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Abstract iii

A Cavity-Microscope for Quantum Simulations with Locally-Controllable All-to-All Interactions

Abstract

This thesis presents the development, construction, and benchmark of an experimental platform that
combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local
control, a new device, the cavity-microscope, was created. This device combines a high-finesse cavity with
an on-axis high numerical aperture microscope. The cavity allows for strong interactions between photons
and atoms, while the microscope enables high-resolution spatial engineering of the optical properties of
the atoms. This is achieved by coupling the excited state of the effective two-level system to an auxiliary
state with the help of a control laser beam that is focused to a small spot by the cavity-microscope.
We provide an overview of our experimental apparatus, with a particular focus on the design and fabrication
process for the cavity-microscope. This includes the vibration-damping platform of the cavity-microscope,
which helps to reduce the mechanical resonances of the mounting structure. Additionally, we discuss the
progress of our newly developed next-generation cavity-microscope, which simplifies the optical design
and improves the performance of our current device.
We provide a comprehensive description of the Hamiltonian that governs our laboratory system with a
particular focus on the various measurement techniques that enable us to analyze the atom-cavity system.
In particular, we demonstrate that the measurement of the cavity’s dispersive shift can be used to infer
in real-time different properties of the atomic cloud, such as atom count, temperature, and internal-state
occupation.
We demonstrate the capability of our cavity-microscope to manipulate the interactions between light and
matter by inferring the 3D density profile of the trapped atom cloud using the scanning probe technique.
In detail, the control is achieved by a combination of Floquet and wavefront engineering of the control
beam. With a spatial light modulator, we correct optical aberrations of the cavity-microscope based on a
Hartmann–Shack scheme directly on the atomic cloud.
In our experiment, we realize an all-to-all interacting, disordered spin system by subjecting the atomic
cloud in our cavity to controllable quasi-random light shifts. By spectroscopically probing the low-energy
excitations of the system, we explore the competition of interactions with disorder and show disorder-
induced breaking of the strong collective coupling.
Finally, we investigate the essential requirements for achieving control over high-rank cavity-mediated
all-to-all interaction in our system. This control is crucial for enabling accurate quantum simulations of
quantum gravity using the holographic duality of the Sachdev–Ye–Kitaev (SYK) model. To validate our
findings, we performed two separate numerical experiments that demonstrate the robustness of our results.

Keywords: cold atoms, cavity qed, quantum simulation, cavity-microscope, random spin models, syk
model
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Résumé

Cette thèse présente le développement, la construction et l’évaluation d’une plateforme expérimentale qui
combine des atomes froids fermioniques 6Li avec des interactions lumière-matière contrôlables localement.
Pour permettre le contrôle local, un nouveau dispositif, le microscope à cavité, a été créé. Ce dispositif
combine une cavité de grande finesse avec un microscope à grande ouverture numérique dans le même axe.
La cavité permet de fortes interactions entre les photons et les atomes, tandis que le microscope permet
une ingénierie spatiale à haute résolution des propriétés optiques des atomes. Cela est effectué en couplant
l’état excité du sytème à deux niveaux effectifs à un état auxiliaire à l’aide d’un faisceau laser de contrôle
qui est focalisé sur un petit point à travers la cavité-microscope.
Nous présentons une vue d’ensemble de notre dispositif expérimental, en mettant l’accent sur la conception
et le processus de fabrication du microscope à cavité. Cela inclut la plate-forme d’amortissement des
vibrations du microscope à cavité, qui permet de réduire les résonances mécaniques de la structure de
montage. En outre, nous discutons de l’avancement du développement de notre microscope à cavité nouvelle
génération, qui simplifiera la conception optique et améliorera les performances de notre dispositif actuel.
Nous fournissons une description complète de l’hamiltonien qui régit notre système, en mettant l’accent
sur les différentes techniques de mesure qui nous permettent d’analyser l’ensemble atome-cavité. En
particulier, nous démontrons que la mesure du déplacement de la cavité par effet dispersif peut être utilisée
pour mesurer en temps réel différentes propriétés du nuage atomique, telles que le nombre d’atomes, la
température et l’occupation de l’état interne.
Nous démontrons la capacité de notre microscope à cavité à manipuler les interactions entre la lumière
et la matière en déduisant le profil de densité 3D du nuage d’atomes piégés à l’aide de la technique de la
sonde à balayage. Au niveau microscopique, le contrôle est obtenu par une combinaison d’ingénierie de
Floquet et de front d’onde du faisceau de contrôle. Avec un modulateur spatial de lumière, nous corrigeons
les aberrations optiques de la cavité-microscope sur la base d’un schéma Hartmann–Shack directement sur
le nuage atomique.
Grâce au montage expérimental décrit précédemment, nous réalisons un système de spin désordonné en
interaction totale en soumettant le nuage atomique dans notre cavité à des décalages lumineux contrôlables
quasi-aléatoires. En sondant spectroscopiquement les excitations de basse énergie du système, nous ex-
plorons la compétition des interactions entre les atomes avec le désordre et montrons la rupture, dans le
régime de fort désordre, du couplage collectif fort.
Enfin, nous explorons les conditions nécessaires dans lesquelles notre système permet le contrôle de
l’interaction tout-à-tout de haut rang médiée par la cavité. Ce contrôle est crucial pour permettre des
simulations quantiques précises de la gravité quantique en utilisant la dualité holographique du modèle
Sachdev–Ye–Kitaev (SYK). Pour valider nos conclusions, nous avons réalisé deux expériences numériques
indépendantes qui démontrent la robustesse de nos résultats.

Mots clés : atomes froids, qed en cavité, simulation quantique, microscope en cavité, modèles de spin
aléatoire, modèle syk
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Introduction

The discovery of new physics is achieved through either experimentation or theoretical pre-
dictions. For example, the particle zoo that led to the identification of quarks was discovered
through experimentation [3, 4], while the Higgs particle was predicted decades before it was
found in proton-proton collisions at the Large Hadron Collider (LHC) [5]. However, in the
end, it is the constant dialogue and mutual confirmation between theoretical and experimental
physics that leads to the development of highly successful theories, such as the standard model
of elementary particles.

In the realm of quantum gravity, which seeks to combine quantum mechanics and general
relativity, this dialogue is out of balance. There are numerous successful theories that can make
predictions about the quantum behavior of black holes and other intense forms of gravity, yet
testing these effects in the real world remains impossible. In the future, we may be able to gain
insight into the quantum nature of gravity by using our ability to image black holes [6] and detect
gravitational waves emitted from the merging of two black holes [7]. However, these experiments
are limited to observations of nature, and it would be beneficial to create a controllable system
in the laboratory, which would enable us to investigate properties of quantum gravity under a
variety of different conditions that are perhaps not existent or accessible in nature. One such
system could be the experimental realization of holographic quantum matter, a hypothesized
form of strongly correlated many-body systems that has a holographically dual interpretation in
terms of a quantum theory of gravity [8, 9]. A first step in this direction would be the quantum
simulation of the Sachdev–Ye–Kitaev (SYK) model, which is believed to host the simplest known
form of holographic duality [10]. It describes N fermionic modes with random, infinite-range
two-body interactions. The random nature of these interactions necessitates a large number
of independent couplings, making it difficult to approach the problem. In particular, in the
large-N limit, which is relevant for the quantum gravity duality, there has not been a successful
experimental realization of the SYK model. This presents an exciting challenge, which we
address in this thesis.

In recent years, researchers have managed to create deeply degenerate Fermi gases with
tens to hundreds of ultra-cold 6Li atoms [11]. This has allowed for the direct observation of
Cooper pairing between very few fermions [12]. These mesoscopic fermionic systems are an ideal
platform for the realization of a quantum simulation of the SYK model. However, in such systems,
the interactions between particles become weaker as the distance between them increases and
are thus finite-range. This prevents these systems from achieving full connectivity between the
particles, which is a necessary condition for quantum simulation of the SYK model. In cavity
quantum electrodynamics (cQED), the interactions that are mediated by cavity photons are all-
to-all in nature. This allows the realization of systems with perfect indistinguishability between
particles, effectively creating interactions with an infinite range [13]. Such cavity-mediated
interactions have been realized in cQED experiments with large clouds of ultra-cold fermionic
atoms [14]. There, increasing the interaction strength leads to formation of a self-organized

1
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phase of matter, where the atomic density inherits the spatial structure of the interaction, which
is dictated by the cavity mode. To realize the number of independent couplings necessary for
the SYK model, one needs to randomize the cavity-mediated interaction by introducing local
variations in the atom-cavity coupling.

This thesis presents the development of an experimental platform that unites fermionic
6Li atoms with locally controllable cavity-mediated interactions, thus creating the necessary
conditions for the quantum simulation of the SYK model. The core of the experiment is a
high-finesse cavity that is combined with a high-resolution optical microscope in a single optical
device, referred to as the cavity-microscope.

In the following, we present the outline of the thesis, which is divided into six chapters.

In Chapter 1 we explain the rationale and design of our cavity-microscope. We list key design
parameters and provide an overview of the optical device and its vibration damping
platform that were used in the atom experiments described in this thesis. To improve the
coherence times in future experiments, we began the development of a next-generation
cavity-microscope. We describe the properties and design of this new device at the end of
the chapter.

In Chapter 2 we detail the infrastructure and procedures that allow us to prepare and probe
small atomic samples between the mirrors of our cavity-microscope. The experimental
apparatus features an ultra-high vacuum system, a set of electromagnets, and a system
of frequency-stabilized lasers which are controlled using a computer control system.
The prepared atomic sample can be imaged using different techniques. In particular, we
developed two-photon absorption and fluorescence imaging through the cavity-microscope,
the results of which are detailed in this chapter. Finally, we provide an overview of the
techniques for measuring the properties of our optical resonator using a weak on-axis
probe.

In Chapter 3 we explore the fundamentals of cavity quantum electrodynamics (cQED). We
provide a comprehensive description of the Hamiltonian that governs our laboratory
system, and then focus on the various measurement techniques that enable us to analyze
the atom-cavity system. In particular, we explain the susceptibility spectroscopy using the
depumping approach. Additionally, we demonstrate that the measurement of the cavity’s
dispersive shift can be used to measure properties of the atomic cloud in real time, such as
the atom count, temperature, and even to detect transitions between different hyperfine
ground states of the atoms.

In Chapter 4 we experimentally show the capability of our cavity-microscope to manipulate the
interactions between light and matter in both space and time. We illustrate our capacity to
alter the spectral properties of the atoms by using an amplitude-modulated control beam
that produces spectrally distinct Floquet sidebands of their excited state. To shape the
wavefront of the control beam, we use a spatial light modulator. This, combined with cavity-
based measurement techniques, has enabled us to compensate for the aberrations of our
cavity lenses using a purely atomic signal. We provide a description of the reconstruction
algorithm and the results obtained. Lastly, we demonstrate the spatial resolution of our
cavity-microscope by inferring the 3D density profile of the trapped atomic cloud using a
scanning probe technique.

In Chapter 5 we explore the collective effects that arise in systems with homogeneous atom-
cavity coupling and demonstrate experimentally how disorder in the atomic transition
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frequencies leads to the fragmentation of eigenstates. We begin by introducing the the-
oretical concepts with the aid of a two-atom model. In the experiment, the disorder in
the atomic spins is generated through quasi-random light shifts of the excited state. After
providing a thorough description of the experimental setup, we present our findings
in both the near-resonant and large-detuning regimes. In the near-resonant regime, we
observe the emergence of gray states in the normally dark Rabi gap. In the large-detuning
regime, our experiment effectively simulates a spin system with all-to-all interactions. We
observe a disruption of the ferromagnetic structure of the excitations with an increasing
effective inhomogeneous magnetic field created by the atomic disorder.

In Chapter 6 the final section of this thesis, we investigate the conditions that make it possible
to simulate the SYK model in our experiment. We define the SYK model in a way that
is suitable for our experimental system. We show how the idea of locally engineering
the atom-cavity coupling can be used to create adjustable interactions between fermions.
We use two independent numerical studies to demonstrate that locally adjustable all-to-
all interactions, which are present in cavity QED systems, can generate the conditions
necessary for a successful quantum simulation of the SYK model. We finish the chapter by
summarizing the key experimental requirements.
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At the heart of our experimental setup is a device that unites a high-finesse cavity and a high-
resolution microscope in one unit, the cavity-microscope. The optical resonator amplifies the
interactions between atoms and photons, while the microscope is used to shape the atom-
cavity coupling on a micrometer scale. This chapter outlines the design and fabrication of our
cavity-microscope.

5
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This chapter is structured as follows: We provide a motivation for the construction of our
cavity-microscope in Section 1.1. The key parameters and constraints that guided the design of
our device are discussed in Section 1.2. Our optically contacted cavity-microscope is described
in Section 1.3, which includes a comprehensive description of the design, fabrication process,
and performance. The cavity is mounted on a vibration damping platform, which is detailed in
Section 1.4. We also discuss ways to improve the design, leading to the development of a more
advanced high-resolution cavity-microscope in Section 1.5. This next-generation device will
enable us to achieve higher finesse for the cavity and better spatial resolution for the microscope.

1.1 Motivation for Cavity-Microscope

In this section, we develop the motivation behind the construction of our cavity-microscope. In
particular, in Section 1.1.1, we illustrate the physics of strong coupling with a simple Gedanken
experiment, motivating the use of a high-finesse optical resonator. The microscope is used to
enhance the spatial resolution of cavity-based measurements, a concept that is novel to our
experiment. In Section 1.1.2, we present the mechanism that allows us to shape the atom-cavity
coupling in space. In Section 1.1.3, we provide a summary of different experiments that combine
a high-finesse cavity with a high-NA microscope.

1.1.1 Strong Interaction Between a Photon and an Atom

a

'click'b

'no click'
c ( (..

.

d
..

.

Figure 1.1: Interaction Between Atom and Cylindrical Photon. a, Setup of Gedanken experi-
ment. Cylindrical photon is sent through a single atom onto a detector. b, If the detector ‘clicks’,
the photon has not interacted with the atom. c, If the detector does not ‘click’, the atom has
scattered the photon. d, The effect of the cavity is to increase the interaction probability by
circulating the same photon many times (N round) over the atom.

In this section, we develop a simple Gedanken experiment that allows us to illustrate the physics
of strong coupling between atoms and photons. The results motivate the use of an optical
resonator to enhance the interaction. The experiment we imagine is a photon that is sent onto
an atom. Behind the atom, we install a single-photon counter. In Figure 1.1a an illustration
of the setup is shown. If the photon does not interact with the atom, it flies through it and
makes a ‘click’ on the detector (see Figure 1.1b). However, as soon as the atom interacts with the
photon, it absorbs it and re-emits it in any direction, reducing the probability of a ‘click’ on the
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detector (see Figure 1.1c). Therefore, the probability of a click on the detector is a measure of
the interaction strength between the photon and the atom. This defines the goal of this section,
which is to calculate the probability of a click on the detector and therefore to find a measure of
the interaction strength between a single photon and an atom.

For the whole analysis, we assume that the photon oscillates at the frequency of the atomic
transitionω. Furthermore, we assume that the size of the photon can be described by a cylindrical
photon of radiusw/

√
2 and length L. In general, a more sophisticated transverse and longitudinal

profile of the photon electric field could be used [15], but this does not change the results
presented in this section.

The amplitude of the electric field of our cylindrical photon Eph can be calculated from the
energy of the photon ℏω as

ℏω =
ϵ0

2

∫
E2

ph + c2B2
phdV = ϵ0

∫
Eph(x⃗)2dV = 2ϵ0E

2
ph

(
Lπw2/2

)
→ Eph =

√
2ℏω
ϵ0V

,

where V = Lw2π/2 is the volume the photon occupies in space. Sometimes people refer to this as
the mode volume.

The photon interacts with the atom due to its electrical dipole moment µ. The Rabi frequency
of the single photon in free space gfs can be calculated as

gfs = µEph/ℏ = µ

√
2ω

ℏϵ0V
.

It measures the rate of Rabi flops of the atom due to the single photon.
If we stay in the low saturation regime of the atom, gfs≪ Γ ∗, the scattering rate of the photon

can be quantified by Rscattering = Γ (g2
fs/Γ

2). Here, Γ is the spontaneous emission rate of the atom.
So, to calculate the probability that the photon ends up in the detector, we have to multiply the
scattering rate by the interaction time between the atom and the photon, τ = L/c, resulting in

Pclick = exp
(
−Rscatteringτ

)
= exp

−g2
fs
Γ
τ

 = exp
(
− 6
k2w2

)
. (1.1)

In the last step, we used the fact that the atomic linewidth and the electric dipole moment
are linked, Γ = k3

0µ
2/(3πϵ0ℏ). The expression above motivates the definition of the free-space

cooperativity.

ηfs =
6

k2w2 ,

which is a purely geometrical factor as the dependence on the dipole moment of the atom
vanished. It depends only on the waist of the focused beam w and the wave vector of light k.

Equation (1.1) suggests two ways to increase the likelihood of an atom and a photon inter-
acting. The first is to increase the coupling strength by increasing the electric field strength of
the photon, and the second is to extend the interaction time between the atoms and the pho-
ton. However, it is not the electric field strength of the photon that determines the interaction
probability, but rather the mode area at the location of the atom, as seen in Equation (1.1), since
the final expression is independent of the length of the photon. This means that if we use a

∗If we would include the non-linearity resulting from saturation of the atom transition, interesting physics like the
photon switch would emerge [16]. However, this is not the regime for which we are interested in working.
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short pulse of light, which has a higher peak electric field, this increases the interaction strength
g. However, this also reduces the interaction time, making it less likely to interact. In the end,
these two processes cancel each other out. The only solution is to focus the light at the smallest
possible area, which is limited by diffraction.

An alternative way to increase the probability of interaction that is not limited by diffraction
is to modify the interaction time τ . As previously mentioned, in free space, the interaction
time is directly related to the peak electric field. However, if an optical resonator is used, the
same photon can pass through the atom multiple times. This leads to an enhancement of the
interaction probability, which is determined by the number of round trips a photon makes before
exiting the resonator (see Figure 1.1d). In fact, in a cavity, the average number of round trips is
proportional to the finesse of the resonator F , as N round = F /π. Plugging this into Equation (1.1)
yields

Pclick = exp
(
−Rscatteringτ(4N round)

)
= exp

(
−24F /π
k2w2

)
. (1.2)

Note that the factor 4 that multiplies the number of round trips is motivated by the interference
of the forward and backward propagating light in the resonator. For ring cavities, where light
propagates only in one direction, this factor is equal to 1. Similarly to before, the expression
motivates the single-atom cooperativity

η =
24F /π
k2w2 =

4g2

κΓ
. (1.3)

Herew is the waist of the cavity mode at the location of the atom. The right-hand side of the equa-
tion comes from the analogy with the typical cavity QED definition of cooperativity. However,
both expressions are entirely equivalent, as can be seen from the derivation in Equation (1.2).

This motivates to use the cooperativity as a measure of the probability of interaction between
a single atom and a photon. If η > 1, the strong coupling regime, the probability of measuring a
click on the photon counter is significantly reduced.

An example of this effect is the transmission of the cavity. If the atom is placed in resonance
with the resonator, the transmitted power drops by 1/(1 + η)2, which can be a large factor∗.
Therefore, in cavities that operate in the strong-coupling regime, single atoms significantly
change the optical properties of the cavity. This makes the cavity a useful tool to perform precise
measurements of the presence of atoms within the cavity mode at the single-photon level [17–19].
An overview of the different cavity-based measurement techniques used in our experiment is
presented in Chapter 3.

1.1.2 Spatial Engineering the Atom-Cavity Coupling using Locally-Controlled
Light Shifts

We have previously shown that a single atom can significantly modify the optical properties
of a cavity. This can be used to measure atomic properties with a cavity-based approach, but
the spatial resolution of these measurements is restricted by the shape of the cavity mode. To
address this, we present a method that allows us to customize the atom-cavity coupling with
a focused laser beam, the control beam. This provides the foundation for the development
of our cavity-microscope, a device that combines a high-finesse cavity and a high-resolution
microscope.

∗The equation of the cavity transmission differs from the result of our Gedanken experiment. This is a result of the
approximation of the cavity as an object that makes the photon pass over the same atom N round times. However, to first
order in η the two expressions agree. See Ref. [15] for more details.
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The strength of the interaction between an atom and a cavity is determined by the charac-
teristics of both the cavity and the atom. The form of the cavity mode is fixed by its geometry
and cannot be altered dynamically. However, the optical properties of the atom can be adjusted
locally. For example, we can adjust the transition frequencies of the atom using light shifts.
Specifically, we can use a focused laser beam, the control beam, to shift the excited state of the
atom |e⟩ in proportion to the beam intensity. The light shift is a consequence of off-resonantly
coupling the excited state |e⟩ to a control state |c⟩. This mechanism is illustrated in Figure 1.2.
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Figure 1.2: Illustration of Focusing Effect. a, Simplified level diagram of 6Li showing the two
major transitions used during the scope of the thesis: D2 line at 671 nm to encode the atomic
qubit, and the 2P3/2–4D5/2 transition at 460 nm for the control beam. b, Illustration of local
control over atom-cavity coupling. The waist of the cavity mode is drawn as a red dashed line.
The control beam (blue focused cone) changes the properties of the atomic cloud (yellow shaded
blob) in a small region of space, much smaller than the waist of the cavity mode. The zoom-in
below shows the same scenario magnified. c, Local control illustrated in a level diagram. In the
focus of the control beam, the excited state |e⟩ becomes shifted so that the atomic qubit (|g〉–|e⟩)
is locally resonant with the cavity. This is illustrated by a space-dependent atom-cavity detuning
∆ac(z)

The panel a of the diagram displays a simplified level of 6Li to illustrate the qubit and control
transitions. The diagram shows the effect of the control beam at 460 nm on the energy of the
excited state. Instead of the bare state 2P3/2, the dressed excited state |e⟩ is the one that couples
with the cavity, and thus the atom-cavity coupling inherits the local structure of the control beam.
This three-level scheme is not exclusive to 6Li, making it a very general concept. Alternatively,
one can also use a Λ–system instead of the ladder system of states |g〉, |e⟩, and |c⟩ [20, 21].

Figure 1.2b shows the geometry of our cavity-microscope and the control beam. The waist
of the cavity mode is depicted by the dashed red line, while the atomic cloud is completely
contained within the cavity mode (green ellipse). The control beam (blue cone) is focused on
a small area (much smaller than the cavity waist and the atomic cloud). This leads to a local
alteration in the detuning between the atomic and cavity resonances ∆ac(z) (see Figure 1.2c) on a
length scale that is no longer determined by the shape of the cavity mode, but rather by the spot
size of the control beam.

We can gain insight into the location of atoms with high spatial resolution by using local
control over the atom-cavity coupling. By applying a light shift similar to the one shown in
Figure 1.2c, the dressed atomic transition is resonant with the cavity if the atom is located at
the focal point of the control beam. Thus, if a decrease in cavity transmission is observed, this
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indicates that an atom is present at the focus of the control beam, providing us with information
about the atom’s location. The resolution of this measurement is no longer limited by the shape
of the cavity mode, but rather by the spot size of the control beam.

The core of this thesis is the physics of controlling atom-cavity couplings locally. This concept
is explored in various chapters, such as Chapter 4, which demonstrates the cavity-microscope as
a high-precision imaging device, and Chapter 6, which examines cavity-mediated interactions
and proposes their local controllability to simulate the SYK model.

1.1.3 Overview over Different Cavity-Microscope Designs

Off-Axis Cavity-Microscope On-Axis Cavity-Microscope

Figure 1.3: Off- and On-Axis Cavity-Microscope.

Several experiments have combined high-finesse cavities with high-resolution microscopes,
with different configurations for the placement of the microscope relative to the cavity axis
(see Figure 1.3). Most often, the microscope is placed 90° off-axis from the cavity, allowing
longitudinal imaging of the cloud and the generation of optical tweezers to trap atoms [22–26].
This arrangement also enables adjustment of the atom-cavity coupling [22].

An alternative configuration is an on-axis microscope, which is less common [27]. This setup
may be more complex to construct, as the cavity and the microscope share the same optical axis,
but it has some advantages. Firstly, it allows for high-resolution manipulation and imaging in
both directions transverse to the cavity mode. Secondly, the combination of the cavity and the
microscope in a single optical device improves the mechanical stability of the relative alignment.
This, combined with a cavity-enhanced dipole trap, can achieve good overlap with the cavity
mode that does not drift over time, reducing the precise alignment requirement imposed by the
cavity lattice structure in the off-axis configuration. For these reasons, this configuration was
chosen for my thesis.

1.2 Key Design Parameters for the Cavity-Microscope and their
Limitations

In the preceding section, we provided basic examples to demonstrate the utility of a cavity-
microscope for cold-atom experiments. This section is more specific and outlines the key
parameters and constraints that were taken into account when designing our cavity-microscope.
These parameters are outlined in Figure 1.4 and discussed in further detail below.
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SolutionRequirement

a)

b)

c)

d)

e)

Strong atom-cavity 
coupling

Focusing Effect High-resolution 
microscope

high NA

Cold-Atom Experiment

6Li

HT

HR

Optical access & UHV

Fast and Precise Tuning
of Resonance Frequency

Figure 1.4: Table of Experimental Requirements.

a) Strong Atom-Cavity Coupling As visible in Equation (1.3), achieving the strong coupling
regime between atoms and photons requires a high-finesse cavity which requires a small mode
waist.

The finesse of a cavity is limited by the finite transmissivity of the mirrors and the scattering
losses resulting from the roughness of the mirror surfaces. Ideally, the cavity should be over-
coupled, which means that transmission losses dominate scattering losses. To reduce scattering
losses, special attention must be paid to the coating, polishing, and handling of the mirrors. The
scattered losses can be quantified by [28]

Lscattering =
(4πσ
λ

)2
,

where σ is the RMS surface roughness. Therefore, scattering losses of the order of 3.5 ppm
require a surface roughness below 1Årms which is the limit of superpolishing techniques. This
means that a cavity finesse of the order of 1 × 106 at the wavelength of lithium, 671 nm, is the
state of the art. As the scattering losses scale quadratically with wavelength, higher finesses can
be reached in the infrared.

In our experiment, we chose a centimeter-long symmetric Fabry-Perot interferometer as the
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cavity. This configuration provides for large optical access, which we use to directly laser cool
the atoms between the cavity mirrors. This reduces cycle times and simplifies the experiment.
When operating close to the concentric configuration, the smallest mode waist can be achieved,
which is required for achieving high cooperativities (see Equation (1.3)). This means that the
cavity length is only slightly less than double the radius of the mirrors. In particular, the centers
of the spheres defined by the surface of the mirrors almost coincide. In this case, the mode waist

can be expressed as w =
√
λ/π (ζR)

1
4 , where ζ = 2R−L≪ R is the deviation of the cavity length

from the concentricity condition, R is the radius of curvature of the mirror surface and L is the
distance between the two mirrors, the length of the cavity.

The equation shows that small cavity modes can be achieved for small concentricity parame-
ters ζ. However, as the difference between the centers of the two mirrors decreases, the cavity
becomes more sensitive to the positioning of the mirrors, restricting the smallest possible waist
of the mode. This is due to a mechanical lever amplification between the distance of the centers
of the spheres defined by the mirror and the length of the cavity. As the centers of the spheres
define the orientation of the cavity mode, a small displacement of the mirrors and therefore their
centers leads to a large change of the cavity axis. The effect is illustrated in Figure 1.5.

Ra

b

Figure 1.5: Illustration of Sensitivity to Misalignment. The axis of cavity mode (dashed line) is
defined by the two origins of the mirrors (black crosses). A cavity can sustain a cavity mode, if it
impinges on the mirror surface. The cone in which a mirror can capture the mode is marked in
green. For the same misalignment, a cavity that is further from the concentric configuration (a)
can sustain a mode, while a near-concentric cavity (b) cannot.

For centimeter-long cavities and millimeter-wide mirrors operating on the order of 100 µm
from concentric, as in our case, this requires long-term stability in the position of the cavity
mirror on the order of 1 µm. Cavities operating even closer to the concentric configuration
require active stabilization of the mirror position, not only in the longitudinal direction (as is
the case in our cavity), but also transverse to the cavity mode [29], which significantly increases
the experimental complexity.

b) High-Resolution Microscope Local control over the interaction between the atoms and
the cavity (see Section 1.1.2) allows us to enhance the spatial resolution of the cavity-enhanced
measurements. The resolution of these measurements is determined by the resolution of the
microscope. The spatial resolution of a microscope is limited by diffraction, the Abbe limit being
λ/(2NA), where λ is the wavelength of light and NA is the numerical aperture of the microscope.

In our experiment, we opt for a single-lens microscope design. To reach the diffraction limit,
the front surface must have an aspherical shape. To reduce the curvature of the front surface, a
glass with a higher refractive index can be used. State-of-the-art diffraction-limited aspheric
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lenses reach a numerical aperture of up to 0.6.

c) Fermionic 6Li Our experiment is designed for 6Li. The choice of atom determines the design
wavelengths for our cavity-microscope. Atoms need to be trapped in optical dipole traps, which
introduces wavelength requirements in addition to those imposed by the atom-cavity interaction
and the focusing effect (see Section 1.1.2). Here is a short list of wavelengths and what they are
used for:

• 671 nm: Cavity QED (cavity-based measurements and cavity-mediated atom-atom interac-
tions), laser cooling (MOT and Zeeman slower, Raman transitions), imaging (absorption
and fluorescence)

• 460 nm: Focusing effect (Light shift and Floquet driving), 2 photon imaging (absorption
and fluorescence)

• 1342 nm: Cavity-enhanced optical dipole trap, PDH lock

• 780 nm: Optical tweezers trap

Following these requirements, our high-finesse cavity must support light at 671 nm and
1342 nm. The microscope must operate at 460 nm and 780 nm. Optionally, it could also be used
to image the cloud at 671 nm. This was not possible for the optically-contacted design (see
Section 1.3), as the same optical surface is used for both the microscope and the cavity. In the
updated version (see Section 1.5), which separates the beams for imaging and the cavity, this
feature was added.

d) Ultra-High Vacuum Environment and Optical-Access The cavity-microscope is designed
for operation in an ultra-high vacuum (UHV) environment, which limits the choice of materials
[30]. Furthermore, the materials used are non-magnetic as the atoms are very sensitive to stray
magnetic fields. The shape of the device is optimized for large optical access. This is essential
for our experiment, as we perform the laser cooling directly between the mirrors. In Figure 1.4
we show a diagram that illustrates the access requirements for the different viewports and laser
beams.

e) Precise and Fast Adjustment of Cavity Length and Vibration Isolation Our experiments
require adjusting the resonance frequency of the cavity. We use piezoelectric actuators under
the mirrors to precisely tune the cavity length. Feedback acting on the piezo actuators is used
to stabilize the length of the cavity. Particular care was taken in our experiment to optimize
the mechanical response of the cavity, allowing us to reach high-bandwidth feedback on the
cavity. Furthermore, cavities are very sensitive to mechanical vibrations. Therefore, we have
designed a vibration isolation system that prevents acoustic noise from disturbing the cavity in
the laboratory.

This concludes the list of requirements for our cavity-microscope. In the following section,
we will describe the optical layout and features of the cavity-microscope currently installed in
our vacuum chamber.

1.3 The Optically-Contacted cavity-microscope

In this section, the design and characteristics of the cavity-microscope currently used in the
setup are discussed. All of the measurements presented in this thesis have been taken with this
device. We are currently working on an upgraded design, which is discussed in Section 1.5.
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This section is organized as follows: In Section 1.3.1, we provide an overview of the properties
of the assembled cavity-microscope currently installed in the experiment. A more detailed
description of the characteristics of each component that makes up the assembly is given in
Section 1.3.3. A summary of the assembly process is given in Section 1.3.4. More details of the
process can be found in Appendix C.

1.3.1 Optical Layout

a b

Figure 1.6: Design of Optically-Contacted Cavity-Microscope. a, Schematic of optics including
the main laser beams. The cavity mirror (light gray) and the aspheric lens (dark gray) are
optically contacted together. The cavity mode is shown in red. The focused beams at 460 nm
and 780 nm are drawn in blue and orange. b, Picture of final assembly. An open-access online
3D model of the cavity is shown in Ref. [31]. Click here for quick access.

The cavity-microscope used in the setup is based on an optical contact design, as illustrated in
Figure 1.6. This design combines a cavity mirror with an aspheric lens in a single optical element,
the cavity lens. A special dielectric coating applied to its inner concave spherical surface enables
the mirror to have a high reflection rate at 671 nm while at the same time providing a high
transmission rate at 460 nm. The combination of the two cavity lenses forms a high-finesse
optical resonator at the wavelength of the D2 line of lithium. The same element is used for the
projection of patterns with high resolution at the control beam wavelength. This combination
enables us to investigate the physics of locally tunable atom-cavity interactions (see Section 1.1.2),
which is the core of this thesis. Furthermore, our cavity-microscope is used for atom trapping. It
has a high reflection coating at 1342 nm that allows the operation of a cavity-enhanced dipole
trap, which is used to keep the atoms in the middle of the cavity. Furthermore, the lenses can be
used at 780 nm to trap atoms with optical tweezers.

1.3.2 Performance and Characteristics of Final Assembly

The properties of the device installed in our experiment are summarized in this section.

Cavity The properties of the assembled cavity are summarized in Table 1.1. From the mode
structure of the cavity, we deduce that it is 105 µm shorter than the concentric configuration. This
allows us to calculate a mode waist of 13.3 µm in the center. Combined with a measured finesse
of 12 800, this gives a single-atom single-photon cooperativity of 6.5. Although the coating was
designed for higher finesse at 671 nm, a higher finesse of 60 000 was observed at the trapping

https://sketchfab.com/3d-models/quems-cavity-v2018-45564251b3074b21a4fdbd6cc4cc4feb
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wavelength (1342 nm). The reduced finesse at 671 nm is probably due to scattering losses, as the
shorter wavelength is more sensitive to surface roughness. This is in agreement with our cavity
transmission measurements, which allowed us to estimate the cavity loss rates (see Figure 2.13).
The losses caused by the scattering off the mirrors were found to be ten times greater than the
losses due to transmission through the mirrors, leading to an extraction efficiency of photons
from the cavity of 10 %. Since the cavity is symmetric, the detection efficiency of photons on each
detector (single-photon counter and heterodyne detector, see Section 2.4) is limited to below
5 %.

