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Abstract

Translation elongation plays an important role in regulating protein concentrations in the cell, and dysregulation of this
process has been linked to several human diseases. In this study, we use data from ribo-seq experiments to model ribosome
dwell times, and in turn, predict the speed of translation. The proposed method, RiboGL, combines graph and recurrent
neural networks to account for both graph and sequence-based features. The model takes a mixed graph representing the
secondary structure of the mRNA sequence as input, which incorporates both sequence and structure codon neighbors.
In our experiments, RiboGL greatly outperforms the state-of-the-art RiboMIMO model for ribosome density prediction.
We also conduct multiple ablation studies to justify the design choices made in building the pipeline. Additionally, we
use gradient-based interpretability to understand how the codon context and the structural neighbors affect the ribosome
dwell time at the A site. By individually analyzing the genes in the dataset, we elucidate how structure neighbors could
also potentially play a role in defining the ribosome dwell times. Importantly, since structure neighbors can be far away
in the sequence, a recurrent model alone could not easily extract this information. This study lays the foundation for
understanding how the mRNA secondary structure can be exploited for dwell time prediction, and how in the future
other graph modalities such as features from the nascent polypeptide can be used to further our understanding.
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Introduction

Translation, the process in which RNA nucleotide triplets are

encoded into amino acids to build proteins, plays a vital role

in cell function. Translational control allows for rapid changes

in the concentrations of encoded proteins in the cells. Thus,

translational control plays an important role in maintaining

homeostasis, and in modulating more permanent changes in

cell fate or physiology [1]. Errors in the translation machinery

are the cause of a variety of human diseases, including certain

cancers and metabolic disorders. Dysregulation of signaling

pathways that control cell growth and proliferation can lead

to cancers, and these pathways also affect translation. Cancer

is also associated with abnormal changes in the amounts of

tRNAs, translation regulatory factors, and initiation factors. In

particular, translation elongation has emerged as an important

process that is often dysregulated in these diseases [2].

Ribo-seq is a technique to obtain ribosome read count

values at codon resolution. Learning how one can predict these

values can help us understand important translation-related

phenomena such as ribosome stalling, ribosome collisions, and

synonymous codon bias. This could also potentially elucidate

the underlying mechanisms of various metabolic diseases.

Recently, we have seen the application of machine learning

models to predict ribosome read count values using information

from the mRNA sequence [3, 4, 5, 6, 7, 8].

In this study, we model the mRNA sequence as a graph using

its predicted secondary structure and design a graph-based

approach to predict full-length ribosome densities (see Figure

1). To the best of our knowledge, the proposed approach,

named RiboGL, is the first one that leverages the graph nature

of the mRNA secondary structure. This approach is different

from the ones proposed in the literature, where the mRNA

is modeled in terms of a sequence [8] or as a codon-context

window [5]. More in detail, the mRNA is encoded as a mixed

graph, where codon sequence neighbors within the mRNA

are represented by directed edges, following the ribosome

movement direction, while undirected edges correspond to

structural neighbors in the secondary structure. Additionally,
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RiboGL is the first one to learn the embeddings of the codons,

as opposed to using one-hot encodings as the features.

Previous approaches for predicting the ribosome density

at a specific position exploited only the information of

neighboring codons [8]. By taking into account the secondary

structure, the model can exploit structural neighbors to

capture codons at a much greater distance. Indeed, learning

such interactions with a small and noisy dataset might be

prohibitive. This is also particularly relevant since sequence-

based models like Recurrent Neural Networks (RNNs) might

fail in capturing long-term dependencies due to vanishing

gradients [9]. Conversely, Graph Neural Networks (GNNs)

can easily handle the structural neighbors by accepting the

secondary structure as input, but might fail at capturing

information from distant nodes [10]. Consequently, we defined

RiboGL as a GNN graph processing block, to extract the

information from the structural neighbors, followed by a

sequence processing block, overcoming the limitations of GNNs.

To fully exploit the directionality information encoded in

the mixed graph, we chose the recently introduced Directed

Graph Neural Network (Dir-GNN) [11]. Moreover, as a graph

convolution, we employed the TransformerConv (TrConv) [12],

which in our experiments reached the highest performance. The

node features learned by the GNN are then processed by the

sequence block composed of a Bi-Directional Long Short Term

Memory (LSTM) [13] model. Figure 1 outlines the summarized

RiboGL pipeline.

