h(L)x = h(UΛUT )x, (2.9)

where h(Λ) is the diagonal matrix with entries h(λi ) ∈R, i = 1, ..., N . Finally, we can define in

the graph Fourier domain graph convolution, of a signal x with a real function h as:

h ∗G x := Uh(Λ)UTx, (2.10)

where ∗G denotes the spectral graph convolution operation. This operation requires calcu-

lating the eigendecomposition of the graph Laplacian, which might be computationally very

expensive for large graphs. Furthermore, it requires multiplication with the eigenvector matrix

U, leading to high complexity O (N 2). In addition, the size of the filters h defined in the spectral

domain depends on the number of vertices and they are not localized.

To overcome these issues, the authors in Hammond et al. (2011) have proposed to parametrize

the filter as:

h(Λ) =
K−1∑
k=0

θkΛ
k (2.11)

where parameter θ ∈RK is a vector of polynomial coefficients. Furthermore, in the works of

(Hammond et al., 2011) is shown that the spectral polynomial filter with order of polynomial

K are K -localized.

For more details and in-depth review of GSP we refer the reader to the work of Ortega et al.

(2018).

2.3 Graph Convolutional Networks

Graph convolutional networks are used in our work to find the spatial correlations between PV

stations, hence, we discuss it in more detail. In general, Graph Convolutional Neural Networks

can be divided into two categories: spectral convolution (Ortega et al., 2018; Bruna et al., 2014;

Defferrard et al., 2016) and spatial graph convolution (Duvenaud et al., 2015; Atwood and

Towsley, 2016).

In the work of Defferrard et al. (2016), the authors have shown that using the localised polyno-

mial filter, defined in 2.11 is still computationally expensive due to multiplication with the

Fourier basis U. They propose to solve this problem using a polynomial function that could be

computed recursively, such as Chebyshev expansion.

Hence, the Chebyshev series expansion is combined together with the scaling of the Laplacian

eigenvalues to parametrize and approximate h(Λ) as:

h(Λ) ≈
K−1∑
k=0

θk Tk (Λ̃), (2.12)
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where θk ∈R are Chebyshev coefficients, Λ̃= 2Λ/λmax − IN is the scaled eigenvalue matrix,

and Tk (Λ̃) ∈RN×N is the diagonal matrix with diagonal entries the Chebyshev polynomial of

order k applied to the scaled eigenvalues. Using functional calculus and plugging into (2.10),

one finally gets

h ∗G x ≈
K−1∑
k=0

θk Tk (L̃)x, (2.13)

where L̃ = 2L/λmax − In is the scaled Laplacian. The main practical advantage of the right

side in (2.13) is to reduce the computation complexity from O (N 2) to O (K |ε|). Moreover, the

graph convolutional filter represented with polynomials of order K of the scaled Laplacian is

spatially localized and only depends on nodes that are K -hops away from the central node.

The authors have shown the ability of the proposed neural network to extract local features

through convolutional layers, when trained for image and text classification tasks on a regular

and irregular grids. Furthermore, they show that filter approximation with Chebyshev expan-

sion of Graph Laplacian reduces the computational complexity of spectral graph convolution

to a linear complexity. However, in these works the learned filters depend on the graph struc-

ture and can not be directly applied to the graph with different structured. Furthermore, the

number of neighbours considered is always restricted to a local neighbourhood of K , which

might represent a memory issue on densely connected graphs with large number of nodes.

2.4 Graph Attention Networks

In this work, we also use Graph Attention Networks (GAT), from the work of Veličković et al.

(2018), to infer the correlation between nodes. Let a signal value at node i ∈ N be represented

with a column vector xi = [x1
i , . . . , x f

i ] ∈R f , where f is the number of features per node. The

attention mechanism is used to weight the importance of node j features to the node i . A

shared matrix W ∈R f ′× f is used to embed input features f into a f ′-level feature space. Then

the normalized attention coefficients αi j are computed from (4.4):

αi j = so f tmax j
(
l
(
a · [Wxi||Wxj

]))
(2.14)

where a ∈ R2 f ′×1 is a row vector parametrizing the attention mechanism and · denotes dot

product multiplication between vectors. A concatenation is represented with || and l (·) denotes

the activation function LeakyReLU. Finally, the obtained normalized attention coefficients are

used to compute the final output hi for every node (4.5):

hi =σ
( ∑

j∈Ni

αi j Wxj

)
(2.15)

where Ni represents the neighbourhood of node i and σ(·) is the LeakyReLu non-linearity.

In order to stabilise the learning process of self-attention, the authors have proposed multi-

head attention. Attention operation is repeated K times with different parameters, before
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Figure 2.2: The architecture of the GAT layer with multi-head attention. Reproduced from
Veličković et al. (2018).

aggregating the output features h′
i:

h′
i = ∥K

k=1σ

( ∑
j∈Ni

αk
i j Wk xj

)
(2.16)

where αk
i j are attention coefficients in k-th attention head, and wight matrix Wk are learnt for

each head. The output h′ contains the aggregated information from each attention head, see

Figure 2.2.

Graph attention networks are computationally and memory efficient, since the number of

parameters does not depend on the number of nodes and edges. They implicitly allow model

to assign different weights to different nodes in the same neighbourhood. This allows them to

capture correlations among the data and to be utilized in different deep learning models in

various tasks, including traffic forecasting Guo et al. (2019), recommender systems Wang et al.

(2019), drug discovery Jiménez-Luna et al. (2020), and many others.

Although, they are initially developed for a node classification task, they could be extended for

graph classification tasks, as well as time-series forecasting task. Another research direction

that is not addressed by authors is thorough analysis on the model interpretability, see the

work of Veličković et al. (2018) for more detail.

2.5 Long-short term memory network

Graph attention and graph convolutional networks are widely used to model spatial relation-

ships between the data points. On the other hand, the recurrent neural networks are designed

to find the patterns and process sequential data. Hence, they are suitable for capturing the tem-
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poral dynamics in time series data. Two popular types of recurrent neural networks are Gated

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,

1997). They are used in conjecture with convolutional and attention models in time series

forecasting. The gating mechanism is introduced in LSTM in order to address the vanishing

gradient problem, from which classical recurrent neural networks suffer. The gates enable

LSTM cells blocks to forget irrelevant information, while keeping the important information

for a longer period of time. They are designed to handle time-series data with the longer

dependencies. These gates can capture both the long-term and short-term relations between

the points in time series data.

𝜎 𝜎 𝜎𝑡𝑎𝑛ℎ

𝑡𝑎𝑛ℎ

𝑪𝒕−𝟏

𝒉𝒕−𝟏

𝒙𝒕

𝒉𝒕

𝒉𝒕

𝑪𝒕

Figure 2.3: The architecture of the LSTM cell.

LSTMs have 4 important components: cell state, forget, input and output gate, shown in

Figure 2.3. The forget gate uses a sigmoid activation function to decide whether to keep the

current information via:

f(τ) =σ(W f ,h ·h(τ−1)+W f ,x ·x(τ)+b f ). (2.17)

The input gate considers new information to the LSTM and the hidden state from the previous

time step. Then it decides whether to update with the new information the current cell state:

i(τ) =σ(Wi ,h ·h(τ−1)+Wi ,x ·x(τ)+bi ), (2.18)

where sigmoid activation function decide what percentage of the information is used for

update. The cell state is used to store long-tern memory, and it is updated by both forget gate

and the input gate:

c(τ) = i(τ)⊗ c̃(τ)+ f(τ)⊗c(τ−1), (2.19)

where c̃(τ) represents the new information from the input gate that is taken into account

c̃(τ) = tanh(Wc,h ·h(τ−1)+Wc,x ·x(τ), (2.20)
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when updating the memory state. Finally, the hidden state of LSTM cell is defined:

h(τ) = o(τ)⊗ tanh(c(τ)) (2.21)

where σ is the sigmoid function and ⊗ is the Hadamard product.

LSTM networks overcome vanishing gradient problem, from which simple recurrent neural

networks suffer when modelling dependencies in the long-term sequences (Bengio et al.,

1994). LSTMs use the forget gate to remove the information that is irrelevant to the model

while deciding which information is important and stored in the models cell state. Thus, they

control the information and gradient flow.

LSTM networks have been used in various tasks, including: traffic speed and congestion fore-

casting, renewable energy production forecasting, equipment fault diagnosis, classification of

medical diagnosis and many others (Liu et al., 2022; Li et al., 2017; Xiao et al., 2023; Lipton

et al., 2016). Most notably, they are used in time-series forecasting task, due to ability to handle

longer-term sequences and capture longer-term dependencies.

Even though LSTMs are able to capture correlations across longer sequences, compared to

vanilla recurrent neural networks, they still diminish the information which was stored much

earlier, when processing long sequences. Additionally, they still might suffer from exploding

gradient, when input sequences are extremely long.
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3 Spatio-temporal graph neural net-
works for multi-site PV power fore-
casting

3.1 Introduction

Intra-day PV power production forecasting methods often combine additional data source,

which might have coarse spatial and temporal resolution. Moreover, processing the addi-

tional data sources can be computationally expensive. State-of-the-art PV power production

forecasting methods use inputs from various sources in order to improve the accuracy of

the forecast, in particular: ground-based cameras (Chu et al., 2015), satellite images (Jang

et al., 2016; Schmidt et al., 2017), and NWP (Antonanzas et al., 2016). Ground-based cameras

are expensive to deploy and maintain; thus, they are better suited for intra-hour forecasts.

Oppositely, NWPs excel at longer-term forecasts but usually have coarse spatial and temporal

resolution. Satellite images improve the accuracy of short-term forecasts; however, they are

computationally expensive. Therefore, in order to avoid the issues brought by the additional

exogenous data, the question arises whether it is possible to achieve state-of-the-art results

relying only on past PV power generation data.1

Different classes of machine learning models have previously been reported to investigate this

question. Traditional approaches, based on auto-regressive (AR) linear models, outperform

persistence model (Agoua et al., 2018; Carrillo et al., 2020). However, these models are out-

performed by non-linear neural network models, which rely on recurrent and convolutional

neural networks. The recurrent structures are finding the temporal correlations between PV

power data. Since passing clouds influence neighbouring PV sites sequentially, the cloud cover

and movements can be captured by considering spatial relations between PV stations. Conse-

quently, convolutional neural networks (CNN) and attention mechanisms have been proposed

to capture spatial correlations (Zhou et al., 2019; Jeong and Kim, 2019). Although these models

are able to capture complex patterns, they do not fully exploit the spatio-temporal information

of multiple sites.

Graph signal processing is a recent framework that allows the processing of signals defined

1The content of this Chapter is based on the publication (Simeunović et al., 2022a).
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in irregular domains by using graphs to capture their interdependence (Ortega et al., 2018).

Recently, graph neural networks (GNN) have attracted a lot of attention due to their expressive

power and ability to infer information from complex data such as brain signals, social network

interactions and traffic congestion patterns (Zhou et al., 2020; Wu et al., 2020). Recurrent

neural networks coupled with graph convolutional structures were recently proposed for wind

speed forecasting (Khodayar and Wang, 2019). The main drawback of this approach is that it

requires one model for each step ahead in the prediction horizon, which is not sample efficient

(needing around four years of data for training) and not scalable for a large number of nodes.

Graph models have also been used to produce probabilistic forecasts for solar irradiance in

(Khodayar et al., 2019), which proposed a graph convolutional auto-encoder to model the

irradiance’s probability distribution at node level in a scalable fashion.

We take a GSP perspective and model the PV production time-series as signals on a graph.

The intuition behind this choice is that for a sufficiently dense network of PV systems, graph-

based models can exploit the spatio-temporal dependencies of PV production data to infer

part of the cloud dynamics and forecast production more accurately. Multi-site photovoltaic

production time series are modelled as signals on a graph in order to achieve higher spatial

and temporal resolution forecasts. We present two novel spatio-temporal GNN models for

deterministic multi-site PV power forecasting which rely entirely on production data: the

Graph-Convolutional Long Short Term Memory (GCLSTM) and the Graph-Convolutional

Transformer (GCTrafo) models. Both models use graph convolutional layers to infer the spatial

patterns from the data though they use different structures to model the time dependence:

GCLSTM uses recurrent structures, whereas GCTrafo uses attention mechanisms. The pro-

posed models are compared with state-of-the-art methods for deterministic multi-site PV

forecasting, for a forecasting horizon of six hours ahead, over an entire year in two datasets

distributed over Switzerland: (1) production data from 304 real PV systems, and (2) simulated

production of 1000 PV systems. Additionally, the proposed forecasting models are compared

with single-site state-of-the-art forecasting methods that use NWP as inputs for two sites also

in Switzerland.

The rest of the Chapter is organized as follows. Section 5.2 introduces preliminaries on

graph convolution and graph time series forecasting of PV generation. Section 5.3 details the

proposed GCLSTM and GCTrafo GNN architectures. Experimental results of our evaluation

are presented and discussed in Section 5.4. Finally, we conclude this Chapter in Section 5.5.

3.1.1 Related work

Researchers use various data sources, including ground-based cameras (Chu et al., 2015),

satellite images (Jang et al., 2016; Schmidt et al., 2017), and NWP (Antonanzas et al., 2016) to

improve the accuracy of the short-term PV power production forecast. Ground-based cameras

are expensive to deploy and maintain in a grid with a large number of PV stations. Furthermore,

they yield high accuracy only for intra-hour forecasts. On the other hand, satellite images
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are more suitable for regional forecasting when PV stations are clustered, since the wide-area

images are inadequate for providing site-specific information. Methods that combine satellite

images with NWP (Huang and Perry, 2015; Li et al., 2016; Sperati et al., 2016; Pierro et al., 2017)

excel in long-term forecasts, but they perform rather poorly at short-term horizons and high

spatial resolution. Precise local numerical weather forecasts may be accessible by dedicated

meteorological providers, but are often very costly to acquire and require heavy processing.

In order to avoid issues coming from the additional data source, data-driven models that use

only PV power production without additional sources are developed. The traditional auto-

regressive (AR) linear models model which use only PV power production data are proposed

in works of Yang et al. (2015). These were further extended to vector auto-regressive (VAR),

Lasso-VAR (Cavalcante and Bessa, 2017; Agoua et al., 2018), graph-based spatio-temporal

AR (Carrillo et al., 2020) and auto-regressive moving average (ARM) models (Singh and Pozo,

2019). Simple non-linear neural networks, however, outperform persistence model and simple

linear methods for forecasting horizons longer than one hour (Lauret et al., 2015). Nonlinear

neural network models include recurrent and convolutional neural networks. The recurrent

structures with long short-term memory (LSTM) network (Ghaderi et al., 2017), (Lai et al.,

2018; Lee et al., 2018) perform well at capturing temporal patterns. Since passing clouds

influence neighbouring PV sites sequentially, the cloud cover and the cloud movements can

be captured by considering spatial and temporal relations between PV stations. For that

purpose, convolutional neural networks (CNN) have been proposed to extract the spatio-

temporal correlations by stacking the PV signals as an image and reordering their position

in the image based on their location (Jeong and Kim, 2019; Zhu et al., 2018). In addition,

attention mechanisms have been also introduced to capture spatial correlations (Zhou et al.,

2019; Shih et al., 2019). One of the main advantages of (Shih et al., 2019) is the high accuracy

for different spatio-temporal forecasting tasks including electricity, PV, exchange rate and

traffic forecasting, without tailoring the model to a specific task. Spatio-temporal forecasting

models have been mainly applied for the traffic speed forecasting problem. LSTMs have been

used to capture temporal correlations, while convolutional and attention structures have been

proposed to capture spatial relations (Lai et al., 2018; Shih et al., 2019). Although these models

are complex, they use only a limited number of data steps from previous days as input to the

model, thus, neglecting the temporal shift and periodicity. Therefore, bidirectional LSTMs have

been proposed to exploit not only forward dependencies but also backward dependencies

(Cui et al., 2018). Bidirectional LSTM structures have also been used in (Toubeau et al., 2021)

to improve the probabilistic forecast of distribution locational marginal prices by accessing

long-term dependencies. One drawback of the latter work is that the spatial information needs

to be carefully encoded and concatenated as features to the input data and the bidirectional

LSTM is used to implicitly learn the spatial relations.

Although the aforementioned works exploit spatio-temporal correlations, they do not fully

exploit the spatial information of multiple sites. Recently, graph neural networks (GNN) have

attracted a lot of attention due to their expressive power and ability to infer information

from complex data such as brain signals, social networks interactions and traffic congestion
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patterns (Zhou et al., 2020; Wu et al., 2020). Spatio-temporal graph forecasting has been

studied in various fields, including traffic forecasting, weather forecasting and price forecasting

among others. Spatio-temporal techniques in the traffic speed forecasting use gated graph

convolutional structures (Yu et al., 2018) and encoder-decoder recurrent diffusion convolution

(Li et al., 2017) to capture spatial and temporal correlations. However, these models only

predict one step ahead in one iteration and then use predictions as historical observations,

which increases the error for longer-term predictions. This problem was addressed in (Zhang

et al., 2019; Zheng et al., 2020) that use attention mechanisms for multi-step prediction.

However, traffic speed forecasting has a predefined graph topology, constructed from the road

network, which makes the problem easier in comparison to PV or wind speed forecasting,

where the correlations and connections between PV (or wind) systems are not known in

advance. LSTMs coupled with graph convolutional structures for capturing spatio-temporal

patterns were recently proposed for wind speed forecasting (Khodayar and Wang, 2019). This

mechanism requires a different LSTM network for each site to learn the temporal relations

followed by graph convolutional layers to learn the spatial dependencies.

3.2 Problem formulation

3.2.1 Graph convolution

We have reviewed some relevant concepts of graph signal processing in Chapter 2. In the multi-

site PV case, each PV station corresponds to a node in the graph G and edges might represent

the spatial proximity between the PV stations vi and v j or other relationship between stations.

We define a graph signal as a mapping x : ν→R, such that xv ∈R is the signal value at node v .

In our case the graph signal x represents the vector containing the power production of all PV

stations at some point time.

The spectral graph convolution is defined in the graph Fourier domain: for a real function h,

the graph convolution of a signal x with the function h is defined by:

h ∗G x := Uh(Λ)UTx, (3.1)

where h(Λ) is the diagonal matrix with entries h(λi ) ∈ R, i = 1, ..., N . In (Defferrard et al.,

2016), the authors use Chebyshev series expansion together with the scaling of the Laplacian

eigenvalues to parametrize and approximate h(Λ). Furthermore, using functional calculus, as

shown in Chapter 2, and plugging into (3.1), one finally gets

h ∗G x ≈
K−1∑
k=0

θk Tk (L̃)x, (3.2)

where L̃ = 2L/λmax − In is the scaled Laplacian. The main practical advantage of the right side

in (3.2) is to reduce the computation complexity from O (N 2) to O (K |ε|). See (Defferrard et al.,

2016) for a detailed discussion. In the rest of this Chapter, we consider filters h for which an
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equality in (3.2) holds, and make the abuse of notation

θ∗G x ≡ h ∗G x.

Moreover, we consider the extension of (3.2) to multivariate graph signals xv = (x(1)
v , . . . , x(fin)

v ) ∈
Rfin and replace θ ∈RK by W ∈RK×fout×fin , where fi n and fout denote the number of input and

output features, respectively, in the layer. Thus, for any output feature j in fout,

(W∗G x)( j ) =
K−1∑
k=0

fin∑
i=0

W ( j i )
k Tk (L̃)x(i ). (3.3)

The neural network architectures presented in this Chapter use in some layers the operation

defined in (3.3), the weights W being learnable parameters as in standard CNN.

3.2.2 Multi-site time-series forecasting on graphs

Atmospheric clouds act as a dynamic mask that affects local PV power production. For a

sufficiently dense network of PV plants, parts of this dynamics (diffusion and advection) can

be inferred from past production data and used to predict future production on the entire

network. Suppose we have N PV stations. Thus, each station corresponds to a node in the

network graph and the observed PV data are temporal signals attached to each node. The edge

weight between two nodes is a measure of the expected correlation between two sites. Typical

choices are bivariate (Pearson) correlation, distance correlation and different kernel-based

methods (Kriege et al., 2020).

Let p(t ) ∈RN denote the vector of PV power production over all PV stations at time step t with

the value at node v being denoted by pv (t ). Formally, we want to forecast p(t ) for the next H

discrete time steps ahead given M past observations as:

p̂(t ), . . . , p̂(t +H −1) = fβ
(
p(t −M), . . . ,p(t −1)

)
, (3.4)

where fβ is a chosen family of parametric estimators. The learning problem consists in finding

a set of parameters β that minimizes the prediction error over the entire horizon by solving

argmin
β

∑
t∈T

t+H−1∑
τ=t

∥p̂(τ)−p(τ)∥2
2, (3.5)

where T is the set of times of past observations taken into consideration to fit the model

(training set).
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3.3 Graph convolutional forecasting models

In this section we present two sequence-to-sequence forecasting models based on spectral

graph convolutions. Both share the same structure: an encoder to process the past M observed

data and a decoder to predict the next H future observations.

3.3.1 Graph convolutional long-short term memory neural network

The first architecture is a sequence to sequence model based on graph convolutional long-

short term memory (GCLSTM) (see (Hochreiter and Schmidhuber, 1997) for LSTM networks,

(Bresson and Laurent, 2017) for graph convolutional recurrent networks). Both the encoder

and decoder combine recurrence and spectral graph convolution to model jointly temporal

and spatial correlations. The encoder is a GCLSTM network that estimates the state of the

system, given a sequence of past observations, its initial state being set to zero. The decoder is

another GCLSTM cell that is initialized with the final encoder state and predicts the power

for the chosen horizon period of H steps ahead; see Figure 3.1. A multi-layer perceptron

(MLP) is used at the output of the decoder to transform the GCLSTM outputs into the desired

power production p̂(τ), where τ ∈ {t , . . . , t +H −1}. The specific inputs features x(τ) and y(τ),

concatenations of power and clear sky irradiance signals, are presented at the end of the

section.

The usage of LSTM cells as recurrent structures of the model is justified by their capacity

of learning and retaining both short - and long-term dependencies; see (Hochreiter and

Schmidhuber, 1997). We denote by lat the number of dimensions of the LSTM cell latent

representation. In the classical LSTM cell, the cell state c(τ) ∈Rlat and the output h(τ) ∈Rlat

are updated recursively from the input sequence x(τ) ∈Rfin using gating operations involving

matrix multiplications. In GCLSTM cells, c(τ) ∈ RN×lat, h(τ) ∈ RN×lat, x(τ) ∈ RN×fin and the

gating operations are modified by replacing the matrix multiplications with spectral graph

convolutions as defined in (3.3). Doing so, signals are diffused across neighbouring nodes and

local spatial information is better captured (see (Defferrard et al., 2016) ,(Seo et al., 2018)). For

a given input sequence (x(τ))τ, the GCLSTM cell equations are given by

f(τ) =σ(W f ,h ∗G h(τ−1)+W f ,x ∗G x(τ)+b f )

i(τ) =σ(Wi ,h ∗G h(τ−1)+Wi ,x ∗G x(τ)+bi )

o(τ) =σ(Wo,h ∗G h(τ−1)+Wo,x ∗G x(τ)+bo)

c(τ) = i(τ)⊗ tanh(Wc,h ∗G h(τ−1)+Wc,x ∗G x(τ)+bc )

+ f(τ)⊗c(τ−1)

h(τ) = o(τ)⊗ tanh(c(τ))

(3.6)

where σ is the sigmoid function, W∗G · is defined in (3.3) and ⊗ is the Hadamard product. The

dimension of the weights W·,· and biases b· are determined by the number of dimensions of
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Figure 3.1: Encoder-decoder Graph convolutional LSTM architecture.

the input feature space, fin, the latent space, lat, and the order K of the Chebyshev expansion:

W·,h ∈RK×lat×lat and W·,x ∈RK×lat×fin , the biases being in RK×lat.