Wavelength 671 nm 1342 nm

Cav. length 25.895 mm
(2R− 105µm)

Free Spectral Range 5.79 GHz
Transverse Mode Spacing 230 MHz
Mode waist 13.3 µm 18.8 µm
Transmissivity (design) 25 ppm 100 ppm
Finesse (exp) 12 800 59 300
κ/2π (exp) 451 kHz 98 kHz

η 6.5
g0/2π 2.7 MHz

Table 1.1: Characteristics of Cavity Part of the Cavity-Microscope Installed in Experiment.

Being nearly concentric, the cavity assembly shows a mechanical amplification of the mis-
alignment by a factor of approximately 130. A mirror displacement of only 10 µm in the
transverse direction leads to a cavity mode displacement of approximately 1.3 mm on the mirror
surface. As a result, the cavity is very sensitive to temperature fluctuations. In combination with
mechanical hysteresis resulting from thermal stress relaxation in the cavity holder and epoxy
glue, temperature changes can lead to irreversible misalignment of the cavity∗.

Wavelength 460 nm 780 nm

NA 0.37
Focal length 16.68 mm 17.83 mm
Beam waist (theory) 0.52 µm 0.88 µm
Aberrations (theory) 1.5λRMS (spherical) diffraction-limited
Strehl Ratio (exp) N.A. 0.6

Table 1.2: Characteristics of Microscope Part of the Cavity-Microscope Installed in Experi-
ment.

Microscope The cavity lenses have a numerical aperture of 0.37, which corresponds to a diffrac-
tion limited beam waist as small as 0.52 µm at 460 nm and 0.88 µm at 780 nm. The aspheric
surface of the cavity lenses was optimized for 780 nm light, so the best optical performance can
be seen at this wavelength. We measured a Strehl ratio of 0.6 at 780 nm, which is limited by

∗Unfortunately, we had left the MOT coils running for an entire weekend, which caused the two mirrors to become
misaligned and the finesse to decrease to 6000. This occurred after the data presented in Chapter 5. The results in
Chapter 4 were obtained with the deteriorated cavity.
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imperfections in the shape of the aspheric lens surface and the imperfect relative alignment
between the mirror and the lens∗. The measured point spread functions of both of our cavity
lenses are presented in Figure 1.7. The data were obtained by imaging light emitted from an
SNOM tip using cavity lenses. With a modified Gerchberg-Saxton algorithm, we estimate the
optical aberration of the lens [32]. The effective reconstructed wavefront in the Fourier plane is
shown as an inset in Figure 1.7a.
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Figure 1.7: Point-Spread-Function of Installed Cavity Lenses. a, Measured and simulated
point-spread-function (PSF) of the cavity lens we use for control pattern projection. b, Measured
and simulated point-spread-function of the second lens. The blue line in the graph displays
the measurement data, while the black dashed line indicates the theory. Both of these have
been azimuthally averaged. The inset on the left of the graph is a false color image of the PSF
measured on the camera. We used a modified Gerchberg-Saxton algorithm to reconstruct the
wavefront, which is shown to the right of the graph.

Due to chromatic variations in the refractive index of the glass, the lenses exhibit a chromatic
shift of 1.2 mm. In our experiment, we compensate for the change in focal length by diverging
the input beam at 460 nm (see Appendix A.2.1). After compensating for the chromatic shift,
simulations predict large spherical aberrations of around 1.5λRMS at 460 nm. This is confirmed
by measurements of the wavefront using the atomic cloud as a target. In Section 4.3, we demon-
strate that a spatial light modulator (SLM) placed before the lens can be used to significantly
reduce aberrations of the lens.

1.3.3 Details on the Components

In this section, the characteristics of each of the components of the cavity-microscope are
summarized.

Cavity Mirror The cavity mirror is made of standard N-BK7 glass. Its thermal expansion rate
is matched to the glass of the lens (S-LAH99). The optical element has a maximum diameter
of 16 mm, which is also the diameter of the flat surface. Its diameter conically reduces towards
the concave spherical mirror surface, which has a reduced diameter of 10 mm and a radius of

∗We ordered six lenses and post the two which showed the best Strehl ratio.
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curvature of 13 mm. The mirror has been superposlished over an aperture of 5 mm at the center
of the mirror. In the superpolished region, the roughness of the mirror surface was specified to
be below 1.5 Å outside this region, it was specified below 5 Å. The curved surface was measured
by the manufacturer and reported an irregularity of quarter-wave peak-valley over 50 % of the
clear aperture and half-wave peak-valley over 90 % of the clear aperture. The flatness of the
planar side of the mirror was specified to 1/10 wave, which is necessary for good optical contact.
The mirrors were manufactured and superpolished by Perkins Precision Developments [33].

A coating was applied to the spherical surface by fivenine optics [34]. Its transmissivity was
specified at 25(7) ppm for 671 nm and 75(10) ppm for 1342 nm. The reflectivity was minimized
at 460 nm and 780 nm. The transmission measurements provided by the manufacturer show a
transmission of 99 % at 460 nm and a transmission of 97 % at 780 nm.

Aspheric Lens The custom aspheric lens is made of high refractive index glass (S-LAH99),
which allows it to be thin and simplifies the manufacturing process. It has a diameter of 16 mm
and a clear aperture of 14.4 mm. The shape of the aspheric surface was adjusted to provide the
best optical performance at 780 nm for the cavity lens assembly. OSLO [35], a lens design tool
that combines advanced ray tracing, analysis, and optimization methods, was used to simulate
the cavity lens and optimize the aspheric surface.

The lenses were manufactured by Asphericon [36] using CNC diamond milling. An antireflec-
tion coating was applied to the aspheric surface. The reflectivity was specified below 0.5 % for
all wavelengths used in our setup. To reduce reflections at the interface between the lens and the
mirror, an antireflection coating was applied to the flat surface of the lens, which matched the
two refractive indices. The reflectivity was specified below 0.3 % for angles of incidence from
0–40°. The same as for the mirror, the flatness of the plano side of the mirror was specified as
1/10 wave.

Piezo Actuator The design uses flat piezoelectric shear actuators glued under the cavity mirror
assembly to change the cavity length. They were supplied by PI Ceramics [37] and have a
thickness of 0.5 mm. These actuators have a stroke greater than 1 µm when a voltage of 500 V is
applied. They were cut to their final shape using a laser cutting machine.

Cavity Support Structure The cavity holder is made up of multiple layers of different materials,
layered on top of each other. This structure helps decrease the mechanical resonance of the
support structure. Its design is the subject of Section 1.4. The cavity lenses are mounted on
top of the holder, allowing for large optical access from the side for various laser beams. The
cavity lenses are held by a silicon carbide adapter. The high specific stiffness of silicon carbide
improves the stiffness of the assembly and, therefore, pushes the resonance frequency of the
flapping motion of the cavity lenses to a higher frequency. The silicon carbide adapters were
provided by Fraunhofer IKTS[38].

1.3.4 Assembly of the Cavity-Microscope

This section outlines the procedure for assembling the cavity-microscope. An overview of
the different steps is presented in Figure 1.8. More details of the procedures can be found in
Appendix C.
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Step I:
Optical contact between

lens and mirror

Step II:
Gluing cavity lens into

mirror frame

Step III:
Preparation of the 

cavity holder

Step IV:
Cavity assembly

Figure 1.8: Assembly Procedure for Cavity-Microscope Installed in Experiment. (left) 2D
schematic drawing of the assembly step. (right) Picture of the result of the assembly. The green
arrows point to the locations where glue as applied.

Step I: Optical Contact between Lens and Mirror The assembly process begins by attaching
two optical components, the mirror and lens, together. The assembly process based on optical
contact bonding starts with cleaning the flat surfaces of the mirror and lens using the drag-and-
wipe technique. Then, we mounted them in an optical alignment setup to make sure that they
were concentric with a pilot beam. To initiate the optical contact process, we placed a drop of
water in the gap between the two optical elements, which attracted them together. After most
of the water had evaporated, we removed the cavity lens assembly from the alignment setup
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and heated it to 70 °C for 1 h under vacuum. In Appendix C.1 more details are provided on the
setup and procedure used for optical contact between the two elements.

Step II: Gluing Cavity Lens into Mirror Frame The cavity lens was attached to a titanium
frame with Masterbond EP21TCHT-1 adhesive. The two pieces were carefully aligned using
a v-shaped Teflon tool. The wings and bottom of the titanium mirror frame were rounded to
ensure good contact with the cavity holder during the final gluing process.

Step III: Preparation of the Cavity Holder The different components of the cavity support
structure were manufactured using standard milling techniques. The elements are designed
to fit tightly on top of each other. In fact, a manual press is needed to assemble the holder.
The upper surface of the support structure was polished because this improves the outgassing
characteristics of the aluminum under vacuum. Shear piezoelectric actuators, which allow an
accurate adjustment of the cavity length, were attached between the holder and the u-shaped
silicon carbide mirror mount. Electrical cables were adhered to the actuator using conductive
adhesive.

Step IV: Cavity Assembly The last step of the assembly process is to combine two cavity lenses
and the cavity holder to form the final cavity-microscope. This required a precise positioning of
the mirrors. After the cavity was properly aligned and its performance was satisfactory, the cavity
support structure was attached to the mirrors using a vacuum-compatible room temperature
cure adhesive (Masterbond EP21TCHT-1). A special optical setup was designed to complete the
cavity assembly, and more details can be found in Appendix C.

1.3.5 Discussion

The assembled cavity-microscope is installed in the vacuum chamber of our cold-atom experi-
ment. Its optical performance is sufficient to achieve the strong coupling between the atoms and
the cavity (see Section 5.5.1). We have shown that the combination of high-finesse cavity and
high-resolution microscope allows the tuning of the atom-cavity interaction at the micrometer
scale, making it a very sensitive measurement device with high spatial resolution (see Chapter 4).

However, there are many issues with the presented design that are addressed by the next
generation cavity-microscope, which is presented in Section 1.5. During the design of this
cavity-microscope, special care was taken to suppress the mechanical resonances of the cavity
support structure. In the following section, we present the key arguments leading to the cavity
support currently installed in the vacuum chamber.

1.4 Design of Vibration Damping Platform

In this section, we will present the key features of the mechanical mounting platform that
supports our cavity-microscope. The content of this section follows closely our publications [39].

High-finesse optical interferometers, as the one installed in our experiment, are among the
devices most sensitive to vibrations: Displacements of the mirrors at the picometer scale lead
to significant changes in the cavity transmission. This sensitivity can be exploited for sensing
[40, 41], but for most applications this leads to significant disturbances, in particular for cavity
quantum electrodynamics (cQED) experiments that require absolute stability of the cavity length.
Although shielding against external disturbances can be achieved efficiently through the use of
well-established techniques [42], the need for active stabilization of the cavity length implies the
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use of actuators on the mirrors for continuous feedback, triggering vibrations in the structure.
In particular, sharp vibration resonances severely limit the bandwidth of feedback loops and
ultimately represent the main limitation to cavity stability. This is especially relevant for new
generations of cQED experiments employing long cavities or complex geometries [25, 29, 43–49],
where mechanical resonances can occur at low frequencies.

Damping and mounting strategies have been implemented for cavity systems, for example,
in the context of laser stabilization or interferometers [50–54]. However, the constraints of an
ultrahigh vacuum (UHV) environment have prevented their direct use in cQED applications.
Therefore, advanced signal filtering methods have been developed to cancel mechanical reso-
nances within feedback loops [55]. In this Letter, we present the design of a composite cavity
holder that features efficient passive damping while maintaining UHV compatibility. Compared
to a bulk platform with the same geometry, our composite platform shows efficient suppression
of all mechanical vibration modes up to 100 kHz and a smooth phase response compatible with
high-bandwidth feedback loops.

a

c

b

d

I II
III

IV V
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Figure 1.9: Principle and Design of the Cavity Holder. Schematic a shows the fundamental
mode of vibration of a bulk cavity holder which leads to a shift of the optical resonance frequency.
The holder in b is damped (dissipation in green), suppressing mechanical vibrations. Picture c
of the final assembly of the optical cavity was taken before the system was installed inside the
vacuum chamber. Rendering d represents a section of the cavity holder. The roman number
annotations are referenced in the main text.

The cavity holder consists in a toroidal platform, hosting two shear piezoelectric actuators
(see Figure 1.9d III) onto which the cavity mirrors (Figure 1.9d I) are glued. Its geometry is
chosen to maximize optical access from all directions. The motion of the mirrors caused by
the cavity length stabilization loop drives the mechanical vibration modes of the holder, as
illustrated in Figure 1.9a. With a cavity mirror spacing of roughly 2.5 cm, the lowest vibration
mode frequency lies in the 10 kHz range, weakly dependent on the choice of materials among
vacuum compatible and machinable metals.

To damp these resonances, we designed the holder as a composite core-shell structure
comprising three different pieces: (i) a rigid u-shaped shell maintaining the alignment of the
cavity mirrors (Figure 1.9d II), (ii) a soft and thick damper that fills most of the shell’s volume
(Figure 1.9d VI) and (iii) a high-rigidity base pressed inside the damper (Figure 1.9d V). The
general operation principle is illustrated in Figure 1.9b: the vibration mode driven by the
piezoelectric actuators deforms the shell, which transmits the deformation to the damper. The
damper is thus compressed against the base, efficiently dissipating energy within its volume.



1.4. Design of Vibration Damping Platform 21

1.4.1 Design Criteria

Materials

The simple mass-spring model presented in Figure 1.10a helped us extract the main figures of
merit for choosing the materials. In this model, the mirrors (red) are connected to the holder
(gray) through the springs of strength km. The distance from the mirror to the mount is tuned
by a piezoelectric actuator (orange). The holder is attached to the damper (green), which has a
damping coefficient ηd . A simple calculation shows that in the limit of stiff and light mirrors, the

resonance frequency of the ensemble is proportional to
√
k̃h/m̃, the square-root of the effective

specific stiffness, where k̃h = kh + kd is the combined elastic modulus of the holder and damper,
and m̃ = mm +mh +md is the combined mass of the mirror, holder, and damper. The quality
factor Q of this resonance is proportional to

√
ηdm̃.

dc

ba

Figure 1.10: Model and Simulation Results. Drawing a depicts a simple spring model of the
cavity assembly. Drawing b shows the exaggerated displacement of the cavity holder under the
main mechanical resonance (colors as in a). In c and d respectively, the total displacement and
the von Mises strain in the holder assembly are shown, in a section taken along the gray dashed
line in b. The white dashed lines indicate the cavity axis and the white arrows represent the
direction of deformation.

Minimizing the effect of mechanical vibrations requires high resonance frequencies, to allow
for higher stabilization bandwidth, and low Q-factors, implying the use of materials with high
specific stiffness and high damping. Unfortunately, all common stiff materials intrinsically have
low damping coefficients, hence the use of a composite structure.

For the top shell, we chose aluminum as a compromise between machinability and high
specific stiffness ∗. For the damper, we chose Teflon (PTFE) for its high mechanical loss tangent
of 0.2 at room temperature, due to two first-order crystal-crystal transitions at 19 °C and 30 °C
[57–59]. It can be machined easily and is UHV compatible, as opposed to most rubber materials
commonly used as dampers. Additionally, it can be baked at temperatures exceeding 150 °C. For
the base, we chose titanium for its high stiffness, machinability, and UHV compatibility.

∗Taking simple precautions, its UHV compatibility can be ensured [56].



22 CHAPTER 1. Design of Cavity-Microscope System

Geometry

We optimized the geometry of the holder using finite element (FE) simulations [60]. With
a modal analysis, the shape of the top plate was optimized for high resonance frequencies
(>20 kHz) and low weight. The mode that most affects cavity length is the fundamental stretch
mode (see Figure 1.10b,c and d). A cylindrical u-shaped top plate was found to maximize its
frequency, making it similar to that of a bulk holder while significantly reducing weight.

Because damping is proportional to the time-variation of strain, a key parameter here is the
efficient coupling of the motion of the top plate to the compression of the damper. To achieve
maximal deformation of the damper for a given deformation of the holder, we use a rigid base
pressed inside the bulk of the damper. In this way, the deformation of the top plate compresses
the damper against the base, as illustrated in Figure 1.10b. To validate the design principle, we
calculated the distribution of the absolute value of the total deformation of our cavity holder for
the stretch mode using a FE simulation, as presented in Figure 1.10c. The largest deformations
appear on the outer shell and leave the base (blue circle in the middle) fixed, illustrating the
compression mechanism of the damper between the shell and the base. The corresponding strain
distribution is presented in Figure 1.10d, confirming the efficient strain transfer to the damper
and validating our the design criteria. The simple model can thus be used for future designs of
cavity holders without the need of a complete FE simulations.

1.4.2 Mechanical Assembly

The top plate consists of a 1 mm thick aluminum shell that encapsulates the PTFE damper, which
is pressed against the titanium base. The parts are fastened together using titanium screws at the
outer edges (see Figure 1.9d). There is no direct, rigid contact between the top plate and the base
thanks to a damping PTFE ring on the outside. Apart from the piezoelectric actuators for cavity
length stabilization, there are no moving parts, minimizing the risk of spurious vibrations. The
assembly itself rests on a stack of two non-magnetic stainless steel rings separated by Viton rods
for isolation [42], themselves sitting on the bottom flange of a vacuum chamber, as shown in
Figure 1.9c. A network of venting channels in the damper and base (see Figure 1.9d IV) prevents
virtual leaks for UHV operation.

1.4.3 Performance Characterization

Mechanical Response Measurements

We measured the frequency-dependent mechanical response of the holder by exciting harmonic
vibrations and measuring them with a Michelson interferometer, using a mirror glued to the
holder (see Figure 1.11a). With a slow feedback loop (200 Hz bandwidth), the interferometer
was stabilized to a half-fringe configuration. Harmonically driving the piezoelectric actuator and
demodulating the interference signal allowed retrieving the complex transfer function relating
the relative mechanical displacement of the mirror with respect to a reference mirror to the
actuator voltage. To evaluate the performance of our damped cavity holder, we compared its
response with that of a geometrically identical holder made of bulk stainless steel.
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Figure 1.11: Mechanical Response Functions. Schematic a illustrates the mechanical, optical
and electrical layout of the Michelson interferometer setup used to measure the mechanical
response of the holders. In order to pull down the resonance frequency of the mirror from
20 kHz to below 10 kHz, we glued a weight on top of the test mirror. The graphs b and c
present the amplitude and phase of mechanical response functions for two different holder
designs, a damped holder in orange, and a geometrically identical bulk stainless steel version
presented in blue. The weight on the stainless steel version is larger, hence the lower mirror
resonance frequencies. The inset shows the exaggerated deformations of the bulk holder for the
the indicated resonances.

The results are presented in Figure 1.11b and c. For both holders, a set of isolated resonances
at frequencies lower than 10 kHz, indicated by arrows in Figure 1.11a, results from the flexure
modes of the mirror itself. We have confirmed this first by an ab-initio FE calculation which
we expect to be quantitatively accurate for such a simple homogeneous part, and second by
changing the weight of the mirror, which led to a change of the mirror resonance frequencies.
We did this by gluing small stainless steel weights on top of the mirrors (see Figure 1.11a). In the
two cases, the weights were not identical. Therefore, the mirror resonances appear at different
frequencies for the two different holders. Without any weight, the resonance frequency of the
test mirrors itself was independently measured to be 20 kHz.

A second set of resonances at higher frequencies, insensitive to changes of the mirror mass,
results from the modes of the holder itself. These resonances are very prominent in the bulk
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stainless-steel holder, appearing as sharp peaks and abrupt phase jumps by about −π. A
comparison with the mode frequencies calculated from the FE model allows us to identify them
as flexure and stretch modes of increasing order.

In contrast, the composite holder is essentially resonance-free up to 100 kHz. In particular,
except at the mirror resonances, the phase of its mechanical response stays above −π/2 up
to 60 kHz, and smoothly rolls with a typical timescale of 2 µs ∗, making the platform, when
used with small mirrors, suited for high-bandwidth regulation of the cavity length. At these
higher frequencies, vibration modes become dense and overlapping, making electronic filtering
challenging [55], while the damping properties of our composite holder do not degrade.

Vacuum Compatibility

The holder has been integrated into a cQED setup, with a pair of large mirrors (14 mm diameter)
forming a high-finesse cavity (F = 6×104 at 1342 nm). After thorough cleaning and prebaking of
the different parts of the holder at their maximum allowed temperature and under vacuum, the
holder was assembled with cavity mirrors under ambient conditions and installed in a standard
cold-atom UHV system. In our experiment, we use a nearly-concentric cavity, 100 µm away
from the stability limit, which is sensitive to misalignment at the micrometer scale. Therefore,
to prevent thermal deformation, the aligned cavity system was not baked after installation.
Nevertheless, we measured a pressure in the low 10−11 mbar range, and a lifetime of laser-
cooled atoms of 32 s at the center of cavity which increased to 68 s after less than a year of
operation, demonstrating the full UHV compatibility of the holder and its suitability for the
most demanding quantum gas experiments.

1.4.4 Conclusion

Due to its composite core-shell structure, our cavity holder efficiently damps the mechanical
resonances within its structure, compromising neither optical access nor UHV compatibility.
The materials are inexpensive, widely available, and can be easily machined using standard
mechanical tools. This concept is generic and can be applied to a wide variety of systems, in
particular to experiments requiring long cavities that are highly sensitive to vibrations. In our
situation, where cavity mirrors are rather large, the mechanical modes of the mirrors themselves
remain unchanged by the holder properties and lead to isolated resonances in the low 10 kHz
range. These isolated resonances should be easily handled via electronic filtering. We expect
that our mechanical approach, combined with electronic techniques, will allow for the use of
long, ultra-narrow cavities in future quantum simulation systems without the risks associated
with vibrations.

1.5 Development of the Next-Generation Cavity-Microscope

The cavity-microscope currently installed in our experiment has several issues, which led us
to develop a new high-resolution cavity-microscope with a stacked optical design. Our aim is
to enhance the optical performance of both the cavity and the microscope, thus enabling us to
achieve higher cooperativity and spatial resolution while at the same time simplifying its design.

The section is organized as follows: In Section 1.5.1, we discuss the optical design of this
prototype and how it addresses the problems encountered by the cavity-microscope currently

∗We attribute this delay to the acoustic wave propagation in the mirrors and to delay in various parts of the electronic
systems, in particular the high-voltage amplifier.
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used with the atoms. The optical performances of both the cavity and the microscope are
summarized in Section 1.5.2. Section 1.5.3 provides a comprehensive list of the properties of
each individual component of the cavity-microscope. Lastly, Section 1.5.4 describes the various
stages of the assembly process. More details on the development process can be found in Gaia
Bolognini’s master thesis [61].

1.5.1 Optical Layout

a b

Figure 1.12: Design of Next-Generation Cavity-Microscope. a, Schematic of optical assembly
and principle laser beams. The cavity mirror (light gray) and the aspheric lens (dark gray) spaced
with a ring piezo (orange). The cavity mode is shown in red. The focused beams at 460 nm and
780 nm are drawn in blue and orange. The lenses can also image 671 nm light as illustrated in
red. b, Picture of final assembly. TAn open-access online 3D model of the cavity is shown in
Ref. [62]. Click here for quick access.

The next generation cavity-microscope has a separate optical layout, as illustrated in Figure 1.12.
It is made up of two small mirrors that form a high-finesse cavity. These mirrors are combined
with two large aspheric lenses. In this new design, light entering the cavity passes through the
center of the lens, while light used for the microscope passes around the cavity mirror, thus
simplifying both the cavity and the microscope design. This design is different from the optically
contacted one, which uses a single optical surface for both the microscope and the cavity laser
beams.

In particular, the cavity mirror coating is designed only for 671 nm and 1342 nm, since the
need for high transmission at 460 nm and 780 nm is eliminated. Furthermore, the complexity
of the optical design of the microscope is significantly reduced. The microscope light passes
through the aspheric lens only, which means that off-the-shelf diffraction-limited lenses can be
used for the assembly. This is in contrast to the optically contacted design, where a custom lens
had to be developed in order to be able to focus through the cavity mirror. As a result of this
disentanglement of both properties of the cavity-microscope, independent optimization of the
optical properties of each component can be performed.

The small cavity mirrors are glued to the center of the aspheric lenses. A piezoelectric tube
actuator is placed between the cavity mirror and the lens. This allows for the tuning of the
cavity’s length. Compared to the optically contacted device, the weight of the cavity mirror
is significantly reduced, meaning that the forces needed to move the cavity mirrors are much
smaller. This eliminates the need for a complex vibration-dampened cavity support structure, as
the coupling to the mechanical resonances of the holder is strongly suppressed.

https://sketchfab.com/3d-models/quems-cavity-v2022-96facf967c4f42f4a7af5fd0226bbb01
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1.5.2 Performance and Characteristics of the Prototype Cavity-Microscope

The properties of our first prototype are summarized in this section.

Cavity The key characteristics of the cavity are summarized in Table 1.3. It is shorter than
the concentric configuration of 46 µm, resulting in a small waist of 10.1 µm in the center. This,
combined with a measured finesse of 9900, gives a single-atom, single-photon cooperativity of
8.5, which is slightly higher than the cavity currently in use. Although the coating was designed
to achieve higher finesse at 671 nm, a higher finesse of 44 000 was observed at the trapping
wavelength (1342 nm). The reduced finesse at 671 nm is likely due to scattering losses, as shorter
wavelengths are more sensitive to surface roughness.

Wavelength 671 nm 1342 nm

Cav. length 19.954 mm
(2R− 46µm)

Free Spectral Range 7.52 GHz
Transverse Mode Spacing 230 MHz
Mode waist 10.1 µm 15.7 µm
Finesse (exp) 9900 44 000
κ/2π (exp) 750 kHz 170 kHz

η 8.5

Table 1.3: Characteristics of Cavity of Next-Generation Cavity-Microscope.

Microscope The key properties of the single lens microscope are summarized in Table 1.4.
The mirror located in the center of the lens blocks the view of the microscope, thus reducing its
collection efficiency. In fact, the solid angle of light collected by the cavity lenses is decreased by
20 % due to the mirror. Despite this, the lens can still be used for high-resolution imaging. Its
point spread function, which is an obscured airy pattern [27, 63], actually displays a smaller spot
size than the original lens. The obscured airy pattern is characterized by the annular aperture
obscuration ratio, which is 0.4 in our system.

Wavelength 460 nm 780 nm

NA 0.52
Focal length 19.39 mm 20 mm
Beam waist (theory) 0.37 µm 0.63 µm
Aberrations (theory) N.A. diffraction-limited
Strehl Ratio (exp) N.A. 0.55

Table 1.4: Characteristics of Microscope of Next-Generation Cavity-Microscope.

By blocking the center of the lens, we eliminate the low spatial frequencies of the imaging
system. The high spatial frequencies that are necessary to obtain a high spatial resolution
remain. We have tested this both theoretically and experimentally, and the results are shown in
Figure 1.13. We observe that the spot size∗ decreases from 0.61 µm to 0.56 µm when inserting the
mirror. The difference between the experiment and the theory is probably caused by chromatic
aberrations that are a result of the spectral width of the LED used to light up our target.

∗This quantity is the waist of a Gaussian fitted to the central fringe.
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a b

Figure 1.13: Effect of Mirror on Imaging Performance. a, Measured and simulated point-spread-
function of bare lens. b, Measured and simulated point-spread-function of lens with mirror
glued to the center. The measurement data is shown in blue and the theory in black dashed lines.
In both cases, the measurements are azimuthally averaged. More details on the measurement
setup can be found in the thesis of Gaia Bolognini [61].

1.5.3 Details on the Components

In this section, the characteristics of each of the components of the cavity-microscope are
summarized.

Cavity Mirrors The mirror has a diameter of 4 mm. The manufacturer (Perkin Precision Optics
[33]) measured that the roughness of the spherical surface is less than 1ÅRMS in the middle of the
mirror. The mirror coating was done by LaserOptics [64]. They specified that the transmission of
the mirror coating would be as low as 15 ppm for 671 nm, but the measured finesse of the cavity
assembly was as low as 10 000. This is likely due to light scattering losses from contaminants in
the coating or the substrate being too rough.

Aspheric Lens Standard diffraction-limited lenses (Thorlabs AL2520H) with a numerical
aperture of 0.52 were used for the microscope. They are designed for 780 nm light, which
is the same wavelength as our optical tweezers. According to the datasheet, these lenses are
diffraction-limited in the wavelength range from 720 nm to 870 nm. At 671 nm a Strehl ratio of
0.3 is specified. Lenses are coated with an anti-reflective coating on both sides. The coating is
specified at 671 nm, 460 nm, 1342 nm and 780 nm.

Piezo Actuator To adjust the length of the cavity, we use tube piezoelectric actuators. They
were custom-made by PI ceramics [37] and have a length of 5 mm, an inner diameter of 4.5 mm
and a wall thickness of 0.5 mm. The two electrodes (outer and inner) are silver coated. We cut
small grooves at both ends of the actuator (see Section 1.5.4). These are used for venting and as a
feed-through for the wire attached to the inner electrode.

Cavity Support Structure The support structure is custom-machined from Macor ceramic (see
Figure 1.12b), which is similar to other cavity holder designs[22, 65, 66]. Unlike our former
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design, which had the mirrors placed on top of the holder, the lenses are embedded into the
cavity holder. Cutouts that are precisely located in the holder enable optical access to the middle
of the cavity. This is necessary for both the MOT beams and the Zeeman slower beams. This
holder structure has the benefit of reducing the flapping mode of the large cavity lenses, which
would otherwise lead to a strong connection between mechanical resonances and the cavity
length. As a result, no additional design optimization was required to dampen mechanical
vibrations.

Lens resonances Mirror resonance

Figure 1.14: Frequency Response of Piezoelectric Actuators. Measured Bode response of
piezoelectric actuators on cavity length. The data was measured by locking the cavity to the
laser with a side-of-fringe lock and modulating the piezo voltage at different frequencies. De-
modulating the cavity transmission reviled both the phase and the amplitude of the oscillations
of the cavity length. The resonances in the 10 kHz range correspond to the resonances of the
lens (see finite-element simulation on the left, green frame). The isolated resonance that strongly
couples to the cavity length at 68 kHz corresponds to the mirror oscillating on top of the piezo
(see finite-element simulation on the right, red frame).

We have measured the response of the cavity to changes in the voltage applied to the
piezoelectric actuators. The measurements presented in Figure 1.14 confirm that small mirrors
reduce the coupling of changes in cavity length with mechanical resonances of the cavity support
structure. The response curve shows only a weak coupling to the resonances of the mount and
lenses at frequencies below 100 kHz. Finite element simulations confirm that the first resonance
at 70 kHz, which is strongly coupled to changes in cavity length (phase excursion greater than
π/2), is due to oscillation of the mirror in the piezotube actuator. This shows that by using small
mirrors, the need for a complex vibration-damping structure, as presented in Section 1.4 can be
eliminated.

1.5.4 Summary of Assembly Procedure

This section presents a short summary of the assembly procedure for the cavity-microscope. A
more detailed description of the assembly procedure can be found in the master thesis of Gaia
Bolognini [61].

A summary of the different steps is provided in Figure 1.15. To protect the high-finesse
mirrors from contamination or damage during handling, a protective film (FirstContact [67]) was
applied to them throughout the process. The protective film was only removed for the final step,
the cavity assembly.
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Step I:
Conneting wires to piezo

Step II:
Gluing mirror into piezo

Step III:
Assembly of cavity lens

Step IV:
Cavity assembly

Figure 1.15: Assembly Procedure of Next-Generation Cavity-Microscope. (left) 2D schematic
drawing of the assembly step. (right) Picture of the result of the assembly step.

Step I: Connecting Wires to Piezo Actuators A conductive vacuum compatible adhesive
was used to attach two wires of 0.1 mm in diameter to the inner and outer electrodes of the
piezoelectric tube actuator. The wire from the inner electrode passes through the u-shaped
openings in the piezotube.

Step II: Gluing Mirror to Tube Piezo Our high-finesse mirrors were glued to the tube piezo
using Masterbond EP21TCHT-1 adhesive. A microscope was used to ensure the concentricity of
the assembly.
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Step III: Assembly of the Cavity Lens With a thin layer of Masterbond EP21TCHT-1 adhesive,
the piezo-mirror assembly was glued to the center of the lens. The concentricity of the assembly
was ensured by a custom alignment tool made from Teflon.

Step IV: Cavity Assembly The last step in cavity construction involves aligning the two
cavity lenses to each other and then attaching them to the ceramic holder with Masterbond
EP21TCHT-1 adhesive. We have developed an optical setup to perform this operation.

1.5.5 Discussion and Outlook

The second version of the cavity-microscope discussed in this thesis was able to address many of
the issues associated with the optically contacted cavity-microscope. Its straightforward stacked
optical design made the construction process easier and enabled independent optimization of
the cavity and microscope parameters. Additionally, it enabled the use of smaller cavity mirrors,
which are lighter and thus cause less vibrations in the cavity holder, as well as a faster response
of the cavity length to changes in the voltage applied to the piezo. This eliminated the need for a
complex damped cavity holder.

Nevertheless, there are still two issues with the current design that need to be resolved:

• This prototype has been found to have a much lower finesse than expected, leading to a
low rate of photon extraction from the cavity. To enhance the optical performance of the
cavity, more research is needed. At the conclusion of my thesis, a batch of highly polished
substrates was ordered, which should address this problem.

• We observed a strong misalignment of the cavity mode during the curing process of the
glue. In one of the two prototypes we assembled, this leads to the loss of the cavity
signal. Being so close to concentric, this prototype has a mechanical amplification factor
of approximately 217, making it even more sensitive to any misalignment of the mirrors
than the existing cavity. To prevent this problem from occurring again, the design of the
lens mounts and the gluing process must be improved. One potential solution is to divide
the final cavity assembly into two gluing steps. The first step would involve adjusting the
cavity length, and the second step would involve adjusting the relative alignment between
the cavity mirrors. This would allow for a smaller gap between the lens and the cavity
holder, thus reducing the chance that the lens position is changed due to deformations
of the glue resulting from stress release during the curing process. Furthermore, the
temperature cycling of the assembled cavity can help to release stress within the glue [68,
69].
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The cavity-microscope has been designed to carry out quantum simulations with cold atoms.
In this section, we discuss the experimental setup and techniques that allow us to capture and
investigate a cloud of 6Li atoms trapped within the optically connected cavity-microscope.

