
Intermediate Address Space: virtual memory optimization of
heterogeneous architectures for cache-resident workloads

QUNYOU LIU, Embedded Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland
DARONG HUANG, Embedded Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland
LUIS COSTERO, Dpto. of Computer Architecture and Automatics, Universidad Complutense de Madrid
(UCM), Spain
MARINA ZAPATER, Institute of Reconfigurable & Embedded Digital Systems (REDS), School of En-
gineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland,
Switzerland
DAVID ATIENZA, Embedded Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

The increasing demand for computing power and the emergence of heterogeneous computing architectures
have driven the exploration of innovative techniques to address current limitations in both the compute and
memory subsystems. One such solution is the use of Accelerated Processing Units (APUs), processors that
incorporate both a central processing unit (CPU) and an integrated graphics processing unit (iGPU).

However, the performance of both APU and CPU systems can be significantly hampered by address
translation overhead, leading to a decline in overall performance, especially for cache-resident workloads. To
address this issue, we propose the introduction of a new intermediate address space (IAS) in both APU and
CPU systems. IAS serves as a bridge between virtual address (VA) spaces and physical address (PA) spaces,
optimizing the address translation process. In the case of APU systems, our research indicates that the iGPU
suffers from significant translation look-aside buffer (TLB) misses in certain workload situations. Using an
IAS, we can divide the initial address translation into front- and back-end phases, effectively shifting the
bottleneck in address translation from the cache side to the memory controller side, a technique that proves
to be effective for cache-resident workloads. Our simulations demonstrate that implementing IAS in the CPU
system can boost performance by up to 40% compared to conventional CPU systems. Furthermore, we evaluate
the effectiveness of APU systems, comparing the performance of IAS-based systems with traditional systems,
showing up to a 185% improvement in APU system performance with our proposed IAS implementation.

Furthermore, our analysis indicates that over 90% of TLB misses can be filtered by the cache, and employing
a larger cache within the system could potentially result in even greater improvements. The proposed IAS offers

Authors’ addresses: Qunyou Liu, qunyou.liu@epfl.ch, Embedded Systems Laboratory (ESL), École Polytechnique Fédérale
de Lausanne (EPFL), Rte Cantonale, Lausanne, Vaud, Switzerland, 1015; Darong Huang, darong.huang@epfl.ch, Embedded
Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, Lausanne, Vaud, Switzerland,
1015; Luis Costero, lcostero@ucm.es, Dpto. of Computer Architecture and Automatics, Universidad Complutense de Madrid
(UCM), Ciudad Universitaria, Madrid, Spain, 28040; Marina Zapater, marina.zapater@heig-vd.ch, Institute of Reconfigurable
& Embedded Digital Systems (REDS), School of Engineering and Management Vaud, HES-SO University of Applied Sciences
and Arts Western Switzerland, Yverdon-les-Bains, Switzerland, 1401; David Atienza, david.atienza@epfl.ch, Embedded
Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, Lausanne, Vaud, Switzerland,
1015.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 0000 Association for Computing Machinery.
1544-3566/0000/0-ART000 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0000-0002-6922-2520
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-6922-2520
https://doi.org/XXXXXXX.XXXXXXX


000:2 Qunyou et al.

a promising and practical solution to enhance the performance of both APU and CPU systems, contributing
to state-of-the-art research in the field of computer architecture.

CCS Concepts: • Software and its engineering → Virtual memory; • Computer systems organization
→ Multicore architectures.

Additional Key Words and Phrases: Computer architecture, CPU, GPU, virtual memory, TLB, Cache

ACM Reference Format:
Qunyou Liu, Darong Huang, Luis Costero, Marina Zapater, and David Atienza. 0000. Intermediate Address
Space: virtual memory optimization of heterogeneous architectures for cache-resident workloads. ACM Trans.
Arch. Code Optim. 00, 0, Article 000 ( 0000), 23 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In the post-Moore era, modern computer systems face increasingly diverse workloads and ever-
changing computing demands. The explosion of data generated by IoT devices, social networks,
and other sources makes applications more computationally intensive and memory-hungry by the
day [21]. Server workloads such as social network analytics, web search engines, and biomedical
data processing, and therefore their most crucial kernel, graph processing, have gained widespread
prominence in contemporary applications [8]. CPU-only systems are increasingly facing com-
puting performance and energy efficiency issues. Therefore, to cope with increasing computing
requirements, specialized computing units with different acceleration functions, such as Graphics
Processor Units (GPU) and Data Processing Units (DPU), have been developed and integrated into
the systems.

These heterogeneous computing units collaboratively work to meet the challenges of varied and
intensive workloads. However, heterogeneous architectures face the problem of data transmission
overhead, with some works reporting more than 50% GPU performance loss [8] due to this issue.
In 2010, AMD proposed the Deep-Integrated Accelerated Processing Unit [14] to alleviate the data
transfer overhead of traditional heterogeneous systems. An APU is a system that comprises a
CPU and an iGPU, both integrated on the same die and sharing certain processing units, including
the memory controller and last-level cache. The iGPU, as a co-processor of the CPU, executes
specialized computing tasks upon receiving instructions from the CPU. In 2022, AMD revealed the
first APU data center products in the world, showing great potential in the future [2].
Although the APU system alleviates the data transmission problem, the rapidly increasing

memory capacity of such systems, already reaching terabytes [11], results in a growth in the
memory address translation overhead between virtual and physical memory. Virtual memory is a
crucial feature of modern computer systems. It provides processes with the illusion of a private
memory space, which is maintained and converted into the PA space by the operating system and
memory management unit (MMU). This is particularly important for modern operating systems and
applications but also brings-in some problems. Among them, VA to PA translation can consume
more than 30% of overall system performance for server workloads [25] and exhibits an increasing
trend.

To alleviate the memory address translation overhead, researchers in [11] introduced a proof-of-
concept IAS into a CPU-only system. However, this IAS technique is just a theoretical proposal, never
evaluated and implemented in a full-system cycle-accurate simulator able to run full workloads on
top of an operating system, and lacks of support for heterogeneous systems. Therefore, to solve the
above challenges, this paper proposes the following contributions:

• We introduce a new IAS approach for both CPU and APU systems. The proposed IAS has two
stages of MMU, namely front-end and back-end MMU. The front-end MMU is responsible
for converting VAs into intermediate addresses (IAs), while the back-end MMU translates the

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://doi.org/XXXXXXX.XXXXXXX


Intermediate Address Space: virtual memory optimization of . . . 000:3

Fig. 1. (a) Traditional MMU design with two levels of TLB and a page table walker and (b) its use in the APU
architecture. $ is a common sign used to denote cache.

IAs to PAs. By adopting IAS into the computer system, we shift the bottleneck of address
translation from the core side to the memory controller side, allowing us to increase the
performance of cache-resident workloads.

• We extensively evaluate our proposed IAS architecture by modifying a state-of-the-art cycle-
accurate full-system simulator gem5 [10] to carefully investigate its performance in both CPU
and APU systems. To our knowledge, this is the first research work in the field to implement
and evaluate IAS with a complete system cycle-accurate architectural simulator capable of
running full applications. We target to release this complete IAS simulation infrastructure as
open source within the gem5 framework to enable further research in this area.

• By comparing a conventional system to a system with IAS, we show that the use of an IAS
can improve the overall performance of CPU systems by up to 40% and achieve up to 185%
improvements in APU systems.

• Furthermore, we explore the architectural design options for the IAS system. By varying the
size of the cache, we investigate the impact of the cache on the IAS system, showing how a
properly sized cache can filter more than 90% of the TLB misses. By varying the size of the
TLB for conversion from IA space to PA space, we show the importance of a suitable TLB
size and cache coverage, which can reduce more than 95% TLB misses and improve overall
performance by more than 25%.

The remainder of this paper is organized as follows. Section 2 provides the background on
VA and virtual-PA translation, introduces the APU system, and the motivation for our approach.
Section 3 explains the IAS and its implementation in both CPU and APU systems. The following
two sections describe our evaluation methodology and the results obtained. Finally, we conclude
with a summary of our findings and potential future developments in Section 6.

2 BACKGROUD AND RELATEDWORK
2.1 Virtual memory in modern systems
Contrary to the original single-tasking Operating Systems (OS) that only supported the execution
of a single program at the same time, modern multi-tasking operating systems running on current
CPUs allow the execution of multiple independent processes simultaneously. Although this im-
proves drastically the user experience, it has a huge impact on how the OS manages the different
processes, as each of them has to be mapped to a different memory location, and therefore, uses

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:4 Qunyou et al.

different memory addresses. To reduce the burden on programmers, the virtual memory abstraction
allows every process in the system to use the same memory addresses, being the OS responsible
for translating the addresses used by each process (VA) to a different and unique address in the
memory (PA).