Modeling ribosome density prediction with both sequence

and graph features allows us to learn new codon interactions,

that can be extracted with post-hoc interpretability

techniques [14]. Indeed, while with sequence-based models we

can estimate only codon-wise feature importance, graph inputs

enable us to extract the flow of information between neighbors

through edge importance.

Contributions.

In section 4.1, we show that the proposed RiboGL model

outperforms the state-of-the-art RiboMIMO [8] model by

∼19%. In section 4.2 we conduct multiple ablation studies to

justify our design choices for RiboGL. Lastly, in section 4.3 we

show the applications of RiboGL for interpretability, where we

extract the contribution of both the codons and the edges of

the secondary structure graph. To reproduce the experiments,

refer to https://github.com/vam-sin/ribogl/.

Related Work on Ribosome Density Prediction

Earlier approaches to predict ribosome density, namely

riboShape [3] and RUST [4], employed linear models and codon-

wise statistics to infer ribo-seq densities. To denoise the dwell

times, the former employed wavelets and kernel smoothing,

while the latter binarized values to reduce the impact of

outliers. More recent approaches exploited deep learning to

handle the complexity of the ribo-seq data. ROSE [5] trained

a Convolutional Neural Network (CNN) as a binary classifier

to detect stalling events. Iχnos [6] and Riboexp [7] used a

Feedforward and a Recurrent Neural Network (FNN and RNN),

respectively, to predict each codon density using both the

information about its neighbors and their RNA folding energy.

While previous approaches took into consideration a window

or context around the target codon, the current state-of-the-

art, RiboMIMO [8], is trained to predict the whole density

profile of a transcript. Similar to ROSE, RiboMIMO considers

a simplified classification task to predict dwell times, while

also adding another regression loss on the normalized counts.

In Table A.1, we summarized the characteristics of each

approach.

Methods

Mouse Liver Dataset
Mouse liver ribosome profiling data from [16], available

in the Gene Expression Omnibus (GEO) database under

accession number GSE73553, was used in this study. This

data was pre-processed through the initial steps of our

“Ribo-DT” snakemake pipeline1, with slight modifications, to

generate position-specific ribosome A-site coordinates on the

transcriptome, as outlined in [17]. Specifically, mouse genome

sequences (GRCm38/mm10), and transcript annotations were

downloaded from ENSEMBL (Release 95). Sequence Read

Archive (SRA) files were retrieved using the GEO accession

number and then converted into FASTQ format. These files

were then aligned to the mouse genome using STAR with

inline adapter clipping (TGGAATTCTCGGGTGCCAAGG).

The resulting BAM files were indexed. Size-dependent A-site

positions were computed using a pile-up of 5’-end read density

at the start codon for each read size and frame. Unique mapping

reads of size between 26 and 35 nucleotides and up to one

mismatch were included in the analysis. Read counts and coding

DNA sequence (CDS) positions were retrieved, with the A-site

offset adjusted accordingly.

The codon-level ribosome counts were normalized by the

gene average, similar to previous approaches [8]. Moreover, we

kept only sequences with coverage, defined as the percentage

of non-zero and non-NaN annotations, greater than 30%. The

ranges in the annotations were reduced by applying a log1p

function. The resulting dataset consisted of 6,188 genes, with

20% left out as a test set. More details on our preprocessing are

available in section A.1, while the coverage density was reported

in A.1.

Secondary Structure Prediction
The secondary structure of the mRNA sequence was used as the

input to the RiboGL model. The graphs of the mRNA sequences

were obtained by using the ViennaRNA [15] module with the

Minimum Free Energy (MFE) approach [18] (RNA.fold from the

ViennaRNA Python API). An example structure is reported

in figure 1 (A). This module results in the dot-bracket

secondary structure for the mRNA, which is then converted

into an adjacency matrix. The created adjacency matrix would

correspond to the nucleotides, this is then pooled to create a

codon-level adjacency matrix which is used as the input to the

RiboGL model. An example sequence and the corresponding

adjacency matrix have been mentioned in figures 1 (B) and

(C).