The chapter is organized as follows: In Section 2.1, we provide an overview of the different
components of our experimental apparatus. In particular, this includes the ultra-high vacuum
chamber (see Section 2.1.1), the system of electromagnets (see Section 2.1.2), and the laser
system (see Section 2.1.3). In Section 2.2, the typical process of preparing the atomic samples is
presented. The trapped atoms can be imaged with multiple cameras. In Section 2.3, we provide
an overview of the different imaging techniques used in our experiment. Last but not least, the
cavity probe setup that allows us to measure the optical properties of the cavity is discussed in
Section 2.4.

31
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2.1 Experimental Apparatus

This section provides a brief overview of the components of our experimental setup. Further
details regarding the exact configuration of the system can be found in Appendix A.

2.1.1 Ultra-High Vacuum System

Pumping cross

Main chamber

Zeeman slower
Oven

z

x
y

3D view

IV

I

II

III

a

b

Figure 2.1: Rendering of Vacuum System. a, Section of complete vacuum system. b, Zoom into
main chamber. I, Shield to protect mirrors from 6Li. II, Cavity assembly, III, RF antenna to drive
hyperfine transitions. IV, Vibration isolation system.

The vacuum system is composed of three components: the oven chamber, the main chamber, and
the pumping cross (see Figure 2.1). The oven chamber houses the 6Li oven, which is heated to
400 °C. The main chamber, located between the oven chamber and the pumping cross, is where
the cavity-microscope is situated, which is the core of the experiment. To achieve pressures as
low as 1 × 10−11 mbar in the main chamber, a combination of ion and non-evaporable getter
pumps (NEG) is connected to it through the pumping cross. The connection between the oven
and the main chamber, where the Zeemann slower coils are located, is very narrow, allowing
differential pumping, and thus prevents contamination of the main chamber with gas flowing
from the oven chamber. A gate valve located between the two chambers can be closed during the
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filling of the oven with lithium∗.

The entire vacuum system is supported by eight adjustable posts, four under the oven
chamber, and four under the pumping cross†. There are no posts supporting the main chamber
as it is firmly attached to the pumping cross with a conical adapter. The four additional posts
visible in Figure 2.1 hold the electromagnets (see Section 2.1.2). Two vacuum gauges are used
to monitor the pressure of the oven chamber and the pumping cross. The latter allows an
estimation of the pressure in the main chamber, but ultimately the atom lifetime in the MOT
quantifies the quality of vacuum in the main chamber. After one year of continuous operation of
the vacuum system, we have measured a MOT lifetime of 66 s.

Preparation and Assembly of Vacuum Pieces Before the vacuum system was assembled, each
of the stainless steel chambers was heated to 400 °C for 3 h to reduce hydrogen outgassing [70].
We ensured that all pieces put into the vacuum chamber were made of material contained in
the LIGO Vacuum Compatible Materials List [30]. For all pieces, we followed the cleaning
procedures explained in Ref. [71].

Non-Evaporative Getter (NEG) Coating In cooperation with the SLS vacuum group at the Paul
Scherrer Institut (PSI) in Villigen, a non-evaporative getter coating was applied to the interior of
the pumping cross, the conical adapter between the pumping cross and the main chamber, and
the tube at the bottom of the main chamber [72]. This surface treatment transforms the vacuum
chamber into a pump, allowing it to absorb the residual gas present in the chamber. To activate
this coating under vacuum, it must be heated to 200 °C for 2 h.

Pumping Procedure We describe the process used to pump the chambers down. Initially, the
chamber was evacuated with a molecular turbo pump to pressures as low as 1 × 10−8 mbar. We
performed a bake-out of the chambers at 150 °C for almost a week. Once hydrogen dominated
the residual gases in the chamber, the NEG pump activation procedure was performed. This was
followed by the activation of the ion getter pump and isolation of the chamber from the turbo
pump. Special attention was paid to the primary chamber during the bake-out, as even a slight
increase in temperature could cause permanent misalignment of the cavity. In fact, powerful
cooling fans were used to keep the main chamber at room temperature, while the pumping
chamber and Zeeman tube were heated. To ensure that no contaminates were present in the
main chamber, the whole system was pumped and baked without the cavity and then vented
with pure nitrogen to insert the cavity-microscope.

∗During the coarse of the operation of the experiment (3 years) the oven had to be refilled only once.
†The vacuum chamber is electrically isolated from the optical table to prevent ground loops. This is done with

plastic caps at the end of the posts.
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2.1.2 System of Electromagnets

a
b

c

Figure 2.2: Coil System Installed Around Main Chamber. a, Rendering of coil stack hosting the
MOT coils and five compensation coils. b, Rendering of section through the MOT coil showing
the water channel between the PEEK cap and the cooper coil. c, Bottom view onto MOT coil
showing the spiral cut into the bulk copper.

The coil system of the experiment consists of three components: A long conical coil for the
Zeeman slower, a pair of strong electromagnets for the MOT, and a set of five compensation coils.
We ensured that none of the coils come into contact with the vacuum chamber. This prevents
vibrations caused by switching the coils to reach the cavity. Furthermore, the air gap between the
coils and the chamber reduces heat transfer. This is essential because the cavity is very sensitive
to temperature variations. The key characteristics of the coils are presented in Table 2.1.

Coil Field Field (max)
MOT coils (quadrupole config.) 33.4 × 10−2 G cm−1 A−1 134 G cm−1

MOT coils (dipole config.) 2.56 G A−1 1024 G
x-compensation coil (pair) 2.5 G A−1 50 G
z-compensation coil (pair) 1.5 G A−1 29 G

Table 2.1: Properties of Coils.

MOT Coils The MOT forms combined with the compensation coils a single unit, the coil stack
(see Figure 2.2a). The two large electromagnets used for the MOT are designed to handle currents
of 400 A, allowing us to generate magnetic fields of up to 1000 G at the location of the atoms.
Their compact design is based on a bulk-machined copper spiral that is glued together using
epoxy glue in a vacuum injection molding process [73]. A rendering of the cross section of the
electromagnets is shown in Figure 2.2b,c). The cooling water flows through a channel between



2.1. Experimental Apparatus 35

the copper and a PEEK-made plastic cap. The seal is created with two o-rings placed in the two
small trenches of the PEEK cap. A H-bridge based on insulated-gate bipolar transistors (IGBTs)
is used to switch the MOT coils from the quadrupole configuration to the dipole configuration
under full current.

Compensation Coils Two pairs of compensation coils are capable of producing offset magnetic
fields in the vertical and cavity directions. Each coil is manufactured by winding a Kapton-coated
wire with a cross section of 1 × 2mm around a custom aluminum frame. In the experiment,
these coils are used to adjust the center of the MOT to the center of the optical resonator by
shifting the zero crossing of the quadrupole field. Furthermore, these coils can be used to create
a quantization axis that stops the mixing of spin states during our experiments. The last and
largest of the compensation coils is used to counter the Zeeman slower field. Cooling radiators
are used to dissipate heat during operation. The characterization of the magnetic field generated
by each of the coils can be found in the master thesis of Nicola Reiter [32].

Zeeman Slower Coils The electromagnet for the Zeeman slower was manufactured by winding
a Kapton-coated wire with a cross section of 1 × 2mm around a water-cooled stainless steel
cylinder. The number of transverse windings is reduced from the oven chamber to the main
chamber to match the magnetic field smoothly to the MOT field. A detailed description of a
similar design can be found in the Ph.D. thesis of Kevin Roux [74]. The Zeeman slower coil is
mounted on two adjustable posts, as visible in Figure 2.1.

2.1.3 Laser System

This section provides a concise overview of the lasers used in our experiment. We will also
discuss the frequency stabilization scheme of the optical resonator and the lasers. For more
information on the laser system and electronics, please refer to Appendix A.

Master Laser (1342 nm & 671 nm) A unique feature of our experiment is that a single frequency-
doubled laser system (the master laser) is used for the MOT, Zeeman slower, absorption, and
fluorescence imaging, the cavity-enhanced dipole trap, and finally probing of the cavity. The
laser is based on a Toptica TA-SHG system, which outputs both 1342 nm light and frequency-
doubled light at 671 nm. The infrared component is used for the dipole trap, while the red
component is used to address the D2 transition of 6Li.

Spectro Laser (671 nm) The spectro laser, which is based on a Toptica DL pro operating at
671 nm, serves as an absolute frequency reference. Its frequency is stabilized to the crossover
with the help of a saturated absorption spectroscopy on the D2 line of 6Li.

Blue Laser (460 nm) In our experiment, a blue Toptica DL pro laser operating at 460 nm is
utilized for the control beam allowing us to shape the atom-cavity interactions. This laser is
frequency-stabilized with a high-precision wavemeter.
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Master Laser
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Figure 2.3: Frequency Stabilization Scheme of Master Laser. Schematic of locking scheme of
master laser and cavity resonance frequency. The beamline is drawn in a simplified manner
to highlight the locking scheme. For more details on the exact implementation, we refer to
Appendix A.2 and Appendix A.4

Locking Scheme of the Cavity and the Master Laser A schematic overview of the locking
system is shown in Figure 2.3. As mentioned previously, the master laser is used for both laser
cooling and cavity probing. The former requires adjusting the absolute frequency of the laser in
relation to the D2 transition of 6Li with an accuracy of approximately 1 MHz, while the latter
requires relative frequency stability between the cavity and the master laser with a precision of
less than 20 kHz.

The master laser frequency is stabilized to the cavity resonance using a Pound-Drever-Hall
(PDH) scheme at 1342 nm. The lock has a high bandwidth of 1.8 MHz∗, which allows us to
meet the stringent frequency requirement between the master laser and the cavity. Due to the
intrinsic stability of the frequency-doubling process, there is a fixed frequency relation between
the cavity mode and the laser at 671 nm. As a consequence, the cavity and the master laser
form a combined frequency unit, the laser-cavity unit, and adjusting the length of the cavity
alters both the cavity and the master laser frequency simultaneously. The frequency relation is
illustrated in Figure 2.4.

An offset lock between the spectro laser and the master laser ensures the absolute frequency
stability of the laser-cavity unit and fixes the cavity to the desired length. Due to the intrinsic
frequency stability of the cavity resulting from mechanical isolation, it is sufficient to use a low-
bandwidth lock (below 1 kHz†) on the piezo actuators of the cavity to stabilize the laser-cavity
unit.

∗Frequency of oscillation at large gain.
†This is limited by the flapping mode of the cavity mirrors.
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Figure 2.4: Fast Tuning of Atom-Cavity Detuning. Illustration of frequencies of different
beamlines during experimental sequence. During the MOT phase it is the MOT detuning ∆MOT
that determines the frequency of the laser and cavity. During the experiment, it is the atom-
cavity detuning ∆ac that determines the frequency of the laser and cavity. The sweeps of the
cavity probe over the cavity resonance show the moments of cavity response measurements (see
Section 2.4).

As mentioned in Section 2.2, the cloud of atoms is confined in a cavity-enhanced dipole trap
during the experimental sequence. This requires the master laser to remain locked to the cavity.
The preparation of the atomic sample is based on the 671 nm component of the master laser for
laser cooling, resulting in an atom-cavity detuning ∆ac of −1.08 GHz during the MOT stage. To
measure the atom-cavity system at different atom-cavity detunings ∆ac, the frequency of the
laser-cavity unit is adjusted after the preparation of the atomic sample. Figure 2.4 shows a typical
curve of the cavity and laser frequency during the modification of the atom-cavity detuning ∆ac.
We have developed a feedforward system that enables us to modify the cavity length and thus
the master laser with speeds up to 0.1 GHz ms−1 without losing the atoms trapped in the cavity
dipole trap.

2.1.4 Computer control

In this section, a brief overview of the computer control systems of the experiment is given.

Labscript Our system is built around the Labscript Suite. It is a powerful and extensible
platform for creating, controlling, executing, and analyzing experiments. It was originally
developed for quantum science and engineering, but it can also be applied to optics, microscopy,
materials engineering, biophysics, and any other field that requires the repetition of experiments
with adjustable parameters and hardware-timed operations [75]. Due to its vibrant community
and the fact that many different devices can be controlled using Python, it is highly flexible
and versatile. The Labscript Suite has a comprehensive documentation and there are numerous
studies that discuss its characteristics [76].

Our experimental cycles are much shorter than those of the usual cold-atom experiments
(∼ 200ms), so we made a few changes to speed up the Labscript Suite. We used subsequences to re-
duce the overhead of communication with the different devices. Instead of sending one sequence
for each experiment, we loop over multiple repetitions of the same experiment (subsequence) per
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labscript sequence, allowing us to reach effective repetition rates of up to 5 Hz. The bottleneck
then becomes live plotting of the experimental data, which is usually done with matplotlib, the
standard Python plotting library. To accelerate plotting, we created the analysis plot panel tool,
which is available online [77]. This tool is based on the fast Python-based graphing library
pyqtgraph [78]. Our tool is integrated into the Labscript Suite through a multishot routine.

Interlock and Data Logging We have developed a safety system in our laboratory, the interlock,
that monitors the state of many of the devices and the environment. It is designed to turn off
any device if abnormal conditions are detected. This is especially important in our experiment
because we use powerful electromagnets, lasers, and RF-electronics that require continuous
water cooling. The interlock is based on a Raspberry Pi minicomputer. People can interact
with the device via a touchscreen or remotely through a Web interface (see Figure 2.5a). The
instructions for the interlock system are available online [79], and the code can be downloaded
from GitHub.

b

a

Figure 2.5: Screenshot of Web interface of Interlock (a) and Grafana (b).

Data from the interlock system are stored in a time series database (InfluxDB). We use Grafana
to display the data in the web browser (see Figure 2.5b). Additionally, we sync key parameters
and measurements, such as atom numbers, with Grafana, which enables us to compare and
analyze experiments over a long period.
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Figure 2.6: Temperature and Pressure of Main Chamber measured from the closing of the
chamber to the end of the thesis. In mid 2022, a temperature regulation was installed on the
main chamber. This resulted in a slight decrease of the measured temperature.

2.2 Preparation of Atomic Sample

A typical experiment consists of a sequence of many experimental stages. For our experiment,
these stages can be grouped into two major parts: the preparation of the atomic sample and the
probing of the atom-cavity system. Once the experimental sequence is completed, the atoms are
released from the trap and the cycle restarts. In this section, the essential steps of preparation
of the atomic sample are discussed. The remainder of the thesis is devoted to experiments and
measurements conducted with the atom-cavity system, the main part of the sequence.

In the following, we go through the different experimental stages that allow us to get an
atomic cloud. A timeline of the experimental sequence is shown in Figure 2.7.
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Figure 2.7: Layout of a Typical Experimental Sequence. The graph on the top shows the number
of trapped atoms as a function of time during the four steps of preparation of an atomic sample
(I MOT loading, II MOT compression, III Coil switching, IV Application of mask). A schematic
plot of the laser configurations shown below. During the hole process the cavity-enhanced dipole
trap is switched on. I: MOT inside the cavity is loaded by atoms (black arrows) decelerated by
the Zeeman slower (orange beam). II: MOT is compressed (less laser power, smaller cloud). IV:
Mask is applied to cloud so that longitudinal size of cloud is reduced during the experiments.

I: Zeeman Slower and Magneto-Optical Trap (MOT) A sequence starts with the loading of
the atoms from the oven into a magneto-optical trap (MOT) located directly between the cavity
mirrors (see Figure 2.7I). During this process, the atoms are cooled from 400 °C in the oven
to a fraction of mK using laser cooling. In our case, we use standard cooling techniques in
the D2 transition of 6Li. The first step of the cooling process is done with a Zeeman slower,
which helps to increase the capture velocity of the MOT, thus increasing the atom flux during
loading. The second step, the magneto-optical trap, takes place directly between the cavity
mirrors, eliminating the need to transport the atoms and thus making the experiment faster. Our
MOT is created by combining a strong magnetic-field gradient with three back-reflected laser
beams (two in the horizontal plane and one vertical) for trapping and cooling. A detailed map
showing the location of the MOT beams is presented in Appendix A.2. At the end of the MOT
stage, which usually takes less than 100 ms, we trap roughly 1 × 106 atoms at a temperature of a
fraction of a millikelvin. The lifetime of the atoms in the MOT is 66 s.

II: Compressed Magneto-Optical Trap (cMOT) Once enough atoms are loaded, they are
transferred from the MOT to a cavity-enhanced optical dipole trap that operates at 1342 nm.
This can be done with a compressed MOT stage, where the detuning between the MOT lasers
and the cooling transition is decreased. Note that it is also important to reduce the power of the
laser beams, as this reduces the residual heating. A critical factor to achieve efficient transfer
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is the power ratio between the cooler and the repumper light. Just before turning off the MOT
beams, we measure roughly 1 × 105 atoms in the trap.

III: Cavity-Enhanced Optical Dipole Trap (cODT) We transfer roughly 1 × 103 atoms to the
cODT. The low transfer efficiency is due to the narrow linear geometry of the cavity-enhanced
dipole trap. Due to the intense power build-up in the cavity mode, which is a consequence of its
high finesse, we have achieved longitudinal trapping frequencies of up to 1.8 MHz with a low
laser input power of around 10 mW. In this setup, we have observed a transverse trapping fre-
quency of approximately 17 kHz. These values were determined by measuring the loss of atoms
resulting from parametric heating at twice the trapping frequency. For these measurements, we
modulated the trap intensity. The temperature of the cloud strongly depends on the depth of the
dipole trap [32]. This is likely due to suboptimal Doppler cooling conditions at high trap depth
that result from differential light shifts between the ground and excited state (see Figure 2.8).
In a typical experiment, we measure temperatures on the order of 300 µK, which is more than
double the theoretical limit of 140 µK, the Doppler temperature of 6Li. The best lifetime of the
atoms in the cODT measured during my Ph.D. was 4 s. However, it strongly depends on the
linewidth of the laser∗. Typical measured lifetimes are on the order of 500 ms.

−20 0 20
y (µm)

−100

0

100

200

L
ig

h
t

sh
if

t
(M

H
z)

2S

2P

4D
Figure 2.8: Theoretical Estimation of State-
Dependent Trap Profile. The plots show a
theoretical estimate of the transverse profile of
the cODT. The light shifts are calculated using
the different transitions of lithium cataloged
in Ref. [80]. The light shift of the excited state
is about 2.2 higher than the ground state. The
4D state is anti-trapped which leads to fast
losses of atom in the 4D state.

In the cODT the atoms are maximally coupled to the optical resonator, meaning that they
are trapped at the anti-nodes of the standing wave cavity field. This is illustrated in Figure 2.9,
which shows the geometry of a typical atomic sample used for our experiments. The precise
alignment of the trap and the cavity field is ensured by the symmetry of the cavity and the fact
that we use double the wavelength of the cavity field, 1342 nm, for the dipole trap. A similar
configuration is discussed in Ref. [81]. Depending on the experiment, at this point we employ
a procedure that allows us to prepare a deterministic number of atoms based on the cavity
transmission signal (see Section 3.3.2).

IV: Application of Mask The cloud loaded from the MOT into the standing wave dipole trap
extends up to 1 mm in the cavity direction. We reduce the size of the cloud for our experiments
by expelling atoms at the wings of the trap using resonant light. We image the shadow of a
metal-coated tapered fiber (the mask) to protect a short section of the atomic cloud from the
resonant expelling light. This reduces the number of atoms trapped by a factor of five and
produces a cloud with a length of approximately 120 µm. An absorption picture of the cloud
loaded into the dipole that includes the mask shadow is shown in Figure 2.10c.

∗Regular tuning of the laser cavity is necessary to have optimal performance.
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Figure 2.9: Schematic of Typical Atomic Sample in Cavity. The atoms are trapped in the center
between the two cavity mirrors. The extent of the atomic cloud (120 µm) is much shorter than
the Rayleigh range of the cavity mode (0.8 mm). The zoom-in below shows the shape of the cloud
with respect to the cavity field. The atoms (green blobs) are trapped in the cavity-enhanced
dipole trap, forming a lattice (trapping potential in dashed gray line). Due this trap shape, the
density of the cloud forms pancakes with equal size that are spaced by 671 nm in the cavity
direction (green ellipses). Due to the symmetry of the mirrors, the cloud density is peaked
precisely at the anti-nodes of the 671 nm cavity field (red sine wave).

After each of the different preparation steps, we measure the dispersive shift of the cavity,
which gives us information about the number of atoms and the temperature of the cloud. More
details on these cavity-based measurement techniques are shown in Chapter 3.

2.3 Imaging the Atomic Cloud

We complement our cavity-based measurements with imaging. Our experiment utilizes two
distinct types of imaging: absorption and fluorescence imaging. Absorption imaging produces
high-contrast rapid images for a large number of atoms, while fluorescence imaging is more
sensitive, allowing the measurement of smaller amounts of atoms, possibly even single atoms
[82].
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Figure 2.10: Images of the Atomic Cloud during Different Preparation Stages. Fluorescence
images of the cloud during the MOT (I) and cMOT (II) stage. IV, Absorption image of cloud
trapped in cavity-enhanced dipole trap. The gray cone in the center shows the mask used during
the preparation stage of the experiment. All three images are in-scale, see scale bar on bottom
right. The labels of the images corresponds to the labels of the different preparation stages (see
Figure 2.7).

In our experiment, we use two cameras for fluorescence imaging and one for absorption
imaging. Their location is detailed in Appendix A.2. Figure 2.10 displays images of the cloud
at various points during the experimental sequence, which were created using absorption and
fluorescence imaging on the D2 line. The image of the atoms in the MOT (Figure 2.10a) and
the compressed MOT (Figure 2.10b) illustrates the size change during the compression process.
Once loaded into the dipole trap, we imaged the atoms using the absorption technique. A
typical image is shown in Figure 2.10c. Note that all three images are shown with the same
magnification, demonstrating the small size of the final atomic sample, which is obscured by the
mask compared to the initial size of the cloud trapped in the MOT.

2.3.1 Two-Photon Imaging Through the Cavity-Microscope

The imaging setup of our experiment only allows for low resolution due to the numerical
aperture of the imaging lenses. However, if we use the lenses of our cavity-microscope (see
Section 1.3.2), we can achieve a much higher resolution. Due to the reflective coating, these
lenses are not compatible with standard D2 imaging techniques∗. Therefore, we have developed
a two-photon imaging technique that relies on the consecutive scattering of a 671 nm and a
460 nm photon. The latter is efficiently transmitted through the cavity lenses, allowing for
high-resolution imaging only limited by the aberrations of the cavity lenses.

We have developed two distinct approaches for imaging through our cavity lenses. The first,
two-photon fluorescence imaging, is based on fluorescence in a two-colored MOT, similar to
the method described in Ref. [83]. The second, two-photon absorption imaging, involves the
absorption of 460 nm photons by the excited atoms during standard D2 absorption imaging.
Schematics that illustrate two techniques and the resulting images are shown in Figure 2.11.

∗The newer version of the cavity, presented in Section 1.5, would make this possible.
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Figure 2.11: Two-Photon Fluorescence and Absorption Imaging. a, Fluorescence images of
the cloud of 30 atoms trapped in a two-colored MOT. b, Absorption image of cloud trapped in
cavity-enhanced dipole trap. The cloud is off-centered with respect to the cavity (see illustration
on top right).

Fluorescence Imaging in a Two-Colored MOT Fluorescence imaging in a magneto-optical
trap (MOT) is a highly sensitive technique that can detect single atoms with great precision [84,
85]. The MOT beams sent from six directions can cause scattering from the viewports or other
components in the vacuum chamber, leading to noise in the measurements. To avoid this, a
two-colored MOT can be employed [83]. This involves a pair of smaller counterpropagating
laser beams that are directed at the center of the standard MOT, producing the fluorescence. A
color filter in front of the camera eliminates direct light from the standard MOT, allowing for
measurements with a high signal-to-noise ratio. In our experiment, we used two counterpropa-
gating blue beams in the vertical direction to excite the atoms from the MOT to the 4D manifold.
The blue fluorescence was then captured by the cavity lens and imaged onto a camera. The blue
laser was 5 MHz red detuned from the main 2P3/2–4D5/2 transition to achieve the best results.

Two-Photon Absorption Imaging An alternative two-photon imaging technique is based on
the absorption of 460 nm light. This method works by sending blue light through the cavity
lenses during regular absorption imaging on the D2 line. If the frequency of both beams is
adjusted correctly, the excited atoms in the 2P state can absorb a blue photon, bringing them
to the 4D manifold, which creates a shadow at the location of the atoms that can be seen on
a camera. This is similar to regular absorption imaging, except that the atoms are initially in
the excited 2P state. To ensure that the cloud only absorbs a small section of the beam∗, the
atoms are displaced by 1 mm along the cavity axis, as shown in the inset of Figure 2.11b. This
imaging process is not very efficient, as the momentum kick and heating are increased by the
two-photon process. However, it can be used to align the focus of the 460 nm light with the
cavity axis, which was beneficial during the alignment of the focusing beam.

∗The 460 nm light is focused in the center of the cavity.



2.4. Cavity Probe Setup 45

2.4 Cavity Probe Setup
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Figure 2.12: Cavity Interrogation Setup. The red lines indicate the path of the 671 nm cavity
probe light. It first passes through a double-pass AOM, allowing for frequency sweeps over
the cavity resonance. Then it impinges on the cavity. The reflected light gets detected in a
heterodyne setup where it gets mixed with a local oscillator (LO). The transmitted photons get
detected on a single-photon counter (SPC).

In the final section of this chapter, we outline the design of the cavity probe setup and explain
how it can be used to measure the frequency response of the optical resonator. A simplified
illustration of the setup is shown in Figure 2.12. More realistic drawings can be found in
Appendix A.2. A double-pass acousto-optic modulator (AOM) is used to shift the frequency
of the light from the master laser, allowing us to set the probe cavity detuning. A second
double-pass AOM, not shown in the drawing, is used to adjust the power of the cavity probe
beam sent into the cavity. The reflected light is mixed with a local oscillator and detected on
a balanced photodiode, implementing a heterodyne detection scheme. The light transmitted
through the cavity is detected on a single-photon counter.

The light beams at both detectors can be used to gain insight into the cavity field. The
single-photon counter transforms photons into electrical pulses that contain precise data on the
times of arrival of photons on the detector. Each click coming from the detector is linked to
a photon that has escaped the cavity, and thus contains information about quantum jumps of
the cavity field. For an efficient detector, these data allow the reconstruction of single quantum
trajectories [86]. The heterodyne detector measures the light field that is reflected off the cavity.
Its signal contains information on both quadratures of the field, meaning that we can measure
both the phase and the amplitude of the reflected light. Furthermore, these data can be used to
extract the power spectral density of light that leaks from the cavity.
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2.4.1 Cavity Response Spectroscopy
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Figure 2.13: Cavity Response Measurement for a Single Shot. a, Histogram of single-photon
events transmitted through the cavity as a function of probe frequency. The dashed line shows a
fit using a Lorentzian function. b, Phase and amplitude of light reflected off the cavity measured
by the heterodyne detector. The dashed line shows a fit with a linear response model. Both
measurements were taken during the same cavity sweep, allowing us to compare the signal
strengths.

A typical measurement that we perform several times in the sequence is cavity response spec-
troscopy. It is performed by sweeping the probe frequency over the cavity resonance using the
frequency shifter and correlating the signal on the detectors with the probe frequency. This
allows us to extract a frequency-resolved cavity reflection and transmission response of the
cavity. A typical signal is shown in Figure 2.13. The signal on the single-photon detector is
referred to as cavity transmission spectroscopy. Fitting a Lorentzian to the measurement results
allows us to extract the linewidth and resonance frequency of the cavity. These parameters are
modified in the presence of atoms in the resonator. In the following Chapter 2, we discuss how
cavity spectroscopy can be used to extract information about the atomic cloud confined in the
resonator.
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2.4.2 Precision of Cavity Resonance Measurement
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Figure 2.14: Error of Cavity Resonance Measurement. a, Simulated cavity transmission experi-
ment. The dashed black line shows the Lorenzian shape of the cavity transmission. From these
data, we estimate the resonance frequency using the center-of-mass (see orange vertical line). b,
Plot of normalized error as a function of the mean total photon count detected during a single
cavity transmission spectrum. The data follow the empiric model of σ (δω)/κ = 1.8/

√
Nph.

The main parameter that determines the precision of the cavity resonance frequency measure-
ment δω is the total number of photons observed in a cavity probe sweep Nph. This is illustrated
in Figure 2.14b, where we plot the error of the dispersive shift measurement σ (δω) normalized
by the linewidth of the cavity. As expected from statistics, the error scales as the square root
of the number of detected photons. The results were obtained from a numerical experiment
including the poissonian nature of the measurement.

2.5 Conclusion

In this chapter, we explored the experimental setup and techniques that enable us to capture a
tiny cloud of 6Li atoms in our cavity-microscope. The subsequent chapters present the results of
our measurements of the atom-cavity system in various configurations. Further details of the
individual configurations are discussed in the relevant chapters.
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In Section 1.1, we demonstrated through a Gedanken experiment that a cavity can increase the
interaction between atoms and photons by prolonging the interaction time. In Section 3.1 of this
chapter, we discuss a more detailed microscopic model that describes our atom-cavity system,
which serves as the theoretical basis for the rest of the thesis∗. In the remainder of the chapter, we
illustrate the model by presenting cavity-based measurement techniques that allow us to extract
information from the atom-cavity system. In particular, Section 3.2 presents techniques for
measuring the susceptibility of the atom-cavity system with weak on-axis drive. Additionally, we
provide an overview of various cavity-based measurement techniques that enable us to quantify

∗For the theoretical derivations we assume ℏ = 1.

49
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different properties of the atomic cloud, such as the number of atoms (see Section 3.3.2), the
temperature of the cloud (see Section 3.3.3) or their spin state (see Section 3.3.4).

3.1 Detailed Description of the Hamiltonian of the Atom-Cavity
System

In this section, the theoretic basis of our experiment, the Hamiltonian of the atom-cavity system,
is presented. In its complete form, the Hamiltonian is very complex, as in reality our system
consists of a cloud of multilevel fermionic atoms strongly coupled to a multimode cavity. The
goal of this section is not to frighten the reader, but rather to set the stage for the remainder of
the thesis, where we develop different sectors and regimes of the Hamiltonian. Presenting the
Hamiltonian in its full form will allow us to define a notation in terms of the Feynman diagram,
which significantly simplifies the theoretical discussions in the remainder of my thesis.

The Hamiltonian of the atom-cavity system can be decomposed in three components, like

Ĥ = Ĥatoms + Ĥcavity + Ĥatom-cavity.

The first component Ĥatoms describes the dynamics of the atoms, the second component, the
dynamics of the optical resonator and the final component specifies the structure of the atom-
cavity coupling. In the following, we describe step by step the different constituents of the full
Hamiltonian.

3.1.1 Hamiltonian of the Multi-Level Fermionic Atoms

A fermionic atom, like 6Li in our experiment, is described by its position and its internal state
(spin of the electron, the nucleus, and the energy level of the electron). In case of a cloud
of many atoms, this positional and internal degree of freedom can be modeled in the second
quantization formalism by a multicomponent field operator Ψ̂ (x⃗) =

∑
i Ψ̂i(x⃗) |i⟩⟨i| that describes

a vector of independent field operators for each of the internal states of the atom. Often, this
complex structure can be simplified by isolating only a few internal states of the atoms. In
many cases, it suffices to model the atoms by only two components, which describes a fermionic
field of two-level systems (pseudo-spin 1/2). However, it should be noted that this is only an
approximation and, in general, all components are necessary to fully describe the dynamics of a
gas of 6Li atoms. More details on the typical level structure used in our experiment are given in
Section 3.1.4.

Having defined the field operators, we can write the atom Hamiltonian as

Ĥatoms =
∫

Ψ̂ †(x⃗)ÊkinΨ̂ (x⃗)dV +
∫

Ψ̂ †(x⃗)V̂(x⃗)Ψ̂ (x⃗)dV + Ĥinteractions.

The first term of the equation is the kinetic energy of the atomic gas, which is independent of the
internal state of the atoms. This is represented by the kinetic energy operator Êkin = −ℏ∇2

x⃗
/(2m).

However, the second term describes the trapping potential, which depends on the internal state
of the atoms and is represented by the position-dependent matrix V̂(x⃗) that acts on the internal
states of the atom. This term also includes the transition frequencies between the different
internal states. The last term describes the interaction between the atoms, which includes the
physics of contact interactions that can be adjusted by an external magnetic field using Feshbach
resonances. In the remainder of the thesis, we will drop this interaction term. However, by doing
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so, we neglect interesting physics that emerges in the competition between cavity-mediated
interactions and contact interactions [14]. In the case of a thermal gas, the atoms become
distinguishable, and the integral over the field operators can be approximated by a sum over the
positions of the individual atoms∗.

3.1.2 Hamiltonian of a Multi-Mode Cavity

Compared to the atomic Hamiltonian, the Hamiltonian of a multimode cavity is rather simple.
Instead of allowing for a continuous spectrum of modes as is possible in free space, in a cavity
a discrete set of modes is present. In experimental terms, three indices are generally used
to describe the structure of different longitudinal and transverse modes of a cavity and the
polarization of the cavity field. To simplify the notation, this structure is absorbed into the
multi-index m. In this case, the cavity Hamiltonian then reads

Ĥcavity =
∑
m

ω
(m)
c â†mâm ,

where âm and â†m are the creation and annihilation operators for a photon in cavity mode m, with

corresponding resonance frequency ω(m)
c . Note that the spatial structure of the cavity modes

is not contained in the cavity Hamiltonian but rather shows itself in the atom cavity coupling.
Nevertheless, we can better understand the structure of the cavity field by writing down the
form of the electric field in the cavity.

⃗̂Ec(x⃗) =
∑
m

E⃗m(x⃗) (â†m + âm)

Here, E⃗m(x⃗) describes the spatial profile and polarization of a single photon in the cavity mode
m.