The adjacency matrix A of the graph is initialized using the k-nearest neighbours algorithm:

Ai j = 1 if vi and v j are nearest neighbours, and 0 otherwise. The scaled Laplacian L̃ involved

in the graph convolutions in (3.6) is calculated initially from A and represented as a sparse

tensor. In the course of training, not only weights and biases in (3.6) are learnt, but also the

non-zero entries of the sparse Laplacian in each cell operation, so as to capture very local

specifics related, for instance, to the topology of the terrain or nodes separation distance.

Encoder and decoder are trained simultaneously.

The input sequence of the encoder consists of tuples x(τ) = (p(τ), p̄(τ),g(τ)), τ ∈ {t−M , . . . , t−1},

where p(τ) ∈RN is the power produced at time τ, g(τ) ∈RN the global clear sky irradiance at

time τ and p̄(τ) ∈RN is the rolling mean power produced over the interval [τ−72h,τ−24h].

The clear sky irradiance values are computed at any location and any time on the map using

the Ineichen and Perez clear sky model from PVlib (Stein et al., 2016). This computation is

deterministic and only relies on the geographical coordinates of the nodes (latitude, longitude

and altitude). Similarly, inputs to the decoder are sequences of y(τ) = (g(τ),d(τ), p̄(τ)), where

d(τ) is the direct clear sky irradiance at time τ ∈ {t , . . . , t +H −1}.

3.3.2 Graph convolutional transformer

Even if the gate operations in (3.6) protect the cell state c(τ) and allow it to keep information

over time, this information has the tendency to fade and be diluted (Schoene et al., 2020).

This shortcoming has been addressed in recent natural language processing architectures,

in particular in the sequence to sequence model presented in (Vaswani et al., 2017), called
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transformer. In transformers, access to past signals at any time is guaranteed thanks to

the usage of dot-product attention between any two elements of the time sequence. The

second architecture presented in this Chapter, dubbed graph convolutional transformer

(GCTrafo), is inspired by the base transformer architecture but incorporates a slight number

of modifications so as to make it suitable for the multi-site PV generation forecasting problem.

As the GCLSTM presented in Section 3.3.1, the GCTrafo architecture is made of an encoder to

process past signal values and a decoder to predict the future outcomes. Moreover, it shares

the same encoder input, output and decoder output signals. However, the inner operations

are quite different and the GCTrafo does not incorporate any recurrent structure.
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Figure 3.2: Encoder of Graph Convolutional Transformer architecture (GCTrafo).

The encoder consists of three main stages, see Figure 3.2. At the first stage, a 1D-convolutional

layer is applied to the input sequence (x(τ))τ, where τ ∈ {t −M , . . . , t −1}, along the time axis

to extract valuable variation features of the raw signals at single node level. This operation is

made 3 times in parallel and produces three output sequences (x̃(τ))τ, (x̆(τ))τ and (x̌(τ))τ. At

the second stage, a dot product attention mechanism preceded by graph convolutions is used

to embed every node variation feature in its spatio-temporal context. Queries q(τ) ∈RN×lat,
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Figure 3.3: Decoder of Graph Convolutional Transformer architecture (GCTrafo).

keys k(τ) ∈ RN×lat and values v(τ) ∈ RN×lat signals are first created by graph convolutional

layers based on (3.3), extracting neighbouring node information:

q(τ) = Wq ∗G x̃(τ),

k(τ) = Wk ∗G x̆(τ),

v(τ) = Wv ∗G x̌(τ).

(3.7)

Queries, keys and values are then fed to a softmax dot product attention layer (see (Vaswani

et al., 2017)), given for the query q(τ) at time τ and node v by

att(q(τ),(k(τ′))τ′ , (v(τ′))τ′)v =∑
τ′

exp(qv (τ) ·kv (τ′))∑
τ′′ exp(qv (τ) ·kv (τ′′))

vv (τ′) ∈Rlat.
(3.8)

In (3.8), the dot product inside the exponents contracts the latent dimensions to produce a
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scalar for each node v . A multi-head approach similar to (Vaswani et al., 2017) is used: the

1D convolutions, graph convolutions and dot product attention layers are duplicated n times

and concatenated before being fed to the last linear layer, producing the encoded sequence

(x′(τ))τ. The intuition behind multi-head attention mechanism is that each head will learn to

focus at different patterns of the input sequence.

The decoder operations are similar to the encoder with specifics related to the input sequence

of the decoder, see Figure 3.3. The main difference is the absence of graph convolution in the

decoder before the attention layer. Indeed, the input sequence of the decoder consists of clear

sky irradiance values and rolling mean values whose propagation across neighbouring nodes

is not expected to add any further useful information. Moreover, the value v(τ) is directly

set to be equal to the encoded vector x′(τ), without any prior layer mapping; see Figure 3.3.

Finally, viewing the output of the attention layer of the decoder as a vector encoding shading

information coming from the cloud dynamics, this vector is concatenated with an embedding

of the input y(τ) at time τ ∈ {t , . . . , t +H −1} and its Hadamard product with this embedding

before the last linear layer. The last layer produces the output power production p̂(τ), where

τ ∈ {t , . . . , t +H −1}.

During training, we adopt a similar strategy as for the GCLSTM encoder-decoder: all weights

are learnt by stochastic gradient descent, and the non-zero entries of the scaled Laplacian

operator entering in the convolutions in (3.3) are learnt during training, starting with values

equal to the ones derived using the k-nearest neighbour algorithm for the adjacency matrix.

3.4 Experimental Results

In this section, GCLSTM and GCTrafo architectures are evaluated on two datasets, for both

multi-site and single-site forecasts. In the following we describe the experimental setting first

and then present the results.

3.4.1 Datasets

Two datasets were used in our study. The first dataset, dubbed the real dataset, consists of

records from 304 PV plants across Switzerland. The PV plants are spread inhomogeneously

over the entire country, with a density reflecting the population density. The second dataset,

dubbed the synthetic dataset, has 1000 PV plants and has been generated with statistical

models that match the statistics of the real dataset in terms of location density, size, orientation

and pitch angles. Production time series were simulated using the PVlib python library (Stein

et al., 2016) and historical weather data from the HelioClim 3 database2, with high temporal

and spatial resolution, as inputs (see (Carrillo et al., 2020) for further details). The spatial

distribution of the real and synthetic dataset are shown in Figure 3.4. Both datasets have a

15-minutes resolution for the years 2016-2018.

2http://www.soda-pro.com/help/helioclim/helioclim-3-overview
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Figure 3.4: Spatial distributions of datasets. colours indicate the peak production at each site.
a) Synthetic dataset. b) Real dataset.
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The weather data used for the single-site benchmarks methods were obtained from two

different meteorological providers. The forecast for Bern was computed using historical NWP

from the global forecast system (GFS)3 that has a temporal resolution of 3 hours. On the other

hand, the forecast for Bätterkinden was computed using historical NWP from Meteotest4 with

a temporal resolution of 1 hour.

3.4.2 Baselines

Two state-of-the-art methods were used as benchmarks in the multi-site forecasting evaluation.

The first one is the recently proposed graph-based Spatio-temporal autoregressive model

(STAR) (Carrillo et al., 2020). This method uses an AR model and a group Lasso estimator to

select relevant plants (nodes) for the prediction of each individual site (node). The second

baseline for multi-site forecasting is the non-graph-based Space-time convolutional neural

network (STCNN) (Jeong and Kim, 2019). It uses a greedy-adjoining algorithm that rearranges

the plants based on their geographical proximity, one by one, before applying 2D convolution

layers as in image processing to produce spatio-temporal features.

Apart from the benchmark methods used for the multi-site evaluation, in the single-site

evaluation we used two state-of-the-art methods for single-site PV forecasting that use NWP.

The first baseline for single-site comparison is a Support Vector Regression (SVR) model with

NWP (global irradiance and temperature) as inputs. It was chosen as benchmark, since it

was shown in (Boegli et al., 2018) that SVR outperforms several state-of-the-art methods for

intra-day forecasts. The second single-site baseline is a state-of-the-art deep learning model,

an Encoder-Decoder long-short term memory neural network (EDLSTM) (Mukhoty et al.,

2019). It has a similar architecture to GCLSTM, such that both the encoder and decoder are

based on LSTM networks. The decoder uses past observations of weather and PV site data

to estimate the state of the system, and the decoder uses the state from the decoder as input

as well as NWP (global irradiance and temperature) to forecast the site power. In addition to

NWP data, EDLSTM uses the clear sky global irradiance for the site.

3.4.3 Data preprocessing

Power data were normalized for both the real and synthetic dataset in the same manner for

GCLSTM, GCTrafo and STCNN: The data for each node are normalized by the maximum power

production over the training year. The STAR, albeit requires careful normalization in order

to extract daily mode profiles from the past measurements. The tailor made normalization

scheme is of utmost importance in the case of linear methods and for STAR is described in

(Carrillo et al., 2020).

The considered NWP for the SVR and EDLSTM models contains gaps and have a coarser

3https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
4https://meteotest.ch/en/
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Figure 3.5: Forecast NRMSE comparison for synthetic multi-site PV power prediction. The
forecast horizon is six hours in steps of 15 minutes. Solid lines show the median error while
the shaded areas show the inter-quantile distance of the errors.

resolution than the power data. In order to obtain 15-minutes resolution data without gaps,

polynomial interpolation was used for GFS data (Bern) and a sample-and-hold interpolation

was applied to Meteotest data (Bätterkinden). All weather data were normalized before training

using min-max scaling.

3.4.4 Training

All methods, except STAR, were trained on the first year of available data (2016) and evaluated

on the second year (2017). STAR model coefficients were fitted over two months and then

used to predict the power production over the next two weeks. The models were re-fitted every

two weeks in a rolling window fashion for the entire 2017 year. The hyperparameters used in

the developed and baseline models are described in more detail in the Appendix. All models

were trained on a workstation with 16 cores, 128 GB of RAM memory and a Nvidia RTX 2080 Ti

GPU.
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Figure 3.6: Forecast NRMSE comparison for real multi-site PV power prediction. The forecast
horizon is six hours in steps of 15 minutes. Solid lines show the median error while the shaded
areas show the inter-quantile distance of the errors.

3.4.5 Evaluation and metrics

The proposed models were compared over the year 2017 on the two datasets. Both the peak

normalized root mean-squared error (NRMSE) and the averaged normalized mean absolute

error (NMAE) are used as metrics. They are defined at site v and forecasting step (horizon) i

as:

N RMSE(v, i ) =
√√√√ 1

T

∑
t∈S

(
p̂v (t + i )−pv (t + i )

pmax
v

)2

,

N M AE(v, i ) =
∑

t∈S |p̂v (t + i )−pv (t + i )|∑
t∈S pv (t + i )

,

where pv (t) and p̂v (t) denote the ground truth power and predicted power, respectively, of

site v at time t , pmax
v is the maximum power of site v over the evaluation period S, i.e., the

2017 year, and T is the number of time steps in the evaluation interval S. Night times are

excluded from error computations.
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Table 3.1: Forecasting performance of proposed and baseline models on the synthetic dataset

Synthetic dataset
15min 1h 3h 6h

NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE
STAR 3.870 8.68 6.42 14.87 9.59 22.98 12.59 28.52

GCLSTM 3.350 7.23 6.09 13.32 8.33 20.49 11.84 29.14
GCTrafo 5.420 18.75 6.83 21.42 8.55 24.65 10.83 29.89
STCNN 5.060 13.63 6.99 17.89 9.68 25.06 12.52 31.97

Table 3.2: Forecasting performance of proposed and baseline models on the real dataset

Real dataset
15min 1h 3h 6h

NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE
STAR 7.32 15.80 10.40 23.83 14.20 33.15 17.33 40.41

GCLSTM 7.36 15.71 9.93 22.48 12.40 29.36 15.53 39.44
GCTrafo 8.76 20.27 10.95 25.93 13.54 33.13 16.07 40.50
STCNN 9.30 21.91 11.31 26.98 14.62 37.22 17.17 43.85

3.4.6 Results

We start by evaluating the performance of GCLSTM and GCTrafo on multi-site PV forecasting.

Figures 3.5 and 3.6 show the evolution of the prediction errors of aforementioned methods

over a horizon of 6 hours ahead, in steps of 15 minutes, for the synthetic and real dataset,

respectively. The shaded regions represent the inter-quartile (25%-75%) error range over

all nodes and solid lines represent the median NRMSE over all nodes. Results show that in

the real dataset GCLSTM outperforms all other methods for the entire prediction horizon.

However, in the synthetic dataset GCLSTM yields the lowest error up to 4 hours ahead, whereas

GCTrafo outperforms the other models for predictions from 4 to 6 hours ahead. This shows

the effectiveness of GNNs to capture the spatio-temporal correlations of the PV production

data. The synthetic dataset has a lower forecasting error due to the spatial and time smoothing

in the generation of the HelioClim 3 irradiance database used to synthesize the PV power

profiles.

Although the linear STAR method performs better than the GCTrafo within the first hour on

both datasets, GCTrafo shows a lower error slope for horizons from one hour ahead on than

the other methods, making it a promising model for longer prediction horizons, e.g. from 4

hours to day ahead. The main reason is that GCTrafo has the attention weights that can focus

on different spatial or temporal information. Attention weights are more powerful than the

recurrent structures, which suffer from fading memory for longer sequences.

The comparative NRMSE and NMAE on both datasets are shown in Table 3.2 and Table 3.1

for 15 minutes, 1 hour, 3 hours and 6 hours ahead predictions. NRMSE is more sensitive

to outliers, because it considers squared errors, therefore, gives more weight to large errors,
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Figure 3.7: NRMSE with respect to the distance to the closest neighbour for 1, 3 and 6 hours
predictions for GCLSTM (top) and GCTrafo (bottom).

thus using both metrics is useful when comparing methods. For example, this difference is

highlighted in the errors for 6 hours ahead in the synthetic dataset. Although GCLSTM has a

lower NMAE, the NRMSE is lower for GCTrafo. Also, the NMAE gives a figure of the forecast

error in percentage of the total yearly production.

We analysed the distance between nodes for which the model performances start to degrade

on the real data set. To this end, the distance to the closest neighbour for each node is

calculated and isolated nodes are found. Figure 3.7 shows the NMRSE for 1, 3 and 6 hours

ahead predictions versus the distance to the closest neighbour for all nodes. The analysis does

not indicate a higher error for sites that are further away and more isolated. For instance, the

NRMSE for nodes with close neighbours (less than 5km) is between 10% and 19% for 3 hours

ahead predictions. On the other hand, the NRMSE for the same horizon of isolated sites, i.e.

30 to 43 km away from the closest node, is between 11% and 17%. The same behaviour is

shown for all other prediction horizons. Therefore, up to 40km, the models don’t show a drop

in performance.

Next, we show the forecasting results for two sites in the central part of Switzerland: Bern and

Bätterkinden. The two locations are about 25 km apart. Figure 3.8 and Figure 3.9 show the
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Figure 3.8: Single-site forecast for Bätterkinden. NRMSE comparison between the proposed
models (GCLSTM and GCTrafo), alternative multi-site methods with similar inputs (STAR and
STCNN), and models that use NWP as inputs (SVR and EDLSTM).

NRMSE evolution for GCLSTM, GCTrafo, STAR and STCNN, and the EDLSTM and SVR methods

that use NWP as inputs. The error trend in the multi-site comparison, between GCLSTM,

GCTrafo, STAR and STCNN is similar to the one observed in the single-site comparison. For

both sites, GCLTSM outperforms other methods between 1 and 4 hours ahead predictions.

Interestingly, during the first hour (4 steps ahead) GCLSTM is on a par with the linear STAR

method. However, for longer term forecasts, 5 to 6 hours ahead, EDLSTM and SVR methods

yield lower errors than the proposed methods. The main reason lies in the fact that they

use as the additional input NWP data, which has higher accuracy for six hours to day ahead

predictions. However, NWP-based forecasts have higher error rate in comparison to other

methods for intra-day forecasts. Additionally, we observe the high impact of the temporal

resolution of the weather data on the results, since a higher resolution of the weather data

leads to higher accuracy of the forecast, which is the case of Bätterkinden (Figure 3.8).

As an illustration of some of the advantages and limitations of the proposed methods, Figure

3.10 and Figure 3.11 show a visualization of the time series for one hour and six hours ahead

forecasts for two days in Bern. The first day has a clear sky with a few clouds passing by during

the middle of the day whereas the second day is a cloudy day with low production during

whole day. The daily NRMSE for the two days and the two horizons are shown in Table 3.3.
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Figure 3.9: Single-site forecast for Bern. NRMSE comparison between the proposed models
(GCLSTM and GCTrafo), alternative multi-site methods with similar inputs (STAR and STCNN),
and models that use NWP as inputs (SVR and EDLSTM).

36



3.4 Experimental Results

05-18 00 05-18 06 05-18 12 05-18 18 05-19 00 05-19 06 05-19 12 05-19 18 05-20 00
Date and time (hours)

0

1

2

3

4

5

6

Po
we

r [
kW

]
truth
GCLSTM
GCTrafo
EDLSTM

Figure 3.10: Illustration of measured production and 1 hour ahead forecasted power produc-
tion for two days in Bern. Only forecasts from GCLSTM, GCTrafo and EDLSTM are included.

This visual comparison is made to show an extreme case where the proposed models might fail

to provide an accurate forecast for long-term horizons (6h ahead), especially at the beginning

of the day, and where models that use NWP as inputs (EDLSTM) have an advantage.

Figure 3.10 shows time series of the true PV production and 1 hour ahead forecasts using

GCLSTM, GCTrafo and EDLSTM. From the daily errors and the visual assessment, we can

conclude that during cloudy days, for short-term forecasts, graph-based methods outperform

EDLSTM because of their ability to capture cloud movement and spatial information. On the

other hand EDLSTM relays on NWP that have low spatial and temporal resolution yielding

poor forecasts, even though it uses past site data to initialize the encoder.

Table 3.3: Daily NRMSE for Bern illustration

Model Day1 1h Day2 1h Day1 6h Day2 6h

GCLSTM 8.79 7.96 8.94 20.87

GCTrafo 9.31 8.22 15.46 26.74

EDLSTM 11.85 8.91 13.98 7.71
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Figure 3.11: Illustration of measured production and 6 hour ahead forecasted power produc-
tion for two days in Bern. Only forecasts from GCLSTM, GCTrafo and EDLSTM are included.

However, for 6 hours ahead, GCLSTM and GCTrafo forecasts in Figure 3.11 show a bias during

the first six hours of the day after sunrise. Since night PV production values are zero, the graph-

based architectures only receive clear sky data and average power from the two previous days.

Thus, GCTrafo and GCLSTM forecast higher production values during the first 6 hours after the

sunrise. Once the graph-based architectures start to receive non-zero PV power information

from the day, these methods start to correct the predictions and we observe a sudden drop in

the predicted values. During very cloudy days, such as the second day, EDLSTM benefits from

NWP for 6 hours ahead forecasts.

3.5 Conclusions

Two novel graph convolutional neural network architectures for multi-site deterministic PV

generation forecasting, GCLSTM and GCTrafo, have been introduced and compared with state-

of-the-art algorithms, both at single and multi-site levels. The extensive comparison on two PV

power generation datasets (the real dataset with 304 plants and the synthetic dataset with 1000

PV plants) has shown that they outperform state-of-the-art methods, with an average NRMSE

error over the entire horizon (6 hours ahead) of 8.3% (GCLSTM) and 8.4% (GCTrafo) node

setting, and 12.6% (GCLSTM) and 13.6% (GCTrafo) on the real dataset. Both architectures were
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trained on a single GPU for the 1000 nodes case and can be scaled to a higher number of nodes

using multi-GPU computing, making them appealing for grid management applications with

large number of nodes.

In forthcoming works, we will address some inherent limitations in the way spatio-temporal

information is diffused across the nodes in these models. The number of nodes taken into

account within the graph convolutions were limited to the K closest neighbours because of the

increase in computational complexity. However, it is expected that further away nodes might

be important predictors if advection is dominant in the regional cloud dynamics at a specific

time. Another research direction is to investigate the robustness and adaptability of the models

to different weather conditions. Therefore, the performance of the presented models should

be investigated during sunny, cloudy and variable days. Finally, another possible avenue

of research is to transform the proposed deterministic models into probabilistic models by

integrating a quantile regression as in works of Carrillo et al. (2023) or by integrating noise into

the deterministic model to build a generator in a similar fashion to (Koochali et al., 2021). This

generator should be trained using an appropriate classifier as discriminator in an adversarial

setting to make a probabilistic forecast.
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4 Interpretable temporal-spatial graph
attention network for multi-site PV
power forecasting

4.1 Introduction

In the previous Chapter, we have shown that using a graph signal processing perspective, we

can exploit spatio-temporal correlations between sites by representing PV systems as nodes

of a graph and embedding production data as signals on that graph. PV power forecasting

task for intra-day predictions using solely ground-based PV power production data has been

addressed from a machine learning perspective. Different linear and non-linear models

have been employed. However, they are not capable of capturing spatio-temporal dynamics.

Then, the PV power forecasting task has been addressed from a Graph Signal Processing

(GSP) perspective successfully (Khodayar et al., 2019; Simeunović et al., 2022a). Although

these advanced architectures capture spatio-temporal correlations, they are restricted to

predefined k-neighbours graphs, neglecting the impact of the nodes which are further away,

which is vital for longer-term (from 2 to 6 hours ahead) forecasts. Furthermore, we model

physical phenomena when modelling PV power production; thus, an interpretable model is

desirable. Currently, the machine learning models that achieve state-of-the-art accuracy and

high temporal and spatial resolution for PV forecasting lack the interpretability.The question

poses whether it is possible to model a graph-based interpretable model without the limitation

of restricting the neighbourhood for the longer-term part of the intra-day forecast.1

Recurrent and graph convolutional neural networks, used to find spatio-temporal correlations

between PV power data, are difficult to interpret. On the other hand, state-of-the-art attention-

based architectures for time series forecasting use multi-head attention, which is not fully

interpretable. The works of Michel et al. (2019) and Cordonnier et al. (2020) have shown that

multi-head attention tends to learn redundant relationships. Moreover, the work of Baan

et al. (2019) demonstrated that the multi-head approach is only partially interpretable and

concluded that in order to be transparent, it should have no overlap in specialization but focus

on distinct representational subspaces. Therefore, an attention-based model which focuses

on distinct representational subspaces is required in order to be able to understand what

1The content of this Chapter is based on the publication Simeunović et al. (2022b).
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influences the forecast.

In this work, we propose a temporal-spatial multi-window graph attention network (TSM-

GAT) applied to the PV power forecasting problem to solve the aforementioned issues of low

interpretability and restricting graph topology to a small number of the closest neighbours,

thus excluding the long-term correlations between sites. A dense network of PV stations

could be used as a network of virtual weather stations, where spatio-temporal correlations

are modelled using dynamic graphs. Thus, PV stations are modelled as nodes in a dynamic

graph, and embedded past PV data, coupled with geographical information and clear-sky data,

represents the graph signals. TSM-GAT can adapt to the dynamics of the problem by learning

different graphs over time. It consists of temporal attention with an overlapping-window

mechanism and spatial attention with multi-window mechanism. The output of the temporal

attention is temporal correlations and embedded temporal features which are passed to

the spatial attention, which finds different spatio-temporal correlations. Furthermore, in the

spatial attention, a multi-window mechanism is introduced in order to increase interpretability

and accuracy at longer-term horizons. Moreover, this model yields the shape of the predicted

signal closer to the shape of the ground truth, which indicates that the model is better at

capturing the movement of clouds and cloud coverage. Since PV production is dependent

on weather conditions and information from PV stations is limited to certain spatial location,

PV stations across different countries have different weather conditions. The interpretability

of the model indicates a close link between the model and physical phenomena, making it

promising in terms of generalization and performance in different weather conditions. The

contributions of the current work include:

• A TSM-GAT model that extends of graph attention networks for time series forecasting

tasks. Temporal attention embeds temporal features from times-series data into tem-

poral windows, creating inputs for the dynamic graph. The following spatial attention

finds spatio-temporal correlations for each node and each temporal window, yielding a

dynamical adjacency.

• A multi-window mechanism is developed in TSM-GAT to allow the model to learn differ-

ent dynamical adjacency matrices for shorter-, medium- and longer-term predictions.