The part of the CPU that is responsible for this translation is called theMemory Management Unit
(MMU). A general structure of an MMU is illustrated in Fig. 1(a). The interior of the MMU consists
mostly of two types of components: Page table Walker (PTW) and Translation Lookaside Buffers
(TLB). The PTW operates by following a chain of page table entries, each of which describes a
portion of the VA space and its corresponding PA. The page table entries are stored in a hierarchical
structure known as the multi-level page table, which is managed by the OS. In multi-level page
tables, the VA space is divided into several levels, each level containing a separate page table. When
a VA needs to be translated to a PA, the translation process starts at the highest level page table
and walks its way down through the hierarchy until it reaches the final lowest level page table. The
PTW is also responsible for ensuring that memory accesses are properly authorized and directed to
the correct physical memory location. It does this by checking the page table entries to ensure that
the program has the necessary privileges to access the memory location, and by checking for any
memory access violations or errors.
However, translating the PA every time is not efficient. Therefore, the second component, the

TLB, is introduced and responsible for storing recently utilized VA to PA mappings. The TLB serves
as a cache to speed up the VA-to-PA translation process so that if the same VA is accessed in a
short period of time, the MMU can quickly retrieve the corresponding PA from the TLB without
having to perform the entire translation process. However, due to area and latency constraints,
the size of TLBs is usually small, compared to the size of caches, and often a VA can not be found
in the TLB (called TLB miss). In these cases, the MMU will then perform the translation using the
page tables stored in the main memory, which is a slow process due to the long latency of the
modern main memory structure. Results from [24] show that a TLB miss can incur an average
of 135 cycles overhead on page walks on a modern x86-64 architecture, especially bottlenecking
memory-intensive workloads. The trend of having larger and larger caches to enhance data locality
results in lower TLB cache coverage and therefore higher TLB misses, with the subsequent overhead
in memory translation. Furthermore, the use of virtual memory today is not limited to CPUs but
rather frequently used in accelerators and co-processors, such as APUs, where the same bottlenecks
can be found, yet more exacerbated.

2.2 APU architecture
Fig. 1(b) illustrates the APU’s general architecture [8], comprising a multi-core CPU and an in-
tegrated GPU (iGPU). Each core on the CPU has its own private data and instruction L1 caches
and a unified private L2 cache. The iGPU component includes a command processor, and several
Compute Units (CUs). The command processor is an embedded microprocessor within the iGPU
that is capable of performing the majority of tasks traditionally handled by the operating system. It
is responsible for receiving instructions from the CPU, keeping track of GPU states, and sending
interrupts to the CPU. The CUs are in charge of computing-related duties through the multiple
SIMDs inside. All CUs share the same L2 cache.
The advantage of APU architecture with respect to a system with a discrete GPU is its shared

memory address space, reducing programming complexity and performance overhead by sharing
the memory blocks and enabling the CPU and iGPU to access the same data simultaneously.
Compared with a system comprising a discrete GPU (directly attached to the system bus), the APU
allows for fine-grained data sharing between the CPU and iGPU, offering significant benefits in
various computing scenarios, as well as decreasing the power consumption [27]. Furthermore, due

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:5

Table 1. APU System Configuration

Component Parameter Value

CPU

— Out-of-order @2GHz
L1 - Data cache 32 KB, 2 cycles latency
L1 - Instr. cache 32 KB, 1 cycle latency
L2 cache 2 MB, 24 cycles latency

iGPU

— 4 CUs, 64 lanes per CU @1GHz
L1 cache - Scalar 32 KB, 1 cycle latency
L1 cache - SQC 32 KB, 1 cycle latency
L1 cache - TCP 16 KB, 4 cycles latency
L2 cache - TCC 256 KB, 8 cycles latency

L3 cache - shared — 16 MB, 20 cycles latency

TLBs private 32 entries, 1 cycle latency
L2 TLB 512 entries, 10 cycle latency

to these features, the APU shows more potential with respect to other heterogeneous systems for
supporting IAS and exhancing the performance of server workloads.

2.3 Performance advantages of the APU and its large address translation overhead
The escalating demand for server workloads, particularly for social network analytics, web search
engines, and biomedical applications, underscores the growing significance of their core component,
graph processing [8]. Graph processing typically uses sparse data formats such as Compressed
Sparse Row/Column (CSR/CSC) to manage a large amount of data efficiently. Then, Sparse Matrix-
Vector Multiplication (SpMV) is used to manipulate and process data. It is well-known that SpMV,
and of course, graph processing, are computing and memory-intensive tasks in the field [8].
Therefore, heterogeneous systems, (like APU systems), have been proposed to bring performance
improvements for such workloads by introducing dedicated acceleration units, i.e., iGPU. Compared
with CPU, APUs can exhibit greater benefits.

To closely examine the advantages of APU over CPU and at the same time evaluate the room
for improvement, we performed an analysis of the performance obtained from the state-of-the-art
graph benchmarks Pannotia [7] running with the gem5 architectural simulator [5]. The gem5
simulator is configured to mimic a real system. Table 1, shows the parameters used to run the
experiments, most of which come from the default simulator settings, and some which are scaled
down to better match the behavior of a real system.

Fig. 2 gives the speedup of the APU system against the CPU-only system for each application in
the Pannotia benchmark. The results depicted in the figure unequivocally show that the APU system
surpasses the CPU system by a considerable margin, with an overall performance improvement of
approximately 132 times. Based on the performance evaluation of APU and CPU systems using
the Pannotia benchmark, it is evident that the GPU-based APU system substantially outperforms
the traditional CPU system, even when handling irregular GPU workloads. This observation
underscores the significance of embracing GPU-accelerated architectures, especially in application
domains characterized by irregular workloads, in order to leverage the exceptional performance
and efficiency advantages they provide.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:6 Qunyou et al.

Fig. 2. Execution time improvement using APU against CPU.

Despite the tremendous advantages brought by the APU system, the irregular memory access
patterns of sparse data lead SpMV and graph processing applications to have a large memory
address translation overhead and performance degradation [11, 16, 29].
The fundamental reason behind this phenomenon is the fact that while the cache sizes have

increased over the decades to mitigate the impact of data cache misses, TLBs have not followed the
same growth, and the extent to which physical memory addresses can be accommodated within
the TLB has not kept the pace, thus, leading to low TLB coverage on the cache and a large number
of TLB misses and page walks. Due to the performance cost of a PTW, this eventually introduces
large memory address translation times and performance overhead. Furthermore, a larger cache
makes the problem more severe, as the PTW needs to consume additional cycles to access the cache
hierarchy to map virtual memory addresses used by applications to physical memory addresses
used by the hardware. The work in [11] shows that the address translation overhead is increasing
in the existing systems with increasing cache sizes.

This phenomenon can be observed in Fig. 3, where we show the number of misses per thousand
instructions (MPKI) for both TLB and last level cache (left y-axis) for each application of the
Pannotia benchmark. The TLB misses induce MMU overhead, which we define as the percetage of
total CPU cycles spent on address translation, and that is plotted as a red dashed line in the right
y-axis.

On the one hand, benchmarks like BC, Colormax, and Colormin have relatively low MPKI values
for both TLB and Cache, suggesting efficient utilization of memory resources. The low MPKI values
may be indicative of regular or semi-regular memory access patterns and good spatial and temporal
data locality. These properties help to minimize memory misses and thereby increase the overall
performance of the benchmarks. On the other hand, benchmarks like FW, PagerankSPMV, Pagerank,
or SsspELL, have higher MPKI values for either TLB, cache, or both, which suggests more complex
or irregular memory access patterns. This could be due to the nature of the problems they are
solving, which may involve complex data structures or irregular algorithms. High MPKI values
indicate poor spatial and temporal data locality, leading to increased cache and TLB misses, which
shows great pressure for cache and MMU.

Furthermore, we compared the experimental results with a system featuring an Ideal MMU (i.e.,
an MMUwith 0 cycle address translation overhead), to investigate the TLB misses induced overhead.
The overhead is depicted as the red dash line in Fig. 3, with the right y-axis. PagerankSPMV and
SsspELL, as the two benchmarks with the highest TLB missrate, show the most dramatic overhead
of approximately 50% and 37% respectively, consistent with their previously high TLB MPKI
values. These overheads underscore the importance of effective memory management for irregular
workloads and reveal that the APU is significantly affected by address translation, leading to a
degradation in overall performance.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:7

Fig. 3. Access Pattern and Address Translation Overhead for APU for the Pannotia benchmarks.

Similar behavior is present in CPU systems. For example, [11, 31] show that traditional CPU-only
systems suffer from around 17% address translation overhead, reaching more than 30% as the size
of the cache increases.