Graph Neural Networks (GNNs)
Graph Neural Networks are a special class of neural networks

designed to process graph-based inputs. Consider a graph G =

(V,E) where node set V represents the n nodes and edge set E

represents the m edges. The adjacency matrix A ∈ (0, 1)nxn is

populated based on the directionality of the edges. If there is

a directional edge from node i to node j, then aj,i is set to 1,

and ai,j is set to 0. But if there is an undirected edge between

1 https://github.com/cgob/codonDT_snakemake
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Fig. 1. Overview of the RiboGL pipeline. (A) The mRNA secondary structure of the example gene “Mrpl11” as predicted by the ViennaRNA web

server [15]. (B) Graphical depiction of how the edges are modeled using an example sequence. The codons that are sequence neighbors are connected

to each other using directed edges (in black), and codons that are structure neighbors are connected to each other using undirected edges (in red). (C)

The adjacency matrix of the example graph outlined in (B), with undirected edges in red. (D) The graph processing equation for the example sequence.

Following the definition of Dir-GNN, two Transformer Convolutions are applied individually, one to the original adjacency matrix and the other to the

transposed adjacency matrix, and the outputs are summed. Then, an LSTM is applied to the learned node features. (E) Interpretability analysis on the

example sequence, this can help understand the attributions of all the codons and the edges in the graph. The height of the orange bars indicates the

magnitude of contribution from the codons, and the intensity of red on the edges indicates the magnitude of contribution from the edges.

nodes i and j, then both ai,j and aj,i are set to 1. GNNs follow

a Message Passing Neural Network (MPNN) paradigm where

the information from neighboring nodes is used to compute

new node-level features in every pass of the network. The

node features of node i are represented as xi. The kth pass of

the MPNN, is defined by aggregation functions (AGG(k)) and

combination functions (COM(k)) which are used iteratively to

compute embeddings xk
i for node i based on messages mk

i that

contain information from its neighbours.

m
k
i = AGG

(k)

({(
x
k−1
j , x

k−1
i

)
:
(
i, j

)
∈ E

})
x
k
i = COM

(k)(
x
k−1
i ,m

k
i

) (1)

The general working of the MPNN has been outlined using

equation 1. The AGG(k) and COM(k) vary with different

implementations of the MPNN and can result in different

architectures such as the Graph Convolutional Network (GCN)

[19], and the Graph Attention Network (GAT) [20].

In this study, we intend to explore how the neighborhood

of the codon A site affects the ribosome density. Studying

the influence of all the edges and nodes in the graph would

help us understand more about the features of the codon

neighborhood that affect the speed of translation. There have

been several graph explainability algorithms that have been

suggested previously [21], but to the best of our knowledge,

they haven’t been applied to the setting of ribosome dwell time

prediction.

RiboGL
The RiboGL model is composed of a learnable embedding of

size 128, followed by two blocks in series:

1. Graph Processing Block (RiboGL-GNN): The

purpose of the graph processing block is to exploit the

graph structure of the mRNA, and it consists of four graph

convolution layers with 256, 128, 128, and 64 channels

respectively. These graph convolution layers use the TrConv

algorithm [12] to process their inputs. This algorithm learns

two separate weight matrices W1 and W2, for node i and

the neighbors of node i respectively. Additionally, the

weights for the neighborhood feature matrices are derived

using the attention mechanism. The working of this has

been outlined using equation 2. These convolutions were

modified to exploit the directionality, using the Directed-

Graph Neural Networks (Dir-GNN) [11] approach. This

allows us to add additional information about the direction

of the translating ribosome to the input secondary structure

graph. The implementation consists of the convolution

operation applied twice, once on the original adjacency

matrix, and again on the transposed adjacency matrix

(see Figure 1 (D)). The outputs from these convolutions

are combined to obtain the final output. The working of

this directed convolution has been outlined in equation 3,

where ET represents the flipped edge list of the graph and

V = [xK
0 , . . . , xK

n ] contains either the previous layer node

features or the input features when K = 0.

x
′
i = W1xi +

∑
j∈N(i)

αi,jW2xj

αi,j = softmax

(
(W3xi)

T (W4xj)√
d

) (2)

RiboGL − GNN = [x
K+1
0 , . . . , x

K+1
n ]

= TrConv(V,E) + TrConv(V,E
T
)

(3)

The outputs from each layer of this block are concatenated

together to construct the final output. This is conducted

using the Jumping Knowledge module [22]. This helps

retain the information from all the layers of the graph

processing block.

