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Abstract
The rapid development of wearable biomedi-
cal systems now enables real-time monitoring
of electroencephalography (EEG) signals. Ac-
quisition of these signals relies on electrodes.
These systems must meet the design challenge
of selecting an optimal set of electrodes that
balances performance and usability constraints.
The search for the optimal subset of electrodes
from a larger set is a problem with combina-
torial complexity. While existing research has
primarily focused on search strategies that only
explore limited combinations, our methodology
proposes a computationally efficient way to ex-
plore all combinations. To avoid the compu-
tational burden associated with training the
model for each combination, we leverage an in-
novative approach inspired by few-shot learn-
ing. Remarkably, this strategy covers all the
wearable electrode combinations while signifi-
cantly reducing training time compared to re-
training the network on each possible combi-
nation. In the context of an epileptic seizure
detection task, the proposed method achieves
an AUC value of 0.917 with configurations us-
ing eight electrodes. This performance matches
that of prior research but is achieved in signif-
icantly less time, transforming a process that
would span months into a matter of hours on
a single GPU device. Our work allows compre-
hensive exploration of electrode configurations
in wearable biomedical device design, yielding
insights that enhance performance and real-
world feasibility.

Data and Code Availability This paper
uses two publicly available datasets: the Tem-
ple University Hospital EEG Seizure Corpus
-v2.0.0 (Shah et al., 2018) and the motor imagery

paradigm in the OpenBMI dataset (Lee et al.,
2019). The code for this work is available at
https://github.com/alirezaamir/FETCH.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

Electroencephalography (EEG) is the main tool to
monitor and diagnose various health conditions such
as epilepsy, sleep disorders, stroke or coma (Siuly
et al., 2016). In clinical environments, a full-channel
EEG system, which involves a cap equipped with nu-
merous electrodes, is the gold standard for monitor-
ing the brain’s electrical activity. Despite the high-
quality data this system provides, it is not well suited
to home-based monitoring due to the social stigma of
its daily use (Duun-Henriksen et al., 2020). There-
fore, there is a growing trend towards wearable EEG
devices that involve fewer electrodes and a selection
of a subset from the full channel set (Kim et al., 2019;
Ingolfsson et al., 2021).

However, the electrode subset selection raises the
fundamental question of how to design a wearable de-
vice that balances optimal performance with design
and comfort constraints. Addressing this challenge
requires a thorough exploration of the wearable de-
sign space to find the optimal wearable EEG solution.

An approach to explore the wearable design space
is channel selection (Moctezuma and Molinas,
2020b; Dan et al., 2023). These studies investigate
algorithms to identify the optimal electrode subset
based on parameters such as the number of electrodes
and abnormality detection performance. However,
the number of combinations explored in the design
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space is very limited. Additionally, other parameters
of the wearable system, such as energy consumption
or ergonomic factors, are not directly integrated into
the selection process of the electrode subset.

Another approach to tackle the design space explo-
ration challenge is exhaustive search methods in
which models are trained and evaluated exhaustively
for all possible electrode combinations (Lee et al.,
2022b). In these methods, models are trained for each
electrode combination to perform a detection task.
Although this approach enables a comprehensive ex-
amination of wearable device constraints, it encoun-
ters scalability issues due to the time-consuming na-
ture of training models for all possible electrode sub-
sets. The inherent computational demand of training
models in exhaustive search methodologies raises con-
cerns about their feasibility, especially when tasked
with selecting combinations from a larger number of
channels or when employing complex machine learn-
ing (ML) models.

In this paper, we propose a novel approach to ad-
dress the aforementioned challenges by reducing the
number of required trained models in wearable de-
sign space exploration. We introduce this strategy
that we call FETCH : a Fast and Efficient Technique
for CHannel selection. Rather than training a model
for each electrode combination, FETCH performs an
inference step on all combinations of electrodes. Con-
sidering that the time dedicated to model inference is
orders of magnitude less than that required for train-
ing, the exploration of the design space using FETCH
is remarkably rapid. With FETCH, the exploration
of all electrode configurations unlocks opportunities
to consider a wide range of factors and parameters in
the design of wearables.

The basis of FETCH is inspired by few-shot learn-
ing principles, in which a model is trained to perform
classification using only a few examples per class in
inference (Wang et al., 2020; Finn et al., 2017). By
customizing the few-shot learning definition to our
scenario, we leverage the power of meta-learning to
accelerate the inference process.