Recognizing the promising capability of the APU system in the computation of irregular work-
loads and similar access pattern problems they are facing, we are motivated to implement the
IAS into the APU system. The anticipated benefits of this integration will be elucidated in the
subsequent sections. In summary, the results show that address translation is a serious problem
in modern systems (both CPU and APU). In the next section, the state-of-the-art to mitigate the
translation overhead will be discussed.

2.4 State-of-the-art
Researchers from around the world have proposed a variety of solutions to address the translation
overhead problem. First, to extend the address range the TLB can reach, Kwon et al. propose
a framework called Ingens [19] for huge page automatic support in operating systems. Ingens
promotes or demotes huge pages according to the number of physically resident pages and their
access frequency. The experimental results demonstrate that Ingens has the ability to mitigate tail
latency and memory bloat, significantly improving performance for essential applications such as
Web services and Redis [19]. However, the idea of huge pages can also cause several other problems,
which, for example, can lead to internal fragmentation and memory waste.

To improve the efficiency of address translation of the GPU system, researchers propose a
second method to address the address translation overhead called Mosaic [3]. They propose using
address-translation-aware caches and memory management algorithms that significantly reduce
address-translation overhead. However, the proposal cannot handle intermediate sizes larger than
4kB. [20] shows that Mosaic does not work well with low-contiguity pages and struggles with the
workloads of large memory footprints due to the 2MB page-size limitation.

Several researchers have proposed the idea of virtual caches. In particular, Wood et al. [28]
propose the use of a global VA space for addressing caches. However, their approach involves
translations from virtual to global virtual address spaces using fixed-size program segments. More
flexible paging systems have since replaced these segments. Their simulation methodology is based
on a trace-driven simulator and cannot estimate the overall full-system performance. A similar
idea is also introduced in GPU-addressing. Yoon et al. [29] proposes to turn the physical cache
system into a virtual cache system for GPU systems. Virtual caches are designed to take the TLB
off the critical path, thereby moving address translation to the memory side. In such systems,
processes are addressed in the cache using their private VA as a namespace. Using a virtual index
cache, the GPU can immediately retrieve data from the cache, and, therefore, the cache can filter
most of the TLB misses. This strategy can significantly reduce address translation overhead [29].

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:8 Qunyou et al.

However, the method requires the system to handle the problem of control logic required to resolve
synonyms and homonyms across VAs (i.e., multiple VAs mapping to the same PA, or a single VA
mapping to multiple PAs). Consequently, virtual hierarchies are difficult to incorporate into modern
systems [11].
The use of IAs is another promising proposed solution. Zhang et al. [30] propose an idea of

an IA space that translates the VAs at 256MB granularity. However, it works only well for GB-
scale memory. When faced with TB-scale memory, it seems powerless. Although they simulate
performance using a complete system simulator called Mambo [6], it is not open source, only
available on limited platforms, and only supports the PowerPC architecture. Hajinazar et al. [13]
propose an IA space that consists of fixed-size virtual blocks for application use. However, to
implement such an address space inside the system, additional tools, and software modifications
are needed. The simulation is based on a modified DRAM simulator, called Ramulator [17], which
simulates the performance by using the collected trace of representative regions of the benchmark,
which cannot reflect the overall performance improvement.

Designed for the modern data center system, Sid et al. propose an IA approach called the Midgard
address space [11]. This idea uses variable VMA sizes in a flexible manner, converting the two
address spaces into three address spaces. The main contribution of this work is that, by using three
different address spaces in the system, the address translation overhead can be greatly reduced.

The mapping mechanism from VAs to IAs is depicted in Fig. 4(a). Midgard IA space employs the
operating system concept of Virtual Memory Areas (VMAs) to produce a single IA space in which
all processes’ VMAs can be mapped uniquely. A VMA is a contiguous range of memory used by an
operating system to manage and keep track of the VA space allocated to processes. When many
processes are present in a system, the shared library will be assigned to the same IA, while the rest
of the private data will be assigned to other IAs. Each private VA will be mapped to a unique IA
through the IA mapping process. Unlike the conventional system, which translates VAs to PAs
in a unit of fixed size, the IAS system translates VAs into IAs in the unit of VMAs. However, in
real-world computer systems, programs use much fewer VMAs than pages to represent their VA
space. Thus, fewer hardware resources are required during the transition from VA to IA space in
the granularity of VMAs than with conventional virtual-physical translation. Similarly, the number
of mappings from VMAs to Intermediate Memory Addresses (IMAs) is fewer, and it brings fewer TLB
misses for front-end translation, which is lightweight. At the back-end translation from IA space to
PA space, due to the translation granularity of pages, more hardware resources are needed, like
TLB entries and multilevel page tables. Besides, facing TLB miss at the back-end MMU, the PTW
needs to walk through the page table level by level, first from the cache and then from memory
if the cache misses. Furthermore, the latency of accessing memory is much higher than that of
accessing cache, which is a heavyweight translation. However, thanks to a larger cache, it can filter
a high number of TLB misses. We show the impact of cache in the next section. By implementing
this kind of mapping mechanism using QEMU [4], [11] evaluates the full potential of Midgard
address space, which shows more than a 30% decrease in address translation overhead compared to
the conventional system. However, their work is based on tracing information from emulation and
using average memory access time as a metric, which can not show the cycle-accurate result and
overall system performance improvement. To evaluate the overall performance improvement, we
introduce IAS into the cycle-accurate full-system simulation gem5. We will discuss the detailed
implementation of IAS with a little more depth in the next section.

3 INTERMEDIATE ADDRESS SPACE FOR BOTH CPU AND APU
In this section, we start by introducing the implementation of an IA space for CPU systems. Then,
a description of how to extend this idea to APU systems is explained.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:9

3.1 Intermediate address space for CPU

Fig. 4. (a) Address Mapping and (b) System Architecture for Intermediate-address Space Systems.

Fig. 4(b) shows how the high-level abstract architecture of IAS is implemented in this work.
We first introduce the CPU-only system, which comprises the three blocks on the left of Fig 4(b)
(without the iGPU block in the dashed box). The IAS comprises three address spaces: VA space, IA
space, and PA space. The processor’s core, cache, and memory utilize VAs, IAs, and PAs, respectively.

To handle translation, two stages of MMUs are introduced into the system, each responsible for
a different phase of the translation process. Hereafter, we shall refer to the MMU that converts VAs
into IAs as the front-end MMU and the MMU that converts IAs into PAs as the back-end MMU.
During the process of address translation, initially, the CPU translates the VA into an IA, using
it to access the cache and fetch the desired data or instructions. In the event of a cache miss, the
back-end MMU converts the IA into a PA and retrieves the data from the memory. By incorporating
an IA into the CPU system, IAs filter heavy-weight translations to PAs, limiting them only to
memory references that miss in the last-level cache. This part and how we have implemented it in
our proposed IAS is carefully explained in section 3.3.

3.2 Unified Intermediate Address Space for APU
The use of an IAS in the APU system follows the same ideas as in the CPU system. As mentioned in
the previous section, IAS can enhance performance when used together with a large cache system.
The motivation for introducing an IA space into APUs is supported by three key ideas:

• In an APU system, the CPU and iGPU share the same address space. This shared address
space serves as a prerequisite for introducing the IA into the APU. By utilizing a shared
address space, the system eliminates the need for address conversion between the CPU and
iGPU.

• Second, GPU tasks typically comprise a single process or a small number of processes with
hundreds or even thousands of threads. This implies that when the GPU is in operation,
it only needs to handle a limited number of VMAs. Employing IA translation reduces the
quantity of address translation correspondences, thus alleviating the load on the front-end
translation.

• In an APU system, the CPU and iGPU share the same memory controller. This means
that only one back-end MMU is required on the memory controller side to convert the
IA to a PA. Consequently, the TLB can be shared by both the CPU and iGPU, resulting in
increased efficiency. Moreover, the large cache can filter more MMU requests, leading to
further performance improvements.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:10 Qunyou et al.

START

VLB

Look up

Walk the

VMA Table

Cache

Look up

for VMA 

Table

Cache 

Look up 

for data

ILB

Look up

Walk the

IMA Table

Cache

Look up

for IMA

Table

Get data/VMA

from Memory

Get leaf PTE 

from Memory

Cache

Look up

for leaf-1

Table

End

MISS

MISS

HIT

HIT

MISS

HIT

HIT

MISS

MISS

HIT

VMA
Data

HIT

Recurse

on miss

Frontend MMU

Backend MMU

START

VLB

Look up

Walk the

VMA Table

Cache

Look up

for VMA 

Table

Cache 

Look up 

for data

ILB

Look up

Walk the

IMA Table

Cache

Look up

for IMA

Table

Get data/VMA

from Memory

Get leaf PTE 

from Memory

Cache

Look up

for leaf-1

Table

End

MISS

MISS

HIT

HIT

MISS

HIT

HIT

MISS

MISS

HIT

VMA
Data

HIT

Recurse

on miss

Frontend MMU

Backend MMU

1

2

MISS

HIT

MISSHIT

MISSMISS

HIT

Frontend MMU

Backend MMU

START
VLB

Look up

Walk the

VMA Table

Cache

Look up

for VMA 

Table

Cache 

Look up 

for data

ILB

Look up

Walk the

IMA Table

Cache

Look up

for IMA

Table

Get data/VMA

from Memory

Get leaf PTE 

from Memory

Cache

Look up

for leaf-1

Table

End

Recurse

on miss

1

HIT

MISS

4
HIT

HIT

2

5

10 8

6

3

9

7

Fig. 5. Intermediate address space finite state machine.