2. Sequence Processing Block (RiboGL-LSTM): This

consists of a 4-layer bi-directional long-short term memory

(BiLSTM) model with 128 nodes each. This block was

added so that we could potentially augment information

by processing the mRNA in terms of a sequence as well.
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RiboGL Variant Input Graph Structure Dir-GNN [11]

USeq useq No

USeq+ useq, struc No

DirSeq dseq Yes

DirSeq+ dseq, struc Yes

Table 1. Variations of the RiboGL model, with

different input graph structure and convolution types

Input Graph Structure: undirected sequence edges (useq), directed

sequence edges that incorporate the direction of the translating

ribosome from 5’ to 3’ (dseq), and undirected structure edges

(struc).

Equation 4 outlines the working of the RiboGL-LSTM,

where xK
i represents the output embeddings of node i from

the final Kth layer.

RiboGL − LSTM = LSTM([x
K
0 , . . . , x

K
n ]) (4)

The overview of the RiboGL model outlining the two

components, and the directed nature of the convolutions can

be found in Figure 1 (D). We have tested out four variants

of the RiboGL model, USeq, USeq+, DirSeq, and DirSeq+,

the properties of these models have been outlined in Table

1. We start with the simplest version, the USeq model,

which only uses the undirected sequence as the input, and

add additional features to design the other three variations.

Additionally, in the undirected variants, USeq, and USeq+, the

graph convolutions are only applied only once on the original

adjacency matrix.

The proposed RiboGL model is the DirSeq+ variant. For

each of the nodes in the graph, the model uses learned

embeddings from the one-hot encoding of the codon. To train

RiboGL, a node-level regression task was performed. This way

for each codon the model predicted a normalized ribosome

density value, which would then be concatenated together to

obtain a ribosome profile for the entire gene. The training

process was regularized using GraphNorm [23] and Dropout [24]

layers. The losses and metrics used in this training process

have been outlined in appendix section A.2, and the model

hyperparameters are mentioned in section A.3.

Captum Graph Explainer
In order to explain the results on various genes, we studied

what codons in the graph affected the peaks in the ground

truth ribosome profile. For each gene, the top 10 codons in

the ground truth ribosome profile in terms of their dwell time

magnitude were chosen and were perturbed using a Captum

[25] based explainer employing the “Input X Gradients” [14]

algorithm. This method provided attribution values for the

chosen peaks with respect to all the nodes, and the edges in the

secondary structure graph. This would allow us to understand

the relationships of the codons with the sequence and structure

neighborhoods. An example of the interpretability output from

the Captum Graph Explainer can be found in Figure 1 (E).

The height of the orange bars represents the magnitude of the

contribution from the codon, and the intensity of the red color

for the edges represents the magnitude of their contribution.

Model PCC ↑ MAE ↓

RiboMIMO 0.4459 ± 0.00872 0.64931 ± 0.01380

RiboGL - GNN 0.4744 ± 0.0043 0.03969 ± 0.00081

RiboGL - LSTM 0.6356 ± 0.0038 0.03732 ± 0.00070

RiboGL - DirSeq+ 0.6378 ± 0.0039 0.03715 ± 0.00066

Table 2. RiboGL comparison with the state-of-the-

art RiboMIMO model and the individual components

of RiboGL, RiboGL-GNN, and RiboGL-LSTM. The

performances mentioned are the mean and 95% confidence intervals

derived by conducting bootstrapping on the testing set of the mouse

liver dataset, refer to appendix A.4 for more information on the

bootstrapping process

Model PCC ↑ MAE ↓

RiboGL - USeq 0.6318 ± 0.0035 0.03740 ± 0.00075

RiboGL - USeq+ 0.6279 ± 0.0035 0.03754 ± 0.00073

RiboGL - DirSeq 0.6435 ± 0.0038 0.03718 ± 0.00072

RiboGL - DirSeq+ 0.6378 ± 0.0039 0.03715 ± 0.00066

Table 3. RiboGL ablation study to determine the optimal

input graph structure. Comparison of model performances of the

four different variants of the RiboGL model, which was conducted

to identify the usefulness of incorporating graph directionality

and additional structural neighbors from the mRNA secondary

structure.