To demonstrate the efficacy of our approach, we fo-
cus on a case study task of epileptic seizure detection
using 19-electrode EEG signals, applied to a complex
transformer model (Vaswani et al., 2017). We demon-
strate that the performance of FETCH is comparable
to exhaustive search methods, but our approach sig-
nificantly reduces the time required to obtain the op-
timized electrode configuration. The process, which

previously took 3500 hours, can now be completed in
as little as 26 hours on a single GPU device.

The contributions of this study are as follows:

• We have designed a novel method inspired by
few-shot learning, referred to as FETCH, pro-
posed to facilitate a rapid design space explo-
ration for channel selection.

• Given that FETCH can deliver performance re-
sults for all electrode configurations, we have
optimized a design cost for wearable devices.
This optimization takes into account factors such
as performance, energy consumption, and er-
gonomic metrics.

• We have performed an evaluation of FETCH
compared to exhaustive search and channel se-
lection methods. Our results demonstrate that
the performance is not significantly different, and
simultaneously, the time required to optimize the
electrode configuration is drastically reduced by
up to 135 times.

2. Related Works

2.1. Channel selection

Channel selection methods are designed to identify
a subset of electrodes from full-channel EEG signals
that maximize performance. A popular approach is
the greedy search method (Moctezuma and Molinas,
2020a). In this method, the process starts with the
full-channel EEG configuration. Subsequently, a per-
formance metric is evaluated for configurations with
one electrode removed. Among these, the configu-
ration yielding the highest performance is selected.
This iterative process of removing electrodes one by
one, known as sequential backward selection (SBS),
continues until the desired electrode count is reached.
Alternatively, greedy searches can begin with a sin-
gle electrode, and incrementally add the most infor-
mative electrode at each step (Aydemir and Ergün,
2019; Choi et al., 2012). This process of progres-
sively building the configuration is called Sequential
Forward Selection (SFS).

Another approach involves non-dominant sorting
genetic algorithms II (NSGA-II) (Deb et al., 2002).
As Moctezuma and Molinas (2020b) suggests, these
algorithms start with various random electrode con-
figurations called initial population. Iteratively, elec-
trodes are either removed or added in successive
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steps called generations. In Moctezuma and Molinas
(2020b), the algorithm pursues a multi-objective goal
balancing accuracy and electrode count. The process
continues until this multi-objective function is met or
a predetermined number of generations elapses.

While these channel selection methods balance per-
formance accuracy and electrode count during train-
ing, they may not explore all possibilities, potentially
converging on sub-optimal solutions (Narayanan
et al., 2020). Furthermore, the goal to optimize is
limited to the accuracy and number of electrodes,
while the relation of the electrodes and the ergonomic
factors of a wearable integrating the electrodes are
not considered. On the other hand, FETCH ensures
that no potential configuration is overlooked. Our
approach is scalable and encompasses multiple objec-
tives, including electrode count, energy consumption,
and ergonomic factors of wearable systems.

2.2. Exhaustive search

Lee et al. (2022b) introduced an approach for se-
lecting the ideal electrode configuration in EEG-
based wearable devices featuring 32 scalp electrodes,
focusing on detecting mild cognitive impairment.
They employed a Support Vector Machine (SVM) to
train and evaluate 4396 distinct models correspond-
ing to two-, four-, six-, and eight-electrode symmet-
ric configurations. Gelbard-Sagiv et al. (2023) ex-
plored a similar approach for seizure detection us-
ing Light Gradient Boosting Machine (LightGBM)
models. They trained 17000 models on various ran-
dom electrode configurations and identified eight elec-
trodes as optimal. A time-consuming analysis of all
eight-electrode combinations was then performed to
identify the most effective subset.

Despite the promising results of the two methods
mentioned (Lee et al., 2022b; Gelbard-Sagiv et al.,
2023), their methodologies face scalability challenges.
In particular, they do not report the time spent train-
ing all possible electrode combinations, which is ex-
ponentially related to the number of electrodes. This
is an even more critical factor in more complex di-
agnostic tasks. For example, in a dense array EEG
system with 256 electrodes (Holmes, 2008), the num-
ber of combinations will increase with combinatorial
complexity. Furthermore, their reliance on relatively
simple models like SVM and LightGBM limits appli-
cability. However, advanced models, including convo-
lutional neural networks, graph neural networks, and
transformers, are commonly used in biomedical appli-

cations (Busia et al., 2024; Tang et al., 2023; Gómez
et al., 2020; Hannun et al., 2019). These models
require substantially longer training times, making
them impractical for training in every electrode com-
bination. On the contrary, FETCH is a scalable ap-
proach compatible with complex deep learning mod-
els and removes the need for training of every elec-
trode combination, relying instead on training a few
models and a rapid inference process.