3.1.3 Atom-Cavity Interaction Hamiltonian

The last term of the full Hamiltonian, the atom-cavity interaction, contains the physics that we
are most interested in. There are two Hermitian conjugate processes that are described by this
term: An atom either emits or absorbs a cavity photon, thereby changing its internal state. In
the dipole approximation, which is a very good approximation for the atoms trapped in our

resonator, the interaction between the electric field ⃗̂E(x⃗) and the atoms can be determined by the
Hamiltonian

Ĥatom-cavity =
∫

Ψ̂ †(x⃗)
(
d⃗ · ⃗̂E(x⃗)

)
Ψ̂ (x⃗)dV (3.1)

⃗̂E= ⃗̂Ec=
∑
m

(∫
Ψ̂ †(x⃗) gm(x⃗) Ψ̂ (x⃗)dV

)
×
(
â†m + âm

)
. (3.2)

Note that any external electric fields, such as driving the atoms from the side using a pump laser,
are inserted into Equation (3.1). Here, we have assumed that the only electric field present is the
cavity field. This equation appears rather simple, but much of the complexity of multilevel atoms
and the multimode cavity has been absorbed into the space-dependent atom-cavity coupling

∗This approximation was helpful for modeling cavity cooling of many hot atoms.
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matrix gm(x⃗). It describes the transition strength between any of the internal atomic states
depending on the mode index m and the coordinate x⃗. Note that the scalar product between the

dipole transition moment d⃗ of the atom and the electric field ⃗̂E(x⃗) is in 3D space. It describes the
effect of polarization of the electric field, which has also been absorbed into the definition of the
space-dependent atom-cavity coupling matrix gm(x⃗).

Despite the complex structure underlying the dependent atom-cavity coupling matrix gm(x⃗),
the total Hamiltonian describing our system can be summarized in a sum over simple Feynman
diagrams

. (3.3)

In the diagrams the indices i and j refer to the internal state of the atoms and the index m to the
cavity mode. In the diagrams above, we were very explicit about the dependence on x⃗, which we
will simplify in the future. In what follows, we will keep only the notation for the potential V (x⃗)
and the atom cavity coupling term g(x⃗), since dependence is important for future analysis.

3.1.4 Level-Structure of 6Li and Simplification of Hamiltonian

The discussion in the previous chapters is very general. Here, we concretely adapt it to the
structure of 6Li that we make use of for the rest of the thesis. In Figure 3.1 a simplified level
diagram with the transitions considered in the thesis is shown∗.
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Figure 3.1: Simplified Level Scheme of 6Li.
We encode the atomic qubit in the 2SF=1/2

1/2
(|g〉) and 2P3/2 (|e⟩) states. The coupling be-
tween the excited state |e⟩ and a higher-lying
control state |c⟩ (4D5/2) induced by the control
laser is used to dress the excited state, there-
fore changing the properties of the atomic
qubit |g〉–|e⟩. The auxiliary ground state |a⟩
(2SF=3/2

1/2 ) is used for the detection of atomic
excitations (see Section 3.2.1).

Taking into account only the atomic qubit in the coupling to the cavity, the notation simplifies
significantly. In this notation the Feynman diagrams simplifies to

.

∗All of the presented levels are actually manifolds that consist of many close-to-degenerate states. Under the
conditions considered in our experiments, this substructure does not change the observed results. For more details on
the structure of the electronic states of 6Li, we refer to Ref. [80, 87]. In particular, special care was taken with respect to
the polarizations of the laser beams. The F = 1/2 ground-state manifold consists of two different states. However, if
linear polarization is used for the control and cavity probe beam, their behavior is exactly identical, and therefore the
approximation of a two-level system is valid.
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Note that we have removed the counter rotating terms that were still present in the full de-
scription of Equation (3.3). In many experimental cases, the cavity can be approximated by a
single-cavity mode. In our notation, we will just drop the index m if this is the case. The effects
of the control laser, which we used to locally change the optical properties of the atoms, are
encoded in the state-dependent potential Ve(x⃗) and the local profile of the atom-cavity coupling
gm(x⃗).

3.1.5 Discussion on Spatial Structure of Atom-Cavity Hamiltonian

At this point, it is interesting to look at the spatial structure of the different parts of the Hamilto-
nian.

The cavity field is totally delocalized; its creation and annihilation operators are independent
of space. The space dependence of the electric field is decoupled from the operators and is
entirely contained in the amplitude of the single-photon field E⃗m(x⃗), which is locally determined
by the profile of the cavity mode. This is the origin of the all-to-all nature of cavity-mediated
interactions. All atoms in the cavity field instantaneously feel the presence of a photon, inde-
pendently of their position∗. This is in stark contrast to the atomic excitations. The atomic
field operators Ψ̂ (x⃗) explicitly depend on space, giving the fermionic field a local degree of
freedom. This suggests that acting on the local properties of the atoms, such as their internal
state structure, allows for local tunability of atom-cavity interactions.

Interestingly, the atom-cavity coupling is also local in origin. Atoms interact with the local
strength of the electric field. However, since the field is totally delocalized, all the different local
degrees of freedom present in the fermionic field operators are averaged out in the interaction
term. The round brackets in Equation (3.2) highlight this structure. In fact, for a single-mode
cavity, the atom-cavity coupling can be factorized into a tensor product between an operator
acting on the atom density and an operator acting on the cavity field.

It is precisely this interference of the couplings of the many atoms into one cavity mode
that gives rise to collective phenomena. For example, in the case of pinned atoms (neglecting
the motional degree of freedom), this property leads to isolation of the cavity coupling to
the collective fully exchange-symmetric Dicke spin states to the cavity. This is in one-to-one
correspondence with the isolation of the center-of-mass motion of the atomic cloud when
considering the coupling between the motion of the atoms and the cavity field. Furthermore, it
is precisely this property that limits the rank of cavity-mediated interactions (for more details,
see Chapter 6).

In more naive words, one can think of the cavity as a very sparse degree of freedom that
can be simply described by its occupation of the photon states. On the other hand, the atomic
Hilbert space is very large. In the approximation of two-level atoms, looking only at the internal
structure, the number of available states 2N already scales exponentially with the number of
atoms. If the motion of the atoms is included, the size increases even further. It is precisely this
mismatch in the different sizes of the cavity and the atomic Hilbert space for a given number
of excitations that enforces the strong symmetry of the atom-cavity coupling†. A symmetry
that needs to be broken to realize arbitrary all-to-all interactions as required for the quantum
simulation of the SYK model (for more details, see Chapter 6). In Chapter 5, we experimentally
investigate the breaking of collective symmetry in the atom-cavity interaction by studying the
effects of atom disorder on the structure of the eigenstates of the atom-cavity system.

∗These considerations neglect the short time dynamics of the cavity field resulting from the finite speed of light.
†As an example: In the single-excitation regime, there are N atomic states, but only one photonic state.
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3.1.6 Incoherent Loss Processes: Cavity Loss and Spontaneous Emission

The Hamiltonian discussed in the preceding sections describes the coherent dynamics of our
atom-cavity system; however, it is not a closed system. There are two pathways through which
excitations can escape: the mirrors of the cavity can cause a loss of cavity photons, and the
excited state of the atoms can spontaneously decay, emitting a photon into free space. The loss
rate through both channels is measured by the linewidth of the cavity, κ, and the linewidth of
the excited state of the atoms, Γ , respectively.

The advantage of cavity photon losses is that some of the lost photons can be detected on a
single-photon counter, giving us information about the state of the cavity. This is in contrast
to the photons emitted spontaneously by the atoms, which are sent in a random direction and
therefore difficult to detect. We have developed a technique that can capture these spontaneous
emission events and imprint the information on the atomic ground state. This is made possible
by the presence of spontaneous Raman scattering in transitions that are not closed. Specifically,
these measurement techniques are the topic of the next section.

3.2 Susceptibility Spectroscopy of Atom-Cavity System

In this section, we discuss techniques for measuring the excitations of the atom-cavity system.
We focus on two types of excitation: those of the internal state of the atoms and those of the
photons in the cavity. In this section, we consider pinned atoms, therefore, neglecting the effects
of the motion of the atoms. In particular, we explore how the cavity transmission signal can be
used to measure the susceptibility of the atom-cavity system to weak driving of the cavity, which
will give us insight into the photonic and atomic weights of the eigenstates. This is especially
important to understand the experiments conducted in Chapter 5, as it allows us to analyze the
linear response of random spin coupled to the cavity.

( (

Figure 3.2: Probing Scheme of Susceptibility Measurement.
The excitations are injected into the system by probing the cavity
(red arrow). From the cavity the photons can leak out and get
detected on a single-photon counter, which allows us to estimate
the mean photon number in the cavity which is proportional to the
photonic susceptibility χp. The photons in the cavity excite the
atoms which can spontaneously decay into a different electronic
ground state. Using the depumping technique, we can measure
⟨S+⟩ which is proportional to the atomic susceptibility χa.

When probing the cavity using an on-axis beam, we inject excitations into the atom-cavity
system through the cavity. These excitations are lost from the atom-cavity system through two
channels: the cavity mirrors (transmission and scattering) and the atoms (spontaneous emission).
The schematic in Figure 3.2 illustrates the two loss processes. When the rate of losses is measured
through the different loss channels, we can gain information about the structure of the eigenstates
of the atom-cavity system. In particular, losses through the cavity mirrors measure the strength
of the cavity field and therefore contain information about the photonic susceptibility χp, the
ease of injecting photons into the cavity using a weak on-axis drive. Quantifying the rate of
losses through the atoms measures the average number of excitations of the atoms. This contains
information on the atomic susceptibility χa of the atom-cavity system, the ease of excitation of
atoms using a weak on-axis cavity drive.



3.2. Susceptibility Spectroscopy of Atom-Cavity System 55

Measuring the photonic susceptibility in our system is straightforward, since photons leaving
the resonator are detected directly on the single-photon counter. The rate of photons hitting
the detector is a direct measure of the cavity field and therefore of the photonic susceptibility.
However, measuring the atomic susceptibility requires detecting the photons that are lost
through spontaneous emission of the atoms. Detecting these photons using fluorescence imaging
is very inefficient, since the photons are emitted in all directions. In the remainder of this section,
we describe a cavity-based method to measure the atomic susceptibility that does not require
detecting the scattered photons, the depumping technique.

3.2.1 Measurement of Atomic Susceptibility: The Depumping Technique

The depumping technique for measuring the atomic susceptibility is based on the precise
detection of spontaneous Raman transitions using the cavity. In our case, the transition that
couples to the cavity is not closed, which means that excited atoms can decay into a ground state
different from that with which they started. As a result, the population of the different ground
states contains information on atomic excitations. In other words, only if an atom was excited
can it change its ground state by spontaneous emission. Therefore, changes in the ground state
population can be directly linked to the excitation of atoms in the atom-cavity system.
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Figure 3.3: Depumping scheme and calibration.a, Illustration of the probe configurations
during interrogation and depumping detection. I, When probing the disordered system, the
excited state of the atoms is dressed with the light-shifting laser, indicated by the blue color of
the level and the shift ϵ. Photons entering the cavity from the probe have two decay channels.
Either they leak out of the cavity on the other side (red wiggled arrow) where they will be
detected by a single photon counter, or they can be lost by free-space spontaneous emission of
an atomic excitation (orange wiggled line). At zero-magnetic field, the transition from |g〉 to |e⟩
is not closed; therefore, spontaneous emission events can depump the atom into the |a⟩ state. II,
These depumped atoms can be detected by measuring the cavity transmission. If the cavity is on
resonance with the |a⟩–|e⟩ transition, a single atom in state |a⟩ leads to a strong suppression of
the cavity transmission. b, Calibration of the depumping signal. The mean number of photons
transmitted during the depumping detection is plotted against the probe power during the
interrogation of the disordered system. The error bars of the data represent the standard error
that comes from statistical fluctuations. The orange line shows a fit of the theoretically expected
relation. The inset shows a histogram of detected photons for low (green) and high (red) probe
powers (see arrows on x-axis for configuration).

We make use of this concept in our system to measure the atomic susceptibility. A schematic
illustrating the measurement procedure is shown in Figure 3.3a. At zero magnetic field, the
transition between |g〉 and |e⟩ is not closed, and an atom in state 2P3/2 can decay into the F = 3/2
ground state manifold, denoted as an auxiliary state |a⟩. This state is only weakly dispersively
coupled to the cavity field because of the large hyperfine splitting. Since decay can occur only
from the state |e⟩, the population accumulated in the F = 3/2 state is directly proportional to the
excited state population ⟨Ŝz⟩ integrated over the duration of the probe pulse. For weak and short
probing, only very few atoms are excited; therefore, saturation and effective atom loss effects can
be neglected. In this regime, normalizing the excited-state population by the power of the probe
beam directly measures the atomic susceptibility χa, the linear response of the atoms to a weak
cavity drive. In equations this reads

χa(|Ψ ⟩) = |⟨Ψ | Ŝ+ |G⟩|2 .
A detailed derivation of the correspondence to the experimental measurement scheme, is pre-
sented in the thesis of Philipp Uhrich [2].

The sensitivity of this measurement technique depends on the branching ratio during spon-
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taneous emission events and the detection efficiency of atoms in the auxiliary state, which can
be very efficient using cavity-based absorption. In particular, in the strong atom-cavity coupling
regime, cavity transmission is significantly altered by the presence of a single atom. As a result,
cavity transmission can be used to detect atoms in the auxiliary state with single-atom sensitivity.
In fact, the population of the F = 3/2 state can be measured after interrogation of the atom-cavity
system (see Figure 3.3a, I) using cavity transmission spectroscopy, with the cavity tuned in
resonance with the F = 3/2 to 2P3/2 transition (see Figure 3.3a, II). In this configuration, the
transmission of the cavity is suppressed by 1/(η + 1)2 in the presence of a single atom in the
F = 3/2 state, yielding a single atom level sensitivity for the detection of the atomic response.

In practice, we implement the detection by sweeping the frequency of the on-axis probe over
the cavity resonance, yielding an average photon count of 4 photons per sweep for the empty |a⟩
manifold (see green histogram in the inset of Figure 3.3b). The frequency sweep is essential, as
it removes the systematic effects of dispersive shifts on the detection of depumping resulting
from the presence of atoms in the |g〉 state. Figure 3.3b shows the dependence of the number of
transmitted photons on the laser power during interrogation, showing the expected exponential
trend, allowing for the characterization of the atomic susceptibility. At large probe powers, we
observe a deviation from the exponential model that is due to saturation effects and atom losses.

3.3 Measurement of Dispersive Shift of the Cavity: The Swiss
Army Knife of Measurements

The previous section discussed measurement techniques that allow for the characterization of
resonant excitations of the atom-cavity system. In this section, we develop the complementary
regime of dispersive atom-cavity coupling. A particular focus is on the measurement of the
dispersive shift of the cavity, which is a very versatile technique that allows us to extract various
properties of the atomic cloud with minimal heating.

The regime of large detunings between the atomic and cavity resonance frequencies, ∆ac≫
g
√
N , is known as the dispersive regime. In this regime, the effect of the atoms on the properties

of cavity resonance can be treated perturbatively. In particular, its resonance frequency is
modified by a small parameter ˆδωc, leading to the effective Hamiltonian

Ĥdisp = ˆδωcâ
†â.

Here, the dispersive shift operator ˆδωc acts on the atomic sector of the Hamiltonian and is a
result of a purely coherent process, which can be calculated directly from Hamiltonian dynamics.

The diagram describing the dispersive shift is

.

It describes the process of a photon virtually exciting an atom, the first-order correction of the
photon field. In the dispersive regime, the atomic excitation instantaneously responds to a weak
oscillating electric field. Its Green’s function is approximated by 1/∆ac, which stems from the
tail of the Lorentzian in the optical Bloch equations. Therefore, any of the excited-state branches
in the Feynman diagrams (blue dashed lines) can be replaced by 1/∆ac.

We can interpret the diagram in terms of equations, which results in an expression of the
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dispersive shift operator

ˆδωc = −
∫
g2(x⃗)
∆ac

ρ̂(x⃗)dV =
∫
δωc(x⃗) ρ̂(x⃗)dV , (3.4)

which describes the L2-inner product between the local dispersive shift δωc(x⃗), resulting from a
single atom located at x⃗, and the atomic density operator ρ̂ = Ψ̂ †Ψ̂ . Here, we assumed a two-level
atom coupled to a single cavity mode; however, for many-level atoms coupled to a multimode
cavity, the shape of the final Hamiltonian is very similar (see Section 3.3.3 and Section 3.3.4 for
more details).

3.3.1 Signal-To-Noise Ratio of Dispersive Shift Measurement

There are two parameters that we would like to optimize for dispersive shift measurements: The
signal-to-noise ratio of the measurement and the heating of the atom cloud. In this section, we
demonstrate that they are actually linked and that optimization of one can only be done at the
expense of the other.

The signal-to-noise ratio of the dispersive shift measurement is determined by the ratio
between the value of dispersive shift and the precision of determining the cavity resonance
frequency measurement using cavity response spectroscopy. In Section 2.4.2, it is shown that the
precision of cavity response spectroscopy scales like the square root of the total photon number
Nph during measurement.

The heating of the atomic cloud is proportional to the number of incoherent photon scattering
events during the measurement, which scales linearly with the number of photons detected
during the measurement. More precisely, the scattering rate can be quantified by the additional
photon losses of the cavity owing to the atoms,

κa =
Ng2

4∆2
ac
Γ .

Here, N refers to the number of atoms trapped in the resonator and Γ is the linewidth of the
atomic transition. The expression shows that the scattering rate scales with 1/∆2

ac, which means
that for very large detunings between the cavity and the atoms, the dispersive shift δωc becomes
the dominant effect of the atoms on the optical resonator, and additional photon loss can be
neglected due to scattering light off the atoms.

At this point, it is important to note that losses cannot be neglected when considering the
signal-to-noise ratio of the dispersive shift measurement. In fact, if detuning is increased, the
dispersive shift decreases with 1/∆ac. To obtain the same signal-to-noise ratio, the photon count
Nph has to increase proportional to ∆2

ac. Taking this into account, the number of incoherent
processes during measurements with the same signal-to-noise ratio is independent of ∆ac, but
rather proportional to a dimensionless parameter, the cooperativity η [88, 89].

In the remainder of this chapter, we explore how the dispersive shift can be used to measure
properties of the atomic cloud, such as the number of atoms and their temperature, and to detect
Raman transitions between different hyperfine ground states.

3.3.2 Repeated and Continuous Measurement of Number of Atoms

The most fundamental technique used to measure the number of atoms trapped in the resonator
is based on the measurement of the dispersive shift of the cavity. Assuming an atomic cloud that
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is completely contained within the cavity mode (g(x⃗) = g for the support of ⟨ρ̂⟩(x⃗)), the dispersive
shift in Equation (3.4) simplifies to

ˆδωc = −g
2N̂

∆ac
, (3.5)

where N̂ =
∫
ρ̂(x⃗)dV counts the number of atoms. As the dispersive shift in Equation (3.5) is

proportional to the number of atoms, measuring it with a cavity spectroscopy (see Section 2.4)
provides information on the instantaneous number of atoms trapped inside the resonator without
significant heating of the atomic cloud. As a result, many measurements of the atom number
can be performed during one experimental sequence, which is a feature we make extensive use
of in our experiment.

In fact, it is even possible to continuously measure the dispersive shift to keep track of the
number of atoms trapped in the resonator. In our experiment, we implemented two techniques
that provide continuous temporal information about the number of atoms. We have used these
techniques to track the atom count and prepare a deterministic sample of atoms, reducing the
fluctuation of the atom count. Both techniques are based on continuous measurement of cavity
response (see Figure 2.13).
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Figure 3.4: Schematic of Atom Number Tracking Setup.

Feedback-based Atom Number Tracking The first technique that we implemented in our
system utilizes a side-of-fringe lock on the cavity probe frequency to continuously measure the
dispersive shift. A schematic of the feedback loop is shown in Figure 3.4. With the heterodyne
setup, we monitored the amplitude of light reflected from the cavity. A PID unit based on
an FPGA (see Appendix A.4.2) acted on the frequency of the cavity probe to stabilize the
amplitude of the cavity reflection to half the maximum. We solely used the integrator to achieve
stabilization. Figure 3.5 shows four typical time traces of the dispersive shift. The normalized
slope of a linear fit (see the dashed line in Figure 3.5) allows us to calculate the lifetime in the
trap during interrogation as τ = (97± 5)ms. The measurements are offset from each other due to
variations in the initial number of atoms present in the trap after loading.



60 CHAPTER 3. Basic Principles and Methods of Cavity QED

0 5 10 15 20
Time (ms)

0

2

4

6

8

D
is

p
er

si
ve

sh
if

t
(M

H
z)

τ = (97± 5)ms

Figure 3.5: Continuous Measurement of Atom Number. Time traces of dispersive shift of cavity
extracted from cavity probe frequency ∆f for four different experiment cycles. The dashed black
line shows a linear fit to the data.

The traces in Figure 3.5 show that it is possible to measure the dispersive shift of the cloud
over a long period of time. Additional particle losses may result from both the heating and
spontaneous formation of molecules (photoassociation).

Deterministic Preparation of Atom Number The second technique was developed to reduce
variations in the atom count of our experiment. This was done to reduce the noise in our
measurements, as the total number of atoms has a direct influence on many of our observables.
The technique allows for the preparation of a deterministic number of atoms. In the following,
we first describe the sources of variation in atom number and then detail our cavity-based
preparation technique.

The loading of atoms from a magneto-optical trap (MOT) into a dipole trap is a Poisson
process that can be characterized by a loading rate. This process can lead to fluctuations in the
number of atoms because of two distinct sources. First, variations in the experimental parameters
(laser detunings, polarizations, timings, oven temperature, alignment, etc.) can cause changes
in the loading rate, thus resulting in a different mean number of loaded atoms. Second, even
when the loading rate is constant, fluctuations in the number of atoms are still observed due to
the Poissonian nature of the loading process, which is inversely proportional to the square root
of the atom number. As a result, experiments involving only a few atoms are subject to large
relative fluctuations in the number of atoms.
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Figure 3.6: Principe of Deterministic Loading. a, Scheme of optical setup. The transmission
of the probe laser at fixed frequency ωp is monitored on the single photon counter. b, Flow
diagram of sequence. The cavity probe and molasses are switched on right before the sequence
is temporarily halted (marked by a yellow vertical line). When the average photon flux |n|τ
surpasses a predetermined limit, a trigger signal is sent and the sequence resumes (shown by a
yellow flash and a green vertical line). The three frequency digrams below, show the evolution
of the cavity resonance frequency at different times of the preparation process.

The diagram in Figure 3.6b illustrates the working principle of the deterministic preparation
mechanism. After loading the atoms from the MOT into the dipole trap, weak molasses cooling
beams are activated to maintain the cloud close to Doppler temperature, leading to atom loss due
to light-assisted collisions [90]. Our technique is to stop the molasses and thus the atom losses
when the desired atom number is reached. This is done by sending a weak cavity probe beam that
is blue-detuned with respect to the dispersively red-shifted cavity mode. Note that, in contrast
to the first technique, this technique is based on continuous measurement of the transmission
signal (see Figure 3.6a) on the single-photon counter, not the reflection signal on the heterodyne
detector. As the dispersive shift decreases over time due to atom loss, the rate of transmitted
photons increases. By detecting the photon signal on the single-photon counter, we can estimate
the photon flux and then trigger the termination of the molasses process. Specifically, the
pulse train signal of the single-photon counter is digitized and processed in an FPGA unit,
allowing for a real-time estimate of the photon rate averaged over a variable time scale. We
use the WaitMonitor infrastructure implemented in the Labscript suite to achieve the triggered
termination of the molasses process. The detuning of the cavity probe beam can be used to set
the dispersive shift at which the process terminates and thus the desired atom number.
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Figure 3.7: Performance of Deterministic Loading. a, Vertical stack of photons traces for
different experimental cycles. The orange vertical line, indicates the time when the wait monitor
is activated, meaning that the sequence is paused. It resumes when photon rate (red shading)
has reached the critical value. The vertical green bar marks the time when the trigger is send and
the sequence resumes. b, Histogram of relative atom number N/⟨N ⟩ before (orange) and after
(blue) deterministic loading. The distribution of poissonian atom loading is shown in green. For
these measurements we used an average number ⟨N ⟩ = 1200 atoms.

The experimental results of the preparation process are shown in Figure 3.7. Histograms
in Figure 3.7b illustrate the measured distribution of the normalized number of atoms before
and after the preparation process. It is evident that the distribution of atom numbers before
the deterministic loading was not Poissonian, as it has two peaks. This implies that there are
fluctuations in the loading rate of the atoms that are caused by changes in the experimental
parameters. The distribution of atom number after the preparation process is single-peaked,
indicating that most of the systematic variations have been eliminated. In addition to the
distribution of atom numbers, we plot the ideal distribution resulting from the Poissonian nature
of the loading. The discrepancy between the two distributions reveals that our technique was
not preparing a sub-Poissonian distribution. Ultimately, the precision of the atom number
preparation is limited by photon shot noise, which can be improved by increasing the probe
power. However, for our experiments, the observed improvements were sufficient to improve
the noise of our measurements.

3.3.3 Temperature Measurement Using Differential Cavity Mode Shift

In general, the exact expression of the dispersive shift δωc depends on the positions of the atoms,
that is, the overlap of the atomic density with the cavity mode (see Equation (3.4)). In this section,
we use the dependence on the size of the atomic cloud to perform temperature measurements.

The most widely used technique for measuring the temperature of an atomic cloud is time-
of-flight thermometry. It consists of measuring the size of the cloud after expansion for a short
time interval after releasing it from the trap. Once the size of the cloud is dominated by ballistic
expansion because of its initial momentum spread, the temperature becomes proportional to
the square root of the final size. Because this method relies on the release of the cloud from
the trap, the atoms cannot be used further in the experiment. In this section, we demonstrate
how the ratio of dispersive shifts of two consecutive longitudinal cavity modes can be used
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to measure the in situ size of the cloud and therefore estimate its temperature with minimal
heating, allowing temperature measurements within the experimental sequence.

Taking a look at the formula in Equation (3.4), we see that the average dispersive shift is
proportional to the overlap integral between the average density profile of the atoms ⟨ρ̂⟩(x⃗) and
the shape of the cavity mode g2(x⃗) which depends on the total number of atoms and the size
of the cloud. For a harmonic trap potential, the size of the cloud is directly proportional to
the square root of the temperature. As a result, the dispersive shift can be used to estimate
the temperature of the trapped gas. The problem with the dispersive shift is that it measures
a quantity that is proportional to both the number of atoms in the cloud and its temperature.
However, the dependence on the total number of atoms can be eliminated by considering the
ratio of dispersive shifts of two consecutive longitudinal cavity modes, which is the technique
developed in this section.

As mentioned in Section 2.2, our atomic sample is made up of a series of pancakes, trapped
at the maximums of the cavity field. In fact, this is only true for even cavity modes, which we
will refer to as the subscript a, since the atoms are trapped in the antinode∗. For odd longitudinal
modes, which will be termed the subscript n (node), the atoms are trapped at the nodes of the
cavity field.

The longitudinal shape of two consecutive cavity modes, spaced by one free-spectral range
(FSR), is

g2
a (x) = g2 cos2(kx)

g2
n (x) = g2 sin2(kx).

Due to the boundary conditions on the mirror surface; these two modes are separated by λ/2.
As a result, they are shifted by λ/4 in the center of the cavity. In this analysis, we assume the
atoms to be trapped at positions x = nλ, which is equivalent to considering one pancake located
at x = 0. In Figure 3.8a, we plot the thermal distribution of a gas trapped in a harmonic potential
and the mode functions of two consecutive longitudinal cavity modes. In this example, the trap
frequency is 2 MHz and the temperature is 250 µK, which are typical for our experiment after
loading from the MOT.

The average dispersive shifts of two consecutive longitudinal cavity modes is

δωa =
∫
g2

a (x)
∆a

ρ(x)dV , δωn =
∫
g2

n(x)
∆n

ρ(x)dV .

Here, ∆a and ∆n are the atom-cavity detunings of the two different cavity modes.
There are two different relations involving the two dispersive shifts that allow us to estimate

the total number of atoms and the temperature of the atomic cloud independently.

• To measure the total number of atoms, independent of the temperature of the atomic cloud
(neglecting transverse effects), we can define g2Natoms = δωn∆n + δωa∆a. The fact that
cos2 +sin2 = 1 makes this rescaled dispersive shift independent of the longitudinal shape
of the cloud.

• To measure the temperature of the cloud, independent of the atom number, we define the
ratio of the dispersive shifts as

α =
δωn∆n

δωa∆a
,

∗All of the experiments presented in the thesis, only use the antinode configuration.
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the dependence on the total number drops out of the relation. In fact, if we assume a
Gaussian profile of the cloud, we can find a closed for α = tanh

(
k2σ2

)
and as a result a

linear relationship between α and the thermal occupation number of the trap nth can be
observed for small sizes∗. This is illustrated in Figure 3.8b.

With this we conclude that α can be used as a direct method to measure the temperature of the
trapped cloud without releasing the atoms from the trap. A similar analysis can be performed
for transverse cavity modes, allowing us to measure the temperature in transverse directions.
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Figure 3.8: Theory of Cavity-Based Temperature Measurement. a, Density distribution ρ
(black) of thermal cloud and mode functions of two consecutive longitudinal cavity modes (solid:
anti-node, dashed: node). b, Plot of dispersive shift ratio α as a function of thermal occupation
of the trap nth. The offset at nth = 0 is due to the finite size of the ground state of the trap. c, Plot
of dispersive shift ratio α as a function of the temperature of the cloud.

In our experiment, we can measure the dispersive shifts of two successive longitudinal modes
with a single cavity spectrum†. The experimental results are summarized in Figure 3.9. The two
consecutive longitudinal cavity modes have an atom-cavity detuning of ∆a/2π = −1GHz and
∆n/2π = 4.8GHz. Cavity transmission spectra as a function of different numbers of atoms are
plotted in Figure 3.9a,b (blue few atoms, red many atoms). The normalized ratio of dispersive
shifts α is independent of atom number and measures the temperature of the cloud (see Fig-
ure 3.9c). The average value of α corresponds to a longitudinal temperature of approximately
0.8 mK. This value is significantly higher than what we expect from time-of-flight measurements.
The discrepancy is probably due to the anharmonicity of the lattice trap, as this leads to larger
cloud sizes for the same temperature.

∗Note that the presented analysis assumed a harmonic trapping potential, which is a valid approximation of our
system at low temperatures. At high temperatures, this approximation breaks down. However, α remains an indicator of
relative temperature changes.

†This is realized with the sidebands generated from a high-bandwidth fiber electro-optical modulator in the cavity
probe beam path.
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Figure 3.9: Experimental Comparison of Dispersive Shifts. Cavity transmission spectrum
of anti-node (a) and node (b) cavity mode for different MOT loading times. The bare cavity
resonance is plotted in both cases as a black dashed line. c, Plot of normalized ratio of dispersive
shifts, α, as a function of atom number Natoms. In all three graphs the colors indicate the number
of loaded atoms (black: few, yellow: many).

The data presented in Figure 3.9 show that the dimensionless parameter α can be used to
estimate the temperature of the cloud. The advantage of this technique is that it does not depend
on the release of the atoms from the dipole trap, and therefore several temperature measurements
can be performed during one experimental cycle. However, the presented technique only works
for an atomic sample that is trapped in equally spaced pancakes, precisely overlapping with the
nodes and antinodes of the cavity field. This is the case for our standing wave cavity-enhanced
dipole trap, but for a trap that is not a lattice, the parameter α always averages to 1 and can
therefore not be used to measure the temperature of the cloud.

Most importantly, this section illustrates that the dispersive shift of the cavity depends on the
shape of the atomic cloud and can be used to extract information about the spatial distribution
of atoms trapped inside the resonator. This measurement is based on the spatial distribution
of the cavity mode. In Chapter 4, we show that this limit can be overcome by using a focusing
beam, which allows us to shape the atom-cavity coupling on the micrometer scale.

3.3.4 Cavity-based Detection of Raman Transitions

Last but not least, the measurement of the dispersive shift can be used to extract properties about
the internal-state population of the atoms. This allows for the detection of Raman transitions,
which is usually done with state-resolving fluorescence. In this section, we explore how the
measurement of the dispersive shift can be used to detect changes in the ground-state population
of the atoms.

The formula of the dispersive shift presented in Equation (3.5) is valid for two-level atoms
coupled to the cavity by a homogeneous coupling strength of g. For multi-level atoms, the
coupling strength varies between different atomic transitions, which is due to the different dipole
moments (see Equation (3.3)). As a result, the dispersive shift depends on the internal state of
the atoms.

Therefore, if Raman transitions are driven, the internal state of the atoms changes, leading to
a modification of the dispersive shift. We have verified this experimentally by driving transitions
from the F = 1/2 manifold to the F = 3/2 manifold of the 2S state of the 6Li atoms using a set of
copropagating laser beams detuned by 228MHz +∆raman.
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Figure 3.10: Detection of Raman Transitions. a, Ratio between the final and initial dispersive
shifts, δωc,f and δωc,i , as a function of the detuning between the Raman beams. The transitions
are driven between the F = 1/2 and F = 3/2 manifold. The relative strengths of the dispersive
shifts are plotted in the inset. The states are numbered after their order at high magnetic fields
starting at the energetically lowest state. The values are normalized to the dispersive shift of
spin state 2. Since we use σ− light to probe the cavity, the dispersive shift is maximal for spin
state 3 and smallest for spin state 6. b, Raman spectrum as a function of magnetic field. The
levels are split according to the Zeeman effect. The theoretically expected shifts are shown with
the black dashed lines.

For more details on the placement of the laser beams in the setup, see Figure A.3. In Fig-
ure 3.10a, we plot the relative change in the dispersive shifts as a function of the detuning
between the two Raman beams. The inset in Figure 3.10a shows the theoretical relative dif-
ferences in the dispersive shift depending on the internal spin state. The data qualitatively
agree with the measurements. Additionally, when the magnetic field is varied, we observe
the expected Zeeman splitting of the levels (Figure 3.10b). Furthermore, we can observe Rabi
oscillations when driving the Raman transitions resonantly (see Figure 3.11). The measurements
demonstrate that the dispersive shift is dependent on the ground state population of the atoms
and that this dependence can be used to detect Raman transitions during the experiment with
high-fidelity.
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Figure 3.11: Detection of Rabi Oscillations. Relative change of dispersive shift as a function
of Raman pulse duration. These measurements have been made at ∆raman = 0MHz, driving
the transitions between the 1↔ 5 and 2↔ 4 spin states simultaneously. The magnetic field
was oriented along the z axis (up) with a strength of 10 G. The two laser beams had a power of
0.2 mW. The data were fitted with a model that takes into account decoherence and particle
losses. The fitted Rabi frequency was 0.89 MHz with a coherence time of 3.0 µs. The lifetime
of the particles in the trap during the driving of Raman transitions was estimated to be 69 µs,
which is much longer than the decoherence period. The error bars represent the standard error
that results from fluctuations in the measurement of the dispersive shift.