Thus, it is possible to interpret which nodes (PV stations) the model focuses on, when

predicting short-, medium- and long-term intra-day forecasts.

• A performance evaluation of TSM-GAT on real and synthetic PV datasets and com-

parison with state-of-the-art multi-site and single-site models. For multi-site models,

an analysis of the impact of weather conditions, and node density on the forecast is

presented on the real dataset in Switzerland, in order to understand what drives the per-

formance. A study has further been conducted to compare widely used multi-head and

proposed multi-window approaches, which showed higher accuracy and interpretability

of the multi-window approach.

The rest of the Chapter is organized as follows. Section 5.2 introduces preliminaries on

42



4.2 Multi-site PV power time series forecasting on graphs

graph attention and graph time series forecasting of PV generation. Section 5.3 details the

proposed TSM-GAT architecture. The experimental results of our evaluation and the analyses

are presented and discussed in Section 5.4 and Section 5.5. Finally, we conclude in Section 4.6.

4.1.1 Related work

Multi-site time series forecasting task has been studied not only in the PV domain but also

in wind speed, wind power production, electricity and irradiance forecasting. In the work

of Ghaderi et al. (2017) recurrent long-short term memory (LSTM) cells are used to extract

temporal correlations. In addition to recurrent neural networks, convolutional neural networks

were used in the work of Lai et al. (2018). However, they were outperformed by the attention

mechanisms, which capture correlations due to their ability to select relevant time steps and

locations; see the work of Shih et al. (2019). Graph convolutional structures coupled with

recurrent structures proposed in wind forecasting task in work of Khodayar and Wang (2019),

requires a different model for each step ahead prediction, which is not scalable. The lower

scalability and higher error are some of the shortcomings which have been addressed by

introducing the graph multi-head attention. However, graph multi-head attention is not fully

interpretable, as previously discussed. All these spatio-temporal networks restrict the graph

topology to a small number of k neighbours.

On the other hand, a lot of work has been focused on single-site forecasting task for PV and

wind power production. The models proposed in the works of Azad et al. (2014) and Hossain

et al. (2018) focus on the long-term (up to year ahead) forecasts of wind speed and power

density. However, these approaches require learning different models for each station which

increases the computational costs. Recent single-site PV power production models in the

works of Zhou et al. (2019); Kharlova et al. (2020); Ren et al. (2022) and Dairi et al. (2021) use

LSTM to find temporal dynamics and attention mechanism to extract relevant features. They

show that LSTM coupled with the attention mechanism improves accuracy, especially in the

case of long sequence inputs. However, these methods also exploit NWP and weather data,

which have low spatial and temporal resolution for multi-site forecasting models with high

number of PV plants. Moreover, by taking into account only single-site time series, it is not

possible for these models to exploit spatial correlations between the sites. The addition of

LSTM cell to the attention block makes it more difficult to interpret on which temporal steps

the model is focusing when making the prediction.

4.2 Multi-site PV power time series forecasting on graphs

The PV power forecasting task is a time series prediction task, predicting future PV power

production, given past PV data. PV data is highly correlated in time since slowly varying local

weather conditions and cloud cover affect PV production across time steps. Further, cloud

motion affects PV production of neighbouring production sites sequentially, thus, making

the data correlated in both spatial and temporal domains. Thus, part of the cloud dynamics
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influence can be inferred by modelling the past PV data as signals on a dynamic graph. This

permits to capture of the dynamically changing spatio-temporal correlations in the PV data.

Specifically, we denote the vector of PV power production over N PV stations at time step τ as

p(τ) ∈RN . The goal is to forecast p(τ) for the next H discrete time steps ahead given M past

observations:

p̂(τ), . . . , p̂(τ+H −1) = fβ
(
p(τ−M), . . . ,p(τ−1)

)
, (4.1)

where for any τ, fβ is a chosen family of parametric estimators. A set of parameters β is learnt

such that it minimizes the prediction error over the entire horizon by solving the following

problem:

argmin
β

∑
τ∈T

τ+H−1∑
ξ=τ

∥p̂(ξ)−p(ξ)∥2
2, (4.2)

where T represents the times of historical time steps which are used for fitting the model

during training. Although we have chosen the mean square error as the metric, other metrics

could be used as well.

In this work, we model the PV production time series as signals on a dynamic graph. The

network of PV power stations is represented as a weighted undirected graph G t with PV power

production, where the graph is a tuple G t = (ν,εt ,γt ) and t ∈ {1, . . . ,T } represents the number

of graphs in a dynamic graph. The graphs G t and G t+1 are m time steps τ apart from each

other. A set of vertices (nodes) ν = {v1, v2, . . . , vN } in the graph corresponds to a set of PV

stations and ε is a set of edges (links), corresponding to the correlations between the stations

within the graph G t . The most commonly used correlations are Pearson or distance correlation.

The topology of the graph is described with its adjacency matrix γt ∈ RN×N that dynamically

captures the connectivity of the nodes. Each adjacency entry represents an edge between

vi and v j in the graph G t , denoted with e t
i j ∈ εt . If there is no edge between vi and v j in

the certain graph G t , then the matrix entry γt
i j is equal to zero. The dynamically changing

correlations between PV stations are modelled with a dynamic adjacency matrix. Finally, we

define a graph signal as a mapping x : ν→R, such that x t
v ∈R is the signal value at node v and

graph G t . For more details and an in-depth review of GSP we refer the reader to Ortega et al.

(2018).

In our case, the graph signal at time step τ is denoted by x(τ) and it represents the vector of the

power production of all PV stations p(τ) concatenated with additional spatial information and

geographical location. Furthermore, in order to provide the model with additional information

regarding the sunrise, sunset and seasonality information, the clear sky irradiance values

are additionally included y = (
y(τ), . . . ,y(τ+H −1)

) ∈ RN×H for predicting H steps ahead,

computed at a particular location on the map at any time, using the Ineichen and Perez clear

sky model from PVlib (Stein et al., 2016). This computation is completely deterministic and

only relies on the geographical coordinates of the nodes (latitude, longitude and altitude).

44



4.3 Temporal-spatial multi-windows graph attention network

Thus we can reformulate our learning problem

p̂(τ), . . . , p̂(τ+H −1) = fβ
(
p(τ−M), . . . ,p(τ−1),

y(τ), . . . ,y(τ+H −1), long, lat,U
)

,
(4.3)

where U is a mask used to initialize the neighbourhood of each node i . The initial neighbour-

hood is calculated using k-nearest neighbour mechanism. The set of parameters β includes

not only parameters for learning correlations in the dynamic graph, but also parameters for

embedding the spatio-temporal features and finally parameters for predicting the future PV

production.

4.3 Temporal-spatial multi-windows graph attention network

4.3.1 The overall architecture

In this Chapter, we propose a sequence to sequence model TSM-GAT. The model represents

a solution for multi-site PV power forecasting from GSP perspective, shown in Figure 4.1. A

sequence of the past M PV measurements p = (
p(τ−M), . . . ,p(τ−1)

) ∈ RN×M over N nodes

is taken as input to the model, when predicting H steps ahead p̂ = p̂(τ), . . . , p̂(τ+H −1). In

order to capture both short- and longer-term dependencies, the attention mechanism from

Veličković et al. (2018) is used since it has access to any part of the sequence.

TSM-GAT consists of temporal attention with the overlapping-window mechanism and spatial

attention with the multi-window mechanism. The temporal attention operator is capturing

temporal non-linear correlations using a modified attention mechanism. However, finding

a correlation between all M past time steps leads to suboptimal solutions since it assigns a

single attention value for all past time steps. Furthermore, weather conditions fluctuate and

the wind might suddenly change directions, creating a challenge to model cloud dynamics.

Therefore, the past M PV measurements are divided into T temporal windows. The past

PV data in each temporal window is concatenated with vectors of geographical coordinates

long, lat ∈RN . The temporal attention is capturing temporal non-linear correlations for each

temporal window. The embedded temporal features per each window represent entries of

different graphs in the dynamic graph.

Thus, embedded features are passed to the spatial attention operator, which captures dynami-

cally changing spatial correlations, yielding the dynamical adjacency. Finally, viewing the out-

put of the temporal-spatial attention block as a vector encoding shading information, this vec-

tor is concatenated with an embedding of the clear-sky irradiance y = (
y(τ), . . . ,y(τ+H −1)

) ∈
RN×H before the last multi-perceptron layer (MLP); see Figure 4.1. The exact concatenation of

PV power and clear sky irradiance signals is presented at the end of the section.

In order to calculate spatial attention, it is crucial to define the neighbourhood of each node

since it is not predefined. To this end, the adjacencies are initialized using the k-nearest neigh-
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Figure 4.1: TSM-GAT model.

bour algorithm. Intuitively, for the short-term forecasts (up to 2 hours) the neighbourhood

taken into account should not be too large since the weather changes and cloud movements

are affecting the nodes in the smaller localized area. As the forecasting window increases,

nodes further away should be taken into account in order to capture cloud movement, since

it takes more time for clouds to move between nodes that are spatially further away. There-

fore, the multi-window mechanism is introduced, such that the different neighbourhood is

initialized for each window, where C is the total number of windows in the multi-window

mechanism.
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4.3.2 Graph Attention

In this work, we use Graph Attention Networks (GAT) from Veličković et al. (2018) to infer the

correlation between nodes. Let a signal value at node i ∈ N be represented with a column

vector xi = [x1
i , . . . , x f

i ] ∈R f , where f is the number of features per node. The attention mecha-

nism is used to contextually weight the importance of node j features to the node i . A shared

matrix W ∈ R f ′× f is used to embed input features f into a f ′-level feature space. Then the

normalized attention coefficients αi j are computed from (4.4):

αi j = so f tmax j
(
l
(
a · [Wxi||Wxj

]))
(4.4)

where a ∈R2 f ′×1 is a row vector parameterizing the attention mechanism and · denotes dot

product multiplication between vectors. A concatenation is represented with || and l (·) denotes

the activation function LeakyReLU. Finally, the obtained normalized attention coefficients are

used to compute the final output hi for every node (4.5):

hi =σ
( ∑

j∈Ni

αi j Wxj

)
(4.5)

where Ni represents the neighbourhood of node i and σ(·) is the LeakyReLu nonlinearity. For

more details see Chapter 2.

4.3.3 Temporal attention

The temporal attention is capturing temporal non-linear correlations for each temporal win-

dow, by embedding the temporal features using modified attention. In the temporal attention

the past data is divided in the T temporal windows. Then attention mechanism is applied

in order to find the correlations between the temporal windows. Following a classical sig-

nal processing perspective (Bahoura, 2019), we have divided input feature space into the

temporal windows with 50% overlap. The first half of each window is shared with the last

half of the previous window, and the last half is shared with the first half of the subsequent

one. Therefore, we divide the input M lags among T overlapping temporal windows of size

2m. The window size is calculated based on the overlap m, where m = M
T+1 ∈ N. Since in

each window longitude and latitude are concatenated as additional spatial information, the

input signal is x = (
p(θ),p(θ+1), . . . ,p(θ+2m)||long, lat

) ∈ RN×T×fin , where fi n = 2m +2 and

θ ∈ {τ−M ,τ−M +m,τ−M +2m,τ−M +3m, . . . ,τ−2m}.

In the work of Veličković et al. (2018), in the Equation 4.4 the weight matrix W is shared

across nodes. On the other hand, in the temporal attention of TSM-GAT, we created a matrix

Wt
temp ∈R f ′× fi n with different weight matrices for each time window t ∈ {1, . . . ,T } to increase

expressive power. Let xi
t ∈ Rfin×1 denote the input signal for node i and temporal window t .

We use the softmax function with Leak yReLU activation function to get normalized temporal
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attention coefficients across all temporal windows:

αi
kt = so f tmaxt (l (at

temp · [Wt
tempxi

k||Wt
tempxi

t])) (4.6)

where the coefficient αi
kt represents the importance of the temporal window k when making

the prediction. A row vector at
temp ∈ R2 f ′×1 is a weight vector of the attention mechanism

calculated for each temporal window t ∈ {1, . . . ,T } and shared across nodes. These normalized

attention coefficients are used to compute the output of the temporal block h ∈RN×T× f ′
where

we define the column vector of features hi
t ∈ R f ′×1, which is calculated for each node i and

temporal window t :

hi
t =σ

(
T∑

k=1
αi

kt Qt
tempxi

k

)
(4.7)

where Qt
temp is of the same size as Wt

temp. The temporal attention matrix shows insight about

which window influences the model when making the prediction for a certain horizon.

4.3.4 Spatial multi-windows attention

The TSM-GAT model captures temporal patterns across different time steps using the over-

lapping window mechanism with a temporal operator. However, in order to capture the

correlation between different nodes at different time steps, a spatial graph attention operator

is used on top of the temporal one. The input data to spatial attention are embedded temporal

features from different temporal windows. Those features represent entries of different graphs,

creating the dynamic graph. Further, we refer to temporal windows as different parts of the

input data, which embedded in the temporal attention are passed to the graphs in the dynamic

graph.

Let the spatial attention tensor γ represent a sequence of dynamical spatial correlation ma-

trices, where γ ∈RT×N×N . A single spatial attention matrix γt ∈RN×N is calculated for each

temporal window t ∈ {1, . . . ,T }. The correlation between nodes i and j at time window t is

γt
i j = so f tmax(l (ai

spat · [Wt
spathi

t||Wt
spathj

t])), (4.8)

such that row vector ai
spat ∈ R2 f ′′×1 have different values for each node i ∈ {1, . . . , N }. The

weight matrix Wt
spat ∈ R f ′′× f ′

, in the spatial attention operator, is used to embed the input

feature space f ′ to lower dimensional feature space f ′′in each time window t where t ∈
{1, . . . ,T }. A spatial attention coefficient γt

i j indicates the importance of node j ’s features to

the node i in the temporal window t . The spatial attention matrix represents the dynamical

adjacency matrix since the attention coefficients are dynamically changing in each time

window. In addition to spatial weight matrix Wt
spat, the matrix Qt

spat ∈R f ′′× f ′
where t ∈ {1, . . . ,T }

is parameterizing the output of the temporal attention hi
t. The output of temporal-spatial

attention block is a tensor g ∈ RN×T× f ′′
. We define a slice of the tensor g for node i and
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temporal window t as the column vector gi
t ∈Rf′′×1 obtained from:

gi
t =

∑
j∈Ni

γt
i j Qt

spathi
t, (4.9)

where matrix Qt
spat, is of the same size as the matrix Wt

spat. In g, the important information is

embedded in f ′′ distinctive features for each node and for each temporal window. Therefore,

flattening the feature vectors gi
t across temporal windows t ∈ {1, ...,T } yields an augmented

matrix G ∈ RN×T f ′′
, where each row is a vector [gi

1,gi
2, . . . ,gi

T] ∈ RT f ′′
of embedded spatio-

temporal features for the node i . This information is passed through a non-linear layer

producing the sequence s ∈RN×H , where H represents the length of the predicting horizon.

Finally, viewing the output of the graph temporal-spatial attention block s as a matrix encoding

the shading information, the clear-sky data is additionally introduced before the last MLP; see

Figure 4.1. Hence, s is concatenated with an embedding of the clear-sky data y and Hadamard

product between s and y.

The dynamical adjacency matrix γt of the graph is inferred in the spatial attention block using

masked attention, in order to inject the graph structure. The adjacency values γt
i j in each

graph are computed for all j ∈Ni where Ni is the neighbourhood of the node i on graph G t .

Thus, it is crucial to define the support of the neighbourhood set Ni with a predefined mask.

To this end, the mask is initialized using the Euclidean distance in the k-nearest neighbour

(knn) algorithm. Thus, if the distance e t
i j is larger than the one defined in knn algorithm,

we will mask the adjacency entry γt
i j with 0. For different parts of the forecasting horizon

H , the different neighbourhoods are taken into account and different spatial attentions are

calculated. Multi-window mechanism is introduced in the spatial attention, such that for

short-, medium- and long-term dependencies we define C = 3 spatial attention windows.

Thus, for each of the 3 windows, the k-neighbourhood is considered to be 30%,50%,100% of

total number of nodes, respectively.

The spatial window c yields different spatio-temporal feature matrices sc ∈ RN× H
C for c ∈

{1, . . . ,C }. Let the matrix Gc ∈RN×T f ′′
for window c be defined by stacking t ∈ {1, . . . ,T } feature

vectors gi,c
t ∈R f ′′

for node i . The vector of embedded features gi,c
t ∈Rf′′ per window t and node

i is given by:

gi,c
t = ∑

j∈N c
i

γt ,c
i j Qt

spathi
t, (4.10)

where dynamical adjacency entry γt ,c
i j is defined for each spatial window c is defined on differ-

ent neighbourhood N c
i . Corresponding different sets of weight matrices Wi,c

spat ∈R f ′′× f ′
,ai,c

spat ∈
R1×2 f ′′

are learnt for each window c. Hence, C spatial attention windows are calculated for

different C parts of predicting horizon H which yields the feature matrix sc:

sc =σ (GcBc +bc) , (4.11)

where Bc ∈RT f ′′× H
C ,bc ∈R H

c represent weights and biases in the last linear layer of each spatial
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attention window c ∈ {1, . . . ,C }. Finally, the feature matrix S is concatenation of all C feature

matrices across all windows S = [s1|| . . . ||sc]. The feature matrix is only then concatenated with

clear sky data. The predicted power for N nodes and H steps ahead is defined with

p̂ = MLP
(
[y||S||y⊙S]

)
, (4.12)

where the Hadamard product is denoted with ⊙.

Thus, the TSM-GAT model finds dynamical adjacency which is different for each temporal

window and for different predicting horizons. We can easily find the root cause and interpret

on which nodes the model is focusing for short-, medium- and long-term forecasts within

some given prediction horizon H . This approach makes the temporal-spatial multi-window

graph attention model interpretable for the time series forecasting task.

4.3.5 Architecture configuration

We divide the input M lags among T overlapping temporal windows of size 2m. The window

size is calculated based on the overlap m, where m = M
T+1 ∈N. One entire day of input data

is chosen as the length M of the past observations, in order to find periodic dependencies

and temporal shifts. The number T of the input overlapping sliding windows is 15 and the

window length is 12 time steps which is equivalent to the past 3 hours. Therefore, the size

of the shift (and the overlap) between the two consecutive temporal windows is 1.5 hours

and these values have been chosen empirically. This choice is made with an assumption that

the weather does not change drastically more than once within this horizon for each station.

Thus, by embedding features in each window, we are embedding the change in the weather

information each 1.5 hours. In the spatial attention the output feature space is then divided

into C = 3 different windows, thus, in each window the length of input clear sky data is H
3 ∈N;

see Figure 4.1. The length of the window can be adapted in case where H
3 ∉N such that an

approximately similar number of time steps is in each window.

The k-neighbourhood in the first window represents the closest 30% of the total number of

nodes and it finds spatial correlations between the nodes focusing on the first two hours ahead

prediction, i.e. it is assumed that only the closest neighbours contribute to first two hours

prediction. The k-neighbourhood in the second window is limited to 50% of the total number

of nodes, focusing on the 2-4 hours ahead prediction. The assumption for the second window

is that the neighbourhood should analyse nodes that are further away to consider longer term

features. The neighbourhoods of 30% and 50% of the total number of nodes are selected by

hyper-tuning parameters to improve accuracy. Finally, the fully connected graph is used to

find the correlations between nodes in the last time window that focuses on the 4h to 6h ahead

prediction. The goal is to take into account both the closest and the furthest away nodes,

when making predictions in the last window of the forecasting horizon. An MLP is used at

the output of the second attention block to transform the temporal-spatial attention block

outputs into the power production power production p̂ ∈RN×H .
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4.4 Experiments

We applied the TSM-GAT architecture on PV production data from real and synthetic datasets.

Furthermore, we compared the performance of the TSM-GAT against state-of-the-art models

for both single- and multi-site forecasts on the real dataset. Single-site forecasts are used

to compare results against models that use NWP data and with traditional model that uses

only power data. On the other hand, multi-site forecasts are used in order to compare results

with models that use multi-site PV power data, for both real and synthetic datasets. Then we

analysed what drives the performance of TSM-GAT in multi-site forecasts, on the real dataset,

and conducted the study in order to compare the multi-window approach with the multi-head

approach.

4.4.1 Datasets

The real dataset used in our study consists of records from 304 PV plants across Switzerland

(Carrillo et al., 2020) for two years (2016-2017). The PV plants are spread inhomogeneously

over the entire country, with a density reflecting the population density. The spatial distri-

bution of this dataset is shown in Figure 4.10. The dataset has a 15-minute resolution. The

second dataset used is a synthetic dataset from NREL, with 405 PV stations distributed across

California, USA, with 15-minutes resolution. This synthetic dataset consists of PV production

data simulated from weather data for 1 year (2006) and is publicly available2. For both datasets,

all available PV stations are used as both input and forecasting nodes.

4.4.2 Benchmark models

Five state-of-the-art methods were used as a benchmark in the multi-site forecasting evalu-

ation. The first baseline is the spatio-temporal autoregressive model (STAR) (Carrillo et al.,

2020) which is a linear autoregressive model. It uses the group Lasso regularization to promote

sparse solutions, thus, creating the effect of selecting relevant nodes for the prediction of

each site. The second and the third baselines are the recently proposed graph-based Graph

convolutional long-short term memory neural network (GCLSTM) and Graph Convolutional

Transformer (GCTrafo) (Simeunović et al., 2022a). Both of these models have an encoder-

decoder structure, however, the former is the recurrent-based graph convolutional model

whereas the latter uses a transformer architecture coupled with graph convolution. The fourth

baseline for multi-site forecasting is the non-graph-based space-time convolutional neural

network (STCNN) (Jeong and Kim, 2019). It uses a greedy-adjoining algorithm to rearrange

the stations based on their geographical proximity, before applying 2D convolution layers, as

in image processing. The fifth baseline is TS-multi-head-GAT which represents modification

of TSM-GAT where multi-head mechanism was used instead of multi-window.

For the single-site forecasts we used three state-of-the-art models and a a simple smart persis-

2https://www.nrel.gov/grid/solar-power-data.html
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tence model as benchmarks. The first two models, which use NWP data, are Support Vector

Regression (SVR) and the encoder-decoder long-short term memory network (EDLSTM). Both

models use predictions of global irradiance and temperature as input weather data, which

were obtained from Meteotest3 with a temporal resolution of 1 hour. Thus, in order to have 15

minutes resolution predictions, a simple sample-and-hold interpolation was applied to the

NWP data. SVR is chosen as benchmark since Boegli et al. (2018) have shown that SVR outper-

forms several state-of-the-art models for intra-day forecasts. The second model, EDLSTM is

a state-of-the-art encoder-decoder model, especially suited for time-series processing (Gao

et al., 2019; Hamberg, 2021). The EDLSTM uses past PV production data as well as NWP data

to make a forecast. The encoder uses as inputs past observed weather and PV power data in

order to estimate the state of the system. Then the decoder uses these estimations and NWP

over the prediction horizon as input to the decoder. The third benchmark model is a Seasonal

Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMAX). The SARIMAX

model uses past PV power and clear-sky irradiance as inputs.

4.4.3 Data preprocessing and Training

The power data is normalized for both real and synthetic datasets by the maximum power pro-

duction over the training year for TSM-GAT, TS-multi-head-GAT, GCLSTM, GCTrafo, SARIMAX,

EDLSTM and STCNN. The STAR model, on the other hand, requires careful normalization in

order to extract daily profiles from the historical data. The real dataset in Switzerland has two

years of data, thus, for non-linear models, the first year (2016) is taken as training dataset, and

the following year (2017) represents the evaluation dataset. On the other hand, the synthetic

dataset in California has only one year of the data (2006). Therefore, the training dataset is

from January until the end of July, and evaluation dataset is from August until December of

2006.