3. Background

FETCH is inspired by few-shot learning. Before de-
scribing our methodology, we first provide a con-
cise overview of the background of few-shot learning
in this section. Subsequently, in the following sec-
tion, we explain the derivation of FETCH within the
framework of the original few-shot learning context.

Few-shot learning methods aim at designing a
model that classifies a test sample based on a very
limited number of previously seen labeled exam-
ples (Finn et al., 2017). Figure 1(b) shows an ex-
ample of a few-shot learning task. In this figure, the
query sample needs to be classified using only a small
group of labeled samples, referred to as support set.

Few-shot learning approaches address this chal-
lenge by simulating the scenario of limited labeled
samples during training. The model is trained on a
large dataset to learn the similarities and differences
among a few objects. This model training step is
called meta-train, shown in Figure 1(a).

The training step, as shown in Figure 1(a), involves
several episodes. In each episode, N different classes
are randomly selected from the large training dataset,
and k samples are chosen from each class. These
samples collectively form a k-shot N -way support set
for each episode (2-shot 3-way in Figure 1(a)).

Let Dtrain be the dataset for meta-training. The
support set for an episode is randomly selected from
Dtrain to create S = {(xi, yi)}k·Ni=1 . The goal in this
episode is to classify new query samples xq that be-
long to one of these N classes. The loss function dur-
ing meta-training aims to minimize the log-likelihood
of predicted class ŷq of the query sample compared
to the corresponding ground truth yq.

In the inference process, we again have a support
set with the same number of classes and samples, and
the goal is to classify the unseen query sample. This
task mirrors the tasks in the meta-train.
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…

Support set Query sample

Episode 1 :

Episode 2 :

(a) Meta-training
Support set Query sample

(b) Inference

Figure 1: Meta-training and inference phases in few-
shot learning, highlighting the creation of episodes
with three distinct classes and two samples randomly
selected from a dataset. The inference process in-
volves new classes in the support set and query sam-
ple, mirroring the tasks in the meta-training phase.

4. Method

This section is structured into the following subsec-
tions. Initially, in Section 4.1, we present our pro-
posed FETCH method. In the subsequent section
(Section 4.2), we explain the combination of FETCH
with a transformer model for a seizure detection task.
Finally, in Section 4.3, we propose a design cost to
show the impact of FETCH on selecting the optimal
electrode combination, considering seizure detection
performance, energy efficiency, and ergonomic levels
in a wearable device.

4.1. Channel adaptation with few-shot
learning

Figure 2 illustrates the meta-training and inference
phases defined in FETCH. As shown in Figure 2(a),
similar to the original definition of few-shot learn-
ing, FETCH consists of multiple episodes in meta-
training. Within each episode, a random electrode
set is selected, and subsequently, the support set
is formed, encompassing k random samples in each
class based on the selected electrode combination.
The samples can be drawn from various users in the
dataset. The query sample in this episode undergoes
the same electrode configuration but from a different
user than the support set. This episode formation is

, X1   

…

Support set Query sample

Episode 1 :

Episode 2 :

, X16
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(a) Meta-training
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(b) Inference

Figure 2: Meta-training and inference in FETCH.
In meta-training, the electrode configuration varies
through the episodes, enabling the model to quickly
adapt to a new electrode combination during the in-
ference phase.

repeated multiple times in meta-training. Subsequent
episodes involve different electrode sets but share the
same classes.

During the inference phase, illustrated in Fig-
ure 2(b), the system encounters an electrode configu-
ration that may be entirely new to the system. Given
its meta-training on various electrode configurations,
the model is now capable of quickly adapting to the
new electrode combination and classifying new sam-
ples in the inference. The adaptation process is accel-
erated because it necessitates only a few data points
or shots from the support set that share the same
electrode configuration.

While our approach is derived from few-shot learn-
ing, FETCH diverges from conventional few-shot
learning in three key aspects. First, it is tailored
to biomedical abnormality detection tasks, which in-
volve two classes, such as seizure and non-seizure.
Consequently, each episode in FETCH uniformly en-
compasses these classes. The second difference is
that we structure these few-shot learning episodes
so that the support sets and query samples are de-
rived from the same electrode configuration, which
differs from the configurations in the other episodes.
This arrangement enables the model to learn to adapt
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Figure 3: The processing sequence in FETCH and its
integration into a transformer model.

rapidly when a new electrode configuration is intro-
duced into the query sample. Lastly, in the conven-
tional version of few-shot learning (Finn et al., 2017),
the main limitation is the number of annotated sam-
ples in the unseen classes. However, in FETCH, the
constraint is not the lack of annotated data in the
target electrode configuration, but the computational
cost of adapting to it.

