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Abstract— This work focuses on understanding and identi-
fying the drag forces applied to a rotary-wing Micro Aerial
Vehicle (MAV). We propose a lumped drag model that concisely
describes the aerodynamical forces the MAV is subject to, with a
minimal set of parameters. We only rely on commonly available
sensor information onboard a MAV, such as accelerometer
data, pose estimate, and throttle commands, which makes our
method generally applicable. The identification uses an offline
gradient-based method on flight data collected over specially
designed trajectories. The identified model allows us to predict
the aerodynamical forces experienced by the aircraft due to
its own motion in real-time and, therefore, will be useful to
distinguish them from external perturbations, such as wind or
physical contact with the environment. The results show that we
are able to identify the drag coefficients of a rotary-wing MAV
through onboard flight data and observe the close correlation
between the motion of the MAV, the measured external forces,
and the predicted drag forces.

I. INTRODUCTION

Rotary-wing Micro Aerial Vehicles (MAVs) and, more
generally, Unmanned Aerial Vehicles (UAVs) are used in a
multitude of fields today. Their application includes crop and
environmental monitoring [1], [2], imagery and photogram-
metry [3], infrastructural asset inspection [4]–[7], or search
and rescue applications [8]. However, an outdoor-operating
MAV will likely be subject to disturbances, mostly wind-
induced, which can increase the risk of failure during a
mission. Therefore, the detection of disturbances is important
from a stabilization and control standpoint.

An intuitive way to perform wind sensing is through the
use of dedicated sensors [1], [9], [10]. However, the addition
of additional sensors reduces the payload that the aircraft
can carry and has a negative impact on the autonomy of the
aircraft. Since wind sensors have to be placed far enough
from the rotors to avoid being influenced by their wake,
the footprint of the vehicle increases, which is not desirable
for aircrafts engaged in applications that include flying close
to infrastructures or within confined spaces. Instead, model-
based solutions have been investigated to avoid the use
of dedicated sensors. The simplest approach consists of
observing the attitude of the aircraft in hovering conditions
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and linking the observed attitude with the intensity of the
wind [1], [11], [12]. However, this approach significantly
limits the motion of the aircraft. To overcome these limita-
tions, approaches have been proposed for dynamic flights.
Although the thrust exerted by the system can be deduced
from the hovering conditions for stationary flights, it needs
to be directly measured in dynamic flights, as the only two
types of force exerted on a rotary-wing aircraft are the thrust
and aerodynamical forces, either induced by its own motion
or external wind. In the literature, it is common to use
direct measurements of the generated thrust by measuring
either the velocity of the rotors directly or the current drawn
by the Electronic Speed Controllers (ESCs) [11], [13]–[17].
This approach requires low-level integration with the system,
which may not always be possible. Otherwise, encoders or
Hall-effect sensors can be added to the motors at the cost
of additional weight and hardware complexity. To mitigate
this, a low bandwidth assumption on the wind profile has
been proposed in [18], [19], which makes it possible to reuse
the previous wind estimate to predict the current thrust and,
therefore, estimate the new wind conditions. However, this
reduces the applicability of the approach, since assumptions
about the wind profile are made. While this solution could
be suitable in open-field applications where the general
wind conditions must be observed (e.g., in the scope of
meteorological studies), its application is not suitable where
more dynamic conditions apply.

Regardless of the selected approach, the aerodynamic
characteristics of the aircraft need to be identified. They
are usually described by an aerodynamic drag model of
varying complexity depending on the application [20]–[24].
Wind tunnel experiments are often performed to identify the
model parameters [1], [12], [15]. However, the requirement
of conducting wind tunnel experiments can be a significant
limiting factor in the general applicability of a method, as
such facilities are not commonly available. To avoid this
limitation, several approaches have been suggested to learn
the complex aerodynamic forces exerted on the aircraft from
flight data through various machine-learning techniques, such
as the Gaussian Process [25] or Deep Learning [26]. This
provides an abstraction for the drag model capable of captur-
ing complex interactions at the cost of using more complex
and computationally demanding algorithms.