STAR and SARIMAX are linear autoregressive models, thus, in order to take into account

seasonal weather changes, for the real dataset, the evaluation year (2017) is divided in small

test batches. The models were trained over a period of data which is taken prior to each test

batch. The STAR model coefficients were fitted over a period of two months and then used to

predict the power of the next two weeks. SARIMAX coefficients were fitted over a period of

three days and then used to predict power of the following day. The parameters for STAR and

SARIMAX methods are re-fitted in a rolling window fashion for every two months and for every

three days, respectively. The hyperparameters used in the TSM-GAT and multi-site baseline

models are presented at the end of this Section. All models were trained on a workstation with

16 physical cores, 128 GB of RAM memory and an Nvidia RTX 2080 Ti GPU.

3https://meteotest.ch/en/
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4.4.4 Evaluation and metrics

The model performance was assessed using several metrics. We use the peak normalized

root-mean-square error (NRMSE) and the average normalized mean absolute error (NMAE),

defined in previous Chapter. The second type of metric represents the difference in the shape

between the predicted power and the ground truth. Dynamic time wrapping (DTW) is used as

a measurement of the distance between shapes in time series. DTW distance δv (τ+ i ,τ+ j )

for node v and between time series p̂v (τ), . . . , p̂v (τ+ i ) and pv (τ), . . . , pv (τ+ j ) is defined as the

minimum of accumulated distances di st (pv (τ+ i ), p̂v (τ+ j )):

δv (τ+ i ,τ+ j ) = di st (p̂v (τ+ i ), pv (τ+ j ))+
min

{
δv (τ+ i −1,τ+ j ),δv (τ+ i ,τ+ j −1),

δv (τ+ i −1,τ+ j −1)
} (4.13)

where Euclidean distance was used as the distance measurement. DTW is an indication of how

good a model is at predicting shapes, especially clouds since they largely affect the shape of

production. For calculations we used the approximation of DTW with linear time complexity

presented in Salvador and Chan (2007).

We classified days based on production variability into sunny, cloudy and variable in order

to analyse the impact of weather conditions on the error rate and shape difference of time

series, following definition from Van Haaren et al. (2014). The main difference is that instead

of irradiance in our case the input data is PV power data. Two metrics were used for this

classification: daily aggregate ramp rate (DARR) and daily index K d
v , defined in Nespoli et al.

(2019). The DARR is a simple metric given by

D ARRd = ∑
τ∈Id

|pv (τ)−pv (τ+1)|
pmax

v
, (4.14)

where Id represents the set of the daily values (night values are not taken into account) during

the day d . Days when D ARRd > 3 are classified as variable days, caused by having sun at some

parts of the day and then clouds for the rest of the day, with sudden peaks and drops, which is

essentially causing the high variability. However, the DARR metric has one limitation when it

comes to classifying sunny and overcast days since overcast days show small rates, like the

sunny days with D ARRd < 3. Therefore, to account for overcast days the additional metric

with the daily index is introduced. For each time step the daily index K d
v for each node and

each day d is calculated

K d
v = 1

|Id |
∑
τ∈Id

pv (τ)

yv (τ)pmax
v

(4.15)

where yv (τ) is the normalized clear-sky irradiance at site v . As a threshold value for classifica-

tion we chose K d
v = 0.3, where values above the threshold are indicate a sunny day, whereas

lower values imply that the day in question is cloudy.
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Figure 4.2: Error comparison of TSM-GAT and state-of-the-art models for six-hour ahead
prediction for the real dataset in Switzerland with magnified part between 4 and 6 hours
ahead prediction. Solid line shows the median value among all nodes, shaded bands show
the interquantile range among all nodes. a) Forecast NMAE for the real dataset. b) Forecast
NRMSE for the real dataset.

4.5 Results

4.5.1 Prediction accuracy

In Figure 4.2 the NRMSE and NMAE evolution of the TSM-GAT is compared to the STAR,

GCLSTM, GCTrafo and STCNN models over a predicting horizon of 6 hours ahead, with a
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Figure 4.3: Error comparison of TSM-GAT and state-of-the-art models for six-hour ahead
prediction for the synthetic dataset in California with magnified part between 4 and 6 hours
ahead prediction. Solid line shows the median value among all nodes, shaded bands show the
interquantile range among all nodes. a) Forecast NMAE for the synthetic dataset. b) Forecast
NRMSE for the synthetic dataset.

15-minute resolution for the real dataset in Switzerland. The shaded regions represent the

inter-quartile (25%-75%) error range and solid lines represent the median of error over all
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nodes. Although the GCLSTM method is on par with the TSM-GAT for the first hour ahead

prediction, the TSM-GAT outperforms the GCLSTM from four to six hours ahead predictions.

The region of interest, between four and six hours ahead of prediction, is highlighted and

shown magnified on the right. Furthermore, the lower error slope and high accuracy in the 5th

and 6th hour ahead prediction of the TSM-GAT could make it a promising multi-site model

for longer prediction horizons. NRMSE is more sensitive to outliers since it considers squared

errors. Therefore, NMAE is introduced in addition and the error evolution of NMAE is visually

shown in Figure 4.2a. The GCLSTM still has the lowest NMAE for 1 to 4 hours ahead predictions.

However, the TSM-GAT has lower errors than any other state-of-the-art model for 4 to 6 hours

ahead forecast on both metrics. Since the error at the end of the forecasting horizon becomes

higher, the advantage of TSM-GAT in capturing long-term correlations becomes noticeable.

In Figure 4.3 the NRMSE and NMAE evolution of the TSM-GAT is compared to the non-linear

methods, GCLSTM, GCTrafo and STCNN, over a prediction horizon of 6 hours, with a 15-

minute resolution for synthetic dataset in California. The authors of STCNN, Jeong and Kim

(2019), report lower error in their paper, since they use only a subset of 238 nodes and hourly

temporal resolution. Thus, they average the data which leads to smoothing signals and lower

error rate. Similarly to the performance on the real dataset, the TSM-GAT outperforms state-

of-the-art non-linear methods for 4 to 6 hours ahead prediction on the synthetic dataset.

Thus, the region of interest, between four and six hours ahead of prediction, is highlighted

and shown magnified on the right. TSM-GAT has lower error slope, while staying on par with

GCLSTM in the first four hours of the predicting horizon. The performance of all models on

the synthetic dataset shows lower error compared to the real dataset. This is the result of

smoothing in the synthetically created PV power dataset, generated from irradiance data using

the Sub-Hour Irradiance Algorithm (Hummon et al., 2012).

We also compare forecasting results for one site in the central part of Switzerland, Bätterkinden

which is close to Bern. Figure 4.4 shows the NRMSE evolution for the proposed method and

benchmark single-site models. The error of the persistence model is up to 25% in the last

hour of prediction. However, the NRMSE of persistence model is clipped at 20% in Figure 4.4

in order to be able to see the error of other models more clearly. The error rate in single-site

comparison shows that TSM-GAT outperforms all single-site models. The exception is in

the sixth hour ahead, where for the last four steps of the horizon (21st to 24th step ahead),

EDLSTM yields lower error than the proposed method. Although EDLSTM has higher error

from 0 to 5 hours ahead, compared to the proposed TSM-GAT, it clearly benefits from NWP

information at the end of the horizon since NWP data improves predictions from 6 hours

ahead to one day ahead.

4.5.2 Comparative analysis

In order to better understand what drives each model, discover pitfalls or particular advantages

we use the DTW metric in addition to NRMSE and NMAE. We make comparison only with
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Figure 4.4: Single-site error comparison between the TSM-GAT and state-of-the-art single-site
models.

the real dataset, in order to analyse better the impact of weather conditions on PV power

forecast, since on the synthetic dataset the signals are smoothened out and the sharp weather

transitions are less pronounced. Furthermore, the comparison is focused only on the GCLSTM

and TSM-GAT since they have the lowest errors. Table 4.1 illustrates the similarity in shape

between time series, obtained based on DTW metric for sunny, cloudy and variable days.

Despite the lower NMAE error for the GCLSTM in the first two hours of the prediction, TSM-

GAT has lower DTW values during cloudy and variable days in Table 4.1 as well as lower

NRMSE on 1 to 6 hours ahead forecasting horizon. This suggests the ability of TSM-GAT

to accurately predict abrupt changes in the cloud movement or day to day weather. Hence,

it yields a daily time series shape closer to the ground truth, which is important for energy

management application.

We analyse the correlation between the NRMSE and the number of variable, sunny and cloudy

days. Nodes with the higher number of variable days have higher error for 6 hours ahead

prediction, whereas for the sunny and cloudy days, there is no clear dependence. The analysis

of the error with respect to the distance to the centroid indicate that methods performs

similarly for the central nodes and on the edges on the graph. Furthermore, the analysis of the

error with respect to average distance to the closest neighbours shows that being in a cluster

or being isolated, does not affect the performance of the model. The results are shown and

discussed in more detail later, along with the limitations of the model.
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Figure 4.5: Ground truth and prediction for 6 hours ahead.

4.5.3 Effect of multi-window approach

A study has been conducted on the same dataset to verify the hypothesis regarding the higher

accuracy and interpretability of the proposed multi-window attention against multi-head

attention. We modified TSM-GAT by replacing the multiple windows with multiple heads,

creating the temporal-spatial multi-head graph attention mechanism (TS-multi-head-GAT).

Here the TSM-GAT and TS-multi-head-GAT are evaluated. Although the GCTrafo model

also uses a multi-head approach, its model architecture is completely different compared

to the TSM-GAT. Moreover, it is reporting higher error compared to both temporal-spatial

GAT architectures (multi-window and multi-head), thus, it has not been used in this study.

The main difference between TSM-GAT and multi-head approach is that the TSM-GAT has a

multi-window approach where each window focuses explicitly on one part of the predicting

sequence, whereas the multi-head approach focuses on the entire predicting sequence at

once. The number of attention heads and attention windows in this part of the study is the

same: C = 3.

The first advantage of the TSM-GAT model is learning lower number of parameters in the

spatial attention, in the last linear layer before concatenation with clear-sky data. The size

of the weights and biases in each attention window is RT f ′′× H
C , R

H
C , respectively, since it is

embedding feature sequence T f ′′ into the length of the future window sequence H
C ∈N. On

the other hand, in the multi-head approach, with C heads, the sizes of weights and biases

in this linear layer are RT f ′′×H ,RH . Moreover, multi-window approach requires an additional

layer, to reduce the number of concatenated features from C H to H in order to make it

possible to integrate the clear-sky data. On the other hand, TSM-GAT has the advantage of
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Table 4.1: Shape distance of predicted and observed time series using DTW

Prediction ahead: Weather conditions TSM-GAT GCLSTM TS-multi-head-GAT

1h

overall 1.42 1.69 1.69
sunny 1.15 1.36 1.40
cloudy 0.65 0.92 0.83

variable 2.87 3.24 3.26

3h

overall 1.86 2.08 2.08
sunny 1.52 1.64 1.76
cloudy 1.18 1.46 1.24

variable 3.37 3.61 3.72

6h

overall 2.47 2.72 2.75
sunny 2.21 2.24 2.50
cloudy 1.93 2.56 2.21

variable 3.69 3.81 3.98

focusing on the different parts of the input sequence due to the fact that windows do not have

overlap in specializations. Trainable parameters and defined variables are dependent on the

number of sliding windows T , number of features fi n , f ′, f ′′, number of multi-head windows

C and total number of nodes N . Although we have a restricted number of neighbours on

which the model focuses when making the prediction, a full matrix-vector multiplication is

calculated to find the correlation between the nodes in the dynamical adjacency matrix γt .

Only then the entries which are not in the predefined neighbourhood are masked with zeros.

Since sparse matrix structures are not used, the number of the neighbours doesn’t affect the

computational complexity. Therefore, computational complexity and memory requirements

scale with O (N 2T ).

To better understand the model we focus on the forecasting results from a specific moment in

time and place. The analysis was made on 30th of August, which was the cloudy day, at 7 a.m.

for the next 6 hours ahead prediction, which is the third day in Figure 4.5. We choose this day

since it is cloudy one after the sunny days and this time since it is difficult to make forecast

in the morning when the most recent past data is limited to only one hour of data and then

followed by night values. We analysed temporal adjacency in detail for this example in Figure

4.6, and the spatial adjacencies in Figure 4.7 and Figure 4.8.

The temporal adjacency is shown in Figure 4.6. In this example the temporal attention of

multi-window model focuses on the last temporal window before the prediction and on 2

windows just before the sunset of the previous day, which is intuitive. On the other hand, the

multi-head model focuses on the last temporal window, but it also focuses on the temporal

windows during night, which should not be relevant part of the input sequence.

The analysis of the full dynamical adjacency for only one snapshot in time with 15×3042

entries would be difficult. Therefore, we will focus on the 15th window of adjacency, since for

both models temporal attention is high in this window. Nodes above an arbitrary threshold
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Figure 4.6: Temporal attention between 15 overlapping windows. Darker colours signal lower
attention. a) TSM-GAT. b) TS-multi-head-GAT.

Table 4.2: Analysis of the nodes with the highest spatial attention coefficients

Head/Window 1 Head/Window 2 Head/Window 3
Important nodes nodes shared[%] nodes shared[%] nodes shared[%]

TS-multi-head-GAT 37 39% 54 54% 23 30%
TSM-GAT(multi-window) 30 16% 19 10% 52 9%

are considered important. In Figure 4.7 it is shown on which stations the model focuses in the

first and the second forecasting window. In the first window, model focuses on the stations

in the vicinity from the observed node, when making the forecast for up to two hours ahead.

When forecasting from two to four hours ahead, the model focuses on the nodes that are a

bit further away. Finally, when making forecast from four to six hours ahead, the model is

focusing on the nodes that are close to the observed nodes, but also on the nodes that are

very far away, see Figure 4.8. This indicates that model is able to capture both local and global

correlations, thus, local and global dynamics.

In Table 4.2 the number of important nodes is shown, as well as the percentage of these

important nodes from each window/head, which also represent an important node in the

other head(s)/window(s). The percentage of the important nodes per head, which is shared

with other head(s), is much higher than the percentage of nodes per window, shared with the

other window(s). Thus, it is more difficult to interpret the results in the multi-head attention

due to the high overlap. On the opposite, in the multi-window approach, each window has a

lower percentage of the overlap. TSM-GAT benefits from the clear specialization since with

the increase of forecasting horizon the average distance between the observed node and those

to which the mechanism is focusing on increases as well, see Figure 4.9.

Finally, we compare errors of TSM-GAT, TS-multi-window-GAT and GCLSTM in Table 4.3 and

Table 4.4. According to Murdoch et al. (2019) interpretability is defined as predictive accuracy,
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(a)

(b)

Figure 4.7: Spatial attention between the observed node and its neighbours at different fore-
casting windows. The arrows are connecting the observed node (in green) and its neighbours
with the highest attention coefficients. a) Spatial attention for the forecast up to two hours
ahead. b) Spatial attention for the forecast from two to four hours ahead.

descriptive accuracy, and relevancy, where relevancy is judged by a human audience. We

measured the predictive accuracy by using NMAE in Table 4.3 and NRMSE Table 4.4. Overall
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Figure 4.8: Spatial attention between the observed node (in green) and its neighbours for the
third forecasting window. The arrows are connecting the observed node and its neighbours
with the highest attention coefficients for forecast from four to six hours ahead.

Table 4.3: Forecasting performance of TSM-GAT and baseline models using NMAE

15min 1h 2h 3h 4h 5h 6h
GCLSTM 15.70 22.48 26.04 29.36 33.13 36.47 39.44
TSM-GAT 16.74 22.63 26.33 29.70 32.79 35.29 37.60

TS-multi-head-GAT 16.80 22.44 26.20 29.92 33.63 36.32 38.95

Table 4.4: Forecasting performance of TSM-GAT and baseline models using NRMSE

15min 1h 2h 3h 4h 5h 6h
GCLSTM 7.36 9.93 11.29 12.40 13.48 14.52 15.53
TSM-GAT 7.61 9.94 11.30 12.32 13.37 14.20 14.89

TS-multi-head-GAT 7.57 9.99 11.40 12.47 13.72 14.80 15.72

the highest accuracy is for the TSM-GAT model. What is more, the descriptive accuracy is

higher with the TSM-GAT since we can understand on which nodes the model is focusing

for different parts of the forecasting horizon. However, this is not the case with the multi-

head approach where the model is focusing on the same nodes when making 1 hour ahead

and 6 hours ahead prediction. On the other hand, with recurrent structures in the GCLSTM

it is extremely difficult to find where is mechanism focusing, since it required tracking the

activations and checking their updates. Finally, relevancy is the last interpretation measure

where DTW metric in Table 4.1 indicates lower shape difference to the ground truth of the TSM-
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Figure 4.9: Map of the spatial attention in the last overlapping window. The prediction is made
for the node in turquoise colour. Attention coefficients below the threshold are black. The
purple, red and orange nodes have coefficient values above the threshold in the first, second
and third attention head/window, respectively. Yellow nodes have values above threshold on
which at least two out of three heads/window focus (shared between heads). a) TSM-GAT
spatial attention. b) TS-multi-head-GAT spatial attention.
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GAT, which is making this model more relevant for energy management application. Thus,

this suggests that the TSM-GAT model with the multi-window approach is more interpretable

than the multi-head mechanism or state-of-the-art model GCLSTM.
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Figure 4.10: Number of variable days per node. The darker colours are signalizing the lower
number of variable days in year 2017 per node.

4.5.4 Analysis and limitations of the model

Both GCLSTM and TSM-GAT display a similar behavior in terms of correlation between error

and the number of variable days per node. Figure 4.10 shows the number of variable days in

a year per node, where darker colours indicate the lower number of variable days per node.

Several nodes are in a dense cluster, and yet have more variable days than the rest of the nodes

in their clusters. This indicates that they could have different micro-climate, shadowing effects

or more foggy days than the rest of the nodes in their clusters. At these nodes both GCLSTM

and TSM-GAT showed higher error for six hours ahead prediction; see Figure 4.11. Thus, the

first limitation of the model is higher error in case of the nodes with more variable days than

the rest of the nodes in the cluster. Relying on the neighbourhood information increases the

error when the predicting nodes have much higher number of variable days than the close

neighbours in their clusters. This represents an indication that the models are not able to

capture the specific microclimate at these distinctive nodes. As expected, from Figure 4.12 we

can see that the higher the number of variable days per node, the higher the error per node.

However, there is no clear dependence between the error and the number of sunny or cloudy

days.

Another limitation of the model is high computational complexity compared to GCLSTM,
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Figure 4.11: NRMSE for 6 hours ahead prediction per node (in [%]) in the year 2017. Darker
colours are indicating the lower NRMSE per node. a) TSM-GAT b) GCLSTM.

since the computational complexity of the TSM-GAT model scales with O (N 2T ) where N

is the total number of nodes, T is the number of temporal windows. Oppositely, GCLSTM

computational complexity scales with O (N kl ), where k is the number of closest neighbours

in GCLSTM, and l is the number of time steps taken into account for recurrence, such that

N T ≫ kl . Furthermore, in TSM-GAT model the number of learned weights is T times higher,

increasing the memory requirements.

The analysis of the error with respect to distance from the centroid, where the centroid is
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Figure 4.12: NRMSE of TSM-GAT model (bottom) and GCLSTM model (top) for 1,3,6 hours
ahead prediction per node for 2017 year divided into 3 different type of days. a) Sunny days. b)
Cloudy days. c) Variable days.

calculated as the average of nodes’ coordinates, does not indicate a higher error for nodes

that are further away from the central node, see Figure 4.13a, which indicates that the method

performs similarly for the central nodes and the nodes which are on the edges of the graph.

Figure 4.13b displays the error with respect to the average distance to five closest neighbours.

It shows the advantage of the model that being in a cluster or oppositely, being isolated, does

not affect the performance of the model.

4.5.5 Comparison with cloud-tracking model

In the previous subsection, we have already discussed that the high variability of the PV power

production within one day represents one of the model’s limitations. Since the high variability
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Figure 4.13: NRMSE per node for 1,3 and 6 hours ahead prediction with respect to different
distances for TSM-GAT (bottom) and GCLSTM (top). a) NRMSE with respect to distance to the
centroid. b) NRMSE with respect to distance to 5 closest neighbours.

of PV production mainly comes from cloud movement, we have compared our proposed model

to CloudMove, a state-of-the-art commercial solution (Müller and Remund, 2014). CloudMove

is the short-term forecasting service for irradiance and PV power production from Meteotest.

CloudMove uses weather models and cloud positions from satellite images to propagate the

cloud’s movement in the future. Ground-based solar irradiance or PV production is also used

to correct the forecasts. The cloud propagation is then used to forecast the solar irradiance for

up to six hours ahead.

CloudMove yields state-of-the-art accuracy for predictions in the six-hour ahead horizon

for irradiance and PV power forecasts. However, one of the pitfalls of this method is high

inference time, such that spatio-temporal graph-based methods report acceleration of the

forecast computation by a factor 100 (Carrillo et al., 2022).

The analysis includes comparisons in different seasons and weather conditions. A repre-

sentative set of 18 locations and 21 days were selected to cover the whole range of possible

conditions in Switzerland in terms of weather, terrain, and distance to other instrumented

sites. Forecasts at these stations are used to evaluate the accuracy of proposed models against

baselines. Figure 4.14 shows the NRMSE evolution over the forecasting horizon of 6 hours

ahead with 15-minute steps. We compare the proposed TSM-GAT model with GCLSTM, smart

persistence model and CloudMove model. Although the error spread is larger with graph-

based methods (the GCLSTM and TSM-GAT) than with CloudMove for the first three hours of

the forecast, for the rest of the forecasting horizon, the proposed model has lower the upper

quartile of error values than the lower quartile of the cloud-motion tracking method. Fur-

thermore, the TSM-GAT has the lowest NRMSE compared to the GCLSTM and cloud-tracking

model CloudMove for the forecasting horizon above one hour.
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Figure 4.14: NRMSE evolution of GCLSTM, CloudMove, TSM-GAT and persistence model over
the forecasting horizon of 6 hours ahead in steps of 15 minutes.

4.5.6 The effectiveness of the multi-window approach

In the study regarding the effectiveness of multi-window approach over multi-head we analyse

the dynamical adjacency and temporal attention coefficients obtained from the two models

in question during a cloudy day in Eich, Switzerland. This node is selected due to its central

position, marked with turquoise colour in Figure 4.9. For illustration purposes, the predictions

for 6 hours ahead made by GCLSTM are also shown in Figure 4.5 and compared to temporal-

spatial graph attention model. The analysis was made on 30th of August, which was the cloudy

day, at 7 a.m. for the next 6 hours ahead prediction. We choose this time since it is difficult to

make forecast in the morning when the most recent past data is limited to only one hour of

data and then followed by night values.

The temporal adjacencies of TSM-GAT and TS-multi-head-GAT for this prediction are shown in

Figure 4.6. TSM-GAT model has the highest attention in the 15th, then 6th and 7th overlapping

window, whereas multi-head model has the highest attention on the 10th, and then 11th

and 15th overlapping window. This means that TSM-GAT pays the most attention to the

observations in the morning of the current day and then on the last 4 hours of non-zero PV

production in the previous day. This could be interpreted as looking at the past values during

the cloudy morning and the last values before sunset of the previous day. Since the previous

day was much sunnier it would not make sense for the algorithm to focus on other parts

of the sequence. On the other hand, multi-head approach pays the most attention to the

10th and 11th window, which is during the night and then on the 15th window. It has the
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highest attention values for the night windows when production is zero, which should not be

a relevant part of the input data.

The next part of the study considers the dynamical spatial adjacency. We chose 15th win-

dow of the spatial attention for analysis, since both the multi-head and the multi-window

architectures have high attention coefficients in the last temporal window. For both models

we have chosen the arbitrary value 0.0035 as a threshold, such that nodes with coefficients

above the threshold are considered important when making the prediction. Figure 4.9 shows

the map of important nodes represented with different colours based on the window/head

they belong to, when making the prediction for the chosen day. The first difference between

the models is that in the multi-window approach the model is focusing on the closer nodes

when making prediction for up to 2 hours ahead and it is focusing on further away nodes

when making a prediction for 4-6 hours ahead. Intuitively, this represents a clear advantage

compared to multi-head attention, since in the multi-head attention all heads give the highest

focus on the similar small neighbourhoods. Furthermore, in this example the multi-window

approach in the first window, coefficients are above the threshold for the self-attention, which

is reasonable since for the short-term forecasts the persistence model gives the best results.