Analysis of the Results

Comparing sequence and graph-based representations
The RiboGL model has a performance of 0.6378 in terms of

the mean Pearson Correlation Coefficient (PCC) on the mouse

liver dataset (section 3.1). This is ∼19% greater than the

performance of the state-of-the-art RiboMIMO model which

was re-trained and then tested on this dataset. Therefore, the

proposed RiboGL model significantly outperforms the state-of-

the-art model. This comparison has been outlined in Table

2. Additionally, we compare the RiboGL model with its

individual components, the RiboGL-GNN and RiboGL-LSTM.

The performance of the full RiboGL model was ∼16% greater

than that of the RiboGL-GNN model, but only slightly better

than the RiboGL-LSTM model. Our hypothesis is that the

GNN alone is unable to exploit the full codon-context around

the A-site due to the limitations of these models with long-

range dependencies [10]. The clear difference between the

two RNNs, RiboMIMO and RiboGL-LSTM, is due to the

fact that RiboMIMO does not have a learnable embedding

like RiboGL and its components. Lastly, the small difference

between RiboGL-LSTM and RiboGL could be due to the fact

that structural neighbors are helping the model only in small

regions of each gene, and such improvement is not immediately

reflected by our dataset-wise metrics.

Effect of Graph Directionality and Structural
Neighbors
To understand the importance of the different design aspects

in creating the RiboGL model, four different variants of it,

DirSeq+, DirSeq, USeq+, and USeq were tested. These four

models have been compared in Table 3.

Taking into account the directionality of the input mixed

graph through Dir-GNN improves the performance, since

RiboGL DirSeq and DirSeq+ are better than their fully

undirected variants Useq and Useq+. On the other hand,

including structural neighbors does result in a slight worsening
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A B

C

Fig. 2. Attribution analysis conducted using the Captum Graph Explainer in order to understand the average contribution of codons

to the ribosome A site against the offset from the A site. (A) Global attribution plot displaying the average contribution to the A site from 500

codons upstream and downstream from the A site. (B) Local attribution plot displaying the average contribution to the A site from 7 codons upstream

and downstream from the A site. (C) Local attribution plot as in [8] displaying the average codon-wise contribution to the A site from 5 codons upstream

and downstream from the A site. The codons have been clustered by their respective amino acids. Positive values indicate those that contribute to

increasing the ribosome dwell time at the A site, and negative values indicate those that decrease the ribosome dwell time at the A site.

of PCC, with no definitive outcome if we consider the MAE.

We hypothesize that the fluctuation of performance is due to

the increased amount of information, and noise, that is added

through the structural neighbors.

Considering that the performance between the variants of

the RiboGL model is not highly different, the DirSeq+ variant

of the RiboGL was chosen as the proposed model for the added

advantage of being able to study the structure edges by means

of extracting interpretability metrics from them.

Interpretability Study using the Captum Graph
Explainer
The Captum Graph Explainer (section 3.5) was used to study

all the genes in the test set of the mouse liver dataset using

predictions made by the RiboGL model. The perturbation

of the peaks in the true ribosome profile of these genes was

plotted to analyze on a global scale the effect of the different

codons in the neighborhood of the ribosome A site. In Figure

2 (A), the distance of the codons from the ribosome A site

was plotted against their corresponding mean attributions. It

can be noticed that the attributions were mainly from the

immediate neighborhood of the A site. We can see from the

zoomed-in version of this (Figure 2 (B)), that the codons

at the E, P, and A sites of the ribosome contribute the most

to the prediction at the A site. The codons upstream and

downstream from the A site also contribute highly to the

prediction at the A site. This figure explains the distance-

wise codon importance on the global dataset level, but as the

effect is averaged out, it is possible that this does not show

long-distance codon relationships that could be important for

particular genes. In Figure 2 (C) we study the relationship

between the different codons and the distance from the A site

with the mean attribution to the A site, similarly to [8]. This

figure was clustered according to the codons that translate to

the same amino acid. Negative values indicate that these reduce

the dwell times, and positive values indicate those that increase

the dwell times at the A site. For example, the serine coding

codon TCG at position -3 is shown to reduce the dwell time at

the A site, in that same sense, the cysteine coding TGC codon

at the +4 position is shown to increase the dwell time at the A

site.

Edge Interpretability with RiboGL - DirSeq+
As one would expect, Figure 2 shows that the codons in

the immediate neighborhood of the A site have the highest

importance in predicting the dwell times at the A site. But

as these plots show a global perspective, some gene-specific

relationships could have been averaged out. In order to study

these gene-specific effects, we analyze individual genes. The

contributions of the nodes and edges in individual genes in the

mouse liver testing set were obtained using the Captum Graph

Explainer applied to the proposed RiboGL - DirSeq+ model.

