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Data races have long been a notorious problem in concurrent programming. They are hard to detect, and lead

to non-deterministic behaviours. There has been a lot of interest in type systems that statically guarantee

data race freedom. Significant progress has been made in this area, and these type systems are increasingly

usable and practical. However, their adoption in mainstream programming languages is still limited, which is

largely attributed to their strict alias prevention principles that obstruct the usage of existing programming

patterns. This is a deterrent to the migration of existing code bases. To tackle this problem, we propose

Capture Separation Calculus (System CSC), a calculus that models fork-join parallelism and statically prevents

data races while being compatible with established programming patterns. It follows a control-as-you-need

philosophy: by default, aliases are allowed, but they are tracked in the type system. When data races are a

concern, the tracked aliases are controlled to prevent data-race-prone patterns. We study the formal properties

of System CSC. Type soundness is proven via the standard progress and preservation theorems. Additionally,

we formally verify the data race freedom property of System CSC by proving that the reduction of a well-typed

program is confluent.

CCS Concepts: • Theory of computation→ Type structures; • Software and its engineering→ Con-
current programming structures.
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1 INTRODUCTION
Data races are a notorious problem in concurrent programming. They occur when multiple con-

current threads access the same state, with at least one of them mutating it. Programs with data

races execute non-deterministically, and data race conditions are often subtle. This makes data-

race-related bugs especially challenging to detect and fix.

Over recent decades, there has been a lot of literature on mitigating data races. The heart of

data races lies in unsynchronised sharing of mutable state. There has been significant research

interest in developing type systems that prevent data races. Many approaches use the mechanism

known as alias control [Clebsch et al. 2015; Gordon et al. 2012; Reynolds 1978; Servetto et al. 2013].

These systems track and control mutable state aliasing in order to forbid data sharing patterns that

are prone to data races. Consider Rust’s ownership system [Klabnik and Nichols 2018; Weiss et al.

2019] as an example:

let mut v = vec![1, 2, 3];
let handle = thread::spawn(move || { v.push(4); });
println!("Now we have {} elements", v.len());
// error: borrow of moved value: `v`

There is a data race condition in the code: the spawned thread mutates v while the main thread

reads it. Rust reports a type error on the last line, because its ownership system mandates that

a spawned thread should take the full ownership of data it captures, which precludes any other

simultaneous aliases.
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While recent type systems designed to prevent data races have been increasingly usable and

practical, their adoption in mainstream programming languages remains limited. This can be

attributed to various factors, among which an essential one is that the restrictions imposed by their

alias prevention principles obstruct the usage of existing programming patterns
1
[Ferdowsi 2023;

Levy et al. 2015]. Consider the following code in Rust:

struct Vec2 { x: i32, y: i32 }
fn update<F, G>(p: &mut Vec2, mut f: F, mut g: G)

where F: FnMut(&i32) -> i32, G: FnMut(&i32) -> i32 {
p.x = f(&p.x); p.y = g(&p.y);

}
fn main() {

let mut p = Vec2 { x: 1, y: 2 };
let mut sum = 0;
update(&mut p, |&x| { sum += x; x + 1 }, |&y| { sum += y; y + 1 });

}

Here, the Vec2 struct represents a two-dimensional integer vector. The update function modifies

both dimensions of p by calling the two closures f and g. In the main function, we increment both

dimensions of p by one and compute the sum of the two dimensions simultaneously. Arguably,

this is a reasonable programming pattern. In the last line of main, although both closures retain a

mutable alias to sum, the two closures execute sequentially, thus being devoid of data races. Yet, Rust

rejects this line because the first mutable borrow to sum (as in the first closure) prevents further

aliases to sum from coexisting.

Since these mechanisms do not align well with established programming patterns, they necessi-

tate a significant paradigm shift and substantial code refactoring when being applied to existing

code bases. Why do these systems challenge existing programming patterns? One essential reason

is that most of them enforce a global alias prevention invariant. Consider Rust: it ensures the

uniqueness of owned and mutably borrowed references [Klabnik and Nichols 2018]. Similarly, for

balloon types [Servetto et al. 2013] and reference capabilities [Gordon et al. 2012], they mandate

that the reference to an isolated object graph is globally unique. Mutable Variable Semantics (MVS)

[Racordon et al. 2022] by default uses copy semantics and disallows aliases, with inout parameters

permitting aliases only in a second-class and scoped manner. These invariants assert that certain

data or references are globally unique, i.e., unaliased, in the program. We acknowledge that the

benefits of these approaches extend beyond data race freedom: for instance, Rust’s ownership and

borrowing system is instrumental in providing safe and efficient memory management. However,

the flip side is the clash with established programming norms. Given that aliases have long been a

mainstay in programming, stringent prevention of them naturally disrupts existing code patterns.

Although existing code bases will benefit greatly from static race freedom, the challenge of

aligning with existing programming patterns is a significant deterrent to adopting current alias

prevention systems. Given that the functionalities of many existing methods often span beyond

mere race freedom–addressing aspects like resource and memory management–it is conceivable

that a system with a more narrow focus on data race freedom could be less restrictive and more

compatible with existing programming patterns. With this perspective, we aim to develop a type

system that:

– statically ensures data-race-free concurrency,
– and is flexible enough so that it is compatible with programming patterns that involve

aliases.