These three factors offer a theoretical benefit in introducing IAS into the APU system. As shown in
Fig.1 (b), we therefore introduce the IAS into the cache hierarchy, i.e., adding the dashed box on
the top left of the figure, which comprises the original iGPU model augmented with a front-end
MMU for the iGPU.

3.3 Intermediate Address Space MMU design
An experimental evaluation of this proposal is performed in the cycle-accurate gem5 simulator.
However, to properly simulate the IAS for the system, a set of changes to gem5 are needed:

• We modify the conventional MMU to adapt the behavior of the proposed front-end MMU
responsible for the VA to IA translation.

• We modify the cache hierarchy and structure in the simulator to make it IAS-compatible.
• We modify the memory controller to incorporate the back-end MMU inside, enabling the IA
to PA address translation.

• We design new TLB entries for front-end and back-end MMU, respectively, to be compatible
with the IAS.

• Finally, to evaluate the overhead of the MMU, we tune the conventional MMU to emulate the
behavior of the ideal MMU.

Figure 5 provides a comprehensive description of how the implemented IA space works within
the system. The process begins with a virtual look-aside buffer (VLB), labeled 1○ in the figure. The
VA is mapped to an IA in the unit of VMAs partially stored in VLB. This phase is light-weighted. If
the VA is found in the VLB, the system attempts to fetch data from the cache with the IA, labeled
as 4○ in the figure. If there is a cache hit, the cache returns the data from the desired address, and
the process ends.

If the VLB cannot initially locate the required VA translation, the system must call on the PTW
from the front-end MMU to have a VMA table walk for it ( 2○). If the desired address is successfully
found in the cache, the translation process is complete at 3○, and the system proceeds to fetch data
from the cache 4○. In contrast, if the address is not found in the cache at 3○, resulting in a cache
miss, the system needs to fetch data from the next memory level, the main memory. The system
enters the back-end translation. The data stored in memory are physically addressed. The system
turns to the back-end MMU to translate the IA to PAs. The back-end MMU receives requests only
when a cache miss happens. It works using the same clock domain as the memory controller, it
is triggered every time a memory request happens, and shares the same requests as the memory

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:11

controller, with a different execution order. The back-end MMU consists of two parts, TLB and
PTW. The back-end MMU, firstly, checks the intermediate look-aside buffer (ILB), labeled 5○ in
the diagram. If hit, the system will fetch the data from memory by its PA (10○). On the other hand,
if missed, the system needs to walk the multi-level IMA table ( 6○). The back-end MMU, first of
all, inquires about the cache for the desired page table entry (PTE). If hit, it fetches the data from
the memory as in the previous step. If missed, it needs to fetch PTE level by level, similarly to
conventional systems. These two stages of address translation work together to implement the
virtual to physical address translation. Please note that these two stages operate autonomously,
with their management being independent. Modifications or invalidations within the front-end
or back-end translation mechanisms do not affect the other stage, in alignment with the address
translation mechanism illustrated in Figure 4(a). The Translation Lookaside Buffer (TLB) functions
solely as a cache for address mapping, with the mapping relationship exclusively managed by
the operating system kernel. The coordination between address spaces is facilitated through a
collaborative interplay between software and hardware components.

4 EVALUATION METHODOLOGY
4.1 Simulator Platform
We utilize the state-of-the-art cycle-accurate simulator gem5 [10] to evaluate our implementation.
Gem5 is a popular full-system simulator that supports a highly configurable simulation, multiple
ISAs, and diverse CPU and GPU models [5]. For CPU part performance evaluation, we choose
ARM ISA, as the ARM core has better support on the address translation and it is more practical
than the X86 ISA system, which only has a simplified translation mechanism. In the APU system
evaluation, we select the X86 ISA for the CPU system due to the limitation that the APU system is
currently only supported by AMD in Gem5. In addition, AMD Research has developed an APU
model with gem5 by incorporating a GPU timing model capable of running the Graphics Core Next
(GCN) generation 3 machine ISA [12] [1]. Our experiments are based on the AMD’s APU model
with heavily customized functions and modules. To support IAS in gem5, different modifications
were needed: changes to the hardware source code, new custom blocks, and modification of the
simulator microarchitecture. We modify the microarchitecture of the front-end MMU to incorporate
the IAS and modify the Ruby subsystem inside Gem5 to adapt the IA and solve the cache coherency
problem inside IAS. Also, we introduce the back-end MMU to process the IA to PA translation. From
the perspective of the software inside the OS, the IAS is transparent. Therefore, no modifications
to the applications running on the system, nor to any user-space code are required. By adopting
IAS into a modified system on gem5, we are able to run detailed simulations of the full system
with accurate timing and gather microarchitecture event information, such as front-end / back-end
misses and the number of page table walks. We simulate three different systems for comparison
purposes: (i) a conventional system used as baseline (called Conventional in the following), (ii)
a system with an ideal MMU, which has zero address translation overhead, i.e., zero latency in
translation at both front-end and back-end (called Ideal), representing the maximum theoretical
attainable improvement, and (iii) our proposed implementation of IAS (called IAS).
The OS is a key element in implementing full-system IAS support. From the OS perspective,

address translation cannot be transparent, since the OS is the software component in charge of
managing the MMU. In the IAS system, the OS should at least be aware of the existence of this
two-level address translation. However, modifying a full-fledged Linux-based OS to support IAS is
a huge development effort going beyond the scope of this paper. In contrast, in this work, our aim is
to use the research undertaken in [11] by taking a deeper look at the impact of IAS on full-fledged
single-process applications. Modifying the OS, we believe is the next natural step once architectural

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:12 Qunyou et al.

exploration proves IAS to be relevant and allows us to understand the impact of latency at the
front-end and back-end MMU.

To solve this chicken-and-egg problem and simulate IAS in gem5, we choose to walk around this
issue by introducing the mandatory modifications and additional information required to manage
IAS directly into the packet structure in gem5. In this way, we can keep using a conventional OS
without IAS support, and modify the basic data structure of gem5 packets to include information
of both VAs and PAs.

4.2 System Architecture
In this study, we introduce IAS into the CPU systems based on the ARM architecture, both on an
in-order core and an out-of-order (OoO) core. The OoO core allows for the dynamic reordering of
instructions during execution, enhancing the overall system performance by exploiting instruction-
level parallelism and reducing the impact of pipeline hazards. The in-order core executes the
program in order with lower performance but better energy efficiency.

In addition, we modify the APU model to adapt to IAS. We configure it with the X86 CPU timing
model and iGPU timing model. The iGPU model utilizes the GCN3 microarchitecture and consists
of four computing units. Also, we design a new back-end MMU for the memory controller. We
configure the scalar cache, sequencer cache (SQC), and texture cache per pipe (TCP) cache on the
integrated GPU side to 32KB, 32KB, and 16KB, respectively. Moreover, we set the texture cache per
channel (TCC) cache size to 256KB. The last level cache is set to 16MB. As the last level cache is
CPU-private in our designed protocol, we do not modify its size in the following experiment. For
the first phase of translation, the private TLB is built with 32 entries and a 4KB page size, whereas
the second-level TLB is configured with 512 entries and the same page size. The hit latency and
miss latency of the back-end MMU are 3 and 500 cycles, respectively. Most of the numbers are
configured using the default value from gem5 since the AMD APU group sets the value, while
others are scaled down according to realistic systems. All these values imitate the values present
on modern processors. Table 2 details the configuration specifications. In the CPU, the miss latency
for MMU is not a fixed number, as it may depend on the address and location of the target address
as PTW fetches it step by step (this feature is simulated by gem5). According to our analysis, the
average miss penalty of the CPU side is around 120 cycles.