Therefore, it could be interpreted as paying the most attention to its own past data when mak-

ing forecasts up to two hours ahead. However, in the multi-head approach, none of these three

attention heads have high self-attention coefficient values in the adjacency. Furthermore, in

the multi-head approach the first and the last heads share one out of two nodes with highest

attention. In the multi-window approach all three windows have different nodes with highest

coefficient, meaning that in each window different nodes are selected as the most important.

4.6 Conclusions

A novel method, TSM-GAT, for capturing dynamically changing spatio-temporal correlations

in deterministic PV power forecasting has been introduced. It was evaluated on real and

synthetic PV production datasets and the performance was compared against state of the

art, for both multi-site and single-site models. The TSM-GAT outperformed state-of-the-art

methods from 4 to 6 hours ahead prediction on the real and synthetic datasets. Results suggest

that the TSM-GAT model is better than the state of the art at capturing shadowing, including

cloud motion, and weather changes since it yields signal shapes closer to the ground truth

on the entire horizon. Thus, it is addressing the limitation of cloud prediction in the spatio-

temporal task, by directly capturing dynamically changing adjacency matrices for different

parts of predicting horizon. A study was conducted to analyse the difference between the

widely used multi-head attention and the proposed multi-window attention. It indicates

that the proposed TSM-GAT model is more interpretable, and therefore more suitable for

the prediction of multi-site time series driven by physical phenomena, such as PV and wind

forecasting. This model could be used for other time series forecasting tasks where physical

phenomena are modelled or when it is important to understand what influences the forecast.

An in-depth analysis was performed in order to better understand what drives the performance
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on PV dataset. It is shown that the distance between PV power plants does not affect accuracy

of the forecast, which is important for countries where PV stations are not homogeneously and

densely distributed. Among the investigated state-of-the-art methods, the TSM-GAT model

has the lowest distance between predicted and ground-truth signal shapes, as well as the

lowest error for 4 to 6 hours ahead forecasts, which is important for energy trading and energy

management. On top of that, the lower dependence of its error on the time horizon makes

TSM-GAT very promising for longer-term (day-ahead) predictions.

The architecture is scalable only for hundreds of nodes and the scalability limitation should

be addressed in future work. Although we have shown here that the method does not have

limitation in terms of distance between power plants, this finding should be confirmed in

further research on a denser dataset containing a higher number of homogeneously spread

nodes. Another research direction is improving the model’s ability to capture cloud dynamics

during the variable days, or in early mornings of the cloudy day. Thus, a framework that

is capable of modelling cloud formation and cloud movement should improve PV power

prediction accuracy during variable and cloudy days.
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5 PING: Physics informed graph neu-
ral networks for forecasting solar
resources

5.1 Introduction

Cloud formation and movement directly influence irradiance forecasting, a key aspect of

solar photovoltaic (PV) power generation. Since cloud formation and cloud movement are

guided by the advection-diffusion processes, we can conclude that PV power generation

and advection-diffusion processes are closely linked. State-of-the-art PV power production

forecasting models, discussed in the previous Chapters, fail to fully capture cloud movement

during the variable days or mornings of cloudy days. The over-smooth forecasting signal

suggests an incomplete representation of cloud dynamics within these models. Consequently,

understanding the physical processes, specifically the advection-diffusion dynamics governing

cloud movements, needs to be more utilised. Thus, a clear need for physics informed machine

learning models, capable of modelling these advection-diffusion process on irregular grids,

arises.

Advection-diffusion processes play a crucial role in understanding and predicting not only

cloud formation and cloud movement but also other natural atmospheric phenomena, in-

cluding ocean temperature distribution, air pollution spread, groundwater movement, the

spread of forest fires, atmospheric temperature and many others. Advection-diffusion differ-

ential equations could describe these dynamical spatio-temporal processes. Hence, many

scientists have used numerical methods to seek solutions for these challenges across different

fields. NWPs, often used in PV forecasting, require solving physical equations using numerical

methods. However, the numerical solvers are computationally expensive and require expert

knowledge to fully describe the process (Sanchez-Gonzalez et al., 2020). Since the dynamics

and factors which affect atmospheric phenomena are not always fully known and the PV

power production is not solely dependent on advection-diffusion, machine learning models

are often used to estimate the unknown part of the dynamics.

Machine learning models successfully predicted physical phenomena, such as weather (Lam
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et al., 2023) and renewable power production, as shown in the previous chapters. However,

these models represent black box models, which do not necessarily follow the advection-

diffusion laws. Although they offer lower computation costs than the numerical methods,

without the explicit physical constraints, they might yield implausible forecasts (Wang and Yu,

2021). There has been a growing need for incorporating known physical knowledge into ma-

chine learning models, not only in forecasting production from renewable sources and cloud

movement but also in modelling other physical phenomena guided by advection-diffusion.

Recently, much attention has been focused on physically informed neural networks (PINNs).

PINNs integrate data-driven neural networks with prior scientific knowledge, ensuring con-

sistency with the physical laws. They have succeeded in accelerating data simulations while

offering solutions that obey physical laws. However, most PINN models focus on solving the

tasks on regular grids, while PV forecasting represents the problem that inherently lies on an

irregular grid.

Graph neural networks address the problem of simulating physical phenomena on irregular

domains. Predominantly, they employ message-passing algorithms to learn the dynamics

of different physical phenomena, (Pfaff et al., 2020). However, they suffer from quadratic

complexity and over-smoothing when spatial resolution is high since many update steps are

needed in order to pass the information. Although these issues were addressed with a multi-

scale approach (Fortunato et al., 2022), including different scales of passing the information,

assumed that a large amount of the information is available. What is more, the multi-level

approach increased the needed computational memory. However, PV power production data

usually has limited data available and already has issues with the over-smoothed predictions.

Therefore, existing methods could not be utilized.

We introduce a physics-informed graph neural network (PING) model designed to capture

cloud dynamics while offering accurate forecasts of PV power production. Here, we leverage

the graph neural networks to simulate the underlying dynamics of an advection-diffusion

process in order to forecast future production. The model estimates velocities of the historical

input data in an unsupervised fashion. In order to make sure that the model can capture cloud

dynamics, we have evaluated the proposed model on the cloud concentration index dataset

on both regular and irregular domains. Furthermore, since PINNs have higher generalization

capabilities, we have evaluated our model on both regular and irregular grids across different

advection-diffusion datasets to demonstrate the generalization in modelling different physical

phenomena. We address the modelling of the dynamics on a purely advective synthetic

dataset, synthetic advection-diffusion-based datasets, sea surface temperature datasets as

a highly diffusive process, cloud index as a highly advective process and PV power, which

encompasses more complex phenomena than the previously mentioned datasets.

The main advantage of the proposed model is lower computational costs than the numerical

methods or physically informed models that rely heavily on message passing. The proposed

model is also characterized by its capacity to maintain same accuracy on both regular and

irregular domains, even without extensive historical data, underscoring its efficiency in data

72



5.1 Introduction

usage. Since the governing differential equation of the advection-diffusion processes is known

in advance, we propose a novel discretization of this particular PDE on the irregular grid.

Although we show that the same solution applies to problems that reside on the regular grid,

our primary goal is to forecast data intrinsically defined on an irregular domain. Our objective

is to forecast future concentration while estimating the historical velocities and uncovering

the underlying dynamics in an unsupervised manner. The contributions of this chapter are

the following:

• We introduce a physics-informed graph neural network (PING) model for forecasting

the future particle concentration values in the advection-diffusion-based processes

that reside on both regular and irregular grids. The information of advection-diffusion

processes is added by including the PDE equation that satisfies the governing physical

laws as a soft constraint in the loss function.

• The proposed model captures the dynamics of the processes and estimates velocities

of the input data by introducing an Euler-based discretization scheme for irregular

domains. Estimated velocities are used to improve the forecasting accuracy of future

particle concentrations.

• A performance of the PING model is evaluated on multiple domains, including cloud

concentration, sea surface temperature, irradiance and two different synthetic fluid-

based datasets. That shows the generalization capabilities of the model in terms of

modelling different physical phenomena.

• The model is also evaluated on PV power production, which is is more complex phe-

nomena, since PV power production is not only influenced by advection-diffusion from

cloud dynamics, but also from shading effects from local factors. Moreover, it is affected

by temperature and atmospheric aerosols, as well as the orientation and tilt angle of PV

module.

• Ablation study is conducted, and it indicates the robustness of the framework regardless

of the stochastic subsampling over the irregular grid.

The rest of the chapter is organized as follows. Section 5.2 introduces preliminaries on

advection-diffusion in fluid dynamics and graph time series forecasting. Section details

the proposed PING architecture. The experimental results of our evaluation and the analyses

are presented and discussed in Section . Finally, we conclude in Section .

5.1.1 Related work

Modelling dynamically changing spatial and temporal physical processes has been challenging

in climate modelling, simulating fluid dynamics, and molecule interactions. Traditionally,

scientists have tackled these problems by using prior knowledge of physical phenomena
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and describing the known physical laws with differential equations. Different numerical

solvers have been used to solve these equations. However, these solvers are computationally

expensive and require expert knowledge in order to describe the process (Fortunato et al.,

2022; Sanchez-Gonzalez et al., 2020). Thus, a substantial amount of effort is needed to choose

physically meaningful parameters when modelling a simulator, and this process needs to

be repeated for every task. Furthermore, the dynamics of many complex spatio-temporal

processes are only partially known. Therefore, different machine learning techniques have

been used to estimate the unknown part of the dynamics since they can offer generalization

across various tasks.

Machine learning models have had considerable successes in forecasting weather (Bi et al.,

2023; Lam et al., 2023), renewable power production (Simeunović et al., 2022b), epidemic fore-

casting (Wang et al., 2023), traffic forecasting (Khaled et al., 2022) and other complex dynamic

spatio-temporal tasks. Recent works have shown that data-driven models are capable of learn-

ing the underlying dynamics without using expensive numerical solvers. Researchers have

used neural networks as a black-box model for fluid dynamics forecasting by directly mapping

the input sequence to the future predictions (Bi et al., 2023; Guo et al., 2022; Pathak et al., 2022;

Xiao et al., 2019; Krivec et al., 2021). Machine learning models do not use traditional numerical

solvers. Thus, they offer lower computation costs and have potential for generalization (Meng

et al., 2022). However, purely data-driven models do not have explicit physical constraints.

Thus, they might yield physically implausible forecasts that violate physical laws (Wang and

Yu, 2021).

Therefore, the growing need for incorporating prior physics knowledge into machine learning

models led to the development of physics-informed machine learning models for complex

physical phenomena. PINNs yield scientifically valid models in terms of obeying physical

laws and improve the generalizability of spatio-temporal machine learning model (Wang

and Yu, 2021). Numerous PINN studies are focused on solving PDEs by approximating the

solution of the differential equation with a neural network and bypassing the numerical solvers

(Raissi et al., 2019b,a). However, when the governing differential equation is known apriori, the

solution of the PDE is used as a soft constraint in the loss function of the neural network. Added

constraint controls the trainable weights’ effect and preserves the physics-based variables’

semantics. In a scenario when only part of the dynamics is known, the neural networks are

typically used to learn an error made by a physics-based model (Takeishi and Kalousis, 2021;

Yin et al., 2021; Belbute-Peres et al., 2020). Thus, they can correct the bias from the physics-

based part of the models. However, hybrid models still need to solve the known part of the

physics-based equation numerically. When the governing equation is a priori completely

unknown, the researchers either try to learn the dynamics and then predict the model’s output

(De Bézenac et al., 2019; Kashinath et al., 2021). In these works, the numerical solutions are

bypassed, and future values are predicted directly using neural networks. However, most

PINNs focus on solving the tasks that reside on a regular grid. On top of this, they typically

employ automatic differentiation, which can fail with insufficient collocation points, making

them both computationally demanding and unsuitable for tasks when a lower number of
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points is available (Chiu et al., 2022; He et al., 2023).

In many tasks, graph neural networks (GNNs) had many successes when modelling processes

on irregular grid. Recently, GNNs have also shown promising approaches when simulating

different physical phenomena, including flow dynamics on meshes. Different types of particle

interaction, including one in the fluids, have been modelled in the work of Sanchez-Gonzalez

et al. (2020); Pfaff et al. (2020). They have used message-passing graph neural networks

to learn a simulation model of the physical phenomenon. However, these networks suffer

from quadratic complexity due to dependence on the number of nodes. On top of this,

meshes with fine resolution might suffer from over-smoothing since a high number of update

steps is needed to pass the same amount of information. These issues were alleviated in

the work of Fortunato et al. (2022) by the introduction of a multi-scale approach on two

different resolutions. A multi-scale approach was also used in the works of Lam et al. (2023),

where six different projections of meshes contributed to accurate medium-range weather

forecast. Weather forecast for high resolution dense and sparse grids is proposed in works

of Andrychowicz et al. (2023). However, both weather-forecasting architectures are highly

expensive computationally and in terms of memory. Furthermore, several studies, including

the works of Lam et al. (2023); Fortunato et al. (2022); Pfaff et al. (2020); Sanchez-Gonzalez

et al. (2020) which focus on either fluid dynamics simulation or weather forecasting problems,

assume that a large amount of data is available, making it difficult to use in the real-world

scenarios, where historical information is available for rather a short period.

In the real world, most of the phenomena of interest, such as renewable power generation

or weather data, are measured through a network of sensors irregularly distributed in space.,

yielding problems that inherently lie in irregular domains. In the works of Gao et al. (2022) the

Garlekin method is introduced as a discretization method for problems that reside on irregular

domains. However, the main aim of the proposed framework is solving forward and inverse

PDEs in a unified manner, not a future forecast. Furthermore, it is focused on steady-state

PDEs and, thus, requires additional research in order to handle the spatio-temporal PDEs.

5.2 Problem formulation

5.2.1 Time series forecasting on Graphs

Forecasting future quantities of the observed particles in the advection-diffusion processes

can be posed as a time series prediction task, where the goal is to forecast the concentration

of the quantities C(t) at time t for the next H discrete time steps ahead, where C(t) is the

concentration at time t measured on a set of N locations in space. For example, we can predict

the future sea surface temperature, the cloud concentration index or PV power production

given the past data of the same type. The problem of forecasting the next H discrete time steps

given M past observations can be formulated:
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Ĉ(t ), . . . , Ĉ(t +H −1) = fβ (C(t −M), . . . ,C(t −1)) , (5.1)

where for any t , fβ is a chosen family of parametric estimators. A set of parameters β is learnt

such that it minimizes the prediction error over the entire horizon by solving the following

problem:

argmin
β

∑
τ∈T

τ+H−1∑
ξ=τ

∥Ĉ(ξ)−C(ξ)∥2
2, (5.2)

where T represents the times of historical time steps which are used for fitting the model

during training. We use mean square error (MSE), denoted with ∥ ·∥2
2 as a loss function. MSE

function, often used in time series forecasting, is chosen to ensure that predictions of the

proposed model do not deviate significantly from ground truth.

In the previous chapters we have shown that the initial intuition of inferring part of cloud

dynamics, using only the past production data is correct. The past data was used to find

the spatial and temporal correlations which demonstrated to be meaningful for accurate

prediction of future production. Here we follow the similar intuition and leverage different

types of the input data in order to estimate the spatio-temporal correlations and the dynamics,

caused by advection-diffusion. Power production at each PV station or concentration value

of weather data, including cloud index density and sea surface temperature, are modelled as

signals on a spatio-temporal graph G . We can model PV stations and measurement locations

of weather data as nodes, represented as a set ν = {ν1,ν2, . . . ,νN }. In addition, we model

velocity features of the underlying flows, which are guiding the advection-diffusion processes,

as a graph signal. The edges εreflects the correlation between the concentration and velocity

features in the advection-diffusion processes. We define a graph signal as a mapping C : ν→R,

such that Ct
ν ∈R is the concentration value at node ν at time t . Multiplying the graph signal C

with the Laplacian L yields:

L C = ∑
j∈Ni

Li j C j =
∑

j∈Ni

wi j (Ci −C j ) (5.3)

where wi j represents the weight on the edge between nodes νi and ν j . An important property

of Graph Laplacian matrix is that it is positive, semi-definite matrix and its quadratic form is

explicitly given by:

CT L C =∑
i

∑
j∈Ni

wi j (Ci −C j )2. (5.4)

For more details and an in-depth review of GSP we refer the reader to the work of Ortega et al.

(2018). In our case, the graph signal at time step t is denoted by C(t) and it represents the

vector of measured quantities such as temperature, cloud coverage index and concentration

of simulated quantity or PV power production.
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5.2.2 Advection-diffusion processes

Advection-diffusion processes describe how quantities travel and spread in various mediums,

especially fluid dynamics. Advection and diffusion are two key processes that govern the

transport of energy and matter in fluids, described by the following differential equation:

∂C

∂t
+∇· (uC ) =∇· (D∇C )+P, (5.5)

where C represents the concentration of particles and P represents sinks and sources of parti-

cles. Velocity of the particles is defined as the vector field u, D is a scalar diffusion coefficient

and ∇· is the divergence operator (Stocker, 2011), defined in 2D Cartesian coordinates:

∇=
(
∂

∂x
,
∂

∂y

)
(5.6)

where x and y are the coordinates.

In the fluid dynamics the advection is driven by the bulk motion of fluid, transporting particles

with concentration C (x, y, t), which move with the velocity of fluid u(x, y, t), over a specific

period of time. The advection represents the left part of Equation 5.5, and it is denoted with

the sum of proxies α, which represents the change of the concentration in the space and β,

the change of the concentration in time, such that:

α+β= ∂C

∂t
+∇· (uC ). (5.7)

The diffusion, on the other hand, is caused by the movement of particles from area of higher

concentration to the area of lower concentration (Stocker, 2011). The diffusion describes

how the concentration of the substance changes over time due to a concentration gradient.

Therefore, the diffusion represents the first term in the right hand side of Equation 5.5 and it is

denoted with γ:

γ=∇· (D∇C ), (5.8)

where D represents the diffusion constant that depends on physical properties of diffusing

particles and the compound containing these particles.

Thus, the combined effects of advection and diffusion play a key role in forecasting advection-

diffusion processes. For example, they guide the motion and distribution of heat within

the ocean’s surface layer in predicting sea surface temperature. For forecasting the cloud

movement and cloud concentration index, advection and diffusion play pivotal roles in the

motion and dispersion of clouds. Eventually, the motion of the air in the atmosphere, which

causes the clouds’ movement, inadvertently affects irradiance and PV power production

forecasting.
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5.2.3 Discretization of the advection-diffusion equation on an irregular grid

In order to address the issue of forecasting on the irregular grid, we have to discretize the

solution of the advection-diffusion equation on the irregular grid. This entails discretizing

the change of concentration in space and time, and the diffusion. The concentration change

in the time is the same as defined easily for every node νi as C t
i −C t−1

i . The diffusion term is

defined as a second-order derivative and it corresponds to the product between the Graph

Laplacian and the graph signal. The only term left to be defined is the discretization of the

spatial concentration change due to the advection.

The velocities ut
i at node νi at time t are defined in two-dimensional feature space. In order to

calculate the vector flow ϑi j at the edge εi j , we define the projection of the velocity vector ui

onto the edge direction between the observed node νi and its neighbour ν j as:

ϑi j = ui ·ei j . (5.9)

where eij = ∆zi j

||∆zi j ∥2
2

is the unitary vector of the direction. Therefore the spatial concentration

change at node νi is defined as:

∇· (uC)t
i =

∑
j∈Ni

ϑi j
√

wi j∇Ci j (5.10)

where ∇C t
i j =C t

j −C t
i represents the difference in the concentration change and wi j repre-

sents the edge weight. The RBF kernel chosen to calculate the edge weights provides the

similarity measure based on the physical distances between the nodes, which are important

when modelling local phenomena. Moreover, the RBF kernel has been successfully used for

prediction future sea surface temperature, in the work of De Bézenac et al. (2019). Finally, we

define the general advection diffusion equation for an irregular grid:

C t+1
i −C t

i =
∑

j∈Ni

ut
i ·ei j

√
wi j (C t

i −C t
j )+Li Ct, (5.11)

which could be used also on a regular grid.

On top of this, we need to define the divergence of the velocity field on the graph. Similarly, as

in previous the previous case, the velocity vectors need to be projected from two-dimensional

Cartesian space onto the direction of edge between observed node its neighbour, in order to

obtain the flow edge value. This leads us to define the divergence of velocity field on irregular

grid between the node νi and its neighbour ν j :

∇· ût
i =

∑
j∈Ni

√
wi j

(
(ut

i −ut
j ) ·eij

)
, (5.12)

where the divergence is calculated for every neighbour.
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Figure 5.1: PING model.

5.3 Physically-informed graph neural network

In this chapter we propose a sequence-to-sequence model built on a physically-informed

graph neural network (PING) for advection-diffusion processes, more precisely for cloud

concentration index, sea surface temperature and PV power forecasting tasks. The model rep-

resents physics-guided solution for the prediction of particle concentration of the advection-

diffusion processes, in 2-dimensional space. The overview of the model is shown in Figure 5.1.

Our model leverages knowledge of physical processes, added as a soft constraint to the model,
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to guide graph neural networks in order to estimate the flows and predict the concentration

of the particles. Subsequently, these flow estimations are utilized within the flow estimation

block to generate the velocity and acceleration features, which are useful for the forecast of

cloud concentration index, sea surface temperature or PV power production. A sequence of

the past M measurements of particle concentrations C = [C(t −M), . . . ,C(t −1)] ∈RN×M over

N sensor network nodes is taken as an input to the model, when predicting concentration H

steps ahead Ĉ = [
Ĉ(t ), . . . , Ĉ(t +H −1)

] ∈RN×H over same set of nodes. PING consists of the

three blocks: flow estimator, flow attention and flow processor block.

5.3.1 Flow Estimator

We have developed two estimation bocks. In the first estimation block we estimate the velocity

features of the the input concentration. More precisely, the input to this estimation block are

geographical coordinates and the sequences of past observations. In the second estimation

block the obtained velocity features are used as an input to estimate the acceleration features.

Both velocity and acceleration are later used as inputs to the flow attention block, as shown in

Figure 5.1.

The velocity could be obtained as the solution from a partial differential equation (PDE),

given in Equation 5.5. In order to avoid the high computational complexity coming from the

classical numerical methods for solving PDEs, graph-based architectures are successfully for

prediction of fluid dynamics and other systems modelled by partial differential equations

(Boussif et al., 2022). Given a spatial query, spatial embedding and the input features, it is

possible to accurately forecast future values at any point. Following a similar path as (Boussif

et al., 2022), we propose a model that implicitly solves the subset of PDEs that characterize

advection-diffusion processes within a graph-based setting. We assume incompressibility of

the flow, thereby eliminating the need to consider sources or sinks, P from Equation 5.5. We

can rewrite this equation:

u ·∇C + ∂C

∂t
−D∇2C = 0. (5.13)

such that the first and the second term in Equation 5.13 denotes the contribution of the

advection and the third term represents the diffusion. The advection entails the concentration

change in the space u ·∇C and the concentration change in time ∂C
∂t .

The spatial change of concentration could be modelled numerically by discretizing Equation

5.13 in space and time. We adopt the following notation: the particle concentration at node νi

at time stept is given by C t
i . The change of concentration Ci in the space at node νi , denoted

with C t
δ,i , in the 2-dimensional case, shown on Figure 5.2 could be approximated as:

C t
δ,i =

C t
i+1,k −C t

i−1,k

∆x
+

C t
i ,k+1 −C t

i ,k−1

∆y
, (5.14)

where ∆x and ∆y are the distances between every two neighbouring nodes on x and y axis.
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Figure 5.2: Illustration of a 2-dimensional case on the left, where concentration Ci at the
node νi is equidistant from the adjacent nodes νi−1, j and νi+1, j on the x-axis and nodes νi , j−1

and νi , j+1 on y-axis. On the right concentration at the node Ci has different distances to its
neighbour C j .

