
A Comparative Analysis of Tools & Task Types for Measuring
Computational Problem-Solving

Engin Bumbacher
engin.bumbacher@hepl.ch

Haute École Pédagogique du Canton
de Vaud (HEP-VD)

Lausanne, Vaud, Switzerland

Jérôme Brender
jerome.brender@hepl.ch

Haute École Pédagogique du Canton
de Vaud (HEP-VD)

Lausanne, Vaud, Switzerland

Richard Lee Davis
richard.davis@epfl.ch

École Polytechnique Fédérale de
Lausanne (EPFL)

Lausanne, Vaud, Switzerland

ABSTRACT
How to measure students’ Computational Problem-Solving (CPS)
competencies is an ongoing research topic. Prevalent approaches
vary by measurement tools (e.g., interactive programming, multiple-
choice tests, or programming-independent tests) and task types (e.g.,
debugging problems or Parson problems). However, few studies
have examined the measurement tools of CPS competencies them-
selves: affordances and limitations of the measurement tools and
how they compare, or whether different task types might elicit CPS
competencies differently. Research needs to address these questions
in order to better understand how to design robust, generalizable,
and effective measurement tools for CPS competencies. This pa-
per presents an exploratory study that contributes to this research
direction. It is part of a larger international project to develop an
open-access formative assessment platform for CPS, which includes
a novel authoring tool for a wide range of task types for interactive
block-based programming. We used the tool to create an interactive
programming experience with multiple task types and gave it to
more than 300 secondary school students from different countries.
We also administered a validated multiple-choice measurement
of Computational Thinking with block-based programs. We fo-
cused on task complexity as a characteristic of task type, using a
classification scheme based on task design features. Comparing
students’ performances on tasks of different complexity and using
two distinct measurement tools, we found that the multiple-choice
measurement only partially predicts performance in the interac-
tive programming task. Additionally, its predictive capacity varies
significantly between task types of differing complexity.
ACM Reference Format:
Engin Bumbacher, Jérôme Brender, and Richard Lee Davis. 2024. A Compar-
ative Analysis of Tools & Task Types for Measuring Computational Problem-
Solving. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 2 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3626253.3635547

1 FURTHER INFORMATION
Computational Thinking (CT) is widely recognized as a crucial skill
in the twenty-first century [2]. It is involved in the formulation, eval-
uation, and implementation of solutions to complex computational

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0424-6/24/03.
https://doi.org/10.1145/3626253.3635547

problems [3, 8]. There is an increasing number of learning envi-
ronments and pedagogical approaches for teaching computational
problem-solving (CPS), but also a lack of agreed-upon tools for
measuring CT practices in CPS - tools that are necessary to help ad-
vance research [4]. Current approaches range from multiple-choice
tests using programming-based tasks to interactive experiences
with novel immersive virtual environments. In one of the more
comprehensive studies of the few that examined the relationship
between different measurement tools, Román-González et al. [6]
found only a partial convergence between the most extensively
used tools: the psychometrically validated paper-based assessment
CTt, the Dr. Scratch [5] scoring tool for Scratch programs, and
the programming-independent paper-based assessment of CT, Be-
bras [1]. This indicates that each test captures only some aspects
of CT practices, leaving unexplained a significant proportion of
other ones. A combination of the different measurement tools, as
suggested by the authors, will not resolve this problem as long as
we do not better understand what aspects of CT practices each
measurement tool can and cannot capture, and how they relate to
each other. In other words, we need to be able to answer questions
such as whether a debugging task in multiple-choice format, as
used in the CTt, captures the same aspect of debugging practices as
an interactive programming task, or whether performance on a CPS
task varies when changing design features of the task such as the
degrees of freedom in finding a solution, the kind of interactivity
in the task, etc.

This paper presents an exploratory empirical comparison of dif-
ferent measurement approaches to begin to address these questions,
in order to contribute to more informed methodologies for design-
ing future measurement approaches. Specifically, we address the
following research question: To what extent does performance on
a validated multiple-choice instrument of CT predict performance
on interactive CPS tasks, and does this relationship depend on the
complexity of the programming task?

In order to address this question, we used a novel web-based Plat-
form for Innovative Learning Assessments (PILA) in collaboration
with the OECD’s Programme for International Student Assessment
(PISA). This platform allows the creation and distribution of highly
customized assessment experiences with interactive CPS tasks and
records all process data. We worked with the “Karel” programming
application, a block-based programming environment that requires
students to guide the turtle-like agent “Karel” through a grid-like
world while arranging stones in certain ways. The novel authoring
tool allows for varying the complexity of the tasks by manipulating
a wide range of design features such as the number, size and shape
of the grid-like worlds to be solved with a program, the types of

1580

https://doi.org/10.1145/3626253.3635547
https://doi.org/10.1145/3626253.3635547
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626253.3635547&domain=pdf&date_stamp=2024-03-15


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Engin Bumbacher, Jérôme Brender, and Richard Lee Davis

programming blocks available, the limits to block use, the available
starter code, etc.