4.3 SystemWorkload
4.3.1 CPU Workload. Graph processing workloads are widely used in evaluating MMU modifica-
tions [11]. Indeed, most of the applications used nowadays in data centers, such as social network
analytics, web search engines, or biomedical applications are based on graph processing algorithms.
However, the large footprint of such workloads and benchmarks is not feasible to run with a
cycle-accurate architectural simulator (mainly due to its slow simulation speed). To avoid this
problem, while being accurate in the target architectural conclusions, we select sparse matrix-vector
multiplication (SpMV) workloads, the crucial kernel behind graph processing workloads [8] to run
the experimental evaluation. These workloads present three advantages, namely: (i) they have a
small footprint, making the simulation process feasible on the gem5 simulator, (ii) they present a
highly irregular access pattern, similar to graph processing workloads, and (iii) they are a fundamen-
tal linear algebra operation playing a crucial role in a multitude of different scientific, engineering,
and machine-learning applications. To assess the performance of our IAS-equipped CPU system, we
have chosen several sparse matrix benchmarks, i.e., NLR, kron_g500, from the SuiteSparse Matrix
Collection [18] to stress the MMU. Thanks to the Address Space Identifier (ASID), vastly supported
in modern CPUs to maintain multiple different address spaces in TLB simultaneously and avoid
frequent TLB flush, our solution does not incur a larger overhead in context switches.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:13

Table 2. CPU system and APU system configuration used on the experiments

Component Parameter Value Latency

CPU
— ARM OoO & in-order @1GHz
L1 data cache 32 KB 2 cycles
L1 instruction cache 32 KB 1 cycles
L2 cache Configurable size Configurable

Front-end MMU L1 48 entries 1 cycle
L2 1024 entries 10 cycles

Back-end MMU — 4096 entries 3 cycles

APU

— 4 CUs, 64 lines per CU @1GHz
L1$ - Scalar 32 KB 1 cycle
L1$ - SQC 32 KB 1 cycle
L1$ - TCP 16 KB 4 cycle
L2$ - TCC 256 KB 8 cycles

L3$ - shared 16 MB 20 cycles

Front-end MMU L1 32 entries hit 1 cycle, miss 5 cycles
L2 512 entries hit 10 cycles, miss 750 cycles

Back-end MMU — 256 entries hit 2 cycles, miss 500 cycles

4.3.2 APU Workload. In order to rigorously evaluate the performance of our design, we employ a
wide range of test benches and workloads in our simulation, which encompasses various application
domains and computing challenges, ranging from regular GPU workloads to irregular workloads.
We explore the performance impact of using IAS in different domains:

• Pannotia [7]: A set of irregular GPU workloads representing non-uniform and complex
computational patterns. This benchmark allows us to test our design’s ability to manage
irregular memory access patterns and control flow, which are often encountered in real-world
applications.

• DNNMark [9]: A benchmark suite specifically tailored for machine learning (ML) and deep
learning (DL) applications. It includes a collection of representative deep neural network
(DNN) primitives that capture the computational characteristics of typical ML/DL workloads,
enabling us to assess our design’s efficiency in handling such tasks.

• HeteroSync [26]: A benchmark suite, comprised of HeteroSyncLFBarr (HSL) and HeteroSync-
sleepMutex (HSM), focusing on fine-grained synchronization in tightly coupled GPU architec-
tures. This testbench evaluates our design’s performance in handling efficient synchronization
and communication between GPU threads, which is crucial for maintaining high performance
in parallel computing environments.

• Lulesh [15]: A hydrodynamic modeling application used in scientific computing. Lulesh
(Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics) is a proxy application
that simulates the behavior of materials under extreme conditions. This benchmark helps us
gauge our design’s ability to handle complex numerical simulations and computational fluid
dynamics problems.

• HACC (Hardware/Hybrid Accelerated Cosmology Code) [23]: An application designed to
simulate the evolution of the universe. HACC is a large-scale, high-performance cosmological

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:14 Qunyou et al.

Fig. 6. When changing the cache size, execution time varies for different MMU configurations in (a) In-order
core and (b) OoO core. Relative performance improvements of Ideal and IAS against Conventional MMU in
(c) In-order core and (d) OoO core.

N-body code that enables us to test our design’s performance in the context of astrophysical
simulations and computationally intensive scientific applications.

As described, the Pannotia benchmark is representative of the typical irregular benchmark
with irregular access patterns, while the others are regular benchmarks for ML and scientific
computation showing some different performance results. We implement these GPU workloads
on our customized Gem5 simulation, as they represent a wide set of applications. By leveraging
this diverse set of benchmarks and workloads, we can thoroughly examine our proposed design’s
performance across various application domains and computing challenges, ensuring its efficiency,
robustness, and suitability for various use cases. To evaluate the performance of the iGPU, we run
the full benchmark traces without any skipped instructions, and we acquire the microarchitecture
statistics of the iGPU side with that of the CPU side ignored. Then, to make a fair and consistent
comparison with CPUworkloads, we choose one subset from Pannotia, Pagerank_SPMV (PR_SpMV)
as our target benchmark, due to the similar access pattern, to further analyze the performance of
the APU system.

5 EXPERIMENTAL RESULTS
5.1 Evaluation results for IAS-equipped CPU-only system
5.1.1 Overall execution time. First, we compare the overall execution time of the three different
systems: Conventional, Ideal, and IAS. Fig. 6(a) and (b) show the results of running the SPMV
benchmark on these different systems with different cache sizes, both for in-order and OoO cores
respectively.

When the cache size is small, the execution time for all three systems is considerably high, which
can clearly be attributed to this fact, resulting in a high cache miss rate and causing the cache
controller to fetch data from the main memory frequently. In addition, for systems with IAS, the
high number of requests to the back-end MMU contributes to the increase in the execution time.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:15

Due to the limited cache size, there is a significant demand for IA-to-PA conversions, resulting in
considerable address translation overhead.

As the cache size increases, for the in-order core, the execution time of all three systems initially
decreases, followed by an increase as the size of the cache continues increasing (see Fig. 6(a)). There
are two main factors that can impact the overall performance of the system: cache overhead and
translation overhead. The cache overhead is the time spent fetching data or instructions from the
cache hierarchy, excluding page-table entries. The translation overhead is the time spent accessing
TLB and fetching page table entries. For conventional systems, it comes only from the front-end
translation. However, for systems with an IAS, it comes mainly from the back-end translation
and slightly from the front-end translation. Indeed, when the cache size is small, the workload
size cannot be totally placed in the cache. As the cache size enlarges, so does the cache hit rate.
During this phase, the size of the cache still has a larger impact on the performance than the
cache access latency. The cache overhead decreases greatly much more than the increase of the
translation overhead for the IAS system. After that, when the cache size reaches a certain point,
the workload can reside entirely in the cache hierarchy. The cache overhead increases during this
phase due to the longer access latency. Therefore, the execution time of the IAS system and the
ideal system increases. The conventional system also has to face the increasing overhead from
front-end translation. Therefore, the conventional system increases much larger than the ideal
system and IAS system.
For an OoO core, the performance of the IAS system improves and eventually stabilizes when

the cache size increases (Fig. 6(b)). At the same time, the overall execution time of the Conventional
system and the Ideal MMU system initially decreases but then experiences a slight increase. The
decrease in the IAS system comes from the decrease in back-end translation. Even though the
workload can fit into the cache hierarchy, the corresponding page table may not be able to reside
in the cache entirely, which means that, during the second phase of cache increasing, the cache
can still filter a part of page table requests. Therefore, facing increasing cache size, the translation
overhead decreases and the decrease is more significant than the increase in cache overhead.
Regarding performance comparisons, we calculate the performance improvement for the Ideal

and IAS system based on the Conventional system and plot them in Fig. 6 (c) and (d). From the figures,
the performance improvement of both systems increases with the cache size. The performance of
the Ideal MMU system always outperforms that of the IAS MMU system. The main reason for the
translation overhead is the frequent back-end MMU requests. It is worth noting that there is a gap
between the ideal and IAS system and that the gap of the OoO core is much larger than that of the
in-order core. The gap is the translation overhead from IAS, which mainly comes from the back-end
MMU (explained later in Section 5.1.5). For the OoO system, the memory access requests and the
translation requests are overlapped due to the OoO ability. Therefore, the back-end translation
overhead is smaller than that of the in-order core.
Compared to a system with an OoO core, the in-order-core system is more sensitive to cache

latency; the fluctuation of execution time is greatly impacted by cache size because of the execution
of in-order instructions. When an out-of-core core encounters a long-latency event, like a cache
miss or TLB miss, the cores can execute other instructions instead of waiting for the stalled one,
which can hide a large part of the latency. Instead, when the in-order core meets a long-latency
event, due to the in-order mechanism, it has to wait until the previous stalled instruction resumes
working. Therefore, the in-order and OoO cores show different performance sensitivities to cache
size and latency.

5.1.2 Cache size impact on MMU accesses and misses. As mentioned in the previous section, only
when a cache miss occurs, the system will call the back-end MMU to translate the desired addresses.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:16 Qunyou et al.