4.2. Integration into a transformer model

To establish the principles of FETCH and its inte-
gration into a transformer model, we represent an
input EEG sample as xq, encompassing data from
all electrodes (full-channel). We define an electrode
combination, denoted by M , as a specific subset of
electrodes chosen from the full set. Figure 3 illus-
trates this concept as the initial block in the FETCH
pipeline. Consequently, xM

q denotes the modified ver-
sion of xq, where only the electrodes belonging to set
M retain their original data. The other electrodes
are masked with a predetermined value. In the con-
text of FETCH, M varies with each episode during
meta-training, indicating that a different set of EEG
electrodes is selected randomly from feasible sets.

Our approach utilizes a transformer model inspired
by Ma et al. (2023). Initially, the EEG signal xM

q

is converted into a Short-Time Fourier Transform
(STFT) representation, which is then fed into the
transformer encoder. This transformer model’s archi-
tecture parallels that of a Vision Transformer (Doso-
vitskiy et al., 2020), with STFT as the input image.
In the STFT representation, the y-axis corresponds
to the frequency range, while the x-axis encompasses
both the time and channel dimensions. The trans-
former encoder is shown in Figure 3 as the second
block in the processing sequence.

The Vision Transformer model has multiple en-
coder layers. Following the established practice in
transformers (Devlin et al., 2018), a special class to-

ken [CLS] in the form of a vector is prepended to the
input fed into the transformer. The feature vector
produced by the final transformer encoder layer for
this class token is expressed as fϕ(xM

q ). Here, fϕ(.)
denotes the function of the transformer encoder.

The classifier block, in Figure 3, follows the princi-
ples of prototypical networks (Snell et al., 2017). In
each episode, prototypes pM

n are computed for each
class n within the support set SM

n . The prototypes
are the average of the feature vectors fϕ(xM

i ), corre-
sponding to all instances xi belonging to class n in
the support set SM

n . Mathematically, the prototypes
are calculated as follows:

pM
n =

1

|SM
n |

∑
(xM

i ,yi)∈SM
n

fϕ
(
xM
i

)
, (1)

Finally, the classification of the query xq is
achieved by comparing its feature vector, fϕ(xM

q ), to

the class prototypes pM
n . The query is assigned a

class label ŷq corresponding to the nearest prototype
in this embedding space.

To obtain the seizure detection performance for all
electrode configurations and explore the entire wear-
able design space, we process each sample xq in the
validation and unseen test sets through the pipeline
depicted in Figure 3 for all possible electrode com-
binations M . The rationale behind acquiring perfor-
mance metrics for all combinations is discussed in the
following section.

4.3. Design cost representation

Having efficiently obtained results for all feasible con-
figurations through FETCH, we can now define the
design cost for wearable devices. This enables select-
ing the most suitable configuration based on specific
target constraints. Equation 2 shows the suggested
design cost for wearable devices.

Cost(M) = w1 ·P (M) +w2 ·E(M) +w3 ·U(M) (2)

The design cost in Equation (2) incorporates three
primary constraints. The first constraint, P , is per-
formance. This performance shows how accurately a
target wearable device can perform seizure detection.
This value is obtained using FETCH applied to the
transformer model on the validation/test set.

The second constraint, E, is the energy consump-
tion of the target wearable device. In our case, to es-
timate energy consumption for each electrode config-
uration, we implemented the transformer model and
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performed inference on X-HEEP, an ultra-low power
system specifically designed for biomedical signal pro-
cessing in wearable devices (Machetti et al., 2024).
Further information regarding the estimated energy
consumption can be found in Section 6.

The third constraint, represented by U , assesses
whether the wearable device, configured with the tar-
get electrode arrangement, is user-friendly and er-
gonomically suitable for daily use. To the best of
our knowledge, no existing research has introduced a
metric specifically designed to evaluate ergonomic or
user-friendly factors. In this context, without loss of
generality, we propose a metric as follows. We rep-
resent the electrode configuration as a graph, where
the nodes represent the electrodes and the edges rep-
resent the connections. In this graph, the edges are
weighted according to their pairwise Euclidean dis-
tance, as calculated and used in Tang et al. (2021).
In this work, we suggest using the diameter of the
graph as an ergonomic metric. The diameter is the
longest path among all shortest paths between any
two nodes. This metric implies that, with the same
number of electrodes, a configuration in which the
electrodes are closer to each other is considered more
user-friendly. This is a basic proposition for the er-
gonomic metric, and any similar approach would be
applicable in our study.

In Equation (2), w1, w2, and w3 are the weights
assigned to each constraint, reflecting their relative
importance in the overall design cost. These weights
can be determined based on the specific requirements
and priorities of the target wearable design. Adjust-
ing these weights allows wearable designers to empha-
size certain aspects based on the design priorities.