One of the best-performing genes, Mitochondrial Ribosomal

Protein L11 (“Mrpl11”), was chosen to explain this analysis.

In Figure 3 (A), the predicted and true ribosome profiles of

the “Mrpl11” gene (in blue and green respectively), along with

the global codon-wise contributions (in orange) to the codon

at position 96 have been displayed. The peaks in the ground

truth ribosome profile of this gene, which represents a position

where the ribosomes are stalling more often, were perturbed.

We showcase one of those peaks, the codon at position 96 where

we can notice that the codons in the local neighborhood have

a very high contribution to the dwell time at that position, but

in addition to them, there are several distant codons, such as

position 48, that also have a high contribution.

In Figure 3 (B), we check the attributions for the same

example using a graph perspective to investigate it further. We

notice that the distant codon at position 48 which is connected
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Fig. 3. Interpretability analysis using the Captum Graph Explainer built on the DirSeq+ model on the “Mrpl11” gene, and comparison

of the DirSeq+ and LSTM model performances. (A) True and predicted ribosome profiles on the “Mrpl11” gene using the RiboGL - DirSeq+

model. The codon at position 96 was perturbed using the Captum Graph Explainer, and the node attributions for this position have been displayed.

(B) True ribosome profile on the “Mrpl11” gene using the RiboGL - DirSeq+ model. The codon at position 96 was perturbed using the Captum Graph

Explainer, and all the node and edge attributions for this position have been displayed. The selected codon is the 96 codon (“ATC”), and the long-

distance attribution is observed from the codon at position 48 (“TTC”). (C) Scatter plot of the performances of the DirSeq+ model with the LSTM

(RiboGL - LSTM), on the mouse liver testing set.

to the codon at position 96, has a high contribution, this

could potentially be because they are connected by structure

edges. This contribution of the structure edges has been

highlighted in the figure. This is an important advantage of

the DirSeq+ model, as it allows us to understand and model

long-range codon interactions and their contributions through

the inclusion of structure edges.

RiboGL and LSTM Performance Analysis
We further investigate the performances of the full RiboGL

model with that of the RiboGL-LSTM model. A scatter plot of

the performances on the testing set samples for both of these

models has been displayed in Figure 3 (C) (0.66 PCC). We

can notice from this plot that the distribution is mostly on the

diagonal, showing that these models have similar performances

on all of the sequences. However, the addition of the Graph

Processing Block on top of the LSTM allows us to incorporate

the structure edges and conduct interpretability studies on

them.

Limitations

The proposed RiboGL - DirSeq+ model greatly outperforms the

state-of-the-art RiboMIMO model and lays the foundations for

modeling ribo-seq data as a graph. However, while the example

outlined in the discussion section 4.4 showcases the importance

of the structure edges, we did not get a definitive result

regarding the performance. We highlight that the information

coming from structural neighbors might affect only specific

genes or codons, and therefore be lost when averaging the

metrics across the whole dataset. Moreover, the results could

be highly dependent on the characteristics of the data, such

as the coverage distribution (see A.1). Investigating additional

datasets, such as bigger datasets belonging to other species,

could help clarify the importance of structural neighbors in

improving density prediction. Lastly, tools such as “Input

X Gradient” should be interpreted with care by taking into

consideration their reliability [26]. As a future work, we plan

to implement also approaches to increase the robustness of the

results, for example by smoothing interpretations [27].

Conclusion

RiboGL is the first graph-based approach applied to predicting

full-length ribosome densities. We showcase the importance of

using the physical and measurable aspects of mRNA such as

the predicted secondary structure, and how we can process
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this in terms of a graph. We improved the existing state-

of-the-art RNN [8] and combined it with a GNN to make

it able to process both the mRNA sequence and secondary

structure graph features. We also showed how the graph-

based explainability method can be used to study individual

genes to understand how node and edge attributions affect

the prediction at the A site. In the future, we would like to

explore the relationship of ribosome density values with other

aspects of the translation, such as the structure of the nascent

polypeptide, that can be also modeled by a GNN.
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Appendix

Preprocessing
The following steps were conducted after obtaining the pre-

processed reads from the Ribo-DT pipeline:

1. Gene-wise Normalization: The ribo-seq experiments for

this dataset were conducted multiple times to obtain 84

replicates. The codon-level ribosome read counts for these

individual replicate experiments were averaged within each

gene. Only the longest transcript for every gene was chosen,

and the others were removed.