Table 3. Filter rates (%) of different cache sizes for both In-order and OoO cores

Cache size (MB) 2 4 8 16 32 64 128
in-order 92.1 92.7 93.9 95.9 97.5 97.7 97.8
OoO 92.5 93.1 94.1 95.6 96.8 97.5 97.9

Therefore, the cache can filter most of the back-end translation during the process. To study the
ability of cache size, we tested the system with different cache sizes. We derive a new parameter
called the filter rate by taking the ratio of the difference between the back-end access count in the
system with an IA space and TLB requests in the conventional system to the TLB requests in the
conventional system, shown as Eq. 1.

filter rate =
𝑁𝑡𝑙𝑏−𝑐𝑜𝑛𝑣 − 𝑁𝑡𝑙𝑏−𝐼𝐴𝑆𝑏𝑎𝑐𝑘

𝑁𝑡𝑙𝑏−𝑐𝑜𝑛𝑣
(1)

𝑁𝑡𝑙𝑏−𝑐𝑜𝑛𝑣 is the number of TLB requests in conventional system,
𝑁𝑡𝑙𝑏−𝐼𝐴𝑆𝑏𝑎𝑐𝑘 is the number of back-end TLB requests in IAS system
The results are shown in Table 3. It shows that the cache can actually filter most MMU requests,

which is consistently more than 90%. With the increasing cache size, an increasing number of MMU
requests are filtered, which is one of the advantages of IAS.

5.1.3 TLB size impact on performance improvement. To understand the TLB size’s influence on
system performance, we analyze the overall performance of these three different systems with
different back-end TLB entries.

Running benchmarks on systems with varying back-end MMU TLB entries from 1024 to 16384,
we obtain the number of TLB misses and generate Figs. 7(a) and (b). The figures illustrate a decrease
in the number of TLB misses as the cache size increases. When there are only 1024 TLB entries,
the number of TLB misses is substantial. However, as the cache size increases, the cache becomes
more effective at filtering out TLB misses. In other words, translation overhead can be mitigated by
increasing the cache size.

By comparing with the Conventional system, Fig. 7 (c) and (d) show the performance improvement
brought about by increasing cache size for different numbers of TLB entries. When the TLB size is
small, the system faces a huge performance degradation, which is even 40%. The main reason is that
with the limited size of TLB entries, the system faces a huge miss rate, especially when the cache
size is small. In this situation, the number of requests for address translation is very high due to the
high miss rate caused by the limited cache size. Then, the back-end MMU needs to use the PTW
to fetch data from main memory frequently, which causes a huge translation overhead. The time
spent on PTE fetch consumes much more time and addresses translation time than that spent in the
conventional system, which causes performance degradation in the end. However, when increasing
cache size, the time spent fetching PTE becomes smaller and smaller. Performance can be improved
when the time is shorter than the front-end translation time spent in the Conventional system. By
comparing systems with different TLB sizes, when the TLB size reaches 4096, the performance
is always better than that of the Conventional system. When the cache size is larger, the overall
performance improvement is greater than 40%. When comparing Figs. 7(c) and (d), the performance
of the in-order system, similar to an OoO system, is sensitive to the TLB size in the back-end MMU.
It is worth noting that when the cache size reaches a certain level, the differences between varying
entry sizes become minimal. The in-order core system is more sensitive to cache size than the OoO
system due to the in-order execution mechanism.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:17

Fig. 7. When changing the cache size, Back-end MMU Misses for different TLB size configurations in (a)
In-order core and (b) OoO core. Relative performance improvements of different TLB sizes in (c) In-order core
and (d) OoO core.

Fig. 8. Impact of TLB coverage rate on execution
time, back-end MMU hit and misses.

Fig. 9. Translation Overhead from front-end and
back-end.

To understand the reason why the TLB size makes some impact on the overall performance, we
analyze the relationship between TLB and the address range it can cover, that is, the TLB coverage.

5.1.4 Study of coverage rate. To comprehensively assess the influence of the back-end TLB size,
we performed simulations of our program within a cache-fixed OoO system. We fix the cache size
at 32MB, while progressively varying the TLB size in the back-end MMU from 1024 to 16384 in
finer granularity. We introduce a new metric, termed the coverage rate, computed as the ratio of
the maximum data address coverage of the TLB and the maximum data volume accommodated
within the last cache level.

As illustrated in Fig. 8, we observe an inverse relationship between the coverage rate and the
overall execution time. As the coverage rate increases, the execution time exhibits a downward
trend and subsequently plateaus. At the same time, the count of TLB misses decreases until it
stabilizes, while the number of TLB hits increases until it reaches a plateau. As depicted in the
figure, with increasing coverage rate from 0.25 to 1.0, more than 87% MMU misses can be filtered,

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:18 Qunyou et al.

Fig. 10. Execution time comparison between huge pages, Conventional, and IAS systems.

and overall execution time can be reduced by around 25%. Increasing the coverage rate to 2.0 can
reduce more than 95% of the back-end MMU misses while the execution time is nearly constant.
After quantitatively analyzing the relationship between size and hit rate, we show the importance
of adequately sizing the TLB.

5.1.5 Translation Overhead Analysis. As mentioned in previous sections, the translation phase
of the system with IAS is composed of two parts, the front-end translation and the back-end
translation. To analyze the source of translation overhead, we set up a set of experiments to split
the front-end and back-end translation overhead. First of all, we modify the system to have the
ideal front-end translation with back-end translation latency. Then we set the back-end translation
to have zero translation overhead, while the front-end keeps the same. We change the size of
the last level cache, run the NLR benchmark on these two systems, and compare the results. We
normalize the execution time to the ideal (zero address translation overhead) system. As shown
in Fig.9, Front-ideal represents the former situation, where the front-end translation is ideal, and
the Back-ideal represents the situation where the back-end translation is free. As shown in the
figure, the overhead that comes from back-end translation is much larger than that from front-end
translation. The overhead from Front-ideal generally increases as the cache size goes up from 2MB
to 32MB. However, after that, it decreases as the cache size increases further. The most significant
drop is observed between sizes 64MB and 128MB. The Back-ideal shows a steady, gradual increase
as the cache size increases from 2MB to 32MB. However, there is a slight reduction in time at
cache sizes 64MB and 128MB compared to 32MB, indicating some efficiency or optimization at
larger cache sizes, but not as profound as in Front-ideal. The main difference comes from increasing
cache size, which brings longer hit/miss latency and filter rate. Overall, within the IAS system,
the overhead of address translation comes mainly from the translation in the back-end, which is
greatly impacted by cache size.

5.1.6 Comparison of results against huge pages. Large pages are a feature that certain operating
systems use to manage virtual memory using larger granularity. In most systems, the default page
size is 4KB. Huge pages use larger page sizes (e.g., 2MB or 1GB) to extend TLB coverage and
reduce address translation overhead. We compare the execution time of a system using IAS when
using different cache sizes in the three different systems, with a conventional system and a system
using huge pages. Figure 10 shows that the performance of the system with IAS lies between the
conventional system and the system with many pages.

As expected, the performance of the IAS system sits in between that of the conventional system
(outperforming it) and the system with huge pages (not achieving it). However, huge pages have
well-known problems that prevent their usage in current systems, and that IAS does not exhibit.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:19

Fig. 11. Execution time improvement for applications in both Pannotia and DNNmark benchmarks using ideal
MMU and IAS MMU.

For example, large pages cause memory fragmentation and memory bloating [22]. The reason is
that because huge pages are much larger than standard pages, they require a contiguous block of
physical memory. Over time, as processes allocate and deallocate memory, it becomes difficult to
find these large contiguous blocks, causing fragmentation.
However, for the IAS system, the back-end MMU still uses the 4kB page size, which is much

smaller than the huge page and will not cause fragmentation problems. The front-end implements
the address translation in the unit of VMA, which is a continuously addressed memory range with
no fragmentation problem.

5.2 Evaluation results for IAS-equipped APU system
5.2.1 Benefits of intermediate address space on APU. We then simulate the aforementioned bench-
marks on an APU system with an IAS and compare its results with those of the Conventional APU
system.
Fig. 11 shows that the implementation of an IA space can lead to substantial performance

improvements. In these figures, Ideal represents the ideal MMU, while IAS denotes the MMU
of the IA space. Nearly every benchmark benefits from the IA space, with the improvement
of the ideal MMU and the IA space being comparable. The PR_SpMV program gains the most
significant enhancement, with a greater increase of 50%. In contrast, the HSL program only achieves
a performance boost of 0.5%. The results indicate that the IA space can effectively reduce translation
overhead in certain scenarios, particularly when the TLB MPKI is large and the cache MPKI is
small.

Moreover, it can be observed that HSM exhibits negative optimization. Upon analyzing its access
pattern, we determined that HSM has a very small footprint. And its cache MPKI is 100 times
larger than TLB MPKI. As a result, when the IA space is employed, the back-end MMU faces a
greater address translation overhead than the benefits brought by cache increasing. In contrast,
using PR_SpMV involves a larger TLB MPKI, providing substantial performance improvement. We
can conclude that the IAS system significantly improves the performance of a program when it has
a lower cache MPKI.