We designed two assessment experiences containing eight and
six interactive CPS tasks of varying complexity. Tasks required
students complete, assemble, debug or modify given code, involved
simple or more complicated worlds. Throughout the experiences,
three programming concepts were introduced: functions, while
loops, and conditionals. Using an a priori coding scheme for task
complexity, which we will present in the poster, we classified each
task as being of "low complexity" or of "high complexity". Task
complexity was varied within each assessment experience.

The participants were 305 secondary school students between
12 and 18 years from a total of 28 teachers in various schools from
five countries (Singapore, Ireland, the Netherlands, and Brazil).
These schools responded to an open call for participation by the
OECD’s PISA. Prior to the start of the study, ethical approval was
secured, but we could not collect any background information on
the students.

The study was structured in three parts. Initially, students com-
pleted a self-report questionnaire on their prior computer science
and programming experience. Subsequently, they completed the
B+CTt paper-based multiple-choice test developed by Wiebe et al.
[7]. After a brief tutorial on using the “Karel” application, students
worked through the two 45-minute assessment sessions on consec-
utive days.

For each student, we calculated a B+CTt test score as the per-
centage of the maximum score possible, a compound measure of
prior expertise as the aggregate of students’ responses to three
closed-form self-report questions on prior programming experi-
ences, and a programming score for the performance in the CPS
assessment experiences. Both the success rate and the percentage
of students who could attempt a task varied significantly between
tasks, with an average overall score of 45% (SD=22%) across both ex-
periences. The rate of non-attempts increased with each subsequent
task within an experience. At the same time, the 7 low complexity
and 7 high complexity tasks were arranged differently within each
assessment experience, with the low complexity tasks being placed
mostly in the first half of an experience. Thus, the average rate
of non-attempts was significantly different between low and high
complexity tasks. This led us to decide to run separate regression
models for the two categories instead of combining them into a
single model with the task category as an independent interactive
factor. Qualitative comparisons of coefficients between models are
possible because we used standardized covariates. We used linear
mixed-effect models on performance in programming tasks, with
random intercepts for country and for teachers nested in country.
Table 1 shows the three mixed-effects models, with dependent vari-
ables total score on all tasks, total score on just the low complexity
tasks, and total score on just the high complexity tasks. The re-
sults show that both the B+CTt score and the compound measure
of prior expertise are significantly predictive of performance on
the interactive programming tasks in all three models. However,
while the main effect of prior expertise remains fairly similar across
models, the main effect of B+CTt score varies significantly, and is
highest for the low complexity tasks. Similarly, the interaction ef-
fect between the two covariates varies across models, and is highest
for the high complexity tasks. These results suggest there is partial

Table 1: Mixed-effects models for total scores per task cate-
gory. Covariates have been standardized. Numbers in paren-
theses indicate the 95% confidence intervals.

convergence between the B+CTt and the interactive programming
experiences. However, the strength of prediction of the B+CTt for
performance on the Karel tasks varies with task complexity. There
is a larger proportion of variance in performance that cannot be
explained by the B+CTt for tasks of high complexity compared
to tasks of low complexity. Taken together, this exploratory study
emphasizes the importance of paying more attention to how task
characteristics such as complexity influence how students engage
in computational problem-solving practices and how they perform
across different measurement tools. Further research is needed to
better understand the relationship between task complexity and
predictive capacity of the paper-based closed-response tasks. This
requires research tools like the novel web-based PILA, that we are
co-developing with the OECD’s PISA organization. We will present
more details in the poster on both the web-based platform that we
used and the study design and results.

REFERENCES
[1] Valentina Dagiene and Gabriele Stupuriene. 2016. Bebras–A Sustainable Commu-

nity Building Model for the Concept Based Learning of Informatics and Computa-
tional Thinking. Informatics in education 15, 1 (2016), 25–44.

[2] Shuchi Grover and Roy Pea. 2013. Computational thinking in K–12: A review of
the state of the field. Educational researcher 42, 1 (2013), 38–43.

[3] Shuchi Grover and Roy Pea. 2018. Computational thinking: A competency whose
time has come. Computer science education: Perspectives on teaching and learning
in school 19, 1 (2018), 19–38.

[4] Josef Guggemos, Sabine Seufert, and Marcos Román-González. 2023. Compu-
tational thinking assessment–towards more vivid interpretations. Technology,
Knowledge and learning 28, 2 (2023), 539–568.

[5] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2015. Dr.
Scratch: Automatic analysis of scratch projects to assess and foster computational
thinking. RED. Revista de Educación a Distancia 46 (2015), 1–23.

[6] Marcos Román-González, Jesús Moreno-León, and Gregorio Robles. 2019. Combin-
ing assessment tools for a comprehensive evaluation of computational thinking
interventions. Computational thinking education (2019), 79–98.

[7] Eric Wiebe, Jennifer London, Osman Aksit, Bradford W Mott, Kristy Elizabeth
Boyer, and James C Lester. 2019. Development of a lean computational thinking
abilities assessment for middle grades students. In Proceedings of the 50th ACM
technical symposium on computer science education. 456–461.

[8] Jeannette Wing. 2017. Computational thinking’s influence on research and educa-
tion for all. Italian Journal of Educational Technology 25, 2 (2017), 7–14.

1581


	Abstract
	1 FURTHER INFORMATION
	References