Together with the previous two sections, this demonstrates the utility of dispersive shift-based
measurements in our cavity QED system.

3.4 Conclusion

In this chapter, we have constructed a model that explains the atom-cavity system. We have
demonstrated that the cavity can be used to measure many of the significant characteristics of the
atom-cavity system. In particular, we have demonstrated that the dispersive shift of the cavity
is a very useful tool that can be used to acquire information about the spatial distribution of
atoms in real-time with great accuracy. However, the resolution of these cavity-based techniques
is restricted by the size of the cavity mode. In Chapter 4, we experimentally prove that this
limitation can be surpassed with the aid of a laser beam that locally modifies the optical
properties of the atoms.
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Our cavity-microscope is a device that combines a high-finesse cavity with a high-resolution
microscope in a single optical device. In Section 1.1.2, we argued that a control beam focused
through the cavity lens can be used to increase the spatial resolution of cavity-based measure-
ments.

In this chapter, we investigate the method that allows us to modify the atom-cavity coupling
in both space and time. We present two experiments to demonstrate this. The first experiment
is the correction of the aberrations of our cavity lens. The second experiment focuses on the
micrometer resolution reconstruction of our atomic cloud.

In this chapter, we provide a general summary rather than a comprehensive explanation, as
our work is still ongoing. We are currently working on a publication that further develops our
findings.

The chapter is organized as follows: We start by discussing the experimental setup in
Section 4.1. Then, in Section 4.2, we demonstrate the Floquet technique that enables us to
adjust the atom-cavity interactions both theoretically and experimentally. The results of the
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lens aberration correction are shown in Section 4.3. Finally, in Section 4.4, we demonstrate the
capacity to reconstruct the 3D density distribution with our system.

4.1 Experimental Setup

SLM

co
n

tr
o

l

Figure 4.1: Shaping the Control Beam. Our cavity-microscope supports a high-finesse cavity
mode, which forms a standing wave (red blobs). The control beam is focused by the cavity lens
to a small spot, much smaller than the size of the cavity mode. This is illustrated in the inset on
the top right. A spatial light modulator (SLM) in the beam path of the focusing beam is used to
generate arbitrary intensity patters at the location of the atoms.

A rendering of the experimental configuration is shown in Figure 4.1. We send a blue control
beam through the cavity lens, where it is tightly focused at the location of the atomic cloud.
The resulting spot size is much smaller than the cavity mode (see the inset in Figure 4.1). A
spatial light modulator in the beam path allows for wavefront engineering of the control light.
In Appendix A.2.1, more details on the layout of the SLM setup are shown. We use the spatially
resolved phase shifts to generate arbitrary intensity patterns of the control beam in the center of
the cavity.

4.2 Local Floquet Engineering of the Light-Matter Coupling

To change the atom-cavity coupling in space, we engineer the spectrum of the atomic transition
that couples to the cavity field (|g〉–|e⟩) by altering the properties of the excited state. This is
achieved by using a laser beam that passes through the cavity lens and is focused to a small spot
in the center of the atomic cloud (see Figure 4.1). This control beam resonantly drives a transition
from the excited state to a higher-lying control state, |e⟩–|c⟩. The beam is amplitude-modulated
with frequency ωm which leads to the formation of the Floquet sideband in the excited state
(Figure 4.2a). For our experiments, we chose a modulation frequency of 110 MHz.
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Figure 4.2: Theory of Floquet Engineering. a, Schematic of amplitude modulated control
beam. The Rabi frequency Ω get modulated in time. b, Illustration of Frequency modulated
Autler–Townes doublet. c, Illustration of Floquet sidebands on |g〉–|e⟩ transition split by ωm.
The red arrow indicates the frequency of the cavity.

4.2.1 Single-Atom Model

In the following, we illustrate the effect of modulating the excited state of a single atom (Fig-
ure 4.2a). The Hamiltonian describing the space-dependent driving with an amplitude modu-
lated oscillating electric field is

Hm(t) = Ω0(x⃗)cos(ωmt) (|e⟩⟨c|+ |c⟩⟨e|) ,
where Ω0(x⃗) measures the peak drive Rabi frequency and therefore inherits the spatial depen-
dence from the control beam focused by the cavity lens.

A constant drive resonant with the |e⟩–|c⟩ transition generates an Autler–Townes splitting
between the states (|e⟩ + |c⟩)/√2 and (|e⟩ − |c⟩)/√2, where the splitting is twice the drive Rabi
frequency. The effect of amplitude modulation is to modulate the energy of both these states in
time (Figure 4.2b). Using the identity

∣∣∣ψ(t)
〉

= exp
(
i
2Ω0(x⃗)
ωm

sin(ωmt)
) ∣∣∣ψ0

〉
=

∞∑
n=−∞

Jn

(
2Ω0(x⃗)
ωm

)
exp(i nωmt)

∣∣∣ψ0
〉
,

we see that a modulation of the energy of a state results in a spectral distribution into a comb of
discrete resonances spaced by the modulation frequency ωm. These effective energy levels are
called Floquet sidebands. In our case of resonant driving, two of those combs are generated, one
for each of the states in the Autler–Townes doublet. Summing these combs of opposite driving
amplitudes together results in interference, so that every even sideband couples directly to |e⟩
and every odd to |c⟩.

In fact, the cavity couples to transitions from the ground state to each sideband individually,
as described in

Hint = â
∑
n=2k

gn(x⃗)sin(nωmt) |e⟩
〈
g |+ â

∑
n=2k+1

gn(x⃗)sin(nωmt) |c⟩
〈
g |+ H.c.

with the coupling strengths gn(x⃗) = g(x⃗) Jn
(
Ω0(x⃗)
2ωm

)
given by the Bessel function of order n. This

structure of spectrally isolated transitions allows for precise targeting of the sidebands for
cavity-based detection of atoms that are exposed to control light.
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4.2.2 Generalization to Many Thermal Atoms

The above analysis can be generalized to the case of many thermal atoms by introducing the local
density of the cloud ρ(x⃗). This allows us to calculate the effect of a gas on the transmission of the
cavity. The analysis is similar to Section 3.3.3, where we used the dispersive shift to estimate the
temperature of the atomic cloud.

In particular, when the cavity is on resonance with the nth atomic sidebands, the transmission

of the cavity on resonance drops by 1 = 1/(1 + η(n)
eff )2, where

η
(n)
eff =

∫
ρ(x⃗)

4g2
n (x⃗)
κΓ

d3x

is the effective cooperativity of atoms located at the focus of the control beam∗. This equation
shows that the cavity transmission depends on the convolution of the control beam intensity
with the atomic density. It is precisely this feature that allows us to estimate the local atomic
density with a cavity-enhanced absorption measurement. In fact, shaping the intensity patterns
of the control beam with the SLM allows for programming of the spatial distribution of the
atom-cavity couplings.

4.2.3 Experimental Observation of Control over Atom-Cavity Interaction

−1 0 1
∆ac/ωm

−5

0

5

∆
p

c
(M

H
z)

a

no control

−1 0 1
∆ac/ωm

b

control

0 50 100 150
t (µs)

N
p
h

c

switching

Figure 4.3: Switching of Atom-Cavity Interactions. a, Measurement of cavity transmission
without control beam showing typical avoided-crossing. b, Measurement of cavity transmission
with control beam showing avoided crossing at n = −1,0,1 sidebands. c, Transmitted photon
rate Nph in arbitrary units as a function time. The blue shaded region shows the time intervals
when the control beam is on. The corresponding configuration is marked by the gray and blue
dashed lines in the two graphs on the left.

In Figure 4.3, we present the effect of the control beam on the cavity transmission spectrum. For
this measurement, the spot size of the control beam is adjusted for homogeneous illumination
of the atomic cloud (see Figure 4.2a). Without the control beam, we measure the expected
avoided-crossing between the cavity field and the atomic transitions |g〉–|e⟩(see Figure 4.3a). The
size of the Rabi gap measures the collective coupling strength. Once the control beam is on, we

∗To this point, this formula is an educated guess. We are currently working on its mathematical proof. However, the
formula is correct only in the large modulation frequency regime, as otherwise the levels sidebands will mix similar to
the results presented in Chapter 5.
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observe gap openings at the modulation sideband frequency for ∆ac = ±ωm (see Figure 4.3b).
This is a signature of the coupling of the modulation sideband to the cavity field.

We can switch the coupling in time by turning on and off the control beam. This is demon-
strated in Figure 4.3c, where we plot the transmission signal from the cavity as a function of
time. For this measurement, the cavity is resonant with the n = −1 sideband (see gray and blue
dashed line in Figure 4.3a,b). When the control beam is turned on (blue shaded background),
we observe a drop in the transmitted photon rate.

These two measurements illustrate the spectral engineering of the atoms using Floquet
techniques. We show that the interactions of the atoms with the cavity can change fast in
time. The remainder of the chapter is focused on demonstrating the spatial tunability of the
atom-cavity interactions.

4.3 Aberration Correction of Cavity Lens with Atoms

By design, the cavity lenses introduce a high degree of optical aberrations at 460 nm, which
significantly deteriorates the spot size of the control beam. As a first demonstration of the
controllability of the atom-cavity interactions, we perform an aberration correction of our cavity
lenses using a cavity-enhanced Shack-Hartmann scheme directly on the atomic cloud. This
scheme allows us to improve the spatial resolution of the control beam by directly probing the
beam quality at the location of the atoms, similar to Ref. [91].

4.3.1 Procedure of Wavefront Reconstruction and Optimization

beforeSLM

optimal

a local global

b c

Figure 4.4: Principle of Aberration Correction. a, schematic of ray pointing optimization
to extract local phase gradient. b, distribution of local phase gradients over the full beam
diameter. c, reconstructed global wavefront correction applied to the SLM. Same as in the inset
of Figure 4.6b.

We use an iterative procedure that estimates and corrects for aberrations in the cavity lens. In
each interaction, we infer the global wavefront error from local measurements of the phase
gradient (see Figure 4.4b). In particular, we divide the SLM area covered by the control beam
into homogeneously distributed round patches with radii of approximately 1/10 of the total
radius of the beam (see Figure 4.4b). For each patch, we adjust the local phase gradient to
steer the ray originating from the patch into the atomic cloud (see Figure 4.4a). Using an
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algorithm that maximizes observed atom losses on the Floquet carrier (n = 0), we can estimate
the local wavefront deviation at the patch position and deduce a global wavefront correction
(see Figure 4.4c).
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Figure 4.5: Aiming at the Cloud. The color of the scattered points in the figure illustrates the
relative atom loss for different patches of the wavefront (blue: little atoms lost, red: many atoms
lost). The position of the points indicates the amount of displacement of the ray. The gray shaded
blob is a 2D Gaussian fit to the data. The fit is used to determine the optimal phase gradient (see
Figure 4.4a). The inset in the center shows the location on the wavefront from which the ray
originated. The color of the dot corresponds to the color of the subpanels.

We created a custom algorithm to direct the individual beams towards the atomic cloud
(see Figure 4.5). Our algorithm is based on the Bayesian optimization approach [92]. Instead
of utilizing a general Gaussian process to represent the cost function, we fitted a 2D Gaussian
function model to the acquired data. This is motivated by the shape of our atomic cloud.
From the fit we can extract the center of the Gaussian, which allows us to estimate the local
phase gradient. The algorithm selects the next points to measure by maximizing the expected
improvement. We expect the best improvement of the fit at the locations of maximum fit error.
Our algorithm has the benefit of reducing the number of measurements required while at the
same time allowing us to estimate the error on the local phase gradients.
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4.3.2 Measured Aberrations of Cavity Lens
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Figure 4.6: Improvement of Ray Pointings. a, Distribution of ray pointings (black dots) before
aberration correction. The color shading estimates the density of rays using kernel density
estimation. b, Distribution of ray pointings (black dots) after aberration correction. The inset
on the top right shows the phase mask applied to the SLM to obtain the presented result. The
darkest blue corresponds to a wavefront deviation of −9.8λ.

The performance of the aberration correction is summarized in Figure 4.6, where we compare
the distribution of optimized ray pointings before and after the aberration correction. Merging
the wavefront corrections of the different iterations results in an estimate of the total aberrations
of the cavity lens (see the inset inFigure 4.6b). The wavefront error is circularly symmetric,
which points to spherical aberrations. The measured wavefront error is 4.9λ peak-vally (PV),
which matches well the theoretically expected value of 4.5λPV (see Section 1.2).

4.4 Scanning Probe Imaging of Atomic Cloud

We demonstrate the capability of our cavity-microscope by performing a cavity-based measure-
ment of the atomic density with micrometer resolution. Similarly to a scanning probe microscope,
which measures the properties of the sample at the location of a small tip, we estimate the atomic
density at the focus of the control beam through cavity-enhanced absorption on the second
Floquet sideband (∆ac = 2ωm). Scanning the focal spot over the atomic cloud allows for a 3D
reconstruction of the atomic density. The steering of the beam in all three directions was done
by applying tip, tilt and defocus to the wavefront with the SLM (see Figure 4.7a).



76 CHAPTER 4. Shaping Light-Matter Coupling in Space and Time

tip

defocus

a

b

c

S
L

M

Figure 4.7: Scanning Probe Measurement. a, Schematic of effect of SLM on beam position.
A flat wavefront defines the center. A tip of the wavefront leads to a displacement in the z
direction. A spherical wavefront leads to defocusing and, therefore, to a shift in the x direction.
b, Measurement of cavity transmission for different focus positions (green: high photon flux,
white: low photon flux). c, 2D focus scan for x = 0µm. The insets on the right and top show the
photon count rate averaged over z and y respectively.

In Figure 4.7b, the result of a 3D scan is shown. When the focus hits the atom cloud, the
transmitted photon flux drops. Our atomic sample has a length of 120 µm (see Section 2.2)
in the direction of the cavity. This can be seen in the 3D scan, as the transverse size of the
signal increases for large x. This is a result of the focus of the control beam not hitting the cloud
anymore, but rather the wings of the control beam, which have a much larger waist. Furthermore,
we observe the tilt of the cloud (for positive x to the top and negative x to the bottom). This is
due to a tilt between the cavity mode and the principal axis of the cavity microscope developed
during the curing process of the glue (see Section 1.3.2).

The Figure 4.7c zoom in the center reveals the transverse profile at x = 0µm. The averages of
the y and z coordinates demonstrate a decrease in cavity transmission. We compare the measure-
ments with the theoretically expected cavity mode profile and observe very good agreement. This
demonstrates the large transverse size of our atomic cloud because of the height temperature
after loading into the dipole trap.

4.5 Discussion and Outlook

In this chapter, we have shown that our cavity-microscope can be used to shape the atom-cavity
coupling both in space and in time. Using the flexibility of the SLM, we corrected the optical
aberrations of the cavity lens directly with atomic signals. Additionally, we have shown that
it is possible to perform cavity-enhanced measurements with micrometer resolution, which
is sufficient to shape the atom-cavity coupling at length scales compatible with the size of
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the single-atom wavefunctions. Therefore, the presented scheme serves as a blueprint for the
experimental realization of QND reconstructions of motional wave functions in systems with
higher atom-cavity cooperativity [20, 21].

Moreover, cavity-mediated flip-flop interactions enable all-to-all couplings between atomic
qubits [47, 93, 94]. Combined with fast programmable switching of the interactions, it allows
for all-to-all connected two-qubit gates and can thus enhance the connectivity of atom-tweezer
quantum computers [95, 96]. Furthermore, the fast local addressability allows mid-circuit
readout of the atomic qubits, eliminating the need to move the atoms in the cavity field [97].

In the next chapter, we explore the all-to-all nature of cavity-mediated interactions. We
analyze how disorder in the atomic transition frequencies disrupts the collective spin description
and consequently removes the strong symmetry of the excitations caused by the indistinguishable
atoms. By combining these cavity-mediated interactions with rapid local control of light-
matter interactions, we can create systems with programmable cavity-mediated infinite-range
interactions. This opens the door to experimental realization of holographic quantum matter in
small samples of our 6Li fermionic atoms, as proposed in Chapter 6.



78 CHAPTER 4. Shaping Light-Matter Coupling in Space and Time



Chapter5
Collective Effects in Disordered Spin
Systems with All-to-All Interactions

Outline of the current chapter

5.1 Fragmenting Eigenstates with Disorder in Atomic Transition Frequencies 80
5.2 Two-Atom Toy Model 81

5.2.1 Cavity-Mediated Flip-Flop Interactions Emerging in the Dispersive
Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Dissipation and the Measurement Scheme . . . . . . . . . . . . . . 86
5.3 Many-Atom Model 87
5.4 Experimental Configuration 88

5.4.1 Implementation of the Disorder through Light-Shift Technique . . 89
5.5 Experimental results 91

5.5.1 Signature of Strong Coupling: Atom-Cavity Anticrossing . . . . . . 91
5.5.2 Near-Resonant Regime and Gray States . . . . . . . . . . . . . . . . 93
5.5.3 Large-Detuning Regime and Lipkin–Meshkov–Glick model . . . . 95
5.5.4 Localization of Atomic Excitations . . . . . . . . . . . . . . . . . . 98

5.6 Conclusion 99

This chapter takes a closer look at the structure of the spin Hamiltonian in cavity QED systems. A
particular focus is placed on resonant cavity-mediated flip-flop interactions that are naturally all-
to-all in cavity QED systems. Using the results reported in [1], we study how disorder in atomic
transition frequencies competes with collective effects emerging from flip-flop interactions. This
is a crucial step towards the quantum simulation of the SYK model, which requires tunable
all-to-all interactions between fermions (see Chapter 6).

This chapter focuses on the spin dynamics of the Hamiltonian that describes our system (see
Equation (3.3)), meaning that all motional degrees of freedom are neglected. This is possible
because of the high temperature of our atomic cloud and the fact that our cavity-enhanced dipole
trap tightly localizes the atomic distribution onto the antinodes of the cavity. For more details
on the exact experimental configuration, see Section 2.2 and Section 5.4. To study the SYK
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model, these interactions must be extended to the motional degree of freedom, which means
the cavity-mediated momentum transfer that occurs during off-resonant photon exchanges, as
discussed in more detail in Chapter 6. Even though these interactions act in a different Hilbert
space (motion vs. internal states), their structure is similar.

This chapter is organized as follows: We start by providing a brief overview of the physical
phenomena observed when disorder increases in the system in Section 5.1. This introduces
the concept of fragmentation of the eigenstates. To illustrate these ideas, we present a two-
atom toy model in Section 5.2. We then extend the concepts to the case of many atoms in
5.3. Our experimental findings, which support the theoretical discussion, are summarized in
Section 5.5. The experimental setup and implementation of the tunable disorder that is based
on pseudorandom light shifts are discussed in Section 5.4.

5.1 Fragmenting Eigenstates with Disorder in Atomic Transi-
tion Frequencies

In a cavity QED system, flip-flop interactions naturally emerge from photon exchange between
the atoms [47, 93, 94]. In a homogeneous system, these interactions are all-to-all, meaning that a
cavity photon coming from the deexcitation of one atom can be absorbed by any other atom. It is
this exchange symmetry between the atoms that leads to the formation of collective Dicke states
with enhanced atom-cavity coupling. In such systems, synchronization between atomic spins
leads to Dicke superradiance. This has been demonstrated in many experimental systems [98,
99] and might in the future lead to the realization of a continuous superradiant laser for atomic
clock applications.

Figure 5.1: Fragmentation of Eigenstates The illustations show the structure of the typical
eigenstates for homogeneous system (a), a system at intermediate disorder (b) and a large
disorder system (c). In each diagram, the radial position of the dots with respect to the dashed
circle represents the transition frequency of each spin. Left: Disorder-free system (all spins
with the same energy) with all spins identically coupled to the central mode â provided by the
cavity field, forming a collective symmetric Dicke state. The structure of the Hilbert space is
characterized by a Bloch sphere for collective spin Ŝ. Right: With disorder, the collective state
fragments into few- or single-spin ensembles whose constituents are located at arbitrarily large
distances, exchanging excitations through the cavity, sketched here for three excitation modes.
The structure of the Hilbert space in this case, characterized by a Bloch sphere for single-atom
excitations σ̂ .
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In our study, we are interested in understanding how to tune the interactions between the
atoms, which requires breaking the exchange symmetry of the system. Introducing disorder in
the atomic transition frequencies disrupts the all-to-all character of cavity-mediated interactions
by dividing the eigenstates of the atom-cavity system into states with fewer atoms that are closely
resonant with each other. This is illustrated in Figure 5.1, which shows the structure of atomic
excitations in typical eigenstates for different levels of disorder. For the homogeneous system
(Figure 5.1a), the eigenstate is represented by the collective Dicke states, which have the same
probability amplitude in all atoms. As the disorder increases, the excitations become more
localized (two to three atoms in Figure 5.1b), and, eventually, at a very high level of disorder,
they become completely localized in single atoms (Figure 5.1c). This summarizes the main effect
of disorder, the fragmentation of spin excitations.

5.2 Two-Atom Toy Model

In this section, we will use a two-atom toy model to demonstrate the physics of eigenstate
fragmentation. This helps us to understand the ideas necessary to interpret our measurements.
We will expand on these concepts and apply them to a larger number of atoms in Section 5.3.

The system we consider in this section describes two atoms with different transition frequen-
cies ωa1

= −ϵ +ωa and ωa2
= ϵ +ωa coupled equally with strength g to a single cavity mode. The

detuning between the two atoms, which measures the disorder, is 2ϵ. In our model, the cavity is
described by its resonance frequency ωc and the creation and annihilation operators of photons
in the cavity mode, â† and â. In the frame rotating at the average atomic resonance frequency ωa,
the Hamiltonian can be written as

Ĥ = Ĥa + Ĥc + Ĥi = −1
2
ϵ
(
σ̂ z1 − σ̂ z2

)
+ ∆acâ

†â + gâ† (σ̂−1 + σ̂−2 ) + H.c. ,

where the first two terms describe the energy of the two atomic spins and the optical resonator
and ∆ac = ω̄a − ωc is the relative detuning between the average atomic frequency and the
resonance of the cavity.

The third term is the link between the atoms and the cavity mode. It explains the creation of
a photon in the cavity due to the deexcitation of an atom and can be represented by a Feynman
diagram as

|ei⟩

|gi
〉
â

g = g â† σ̂−i .

The total interaction is the sum of the two coupling terms of the two atoms. This results in
only the coupling of the symmetric Dicke states (|gg〉, 1√

2
(|eg〉+ |ge〉), and |ee⟩) with the cavity.

We restrict our analysis to the single excitation manifold (SEM), thus disregarding collective
phenomena such as Dicke superradiance that would arise from the synchronization of emission
of photons into the cavity when both atoms are initially excited (|ee⟩). We do this because the
interactions of interest (SYK interactions) only require a virtual population of the cavity mode
(see Chapter 6). However, exploring these collective effects in combination with disorder is of
great interest, as it allows the investigation of phenomena related to BCS superconductivity [100].
Additionally, understanding the resilience of superradiance to inhomogeneous broadening is
essential for the development of a superradiant laser atomic clock [101].
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In the single-excitation regime, atomic excitations can be expressed in the basis of symmetric
|s⟩ = 1√

2
(|eg〉+|ge〉) and antisymmetic excitations |a⟩ = 1√

2
(|eg〉−|ge〉) and the Hamiltonian becomes

Ĥ =
1
2
ϵ σ̂+

a σ̂
−
s +

1
2
∆ac (σ̂ zs + σ̂ za ) +

√
2g â† σ̂−s + H.c. . (5.1)

In this basis, it is evident that the cavity only couples to the symmetric spin state. The disorder ϵ
mixes the symmetric and antisymmetric spin states, localizing the eigenstates of the Hamiltonian
on the single atom states |eg〉 and |ge〉.

In conclusion, the Hamiltonian describes the competition between the cavity coupling and
the disorder in atomic energies. The former encourages completely delocalized spin excitations,
whereas the latter binds the excitations to individual spins. With increasing disorder, a crossover
from delocalized to localized can be observed. Even in the large-N limit, this remains a crossover
and does not become a phase transition (see Section 5.3).
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Figure 5.2: Level Diagram of Two-Atom Hamiltonian. In the diagram the cavity is on resonance
with mean atomic transitions frequency (∆ac = 0). The ground state and the two-excitation
manifold are marked in gray. We focus our analysis on the single-excitation manifold (solid
black). The atomic excitations (|eg〉, |ge〉), split by 2ϵ and linked to the cavity excitation (|gg0

〉
)

with strength g. The coupling form two bright polariton (|P+⟩, |P+⟩) and a dark state (|D⟩), whose
coupling to the cavity depends on the disorder strength ϵ.

The level diagram of the two-atom Hamiltonian (see Figure 5.2) illustrates this crossover. In
the large disorder regime, two independent atomic excitations are coupled to the cavity (left of
Figure 5.2). When the cavity coupling is stronger than the disorder, the levels transform into
two bright polaritons (|P−⟩, |P+⟩) with an increased Rabi gap of size 2

√
g and a dark state (|D⟩) in

the middle. As the disorder increases, the coupling of the dark state to the cavity increases, and
the state is called the gray state.
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Figure 5.3: Anticrossing in Two-Atom Spectrum. Eigenstate spectrum as a function of atom-
cavity detuning for different disorder strengths (a: ϵ = 0, b: ϵ = g, c: ϵ = 5g). The transparency
of the graph measures the photon weight of the eigenstate.

Small Disorder Regime (ϵ≪ g) In the small disorder regime, we can neglect the first term of
the Hamiltonian defined in Equation (5.1). As a result, the Hamiltonian describes two atomic
transitions with frequency ∆ac. However, only the symmetric state |s⟩ is coupled to the cavity
with an increase in Rabi frequency by a factor of

√
2. In contrast, the antisymmetric state vanished

from the atom-cavity coupling, suppressing its excitation by cavity photons and rendering it
dark. This results in the typical anticrossing, as shown in the spectrum in Figure 5.3a.

Large Disorder Regime (ϵ≫ g) For large detunings between the two atoms, the atomic part
of the Hamiltonian dictates the structure of the eigenstates. When the cavity is tuned to be
resonant with either of the two atoms ∆ac = ±ϵ, the effect of the other atom is dispersive in
nature, changing the effective resonance frequency of the cavity. Neglecting this effect, the
resulting Hamiltonian describes the coupling of two independent atoms to the cavity mode,
creating anticrossings at their respective resonances (see Figure 5.3c).

Crossover Between Delocalized and Localized: Appearance of Gray States Between the
two extremes of large and small disorder, a transition from delocalized to completely localized
excitations can be observed. This is accompanied by the appearance of a gray state in the Rabi
gap (see Figure 5.4a). The admixture of photonic excitations in the gray state, known as its
photon weight, increases as the disorder increases (see Figure 5.4b). This is due to the mixing
of symmetric and antisymmetric states caused by the first term in the Hamiltonian (5.1). The
antisymmetric state does not directly couple to the cavity but is transformed into the symmetric
state by the atomic disorder.
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Figure 5.4: Appearance of Gray States. a, Eigenenergy spectrum of two-atom Hamiltonian. The
transparency of the graph measures the photon weight of the eigenstate. b, Photon weight of
bright (blue) and gray (orange) state as a function of disorder strength ϵ.

5.2.1 Cavity-Mediated Flip-Flop Interactions Emerging in the Dispersive
Regime

The interaction term in the two-atom Hamiltonian describes the absorption (emission) of cavity
photons that are accompanied by a flip (flop) of the atomic spin. The photon generated by
an emission event in one atom can induce an absorption event in another atom. This photon
exchange results in an effective flip-flop interaction between the atomic spins, which can be
illustrated with a Feynman diagram

|ei⟩

|gi
〉
â

→ .

Generally, the probability of photon exchange is determined by the Green’s function of the
cavity (which has a Lorentzian shape and memory). However, when the atom-cavity detuning is
much larger than the collective Rabi frequency (|∆ac | ≫ g

√
N ), the cavity mode is only virtually

populated, and the dynamics of the cavity becomes instantaneous and independent of frequency.
There we can adiabatically eliminate the cavity mode from the Hamiltonian (5.1), which results
in a spin-only Hamiltonian of the form

Ĥ = ϵσ̂ z2 − 2JŜ+Ŝ− + H.c. .

where Ŝ+(−) = 1/
√

2(σ+(−)
1 + σ+(−)

2 ) are the creation and (annihilation) operators of the collective
spin and J = −g2/∆ac > 0 measures the strength of the cavity-mediated flip-flop interactions. Note
that the Hamiltonian has been expressed in the frame that rotates at the resonance frequency
of the first atom −ϵ. This Hamiltonian is analogous to an all-to-all interacting magnetic spin
model with varying local magnetic fields. It illustrates the competition between ferromagnetic
interactions (second term) that attempt to align the spins with each other and inhomogeneous
magnetic fields (first term) that disrupt this symmetry.

The ferromagnetic character of cavity interactions is well illustrated by Ŝ+Ŝ− = |Ŝ |2−1/2Ŝz+Ŝ2
z .

The first term describes the length of the total spin, and the second term is a light shift of the
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atomic resonance due to the modified vacuum inside the cavity. It is the last term that favors an
alignment of the two spins either up or down. It is also this term that creates spin-squeezing
at the equator of the generalized Bloch sphere [102, 103]. The energy of the state of both spins
pointing down |gg〉, the ground state, is reduced due to the ferromagnetic interaction. This
results in the need for additional energy to flip one of the two spins. In other words, the system
shows a ferromagnetic gap.

In the following, we show how disorder disrupts the ferromagnetic behavior of the system.
We restrict our analysis to the single-excitation regime, restricting ourselves to small deviations
from the ferromagnetic ground state. The resulting spin-only Hamiltonian is

Ĥ = 2ϵ |eg〉〈eg | − J |eg〉〈ge|+ H.c. .

For readability, we have removed the light-shift of each atom by going into a frame rotating at J .

The eigenvalues of this two-level Hamiltonian are E± = ϵ ±
√
ϵ2 + J2 with corresponding

eigenstates being

|−⟩ ∝
(
ϵ+

√
ϵ2 + J2

)
|eg〉+ J |ge〉 ,

|+⟩ ∝ −J |eg〉+
(
ϵ+

√
ϵ2 + J2

)
|ge〉 .

Similarly to the quasi-resonant case, with zero disorder, the eigenstates are the symmetric and
antisymmetric states |s⟩ and |a⟩, and for large disorder, the eigenstates approach the paramagnetic
single-spin states |eg〉 and |ge〉. This is supported by the eigenenergy spectrum shown in
Figure 5.5a. The splitting of the two eigenstates for zero disorder is equal to the spin interaction
energy 2J , forming a ferromagnetic gap of size J . For large disorder, the splitting is determined
by the detuning parameter ϵ and the states are dictated by the inhomogeneous magnetic fields.
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Figure 5.5: Bound on Participation Ratio. a, Eigenenergy spectrum of two-atom Hamiltonian as
a function of disorder strength ϵ. The transparency of the graph indicates atomic susceptibility
of the corresponding eigenstate.b, Participation ratio and atomic susceptibility of lower-lying
eigenstate as a function of disorder strength ϵ.

Ferromagnetic interactions favor not only the alignment of the spins when the system is in
the ground state |gg〉, but also during excitations, generating entanglement between the atoms
by encouraging completely delocalized spin excitations. To quantify the delocalization of a spin
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state |Ψ ⟩ =
∑N
i=1 ci |ei⟩ in the single excitation manifold, one can define its participation ratio as

PR(|Ψ ⟩) =

 N∑
i=1

|ci |4

−1

N = 2=
1

|c1|4 + |c2|4
. (5.2)

For the symmetric state ci = 1/
√

2 which is favored by the ferromagnetic interaction, the partici-
pation ratio can be evaluated as PR(|Ψb⟩) = 2, which equals to the total number of spins. For the
localized single-atom states |ei⟩, the participation ratio is equal to 1. As the disorder increases,
the participation ratio slowly decreases from 2 to 1. For theoretical analysis, the participation
ratio is an important tool because it measures the number of contributing states. However,
measuring it in the lab is usually very difficult.

In Figure 5.5, we can see graphically that the atomic susceptibility χa of the lower-lying
collective spin state |Ψ−⟩ provides an upper limit to its participation ratio

χa(|Ψ−⟩) ≥ PR(|Ψ−⟩) . (5.3)

The atomic susceptibility measures the ease of flipping one spin in our system with an oscil-
lating external magnetic field, which can be determined using the depumping technique (see
Section 3.2.1). This, in turn, allows us to set a limit on the localization of the most energetically
favorable excitation.

For a two-atom system, the atomic susceptibility of a state |Ψ ⟩ is defined as

χa(|Ψ ⟩) = |⟨Ψ | Ŝ+ |G⟩|2 = |
N∑
i=1

ci |2 = |c1 + c2|2 .

As the participation ratio (see Equation (5.2)), the atomic susceptibility equals to 2 for the
collective symmetric excitation and 1 for the localized excitation |ei⟩, meaning that the bound in
Equation (5.3) is exact for zero and infinite disorder. In Figure 5.5b both the participation ratio
and the atomic susceptibility of energetically favorable excitation |Ψ−⟩ are plotted. As stated by
the bound, the value of the atomic susceptibility lies above the participation ratio.

The mathematical proof of Equation (5.3) can be achieved by using the hierarchy of Rényi
entropies. It is essential to note that the proof is dependent on the positivity of the coefficients
ci . This is only the case for the lowest energy excitation |Ψ−⟩. For the two-atom model, a
counterexample is given by the dark state that has a zero total spin (paramagnetic) and is an
eigenstate in the single-excitation manifold at zero disorder. As it is maximally delocalized (Bell
state), its participation ratio is equal to 2. However, its atomic (magnetic) susceptibility is zero
due to its asymmetry (c1 < 0 and c2 > 0), which is a consequence of its total spin being zero. The
proof of the positivity of the coefficients for the lowest-lying excitation at any disorder in the
case of many atoms is based on the Perron–Frobenius theory and can be found in Ref. [2].