Using the Euler discretization, we take into account the nodes which are adjacent to the ob-

served node and on regular grid they are equidistant from it. Nodes νi+1 and νi−1 are adjacent,

equidistant nodes to the observed one, νi . Although this is easily defined in 2-dimensional

regular grid, the definition of the temporal and spatial change in the concentration is more

difficult for the irregular grid, see Figure 5.2, where our task inherently lies. The concentration

at node νi is Ci and this node is not equidistant from its neighbours C j for every node j ∈N

in neighbourhood of νi .

The challenge of modelling the change of concentration on the irregular domain is not the only

challenge that we address. We also need to define the projection of vector u on the gradient of

quantity ∇C on irregular domain, in which case α= u ·∇C has infinitely many solutions. Thus,

to model the change in the space on the irregular graph, we must first define adjacent nodes

on the graph. We follow the intuition that the same flow affects the spatially close particles.

The adjacent nodes are defined using the closest neighbours on the graph, and then the spatial

concentration change across the neighbours is aggregated. The governing assumption is that

features (concentrations) from node ν j are relevant for the flow estimation at node νi , if the

node ν j lies in the neighbourhood of the node νi . The spatial concentration change between
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the neighbours is denoted by ∇C t
i = C t

i −C t
j . However, we need to provide the model with

information regarding the distance and orientation between the nodes since it is needed with

the spatial change between the neighbours for the spatial discretization. The addition of the

distance information is possible by calculating the difference in the position between nodes

∆zij =
[
longi − long j , l ati − l at j

]
, where zi =

[
longi , l ati

]
represent longitude and latitude

of the node νi . We only discuss the latitude and longitude, since all problems that we consider

are on the 2-dimensional space. Thus, the proxy for spatial concentration change between the

nodes νi and ν j is defined via concatenation, denoted with [·||·]:

αt
i j =

[(
C t

i −C t
j

)
||∆zij

]
. (5.15)

On the other hand, the temporal change in concentration for the node νi is defined more

easily:

βt
i =C t

i −C t−1
i . (5.16)

The diffusion is described by the rate of change of concentration, which is the second-order

derivative. Thus, we model the discretization of the second order derivative wit the Graph

Laplacian γi = Li Ct , (Hein et al., 2007). Although it is possible to directly calculate the

temporal change and the diffusion for the observed node νi (from the second and the third

term in Equation 5.13), the spatial change of concentration is difficult to define on the irregular

grid, since it requires discretization of the PDE on the irregular grid. Therefore, we consider

that the difference in the concentrations between the node νi and its closest neighbours ν j is a

partial contribution to the change of concentration at node νi . The difference in concentration

between every pair of nodes νi and its neighbour ν j at time t is defined with ht
i j ∈RFi n :

ht
i j =

[
∆zij||(C t

i −C t−1
i )||(C t

i −C t
j )||Li Ct

]
, (5.17)

where we take into consideration the temporal changeβt
i , spatial change across the neighbours

and their mutual distances αt
i j and a diffusion term Li Ct .

Once the partial contributions(ht
i j ) from the closest neighbours are computed, the aggregation

of the neighbourhood information is needed. This is calculated with a weighting coefficient

matrix Wτ ∈RN×S , where the total number of nodes is N and S = |Ni |,∀νi is the predefined

number of the closest neighbours for all nodes. Thus, we want to learn the contribution

that each neighbouring node has towards the velocity at the observed node by learning the

adjacency matrix Wτ where τ is obtained using the floor function, ⌊·⌋ which rounds down the

division to the nearest integer. The value of τ= ⌊ t−1
2 ⌋ is chosen such that the weight matrix Wτ

is shared for every two consecutive steps, in order to be able to capture fast changes between

time steps. The matrix Wτ models the individual contribution from each neighbouring node

towards the velocity at the observed node:

ĥt
i =σ

( ∑
j∈Ni

wτ
i j f (ht

i j )

)
(5.18)
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where wτ
i j represents an entry of the matrix Wτ and function f (·) represents an MLP. Instead

of directly solving PDE, the authors of Raissi et al. (2019a) used MLP to approximate the

solution to PDE equation. Following the same idea, we use an MLP to approximate the flow

values. Thus, we obtain the aggregated vector of neighbourhood information ĥt
i is of size RFi n .

Then, we can finally define the velocity value ut
i ∈RF ′

in the physics-guided mechanism for

advection-diffusion processes as:

ut
i = AT ĥt

i , (5.19)

where T represents the past time steps for which we are estimating the velocity, F ′ is the size

of projected vector space of the velocity, that corresponds to the Cartesian coordinates in our

setting (F ′ = 2) and A ∈ RFi n×F ′
is learnable parameter that projects features from the space

size Fi n to the on of size F ′.

The obtained velocity values are in the 2-dimensional space, thus, in order to increase the

expressive power of the model, we project the velocity estimations to higher feature space,

using an MLP:

ût
i = We

3σ(We
2σ(We

1vt
i +be

1)+be
2)+be

3 (5.20)

where We
i and be

i ,e ∈ [1,2,3] are learnable weights and biases, and feature vector ût
i ∈RF ′′

. At

the end of each layer, the non-linearity σ is applied, which represents the LeakyRelu function.

In order to diffuse information across the sequences, we have performed a 1D temporal

convolution on the sequences. The convolution operation is followed by the rolling mean

and features aggregation via sliding window, obtaining the final velocity-like features tensor

vt
i ∈RFout . Although we choose mean-aggregation function, a max-aggregation or GCN-like

operation could be envisaged instead. We have chosen empirically a mean-aggregation on the

time-axis to aggregate feature information from different directions of the irregular grid.

In order to increase the expressiveness of the model, we will take the velocity features from

the output of the estimation block vt
i as the input to the next estimation block to obtain

acceleration features at
acc ∈RN×F acc

out , as shown in Figure 5.3. We named the computed features

at
acc which represent the output of the attention flow block, acceleration features, since they

use the difference operator on the velocity features. In addition, in Figure 5.3 is shown that

the horizon length of estimated velocity features is M −1. The size differs from the length of

input data M , due to difference operation in 5.18. The same reasoning is explanation of the

acceleration horizon length being M −2.

The second difference between velocity and acceleration flow estimation blocks, is regarding

the choice of weight matrix W τ. In the velocity estimation block τ is shared for every two

consecutive time steps of the input horizon. However, in the acceleration flow estimation block

τ= 1 and we learn a single matrix W τ across all sequences. Since the number of features F acc
i n

and neighbours Sacc used for information aggregation in Equation 5.17 in the acceleration

estimation block is significantly higher compared to number of features Fi n and neighbours S

in the velocity estimation block, single weight matrix is learnt to avoid increasing complexity
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Figure 5.3: The flow estimator block of the PING model.

of the model.

Since both velocities and acceleration features carry information on the neighbour’s contribu-

tion for the final flow prediction at node νi , we also embed the concentration input signal at

every node through a single MLP in order to carry the original signal value when calculating

the future forecast at node νi . This is calculated on the entire input horizon with the length M .

5.3.2 Flow Attention

The flow attention takes as inputs: estimated velocity is a set of node’s velocity feature es-

timations vt = [
vt

1, ...,vt
N

]
where N is the number of nodes; and acceleration features at

acc ,

calculated in the flow estimation block. Additionally, it uses as an input the embedded con-
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Figure 5.4: The flow attention and flow processor blocks of the PING model.

centration values Ct
emb . The number of attention blocks is three since each data type, the

embedded concentrations, velocity, and acceleration features, are passed to a different at-

tention flow block, see Figure 5.4. These blocks aim to calculate the contribution of each

neighbour’s concentration, velocity and acceleration towards the final prediction, which

represents the edge values.

The mentioned concentration embeddings are calculated via an MLP in order to transform

the input values into higher dimension features, allowing the model to potentially leverage

the higher-level patterns that are not evident in the raw data. The methodology for deriving

the velocity and acceleration features used as inputs has been described in the previous

subsection. The predictive power of this block is derived from its ability to quantify the

influence of neighbouring values on the prediction of the final node for each of these inputs.

However, we will focus on the single predictor block to explain the predictor, which takes the

velocity features as inputs.

First, in the processor block, we construct topological embedding q(zi ) at every node νi

where q(·) represents the multi-layer perceptron function. The MLP is used to transform
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the coordinates into the different space, since directly feeding the coordinates as features

might not be enough to capture complex spatial relationship within the data. This function

maps the coordinates at node νi , zi , to potentially different dimensional space and obtains

the new values z̃i = σ(zi Wemb). The learnable matrix of positional encoding is denoted by

Wemb ∈R2×semb
, where semb represents the size of the positional encoding. The flow vectors

(velocity and acceleration features) constructed in the previous section, as well as embedded

input concentrations are concatenated with the spatial embeddings in order to find the

contribution of each vector towards final concentration prediction.

We will focus on the velocity features further in this subsection, although the embedded

concentration values and acceleration features are utilized in the same manner. Hence, we

concatenate the neighbouring velocity features at node νi and the difference between spatial

embeddings ∆z̃ = z̃i − z̃ j . Additionally, we take into account neighbouring velocities ∀ j ∈Ni ,

which are denoted with v̂t
i j . The neighbouring velocity features at ν j are concatenated for

each node νi as v̂t
i j = ∥∀ j∈Ni

(
vt

j

)
, where symbol ∥∀ j∈Ni (·) represent the concatenation for all

the nodes ν j in the neighbourhood of νi . The main idea is to take into account velocities with

respect to the difference of their topological embeddings:

g t
i j =

[
v̂t

i j ||∆z̃
]

, (5.21)

where gt
i j ∈RFout+semb

. This particular signal is then subjected to a transformation via an MLP

in order to model non-linear relationships between the velocity features and the topology of

the graph:

ĝt
ij = Wd

3σ(Wd
2σ(Wd

1 gt
i j +bd

1 )+bd
2 )+bd

3 (5.22)

such that Wd
i and bd

i , i ∈ [1,2,3] are MLP learnable weights and biases. This transforms the

velocities to a higher-dimension space, allowing the model to represent the location-specific

behaviour more effectively. The output value from MLP is of the size ĝt
ij ∈RF d

, where F d is the

number of output features from the MLP.

Finally, we perform the feature projection operation to reduce the feature size before passing

them to a final prediction block. The projection is defined as: p t
i j = qT

d ĝt
ij +bd , where qd ∈RF d

.

Then the contribution from each neighbour towards the final flow features of each node is

calculated via a softmax function as:

εt
i j =

exp
(
bi nv p t

i j

)
∑

k∈Ni
exp

(
bi nv pi k

) (5.23)

where scalar value bi nv could be viewed as a learnable inverse temperature, the coefficients

εt
i j between the nodes νi and ν j could be viewed as entries in an attention matrix εt ∈RN×S ,

and they represent the interpretable edge values. The attention coefficient value is derived as

a quantification of the attention paid to each neighbour when making the prediction.

As shown on Figure 5.4 in the flow attention block we obtain the attention embedded-
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concentration matrix εt
emb ∈ RN×Semb

and the attention acceleration matrix εt
acc ∈ RN×Sacc

,

where Semb = S = |Ni |,∀νi is the predefined number of the closest neighbours for calculating

velocity and concentration embeddings and Sacc = |N acc
i |,∀νi is predefined number of the

closest neighbours for acceleration estimation. The neighbourhood size for each of these

blocks is chosen empirically. We obtain attention matrices of embedded concentrations and

accelerations using the same operations, defined for obtaining the attention velocity matrix

εt .

5.3.3 Flow Processor

The flow processor block processes the estimated feature vectors and edge values to predict

future concentration values. The input to the flow processor block are embedded concentra-

tion values Ct
emb , velocity features vt and acceleration features at

acc , as well as the attention

values of the embedded concentrations, velocity and acceleration features. The output from

the flow processor block is the future concentration prediction.

In the processing block, we first transform the feature space of its inputs, embedded con-

centrations, velocity and acceleration features. We will focus on the velocity inputs in the

description, although the same operations are repeated for all the input types. We use the

weight matrix Wag g to project the final features in each prediction block to the to the same

latent feature space of dimension l = H q , where H is the number of the forecasting steps of

the model. The weight Wag g ∈RF ′′×l and biases bag g ∈Rl are learnable parameters. Finally,

the flow features are transformed in:

ot
i j = WT

ag g v̂t
i j , (5.24)

where ot
i j ∈RH q .

Once we obtain the projection of flow features and spatial embedding, we aggregate the

information from the neighbours via the weighting function, such that the edge values are

used as weights or attention coefficients:

ŷi =
∑

t

∑
j
σ(ot

i j )εt
i j (5.25)

where ŷi ∈RH q and σ is a non-linearity and εt
i j are edge weights computed in the attention

block in Equation 5.23. We reshape the vector ŷi ∈RH q to matrix of size ŷi ∈RH×q

As already mentioned, we consider the flow feature values from the embedded input and

acceleration contain meaningful patterns for a concentration prediction. Hence, these features

are treated with the same operations and then aggregated in the flow processor block with the

velocity-like features in Equation 5.25. The final predictions of the concentration are obtained

with MLP f f i n , whose inputs are the embedded concentrations, velocity and acceleration
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features, denoted with ŷi n
i , ŷvel

i , ŷacc
i , respectively:

Ĉ = f f i n
[

ŷi n
i ||ŷvel

i ||ŷacc
i

]
. (5.26)

In our case, the MLP f f i n transforms the concatenated features from all three blocks from

the size of 3q to a single feature. We have proposed a single MLP to project node’s features

to the size of future horizon, at the end of the flow processor block. This block does not have

capability of propagating future dynamics for long sequences. A recurrent structure, e.g. a

recurrent neural network, can be used instead of the MLP to model the future dynamics in

case of long forecasting sequences.

5.3.4 Physics-guided optimisation function

The model uses MSE as a loss function to minimise the prediction error over the entire horizon,

as shown in the Problem formulation subsection 5.2.2. As the proposed model is a physically-

informed data-driven model, it is possible to benefit from the physical knowledge about the

process by including PDE that describes advection-diffusion in the loss function. Therefore,

we have changed the objective function from Equation 5.2 to guide the model to follow the

advection-diffusion by including Equation 5.13 in the loss function. Our goal is to incentivise

the model to respect the physical laws without explicitly using past velocity, since they are

usually not available in real-world datasets. We will use estimated velocity values obtained in

Equation 5.22. Our objective function L becomes:

L(θ) = ∑
τ∈T

τ+H−1∑
ξ=τ

∥Ĉ(ξ)−C(ξ)∥2
2

+λ ∑
τ∈T

τ−1∑
ξ=τ−M+1

∥− ∂C(ξ)

∂t
−∇· (u(ξ)C(ξ))+∇· (D∇C(ξ))∥2

2,

(5.27)

where T represents the times of historical time steps which are used for fitting the model

during training. In the objective function L(θ), the concentration values C(θ) and velocities

u(θ) are functions of learnable parameter θ, however, for the simplicity and ease of notation,

we denote them as u,C in Equation 5.27. The first term represents the mean square error

between the ground truth and estimated concentration, and term represents the advection-

diffusion equation.

However, in the Equation 5.27 there are no constraints on the divergence of the vector field,

more precisely the spatial smoothness across the estimated velocities is not imposed explicitly.

In the physical phenomena, the sudden changes of the direction are rare, due to the diffusion

and the conservation of the mass in the incompressible fluids. The advection represents the

transport of the concentration, which is inherently spatially smooth due to continuos nature

of the fluid without sudden external force. The diffusion term smoothens out the abrupt
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concentration change, whereas the initial assumption that the observed advection-diffusion

processes are incompressible fluids, prevents sudden spikes in the velocity field between

neighbouring spatial points. Therefore, we have added another term in our regularization

function, such that the estimated physical velocity field is spatially smooth:

L(θ) = ∑
τ∈T

τ+H−1∑
ξ=τ

∥Ĉ(ξ)−C(ξ)∥2
2

+λ1
∑
τ∈T

τ−1∑
ξ=τ−M+1

∥− ∂C(ξ)

∂t
−∇· (u(ξ)C(ξ))+∇· (D∇C(ξ))∥2

2

+λ2
∑
τ∈T

τ−1∑
ξ=τ−M+2

∥∇·u(ξ)∥2
2,

(5.28)

where the objective function is written in the continuous domain. In order to define the

forecasting problem on the irregular grid, we use the discretization of the PDE equation and

divergence of the velocity field defined in the Subsection 5.2.3.

5.4 Performance Evaluation

5.4.1 Experimental settings

We have trained and evaluated the PING model and compared its performance against state-of-

the-art models for three different types of datasets. The first datasets are synthetic and follow

Navier-Stokes equations for incompressible flows. They include concentration and velocity

values of particles needed to analyse the model thoroughly. Then we consider two real-world

datasets, which entail sea surface temperature and cloud concentration indexes. The final

dataset is a real PV power production data, which is not an advection-diffusion process but is

influenced by the cloud coverage, which itself can be considered as an advection-diffusion

process. We compared the performance of PING with a state-of-the-art graph-based model

across all datasets.

Datasets

Two simulated synthetic datasets are generated using PhiFlow package of Holl et al. (2020) 1.

The governing equations in the simulation follow advection-diffusion principles of a smoke

behaviour, and it is influenced mainly by advection, along with ensuring the incompressibility

of the fluid. Although both datasets have been generated using similar conditions, one dataset

is purely advective, while in the second one the diffusion is added. The diffusion coefficient in

this dataset is D=0.6. For both datasets, we have simulated 24000 time steps for training and

6000 time steps for evaluation. The time step ∆t = 1 is defined as a smoke density moved in

one spatial unit per one time unit. Every 50 steps, we inject smoke randomly. Both datasets

1https://github.com/tum-pbs/PhiFlow
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are simulated on the discretised domain of the size 64×64, and then they are downsampled to

the size of 32×32, to reduce the spatial smoothness of the data. Since the goal is capturing

of the advection-diffusion dynamics in the case of limited data, we have used 484 nodes of

the synthetic datasets when the model is evaluated on the regular grid and 150 nodes on the

irregular grid.

The following two datasets in our study consist of records from sea surface temperature

and cloud coverage. Both datasets are ERA5 datasets, which are publicly available 2. ERA5

is a global atmospheric reanalysis dataset produced by the European Centre for Medium

Range Weather Forecasts (ECMWF). The cloud coverage index has an hourly resolution, while

the sea surface temperature dataset has a daily resolution. Both of these two datasets have

spatial resolution of 0.25° latitude-longitude resolution and they are of the size 20×20 for the

experiments on the regular domain. The training dataset for cloud data is from 2013 to 2016,

while sea surface temperature dataset has range from 2006 to 2017. The evaluation is done

for the year 2017 for the cloud dataset and from 2018 to 2021 for sea surface temperature. For

these datasets, 400 nodes are used when the model is evaluated on the regular grid and 150

nodes on the irregular grid.

The PV power dataset consists of the real PV data from PV plants across Switzerland (Carrillo

et al., 2020) for two years (2016-2017) with 15-minutes resolution. The PV plants are spread

inhomogeneously over the entire country, with a density reflecting the population density. In

the PV power prediction task, satellite images are also used as an input to the model. They are

obtained with hourly resolution from 3, by subsampling the original image with longitude and

latitude of PV stations. Once the future cloud concentration predictions are made, a linear

interpolation is used on cloud concentration index dataset to obtain 15-minutes resolution of

cloud data.

For all four datasets, the same nodes are used both as the input and forecasting nodes. In all

four datasets, the graphs of 150 nodes are obtained by randomly sampling the given datasets.

In order to demonstrate the effectiveness of the model, it has been evaluated on four different

graphs per dataset.

Benchmark models

Two methods have been used as benchmarks in forecasting evaluation. These models have

been chosen since they can handle both regular and irregular grid predictions. The first bench-

mark is a graph convolutional long-short memory network (GCLSTM), defined in Chapter

3. The GCLSTM model has the encoder which estimates the past information and passes

it to the decoder which makes the final predictions. To show the effectiveness of the addi-

tional dynamics in the decoder, the GCLSTMmlp is used as the second benchmark. As in

the previous benchmark, GCLSTMmlp captures spatio-temporal dynamics in the encoder

2https://cds.climate.copernicus.eu/
3https://cds.climate.copernicus.eu/
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via graph convolutional neural network and long-short term memory network. However, the

difference with GCLSTM is that GCLSTMmlp does not have the propagation of the dynamics

in the decoder. In the decoder of GCLSTMmlp, the embedded inputs and estimations from

the encoder are used as an input to MLP where the final forecast is made. This type of simple

decoder is similar to the last layer in our PING architecture. The physics-informed model for

sea surface temperature is presented in the works of De Bézenac et al. (2019), FlowCNN, for

regular grids on sea surface temperature and cloud concentration index dataset. Therefore, we

use this method as benchmark on the datasets that reside on a regular grid. Another proposed

methods for learning physical processes on irregular grid, such as works of Sanchez-Gonzalez

et al. (2020) assume that the large datasets are available, from a few thousand up to 20 000

data points trained on 1000 trajectories with 300-2000 time steps, each. Since both of these

were not meant to be trained on a small dataset with limited number of historical training

samples, we are not going to benchmark against these models.

Evaluation and metrics

The model performance is assessed usingthe peak normalized root-mean-square error (NRMSE),

defined in Chapter 3.

For comparing the flow direction we use the directions of the velocity estimations, such that

the angle φt
i between the observed vt

i and estimated vector values v̂t
i at each time step t in the

given estimated sequence T = 6 are calculated:

φt
i j = ar ccos(|vt

i | · |v̂t
i |), (5.29)

where |vt
i | represents the magnitude of the vector vt

i . This angle is calculated for every time

step in the dataset and every node i .

5.4.2 Experimental results

In this section, we first evaluate the performance and efficiency of the model in a well-

calibrated, synthetic environment. This controlled setting allows us to assess the model’s

capacity to accurately capture flow dynamics by aligning estimated velocity directions with

ground truth. Following our synthetic dataset evaluations, we extend our assessment to

real-world datasets where the underlying velocity fields are inherently unknown: cloud con-

centration index, sea surface temperature and PV power generation. Given the absence of

ground truth for velocity in these datasets, our focus shifts exclusively to the model’s predictive

accuracy on these datasets.

We evaluate given datasets, except the PV dataset, first on regular domain and then on the

randomly sampled graphs (irregular domain) from a given regular grid. The PV dataset

inherently lies on an irregular domain, and it is evaluated on irregular grid, without additional

subsampling.
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Prediction accuracy on Synthetic datasets

First, we evaluate the proposed model on the synthetic datasets. We show the forecasting

NRMSE in Figure 5.5 for both synthetic datasets on a regular grid. Figure 5.5a shows the

NRMSE for the advective dataset when nodes reside on the regular grid. The proposed

model PING outperforms the GCLSTMmlp on the regular grid for three to six steps ahead of

prediction. Both of these two models only have an MLP in the decoder. However, compared

to the GCLSTM, which has a dynamics evolution of the signal in the decoder, our proposed

model outperforms the baseline in the last two values of the forecast horizon. GCLSTM

benefits from the recurrent network in the decoder which is propagating the future dynamics.

Both GCLSTMmlp and proposed model would benefit from the propagation of the future

dynamics via recurrent neural network. The NRMSE in Figure 5.5b shows the evolution of the

error on the second synthetic dataset that has been created with both advective and diffusive

properties. PING model outperforms GCLSTM and GCLSTMmlp on this dataset for the second

half of the prediction horizon values, for three to six step ahead predictions.

Moreover, we have also evaluated both synthetic datasets on irregularly subsampled domains.

We employed a stochastic subsampling strategy on the original regular datasets. Four non-

uniform inhomogeneous graphs were generated. These instances were then used as the

foundation for constructing graph neural networks.

The NRMSE is shown in Figure 5.6 for both advective and advective-diffusive datasets when

signals reside on the irregular domain. The PING model has a similar performance on irregular

domains to the one on the regular grid. It has higher accuracy than GCRNN in the last two

values of the forecast horizon in the advective dataset and from third to sixth horizon values

on the advection-diffusion dataset. PING also outperforms the second baseline, GCLSTMmlp,

from third to sixth horizon values on both datasets.