5. Experimental Setup

5.1. Dataset

The dataset used in our study comprises the publicly
available Temple University Hospital EEG Seizure
Corpus (TUSZ)-v2.0.0 (Shah et al., 2018), encom-
passing data from 675 subjects with a cumulative
duration of 1476 hours. The dataset features het-
erogeneity in the sampling frequency and number of
EEG electrodes. Therefore, to ensure uniformity of
sampling frequency, all files are re-sampled to 250 Hz.
Also, as suggested in Dan et al. (2024), N=19 EEG
electrodes are used in this study.

The spatial arrangement of EEG channels in
TUSZ-v2.0.0 follows the 10-20 system, and we adopt

the longitudinal bipolar montage (also called a double
banana montage). In a bipolar montage, each elec-
trode is paired with another electrode in the graph.
Hence, when identifying all feasible subsets, we ad-
here to the rule that an electrode configuration is
considered valid only if it does not result in any iso-
lated nodes in the graph, as per the longitudinal bipo-
lar montage setup. To maintain the generality of the
FETCH method, in this application no additional re-
strictions are imposed on the validity of the subset.

In this dataset, the training set, validation set, and
test set are provided in separate directories. We fol-
low the same split in our experiments. The TUSZ
dataset has been widely used in previous works for
the seizure detection task (Lee et al., 2022a; Rahmani
et al., 2023).

5.2. TSD model configuration

The baseline model follows the architecture proposed
in Ma et al. (2023), referred to by the authors as a
Transformer for Seizure Detection (TSD). Designed
for a seizure detection task, this model processes
the input EEG signal by transforming it into STFT.
In our framework (refer to Figure 3), each TSD
model is specifically trained for a unique electrode
combination by excluding (rather than masking) the
non-selected electrodes from the input signal (First
block). Notably, while both FETCH and TSD share
the same transformer encoder (second block), TSD
incorporates a different classifier (Third block). The
classifier is a fully connected layer designed to classify
the input signal as seizure or non-seizure.

For the training process, the authors use Adam op-
timizer (Kingma and Ba, 2014), with a learning rate
of 3e-5. We set the maximum epochs of 100 with
early stopping criteria on the validation set perfor-
mance metric and patience of 10 epochs.

5.3. FETCH model configuration

In the context of our experimental setup, our models
are trained on EEG windows of duration 12 seconds, a
parameter that is chosen by the previous works (Tang
et al., 2021; Ma et al., 2023) to balance the need for
temporal context and computational efficiency. In
our study, the training process is guided by the cross-
entropy loss function.

For the optimization process, we employ the same
optimizer as TSD. The FETCH model is trained for
a maximum of 500 epochs, with early stopping cri-
teria implemented to prevent overfitting. This early
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stopping is predicated on the accuracy of the vali-
dation set, halting the training if the accuracy does
not increase for 10 consecutive epochs. The few-shot
learning parameters are chosen based on the results
of the validation set as 200 episodes in each epoch
and k = 25 shots for each class.

The computational resources utilized for this ex-
periment are equipped with 512 GB of RAM and a
single Tesla V100 GPU with 32 GB of memory.

In our study, we used the AUC (Area Under
the Receiver Operating Characteristics) metric, a
widely recognized evaluation measure for binary
classification tasks such as seizure detection (Tang
et al., 2021). It offers a comprehensive view of the
model’s discriminative power across various classifi-
cation thresholds between the true positive rate and
the false positive rate.

6. Results

6.1. Comparison with previous works

In this section, we compare FETCH with channel se-
lection methodologies, including Sequential Forward
Selection (SFS), inspired by Aydemir and Ergün
(2019); Choi et al. (2012), Sequential Backward Se-
lection (SBS), based on Moctezuma and Molinas
(2020a), and NSGA-II as discussed in Moctezuma
and Molinas (2020b). The NSGA-II method is
trained on a population size of 20 over a maximum of
20 generations. Although the mentioned references
use diverse models, datasets, and tasks, for a fair
comparison, we applied these methodologies to a con-
sistent framework comprising the TSD model and the
TUSZ dataset, specifically for the seizure detection
task. Therefore, we reimplemented and performed
model training and evaluation for all the methods.

6.1.1. Performance comparison

Initially, the performance of channel selection meth-
ods, exhaustive search methods, and FETCH as the
proposed method are compared. Each method identi-
fies the top five electrode configurations that yield the
best AUC performance on the validation set. Subse-
quently, these top five configurations for each method
are evaluated on the unseen test set, and the average
performance is reported in Table 1. For a fair com-
parison, we train separate TSD models for the top
five configurations identified by FETCH and evaluate
them on the test set. Selecting the five best channel

configurations aims to ensure robust results, account-
ing for potential performance variations between the
validation and test sets.