This work provides a middle ground to the solutions previ-
ously cited. We reduce the drag model to a lumped minimal
form that captures the essential dynamics at play and only
requires the identification of a minimal set of parameters.
The thrust is deduced from the throttle commands through
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a model detailed later in this work. It is thus important
to note that we do not require any hardware modifications
or sensor integration for our solution to work, as we only
require data commonly available on any rotary-wing MAV.
In fact, our method only requires the MAV to provide a
pose estimate (e.g., obtained from the fusion of inertial and
GNSS measurements, Visual Inertial Odometry (VIO), or
through another approach), accelerometer measurements, and
throttle commands. In our case, the state estimate is obtained
from a VIO pipeline. We show that this information suffices
for the direct measurement of external forces. It can be
further leveraged to identify the aforementioned lumped drag
model, which allows us to predict the aerodynamical forces
experienced by the MAV due to its own motion in real-time
and, therefore, distinguish them from external perturbations,
such as wind or physical contact with the environment.

II. PRELIMINARIES

This section presents the notation used in this work and
reviews some core concepts of the dynamics of a rotary-wing
MAV.

A. Notation and Conventions

The following uses the notation W (·) and B(·) to denote
whether a quantity (·) is expressed in the world frame
W or the body frame B, respectively, as illustrated in
Fig. 1. Vectors (lower case) and matrices (upper case) are
denoted by a bold font. The element-wise multiplication
is denoted by ⊙ and the element-wise absolute value by
| |. The frame convention used in this work is Forward
Left Up (FLU), or equivalently North West Up (NWU). We
use Tait-Bryan angles with the intrinsic rotation sequence
z− y′ − x′′ (i.e. yaw, pitch, roll, denoted by the angles ψ ,
θ , φ ). The attitude of the drone is generally represented by
the rotation matrix B

W R. The total inclination is denoted by
Θ = arccos

(
uT

z
B
W Ruz

)
, with uz = [0 0 1]T .

Fig. 1: Inertial world frame W and body frame B, with roll,
pitch and yaw angles denoted by φ , θ and ψ .

B. General Dynamics

The dynamics of a flying MAV can be summed very
concisely with the following expression, expressed in the
body frame B:

ma = τττ + fext (1)

where m is the mass of the aircraft, a is the acceleration
(as sensed by an accelerometer at the center of mass), τττ =
[0 0 τ]T is the generated thrust, and fext is any external force

applied to the aircraft. Note that since B is not an inertial
frame, the gravity-induced force must not be included here.

We consider the following relations to convert a throttle
command ρ to the exerted thrust τ .

ω ∝ ρ(t −∆t) , τ ∝ cτ ω
2 (2)

where ρ(t) ∈ [0,1] is the throttle command outputted by the
autopilot, ∆t is the time delay between a throttle command
at time t and its actual application, ω ∈ [0,1] is interpreted
as the normalized average setpoint angular velocities of the
propellers and τ is the resulting thrust. The thrust coefficient
cτ links the angular velocity ω to the thrust τ .

C. Airspeed Definition

A fundamental concept when considering aerodynamic
forces is the so-called “wind triangle”, illustrated in Fig.
2. The wind vector vw results from the difference between
the ground velocity of the aircraft vg (the velocity measured
by a pose estimate) and the velocity relative to the air va
(or airspeed), hence vw = vg −va. Thus, the airspeed vector
va =

[
vax vay vaz

]T is responsible for the generation of
drag forces.

Fig. 2: Illustration of the wind triangle.

D. Lumped Drag Model

This section looks at different phenomena commonly iden-
tified as impacting the drag forces of a typical rotary-wing
aircraft. Additionally, the complex underlying physics that
motivates each model is summarized into lumped expressions
that capture the general effect of each phenomenon. All the
quantities mentioned in the following are assumed to be
expressed in the body frame B, unless otherwise specified.

1) Induced Drag: This drag is directly caused by the
rotating blades of the MAV as they move through the air.
The sector of the rotor traveling with high thrust (for the
advancing blade) will generate more induced drag than the
sector where the rotor generates less thrust (for the retreating
blade) [23]. The induced drag is modeled as:

fi =−τ

d 0 0
0 d 0
0 0 0

va (3)

where d is the induced drag parameter in s/m and τ is
the thrust. Note that some works consider this drag to be
independent of the thrust [22].