5.2.2 MMU access times benefits. Next, we compare the access frequencies of the front-end and
back-end MMUs using Pannotia benchmarks as an example. We set the cache size to 4MB and per-
form a comparative analysis between traditional systems and systems with an IA space, calculating
the access frequencies of the front-end MMU and back-end MMU in these two different scenarios.
Our findings reveal that the implementation of caching can significantly filter out a large number
of MMU access requests.

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



000:20 Qunyou et al.

Table 4. Filter rates of different applications in Pannotia benchmark

Application BC Colormax Colormin FW MIS PR_SpMV Pagerank SsspCSR SsspELL

Filter rate (%) 99.99 99.99 99.98 96.2 99.96 93.57 98.94 99.95 99.91

We examine the filter rate for different benchmarks. As depicted in Table 4, the use of an IA
space enables the cache to filter a considerable number of address translation requests. In various
test sets, up to 99% of address translation requests are filtered, with the minimum filtering rate
being 94%. This demonstrates that when an IA space is incorporated, the cache offers exceptionally
high filtering efficiency.

5.2.3 iGPU Cache Size impact on APU. Moreover, as previously mentioned, the cache plays a
crucial role in this system. Therefore, we analyze the performance of the system and the back-end
MMU by increasing the capacity of the second-level cache on the GPU side. We incrementally
increased the size of the second-level cache on the iGPU side from 2kB to 4MB. We selected one of
the benchmarks, PR_SpMV, for analysis, to keep consistency with the experiments in IAS CPU
systems. We examine the overall execution time in Fig. 12(a), and the number of cache misses and
back-end MMU misses in Fig. 12(b).
As cache size increases, the overall execution time of three distinct scenarios decreases from

Fig. 12(a). The gap between a Conventional system and an Ideal MMU system widens as the cache
capacity expands. When the cache size is small, the Conventional system outperforms the system
with IAS. Due to the small size of the cache, most of the data or instruction requests are missing
in the cache. Then the back-end MMU has to finish a large number of the IA to PA translations,
which can great pressure upon TLB and page table walker (PTW), and cause significant translation
overhead. In the worst-case scenario, where the cache size is only 1KB, the performance of the IA
System is 13% worse than that of the conventional one.

However, as we increase the size of the cache beyond 512KB, the performance of the IA System
significantly exceeds the conventional one. Due to the size of the upper-level cache, in the IAS
system, most of the data requests are filtered by the cache. The back-end MMU faces less pressure.
In the best-case scenario, the performance of the IAS system is 185% better than that of the
conventional one.

Fig. 12. (a) APU Overall execution time for different MMU configurations and (b) cache, MMU misses of IAS
system with increasing Cache size.

As seen in Fig. 12(b), when the size of the second-level cache increases, the number of cache
misses decreases significantly, reducing the translation pressure on the back-end MMU. In addition,
the number of IAS MMU TLB misses decreases as the cache capacity increases. On the contrary, if

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.



Intermediate Address Space: virtual memory optimization of . . . 000:21

the size of the cache is small, the back-end MMU will be under large pressure. The request to the
back-end will increase and the large miss number will bring more translation overhead. Therefore,
when the cache size is small, the IAS will exacerbate the performance of the system.

6 CONCLUSIONS
In this work, we have introduced and thoroughly evaluated an innovative IAS architecture tailored
to CPU and APU systems. In particular, by utilizing the IAS we have effectively divided the address
translation process into two phases, front-end and back-end. This dual-phase approach effectively
shifts the address translation bottleneck from the core to the memory controller side, enhancing the
performance of cache-resident workloads. A detailed cycle-accurate evaluation has been performed
at the microarchitectural level by modifying gem5 to add customized functions and components,
thus simulating the IAS system in a full-system simulation mode. We thoroughly evaluate the IAS
system from different aspects. Our analysis and experimental results demonstrate that, for CPU
systems, the proposed architecture can increase performance to 40%, and filter most page table
walks. To the best of our knowledge, it is the first work to show how to incorporate IAS into APU
systems and analyze the performance impact from different architecture levels, such as cache, TLB
size, and overhead resources. Overall, as part of the APU system, the proposed IAS architecture
can achieve substantial performance improvements, with a maximum increase of 185%. Moreover,
our comparison of MMU requests reveals that the IA space can significantly reduce MMU accesses
by up to 99%.
Our study also investigates the impact of varying cache sizes on the performance of the IAS

architecture. Our findings indicate that larger cache sizes contribute to enhanced performance, and
the degree of improvement increases as the cache size increases. This observation highlights the
importance of optimizing cache size to maximize IAS benefits. Furthermore, our results show that
the size of the back-end TLB can also impact the overall performance of the CPU and APU system.
In addition, we analyze the source of address translation overhead, and our result shows that the
translation overhead comes mainly from the back-end translation.

As a result, the proposed IAS architecture offers a promising solution to alleviate the performance
degradation in bothAPU andCPU systems caused by address translation overhead. By implementing
this approach without requiring modifications to the original applications, we facilitate the adoption
of IAS in existing APU and CPU systems. We believe that our work lays a solid foundation for future
research and development efforts to optimize address translation mechanisms in heterogeneous
computing systems and further advance computer systems’ capabilities. Furthermore, we target to
release as open source the modified gem5 with the new IAS architecture in https://github.com/esl-
epfl/midgard-ias to enable the computer architecture community to further explore this new design
space to improve the performance of the memory hierarchy, particularly in new APU systems.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their valuable feedback and suggestions for
improvement. This research is supported in part by Intel as part of the Intel Center for Trans-
formative Server Architecture (TSA), also in part by a Grant PID2021-126576NB-I00 funded by
MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".

REFERENCES
[1] Advanced Micro Devices, Inc. 2016. AMD GCN3 Instruction Set Architecture. https://www.amd.com/system/files/

TechDocs/gcn3-instruction-set-architecture.pdf Version 1.1.
[2] Paul Alcorn. 2023. AMD instinct MI300 data center APU pictured up close: 13 chiplets, 146 billion transis-

tors. https://www.tomshardware.com/news/amd-instinct-mi300-data-center-apu-pictured-up-close-15-chiplets-146-

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://github.com/esl-epfl/midgard-ias
https://github.com/esl-epfl/midgard-ias
https://www.amd.com/system/files/TechDocs/gcn3-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/gcn3-instruction-set-architecture.pdf
https://www.tomshardware.com/news/amd-instinct-mi300-data-center-apu-pictured-up-close-15-chiplets-146-billion-transistors
https://www.tomshardware.com/news/amd-instinct-mi300-data-center-apu-pictured-up-close-15-chiplets-146-billion-transistors


000:22 Qunyou et al.

billion-transistors
[3] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata Ghose, Jayneel Gandhi, Christopher J. Rossbach, and

Onur Mutlu. 2017. Mosaic: A GPU Memory Manager with Application-Transparent Support for Multiple Page Sizes.
In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (Cambridge, Massachusetts)
(MICRO-50 ’17). Association for Computing Machinery, New York, NY, USA, 136–150. https://doi.org/10.1145/3123939.
3123975

[4] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (Anaheim, CA) (ATEC ’05). USENIX Association, USA, 41.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (aug 2011), 1–7.
https://doi.org/10.1145/2024716.2024718

[6] Patrick Bohrer, James Peterson, Mootaz Elnozahy, Ram Rajamony, Ahmed Gheith, Ron Rockhold, Charles Lefurgy,
Hazim Shafi, Tarun Nakra, Rick Simpson, Evan Speight, Kartik Sudeep, Eric Van Hensbergen, and Lixin Zhang. 2004.
Mambo: A Full System Simulator for the PowerPC Architecture. SIGMETRICS Perform. Eval. Rev. 31, 4 (mar 2004),
8–12. https://doi.org/10.1145/1054907.1054910

[7] Shuai Che, Bradford M. Beckmann, Steven K. Reinhardt, and Kevin Skadron. 2013. Pannotia: Understanding irregular
GPGPU graph applications. In 2013 IEEE International Symposium on Workload Characterization (IISWC). 185–195.
https://doi.org/10.1109/IISWC.2013.6704684

[8] Mayank Daga, Ashwin M Aji, and Wu-chun Feng. 2011. On the efficacy of a fused CPU+ GPU processor (or APU) for
parallel computing. In 2011 Symposium on Application Accelerators in High-Performance Computing. IEEE, 141–149.