In Table 1, the performance results on the unseen
test set, 95% confidence intervals (CI), and GPU time
spent for identifying the top configurations are pre-
sented. The table shows the results for channel selec-
tion, exhaustive search, and the proposed FETCH
methods for 2-, 4-, and 8-electrode configurations.
Given that the transformer model used in our ex-
periments is larger than SVM and LightGBM used
in the exhaustive search references (Lee et al., 2022b;
Gelbard-Sagiv et al., 2023), the extensive time re-
quired to train all subsets with a transformer model
makes a direct performance comparison impractical
for cases in which more than hundreds of models
should be trained.

As shown in the table, considering both the CI and
the average AUC, the proposed FETCH method sig-
nificantly outperforms SFS and SBS in most cases.
Furthermore, there is no significant difference in per-
formance between FETCH, NSGA-II, and exhaus-
tive search methods. However, the time required to
achieve the top electrode configurations with FETCH
is up to 135x less than the other methods.

While the performance of FETCH is comparable to
established methods, it achieves this level of perfor-
mance in significantly less time. This highlights the
efficiency of our proposed method for identifying suit-
able electrode configurations. Additionally, FETCH
enables exploration of the entire design space, unlike
channel selection methods that are limited to identi-
fying only a few configurations. Obtaining the perfor-
mance results for all the electrode combinations be-
comes even more important when incorporating other
factors, such as user-friendliness into wearable system
design. We will discuss and present the design space
exploration capabilities of FETCH in Section 6.3.

6.1.2. Training time complexity

In Table 1, we have also reported the training time
complexity of each experiment, quantified by the
number of models required to be trained in each
methodology. In this table, N denotes the total count
of electrodes in a full-channel setup. For example,
within the 10-20 EEG configuration, N equals 19,
whereas, in a dense array EEG system, which features
a more concentrated arrangement of EEG electrodes,
N is set at 256 (Holmes, 2008).
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Table 1: Results comparison with Aydemir and Ergün (2019); Choi et al. (2012); Moctezuma and Molinas
(2020a,b); Lee et al. (2022b); Gelbard-Sagiv et al. (2023)

2-electrode 4-electrode 8-electrode Training time
AUC (Mean ± CI) Time AUC (Mean ± CI) Time AUC (Mean ± CI) Time complexity

Channel selection methods
SFS 0.853 ± 0.006 27H 0.858 ± 0.017* 31H 0.878 ± 0.016* 39H O(N2)
SBS 0.813 ± 0.005* 82H 0.834 ± 0.013* 78H 0.907 ± 0.010 68H O(N2)
NSGA-II 0.837 ± 0.023 258H 0.903 ± 0.009 258H 0.923 ± 0.003 258H O(G · P )

Exhaustive search methods
All comb. 0.853 ± 0.006 27H 0.897 ± 0.015 175H Timeout ≈ 3500H O(2N )
Random K 0.853 ± 0.006 27H 0.897 ± 0.015 175H Timeout ≈ 1000H O(K ·N)

Proposed method
FETCH 0.862 ± 0.014 4H 0.893 ± 0.013 5H 0.917 ± 0.003 26H O(N)

* The proposed method FETCH significantly outperforms these results.

For SFS and SBS methods as the greedy search

ones, in total N(N+1)
2 models must be trained. How-

ever, in the NSGA-II method which uses a genetic
algorithm, the complexity of the training time is
O(G · P ), where G represents the number of gener-
ations and P the population size. These parameters
are chosen based on the problem’s complexity. For
more complex problems, larger population and gen-
eration sizes are required to adequately explore the
solution space (Roeva et al., 2015). Specifically, in
the context of selecting EEG electrodes for seizure
detection, the number of electrodes N in the full-
channel system can be seen as indicative of the com-
plexity within the optimization’s solution space. For
instance, while Moctezuma and Molinas (2020b) uses
22 EEG channels, P is selected experimentally as 20,
and G averaged over the cross-validation folds is 39.

Exhaustive search methods are more time-
consuming. For example, in Lee et al. (2022b), train-
ing individual models for each configuration leads to
exponential complexity, scaling as O(2N ). Similarly,
in Gelbard-Sagiv et al. (2023), random K configu-
rations are selected for each electrode count, with
K = 1000, which is significantly larger than N . All
these configurations are then trained, resulting in the
complexity of O(K.N).