2) Blade Flapping: The advancing blade has a higher
absolute tip velocity and will generate more lift than the
retreating blade. This generates an overall moment on the
rotor disk in the direction of the apparent wind, which
makes it tilt towards the wind direction, generating drag [23].
Additionally, some phase-lag effects can arise, and therefore



induce a tilt of the propeller not aligned with the wind
direction. The blade flapping drag is modeled as:

f f =−ω

ac −as 0
as ac 0
0 0 0

va (4)

with the blade flapping coefficients ac and as in Ns2/mrad.
3) Axial Flow: When a propeller moves vertically, its

thrust coefficient is affected. However, the impact on thrust
can be highly non-linear. It is therefore more suitable to use
the linearized formulation cτ = cτ0 − c

ωr vaz [20], which can
be converted to a resulting drag force:

fa =−ω

0 0 0
0 0 0
0 0 c

va (5)

with the axial flow coefficient c in Ns2/mrad.
4) Translational Lift: As a propeller moves through the

air, the radial airspeed causes an increase in lift. This
is known as translational lift [21]. The generated lift is
expressed as:

fl = τ l
∥∥∥∥[1 0 0

0 1 0

]
va

∥∥∥∥uz (6)

with l the translational lift coefficient in s/m, and uz the unit
vector along the z-axis.

5) Parasitic Drag: This is the drag induced by the non-
lifting surfaces of the quadrotor (e.g., the air frame, the
motors, the embedded electronics, etc.) [22].

fp =−

µx 0 0
0 µy 0
0 0 µz

va ⊙|va| (7)

with the parasitic drag coefficients µx, µy and µz in Ns2/m2.
The final generic lumped drag model therefore includes

eight coefficients and is given by:

fdrag(ω,τ,va |d,ac,as,c, l,µx,µy,µz) = fi + f f + fa + fl + fp
(8)

III. METHODS

This section describes how the coefficients of the lumped
drag model are identified. The selected approach is to per-
form autonomous flights in wind-free environments, which
yields the useful relation va = vg, where vg is obtained by
deriving once with respect to time the pose provided by the
state estimate of the aircraft. This lets us actively excite the
dynamics along each axis of the aircraft within the limits of
its flying capacity. Different trajectories are performed (see
Section III-C below) to obtain the necessary data for the
identification of the drag model parameters. Fig. 4 illustrates
the resulting drag prediction for a wind-free autonomous
flight.

A. Accelerometer Bias Estimation

The accelerometer bias is identified online by computing
a continuously updated mean of the obtained accelerations.
Since the computations are performed in the body frame B,
the gravity vector must be projected. The kth update of the
bias ā with measured acceleration a is:

ā[k] = ((κ −1)ā[k−1]+a−Bg)/κ, with κ = min(k,kmax)
(9)

Furthermore, the value of κ can be limited to an upper bound
kmax to allow the bias to evolve even after collecting a large
amount of measurements. In this work, we use kmax = 1000.

B. Throttle to Thrust Model

The thrust exerted by the MAV must be known according
to (1); however, direct measurement of the applied thrust
requires hardware adaptations and is therefore not always a
suitable solution. Instead, we rely on the throttle command
sent by the autopilot. First, the delay ∆t between the throttle
command and its application must be estimated. This delay
can arise if the accelerometer data are filtered or can be
caused by the ESCs or rotors’ inertia. The throttle signal
is correlated with the accelerometer data along the z-axis to
identify the delay. Ideally, data from several flights with large
vertical accelerations should be recorded, and the correlation
between throttle commands and accelerations should be
computed for each of them. Once the delay is known, the
throttle commands ρ can be shifted in time to account for
the estimated delay ∆t, which yields the rotors’ normalized
rate ω , as defined in (2). Subsequently, the rate is mapped
to thrust as follows:

τ = τ0 + τ1ω + τ2ω
2 (10)

where τ0, τ1 and τ2 are positive constants to identify. In
general, the relation between the rotor velocity and thrust is
purely quadratic and one would expect to have τ0 = τ1 = 0.
However, some autopilot settings can alter this relation, and
therefore the more generic model in (10) is required.

C. Trajectories Generation

Trajectories must be appropriately defined to allow obser-
vation of the drag forces on the system along each axis.

For the vertical axis, setpoints are sent to the MAV along
the vertical axis at fixed time intervals to excite its vertical
dynamics. The x and y coordinates are kept constant.