5.2.2 Dissipation and the Measurement Scheme

Using the two-atom toy model, we can explore the dissipation pathways that are present in our
experiment. This helps us to demonstrate the measurement procedure. Specifically, we discuss
the methods used to measure the photonic and atomic susceptibilities. For an analysis of the
case of multiple atoms, we refer to Section 3.2.
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Figure 5.6: Level Diagram including Driving Scheme and Dissipation. Level diagram of the
ground and single excitation manifold. The double headed solid arrows depict coherent coupling
between different levels. The wiggly lines illustrate the dissipation channels. The population of
the ground states after a short evolution of the system is depencited as circles.

The extended level diagram in Figure 5.6 illustrates the dissipation pathways and the driving
scheme used in our experiments. We initially placed our system in the ground state |gg0

〉
. We

then stimulate the cavity with a weak laser beam, which connects the ground state to the first
excited state with one photon in the cavity |gg1

〉
. The photons in the cavity are lost at a rate

κ, resulting in a dissipation channel back to the ground state. These photons are detected as
signals on the single-photon counter, allowing us to measure the photonic susceptibility, which
gauges the ease of generating cavity photons using an external drive.

The coherent atom-cavity coupling enables the reversible transfer of cavity photons into
atomic excitations. These excitations can be lost through the emission of photons into the
environment. In the case of 6Li atoms, there are two dissipation channels connecting the excited
state |e⟩ to two different ground states. One of these channels returns the system to its initial
state, while the other leads to the states |ag〉 and |ga〉, where it remains. By measuring the
probability of ending up in these states after a short evolution of the system, it is possible to
directly estimate the atomic susceptibility, which is a measure of the ease of exciting atoms with
a cavity drive.

5.3 Many-Atom Model

The concepts developed in the two-atom model (see Section 5.2) can be extended to the case of
N atoms. For a rigorous derivation of the theoretic results presented, we refer to the thesis of
Philipp Uhrich [2]. Our system implements a paradigmatic model consisting of N Ising spins,
mapped to internal atomic states, identically coupled to the central bosonic photon mode of
the cavity. By exposing the ith spin to a random energy shift ϵi , the model is described by the
disordered Tavis–Cummings-type Hamiltonian

ĤTC = ∆caâ
†â+ g

√
N

(
Ŝ+â+ Ŝ−â†

)
+

N∑
i=1

ϵi
σ̂ zi
2
. (5.4)

Here, â† and â are the creation and annihilation operators of photons in the cavity, σ̂ ri are the

r-Pauli operators acting on the Ising (pseudo-)spin-1/2 of the ith atom, Ŝ+(−) =
∑N
i=1 σ̂

+(−)
i /
√
N

are the collective spin-raising (lowering) operators, and ∆ca is the detuning between the cavity
and the bare atomic resonance.

Cavity excitations are coupled to the atoms with the collective spin operator. As a result,
only the symmetric N + 1 spin states couple to the cavity. In the absence of disorder, the
model is described by the Tavis–Cummings Hamiltonian, and its eigenstates can be conveniently



88 CHAPTER 5. Collective Effects in Disordered Spin Systems with All-to-All Interactions

represented on a generalized two-dimensional Bloch sphere. The remaining 2N − (N + 1) states
form a dark manifold that is decoupled from the cavity field. In the single excitation manifold,
this structure reduces to two polaritons and N − 1 dark states.

For many atoms, the collective coupling strength increases with
√
N , resulting in a larger Rabi

gap between the two polaritions. This makes the anticrossing more resilient to disorder in the
spins (homogeneous broadening). This phenomenon, known as cavity-protection, was investi-
gated in an experiment conducted in parallel to our measurements [104]. The ferromagnetic gap
that appears in the dispersive regime of Equation (5.4) is proportional to N . This is expected in
a system with all-to-all ferromagnetic interactions, since the strength of the internally generated
magnetic field is proportional to the number of participating spins. As a result, the amount
of disorder required to disrupt the ferromagnetic dynamics also increases with the number of
atoms.

In the two-atom model, we have seen that the collective ground state transitions into a
localized spin state as the disorder increases. The same behavior is seen in the case of N atoms,
where the ferromagnetic gap does not close. The localization of the excitations on a single atom
is a finite-size effect; as the number of atoms increases, the chances of frequency coincidences
become greater. Therefore, in the large-N limit, the structure of weak excitations remains
neither localized nor delocalized, but rather semilocalized for all levels of disorder, and no level
crossings or phase transitions can be seen [105].

5.4 Experimental Configuration

In our experiment, the Hamiltonian in Equation (5.4) is realized by an array of N = 90 to
800 thermal 6Li atoms confined in about 160 trapping sites, positioned at the antinodes of
the resonant cavity field (see Section 2.2). The spins are encoded in the 2SF=1/2

1/2 (|g〉) and
2P3/2 (|e⟩) states of the 6Li atoms (see Figure 5.7 and Section 3.1.4). The cavity resonance
is tuned close to the 2S1/2–2P3/2 transition at 671 nm, with the detuning given by ∆ca. Our
cavity is close to concentric, leading to a single-atom cooperativity of η = (4g2)/(κΓ ) = 6.4
with g/2π,κ/2π,Γ /2π = 2.05MHz, 0.45MHz, 5.8MHz (see Section 1.3.2). Due to the cloud’s
temperature of 200µK, and the reduced dipole moment for linearly polarized light at zero
magnetic field, the average cavity coupling experienced by the atoms is ḡ/2π = 1.23MHz.
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Figure 5.7: Experimental Realization of Random Spin System. Atoms are trapped in an opti-
cal resonator, forming an atom array commensurate with the cavity mode, ensuring identical
atom–light coupling. Two crossed light-shifting beams (blue) illuminate the atoms with an in-
commensurate standing wave inference pattern, leading to a quasi-random intensity distribution
ρa over the atoms (right). The inset below illustrates the positions of the atoms (black bars) with
respect to the cavity field intensity (red wave), the optical dipole trapping potential (gray wave),
and the intensity of the light-shifting lattice (blue wave). The inset on the bottom right shows a
simplified level diagram of the 6Li atoms. The light-shifting laser (blue arrow) off-resonantly
couples the 2P3/2 manifold with the higher-lying 4D5/2 manifold, yielding a dressed state |e⟩
(blue), with an energy shift proportional to the laser intensity.

The disorder is created by two laser beams that intersect at the position of the atoms, with a
frequency slightly detuned from the 2P3/2–4D5/2 transition at 460 nm (see Section 5.4.1), forming
a light-shifting lattice with a period of 1.04 µm which is incommensurate with the trapping
lattice, which has a period of 671 nm. This produces a quasi-random pattern of strong light-
shifts of the 2P3/2 state, with negligible effect on atoms in the ground state, as illustrated in
Figure 5.7. These light shifts result in quasi-disordered energy shifts ϵi , which translate into
the spin language as random local longitudinal fields sampled from the distribution ρa(ϵ) =[
π
√
ϵ(W − ϵ)

]−1
, where W is proportional to the intensity of the control laser (see Methods). We

neglect the light shifts induced by the trapping light on the ground and excited states, as it is
small compared to the light shift induced by the 460 nm beam.

We probed the system by weakly driving the cavity on-axis with a probe beam and mea-
suring both the photon transmission proportional to ⟨â†â⟩, and the atomic excitations ⟨Ŝz⟩ =
⟨∑N

i=1 σ̂
z
i ⟩/(2N ) using an optical pumping technique. In the linear response regime, this provides

us with the frequency-dependent photonic and atomic (spin) susceptibilities, χp and χa. For a
more detailed description of the different probing techniques used, we refer to Section 3.2.

5.4.1 Implementation of the Disorder through Light-Shift Technique

In our system, the transition frequency of the atoms can be tuned by light-shifting the excited
state |e⟩. In particular, this is achieved by dressing the 2P3/2 state with the higher-lying 4D5/2
manifold using a control laser at 460 nm detuned from resonance (see inset in Figure 5.7) by
∆blue. We first calibrated the light shift of the excited state due to a single Gaussian beam of waist
120 µm, with ∆blue =50 MHz—by performing an absorption spectroscopy of the D2 transition
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Figure 5.8: Characterization of Light Shift of Excited State. a, Spatially-resolved absorption
spectroscopy of the D2 transition in the presence of a single lattice beam (Gaussian beam
centered on x = 0mm with waist of 120 µm). Each horizontal line of plot a is the y-integrated
optical density. The absorption images with maximum shift (green arrow in a) and zero shift (red
arrow in a) are show in the inset above. The light-shifting laser was 50 MHz blue detuned from
the 2P3/2–4D5/2 transition. We can observe both resonances of the Autler–Townes doublet, the
strong light-shifted single-photon transition (top) and the faint two-photon transition (bottom).
b, Absorption spectroscopy of the central cloud (x = 0mm) for different control beam detunings
∆blue.

similar to [106]. Taking absorption images of the cloud at different imaging frequencies, we
reconstructed the spatial distribution of the light shift of one of the two identical beams that
generate the light-shifting lattice when sent together, as presented in Figure 5.8b. We performed
this spectroscopy both in situ and after releasing the atoms from the cavity dipole trap, allowing
us to measure the trap-related shift of the 2P3/2–4D5/2 transition to be 90 MHz∗

Furthermore, we characterized the dependence of the cavity transmission spectrum on the
detuning of the light-shifting laser, showing an avoided crossing for both states of the Autler–
Townes doublet, in particular the light-shifted single-photon 2S1/2–2P3/2 transition and the
two-photon transition 2S1/2–4D5/2 (see Figure 5.8c). We observed increased atom losses for small
detunings of the light-shifting laser. These losses are due to radiation pressure that occurs when
atoms are promoted to the 2P3/2 state during spectroscopic measurements and to antitrapping
in the cavity-enhanced dipole trap, in which the atoms are promoted to the 4D manifold (see
Figure 2.9). We minimized this effect by choosing the maximal detuning (400 MHz blue detuned
from the 2P3/2–4D5/2 transition), allowing us to go up to W = 26MHz for the maximal available
power of the laser of 7.3 mW per lattice beam.

The light-shifting laser produces a dipole potential on the atoms in the ground state about
5× 10−6 smaller than the light shift of the 2P3/2 state, negligible compared with the intra-cavity
trapping potential.

Both light-shifting lattice beams are linearly polarized perpendicular to the cavity axis, and

∗This shift due to the strong antitrapping of the 4D state in the cavity-enhanced dipole trap (see Figure 2.9). The
main reason we lose atoms in the 4D state.
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Figure 5.9: Coupling of Autler–Townes Doublet to Cavity Mode. a, Cavity transmission
spectroscopy for cloud illuminated with homogeneous light-shifting beam. The dashed blue
lines indicate the expected resonance frequencies of the Autler–Townes doublet. b, 2D map of
cavity transmission spectra for different detunings of the light-shifting laser from the 2P3/2–4D5/2
transition. Each horizontal line is a cavity transmission spectrum. The red color indicates a large
number of photons transmitted through the cavity. The green line in panel b marks the detuning
of the control beam during the measurement presented in panel a (∆blue = 75MHz).

set the direction of the quantization axis. We probe the cavity using π-polarized light, to avoid
any vector light-shift effect of the light-shifting beam. Because atoms reside in the F = 1/2
hyperfine manifold, the π transition used for cavity interrogation is free from tensor light-shift
effects. As a result, even though our sample comprises an incoherent mixture of the two magnetic
sublevels of the F = 1/2 manifold, the two components experience a strictly identical light shift
and probe beam, contributing equally to the signal without further broadening effects. Cross-
optical pumping between the two does not deteriorate the signal in the linear response regime
explored in this work.

5.5 Experimental results

This section summarizes our experimental findings for both the near-resonant regime, where
we observe the appearance of gray states in the presence of disorder (see Section 5.5.2) and
the large-detuning regime, where the cavity-mediated spin-exchange interaction implements a
Lipkin–Meshkov–Glick model (see Section 5.5.3).

5.5.1 Signature of Strong Coupling: Atom-Cavity Anticrossing

In this section, we discuss the properties of a special case of the Hamiltonian, the homogeneous
system, where all atoms have the same transition frequency. In this case, the system can be
described with the Tavis-Cummings model. The experimental consequence is illustrated in
Figure 5.10 which shows the measured cavity transmission spectrum as a function of frequency
detuning between the atomic and cavity resonance ∆ac and probe-cavity detuning ∆pc. More
details of the setup that allowed us to obtain this measurement result are presented in Section 2.4.
It reveals a sign of strong coupling, the avoided crossing between the cavity and atom excitations.
In fact, because of the influence of the atoms on the cavity, the injection of photons into the
resonator by a weak on-axis probe is strongly suppressed at its resonance frequency (∆pc = 0).
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Figure 5.10: Strong Coupling between Atoms and Cavity. Cavity transmission spectrum as a
function of atom-cavity detuning and probe-cavity detuning. The resonance condition for the
two atomic transitions originating from the two hyperfine ground states are marked by dashed
black lines.

This effect is particularly strong in the resonant regime, where the cavity resonance is tuned
so that it overlaps with the atomic transition frequency (∆ac = 0). Due to the strong coupling
between the cavity photons and the atomic excitations, fast Rabi oscillations develop. In the
spectrum, this presents itself by the formation of two normal modes, the polaritions, which are
spit by a Rabi gap. The size of the Rabi gap measures the strength of the interactions, which in
the case of many atoms is 2g

√
N . The factor

√
N , which scales with the number of atoms, is the

result of the enhancement of the coupling of collective Dicke states to the cavity. In Section 5.5.2,
we experimentally study the breakdown of collective effects resulting from disorder in the atomic
transition frequencies.

In the regime of large atom-cavity detuning, also known as the dispersive regime, the two
polaritions turn into one more atom-like excitation (atomic polariton) and one more cavity-like
excitation (cavity polariton). In the cavity transmission spectrum, the cavity polariton creates a
stronger signal in the spectrum as it becomes more photonic. In this regime, the effect of the
atoms on the cavity can be treated perturbatively. In particular, the two key parameters that
characterize the cavity, its resonance frequency and its linewidth, are modified by the presence
of the atoms. In Section 3.3, we study how we can use this feature to gain information about the
atomic cloud. On the contrary, the atomic polariton fades out for large atom-cavity detunings.
This is the result of the reduced photonic admixture of the state. It is precisely in this regime
that cavity-mediated flip-flop interactions are observed. A more detailed experimental analysis
of this regime is presented in Section 5.5.3.

A small but important detail of the anticrossing presented in Figure 5.10, is that anticrossings
develop between the cavity and any of the atomic transition frequencies. The size of the Rabi gap
developed depends on whether these transitions can be driven by light. In our case, we prepared
the atoms in the F = 1/2 ground state, meaning that transitions from the F = 3/2 ground state
are strongly suppressed. The presence of a small anticrossing in the F = 3/2 transition is only
due to imperfect preparation of the cloud. In fact, this feature is what we use to detect atomic
excitations and measure the atomic susceptibility as discussed in Section 3.2.1.
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5.5.2 Near-Resonant Regime and Gray States

Figure 5.11: Frequency Diagram in Near-Resonant
Regime illustrating the relative detunings between the
atoms with average frequency ωā in a range W , the cav-
ity at frequency ωc, and the probe at ωp.

We first investigate the regime at small ∆cā where the cavity resonance is close to the mean
atomic resonances, ∆cā = ∆ca −W/2 (see Figure 5.11). In the absence of disorder, we observe
the canonical normal-mode splitting of width 2g

√
N/2π = 22MHz expected from the Tavis–

Cummings model, as shown in Figure 5.12a. As a result of this splitting, a Rabi gap forms at
∆cā = 0, and direct atomic excitations at the bare resonance frequency are suppressed (see center
of Figure 5.12a). Although there are N − 1 eigenstates of the Hamiltonian lying within the gap,
these are purely atomic, and the symmetry of the all-to-all atom–cavity coupling prevents their
excitation, rendering them completely dark.
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Figure 5.12: Anticrossing in Homogeneous and Disordered Atom-Cavity System. Measured (a,
c) and simulated (b, d) atomic susceptibility maps as a function of atom–cavity and pump–cavity
detunings (x- and y-axis, respectively), for the clean system (a, c) and at maximal disorder
W/2π = 26MHz (b, d). For these measurements we trapped on average N = 74 atoms.

Upon introducing disorder, we observe the onset of a non-zero response around zero detuning,
a manifestation of the increase of photon weight of the originally dark purely atomic states. A
representative spectrum of χa for W/(2π) = 26MHz is presented in Figure 5.12b. We observe
that the fading out of the Rabi splitting occurs via a redistribution of the spectral weight from
the polaritons to a wide spectrum of midgap states. For |∆cā| ≳W , a narrow dispersively shifted
cavity resonance is restored around ∆pc = 0 (see Figure 5.12b).
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Figure 5.13: Appearance of Gray States in the Rabi Gap. Measured (a, c) and simulated (b, d)
photonic susceptibility as a function of disorder strength W for different atom numbers: N = 74
(a, b) and N = 145 (c, d).

To better understand the evolution of the spectrum with disorder strength, we probe the
photonic susceptibility at ∆cā = 0 as a function of disorder strength W and detuning ∆pc. The
results are presented in Figure 5.13a, b for different mean atom numbers N . For a weak disorder,
the photonic susceptibility χp confirms the presence of the two bright polaritons and a manifold
of degenerate dark states at the center of the Rabi gap.

As the disorder becomes comparable with the collective atom–cavity coupling, W ∼ g√N ,
we observe a smooth increase of χp around ∆pc = 0, signaling the onset of a finite coupling of a
gray state manifold emerging from the originally dark states. Simultaneously, the polaritons’
response weakens and fades away for the largest disorder, where the spectrum consists of a
resonance centered at ∆pc = 0 strongly broadened by the disorder.

The evolution of the spectrum with disorder is driven by the fragmentation of the eigenstates,
from fully delocalized bright and dark states without disorder to randomly distributed isolated
resonances for the largest disorder. To confirm this interpretation, we compare our observation
(Figure 5.13a, b) with theoretical calculations (Figure 5.13c, d) of cavity transmission based
on Green’s function techniques (see Methods of our publication [1]). The model takes into
account the experimental distribution of the spin energies, which is correlated and non-uniform,
differently from the case studied in [105].

However, we have verified that the eigenfunctions are multifractal in the same way (see
Supplementary Information, Sec. 1.1 of [1]). The simulations, which take into account the
measured atom number fluctuation, the effects of the thermal motion on the atom–cavity
couplings and both the losses of photons and the atomic decay, are in good agreement with
the observations for the low disorder regime. For the strongest disorder, deviations appear in
particular for the upper polariton, whose signal appears moderately weaker in the experiment.
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We attribute this to losses induced by the control laser at 460nm, which affect predominantly
excited atoms with the largest admixture in the 4D5/2 manifold (see Section 5.4). For the largest
disorder strength, we do not resolve the polaritons themselves, but we observe a clear signal
from the gray states. These results are further confirmed in Figure 5.14b, which presents a
direct comparison of experimental and theoretical data for the photonic susceptibility χp as a
function of ∆pc for representative values of the strength of the disorder W . The same simulation
procedure reproduces also the atomic susceptibility χa measured as a function of detuning, as
shown in Figure 5.13a, b.
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Figure 5.14: Cascade Plot and Photonweight. a, Vertical sections of panels Figure 5.13 b and d
overlapped (curves are offset vertically for clarity) for W/g

√
N = 0,1,2. b, Photon weight PW

of the gray states (empty markers, dashed lines) and the polaritons (filled markers, continuous
lines) as a function of normalized disorder strength for N = 145 (circles) and N = 74 (triangles)
atoms, indicating the disappearance of the polaritons and the appearance of the gray states. The
photon weight of the gray states was measured by taking the average photonic susceptibility
over the gray state region defined by ∆pc ∈ {−Γ /2,Γ /2}, while the photon weight of the polariton
was quantified by taking the height of the lower polariton, which is not affected by the radiation
pressure of the light-shifting beam.

We quantitatively analyze the fading out of the polariton and the emergence of gray states by
comparing the photonic susceptibility in the lower (respectively, middle) parts of the spectrum
shown in Figure 5.12a–d. This yields the total photon weight of the polariton and gray states as
a function of the normalized disorder strength shown in Figure 5.14b. The crossover between
the light–matter interaction-dominated regime and the disorder-dominated regime manifests
itself as smooth redistribution of spectral weight from the polariton to gray states, in qualitative
agreement with the simulations.

5.5.3 Large-Detuning Regime and Lipkin–Meshkov–Glick model

Figure 5.15: Frequency Diagram in Large-Detuning
Regime depicting the detuning between the atomic dis-
order, the cavity and the weak cavity probe.
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In the central mode model investigated so far, an essential role is played by the finite admixture
of the spin excitations to the delocalized photon field. For large detuning ∆ca ≫ g

√
N , the

cavity field is only virtually populated, giving rise to an all-to-all interaction between the spins,
thus realizing an effective Lipkin–Meshkov–Glick (LMG) model [107–109] (see Figure 5.15, the
Methods Section of [1] and the two-atom model, presented in Section 5.2). In the presence of a
longitudinal random field, the Hamiltonian for these effective dynamics reads

ĤLMG =
N∑
i=1

ϵi
σ̂ zi
2
− JNŜ+Ŝ−, (5.5)

a where J = g2/∆ca is the strength of the spin-exchange interactions. Equation (5.5) is a particular
case of the class of exactly solvable Richardson–Gaudin models [110, 111] that are ubiquitous in
quantum many-body systems [112].

Similar to the central mode model, in the absence of disorder (W = 0), Eq. (5.5) describes the
dynamics of a collective spin within the Hilbert subspace of symmetric states. The nonlinearity
inherited from the spin–cavity coupling favors a ferromagnetic ground state, protected by a
finite gap of size JN . A striking manifestation of ferromagnetism is the strong suppression of
the zero–frequency magnetic response.

To realize the model of Equation (5.5), we detune the cavity to the blue of the atomic transition
by ∆ca/2π = 92MHz, and probe the system at a frequency ωp in the vicinity of the bare atomic
resonance ωa (see Figure 5.15). In this regime, the transmission of the cavity is negligible such
that χp ∼ 0, and the atomic signal χa(∆pa) (see Section 3.2.1) directly measures the transverse
spin susceptibility of the system at frequency ∆pa =ωp − (ωa + 2g2/∆ca).
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Figure 5.16: Response of the Random LMG Model. Measured (a, b) and simulated (c, d) atomic
susceptibility for N = 303 (a, c), and N = 610 (b, d) atoms. The dashed blue lines mark the edges
of the disorder distribution. The dashed black line marks the theoretically calculated location of
the resonance of the collective spin state.

As shown in Figure 5.16a and c, in the absence of disorder, the frequency dependence of χa
reveals the finite ferromagnetic gap of magnitude ∆FM, which means that the atomic resonance
is modified. As a result, the zero–frequency susceptibility at ∆pa = 0 is reduced. The signal is
broadened by the finite decay rate of the excited atomic states, which reduces to a convolution of
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the response with the linewidth of the atomic transition (see the Supplementary Information of
[1], Sec. 1.2).

Now we investigate this model in the presence of disorder. Similar to the central-mode model,
this breaks the description in terms of a collective spin, restoring the system’s ability to explore
the full Hilbert space. For a given strength of the disorder W , the susceptibility (see Figure 5.17)
shows an asymmetric peak, corresponding to a collectively enhanced response superimposed
with a weak and broad background whose width traces the strength of the disorder (see dashed
blue line in Figure 5.16). This is a manifestation of the gradual fragmentation of the collective
spin, as disorder renders the individual spins off-resonant with each other. The peak is located
at −∆FM, and we denote its amplitude by χFM

a .
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Figure 5.17: Cascade plot of response
of the random LMG model. Cuts
through Figure 5.16, illustrating the
quantitative agreement between ex-
periment (markers) and theory (solid
lines). The cuts show data for dif-
ferent disorder strengths W/2π =
0.0,5.2,13.0,20.8,26.0 (MHz) (top to
bottom), and are offset from one an-
other according to (26−W/2π)/13.

Tracking the location of this peak provides a measurement of the ferromagnetic gap as a
function of W . Without disorder, this gap increases linearly with the number of atoms, as shown
in Figure 5.18a. With increasing disorder, it gradually decreases to zero, as shown in Figure 5.18,
where, for small atom numbers, the gap is zero within our error bars. This demonstrates the
competition between the infinite-range cavity-mediated interaction J and the spectral disorder
W for the dynamics of the effective model ĤLMG. Our results agree very well with a simulation
of the response χa of ĤLMG (see Ph.D. thesis of Phillip Uhrich [2]), over the entire parameter
regime (see Figure 5.16a–e).
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Figure 5.18: Scaling of Ferromagnetic Gap with Atom Number and Disorder. a, Scaling of
the collective ferromagnetic gap ∆FM = JN at zero disorder W = 0 with mean atom number
N . b, Behavior of ∆FM as a function of disorder strength W for N = 303 (emtpy red circles)
and N = 610 (blue triangles) atoms. To illustrate the scale invariance of the system, the axes
are rescaled by the size of the zero-disorder ferromagnetic gap JN . The markers represent the
experimental data with statistical error bars, and the lines show the theoretical results obtained
by exact diagonalization.

The sizes of the simulated system were set as the mean number of atoms N realized in all
experimental runs, and the effect of the thermal motion of the atoms on the atom–cavity coupling
g has been taken into account, as in the near-resonant case. The decrease in the ferromagnetic
gap (see Fig. 5.18a) indicates a drastic change in the properties of the system as the disorder
increases. However, in the thermodynamic limit, the system is always ferromagnetic, and no
paramagnetic phase transition should occur.

Indeed, intuitively, for any fixed disorder strength, increasing the number of atoms will
always lead to an infinite number of close-to-resonance spins, enforcing ferromagnetism in the
thermodynamic limit for an arbitrarily large disorder strength. However, for any finite number
of atoms, there exists a disorder strength large enough to bring the ferromagnetic gap close to
zero, rendering each spin essentially spectrally isolated from all the others, thus crossing the
system over into a paramagnet. More precisely, our simulations show that finite systems display
a minimal gap at a disorder strength W ⋆ suggestive of critical behavior; however, the value of
W ⋆ diverges with increasing atom number (see Supplementary Information of [1], Sec. 1.3 and
Supplementary Fig. 2).

5.5.4 Localization of Atomic Excitations

The distribution of energy resonances in disordered systems is the essence of Anderson localiza-
tion. In our system, excitations can hop at arbitrarily large distances, provided that the spins are
closely resonant. The disorder decimates the spins available for resonance by offsetting most
spins from each other, but does not prevent long-distance propagation [105, 113].

Interestingly, while our spectroscopic probe does not yield spatially-resolved information,
it does carry relevant insights about the localization of excitations. Indeed, general arguments
based on the hierarchy of Rényi entropies show that a system’s magnetic response may be used
to bound the participation ratio of the excitations, i.e., the number of spins contributing to the
wave function. The participation ratio PR1 of the first excited state obeys

χa,1 ≥ PR1, (5.6)
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at any W ≥ 0, where χa,1 is the contribution of the first excited state to the atomic susceptibility
when the system is probed on resonance with the transition to this state, from the global ground
state. The bound is reached for W = 0 where PR1 =N corresponds to a uniformly distributed
wave function on all spins, as well as in the limit W → ∞ in which the excitation becomes
localized on a single spin (PR1→ 1). Our frequency-resolved measurement thus allows us to
verify the fragmentation of the system’s collective excitations into ever more localized wave
functions, consistent with the expectations for eigenstates of the central-mode model [105, 113,
114].
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Figure 5.19: Participation Ratio Bound from Atomic Susceptibility. Normalized atomic
susceptibility χFM

a , an upper bound to the participation ratio PR1 of the first excited state,
for N = 303 (empty red circles) and N = 610 (blue triangles) as a function of normalized
disorder strength. The solid black line shows the corresponding simulation results for χa,1 of
Equation (5.6). The black dotted line is the directly simulated participation ratio of the first
excited state, PR1. Inset: Maximum value of the zero-disorder atomic susceptibility as a function
of atom number, showing linear scaling expected from the definition of χa in Section 3.2.1.

Figure 5.19 shows the bound to the participation ratio deduced from our measurements,
showing a decrease by more than a factor of two as the disorder reaches the highest values. Upon
normalization of PR1 by the mean atom number N and of W by the corresponding zero-disorder
ferromagnetic gap JN , all the data collapse onto each other and agree with the simulations. The
figure also shows the theoretically predicted value of PR1, which obeys the bound observed in
the data.

Similar to the ferromagnetic gap, suggestive as these findings are, they do not herald a
transition from delocalized to localized. For a fixed disorder strength, increasing the number of
atoms leads to an infinite number of close-to-resonance spins at arbitrary distances, preventing
full localization but leading to a semilocalized regime similar to the critical regime of the
Anderson transition [113].

5.6 Conclusion

Our ability to introduce controlled disorder in cavity QED offers many timely and exciting
prospects for further investigations, such as the study of Bardeen–Cooper–Schrieffer supercon-
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ductivity as proposed in Ref. [100, 115], where our atomic susceptibility measurements would
directly map to the pairing gap. More broadly, Equation (5.5) allows the direct simulation of
Richardson–Gaudin models that are relevant to a variety of many-body systems, from supercon-
ductivity in ultrasmall grains to quark physics and neutron stars. Furthermore, the capabilities
demonstrated in our experiment could also be used to study the effect of inhomogeneous broad-
ening for quantum optics applications, in particular for superradiant laser clocks [101]. The
combination of disorder with cavity-mediated interactions could be used to study glassy phases
of matter [116, 117]

Although the finite lifetime of the excited state employed limits current investigations to one
excitation above the fully polarized state, higher excitations can be probed by encoding the spins
in the ground-state manifold and coupling them via Raman transitions [47] or through the use
of atoms with long-lived excited states [109].

Finally, using high-resolution optics of our cavity-microscope and time-resolved manipula-
tion of the control light, as discussed in the previous chapter, it becomes possible to program the
otherwise homogeneous long-range cavity-mediated interaction in space and time, lifting one
of the most stringent restrictions for the use of cavities in quantum simulation applications. In
combination with small ultra-cold samples of our fermionic 6Li atoms, this allows the creation
of random long-range interactions between fermionic degrees of freedom, one of the building
blocks for holographic quantum matter, as discussed in the next chapter.
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The chapter is organized as follows: In Section 6.1, we introduce the SYK model and provide
a theoretically and experimentally interesting redefinition in terms of variable-rank interactions
in Section 6.1.1. This allows us to set criteria for the scaling of the rank to observe the SYK
dynamics. Section 6.2 outlines the experimental configurations in which our cavity microscope
can implement tunable variable-rank interactions between fermions. Two numerical studies are
then conducted to demonstrate the effectiveness of the experimental configuration in mimicking
the dynamics of the SYK model. The first study in Section 6.4 shows that extensive rank scaling
can be observed in a 1D system. The second study in Section 6.5 simulates the full dynamics
of a 2D model closely resembling our cavity QED system. This leads to a set of important
experimental criteria, the feasibility of which is discussed in Section 6.6.

6.1 Definition of SYK Model

The SYK model∗ can be defined through the Hamiltonian

ĤSYK =
N∑
ijkl

Jij,kl ĉ†i ĉj ĉ†k ĉl ,

which describes arbitrary four-point interactions between N fermionic modes which index i
described by their creation and annihilation operators, ĉ†i and ĉi . The SYK model preserves
the number of fermions, allowing its dynamics to be divided into sectors with different filling
fractions. Mathematically, each real-valued† scattering amplitude Jij,kl is randomly drawn
from a Gaussian distribution with a standard deviation of J . Because of this high degree of
randomness, all cross-correlators between couplings of different four-point interactions vanish.
It is important to note that even though the scattering amplitudes are randomly chosen, for a
particular realization of the SYK model, the coefficients themselves are constant in time. From
an experimental point of view, the random character of the amplitudes implies a large degree of
control over the interaction amplitudes. In fact, one can think of the SYK model as a special case
for systems with arbitrarily tunable four-point interactions.

6.1.1 Variable-Rank SYK Model Decomposition

As mentioned above, the SYK model describes a system with arbitrary four-point interactions
that are defined by the scattering amplitude tensor Jij,kl . In a cavity QED system, the structure
of the interactions suggests a convenient decomposition of the four-point interaction in terms of

the contraction of a set of two-index tensors u(m)
ij . In terms of equations, this composition can be

written as

Jij,kl = 1/2
R∑
m=1

λmu
(m)
ij u

∗
kl

(m).

Here, the index m refers to different channels through which the fermions can interact. More
details about the experimental implementation of this structure can be found in Section 6.2.1.
The rank of the tensor J is defined as the number of linearly independent u(m) that is required
to decompose the tensor. In the previous equation, this was denoted by the limit of the sum R.

∗Historically, the definition of the SYK model relies on Majorana fermions. Here, we use the definition proposed in
Section VII of Ref. [118]. This choice is motivated by the structure of cavity-mediated interactions present in our system.

†The usual definition of the SYK model uses complex amplitudes. Here, we focus on real amplitudes motivated by
the experiment.
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This is analogous to the decomposition of a 2× 2 matrix into the contraction of a set of linearly
independent vectors.

In terms of Feynman diagrams, this decomposition can be written as

i

j

k

l

=

i

j

k

l
SYK Rank sum

. (6.1)

The Feynman diagram already suggests the physical implementation of the four-point interaction
in our system. The four-point interaction can be decomposed into two consecutive motional-state
changing atom-cavity interactions. The first term changes the motional state of one atom by
emitting a photon in the cavity. This photon can induce a transition between different motion
states in another atom, effectively leading to two correlated motion-changing interactions, a
force. Here, the photon field acts as a bosonic mediator of this force. This makes the mechanism
similar to the mechanism of Coulomb scattering between charged particles. In Section 6.3, the
structure of motion-changing interactions present in our cavity QED system is discussed, which

results in a microscopic model for the scattering amplitudes u(m)
ij . A particular focus is placed on

the tunability of these interactions, which is key to implementing the SYK model.

The complete SYK model has a rank of N2, which scales with the square of the size of the
system and is therefore called superextensive. However, models with reduced rank, known
as low-rank SYK models, have been studied before [118]. Models with extensive rank scaling,
meaning R ∝ N , are particularly interesting, as the physics of the resulting model closely
resembles that of the full-rank SYK model. However, the complexity of the models is significantly
reduced compared to the full-rank SYK model.