In contrast to previous methodologies, our pro-
posed FETCH method requires training only a single
model per desired number of electrodes. While train-
ing a single model can take up to 4 hours in our case,
inference on the validation and test sets is signifi-
cantly faster, taking only 17 seconds and 6 seconds,
respectively. This highlights the key advantage of
FETCH – its training complexity scales linearly with

the number of electrodes, O(N), significantly lower
than channel selection and exhaustive search meth-
ods. Although the inference step technically has a
complexity of O(2N ), its practical impact is negli-
gible due to the three orders of magnitude different
timescales of training and inference. It is important
to note that Table 1 includes the inference time in
the reported time values.

6.2. FETCH as an alternative to exhaustive
search

Due to the exponential complexity of training models
for all possible electrode combinations using exhaus-
tive search, a direct performance comparison becomes
impractical. To address this limitation, we randomly
selected a total of 200 combinations of 4- and 8-
electrode configurations from the feasible set. TSD
models were trained on each selected configuration,
generating a sample group of AUC performance rep-
resentative of the exhaustive search. The correspond-
ing results for the same configurations were obtained
using FETCH. We present the following analyses on
these results:

6.2.1. Result distribution comparison

The first analysis compares the distribution of re-
sults obtained by FETCH and the exhaustive search
method. Figure 4 depicts the distribution of AUC
scores on the validation set, highlighting the ability
of our method to achieve comparable results to the
exhaustive search approach.

Furthermore, a Wilcoxon matched-pairs test
(Conover, 1999) was conducted to statistically an-
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(a) 4 electrodes (b) 8 electrodes

Figure 4: The comparison between FETCH and ex-
haustive search models on 200 different random elec-
trode configurations with 4 and 8 electrodes.

alyze the performance difference between the two
methods. The null hypothesis states that the median
difference between paired observations in the AUC
distributions is zero. The results for both 4- and 8-
electrode configurations indicate that we cannot re-
ject the null hypothesis (p-value > 0.05). Given that
there is insufficient evidence to reject the null hypoth-
esis and considering the visual representation in Fig-
ure 4, this experiment suggests that the performance
of our FETCH method is not significantly different
from the exhaustive search method.

6.2.2. Rank preservation

In our study, we investigate the relationship or rank
among configurations in the two methods of FETCH
and exhaustive search. Preserving the rank order is
particularly important in this context, as it ensures
that if the configurations are sorted by their per-
formance in one method (e.g., FETCH), the corre-
sponding order in the other method (e.g., exhaustive
search) remains consistent.

We employed Spearman’s rank correlation coeffi-
cient, a non-parametric statistic that evaluates the
degree and direction of association between two
ranked variables (Dodge, 2008). This analysis re-
vealed a Spearman’s rank correlation coefficient of
0.86 and 0.81 for 4- and 8-electrode configurations,
respectively, with p-value < 0.05. This finding is im-
portant in understanding the alignment between the
two sets of rankings, as it allows us to use FETCH as
an alternative to computationally expensive exhaus-
tive search methods.

6.3. Design cost representation

We measure the power consumption for each elec-
trode configuration by performing the transformer
model inference on X-HEEP equipped with 12 on-
chip memory blocks (each 32 KB). On the X-HEEP
system operating at 75 MHz and 0.8 volts, the system
processes STFT, the transformer encoder, and proto-
type comparison in 2.7 seconds, 9.2 seconds, and 6.4
microseconds, respectively. Given a 12-second EEG
signal window, this translates to real-time seizure de-
tection with a total latency of 11.9 seconds. The com-
putation consumes 3.7 mW of power.

As discussed in Section 4.2, for each electrode con-
figuration, we apply a mask to the input STFT rep-
resentations for any absent electrodes in the given
configuration. This approach leaves the number of
active electrodes as the primary factor influencing
total device power consumption. For signal acqui-
sition, we utilize ADS1298 (TexasInstruments, 2015)
as an analog-digital converter (ADC) device. This 8-
channel ADC expends 0.8 mW of power per enabled
channel during operation and 2 mW of static power.
Since the number of electrodes is limited to 8 in this
device, depending on the number of electrodes in our
wearable device, we need to use one, two or three
ADC devices.

Utilizing the defined design cost in Equation (2),
we illustrate the results in Figure 5. In this figure,
each point corresponds to a specific electrode configu-
ration. The coordinates of these points represent two
dimensions: the performance achieved by FETCH,
and the diameter of the corresponding graph, which
reflects the ergonomic function. Also, power con-
sumption is depicted by the point size in the plot.
The coefficients w1, w2, and w3 in Equation (2),
which represent the weights for performance, power
consumption, and ergonomic factor respectively, are
set to 10, 0.1, and 1. This selection is made to en-
hance the clarity of the visualization in Figure 5.