2. Merging: The gene-wise normalized ribo-seq replicates

were merged to obtain one annotation of ribosome densities

per gene.

3. Annotation: The codons in all the gene sequences were

assigned their respective gene-wise read count values and

normalized by the average count. The ranges of these counts

were reduced by applying the log1p function.

4. Pruning: Multiple threshold conditions were applied while

choosing to keep a gene in the final dataset. Those

conditions were:

• Long Sequence of NaNs: All of the gene sequences were

traversed and if there were contiguous stretches of zero

counts longer than 30 codons, these were converted into

NaNs. Once the zeros were converted to NaNs, if those

genes had more than 5% of their codons annotated with

NaNs, they were removed from the dataset.

• Long Sequence of Zeros: Genes that had a contiguous

sequence of zero count values greater than 20 codons in

length were removed from the dataset.

• Percentage of Sequence Annotated (Coverage): Genes

that had less than 30% coverage were removed from the

dataset. The coverage was defined by the number of

codons annotated with a non-zero and non-NaN count

value, divided by the number of codons annotated with

a non-zero count value.

5. Dataset Split: The resulting dataset consisted of 6,188

genes and this was split into training and testing sets. The

genes in the dataset were first ordered in descending order

of their coverage. Alternating sequences from the top of

this list were added into training, and testing sets until

the testing set consisted of 20% of the original dataset.

The training set consisted of 4,904 genes and the testing

set consisted of 1,284 genes. This kind of train-test split

was chosen to maintain the quality of the testing set while

reducing the redundancy.

Loss and Metrics
To conduct this training process, a multi-term loss function

combining cosine loss and mean absolute error (MAE) was

designed. The equations for the loss function have been outlined

below.

To evaluate the performance of the models, the Pearson

Correlation Coefficient (PCC) was used. The PCC was

calculated between the predicted sequence of ribosome densities

and the true sequence of ribosome densities.

1. Mean Absolute Error (MAE or L1):

MAE =

D∑
i=1

|xi − yi| (5)

2. Cosine Loss (CL):

CL = 1 −
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(6)

3. RiboGL Loss

Loss = CL + MAE (7)

4. Pearson Correlation Coefficient (PCC):

PCC =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(8)

Model Hyperparameters
The RiboGL model was trained for 300 epochs with an early

stopping patience of 20 epochs. The AdamW [28] optimizer

was used with a learning rate of 1e−2, which was reduced by a

factor of 0.1 every 10 epochs of the loss not decreasing. A batch

size of 2 was used for the training process.

Bootstrapping
In order to obtain the mean performance of a model, along

with its confidence intervals, we conducted bootstrapping on

the testing set. The predictions on the genes in the testing

set were sampled with replacement 1,000 times to obtain

1,000 sets of performances. These were used to obtain the

mean and standard deviation of the performance of the model.

Additionally, to obtain the 95% confidence intervals, the value

of the standard deviation was multiplied by 1.96. The final

performance is reported as (mean ± 95% confidence interval)
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Fig. A.1. Coverage distribution of the genes in the mouse liver

dataset

Method Features Label Corr. Out Predictor

riboShape [3] ctx denoise cdn LM

RUST [4] ctx quant cdn CS

ROSE [5] ctx quant cdn CNN

Iχnos [6] ctx, fold norm cdn FNN

Riboexp [7] ctx, fold norm cdn RNN

RiboMIMO [8] seq, fold norm, quant seq RNN

RiboGL (ours) seq, graph norm seq GNN+RNN

Table A.1. Summary of ribosome density modeling

approaches. Features: codon/nucleotide/aminoacid of the A-site

context (ctx) or the full sequence (seq), mRNA folding energies

(fold) and secondary structure (graph).

Label Correction: denoising (denoise), quantization (quant), and

normalization, e.g., dividing by average transcript density (norm).

Output: at codon (cdn) or sequence (seq) level.

Predictor: Codon-wise Statistics (CS), Linear Model (LM), and

Feedforward, Convolutional and Recurrent Neural Network (FNN,

CNN, and RNN, respectively).
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