[9] Shi Dong and David Kaeli. 2017. DNNMark: A Deep Neural Network Benchmark Suite for GPUs. In Proceedings of the
General Purpose GPUs (Austin, TX, USA) (GPGPU-10). Association for Computing Machinery, New York, NY, USA,
63–72. https://doi.org/10.1145/3038228.3038239

[10] gem5. 2023. GCN3. https://www.gem5.org/documentation/general_docs/gpu_models/GCN3 Accessed: 2023-05-27.
[11] Siddharth Gupta, Atri Bhattacharyya, Yunho Oh, Abhishek Bhattacharjee, Babak Falsafi, and Mathias Payer. 2021.

Rebooting Virtual Memory with Midgard. In Proceedings of the 48th Annual International Symposium on Computer
Architecture (Virtual Event, Spain) (ISCA ’21). IEEE Press, 512–525. https://doi.org/10.1109/ISCA52012.2021.00047

[12] Anthony Gutierrez, Bradford M. Beckmann, Alexandru Dutu, Joseph Gross, Michael LeBeane, John Kalamatianos, Onur
Kayiran, Matthew Poremba, Brandon Potter, Sooraj Puthoor, Matthew D. Sinclair, Mark Wyse, Jieming Yin, Xianwei
Zhang, Akshay Jain, and Timothy Rogers. 2018. Lost in Abstraction: Pitfalls of Analyzing GPUs at the Intermediate
Language Level. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). 608–619.
https://doi.org/10.1109/HPCA.2018.00058

[13] Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata Ausavarung-
nirun, Geraldo F. Oliveira, Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu. 2020. The Virtual Block Inter-
face: A Flexible Alternative to the Conventional Virtual Memory Framework. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture (Virtual Event) (ISCA ’20). IEEE Press, 1050–1063.
https://doi.org/10.1109/ISCA45697.2020.00089

[14] 2010 9:28 pm UTC Jon Stokes; Feb 8. 2010. AMD reveals fusion CPU+GPU, to challenge Intel in Laptops. https:
//arstechnica.com/information-technology/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/

[15] I Karlin. 2012. LULESH Programming Model and Performance Ports Overview. (12 2012). https://doi.org/10.2172/
1059462

[16] Tomas Karnagel, Tal Ben-Nun, Matthias Werner, Dirk Habich, and Wolfgang Lehner. 2017. Big Data Causing Big (TLB)
Problems: Taming Random Memory Accesses on the GPU. In Proceedings of the 13th International Workshop on Data
Management on New Hardware (Chicago, Illinois) (DAMON ’17). Association for Computing Machinery, New York, NY,
USA, Article 6, 10 pages. https://doi.org/10.1145/3076113.3076115

[17] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and Extensible DRAM Simulator. IEEE Computer
Architecture Letters 15, 1 (2016), 45–49. https://doi.org/10.1109/LCA.2015.2414456

[18] Scott P Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A Davis, Matthew Henderson, Yifan Hu,
and Read Sandstrom. 2019. The suitesparse matrix collection website interface. Journal of Open Source Software 4, 35
(2019), 1244.

[19] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett Witchel. 2016. Coordinated and
Efficient Huge Page Management with Ingens. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 705–721.

[20] Jiwon Lee, Ju Min Lee, Yunho Oh, William J. Song, andWonWoo Ro. 2023. SnakeByte: A TLB Design with Adaptive and
Recursive Page Merging in GPUs. In 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 1195–1207. https://doi.org/10.1109/HPCA56546.2023.10071063

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://www.tomshardware.com/news/amd-instinct-mi300-data-center-apu-pictured-up-close-15-chiplets-146-billion-transistors
https://www.tomshardware.com/news/amd-instinct-mi300-data-center-apu-pictured-up-close-15-chiplets-146-billion-transistors
https://doi.org/10.1145/3123939.3123975
https://doi.org/10.1145/3123939.3123975
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1054907.1054910
https://doi.org/10.1109/IISWC.2013.6704684
https://doi.org/10.1145/3038228.3038239
https://www.gem5.org/documentation/general_docs/gpu_models/GCN3
https://doi.org/10.1109/ISCA52012.2021.00047
https://doi.org/10.1109/HPCA.2018.00058
https://doi.org/10.1109/ISCA45697.2020.00089
https://arstechnica.com/information-technology/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/
https://arstechnica.com/information-technology/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops/
https://doi.org/10.2172/1059462
https://doi.org/10.2172/1059462
https://doi.org/10.1145/3076113.3076115
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/HPCA56546.2023.10071063


Intermediate Address Space: virtual memory optimization of . . . 000:23

[21] Farhad Mehdipour, Hamid Noori, and Bahman Javadi. 2016. Chapter Two - Energy-Efficient Big Data Analytics in
Datacenters. In Energy Efficiency in Data Centers and Clouds, Ali R. Hurson and Hamid Sarbazi-Azad (Eds.). Advances
in Computers, Vol. 100. Elsevier, 59–101. https://doi.org/10.1016/bs.adcom.2015.10.002

[22] Theodore Michailidis, Alex Delis, and Mema Roussopoulos. 2019. MEGA: Overcoming Traditional Problems with OS
Huge Page Management. In Proceedings of the 12th ACM International Conference on Systems and Storage (Haifa, Israel)
(SYSTOR ’19). Association for Computing Machinery, New York, NY, USA, 121–131. https://doi.org/10.1145/3319647.
3325839

[23] U.S. Department of Energy. 2018. Coral-2 Benchmarks. https://asc.llnl.gov/coral-2-benchmarks
[24] Adarsh Patil. 2020. TLB and Pagewalk Performance in Multicore Architectures with Large Die-Stacked DRAM Cache.

ArXiv abs/2002.01073 (2020).
[25] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architectural Support for Address Translation on GPUs:

Designing Memory Management Units for CPU/GPUs with Unified Address Spaces. SIGARCH Comput. Archit. News
42, 1 (feb 2014), 743–758. https://doi.org/10.1145/2654822.2541942

[26] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. HeteroSync: A benchmark suite for fine-grained
synchronization on tightly coupled GPUs. In 2017 IEEE International Symposium on Workload Characterization (IISWC).
239–249. https://doi.org/10.1109/IISWC.2017.8167781

[27] Tuan Ta, David Troendle, Xiaoqi Hu, and Byunghyun Jang. 2017. Understanding the Impact of Fine-Grained Data
Sharing and Thread Communication on Heterogeneous Workload Development. In 2017 16th International Symposium
on Parallel and Distributed Computing (ISPDC). 132–139. https://doi.org/10.1109/ISPDC.2017.16

[28] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M. Pendleton. 1986. An In-Cache Address Translation Mechanism.
In Proceedings of the 13th Annual International Symposium on Computer Architecture (Tokyo, Japan) (ISCA ’86). IEEE
Computer Society Press, Washington, DC, USA, 358–365.

[29] Hongil Yoon, Jason Lowe-Power, and Gurindar S. Sohi. 2018. Filtering Translation Bandwidth with Virtual Caching.
In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and
Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association for Computing Machinery, New York, NY, USA,
113–127. https://doi.org/10.1145/3173162.3173195

[30] Lixin Zhang, Evan Speight, Ram Rajamony, and Jiang Lin. 2010. Enigma: Architectural and Operating System
Support for Reducing the Impact of Address Translation. In Proceedings of the 24th ACM International Conference
on Supercomputing (Tsukuba, Ibaraki, Japan) (ICS ’10). Association for Computing Machinery, New York, NY, USA,
159–168. https://doi.org/10.1145/1810085.1810109

[31] Yufeng Zhou, Xiaowan Dong, Alan L. Cox, and Sandhya Dwarkadas. 2019. On the Impact of Instruction Address
Translation Overhead. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
106–116. https://doi.org/10.1109/ISPASS.2019.00018

ACM Trans. Arch. Code Optim., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://doi.org/10.1016/bs.adcom.2015.10.002
https://doi.org/10.1145/3319647.3325839
https://doi.org/10.1145/3319647.3325839
https://asc.llnl.gov/coral-2-benchmarks
https://doi.org/10.1145/2654822.2541942
https://doi.org/10.1109/IISWC.2017.8167781
https://doi.org/10.1109/ISPDC.2017.16
https://doi.org/10.1145/3173162.3173195
https://doi.org/10.1145/1810085.1810109
https://doi.org/10.1109/ISPASS.2019.00018

	Abstract
	1 Introduction
	2 Backgroud and related work
	2.1 Virtual memory in modern systems
	2.2 APU architecture
	2.3 Performance advantages of the APU and its large address translation overhead
	2.4 State-of-the-art

	3 Intermediate Address Space for both CPU and APU
	3.1 Intermediate address space for CPU
	3.2 Unified Intermediate Address Space for APU
	3.3 Intermediate Address Space MMU design

	4 Evaluation Methodology
	4.1 Simulator Platform
	4.2 System Architecture
	4.3 System Workload

	5 Experimental Results
	5.1 Evaluation results for IAS-equipped CPU-only system
	5.2 Evaluation results for IAS-equipped APU system

	6 Conclusions
	Acknowledgments
	References