This type of figure aids wearable designers in mak-
ing more informed decisions regarding the target elec-
trode configuration, taking into account their applica-
tion and design constraints. The efficiency of FETCH
is particularly noteworthy, as it allows the generation
of this figure in a significantly reduced time frame,
even when dealing with substantial machine learning
models or a large number of electrodes.
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Figure 5: Wearable design space exploration based
on a custom design cost.

6.4. FETCH with existing wearable devices

This section leverages FETCH as a framework to sys-
tematically analyze the performance of existing wear-
able devices within the context of all feasible elec-
trode combinations. The existing devices have shown
promising results in their own dataset using their
own models. This comparison is conducted solely to
demonstrate the utility of FETCH in wearable device
design, not to highlight any shortcomings of these ex-
isting devices.

Traditionally, wearable device performance is
solely evaluated against full-channel EEG caps, which
provides limited insights into their true potential
across diverse electrode configurations. FETCH en-
ables a more comprehensive evaluation by bench-
marking wearable devices against the performance
distribution of all feasible electrode combinations.
This systematic approach offers valuable insights for
wearable designers beyond a simple comparison to a
full-channel cap.

To show the generalizability of FETCH, we applied
FETCH to another dataset. We evaluate FETCH on
the motor imagery (MI) task of the OpenBMI dataset
(Lee et al., 2019). The dataset consists of 54 sub-
jects, each subject did two sessions, and during each
session, subjects performed 100 trials. Subjects were
shown visual cues (right/left arrows) and grasped a
handle with the corresponding hand for 4 seconds
while EEG data was recorded. We used the 62 EEG
channels available in the dataset and the same trans-
former architecture described in Section 4. However,
the input STFT was modified to account for the 62
electrodes, and the target frequency range was set to

(a) Seizure detection 

(b) Motor imagery

Figure 6: Comparing the existing wearable devices to
their corresponding n-electrode distribution for two
different tasks. The TUSZ dataset electrode positions
are not compatible with the Insight device.

[8-30 Hz], aligning with existing literature Lee et al.
(2019). Since the task is left/right discrimination, we
assumed that the combinations should be symmetric.

In particular, we compare FETCH to three existing
wearable devices for: Ceribell rapid response EEG
(Vespa et al., 2020), where 10 electrodes are posi-
tioned in a headband, Emotiv Insight (Emotiv, 2022)
equipped with 5 electrodes, and the e-Glass (Sopic
et al., 2018) device, wherein electrodes are integrated
into eyeglasses. The electrode configurations used in
these wearable devices have been widely used in the
literature (Amirshahi et al., 2022; Pascual et al., 2020;
Baghersalimi et al., 2022).

To evaluate performance across different electrode
configurations, we analyzed the AUC distribution ob-
tained by FETCH on the TUSZ dataset. Figure 6(a)
depicts the positioning of e-Glass and headband de-
vices within the distribution for both 4-electrode
(170 configurations) and 10-electrode (7258 config-
urations) scenarios. Similarly, Figure 6(b) show-
cases the placement of three wearable devices in the
AUC distribution for the motor imagery task, in-
volving 813, 2834, and 557 845 different subsets of
4-, 5-, and 10-electrode configurations, respectively.
Notably, FETCH identified the distribution of 10-
electrode configurations within 27 hours, whereas an
exhaustive search retraining the model for each con-
figuration would take one year.

This analysis enables us to understand how the per-
formance of these existing wearable devices compares
to the spectrum of possibilities offered by all feasi-
ble electrode combinations, as identified by FETCH.
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This information can be instrumental in guiding fu-
ture wearable design choices and optimizations.

7. Conclusion

In conclusion, our study demonstrates the efficacy
of FETCH in optimizing electrode configurations for
EEG-based wearable devices. By employing a trans-
former model integrated with few-shot learning, we
successfully achieved high-performance metrics while
significantly reducing training times. Our approach,
which is adaptable to various electrode arrangements,
proved to be comparable with traditional exhaustive
search and channel selection methods, as we achieved
an AUC value of 0.917 with configurations using eight
electrodes. Also, Spearman’s rank correlation of 0.86
showed that FETCH can be considered as an alterna-
tive to the exhaustive search methods. Furthermore,
through the application of our design cost function,
we showcased the potential to create ergonomic and
energy-efficient wearable devices. Comparisons with
existing devices were further validated FETCH as a
robust tool for designers of wearable technology, en-
abling them to significantly improve device perfor-
mance and user comfort.
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