To excite the horizontal dynamics of the MAV, we
use piecewise minimum jerk trajectories, where each seg-
ment is described by a five-degree polynomial [27]. These
can smoothly interpolate a series of arbitrary waypoints,
and therefore generate arbitrarily complex smooth trajecto-
ries. This offers greater flexibility than classical parametric
curves, such as the Lissajous curves. At each waypoint, the
zeroth derivative is set at the waypoint location, while the
second derivative is set to zero. For the first derivative, given
a series of consecutive waypoints wi, w j and wk ∈ R3,
and a reference velocity vw at the waypoints, we define the
two unit vectors ei and e j along the directions w j −wi and



wk −w j respectively. The velocity vector at the waypoint w j
is calculated as v j =

1
2 (ei+e j)vw. This process is repeated for

each triplet of consecutive waypoints. Finally, the duration
of each segment formed by a pair of consecutive waypoints
wi and w j is set according to ||w j −wi||/vs, with a reference
velocity vs for the segments.

We use the sequence of waypoints illustrated in Fig. 3,
which equally excites the x- and y-axes in both directions,
with both lateral and diagonal velocities when flying with a
fixed heading (in this case aligned with the x-axis).

Fig. 3: Waypoints sequence used for the identification. The
repeating pattern forming the trajectory is indicated by the
sequence of colors (with the order: red, green, blue, gray).

Trajectories resulting from the sequence of waypoints
described in Fig. 3 can be seen in Figs. 4 (real trajectory
performed by the MAV) and 6 (computed trajectories).

Fig. 4: MAV trajectory with measured drag forces fdrag
and modeled drag forces f̂drag during a flight in no-wind
conditions, reaching ground velocities of up to 2.5 m/s.

D. Identification with Gradient Descent

We perform the identification of the model parameters
offline using a gradient-descent approach. Equations (1), (8)
and (10) can be combined to define a loss function L, where
each array is of size (3,N) with N the number of samples:

L =
1
N

N−1

∑
n=0

∥∥ma[:,n]− τττ[:,n]− fdrag[:,n]
∥∥ (11)

Here ‘:’ represents the slice notation to indicate all values
are considered along the specified axis. With this loss, a
gradient is calculated for each coefficient defined in (8) and
(10), using an autograd library, in our case PyTorch [28].
We use the Adam optimizer to update the coefficients at each
iteration. Depending on the trajectory, gradient computations
can be enabled or disabled for a subset of coefficients.
Therefore, a single loss can be used to identify different sets
of parameters. Furthermore, limits are set to the parameters
to avoid unfeasible values and enforce constraints.

We decompose the identification problem into two phases.
First, the parameters affecting the vertical axis are estimated,
and second, the ones affecting the horizontal plane are
identified. This two-step approach allows us to perform more
suitable trajectories to identify the parameters. Indeed, the
impact of the parameters can be difficult to distinguish
when estimated all at once, further motivating this two-
phase approach. More concretely, we execute purely verti-
cal trajectories and estimate the delay ∆t between throttle
commands and perceived vertical accelerations. Then, the
vertical parameters c, µz, τ0, τ1, and τ2 are identified. Once
known, these parameters are kept constant and the remaining
horizontal parameters d, ac, as, l, µx and µy are estimated
by running trajectories based on the waypoints in Fig. 3,
involving motions both in the horizontal and vertical planes.

For both phases, we performed multiple flights, each flight
yielding an associated dataset of recorded onboard data.
Furthermore, the estimation process is repeated five times
for each flight and the identified parameters are each time
initialized with random values uniformly distributed in the
range [0,1], while the other non-estimated parameters remain
unchanged. Repeating the identification with different initial
values allows us to verify whether the gradient descent
algorithm consistently converges towards the same solution.
If this is not the case for certain parameters, they should
be removed from the model. This constitutes our first crite-
rion for removing redundant model parameters. The second
criterion we employ is the correlation between identified
parameters across flights, which means that the effect of
certain parameters is compensated for by others. Finally,
the third and last criterion used consists in verifying the
compliance of a parameter with its physical meaning (e.g.,
obtaining strictly positive parasitic drag coefficients). This
qualitative process enables us to eventually converge towards
a minimal and physically anchored drag model.

IV. EXPERIMENTAL SETUP

This section introduces the MAV used in this work, as well
as key characteristics of its sensor data. Finally, we describe
the experiments carried out.