In order to analyse whether the model captures the direction of the flow, we have compared

the absolute value of the angle between estimated velocities and the actual velocity for each

node, for every time step in the dataset and every node νi . The angle between the estimated

and the ground truth velocity vectors, defined in Equation 5.29, is classified as acceptable or

non-acceptable, with two different criteria. These two criteria are established based on the

empirical observations and considering the identification of the predominant direction of the

overall flow as main goal. The first criterion is strict, defining the “acceptable” angle where

the absolute angle value is lower than 30◦. Whereas the second, relaxed criteria, defines the

acceptable angle as any absolute value of an angle below 45◦. Accordingly, the “non-acceptable”

angle estimation is considered when the absolute value of the angle is between 60◦ and 90◦

using the strict criteria, or the angle above 45◦ in case of the relaxed criteria. The choice of

the thresholds (30◦,45◦,60◦) balances the trade-off between flexibility and rigidity.The strict

criteria was used to estimate the accuracy of the velocity estimation, whereas the relaxed

criteria is used as an indicator of the model’s ability to estimate the overall flow of the model.

Table 5.41 below compares the acceptable and acceptable estimates of the velocity, according
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Figure 5.5: Evolution of the NRMSE between PING, GCLSTMmlp and GCLSTM for six-steps
ahead prediction for the synthetic datasets on a regular grid. Solid line shows the median value
among all nodes. a) NRMSE for the synthetic advective dataset. b) NRMSE for the synthetic
advection-diffusion dataset.

to both criteria, for both advective and advective-diffusive datasets.

The results show that the proposed model is capable of estimating 61% of velocity directions

on the advective irregular dataset and 77% of velocity directions on the regular advective
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Figure 5.6: Evolution of the NRMSE between PING, GCLSTMmlp and GCLSTM for six horizon
values on the synthetic datasets on an irregular grid. Solid line shows the median value among
all nodes. a) NRMSE for the synthetic advective dataset. b) NRMSE for the synthetic advection-
diffusion dataset.

dataset, which resides on the regular grid, considering that the angle below 45◦ is considered

small enough for the acceptable flow estimations. We compare the estimated velocity from

our proposed model with the Gunnar-Farneback optical flow model (Farnebäck, 2003). The
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Figure 5.7: Example of particle concentrations (top row), and their corresponding velocity
estimations on the regular (middle row) and irregular grid (bottom row) on the advection
dataset, in the first, third and fifth values of the input horizon. Top row presents the evolution
of the concentration change across the nodes and their ground truth flow values. The lighter
colours (yellow) depict higher concentration of the particles at observed nodes, while darker
colours (dark blue) depict the values where concentration is close to zero. The middle and
bottom row depict the similarity between the ground truth velocity direction and estimated
one. The lighter colours (yellow), in these plots, represent the perfect alignment between the
estimated and ground truth vectors. The darker colours correspond with the higher angle
between the ground truth and estimated velocity direction, such that dark blue represent the
opposite direction.

Gunnar-Farneback Optical Flow is traditional optical flow method, chosen since it computes

the dense optical flows, for all the points, between the two consecutive time steps on a regular

grid. The results are shown in Table 5.42 and show that our proposed model outperforms the

optical flow model on a regular grid.

In order to better visualize the similarity between ground truth and estimated velocity vectors,

we introduce a colour-coding scheme applied to each node (node) within a grid. The shade
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Figure 5.8: Example of particle concentrations (top row), velocity estimations on the regular
(middle row) and irregular grid (bottom row) on advection dataset, in the first, third and fifth
values of the input horizon. Top row presents the evolution of the concentration change
across the nodes and their ground truth flow values. The lighter colours (yellow) depict higher
concentration of the particles at observed nodes, while darker colours (dark blue) depict the
values where concentration is close to zero. The middle and bottom row depict the similarity
between the ground truth velocity direction and estimated one. The lighter colours (yellow), in
these plots, represent the perfect alignment between the estimated and ground truth vectors.
The darker colours correspond with the higher angle between the ground truth and estimated
velocity direction, such that dark blue represent the opposite direction.

of each pixel at node νi is modulated based on the angle between the two vectors, vt
i and v̂t

i ,

which are located on top of that pixel. We use the dot product between the observed and

estimated velocity vectors vt
i and v̂t

i to find the angle value between those two vectors, as

defined earlier in Equation 5.29. The colour encoding utilizes a spectrum between 0 and 180

degrees (1 and -1, in radians), such that yellow shades of the node represent the scenario when

two vectors are coincident, green nodes represent the scenario when vectors are orthogonal

and finally, dark blue nodes represent the parallel vector with opposite direction.
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Figure 5.9: Example of particle concentrations at certain time step. Yellow colour is for high
concentration values, while dark blue is used when concentration values are zero.
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Figure 5.10: Example of velocity estimations on the regular grid on advection dataset, on the
regular grid. The similarity between the ground truth velocity direction and estimated one
is colour-coded. Yellow represent the perfect alignment between the estimated and ground
truth vectors. The darker colours correspond with the larger angle between the ground truth
and estimated velocity direction, such that dark blue represent the opposite direction. The
arrows represent the direction of the velocity vector, black colour is the ground truth and red
is the estimation.
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Figure 5.11: Example of velocity estimations on the regular grid on advection dataset, on the
irregular grid. The similarity between the ground truth velocity direction and estimated one
is colour-coded. Yellow represent the perfect alignment between the estimated and ground
truth vectors. The darker colours correspond with the larger angle between the ground truth
and estimated velocity direction, such that dark blue represent the opposite direction. The
arrows represent the direction of the velocity vector, black colour is the ground truth and red
is the estimation.

We visually show particle concentration and the estimated ground truth flow directions for

regular and irregular grids on the advective dataset in Figures 5.8 and 5.7. These two examples

depict the models’ ability to capture the flow direction. The black arrows correspond to the

ground truth velocity direction, and the red arrows correspond to the estimated flow direction.

On top of this, we use our colour-coded representation of the vector field differences on the

same examples for advective synthetic datasets on regular and irregular grids; see Figures 5.7

and 5.8. Both of these samples show that when model is able to estimate the velocity very well

in the situation when the concentration changes are smooth on the regular grid. Moreover, on

the irregular grid, it is more difficult task to capture the overall flow, since the model does not

have complete information. Despite having the incomplete information on the concentration

change, the model is able to capture overall flaw direction successfully.

We highlight the results from the first example, depicted in Figure 5.7. The model captures the

velocity values perfectly on the regular grid, see Figure 5.10. On the irregular grid on Figure

5.11, it is clear that model is not able to estimate the velocity directions with high percentage

of the acceptable directions. However, it is still able to capture the overall flow direction.
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Table 5.41: Accuracy of velocity estimation on regular and irregular grid for advection and
advection-diffusion datasets

Strict Relaxed
acceptable non-acceptable acceptable non-acceptable
φ< 30◦ 60◦ <φ< 90◦ φ< 45◦ φ> 45◦

Advection
dataset

Regular
domain

61% 13% 77% 23%

Irregular
domain

42% 25% 60% 40%

Advection-
diffusion
dataset
dataset

Regular
domain

40% 30% 57% 43%

Irregular
domain

44% 22% 63% 37%

Table 5.42: Accuracy of velocity estimation on regular grid for advection and advection-
diffusion dataset, for PING and Optical flow model

Strict Relaxed
acceptable non-acceptable acceptable non-acceptable
φ< 30◦ 60◦ <φ< 90◦ φ< 45◦ φ> 45◦

Advection
dataset

PING
model

61% 13% 77% 23%

Optical
flow

28% 41% 43% 57%

Advection-
diffusion
dataset

PING
model

40% 30% 57% 43%

Optical
flow

32% 36% 48% 52%

Prediction accuracy on Real datasets

We evaluate the model’s performance on the cloud and sea surface temperature datasets

over a grid size of 20×20 pixels (nodes). In Figure 5.12, the NRMSE evolution of the PING

model is compared to the encoder-decoder GCLSTM, FlowCNN and GCLSTMmlp over the

six horizon values on the regular grid. For the cloud dataset, the predicted horizon is 6 hours

ahead with hourly resolution, whereas for the sea surface temperature, it is six days, with a

daily resolution. The solid lines represent the median of error over all nodes. The proposed

model outperforms GCLSTM on the cloud dataset, probably related to the cloud movement

being more advective than the diffusive process. Furthermore, it outperforms FlowCNN for

the first five hours of the prediction horizon on cloud concentration index dataset. However,

when it comes to a spatially and temporarily smoother, more diffusive process, such as the sea

surface temperature, they are on par in the first steps of the prediction since GCLSTM benefits

from diffusing information across the local neighbourhood via a convolutional graph neural

network. PING outperforms FlowCNN on the sea surface temperature from the second to
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the sixth day ahead of the forecasting horizon. Nevertheless, the PING model outperforms

the GCLSTM from the third to sixth horizon values on the SST dataset, when not only local

dynamics are affecting the forecast, but more global dynamics also affect the concentration of

the particles.
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Figure 5.12: Evolution of the NRMSE between PING, FlowCNN GCLSTMmlp and GCLSTM
models for six-step ahead prediction for the weather datasets. Solid line shows the median
value among all nodes. a) Forecast NRMSE for the cloud dataset on a regular grid. b) Forecast
NRMSE for the SST dataset on a regular grid.
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Figure 5.13: Evolution of the NRMSE between PING, GCLSTMmlp and GCLSTM models for
six-step ahead prediction for the weather datasets on an irregular grid. Solid line shows the
median value among all nodes. a) NRMSE for the cloud dataset. b) NRMSE for the SST dataset.

Additionally, we compare the performance of the proposed model and both benchmarks

on the irregular grid for 150 nodes. First, we show the evaluation NRMSE for cloud and SST

datasets. The results are shown in Figure 5.13. PING and GCLSTM models perform similarly

on the regular and the irregular grid. The proposed model still outperforms GCLSTM on a
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cloud dataset on an irregular grid. On the SST irregular dataset, it outperforms GCLSTM from

the second to sixth horizon values of predictions. We have also evaluated the GCLSTMmlp

model, which has an overall higher error than GCLSTM. Although GCLSTMmlp has slightly

higher NRMSE error for three-steps ahead forecasts (for up to 2% and 0.25% on the cloud and

SST datasets, respectively) than GCLSTM and PING, it has very high error for more than three

steps ahead. On the regular and irregular sea surface temperature datasets, the PING model is

either on par or outperforms GCLSTM from the third to sixth horizon values of the forecast.

We analyse the forecasts made at different days and different times between 25th and 29th

February on the irregular grid for cloud concentration index dataset. We present those fore-

casts over a 6-hour prediction horizon on Figure 5.14 and Figure 5.15. These specific instances

are selected since they exemplify moments of significant dynamical changes in the cloud

coverage. Such moments include instances where the observed value rapidly declines from

1 to 0.55 or exhibits abrupt surges. These situations are particularly challenging for fore-

casting models, and as demonstrated in the Figure, our proposed model PING shows better

performance compared to GCLSTM, when predicting these sudden changes. We do not show

comparison with the GCLSTMmlp model, since it has the highest NRMSE among compared

models.

Prediction accuracy on PV power production dataset

The cloud movement and cloud creation are advection-diffusion processes that affect the

amount of the sunlight reaching the photovoltaic panels on the ground. As clouds move, they

block the sunlight, causing the fluctuations in the irradiance, and consequently, they cause

the variations in the PV power production. Predicting the cloud movements and modelling

their dynamics is essential for accurate PV forecasting. We have shown that the proposed

model outperformed benchmarks on the cloud concentration index dataset, on both regular

and irregular grid. Therefore, PING could be used for sensory data that depends on advection-

diffusion, such as PV power production. However, PV power production data is much more

complex to predict than cloud concentration, since it depends on other factors, including

local atmospheric conditions, solar panels efficiency and the angle between the sunlight

and the panels surface. Thus, we use PING to make future prediction of the cloud index

concentration and then use those predictions as an inductive bias in a previously developed

PV power forecasting model, such as GCLSTM. We investigate the performance of combining

the PING and encoder-decoder GCLSTM model that use cloud concentration index and the

PV power production data.

The proposed combination of PING and GCLSTM is shown in Figure 5.16. First, the PING

model is used to estimate the cloud movement from past cloud concentration index values

C and predicts the future cloud concentration index values Ĉ. The past cloud concentration

values C are concatenated with the past PV power production P and clear-sky irradiance values

Ysky and they are used as an input to the encoder of GCLSTM. The encoder estimates the

state of the system, and those estimations with predicted future cloud concentration values Ĉ,
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Figure 5.14: Examples of historical cloud concentration indices, ground truth and forecasted
signals across six forecasting horizon values for a specific node on irregular grid. The results
are shown for PING and GCLSTM models..

from PING model, and future clear-sky irradaince values Ŷsky, represent inputs to the decoder.

Clear-sky irradiance is a deterministic variable, which is calculated at any time of the year and

at any geographical location.

The combination of PING and GCLSTM model is evaluated on PV power generation datasets

and compared to the baseline model GCLSTM, but also to GCTrafo, developed in the Chapter

3, and an interpretable TSM-GAT model, developed in Chapter 4. The NRMSE evolution

is shown in Figure 5.17. The combination of PING and GCLSTM models outperforms all

benchmarks on the entire horizon of six hours, with fifteen minutes resolution.

We review the forecasting results for a specific moment and time. The analysis is focused on six

hours ahead forecast for three consecutive days beginning on the 29th of August for GCLSTM

model and combination of PING and GCLSTM (see Figure 5.18). We chose this time because of

the mixture of sunny, cloudy and variable days. Although the PING model performs similarly

to the state-of-the-art GCLSTM model during sunny day in Figure 5.18, it outperforms the

GCLSTM during the variable and cloudy days (the second and the third day in Figure 5.18). The

combination of PING and GCLSTM models has an advantage that is shown on the prediction
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Figure 5.15: Examples of historical cloud concentration indices, ground truth and forecasted
signals across six forecasting horizon values for a specific node on irregular grid. The results
are shown for PING and GCLSTM models.

𝑪

𝑷

𝑷

𝑪

𝒀𝒔𝒌𝒚

𝒀𝒔𝒌𝒚

Figure 5.16: PING and GCLSTM setting for PV power prediction.
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Figure 5.17: Evolution of the NRMSE between PING, GCLSTMmlp and GCLSTM models for six
hours ahead for PV power generation, with hourly resolution. The solid line shows the median
value among all nodes.

of the second and third day, where the shape of the prediction is closer to the ground truth

compared to GCLSTM. Capturing better the shape of the cloud dynamics is the indication

of the improvement since the previous analysis has shown that state-of-the-art models such

as GCLSTM fail to capture the cloud movement during the variable days (Simeunović et al.,

2022b).

In addition to the previous analysis, we compare the forecast made at different times of the

day, for twenty-four horizon values, during a variable day in Figure 5.19. We have compared

the combination of PING and GCLSTM, and GCLSTM. The proposed combination of PING

and GCLSTM outperforms GCLSTM and can better capture and predict the cloud dynamics

during the first half of the day. GCLSTM has a high error in the first hours of the morning

prediction since it has no information on cloud dynamics during the night. Thus, GCLSTM

relies on a clear-sky profile in this situation and local neighbourhood information, predicting

a sunny day and making a high error when the first part of the day is cloudy. On the other

hand, the combination of PING and GCLSTM extracts the information on the cloud dynamics

during the early morning, allowing it to forecast future values with higher accuracy.

105



Chapter 5. PING: Physics informed graph neural networks for forecasting solar resources

08-29 00 08-29 12 08-30 00 08-30 12 08-31 00 08-31 12
Date and time

0

1

2

3

4

5
Po

we
r [

kW
]

PING + GCLSTM
GCLSTM
truth

Figure 5.18: Ground truth and prediction for 24 steps ahead during variable days.

5.4.3 Performance analysis

Effect of subsampling

An additional study is performed to estimate the effect of the subsampling on the accuracy

of the prediction. All four datasets that reside on the regular grid (cloud, SST, advection

and advection-diffusion datasets) are subsampled randomly three times and once regularly,

creating four sets of subsampled locations with size of 150. Each subsampled set of pixels

can be represented as a set of nodes in a graph, thus forming graphs with different topologies.

The accuracy of the proposed model is compared to GCLSTM performance for each set of

nodes. GCLSTM is chosen as a benchmark since it showed higher accuracy than GCLSTMmlp

when evaluated on the previous datasets. The results from the first subsampling set S1 are

already shown in the previous section on Figure 5.6. The second subsampling set S2 on which

we evaluate the proposed model is a regularly sampled pattern. We have focused on the

direction of the flow, since the features representing velocity estimation undergo different

non-linear transformations and are learnt in an unsupervised manner, which might results in

a completely different scale of the magnitudes. Due to this transformation, direct comparison

of the estimated velocity with the ground truth velocity becomes non-trivial. However, the

direction of the estimated velocity vector retains its relative significance. It is, thus, more

straightforward to compare the direction of the estimated velocity with the ground truth

velocity direction. Comparing the magnitudes of the velocity estimation would require careful

normalisation of the datasets, since the model might output velocity values in a transformed

or scaled range that is mathematically convenient or optimal for its internal representations

and not comparable to ground truth.
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Figure 5.19: Examples of twenty-four prediction horizon values made at different times of
day on the PV power prediction dataset. The forecasting signal, and the past signal values for
GCLSTM and PING models are shown.

First, we examine the evolution of the error on the synthetic advection-diffusion dataset on

the irregular grid for graph instances G2,G3, and G4. On these subsampling schemes, GCLSTM

and GCLSTMmlp outperform the proposed model in the first three steps of the prediction, see

Figure 5.21 and Figure 5.22. The underlying dynamics of this dataset are guided by a strong

diffusion. The type of spatial distribution we use has a small or no effect on the mean accuracy
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Figure 5.20: The spatial distribution of the subsampling patterns. a) Subsampling set S1. b)
Subsampling set S2. c) Subsampling set S3. d) Subsampling set S4.

of the prediction of the PING model, whose median stays between 3% and 6.5%. Furthermore,

the evolution of NRMSE across all four graphs of the PING model is in the same range as

the error evolution of the PING model on the regular grid, whereas the spatial distribution

has larger impact to both GCLSTM and GCLSTMmlp, where median error varies.The results

indicate that the sampling pattern has a limited effect on the accuracy of the proposed model,

which indicates that the model captures the underlying dynamics and it is robust to irregular

sampling.

Subsequently, we examine the accuracy of the model on the advection dataset on irregular

grid for graph instances G2,G3 and G4 defined for subsampling patterns S2,S3 and S4. On the

purely advective dataset, the proposed model outperforms GCLSTM only in the last horizon

value. However, it outperforms the GCLSTMmlp benchmark in the second half of the horizon,

from fourth to sixth horizon values. The median NRMSE of PING model is constant for all

subsampling patterns, and it is between 2% and 4%. The low error values combined with the

fact that the error range is the same across different subsampling patterns suggests that the

spatial position of the data is not the main driver of system’s behaviour. Although PING model

outperforms both benchmark models on the advection-diffusion dataset for second half of the

forecasting horizon, on the purely advective dataset it is outperformed by the GCLSTM for the

first five values of the forecasting horizon. The main reason lies in the fact that the model has

108



5.4 Performance Evaluation

1 2 3 4 5 6
Horizon ( t)

2

3

4

5

6

7

8

NR
M

SE
 [%

]

PING
GCLSTMmlp
GCLSTM

Figure 5.21: The evolution of NRMSE of PING, GCLSTMmlp and GCLSTM models on the
irregular subsampling patterns S2 for synthetic advection-diffusion dataset.

advection-diffusion equation added as soft constraint in the optimisation function. Moreover,

the second constraint added to the optimisation function of the model is an explicit constraint

on the divergence of the velocity field. Since the spatial smoothness is mainly guided by the

diffusion, the model could benefit from removing the diffusion from the soft constraint when

trained on purely advective dataset.

In addition, we examine the evaluation of the error on the cloud dataset on the irregular

grid for sets of subsampling locations S2,S3andS4, shown on Figure 5.25 and Figure 5.26.

The proposed PING model is outperforming GCLSTMmlp models on the entire forecasting

horizon. PING is also outperforming the GCLSTM model, although with a small margin. Thus,

the NRMSE evolution of the proposed model is between 13% and 26%, no matter what type

Table 5.43: Accuracy of velocity direction estimation on irregular grid for advection and
advection-diffusion datasets for PING model

Strict Relaxed
acceptable non-acceptable acceptable non-acceptable
φ< 30◦ 60◦ <φ< 90◦ φ< 45◦ φ> 45◦

Advection
dataset

S2 42% 23% 61% 39%
S3 42% 23% 63% 37%
S4 46% 20% 65% 35%

Advection-
diffusion
dataset

S2 44% 23% 61% 39%
S3 44% 23% 63% 37%
S4 40% 26% 60% 40%
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Figure 5.22: The evolution of NRMSE of PING, GCLSTMmlp and GCLSTM models on the
different irregular subsampling patterns for synthetic advection-diffusion dataset. a) NRMSE
for subsampling set S3. b) NRMSE for subsampling set S4.

of spatial distribution we use. The NRMSE values for the subsampled dataset on an irregular

grid are in the same range as NRMSE on the regular grid for the PING model. Since the same

error range is reported on the regular and irregular datasets for both cloud concentration

index, only advection and advection-diffusion datasets, which indicates the robustness in
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Figure 5.23

terms of the different grid structures, as well as the generalization capabilities. Opposite from

the synthetic datasets, where the NRMSE values in the forecasting horizon are between 2%

and 6.5%, the PING has higher error on the cloud concentration index dataset, showing the

limitation of the model in capturing underlying dynamics, regardless of the grid type.

Finally, we examine the accuracy of the sea surface temperature dataset on the irregular

grid for graph instances G2,G3,G4 and G5 on Figure 5.27 and Figure 5.28. The proposed

model outperforms the GCLSTM model on the SST dataset from three to six horizon values of

prediction, while it outperforms GCLSTMmlp from the second day ahead forecast. This dataset

is very smooth and diffusive, which benefits both models (PING and GCLSTM). They exhibit

similar behaviour in terms of the low predicting error. The type of spatial distribution we use

has a small or no effect on the prediction accuracy of the PING model. These NRMSE values

are in the same range as NRMSE on the regular grid, highlighting the model’s generalization

capabilities and efficiency in terms of capturing the underlying dynamics on different types of

the grid and its spatial setting.

Analysis of the properties of velocity field and its impact on the model

We analyse the properties of the velocity fields in both synthetic datasets on the regular grid

since the PING model has shown similar accuracy in terms of the model’s prediction values

across the whole forecasting horizon and velocity direction estimation, for both regular grid

and four different inhomogeneous subsampling patterns. The main goal is to understand the

limitations of the model better. To this end, we investigate the effect of spatial and temporal

smoothness of the velocity field on the accuracy of velocity direction estimations.
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Figure 5.24: The evolution of NRMSE of PING, GCLSTMmlp and GCLSTM models on the differ-
ent irregular subsampling patterns for synthetic advection dataset. a) NRMSE for subsampling
set S3. b) NRMSE for subsampling set S4.

We focus on the vector field’s spatial smoothness and consider the vector field’s divergence,

the vector magnitude’s gradient, and the velocity field’s curl. Therefore, we first compute the
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Figure 5.25: The evolution of NRMSE of PING, GCLSTMmlp and GCLSTM models on the
graphs for cloud dataset for subsampling set S2.

divergence of the vector field, which is in the Cartesian coordinates given by:

∇·u = ∂ux

∂x
+ ∂uy

∂y
, (5.30)

and then calculate the mean value across all nodes. As a second metric, we consider the

magnitude of the gradient of the magnitude of each vector. This metric yields the change of

the field in each point (node):

∇|u| =
√(

∂u

∂x

)2

+
(
∂u

∂y

)2

(5.31)

The mean value has been taken as the final result of this metric.