6.2 Experimental Scheme

The experimental configuration required for the quantum simulation of the SYK model resembles
that presented in Chapter 4, where the local tunability of the atom-cavity couplings was used to
measure the properties of the atomic cloud with high spatial resolution. However, there are fine
differences that allow us to obtain tunable momentum-changing cavity-meditated interactions,
which are the topic of this section.
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6Li atom 

a

b

Figure 6.1: Experimental Configuration for Quantum Simulation of SYK Model.a, Rendering
of cavity-microscope with cavity mode (red) and focused control beam (blue). The cavity is
driven with a laser beam (red arrow). b, Illustration of atoms (black wavefunctions) in harmonic
trap (yellow parabola). The graph on the top shows the locally varying intensity of the control
beam Ib(z).

In general, there are four important ingredients: Fermionic atoms, all-to-all couplings, local
tunability, and high rank. In the following, we go step by step through these criteria and develop
from this the experimental configuration.

Fermionic Atoms In our experiment, we trap a cloud of 6Li atoms in a high-finesse cavity. To
unlock the fermionic character of these atoms, they need to be trapped in a single trap such that
their wave functions overlap spatially. This is contrary to our current configuration, where the
atoms are confined in a lattice of pancake traps (see Section 2.2). This is illustrated by the inset
in Figure 6.1.

Cavity-Mediated All-to-All Interactions All-to-all interactions naturally emerge from photon
exchange between atoms in Cavity QED systems. For example, in Section 5.5.3, we experi-
mentally studied the structure of cavity-mediated flip-flop interactions in the regime of large
atom-cavity detunings. These interactions act on the spin degree-of-freedom. To promote the
interaction to a motional degree of freedom, we need to operate in the dispersive regime, where
the atoms remain in their ground state. The important parameter that describes the atom-cavity
coupling is the single-atom dispersive shift δωc(x⃗) (see Section 3.3). It describes the frequency
shift of the cavity as a result of the presence of an atom in the location x⃗. The interaction requires
a probe beam that introduces photons into the system. In Figure 6.1, this is illustrated by an
on-axis probe beam (red arrow).
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Tunability of Local Single-Atom Dispersive Shift We have shown two distinct ways to ad-
just the atom-cavity coupling locally: light shifts (see Section 5.4) and Floquet driving (see
Section 4.2). The single atom dispersive shift δωc(x⃗) = g2(x⃗)/∆ac(x⃗) can be modified by both of
these techniques. By light-shifting the excited state |e⟩, the atom-cavity detuning ∆ac(x⃗) can be
altered, while Floquet driving affects the spatial shape of the single-atom Rabi frequency g(x⃗)
by dispersively coupling to a Floquet sideband. Schemes that allow for a local change in the
single-atom dispersive shift are depicted in Figure 6.2.

a Light shi b Floquet

Figure 6.2: Tunability of Single-Atom Dispersive Shift. a, Light shift approach acting on ∆ac(z).
Locally-varying intensity patterns of the blue control beam Ib(z), lead to local variations of the
atomic transition frequency, which directly affects the atom-cavity ∆ac. b, Floquet approach
acting on g(z). Locally-varying intensity patterns of the blue control beam Ib(z), lead to local
variations in the strength of the Floquet modulation sidebands, which directly affect the atom-
cavity g(z).

6.2.1 Experimental Implementation of High-Rank Interactions

a

b

t

. . .

t

Figure 6.3: Multiplexing of Rank-1 Interactions. a, Schematic of multimode cavity approach.
The total dynamics is the parallel evolution of many Hamiltonians indicated by the different
colors. This is realized with different transverse cavity modes (see picture above cavity). b,
Schematic of Trotter approach. The total dynamics is a sequence of many Hamiltonian evolution
is time.

As discussed in Section 6.1.1, a quantum simulation of the SYK model requires high-rank four-
point interactions. This requires many bosnic channels through which the atoms can interact. In
our system, we envision two ways: Multimode cavity and Trotterization.
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Multimode Cavity The first option is to implement this multiplexing using the multimode
character of the optical resonator (see Figure 6.3a). With the use of multiple independent cavity
modes through which the atoms can exchange photons, the variable-rank interaction becomes a
sum over different transverse cavity modes. In this case, the index m describes the set of different
transverse modes of the cavity.

Trotterization Another option is to multiplex the interaction over time, effectively generating
a high-rank interaction using a Trotter scheme. In this configuration, the high-rank Hamiltonian
is implemented by decomposing the time evolution in discrete steps with different rank-one
Hamiltonians Ĥ (m) (see Figure 6.3b). This approach requires only a single-mode cavity but relies
on fast switching between different rank-one Hamiltonians to increase the complexity of the
interaction. Note that here the index m does not correspond to the cavity mode index but rather
to the configuration of the interaction in the mth step. The rank of the interaction is controlled
by the number of linearly independent Trotter steps.

6.3 Tunable Motion-Changing Interactions between Fermions
in a Cavity Microscope

The rank decomposition in Section 6.1.1 suggests that a general four-point interaction can
be divided into a sum of rank-one interactions, each consisting of two successive atom-cavity
interactions that modify the motional state of the atoms. This section will concentrate on deriving
the form of the rank-one interactions that naturally emerge in our cavity QED system. The rank
of the resulting interactions can be increased with the techniques presented in Section 6.2.1.

As mentioned in Section 6.2, to implement motion-changing atom-cavity interactions on
ground-state atoms, we need to operate in the dispersive regime of large atom-cavity detuning.
In this regime, the mechanism underlying the atom-cavity interaction is the modification of
the dispersive shift of the optical resonator due to the motion of the atoms. In Section 3.3, we
show that the dispersive shift of the cavity can be used to collect information on the spatial
distribution of the atom cloud. However, if interpreted from the atom direction, the dispersive
shift Hamiltonian describes a cavity-field-dependent dipole force acting on the atoms. The
combination of measurement of the spatial distribution of the cloud and cavity field-dependent
dipole force is what leads to the elementary four-point interactions.

To implement cavity-mediated interactions between atoms, we must find a way to link the
measurement of the atom’s position with the strength of the dipole force. We can interpret the
Hamiltonian that describes the dispersive shift (see Equation (3.4)) as the dipole force acting
on the atoms that is directly proportional to the number of intracavity photons â†â. By using
an on-axis drive that is detuned from the cavity resonance, a change in the cavity resonance
frequency, caused by the redistribution of the atoms, is translated into a change in the intracavity
photon number, which in turn alters the force acting on the atoms. This concept of a feedback
mechanism is the basis of cavity optomechanics [40] and allows us to generate interactions
between atoms at any distance.
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Figure 6.4: Feedback Mechanism of Cavity-Mediated Interactions. a, Illustration of locally
varying dispersive shift. Using the mechanisms discussed in Section 6.2, the control beam is
used to imprint a spatially varying local dispersive shift. b, Illustration of the transduction
process induced by the cavity probe. Changes in the resonance frequency of the cavity, which
are due to variations in the atomic density, are transduced into fluctuations of the intracavity
photon field. c, Illustration of the cavity-field-dependent dipole potential. The fluctuations
in the intra-cavity photon field result in variations of the dipole potential acting of the atoms.
These affect the motion of the atoms and therefore the atomic density distribution. d, Illustration
of one-dimensional density variations in the atomic cloud.

The feedback mechanism is illustrated in Figure 6.4. The total dispersive shift of the cavity
is related to the density distribution of the atomic cloud by an integral (see Equation (3.4)).
Instead of being a homogeneous integral, the local dispersive shift δωc(z) is modified by the
intensity of the focusing beam Ib(z), which can be modified by the pattern projected through the
cavity lens (see Section 6.2). The convolution of the local dispersive shift and the cloud density
results in the total dispersive shift. A cavity probe detuned from the cavity resonance directly
transduces dispersive shift fluctuations into cavity field fluctuations. These fluctuations induce
variations in the dipole force experienced by the atoms. This effect is visible in the dispersive
shift Hamiltonian if interpreted as the intracavity field-dependent dipole force. This dipole force
F̂(z), on the other hand, modifies the spatial distribution of the atomic density, which finally
closes the feedback loop.

In the following, we will put these arguments into equations. The effect of the drive on the
axis can be modeled in a mean-field decomposition. The total cavity field is decomposed into the
sum of a constant classical cavity field characterized by its amplitude α and a small fluctuating
cavity field δ̂a. This can be illustrated in terms of Feynman diagrams as

= + .

Inserting this decomposition into the Feynman diagram describing the dispersive shift Hamilto-
nian results in

dispersive shi

= + ++ ))
dipole force atom-cavity force

.

In this case, the atom-cavity interaction can be split in three components. The first term describes
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an effective atomic potential that is proportional to the absolute value of the classical cavity
field. This can be understood as a classical dipole force acting on the atoms, which modifies
the trapping potential. The second term leads to a linear coupling between the atomic motion
and the fluctuations in the cavity field δ̂a. This coupling term is proportional to the strength
of the classical drive and can therefore be tuned by changing the power of the drive laser. For
high drive strength, the third term, which describes the nonlinear dynamics, can be neglected.
In principle, the first term can be compensated for by the trapping potential. However, this
requires exquisite control over the trapping field. In the supplementary information of our
proposal [119], we describe a method based on a two-tone drive that potentially eliminates these
dipole potentials.

It is the linear atom-cavity coupling that is observed when the cavity is driven by a classical
field that gives rise to motional state-changing atom-cavity interactions. The Hamiltonian that
describes these interactions can be written as

Ĥint = αδ̂a
†
∫
δωc(x⃗) ρ̂(x⃗) dV + H.c. = α δ̂a

† ˆδωc + H.c.

In words, it describes the linear change of the intra-cavity photon field δâ as function of the
local density of the atomic cloud. Here, δωc(x⃗) = g2(x⃗)/∆ap(x⃗) describes the dispersive shift of
the cavity resonance due to the presence of a single atom at the location x⃗. The tunability of this
Hamiltonian arises from a local control of the local dispersive shift (see Section 6.2).

The last step of the derivation is to include the cavity transduction process. In other words,
we adiabatically eliminate the cavity field, as it directly follows the variations of the dispersive
shift, δ̂a = α ˆδωc/∆pc. This results in the final Hamiltonian

Ĥ = 2
|α|2
∆pc

ˆδωc
ˆδωc =

1
2
λ ˆδωc

ˆδωc. (6.2)

The complex conjugate was dropped on ˆδωc as the dispersive shift is a hermitian operator. The
scattering matrix uij arises from the dispersive shift operator ˆδωc once we choose a basis for the
degree of freedom of motion. The factor λ = 4|α|2/∆pc in Equation (6.1) can be defined directly
from Equation (6.2).

In the field of cavity optomechanics, the Hamiltonian in Equation (6.2) produces the well-
known optomechanical spring effect, which is a change in mechanical resonance frequency
due to the feedback mechanism imposed by coupling to the cavity field. This is evident when
the optomechanical coupling is identified as δωc = Gx̂. If the cavity is linearly connected to
multiple mechanical oscillators δωc = G

∑
i x̂i , the Hamiltonian describes a shift in the resonance

frequency of the center-of-mass motion X̂ =
∑
i x̂i , which can be interpreted as a homogeneous all-

to-all coupling of mechanical oscillators. This is analogous to the coupling of the collective spin
state to the cavity in the Lipkin–Meshkov–Glick model (see Chapter 5). In the described scheme,
the linear coupling property is lifted when the blue laser is used to generate density-density
interactions with an arbitrary spatial distribution. Although this structure appears to be complex,
Equation (6.2) can be interpreted as an effective optomechanical spring effect Hamiltonian. This
is due to the integrability of rank-one interactions. As soon as the rank increases, the Hamiltonian
is no longer separable and chaotic behavior emerges, a key feature of the SYK model. However,
only if the rank is sufficiently high, ‘fast scrambling can be observed. This implies that the
system displays the strongest chaotic behavior allowed by quantum mechanics.



6.4. Rank-Scaling in 1D Model 109

6.4 Rank-Scaling in 1D Model

The interactions that arise naturally in a cavity QED system have a rank of one. As discussed in
Section 6.1.1, a quantum simulation of the SYK model requires scaling the rank of interactions
with the system size. Section 6.2.1 examines experimental methods for multiplexing interactions
in our system. In this section, we discuss whether the experimental scheme of locally tuning
the atom-cavity coupling can create enough linearly independent interaction channels. To this

end, we derive the explicit form of the interaction matrices u(m)
ij for a 1D model and perform a

numerical analysis on them. This helps us identify important experimental parameters, such as
the gain size of the intensity pattern of the focusing beam, the trap size, and the cavity mode
size, which can be used to define optimal conditions to simulate the SYK model.

6.4.1 Analytic Structure of Atom-Cavity Coupling

To obtain an explicit form of the atom-cavity coupling matrix, we decompose the motional
degree of freedom of the atoms into the harmonic oscillator basis, meaning Ψ̂ (z) =

∑
i ĉiφi(z),

where φi(z) are the Hermite–Gauss functions of order i. The decomposition is motivated by the
harmonic trap shown in Figure 6.1. The shape of the trap dictates the size of the ground-state
wave function.

The resulting atom-cavity coupling matrix is

u
(m)
ij =

(
ˆδωc

)
ij

=
∫
δω

(m)
c (z) φi(z) φj (z) dx, (6.3)

which describes the overlap integral between two motional states and the variable local single-
atom dispersive shift∗.

To illustrate the structure of u(m)
ij we consider some analytic examples:

• If δω(m)
c (z) is constant, the matrix reduces to u(m)

ij ∝ δi,j , where δi,j is the Kronecker-Delta.
The resulting interaction couples directly to the total number of atoms, regardless of their
spatial distribution. This is similar to Section 3.3.2, where we found that homogeneous
atom-cavity couplings lead to a dispersive shift that is directly proportional to the number
of atoms.

• In the case of δω(m)
c (z) ∝ x, which is linear in space, u(m)

ij ∝ δi,j+1 describes jumps up and
down the harmonic ladder, similar to the couplings obtained in a cavity cooling system in
the Lamb-Dicke regime [120].

• In the case of δω(m)
c (z) ∝Hm(z), whereHm(z) is the ordermHermite polynomial, an explicit

form of the interaction can be derived analytically, as

umi,i+δ ∝
∫
Hm φi(z) φi+δ(z) dx =

i∑
s=0

Ai,s,δ δm,2s+∆.

To derive the exact expression for Ai,s,δ, the multiplication relation of the Hermite poly-
nomials can be used. In this general form, the formula demonstrates that a Hermite
polynomial of order m allows the order of the harmonic ladder state to increase by a step

∗The complex conjugate on φi was dropped as it is a real function.
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of m. As a result, all interactions umi,i+δ are linearly independent of each other, which is an
important criterion for the SYK model (see Section 6.1.1).

6.4.2 Decomposition of Interaction in Elementary Components

The analytical examples suggest that, by choosing the right shape of the local dispersive shift,
linearly independent interactions can be achieved. To further quantify the scaling of the rank,
we perform a numerical analysis. This section describes the numerical methods and presents the
final results, which suggest the possibility of extensive rank scaling in a 1D system.

The coupling matrix u(m)
ij is crucially dependent on the distribution of the local dispersive

shift δω(m)
c (z). In general, the local dispersive shift can be decomposed into basis functions.

Motivated by the structure of transverse cavity modes, we choose the bases of Hermite–Gauss
functions φk(ζx) which results in the decomposition

δω
(m)
c (z) =

Nk−1∑
k=0

X
(m)
k φk(ζx) ,

where X(m)
k are the amplitudes of the decomposition. Here, we introduce the parameter ζ, which

measures the mismatch of the relative length scale between the motional eigenstates and the
basis of the disorder. This parameter allows us to investigate the importance of relative length
scales of the disorder and fermion modes. Note that the decomposition contains only Nk basis
elements. This truncation allows us to evaluate the scaling of the rank with the size of the basis
decomposition. In the experiment, this measures either the number of transverse cavity modes
or the number of Trotter steps required to achieve the necessary rank (see Section 6.2.1). Due to
the linearity of the integral in Equation (6.3), this decomposition translates into the coupling
matrix as

u
(m)
ij (z) =

Nk−1∑
k=0

X
(m)
k ũ

(k)
ij (z) .

In this section, we numerically analyze the structure of these elementary interaction matrices

ũ
(k)
ij (z). We restrict our numerical analysis presented in this chapter to a total of N = 17 fermionic

modes. The basis interaction matrices ũ(k)
ij (z) are plotted in Figure 6.5.
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Figure 6.5: Shape of Interaction. Shape of elementary coupling matrix ũ(k)
ij (z) as a function of

order k of the local dispersive shifts for ζ = 1. In the color code, red corresponds to positive
coefficients and blue to negative coefficients.

It is clearly visible that the ũ(k)
ij (z) are linearly independent for different orders k as the

coefficients spread more and more into the off-diagonal sector, effectively allowing for larger

jumps in the harmonic ladder of motion states. The ũ(k)
ij (z) display a checkerboard pattern,

which is due to the symmetry of the Hermite-Gauss function. More precisely, any coefficient
that satisfies k + i + j = odd is zero.

6.4.3 Numerical Analysis of Rank-Scaling

As stated in Section 6.1.1, we would like to realize in our experiment the regime in which R
scales extensively with N . To evaluate the scaling of the rank with the system size numerically,

we define a quantity that we refer to as the effective rank R̃ of the set of {u(k)
ij for k = 0...(Nk − 1)},

where Nk is the number of basis interactions. The effective rank is defined as the participation

ratio of the normalized singular values sk of the matrix Aαk = u(k)
α , where α = (ij) is the super

index that flattens the coupling matrix. In particular,

R̃ =
1∑
k s

4
k

.

with 1 =
∑
k s

2
k . This definition is different from the mathematical definition of the rank, which

counts the number of nonzero singular values. Motivated by the participation ratio of spin
excitations (see Section 5.5.3), the effective rank measures the number of independent interaction
channels with similar strength. For example, if one interaction component dominates the others
in magnitude, the effective rank will tend to one even though mathematically the rank of the
matrix could be full.
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Figure 6.6: Scaling of Effective Rank. a, Scaling of effective rank with the size of disorder basis
Nk for two different system sizes, N = 4 and N = 17. b, Scaling of effective rank with system size
for a fixed number of configurations Nm = 17. The red area marks the region where the rank is
smaller than the system size. The green area is between the maximal theoretical rank N (N + 1)/2
and the system size N . c,d, Plot of effective rank as a function of the size mismatch between
the focusing beam pattern and the motional states for two different system sizes, N = 4 (c) and
N = 17 (d).

In Figure 6.6, the effective rank R̃ is plotted against important system parameters. In
particular, in Figure 6.6a, the effective rank is plotted against the size of the disorder basis
decomposition Nk for two different system sizes, N = 4 and N = 17. For N = 17, the effective
rank closely follows the theoretical maximum of Nk . However, for high Nk , a small deviation
can be seen, which is the start of a saturation of the rank. This saturation is more obvious for
a smaller system size of N = 4 fermionic modes, where a maximum effective rank of R̃ = 7 is
observed.

In Figure 6.6b, the highest achievable effective rank (for Nk = 17 basis interactions) is plotted

against the size of the system. It is important to note that all ũ(k)
ij are hermitian and real, a

property inherited from the dispersive shift operator ˆδωc. This symmetry limits the maximal
possible rank to the size of the Hilbert space of symmetric matrices, which is N (N + 1)/2. For
small N , extensive scaling with a slope of γ = 1.8 is seen (see the dashed gray line). This scaling
saturates for large systems, which is due to the limit on the total number of basis interactions to
Nk = 17.

In Figure 6.6c,d, the effective rank is plotted against the size mismatch between the length
scale of the local dispersive shift decomposition and the motion states ζ. Resonant behavior
is observed, indicating that extensive scaling can only be achieved if both length scales are of
similar size ζ ≈ 1. For the smaller system size of N = 4, a rank saturation of R̃ = 7 is visible. For
N = 17, this saturation is not yet apparent, since the number of basis vectors Nk was limited to
17 in our numerical analysis.

This analysis demonstrates that an extensive scaling of the rank with system size N is
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achievable in our system∗. This suggests that SYK-like physics, such as fast scrambling, can be
observed[118]. The resonant behavior observed in rank scaling as a function of size mismatch ζ
places restrictions on the experimental setup. Specifically, it implies that the grain size of the
disorder pattern must be equal to the size of the motional state. Further information on the
experimental requirements is provided in Section 6.6.

6.5 Simulation of Hamiltonian Dynamics of Random Interac-
tions in Multi-Mode Cavity

The analysis presented in the last section was based on the rank of the random four-point
interactions present in our system. In this section, we go one step further and demonstrate
numerically that the resulting dynamics of the system approaches that of the SYK model. The
results are based on a proposal that we have written in collaboration with the Hauke group in
Trento and Julian Sonner in Geneva [119].

The experimental configuration studied in the publication differs from the discussion in the
previous chapters, since an off-axis drive is used to generate the scattering of photons between the
atoms. In the supplemental information of the publication and the thesis of Philipp Uhrich[2],
it is shown that both scenarios lead to the same effective Hamiltonian. The proposal is based
on a multimode cavity approach to increase the rank of interactions (see Section 6.1.1). The
important parameter is Nm, which measures the number of effective cavity modes. The random
tuning of the interactions is achieved by randomly varying light shifts resulting from intensity
speckle patterns of the focusing beam. This approach is experimentally easier to achieve than
the decomposition of disorder in Hermite-Gauss modes, as proposed in the previous section. In
fact, in Section 6.6 where the current experimental advances are discussed, we show a picture of
a speckle pattern that was already projected onto the atoms in our experiment. Furthermore,
the numerical calculations in this section have been performed in two dimensions. This is in
contrast to the rank analysis in Section 6.4, which was performed in 1D. However, similar results
in terms of experimental requirements are obtained.

The publication presents a derivation of a microscopic model for the four-point interactions
present in our system. The derivation includes the multimode character of the cavity and is
therefore more adapted to the proposed experimental scenario than the derivation presented in
Section 6.3.

6.5.1 Randomness of Two-Body Interactions

Before studying the dynamics of the effective Hamiltonian we take a look at the structure of the
random four-point interaction amplitudes Jij,kl by numerically calculating the interactions Jij,kl
from first principles. Figure 6.7 shows the distribution for a single representative realization of
the system. The distribution deviates from a Gaussian probability density and is better approxi-
mated by a Cauchy distribution. Interestingly, this feature is not unique to the setup considered
here. In the proposal, we have found that some previous proposals [122, 123], which also

∗At this point, it is important to note that the effective rank of the ensemble of interaction matrices {u(k)
ij for

k = 0...(Nk − 1)} not only tells us the maximal achievable rank of the four-point interaction tensor, but also limits the
number of random degrees of freedom for each rank-one interaction. This becomes more concrete when we define the

interaction matrices in the Trotter m step as u
(m)
ij =

∑
kXk ũ

(k)
ij , where {Xk for k = 0...(Nk − 1)} is a set of random variables

with uniform standard deviations. In this case, a high rank is related to a low number of correlations in the interaction

matrix ũ
(m)
ij and therefore points to a high controllability of the interaction Hamiltonian.
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Figure 6.7: Distribution of Two-Body Interaction Amplitudes Representative distribution
of Jij,kl , for N = 14 fermionic modes, Nm = 10 effective cavity modes, and ζ = 1. Fitting the
distribution by a (pseudo)Voigt profile [121] (blue dashed line), which interpolates between a
Gaussian ( red line) and a Cauchy probability density (yellow line), quantifies the deviation from
Gaussian statistics.

numerically calculate interactions according to the microscopic description of their respective
model, have also obtained non-Gaussian distributions. A possible reason for the failure of the
central limit theorem may be the presence of correlations within each realization of the disorder,
which could arise, for instance, between distinct interaction amplitudes that have one or more
fermion modes in common and thus sample the spatial disorder in a similar way. The important
question then arises of how far the deviating probability distribution modifies the physics of the
SYK model, a question that is actively investigated for other probability distributions [124–127].
In supplementary information of our proposal, we compare the dynamics of an SYK model with
Cauchy-distributed interactions to its Gaussian counterpart, finding that they are qualitatively
the same.

6.5.2 Comparison to SYK Model Dynamics

In this section, we numerically probe the chaoticity of the dynamics present in our system and
compare them to the dynamics of the SYK model [125, 128]. To this end, we simulate out-of-time-
order correlators (OTOCs) and the spectral form factor (SFF) as probes of, respectively, early-time
and late-time chaos [129–133]. We employ exact diagonalization methods, the limitation of
which to small system sizes prevents one from accessing the maximal scrambling rate of the SYK
model [134]. Thus, our goal is to use the dynamics of the SYK model for a given system size N as
a benchmark against which we can compare the dynamics of our proposed system. This allows
us to see how the experimental parameters can be tuned so that its dynamics approach those of
the SYK model.
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Figure 6.8: OTOCs of Effective and Target model. Dynamics of ensemble averaged out-of-time-
order correlator for the proposed model (blue curves) for ζ = 1, compared to those of the SYK
model with real coefficients (red curve). Data are for N = 10 fermionic modes at half filling,
and represent ensemble averages over 250(1000) disorder realizations of the proposed model
(the SYK model). The shades of blue, from light to dark, correspond to Nm = 3,11,21,37,107.
The inset shows the inverse times 1/t∗, relative to that of the target model 1/t∗SYK, at which the
correlator has decayed to 1/e, for each value of Nm (same shades of blue as the main figure), as a
function of the transverse size ζ of the atomic cloud.

Out-of-Time-Order Correlators (OTOCs) Figure 6.8 shows the real part of the OTOC F(t) =
tr
(
ρβW

†(t)V †W (t)V
)
, calculated with respect to the infinite temperature state ρβ=0 ∝ 1, for an

atomic cloud size matched to the cavity mode size ζ = 1. In this example, we choose the unitary
operators W = 2c†i ci − 1, V = 2c†j cj − 1, with i = 0 and j = 1.

The blue curves correspond to the disorder-averaged dynamics for the effective number of
independent cavity modes Nm. As Nm increases, the OTOCs decay faster and finally approach
those of the SYK model (red). This speed-up is more prominent for size mismatches close to unity,
as shown in the inset. This dependence is due to the shape of the cavity mode functions: As they
have a length scale (the waist of the cavity w0), all interactions mediated by different transverse
cavity modes become linearly dependent for small sizes, reducing the effective number of modes
that mediate interactions. As a consequence, the convergence to the SYK model is slower. This
indicates that the effective model resembles the SYK model on a length scale comparable to the
waist of the cavity, ζ = 1.
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Figure 6.9: Comparison of Level Statistics. The level spacing distribution for Nm = 100, which
agrees well with the Wigner surmise for the Gaussian orthogonal ensemble (red dashed line).
Poisson level statistics (yellow dashed line) are shown for comparison.

Level Statistics and Spectral Form Factor (SFF) A typical diagnostic of quantum chaos
is the distribution p(s) of the spacings s of nearest-neighbor energy levels (see Figure 6.9),
with integrable models displaying Poisson statistics (yellow dashed curve) and chaotic models
following the Wigner surmise (red dashed curve, for the Gaussian Orthogonal Ensemble) [135].
In fact, the SYK model is known to follow the Wigner surmise [136], and we find that, also
for our system, p(s) matches the Wigner surmise very well for all the values considered in Nm.
Unlike the OTOCs, there is no qualitative change in p(s) as a function of the number of transverse
cavity modes Nm. However, since p(s) is a measure of short-range spectral correlations (nearest
neighbor), it can only identify the presence of chaotic behavior at long timescales, on the order
of 1/s.
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Figure 6.10: SFF of effective and target model. Disorder averaged SFF of effective model
(blue curves) for ζ = 1, compared to that of the SYK model with Jij,kl ∈ R (red line). Data are
for N = 14 fermionic modes at half-filling, and represent ensemble averages over 100(1000)
disorder realizations in our proposed system(SYK model). The Heisenberg time tH = 2D(plateau
height 1/D) is indicated by the vertical(horizontal) black dotted line, which shows a very good
agreement with the SFF of HSYK. For the effective model, the shades of blue from light to dark
correspond to Nm = 3,11,21,37,107,211. The time axes for the SFFs of the effective model have
been rescaled to match the Heisenberg time of HSYK. The upper inset shows the deviation of the
ramp time tr of the effective model compared to the real SYK model as a function of the effective
number of cavity modes Nm. The ramp times are shown in the main plot by the vertical dashed
lines in the same color.

In order to study the many-body chaotic properties of our effective model in more detail,
we thus turn to the SFF, which is also sensitive to long-range spectral correlations and thus
able to diagnose chaotic behavior already at intermediate times. Figure 6.10 shows the SFF

S(β,t) =
∣∣∣Z(β + it)/Z(β)

∣∣∣2 [where Z(β + it) is the analytically-continued partition function] of our
proposed Hamiltonian for ζ = 1, compared to the SYK model, at the inverse temperature of β = 0.
The SFF of the SYK model (red curve) is known to exhibit the characteristic features predicted by
random matrix theory (RMT) [133, 137–141]: Early time oscillations decaying as t−3, followed
by a linear ramp in t, which transitions to a plateau of value 1/D at the Heisenberg time 2D (D is
the Hilbert space dimension). For all values of Nm considered, the SFF of the proposed scheme
(blue curves) shows signatures of the dip and ramp and, similar to the OTOCs, the depth of
the dip and the temporal range of the ramp approach to that of the SYK model as Nm increases
(light to dark blue).

These results highlight the importance of microscopic parameters Nm and ζ for laboratory
implementations using cQED. Correctly tuning these parameters (large Nm and ζ = 1) the fast
scrambling dynamics (OTOC) and long-range spectral correlations (SFF) of the SYK model are
well approximated by our proposed system. Finally, to obtain the results presented, we have
considered the speckle correlation length to be matched to the harmonic oscillator length.
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6.6 Experimental Requirements and Challenges

Our simulations highlight the key requirements to faithfully approximate the dynamics of HSYK.
In the following, we present a list of experimental requirements and state how these can be
met using our experimental capabilities. This sets the stage for future developments of our
experimental techniques.

6.6.1 Matching of the Disorder, Cavity-Mode and Trap Length Scales

In the simulations, we have shown that the length scale of the disorder patterns and the sizes of
the cavity modes must be matched with the size of the motional states (ζ = 1). Otherwise, the
rank of the interactions does not scale linearly with the number of cavity-modes and or Trotter
steps, but rather saturates.

The multimode cavity approach imposes stringent requirements on the size of the atomic
cloud. The cavity installed in our experimental setup has a waist of 13.3 µm. To match this
size with the ground-state wave function of 6Li in a harmonic trap, we would need to operate
with trap frequencies as low as 5 Hz. This is highly challenging experimentally, as it would
significantly slow the preparation process of our atomic samples, which currently have a cycle
time of 200 ms. This would lead to a considerable loss of statistics. Therefore, the Trotter
approach appears to be more feasible experimentally. The size constraint in this case is between
the spot size of the focusing beam (0.52 µm) and the ground state of the atomic motion, which
would correspond to trap frequencies of roughly 3 kHz, compatible with our experimental cycle
times.

6.6.2 Implementation of Random Interaction using Speckle Pattern

The results of our experimental proposal presented in Section 6.5 suggest that the implementa-
tion of random couplings based on the disordered light shift resulting from a speckle pattern is
an efficient approach to generate the dynamics of the SYK model. Using a spatial light modulator
(see Section 4.1), we were able to generate speckle patterns on the focusing beam at the location
of the atoms. Pictures of two different intensity patterns are shown in Figure 6.11. They are
generated by projecting patches of random phases on the SLM (see inset).

a

−π 0 π

b

−π 0 π

Figure 6.11: Speckle Patterns in Experiment. Pictures of two different speckle patterns imaged
in the setup. The random phase patterns that were applied to the SLM are shown as an inset.

To implement the Trotter approach, we need to be able to quickly switch between different
disorder patterns on the microsecond time scale. This could not be possible with an SLM as
usual refresh rates are on the order of tens of milliseconds. This limitation can be lifted if faster
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optical devices, such as an acousto-optical modulator (AOM), are used for the spatial modulation
of light [142].

6.7 Discussion

This chapter demonstrates that it is possible to implement holographic matter in our experiment
by considering the Hamiltonian dynamics of the system. However, photon loss through the
cavity mirrors and scattering off the atoms introduce incoherent dynamics. An important
theoretical question is whether these losses prevent the observation of holographic matter. The
dissipation-fluctuation theorem states that cavity photon losses induce randomly fluctuating
forces on the atoms. It is challenging to distinguish these forces from the quantum chaotic
behavior of holographic matter. Therefore, it is yet to be determined whether there is a defining
characteristic of holographic matter that is resistant to random forces caused by photon losses
and can be measured with feasible experimental techniques.

Theoretically, there are numerous approaches to incorporate intricate four-point interactions
into our cavity QED system. However, each of these techniques requires its own set of experi-
mental conditions (see Section 6.6). It has yet to be determined whether any of the proposed
scenarios can be used to implement holographic matter in the laboratory. Even if this is not
feasible, having the ability to exercise high control over atom-cavity interactions would be a
remarkable advancement, enabling us to explore nonlinear optomechanics with degenerate
Fermi gases.
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Conclusion and Outlooks

In this thesis, we explored the development of a laboratory apparatus that allows us to control
the interaction between fermionic atoms in both space and time. This includes the construction
of a cavity-microscope, a device that combines a high-precision cavity with a high-resolution
microscope, as well as the necessary infrastructure and techniques to cool, capture and manip-
ulate the optical properties of fermionic 6Li atoms. We provided an overview of the various
experimental techniques used to acquire information about the atomic cloud in our experiment
and demonstrated how these techniques can be used to gain insight into the structure of the
atom-cavity system’s eigenstates. Additionally, we demonstrated in proof-of-principle experi-
ments the fast and local control over atom-cavity interactions with our cavity-microscope. This
shows one of the many necessary conditions for the experimental realization of holographic
quantum matter, as discussed in the last chapter. However, before attempting the quantum
simulation of the SYK model many other experimental and theoretical challenges need to be
overcome.

In the following, we present a list of problems that need to be overcome in the laboratory in
the near future:

Improving Cavity-Microscope to Coherence Times of Cavity-Mediated Interactions. The cur-
rent cavity-microscope has a low single-atom cooperativity, limiting the coherence times
of cavity-mediated interactions. It is uncertain if the next-generation version, with a new
batch of super-polished mirrors, will be able to address the mechanical issues of the current
cavity-microscope and simultaneously provide improved optical performance. Predic-
tions suggest that single-atom cooperativities of approximately 50 may be attainable with
this device, which would be a more than tenfold enhancement compared to the devices
currently in our vacuum chamber.