A. Micro Aerial Vehicle

To conduct real-world experiments, the Starling platform
produced by ModalAI Inc., illustrated in Fig. 5, was used. It
spans 190 mm diagonally and weighs slightly more than 300
g. It includes the companion computer VOXL, built around
the Snapdragon 821 quad-core processor. Its base operating
system is Linux Yocto Jethro with 3.18 kernel and runs ROS.
The board contains two IMUs. The MAV is equipped with
a flight core, joined to the main board, running PX4 and
interfaced using MAVROS. State estimation is performed
by monocular VIO, using a 45◦ downward looking global
shutter wide-angle camera, running Qualcomm’s proprietary
VIO solution mvVISLAM.

The PX4 autopilot is limited to a velocity of 3 m/s and can
accelerate up to 5 m/s2 horizontally and 3 m/s2 vertically.



Fig. 5: Starling MAV by ModalAI Inc.

B. Sensor Data

The data collected over MAVROS are listed in Table I.
For brevity, the standard deviations (std) are reported for the
norm of multidimensional measurements. The accelerometer
standard deviation was measured under hover conditions,
as the accelerometer noise is significantly affected by the
motors. The attitude is provided by the VIO pose estimate,
and its standard deviation was also measured while hovering.

TABLE I: Sensor Data Characteristics
Type Unit Rate Hz Cutoff Freq. Hz std.

Acceleration m/s2 50 5 1.378
Throttle % 10 - -
Attitude rad 30 - 0.002
Position m 30 - 0.023
Velocity m/s 30 2 0.023

The standard deviations for position and velocity (obtained
by differentiating the position) were determined by assessing
the estimated trajectory generated by the VIO pipeline in
relation to the ground truth trajectory acquired through a
Motion Capture System (MCS) with a millimeter accuracy
from Motion Analysis Inc. Prior to the comparison, the
VIO estimated trajectory is aligned with the ground truth
trajectory using a rigid transformation, minimizing the dis-
tance between both trajectories. We calculate the standard
deviation of the error between the VIO estimated pose and
the MCS ground truth for both the position and velocity.

C. Experiments

Following the type of trajectories described in Section
III-C, three types of autonomous flights were carried out:
vertical, horizontal, and combined.

The vertical experiments were composed of a sequence of
vertically aligned targets sent at fixed time intervals of 1 and
1.5 seconds. We used three waypoints at a height of 1, 2,
and 3 meters respectively in various sequences, which yields
height changes between 1 and 2 meters in both directions. In
horizontal experiments, we used the sequence of waypoints
shown in Fig. 3 with fixed heading, with a displacement
of ±2 m along each axis. The reference velocity for the
segments vs is set at 2 m/s, and the velocity at the waypoints
vw is set at 1 m/s. The acceleration at the waypoints is
set at 0 m/s2. Finally, in the combined experiments, we
add a height variation to the horizontal settings between
each consecutive waypoint. The height was set to alternate
between 1 and 3 m. This third configuration adds more
diversity to the collected data and should provide greater
robustness to the final identification results. The horizontal
and combined configurations are shown in Fig. 6.

Fig. 6: Horizontal and combined trajectories derived from
the waypoints sequence of Fig. 3.

V. RESULTS

This section covers the identification process carried out
and presents the identified coefficients of the model.

A. Vertical Drag Model Identification

Six flights with pure vertical motions were performed. Us-
ing these data, the time delay between the throttle command
and its effect on the vertical acceleration was estimated to be
∆t = 0.05±0.01 s by computing the correlation between the
throttle commands and the measured vertical accelerations.

The thrust model (10) could be identified, where the
quadratic term converged to zero, in favor of the constant
and linear terms. As the parasitic drag along the z-axis µz
was highly correlated with the axial flow drag coefficient c
(correlation of −0.99), we chose to drop µz. The identified
vertical drag coefficients are summarized in Table II.

B. Correlation Between Drag Forces and Velocity

With the identified thrust model, we use (1) to calculate the
external forces exerted on the MAV as fext = m(a− ā)− τττ .
During free-flights, these forces should be correlated with
the velocity of the aircraft, since they correspond to drag
forces in this case. To verify this, we performed a combined
trajectory, as shown in Fig. 6, which produced the Spearman
correlation matrix in Fig. 7. The matrix clearly indicates that
the MAV should be able to identify the aerodynamic forces
exerted during its movements, as there is a clear correlation
between its velocity and the perceived forces.

Fig. 7: Spearman correlation between observed external
forces and sensor data. Bvxy is the horizontal velocity norm.