We considered a scalar curl as a third metric for the spatial smoothness of the vector field. It

represents a measure of the rotational aspect of a vector field at each time point:

cur l (u) = ∂uy

∂x
− ∂ux

∂y
. (5.32)

To define the temporal smoothness of the vector field, we use a single metric, which represents

the difference between consecutive vector fields:

∆ut ,t−1 = ut −ut−1. (5.33)
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Figure 5.26: The evolution of NRMSE of PING, GCLSTMmlp and GCLSTM models on the
graphs for cloud dataset. a) NRMSE for subsampling set S3. b) NRMSE for subsampling set
S4.

One of the key components in the velocity estimation, Equation 5.17, represents the spatial

and temporal difference between the particle concentration. Thus, we will calculate the spatial
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Figure 5.27: The evolution of NRMSE of PING, GCLSTMmlp and GCLSTM models on the
graphs for sea surface temperature dataset for subsampling set S2.

smoothness between the node νi and its eight closest neighbours ν j :

∆Ci j = Ci −C j (5.34)

On a regular grid, the eight closest neighbours represent the adjacent nodes. It shows the rate

of intensity change across the grid. Furthermore, we also define temporal smoothness as the

difference between the consecutive particle values:

∆Ct ,t−1 = Ct −Ct−1 (5.35)

It shows how much the dataset changes between two time steps. All the above defined terms

could be also computed on the irregular grid, as shown in Pérez et al. (2005).

The results for both synthetic datasets, evaluated using the above metrics, are shown in Table

5.44. Interestingly, the divergence of the velocity field ∇·u has the same value in both datasets

and the absolute values of the magnitude of curl cur l (u) are also very close to each other.

However, the curl values have opposite signs. The positive sign on a purely advective dataset

suggests that the vector field is circulating counter-clockwise. The advection-diffusion dataset

has an opposite direction, clockwise. These two metrics are near zero, indicating that the

velocity field has low rotation.

On the other hand, the value of the gradient of velocity magnitude ∇|u| is two times larger on

an advective-diffusive dataset compared to purely advective. Therefore, it implies that the

advection-diffusion dataset has more rapid changes in vector magnitudes than the advective
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Figure 5.28: The evolution of NRMSE of PING, GCLSTMmlp and GCLSTM models on the
graphs for sea surface temperature dataset. a) NRMSE for subsampling set S3. b) NRMSE for
subsampling set S4.

dataset. Nevertheless, both values are small, indicating that the velocity field is spatially

smooth. Finally, we will compare the temporal smoothness of velocity fields ∆ut ,t−1 between

the given datasets. The advection-diffusion dataset has a velocity field that is two times more
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smooth than the advective dataset. All calculated values and metrics show the average metric

value of pixel per time unit (per time step).

As already defined in Equation 5.17, two key aspects in estimating the velocity in an unsuper-

vised manner are spatial difference ∆Ci j and temporal difference ∆Ct ,t−1 in the concentration

of the particles. From Table 5.44, we can see that spatially, these two datasets have spatially

smooth concentration values across each time step. However, the temporal change of concen-

tration values is four times higher in purely advective dataset. From previous analyses, the two

used datasets differ the most in temporal change of concentration values. This is also related

to the forecasting error, shown in Figure 5.5. Purely advective dataset has lower forecasting

error range, where NRMSE for six forecasting values are between 1.4% and 3.5%, compared

to the forecasting error of the advection-diffusion dataset, where the forecasting NRMSE is

between 2.7% and 5.4% for six prediction values. The model benefits from the temporarily

less smooth signals.

The advection and advection-diffusion datasets differ also in a temporal change of velocity

field, which is higher in the case of the advective dataset. While both datasets are smooth in

space, in terms of concentration and velocity field, the advective dataset is less smooth in time.

This indicates that the lower accuracy of the velocity estimation on the advective-diffusive

dataset on the regular domain comes from the high temporal and spatial smoothness.

Thus, in a scenario where both the velocity field and particle concentration values are smooth

spatially, the PING model relies more on the temporal change to estimate velocity values, see

Equation 5.17. If the temporal difference is also small due to high temporal smoothness, it

becomes difficult for the model to estimate the velocities accurately. This is likely why PING

model on the same advection-diffusion dataset, in the setting on the irregular domain, has

higher velocity estimation accuracy (see Table 5.41). Even though the temporal change is

still smooth, the spatial differences are less smooth on an irregular grid than on a regular

grid. Therefore, in the scenario when dataset is smooth temporarily, it is easier for the PING

model to capture the flow dynamics when the dataset is not smooth spatially. Consequently,

improvement in capturing the flow dynamics is also reflected in the similar prediction error

on the regular grid advective dataset (Figure 5.5 b)) and on the graph setting for the same

dataset (Figure 5.6 b)), even though the irregularly sampled grid has less information.

In order to further test the failure points of our model, we have created an additional purely

advective dataset, named Advection dataset 2 in Table 5.44. The previously evaluated advective

dataset is renamed Advection dataset 1 in further discussion. We have shown that the model

is able to estimate the velocities in the case of spatially and temporarily smooth datasets.

In the newly added dataset, advective dataset 2, we introduce more rotations in the vector

field and more rapid changes in the velocity field between consecutive time steps. The

PING and GCLSTM models are trained and evaluated on the advection dataset 2 for the

forecasting horizon of six values. The PING model is on par with the baseline GCLSTM

regarding prediction accuracy, see Figure 5.29. Then, we check if the rapid changes in the
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Table 5.44: Accuracy of PING model in terms of velocity direction estimation and spatial and
temporal smoothness of synthetic datasets

Regular
grid

strict
criteria

Irregular
grid
strict
criteria

∇·u cur l (u) ∇|u| ∆ut ,t−1 ∆Ci j ∆Ct ,t−1

Advection
dataset 1

61% 43% 0.084 0.020 0.048 0.79 0.18 1.48

Advection-
diffusion
dataset

40% 44% 0.084 0.019 0.084 0.36 0.12 0.48

Advection
dataset 2

40% 40% 0.0032 0.057 0.1 8.3 0.11 3.15
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Figure 5.29: Evolution of the NRMSE between PING and GCLSTM models for six hours ahead
for advection dataset 2. Solid line shows the median value among all nodes.

velocity field impact the model accuracy. We observe the error of estimating the velocity field

on both regular and irregular grids and show the results in Table 5.44. PING leads to a lower

accuracy of the estimated velocity direction compared to the other synthetic datasets on both

regular and irregular grids. The irregular domain of advection dataset 2 is subsampled in the

same manner as the other two synthetic datasets, using the spatial subsampling patterns.

Finally, we evaluate the velocity estimations concerning the spatial and temporal smoothness

of the particles’ concentration and velocity field. The results are shown in Table 5.44. Although

the divergence of the field is lower compared to the two previous datasets, the magnitude of the
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curl is three times larger than in the advective dataset 1 and the advective-diffusive dataset. In

addition, the magnitudes of the velocity gradient are changing faster than the initial synthetic

datasets, indicating a spatially less smooth velocity field of advection dataset 2. Oppositely, the

advection dataset 2 presents with a higher spatial smoothness of the concentration, compared

to other datasets. The spatial smoothness of the concentrations on advection dataset 2 is

similar to the spatial concentration smoothness on the advection-diffusion dataset. Even

though the model should benefit from higher temporal differences in the concentration of the

particles, in the case of spatially smooth concentration change, it presents with the highest

forecasting error on the regular grid so far, comparing the NRMSE on Figure 5.29 and Figure

5.5.

In order to investigate the origin of the high error, we focus on the velocity field’s temporal

smoothness and particle concentration’s temporal smoothness. Both of these metrics are

substantially higher in the advective dataset 2 compared to the advective dataset 1 and the

advective-diffusive dataset. The temporal difference of particles’ concentration in the advec-

tive dataset 2 is two times higher than in the advective dataset 1 and 6.5 times higher than in

the advective-diffusive dataset. On top of this, the temporal difference between the velocity

fields is 10.5 higher in the advective dataset 2 than in the advective dataset 1. The difference

is even higher between advection dataset 2 and the advection-diffusion dataset, which is

23 times. The advection dataset 2 has the highest prediction error values among the three

synthetic datasets. Even though the model should benefit from higher temporal concentration

change, due to very fast velocity changes the PING model is not able to estimate the flow

dynamics with the high accuracy (40% of acceptable estimations using the strict metric) when

the velocity field is changing very fast temporarily. This is reflected in the accuracy of the

prediction, which has the highest NRMSE error across all compared datasets, with the range

of error between 3.7% and 9.3% for the prediction horizon of six values.

The experiments revealed the possible link between PING model’s ability to estimate the

velocity flows and the prediction accuracy. On the regular grid, datasets with higher accuracy of

the velocity direction, Table 5.44, also exhibit higher accuracy of the concentration prediction,

which could be seen from comparing the error ranges on Figure 5.29 and Figure 5.5. Therefore,

understanding what affects the velocity estimation accuracy is very important. To that end

we inspect the accuracy of the velocity estimations in Table 5.44. We observe that the dataset,

characterized by more significant rotations and velocity field variations, advection dataset 2,

presented more challenges in velocity direction estimation. In the setting with fast velocity

field changes between two consecutive temporal steps, on the advection dataset, the PING

has lower accuracy of the velocity estimations on both regular and irregular grids compared

to the datasets with more temporally smooth changes between the velocity fields (advection

dataset 1 and advection-diffusion dataset). When two datasets with similar rotation and

velocity field variations on the regular grid are compared, advection dataset 1 and advection-

diffusion dataset, the dataset with higher temporal change of the concentration of particles

between consecutive time steps showed higher accuracy of the velocity direction estimation,

which is advection dataset 1. The main reason is that when estimating the velocity values, the
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model relies on the temporal change between the consecutive time steps; see Equation 5.17.

Thus, the model will have lower velocity accuracy in the case of temporarily slow-changing

concentration of the particles and in the case of a highly diffusive process.

5.5 Conclusion

A novel method, PING, is introduced for forecasting the future particle concentration values

in the advection-diffusion-based processes. It was evaluated on sea surface temperature,

cloud concentration index, and two synthetic datasets designed to simulate advection and

advection-diffusion processes. The performance of the proposed model is compared against

baselines on the datasets that reside on both regular and irregular grids. Furthermore, PING

was combined with encoder-decoder model and evaluated on real PV power generation data.

PING outperformed the benchmark models for the last three forecasting horizon values for the

sea surface temperature dataset and synthetic datasets. However, the model outperforms the

benchmark model on the cloud datasets for the entire forecasting horizon. On the PV power

generation dataset, PING combined with GCLSTM outperformed all benchmarks across the

whole forecasting horizon.

Currently the forecasting part of the PING model is a single MLP, and as such it is not meant to

be used for prediction sequences with many time steps in the forecasting horizon. However,

the proposed model could be viewed as an analysis, or an encoder block in the larger architec-

ture for forecasting the dynamics of advection-diffusion processes. Since PING model analysis

the past data while capturing the dynamics and extracting meaningful features, it would be

an interesting research direction to include the estimated velocities in the future through

propagation of dynamics via recurrent models. While we have addressed the constraints of

the proposed model concerning the velocity field’s smoothness and particle concentration

under various subsampling strategies, future studies should investigate the model’s bounds

regarding the minimal number of nodes or the spatial distance between the subsampled

locations needed to estimate the velocity directions accurately.
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6.1 Conclusion

The thesis developed and evaluated new deterministic forecasting methods that will improve

grid trading and grid congestion management on intra-day horizon to account for dynamical

changes of photovoltaic power production due to weather variability. Hence, this will lead

to increasing penetration of PV power resources in the power grid. We have used a graph

signal processing perspective throughout the thesis. This perspective allowed us to address

the challenges of capturing both spatial and temporal correlations and cloud dynamics within

the PV power data with high resolution, using only ground-based PV power data.

The challenge of forecasting spatio-temporal photovoltaic power production with high spatial

and temporal resolution, using only ground-based PV power data, is one of the first challenges

in forecasting intra-day PV power production. We have shown that the graph-based encoder

decoder models are able to forecast future photovoltaic power production with higher accu-

racy compared to the state-of-the-art models for multi-site photovoltaic prediction. On the

top of that, we have shown that the proposed methods outperform single-site state-of-the-art

forecasting methods that use numerical weather predictions and photovoltaic power produc-

tion data as inputs for horizon of five hours ahead. However, the number of PV stations taken

into in the proposed models were limited to a few closest neighbours because of the increase

in computational complexity. Since it is expected that further away nodes might be important

predictors if advection is dominant in the regional cloud dynamics at a specific time, a model

that is not restricted to small amount of neighbours is needed.

Although the graph-based machine learning models have shown the ability to improve the

accuracy of the photovoltaic intra-day forecast, compared to the state of the art, it can not

capture cloud dynamics during the morning and it is difficult to interpret. Therefore, the fol-

lowing challenge in the intra-day PV power forecasting is modelling an interpretable machine

learning architecture that will allow us to understand on which PV stations model focuses

when making the forecast for short-, medium- and long-term part of intra-day forecast. Fur-

thermore, the idea was to create a model which is able to better capture cloud dynamics and to
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consider stations that are further away, not only predefine set of stations. We have developed

interpretable model that was able to forecast the signal with the shape closer to the ground

truth than state-of-the-art models, indicating its ability to better capture cloud dynamics. This

method was better at capturing cloud dynamics during the morning of cloudy days, which

was not possible with the state of the art. The proposed model is more interpretable, and as

such more suitable for the prediction of multi-site time series driven by physical phenomena,

such as photovoltaic and wind power forecasting.

Even though an interpretable model for photovoltaic power forecasting is developed, this

model still might violate the physical laws of advection-diffusion, which is guiding the cloud

dynamics. The known physical knowledge on the underlying physical process should be

included when creating the model for PV power production, due to high correlation with cloud

dynamics and the PV power production. The last challenge that was addressed in the thesis

is creating a physically informed machine learning model that is able to capture the cloud

dynamics. We have developed a physically informed model which is able to capture the past

dynamics by estimating the velocities in an unsupervised manner. The model was evaluated

on the cloud concentration index to show ability to capture cloud dynamics. The proposed

model outperformed other graph-based model for time-series forecasting for six horizon

values of the forecast on the cloud concentration index dataset. We have investigated the

generalization capabilities of the model in terms of modelling different physical phenomena

by evaluating it on different advection-diffusion datasets. The proposed model is either on par

or outperforms benchmark models for various forecasting tasks where dynamics is guided by

advection-diffusion processes. Furthermore, when combined with encoder decoder GCLSTM

model, it outperforms all benchmarks for predicting the PV power production.

6.2 Future work

The proposed machine learning models, as well as state of the art, are usually proposed for

the complete and clean datasets, without any missing or noisy data. Their performance can

be significantly reduced with larger gaps of the missing observations due to communication

issues from sensory network or maintenance of the solar panels or inverters. Furthermore, in

the case of the newly installed PV stations, there is a lack of historical data, and it takes a lot of

time to collect sufficient data in order to make an accurate forecast for newly installed station.

It might take large amount of time before this station can be integrated into the power grid.

Therefore, investigating the robustness of the proposed models is the first research direction,

that we proposed. Since the many real-world datasets include missing data, as well as addition

of the new stations, it is crucial to investigate the adaptability of the proposed models to

incomplete datasets. The first steps towards addressing the robustness and extension to

probabilistic forecasts are being taken in the works of Carrillo et al. (2023).

The proposed models are developed for handling a dataset of hundreds of the photovoltaic

stations. As we have shown, there are benefits of accessing the further away nodes, although
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this increases the complexity of the model, and it is a quadratic complexity in the case of the

proposed interpretable model. For the physically-informed model, although the memory

complexity is linear, it can quickly escalates with small increase in the number of the neigh-

bouring PV stations that are considered when making the forecast. Additionally, the memory

also increases with the growth of the input size, as well as the number of the forecasting

steps. Hence, another research direction that needs to be addressed, if these models are to

be integrated in the real operating conditions in the future smart grid, is the scalability of the

models.

In our work we have investigated the impact of the number of sunny, cloudy and variable days

on the forecasting accuracy. We have investigated the impact that different distances between

the photovoltaic power stations have on the accuracy of the forecast for the GCSLTM, GCTrafo

and interpretable TSM-GAT models. However, an in-depth research is needed to confirm the

initial findings on a denser dataset, containing a higher number of homogeneously spread

nodes. Moreover, a model’s bounds regarding the conditions when models start to fail is

needed.

Physically-informed model offers insights into the dynamics of the historical, input data. One

future step is using this model for prediction of rare weather events, which requires not only

estimation, but also propagation of the future dynamics. We have partially addressed the

dynamics propagation with the combination of PING and GCLSTM, where the future cloud

concentration values obtained in PING are used as input to the GCLSTM decoder. In order

to predict rear weather events, PING could be used as an encoder building block in a deep

learning model, where past velocity features are estimated. Then estimated velocities could

be used to initialise the decoder block in order to make predictions.
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A Appendix

A.1 Hyperparameters

We present here the hyperparameters used to train GCLSTM and GCTrafo networks, proposed

in Chapter 3. We also describe hyperparameters of the EDLSTM and STCNN models, which

were introduced as baseline models in the same chapter. Whereas the hyperparameters used

to train baseline models, STAR and additional details on STCNN parameters, could be found

in works of Jeong and Kim (2019) and Carrillo et al. (2020), respectively. Then we describe

in detail the hyperparameters of the TSM-GAT, and the baseline models SVR and SARIMAX,

presented in Chapter 4. Finally, we describe hyperparameters of the PING models and baseline

model GCLSTMmlp, which we compare in the Chapter 5.

Hyperparameters for the GCLSTM and GCTrafo models

In Chapter 3 we train the GCLSTM, GCTrafo, STCNN and EDLSTM with hyperparameters

presented in Table A.11. The number of hidden dimensions lat in the encoder and decoder

cells of the GCLSTM network (see Section 3.3.1) were equal to 32. The size of the MLP at

the end of the GCLSTM decoder was equal to [8, 48, 48]. For the GCTrafo, the following

hyperparameters were chosen: the 1D-convolutional kernel was of size 4, the encoder and

decoder convolutional latent spaces were of size 8, and 8 attention heads were used. The

STCNN architecture had three 2D convolutional layers, with channel sizes of [128, 64, 32] and a

kernel size of 11. Batch normalization and max pooling were applied after each convolutional

layer. The single-site Encoder Decoder LSTM (EDLSTM) had a latent representation size of 64

and the decoder was followed by a MLP of size [64, 32]. STCNN, GCLSTM and GCTrafo models

were trained with stochastic gradient descent and Adam optimizer, without regularization.

EDLSTM was trained with dropout as regularization. Finally, the STAR model used 3 hours of

past time steps to forecast the PV production over the 6 hours horizon.
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Table A.11: Table of hyperparameters in GCLSTM, GCTrafo, EDLSTM and STCNN trained for
PV production datasets

Models
Iterations

(real/synthetic)
Batch size

(real/synthetic)
Past time steps - M

k-nearest neighbours
(graph construction)

Order of Chebyshev
polynomial

Learning rate /
Dropout rate

GCTrafo 70 000 64 16 24 2 1e-4 / -
GCLSTM 50 000 64 16 15 4 1e-4 / -
STCNN 6000 / 10 000 128 /64 72 - - 1e-4 / -

EDLSTM 30 000 128 16 - - 1e-4 / 0.05

Hyperparameters for the TSM-GAT model

In Chapter 4, baseline models STCNN and STAR use only PV power production data as input to

the model, whereas GCLSTM, GCTrafo, TSM-GAT and SARIMAX use longitude and latitude as

input, to create graph and compute clear-sky irradiance, in addition to PV power production.

SVR uses NWP and clear-sky data as input, whereas EDLSTM uses PV power production in

addition to NWP data. SARIMAX uses a seasonality order which is equal to the number of

days to which data is fitted. The number of past lags that is fed to the model is 12, which

corresponds 3 hours of data. The difference operator order is 1 and moving average operator

is of order 3. EDLSTM was trained with a dropout rate of 0.05 as regularization for 30 000

iterations. The number of past lags is 16, which is 4 hours of data, with batch size 128 and

learning rate 1e −4. As far as proposed TSM-GAT is concerned, number of hidden features in

temporal attention is reduced from fi n = 14 to f ′ = 8, and then in spatial attention to f ′′ = 4

features per temporal window and per node. This hyperparameter was decided arbitrary, as

well as the number of the closest neighbours, which is changing between overlapping windows

as already described. The model was trained with batch size 32 and for 600 000 iterations

for the real dataset and 680 000 iterations for the synthetic dataset. Layer normalization is

performed after spatial attention. The model was trained with stochastic gradient descent

and Adam optimizer and learning rate 1e-4. The size of hidden layer in MLP used for final

prediction is 64. Model TS-multi-head-GAT has the same sizes of the temporal weights as

TSM-GAT. The number of closest neighbours for TS-multi-head-GAT is fixed to 90 for all

attention heads. The number of iterations is the same as in TSM-GAT. Three heads were used

and number of the weights in the linear layer is 3 times higher than in TSM-GAT, as already

discussed.

Hyperparameters for the PING model

In Chapter 5, the proposed PING model uses the same hyperparameters across all datasets.

The number of the training iterations and regularisation coefficients are the only hyperparam-

eters that are not same across all datasets. They are shown in Table A.12. The length of the

input sequences for all datasets is 7. The model was trained with stochastic gradient descent

and Adam optimizer and learning rate 1e −4. The model is trained with the batch size of 16.

We first describe different hyperparameters in the flow estimation blocks. The feature sizes in

the block for velocity flow estimations are Fi n = 5,F ′ = 2,F ′′ = 16,Fout = 8, whereas the feature
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sizes in the acceleration flow estimation block are F acc
i n = 26,F ′acc = 2,F ′′acc = 16,F acc

out = 8.

The sizes of MLP layer in velocity flow estimation block are [8, 16, 8], and in acceleration flow

estimation block they are [8, 16, 16]. Convolutional kernels size in flow estimation blocks is 3.

The rolling mean in the flow estimation block is calculated for every 4 feature values and the

shift of size 2 is used. In all experiments the value of regularization coefficient λ1 is set to 0.1

and λ2 is set to 0.05.

Then we describe the hyperparameters in the flow attention block, needed for edge calculation.

The number of neighbours taken into account in the flow attention block for velocity attention

calculation and embedded concentration attention is S = Semb = 8, while in the attention flow

block for acceleration attention calculation it is Sacc = 24. The size of topological embedding

in this block is semb = 4. The MLP sizes in all three attention flow blocks are [16, 16, 16]. In the

flow processor block the size of the latent space is q = 8 and the number of forecasting steps

in all datasets is H = 6. The MLP size in the processor block is [32, 1] in all datasets, except in

the PV power production. In the PV power production dataset, the size of the last MLP layer is

[32,16,1]. Baseline GCLSTMmlp model has the exactly same values of hyperparameters as the

encoder of GCLSTM, described in the Table A.11, with the MLP size [8, 48, 48] in the decoder.

The PING, GCLSTM and GCLSTMmlp models in Chapter 5 are trained for different number of

iterations, shown in Table A.12.
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Table A.12: Table of hyperparameters used for training PING, GCLSTM and GCLSTMmlp

Dataset type Grid type

Number of

iterations

PING

Number of

Iterations

GCLSTM

Number of

iterations

GCLSTMmlp

Cloud dataset
Regular grid 400000 80000 18000

Irregular grids
s1, s1, s3, s4

400000/ 400000/

400000/400000

80000/80000/

80000/80000

18000/ 20000/

20000/18000
Sea surface

temperature dataset

Regular grid 120000 80000 20000

Irregular grids
s1, s2, s3, s4

80000/ 80000/

60000/40000

80000/80000/

80000/60000

20000/ 20000/

16000/16000
Synthetic advection

dataset 1

Regular grid 500000 80000 20000

Irregular grids
700000/ 600000/

700000/500000

60000/80000/

60000/60000

20000/ 18000/

18000/16000
Synthetic advection –

diffusion dataset

Regular grid 700000 80000 18000

Irregular grids
650000/ 700000/

700000/40000

80000/80000/

60000/60000

18000/ 16000/
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