Towards Generating Small Samples of Degenerate Fermi Gases. Another necessary criterion
for simulating the SYK model is the preparation of a degenerate Fermi gas with a few atoms
of 6Li. In many experiments, efficient evaporative cooling of 6Li around the Feshbach
resonance has been demonstrated. In fact, it is not even necessary to go to high magnetic
fields to achieve strong interactions between the atoms, and therefore fast thermalization
of the atomic cloud. At low magnetic fields, the 1–3 mixture of 6Li can be used to achieve
efficient evaporative cooling [143]. Furthermore, using the dimple trap technique, it is
possible to generate small samples of tens of atoms in the degenerate quantum regime [11,
12, 144, 145].

At the end of my thesis, we implemented a technique to prepare a 1–3 mixture of 6Li by
driving hyperfine transitions 2→ 3 using the RF antenna located in the main chamber of
the experiment. Using lattice cancelation techniques, we plan to remove the longitudinal
lattice structure of the cavity-enhanced dipole trap (see Section 2.2), allowing us to prepare
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a connected cloud of atoms. The next steps are to reduce the depth of the dipole trap, start
evaporative cooling, and introduce the optical tweezers trap at 780 nm as a dimple.

Controlling Heating Processes in the Floquet Technique. Our proof-of-principle experiments
in Chapter 4 demonstrated local control over the atom-cavity coupling but were accom-
panied by considerable particle losses. This was due to the anti-trapped nature of the 4D
manifold, the control state |c⟩. These heating effects may forbid any physics related to the
SYK model from being observed in experiments based on resonant Floquet driving with an
amplitude-modulated control beam. It is yet to be seen whether it is possible to reduce
these heating effects by detuning the control beam from the transition or even using them
to strengthen the cavity-mediated interactions. As long as the atom does not spontaneously
emit a blue photon and decay from the 4D manifold, the antitrapping dipole forces remain
coherent and could be used to amplify the strength of the cavity-mediated forces.

Once the initial issues with our experimental setup have been addressed, there are still a
number of unanswered questions and proof-of-principles experiments that must be done before
attempting to create holographic matter in the lab. In the following, we present an outlook on
possible future experiments.

Observation of Motional Sidebands. So far, we have conducted experiments with a thermal
cloud of atoms. The high temperature and the associated large Doppler effect made it
impossible to observe the production of distinct motional sidebands in the cavity field. It
is yet to be determined whether reducing the temperature of the cloud with evaporative
cooling can enhance the signal-to-noise ratio of our cavity measurements and create the
conditions for controlling the motional degree of freedom of the atoms.

Calibration of Motion-Cavity Coupling. The interaction matrices u(m)
ij describe how the mo-

tion of the atoms is coupled to the optical resonator. Depending on the intensity pattern of
the control beam, this coupling term has a different shape (see Section 6.4). In principle, it
is possible to calibrate the couplings using the motional sideband on the cavity field. For
example, if the shape is quadratic, there should be second-order sidebands to which the
cavity field couples. A measurement of the structure of the sidebands as a function of the

shape of the control beam would allow for the calibration of u(m)
ij , the elementary building

block of tunable cavity-mediated interactions.

Cavity Cooling with Tunable Atom-Cavity Interactions. The finite cooperativity of cavity QED
systems limits the coherence time of the SYK dynamics they generate. However, there are
some experiments that require limited coherence times. Cavity cooling is a classic example,
the removal of excitations from the system is essential for reducing the temperature. Nor-
mally, due to the collective nature of the atom-cavity coupling, it is only the center-of-mass
motion that can be effectively cooled [120]. It is worth investigating whether the high-rank
structure that is essential for the quantum simulation of the SYK model and allows for
rapid scrambling of quantum information, can also facilitate efficient cooling of all the
degrees-of-freedom of the atomic cloud.

This brings the list of current issues and upcoming experiments to a close. In summary, the
potential to engineer interactions on a scale that is in line with the size of the wave function
is a major breakthrough, and there are numerous exciting possibilities for the future of cavity-
microscope experiments.
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AppendixA
Layout of Experiment

In this chapter, we give a detailed description of the laboratory layout and infrastructure.

A.1 Layout of the Room
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Figure A.1: Layout of Laboratory.

135



136 APPENDIX A. Layout of Experiment

Our laboratory is divided into two sections: the prelab and the lab (see Figure A.1). The two
rooms are separated by two sliding doors. The laboratory is where the lasers and vacuum
systems are located and is the site of the atom experiment. The lasers and radio-frequency
devices are managed from the prelab. During normal operations (not when the lasers are
adjusted), the experimenter sits in front of the control computer in the prelab. This minimizes
thermal variations when entering the room and also improves laser safety. Both the laser and the
vacuum systems are installed on two large damped optical tables (2m× 3m): the laser table and
the atom table. Both tables are placed in their own air-conditioned compartments in the lab. To
access the laser beams during alignment, the front panels of the enclosures are removed.

We send both optical and electrical signals between the two optical tables. This is achieved
through optical fibers (fiber link in Figure A.1) and coaxial cables. Under each optical table we
have constructed a rack where different electrical devices are placed (RF drivers for AOMs and
EOMs, PID electronics, RF antenna driver, etc.). The RF amplifiers are placed on water-cooled
metal plates, which reduces the heat load on the air-conditioning system and improves stability.
A water distribution system, located in the laboratory, enables the regulation of water flow to
the various devices. The water pipes are pulled under the floor of the laboratory. Most of the
heat is generated by the MOT coils that surround the primary chamber of the experiment. In
this area, water cooling is of utmost importance, as even slight alterations in the temperature of
the vacuum chamber can cause misalignment of the cavity.

The current that flows through the coils is created by power supplies located in a rack in
the prelab. The heat produced by the power supplies is dispersed in the prelab by cooling fans.
Large cables (150 mm2 for the MOT coils) running under the floor transport the current from
the prelab to the coils. The H-bridge, which allows us to switch from a quadruple to a dipole
configuration of the MOT coils, is located under the atom table.

A.2 Layout of Laser System

In this section, we provide a comprehensive outline of the laser system. A concise overview of
the laser system, including all essential components, is provided in Section 2.1.3 of the main
text.

The laser system is distributed over two optical tables (see Figure A.1). On the ’laser table’
is where most of the lasers are located. The only laser that is on the atom table is the master
laser, as it needs to be locked to the cavity with high bandwidth, and therefore the distance to
the cavity matters. This is due to the time the signals travel through the cables.

We start our discussion of the layout of the laser system around the vacuum chamber. Then it
is clear where all the beam lines are needed and what they are used for. Then we will go through
all of the different setups marked in Figure A.1 in chronological order, meaning that we start
with the laser source and then end up at the atoms.

A.2.1 Laser Beam Setup around Vacuum Chamber

There are three levels of optical tables that surround the vacuum chamber. The bottom layer,
which is the top of the optical table, is used to distribute MOT and Zeeman slower light, as well as
house the absorption imaging camera. The top layer is used to distribute the absorption imaging
light. The middle layer is the most important, as it allows access to the cavity microscope.
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Figure A.2: Picture of Experiment. The pictures shows the vacuum chamber and the tree
different layers of optics around it. The bottom layer a large optical table. The middle layers are
two damped stainless steel breadboards and on the top we have two light aluminum breadboards.

Bottom Layer

As can be seen in Figure A.2, there are significantly fewer optical elements in the bottom layer.
Ultimately, this surface was only used to separate the vertical and horizontal MOT beams and
to create the Zeeman slower beam that is sent from the bottom into the chamber∗. Finally, the
camera used for absorption imaging is situated on the bottom layer.

Middle Layer

A map of the middle layer is presented in Figure A.3.

∗There is a mirror in the pumping cross that reflects this beam (see Figure 2.1a). This design prevents the viewport
from being covered with lithium evaporated from the oven.
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Figure A.3: Map of Laser Beams around Vacuum Chamber (middle layer). A magnified view
of the cavity is displayed in the top left corner.

Most of the beams that couple to the cavity are injected from the left breadboard. This leaves
enough space for the microscope optics, which includes the spatial light modulators (SLM) for
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460 nm and 780 nm on the right. In the following, we will go through all of the beam lines:

a: MOT beams We transfer the cooler and repumper light from the laser table to the atom
table in a fiber with crossed polarization. The fiber output is located in the bottom layer of
the atom table, where it is divided into a vertical beam and a horizontal beam. The horizontal
beam is then brought to the middle layer using a periscope, arriving on the left breadboard (see
Figure A.3a) with a diameter of 1 cm. The beam is divided into two equal parts that are sent at an
angle of 50° with respect to the cavity axis through the main chamber with circular polarization.
On the other side of the chamber (right breadboard), the beams go through a quarter-wave plate
and are reflected back. The two beams intersect at the center of the cavity, the place of the MOT.
They pass between the cavity mirrors, the RF antenna, and the shield which protects the mirrors
from the lithium emitted from the oven (see the inset in Figure A.3).

b: Sidepump beam The sidepump beam is used to send light onto atoms directly without
passing through the resonator. The beam is focused on the cloud location with a waist of 60 µm.
We have used this beam for our cavity cooling and Raman cooling experiments (see Section 3.3.4).

c, i: Cavity probe beam and single-photon counter Light is brought from the cavity probe
setup to the left breadboard using a fiber (see Figure A.3c). We adjust the beam size to match
the TM00 mode of the cavity with high efficiency. The light coupling out at the other side of
the cavity (right breadboard) is injected into a fiber (see Figure A.3) which is plugged into a
fiber-coupled single-photon counter located on the bottom layer of the atom table. This setup
allows for cavity transmission and reflection spectroscopy (see Section 2.4).

d, g: PDH lock and dipole trap beam After being phase modulated in a free space EOM, the
cavity lock light is coupled to a fiber and brought to the left breadboard (as seen in Figure A.3d).
This beamline is shared with the counterpropagating dipole trap light (as seen in Figure A.3g).
At the cavity, the dipole trap light and the PHD light are circularly polarized but in orthogonal
directions. The back-reflected PHD light is detected on the photo diode closest to the cavity,
while the dipole trap power is measured on the other photo diode. Since the dipole trap and the
PHD lock operate on two different transverse modes of the cavity, no interference is observed
at low frequency between the beams. The lenses in the beam path are adjusted to ensure the
highest degree of compatibility with the cavity mode.

e: Zeeman slower beam The Zeeman slower beam is extracted from a fiber at the bottom
layer of the atom table and then directed up to the middle layer through a viewport (as seen
in Figure A.3e). Once in the vacuum chamber, the beam is deflected 90° into the horizontal
direction using a gold-coated in-vacuum mirror made of stainless steel. This mirror was crafted
and polished in-house, as the optical flatness is not a major factor for this beam. The Zeeman
slower beam then travels orthogonally through the cavity (see inset in Figure A.3) and directly
into the oven. A lens located at the bottom layer of the atom table focuses the beam into the
oven.

f: Optical tweezers beam The light from the laser table is transmitted through a fiber and
then out-coupled onto the right breadboard (as seen in Figure A.3f). The beam is then reflected
off a spatial light modulator (SLM) and directed into the cavity lens. Two telescopes (two pairs
of lenses) are placed before and after the SLM to adjust the size of the beam to the SLM and the
cavity lens. After passing through the cavity microscope, the beam is absorbed in a beam dump.
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h: Control beam The blue control beam, which is out-coupled from a fiber, is reflected off
an SLM in a manner similar to the tweezers beam. Contrary to tweezers beams, since the focal
length of the cavity lenses is not half of the cavity length for 460 nm, the beam must be defocused
before entering the cavity lens, with the distance between the focus and lens being 26 cm. This
configuration is shown in Figure A.4.

SLM

Figure A.4: SLM Setup.

The control beam is focused when it reaches the SLM. A lens between the SLM and the cavity
lens is used to compensate for the shorter focal length. The compensation lens projects the SLM
surface onto the cavity lens, guaranteeing that all rays that hit the SLM pass through the cavity
lens. More details on how the SLM setup was used to remove aberrations from the cavity lens
and carry out a scanning microscopy of the atomic cloud can be found in Chapter 4.

Top Layer

Here is a list of setups located on the top layer:

• MOT beam: A mirror is situated at the top of the breadboard, causing the vertical MOT
beam to be reflected back.

• Absorption beam preparation: The absorption beam is taken out of a fiber and expanded
to the appropriate size for imaging. A unique feature of this setup is the mask, which is a
SNOM tip placed in the path of the absorption beam. This is used to shorten the length of
the atomic cloud by expelling the edges with resonant light (see Section 2.2). The tip is
incorporated into a two-lens telescope so that its shadow is projected onto the atoms. The
tip is placed on a 3D translation stage for precise alignment with the atomic cloud.

• Fluorescence imaging: A camera situated on the uppermost breadboard was utilized to
capture an image of the center of the chamber. This was especially useful at the start of the
experiment as it aided in the positioning of the MOT with the cavity center.

A.2.2 Master Laser: From the Source to the Atoms

The master laser is located on the atom table (see Figure A.1), as close to the cavity as possible.
This reduces delays in the feedback loop and allows for higher locking bandwidth. The optical
setup is illustrated in Figure A.5.
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Figure A.5: Master laser setup.

A diode laser emitting at 1342 nm is amplified to 1.8 W and then frequency-doubled in a
cavity to generate 1 W of red light, which is coupled into a fiber and sent to the laser table
(see Figure A.5a). A variable beam splitter is used to extract some light after the amplifier
(roughly 50 mW). This light is divided into two double-pass AOMs. The first double-pass AOM
(illustrated in Figure A.5b) reduces the laser frequency by 460 MHz and outputs it into a free
space EOM (QuBig) operating at 19.7 MHz. This light is then injected into a fiber and sent to
the left breadboard (d in Figure A.3) where it is used to implement a PDH lock. The second
double-pass acousto-optic modulator (shown in Figure A.5c) increases the frequency of the laser
by 460 MHz, which is then transmitted to the right breadboard via a fiber (see Figure A.3g)
where it is used for the dipole trap.

The red light at 671 nm that is transmitted to the laser table is used for the MOT, the Zeeman
slower, the cavity probe and to stabilize the length of the cavity. The main beamline is illustrated
in Figure A.6.
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In the following, we go through each setup:

a: MOT and Zeeman slower setup We require light at three different frequencies for the
MOT and Zeeman slower setup. The Zeeman slower is red-shifted from the MOT cooler by
110 MHz and the repumper is blue-shifted from the MOT cooler by the hyperfine splitting of
228 MHz. A polarizing beam splitter is used to branch off the Zeeman slower light from the
master beamline and inject it into a fiber. A shutter is placed in front of the fiber input to enable
the Zeeman slower light to be switched. The cooler beam is branched off the main beamline
and passes through a blue-shifting acousto-optic modulator (AOM) operating at 110 MHz. This
AOM can be used for fast switching and power setting. The repumper setup is similar, but
the beam also passes through a double-pass AOM bridging the hyperfine splitting of 6Li. Both
beamlines are equipped with a mechanical shutter (SRS) to completely remove light during the
experiment (after loading the MOT). The two beams are combined on a polarizing beam splitter
with orthogonal polarization and then injected into a fiber that brings them to the bottom layer
of the atom table.

b: Imaging setup This setup is used to prepare light for absorption imaging. We also use it
to project a mask, which helps to reduce the size of the atomic cloud in the cavity direction.
Generally, imaging setups only use one frequency of light, and the MOT beams can be used for
repumping. However, this is not suitable for our setup since it would mean that the part that is
shielded by the mask would also be illuminated with light. Therefore, we opt for a two-colored
imaging scheme, which combines cooler and repumper light in the same fiber. Essentially, the
imaging setup is a replica of the MOT setup, with the order reversed. That is, after the two beams
are combined, they go through a single-pass AOM, changing their frequency. Then, the beams
are transferred to the top layer on the atom table in the same fiber with crossed polarization.
Additionally, there is a mechanical shutter to be able to completely shut the beam off when not
needed.

c, e: Frequency offset lock between the master and the spectro laser We use a beating lock
between the spectroscopy laser and the master laser to maintain the cavity length, as described
in Section 2.1.3. This is demonstrated in Figure A.6, parts c and e. The light emitted by the
spectro-laser passes through a spectroscopy cell containing a hot lithium vapor. A mirror after
the spectro cell reflects the beam back. A quarter-wave plate is placed in front of the spectroscopy
cell, which rotates the polarization of the back-reflected light by 90°, causing it to be deflected by
a polarizing beam splitter onto a photo diode. This enables us to detect the saturated absorption
signal on the photodiode. To lock the spectro-laser to the crossover, the current of the laser
diode is modulated and the signal on the photodiode is demodulated to generate the error signal.
The master beamline and the spectro-laser emit light which is shifted in frequency in opposite
directions by two second-order double-pass AOMs operating at 230 MHz. The beams are then
combined in a 50:50 beam splitter and sent to a high-bandwidth fiber-based photodetector
(Thorlabs DX12CF). This produces an electrical beating signal between the lasers, which is used
to maintain the frequency difference between them.

d: Cavity probe frequency shifter The majority of the cavity probe system is located on the
atom table, while the second-order broadband double-pass AOM used for frequency sweeps of
the cavity probe light is situated on the laser table (see Figure A.6d). An optional fiber-EOM can
be inserted into the cavity probe beamline, allowing us to probe multiple longitudinal cavity
modes spaced by multiple free-spectral ranges at the same time. This has been used to measure
the temperature of the cloud (see Section 3.3.3).
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Figure A.7: Cavity probe setup.

The beamline of the cavity probe is shown in Figure A.7. It consists of the cavity probe beam,
a heterodyne detector, and three different beamlines to direct light onto the atoms from the
side, one vertical and two horizontal. This setup has been used for cavity cooling and Raman
cooling experiments. The light is transmitted from the laser table to the atom table via a fiber. A
Glan–Thompson polarizer is placed after the fiber to ensure that the polarization of the light in
the cavity probe is linear and constant. The light is then divided into two beams, one for the
cavity probe and heterodyne and the other for all the sidepumps. A photodiode placed after
a mirror monitors the power of light arriving at the cavity probe setup. This signal is used to
stabilize the power during frequency sweeps of the cavity probe.

A.3 Layout of Imaging Setup

In total, four cameras are installed. Here, we provide an overview of their locations.

• Blue camera: The camera used to capture the blue control beam is situated on the left
breadboard of the middle layer (see Figure A.3). It is utilized to calibrate the SLM’s
operation and to carry out two-photon imaging (see Section 2.3).

• Top fluorescence: This camera is situated on the uppermost layer and is utilized to capture
images of the MOT. Specifically, it is used to determine the relative position of the MOT
and the cavity.

• Side fluorescence: This camera is situated on the right side of the middle layer breadboard
(see Figure A.3). It is used to measure the position and size of the MOT, and the images in
Figure 2.10a,b were taken with it.
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• Absorption camera: This camera is situated at the lowest level. We utilize it to capture the
cloud with a beam originating from the top. The image in Figure 2.10c was taken with this
camera. Additionally, the calibration of the light shift Figure 5.8 was performed using this
camera.

A.4 PID Loops in the Experiment

This section provides an overview of the feedback loops used in our experiment. A list of
the loops can be found in Appendix A.4.1. The red pitaya, which is used for most of the
feedback loops in the lab, is discussed in Appendix A.4.2. Finally, Appendix A.4.3 explains
the feed-forward scheme that enables us to rapidly adjust the atom-cavity detuning during the
sequence.

A.4.1 Detailed Overview of Feedback Systems
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Figure A.8: Map of feedback loops.

Cavity Lock The cavity lock ensures that the master laser is in precisely resonance with the
cavity. To do this, we have implemented a PDH locking scheme. Figures A.5b and A.3d show
the optical setup. The feedback loop is electrically implemented with a fast analog lockbox
(Toptica’s Falc pro) combined with a FPGA (Red Pitaya). The Falc produces the error signal by
demodulating the photodiode signal in phase with the EOM modulation and implements a fast
PID circuit, whose output is connected to the DC port of the laser diode current. This allows
quick corrections of the laser frequency (1.8 MHz bandwidth). The Red Pitaya takes the output
signal of the Falc as input and implements a second integrator that acts on the piezo of the laser.
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Spectro Lock The spectro laser is locked to the crossover lying between the two hyperfine
ground states of 6Li. A Red Pitaya is used to implement the feedback loop. The error signal is
created by modulating the laser current and demodulating the spectroscopy signal obtained
from saturated-absorption spectroscopy. The feedback has a bandwidth below 1 kHz.
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Figure A.10: Map of feedback loops.

Spectro Lock The beating lock stabilizes the relative frequency detuning between the master
and spectro lasers. This is done optically by having both lasers interfere on a fast fiber-coupled
photodiode, as shown in Figure A.6c. We reduce the output frequency of the amplified photo-
diode by a factor of 40 using a frequency divider (Pasternack PE88D40000). This enables us
to measure beating frequencies ranging from 100 MHz to 12 GHz with regular RF electronics.
The downscaled signal is then mixed with a tunable reference frequency. The output signal is
filtered with a lowpass filter and fed into an analog frequency discriminator based on a delayed
self-heterodyne technique. This generates an error signal that is used adjust the cavity length by
acting of the cavity piezos. Similarly to the cavity lock, we implement a feedback loop based on
two PIDs. A fast integrator acting on the fast cavity piezo and a slow double integrator removing
slow drifts of the cavity length due to temperature fluctuations in the laboratory.

Cavity-enhance Optical Dipole Trap Power Regulation The intensity noise in the dipole trap
leads to heating of the atoms that are trapped. Consequently, power stabilization is required.
Figure A.11 displays a schematic of lock stabilizing our cavity-enhanced optical dipole trap.
In summary, we inject light into the cavity and measure the transmitted power. To control the
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power of the dipole trap, we adjust the RF power sent to a double-pass AOM on the cODT path
(see Figure A.5c).

The complexity of locking the dipole trap is largely due to the thermal Kerr effect, which
causes the resonance frequency of the trap to be dependent on the power. This is largely corrected
by the PDH cavity lock. However, since our cavity is near-concentric, its transverse mode spacing
also depends on the intensity of the dipole trap. Therefore, the frequency difference between
the dipole trap beam and the PDH beam must be stabilized (AOM in Figure A.6b,c). This was
accomplished by using a dither lock on the dipole trap beam to act on the frequency of the PDH
double-pass AOM. By acting on the PDH frequency while keeping the offset frequency between
the master laser and the dipole trap constant, a fixed frequency relation between the master laser
and the TM00 modes of the cavity is established. As a result, the relative frequency stability
between the doubled 671 nm light and the 671 nm TM00 cavity mode is improved.
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Figure A.11: Map of feedback loops.

Cavity Probe Power Regulation For our experiment, we need a consistent power of the cavity
probe. Especially when the frequency of the cavity probe is altered, the power can vary as a
result of changes in the efficiency of the double-pass AOM. We measure the power of light that
reaches the atom table using a photodiode that collects the light that passes through a mirror
(see Figure A.7). A PID loop based on a Red Pitaya is employed to regulate the RF power sent
to the double-pass AOM located on the laser table (see Figure A.6d) in order to maintain the
monitored laser power constant.

PDH Power Regulation The gain of the PDH feedback look is directly proportional to the
power of light that reaches the photodiode. Since fiber couplings can drift over time, this power
can change and therefore the lock can become less optimal. Therefore, we implemented a power
lock that acts on the PF power sent to the double-pass AOM (see Figure A.5b). This PID is
implemented using a Red Pitaya.
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Bottom Flange Temperature Stabilization Our cavity system is very sensitive to temperature
changes. Therefore, the temperature of our vacuum chamber was regulated to ensure the long-
term stability of our experiment. This was done with a Peltier element that was connected to the
chamber. The hot side was cooled by a standard CPU cooler. To prevent the fan from influencing
the cavity, it was removed from the CPU cooler and mounted on an optical post on the optical
table. Temperature stabilization was electrically implemented with a Peltier controller from
Meerstetter Engineering GmbH.

A.4.2 RedPitaya for PIDs

The red pitaya is a test and measurement board that is powered by a fast FPGA. It has two analog
inputs and two analog outputs. By using pyRPL, a Python-based library created by Leonard
Neuhaus [146], it can be used as a lockbox, lock-in amplifier, oscilloscope, spectrum, network
analyzer, and many other combinations. We have also developed an analog amplifier to reduce
noise at the red pitaya output [147].

A.4.3 Feed-forward Scheme

In the course of each experimental sequence, we must alter the atom-cavity detuning. This
requires us to adjust both the cavity length and the laser frequency in order to keep the cavity
dipole trap constant and the atoms confined. Although the laser and cavity can be locked to
each other with high bandwidth, relying on the feedback loop for changes in the configuration
is not stable and fast enough, as it would require a very large dynamic range. Therefore, we
opt for a feedforward scheme. By using an analog signal that is divided into three signals with
different gain acting on the cavity piezo, the laser piezo, and the variable reference frequency
of the beating lock, we can synchronously change the cavity length and the laser frequency so
that they remain close to resonance. Precision fine-tuning is achieved with the PID feedback
loops mentioned above. Electrically, the splitting and amplification of the signals is realized
with a custom electrical device based on analog multipliers, whose gain can be adjusted using
potentiometers on the front panel.



AppendixB
Design and Construction of the MOT
coils

Our MOT coils are based on a design of compact bulk-machined electromagnets that was
published by our group [73]. In this Section, we will explain the construction steps. We will also
emphasize the distinctions between our design and the one that was published.

B.1 Design of Coils
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Figure B.1: Schematic Drawing of Coil Design.

Our coils are composed of two distinct components: a copper coil with cut windings and a
plastic cap (PEEK). A water channel between the cap and the copper allows for direct cooling
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of the windings. The copper coil has a T-shaped cross section, with a thick center part where
the windings are cut out and narrower wings forming the first and last windings. The first and
last windings act as a flange with tapped holes, which are used to attach the PEEK cap to the
coil and guarantee a watertight seal. The grooves in the PEEK cap determine the position of the
o-rings that are outside of the narrow windings, ensuring their effective water cooling. There are
several online tools that help you dimension the grooves for a precise seal [148].

B.2 Difference to Published Design

Our MOT coils are constructed around the primary chamber, which eliminates the spatial
restrictions posed by the reentrant viewport discussed in the paper. As a result, the complexity
of the assembly is reduced. Specifically, our design does not require drilling into the copper
windings to secure the Peek cap or provide the current. Furthermore, all the coils windings are
cooled with direct contact to cooling water, something that was not achievable in the prior design
as the sealing surface where the o-ring touches was at a smaller radius than the last winding.

B.2.1 Assembly Procedure

The assembly procedure used to manufacture the our MOT coils is summarized in this section.
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Step I:
Cut Spiral with Wire Erosion

Step II:
Preparation of Coils

Step III:
Vacuum Injection Gluing

Step IV:
Final CNC Machning

and Test

Glue container

Coil in moldGlue separator

To vacuum 
pump

Figure B.2: Assembly procedure for the coils.

Step I: Wire Erosion of the Copper Disk The fabrication process begins with the cutting of
a spiral into an OFHC copper disk. For this, the disk was mounted on a wire erosion machine
with a special aluminum adapter (see Figure B.2I). The holes were drilled in the disk before wire
erosion, through which the wire was fed. It is essential to not cut the disk all the way to the edge,
as this would make assembly and alignment much more challenging. When handling the coil
after wire erosion, we made sure to transport it on a plate to prevent the copper from bending.

Step II: Preparation of Mold and Coil After cutting the spiral into the copper disk, it was
washed with industrial soap to remove any residue of grease and oil from the surface. We then
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submerged the coil in a 50 % acidic acid solution for a few hours until the entire oxide layer
was removed. After cleaning, the coil was heated at 90 °C in a vacuum for the entire night. We
were careful to handle the coil only with gloves, as fingerprints can easily be left on the exposed
copper. At the same time, we applied FormulaFive Mold Release to the mold. After baking, we
inserted the coil into the mold and placed chips of size 23× 10mm cut from a thin sheet of glass
fiber epoxy into the spiral gap. We visually inspected the windings to make sure that the copper
was not touching. This process was very laborious as we had to place more than 100 spacers in
the coil. The final product can be seen in Figure B.2II

Step III: Vacuum Injection Gluing The most essential part of the assembly process is the
adhesion of the coils using epoxi glue. The glue was mixed with glass fibers and the bubbles
were removed under vacuum. It is imperative to have an airtight mold for this assembly step. In
our experiment, we neglected to check the mold before using it, which caused bubbles to form
during injection. It is suggested to test if the chamber can maintain a vacuum for a prolonged
period. In the same way as the vacuum bagging technique [149], the glue is injected from the
container into the bottom of the mold and then extracted from the top. The exhaust is then
filtered through a separator to stop the glue from entering the pump. After it has cured, the coil
can be removed from the mold. It is essential to consider the removal process in advance, as it
could require a lot of effort if the mold is not designed properly.

Step IV: Final CNC Machining and Test In the last step, the coil was given its final form. We
used CNC milling to remove excess glue and free the spiral. This is also when the tapped holes
and electrical connections were established. The PEEK cap, which seals the water channel, was
also created with CNC milling. Examples of the finished product can be seen in Figure B.2IV.
After attaching the PEEK cap to the copper coil, we tested it for water leaks under 1 bar pressure.
To ensure a good seal, it is important to polish the surface of the coil where the o-ring touches.
If a leak is detected (as was the case for one of our coils), a sheet of epoxy-infused glass fiber
mesh can be glued to the bottom part of the coil, which solved the problem. At the last stage, we
coated the exterior of the copper coil with an electrically insulating transparent varnish. This
helps to protect the coil from oxidation and reduces the possibility of short circuits. Before
installing the coils in the setup, the electrical performance was evaluated. We mapped out the
magnetic field and gauged the heating of the coils at the highest current, which enabled us to
determine the least amount of water flow needed.

B.3 Mistakes and Possible Improvements of the Design

• Make sure that the mold is vacuum-tight before gluing.

• Reduce the time before mixing of glue and gluing, as fibers tend to separate from the glue
because of gravity.

• Design the mold so that the coil can be easily removed.
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Assembly of the Optically-Contacted
Cavity Microscope

In this section more details of the assembly procedure shown in Figure 1.8 are given.

C.1 Step I: Optical Contact Between Mirror and Lens

The cavity mirror and the aspherical lens were fixed together using optical contact. To do this,
the two optical elements were aligned, and then a drop of water was inserted between them.
This caused the two components to bond directly to each other. To achieve good optical contact,
the lens and mirror surfaces were repeatedly cleaned using the drag-wipe technique and then
inspected under a microscope to ensure that no contaminants remained. The two elements were
then mounted on custom mirror mounts that allowed them to touch each other.
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Step 1:
Definition of Optical Axis

Step 2:
Alignement of Lens

Step 3:
Optical Contact

Figure C.1: Assembly Procedure for Optically Contacted Cavity Lens.

In the following, we will detail the alignment and optical contact procedure. A schematic
view of the most important steps is shown in Figure C.1.

The laser beam is reflected off the mirror to form an optical axis. We ensure the beam is
aligned to the mirror by overlapping the back reflections from the flat and spherical surfaces.
On the opposite side of the mirror, two achromatic objectives are combined to backcouple light
into a fiber. If the focus of the second objective coincides with the spherical surface of the mirror,
the reflection is coupled back into the fiber. We use the back-reflection signal to detect any
movement of the mirror. Additionally, blue light was sent through the fiber to evaluate the
optical performance of the cavity lens.

In the second step, the lens is aligned with the optical axis using a 5-axis stage. The tip-tilt
combination is very critical for good optical contact. We have aligned it by mechanically pressing
the lens onto the mirror and then clamping it on the mount. We were able to align the lens by
overlapping the different back reflections with the optical axis on a screen (see the picture in
Figure C.1).

Once the two components were arranged in the correct position, we increased the space
between them and added a drop of water. We then pushed them back together and left them for
the night. After that, we removed the cavity lens from the setup and heated it to 70 °C for 1 h
under a vacuum. A picture of the final assembly can be seen in Figure C.13.
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C.2 Step IV: Cavity Alignment
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Figure C.2: Setup for Alignment and Gluing of Cavity. a, Rendering of the setup. b, Picture of
the setup. c, Graph of cavity transmission when laser is swept. d, Picture of side-view camera
when glue is applied. e, Picture of side-view camera when holder is lowered.

The experimental setup for cavity alignment and gluing, as shown in Figure C.2a,b, consists
of two components: a pair of five- and six-axis stages to precisely position the mirrors and a
construction of six linear stages and force sensors to accurately position the cavity support before
gluing.

The cavity assembly is divided into two stages: initially, the two mirrors are adjusted to align
with each other, and then the holder is placed and secured with a vacuum-compatible adhesive.

The cavity and lenses required two alignment requirements. We wanted the cavity mode
to be accurately centered in the mirror, and the lenses to image the center of the cavity where
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the atoms are held. Due to the geometry of the cavity lenses (focus coincides with the center of
the mirror), these two conditions were connected. We decided to use the imaging capability of
the setup to align the cavity. This was done by injecting 460 nm light into a tapered fiber tip,
which is usually used for scanning near field optical microscopy (SNOM), and using it as a point
source. As in [26], the fiber tip was placed in the center of the cavity. When the lenses were
correctly aligned, the image of the tip would coincide with the cavity mode transmitted through
the cavity. The cavity transmission was monitored on a photodiode and a camera. The peaks in
the photodiode signal (see Figure C.2c) were from the different modes of the cavity. The spacing
of the peaks enabled us to precisely adjust the cavity length.

Once we were convinced of the correct alignment of the cavity, we applied glue to the wings of
the mirror (see Figure C.2d) and lowered the cavity holder onto the mirrors (see Figure C.2e). We
used force sensors to measure the force at the points marked by the blue crosses in Figure C.2a.
By triangulating the forces, we can estimate the force vector applied to the cavity support due to
pressing on the mirrors (orange arrow). With the help of the pictures taken from two cameras
on both sides, we were able to position the holder on the mirrors (see Figure C.2d). It took 24 h
before the glue had completely cured. After that we were able to release the mirrors from the
states. Then the cavity is held by the holder from above. We confirmed that the mode of the
cavity was still aligned. The final cavity was then placed in a dust-free box for storage.

The cavity was misaligned after being heated during the initial bakeout of the vacuum
chamber, so the process had to be repeated. To ensure success on the second attempt, we only
exposed the cavity to a dry atmosphere with nitrogen. This enabled us to achieve a good vacuum
in the main chamber without having to go through the bakeout process again.
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