C. Horizontal Drag Model Identification

Similarly to the vertical experiments, data were collected
for eight flights. Four of the flights were performed with
horizontal trajectories, while the other four included height
variations (cf. Fig. 6). One dataset with height variations was



not included in the identification process and was used for
validation, whose results are reported in Figs. 4 and 8.

After the first identification, the blade flapping coefficient
ac could not be consistently identified between runs and
was fully correlated (−1) with the induced drag d. Thus,
it was dropped, as well as ac, which took a small value
−0.006±0.009 Ns2/mrad. The identification was rerun and
the parasitic drag coefficient µx showed a correlation of
−0.91 with the induced drag d, while µy converged to a
small negative value −0.008± 0.002 Ns2/m2. Both coeffi-
cients were removed. Rerunning the identification produced
a translational lift coefficient l with a negative value of
−0.002 ± 0.006 s/m, which is in contradiction with the
physical meaning of the coefficient. It was also dropped.
Therefore, the only valid drag coefficient remaining is the
induced drag coefficient d.

D. Identified Drag Model

Table II summarizes the retained parameters, their identi-
fied values, and standard deviations. For the MAV consid-
ered, the propellers play an important role in generating drag,
while the body of the aircraft does not have a significant
impact. Hence, only the induced drag and axial flow play a
significant role in drag generation.

TABLE II: Identified Parameters
Parameter Value std. Unit
d 0.024 0.001 s/m
c 0.598 0.049 Ns/m
τ0 0.923 0.029 N
τ1 8.137 0.144 Ns/rad
∆t 0.05 0.01 s

The validation dataset (trajectory with height variations,
see Fig. 6) was used to evaluate the drag forces due to the
motion of the MAV itself as predicted by the drag model,
versus the forces measured from the accelerometer and the
applied thrust. We show the resulting forces in Fig. 8.

The drag model clearly follows the trend of the measured
drag forces despite the noise present in the measured forces.
This confirms that the identified drag captures the main
characteristics of the true underlying drag. We performed a
similar evaluation on the six vertical, four horizontal, and
four combined trajectories executed for the identification,
whose averaged results are reported in Table III.
TABLE III: Mean statistics across flights of force error e =
fdrag − f̂drag in N

|ex| |ey| |ez| ||e||
Mean 0.084 0.123 0.169 0.226
Max 0.660 0.980 1.366 1.822
RMSE 0.118 0.173 0.238 0.319

It is therefore possible to distinguish motion-induced drag
forces from external forces, caused by wind or physical
contact with an object. In this case, it is also easy to invert
the drag model and recover the wind speed by solving (8) for
va and then computing the wind speed as vw = vg−va. Note
that solving (8) may require one to solve a non-linear system
of equations depending on which parameters of the model

Fig. 8: Measured (fdrag) vs. predicted (f̂drag) drag forces
during an autonomous flight with no-wind conditions.

are kept. This is not the case here, as only the induced drag
and the axial flow drag are included and depend linearly on
va.

VI. CONCLUSION

In this work, we covered the main aerodynamic drag
forces exerted on a rotary-wing aircraft and proposed a
lumped formulation for each of them. This allowed us
to perform an efficient gradient-based identification of the
model parameters from free-flight onboard data in no-wind
conditions without any prior assumption. The identification
was carried out in two steps, first by identifying vertical
and then horizontal drag parameters. The model complexity
is minimized by iteratively removing redundant model pa-
rameters during the identification process. Although in this
work we only worked with the Starling MAV, our approach
is not restricted to a specific platform, as it solely relies
on generally available onboard data a rotary-wing MAV can
provide. Specific trajectories were proposed to collect data
suitable for the identification of a MAV’s drag parameters,
using vertically aligned waypoints and smooth minimum
jerk trajectories. External forces are measured by direct
observation of accelerations and throttle commands, making
the approach lightweight and easily implementable in various
systems. Furthermore, this allows us to create the baseline to
capture external wind- or contact-induced disturbances (see
the video at the link provided in the first page footnote, where
we show the detection of perturbations manually applied to
the MAV). As suggested by the results of this work, the main
sources of drag for a rotary-wing MAV are its propellers,
namely, the propellers’ induced drag and axial flow drag.
In the future, we will conduct systematic experiments in a
wind tunnel to quantitatively verify the measurement of wind
perturbation forces.
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