1
Awell-known example is the implementation of doubly linked lists in Rust: https://rust-unofficial.github.io/too-many-lists/.

https://rust-unofficial.github.io/too-many-lists/
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We propose Capture Separation Calculus (System CSC). It is based on Capture Calculus (System

CC<: ) [Odersky et al. 2022], a calculus developed recently for effect and resource checking. CSC

extends the semantics of CC<: with fork-join parallelism, and its type system with mechanisms for

static prevention of data races. The central idea of CC<: is to track captured variables in types, for

which it introduces the concept of capturing types. Capturing types have the form 𝑇 ∧ {𝑥1, · · · , 𝑥𝑛},
where𝑇 is the shape type of a value (e.g. an integer, or a function), and {𝑥1, · · · , 𝑥𝑛} is the capture set
that over-approximates the set of variables captured by the value. For instance, (() -> Unit)^{file}

describes a function that captures a file handle. For function types, we use A ->{𝑥1, · · · , 𝑥𝑛} B as a

shorthand for (A -> B)^{𝑥1, · · · , 𝑥𝑛}. Moreover, A => B is a syntactic sugar for (A -> B)^{cap}.

What motivates our choice to base our system on CC<: ? Most importantly, capturing types can

be used as a device for descriptive alias tracking. Firstly, the capture set essentially describes what a

value at most aliases, based on which alias controlling mechanisms can be developed. Secondly,

capturing types are descriptive (rather than prescriptive) in the sense that they faithfully track

captures in types but barely enforce any restrictions on them. There are a few pieces of evidence

suggesting that CC<: is practical and ergonomic. CC<: has been implemented as part of Scala 3

compiler.
2
Besides, the Scala 3 compiler itself can be successfully capture checked.

3
Furthermore,

Part of Scala’s standard library has been ported to be capture-checking-compatible.
4
These factors

make CC<: an ideal basis for CSC. Based on the alias tracking framework of CC<: , CSC develops

alias prevention mechanisms and parallelism constructs to support race-free concurrency.

CSC follows a control-as-you-need philosophy for alias prevention: it permits aliases by default,

but steps in to regulate them when data races are a concern. For instance, the following is the

pseudo-Scala equivalent of the Rust example provided earlier:

case class Vec2(var x: Int, var y: Int)
def update(p: Vec2, f: (a: Int) => Int, g: (a: Int) => Int): Unit =

p.x = f(p.x); p.y = g(p.y)
def main(): Unit =
val p = new Vec2(1, 2)
val sum = new Ref(0)
update(p, x => { sum.update(old => old + 1); x + 1 },

y => { sum.update(old => old + 1); y + 1 })

The update method of sum updates its content, with the function passed to it computing the

new value from the old one. This code, being well-typed, remains so upon the introduction of

CSC without the need of any refactoring. Indeed, the two closures both alias sum but are executed

sequentially. The aliases are thus harmless in terms of data races. However, the following program

should be rejected as it does suffer from data races:

def parupdate(p: Vec2, f: (a: Int) => Int, g: (a: Int) => Int): Unit =
par(p.x = f(p.x), p.y = g(p.y))

def main(): Unit =
// ...
parupdate(p, x => { sum.update(_ + 1); x + 1 },

y => { sum.update(_ + 1); y + 1 })

In the code, par(𝑡1, 𝑡2) runs the two operations in parallel. The only difference between update

and parupdate is that the latter one updates the two fields concurrently. In fact, the expression

par(p.x = f(p.x), p.y = f(p.y)) is ill-typed in CSC, because, to parallelize two operations, the

2
https://dotty.epfl.ch/docs/reference/experimental/cc.html

3
https://github.com/lampepfl/dotty/pull/16292

4
https://github.com/lampepfl/dotty/pull/18192

https://dotty.epfl.ch/docs/reference/experimental/cc.html
https://github.com/lampepfl/dotty/pull/16292
https://github.com/lampepfl/dotty/pull/18192
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separation between their captures must be established. To fix this, the parupdate function should

declare its arguments to be separated:

def parupdate(p: Vec2,
sep{p} f: (a: Int) => Int,

sep{p,f} g: (a: Int) => Int): Unit = ...

Here, sep{p} f: ... indicates that f should be separated from p. The set {p} is called separation

degree. In CSC, separation does not mean that the two parties reference disjoint states. Instead, it

means non-interference: if f is separated from p, there is no mutable variable referenced by both and

mutated by either of them. Similarly, sep{p,f} indicates that g should be separated from both p and

f. With the separation annotations, the type error shifts to the call site of parupdate: it is required

that g is separated from f, but both closures mutate sum. The two examples show the flexibility of

CSC: aliases are tracked but permitted by default to remain compatible with existing patterns. Yet,

when users opt for safe parallelism constructs, mutable state aliases are controlled.

To validate the practical applicability of CSC, we implement a prototype in the form of an

extension to the Scala 3 compiler [Scala 2022]. Moreover, the prototype supports separation degree

inference. In practice, this eliminates the need for users to explicitly specify the separation degrees

for function arguments (colored in gray in the example above):

def parupdate(p: Vec2,
sep f: (a: Int) => Int,
sep g: (a: Int) => Int): Unit = ...

Internally, when typing the body of a function, the compiler gathers constraints on the omitted

separation degrees and solves the constraints incrementally. The inference is local: once a function

is typed, the inferred separation degrees of its arguments are frozen.

In the metatheory, we establish the type soundness of CSC with the standard progress and

preservation theorems. Furthermore, we prove that the reduction of a well-typed CSC program is

confluent. Essentially, this result implies that CSC prevents data races statically.

2 CONTROL AS YOU NEED
The problem of data race prevention is fundamentally a problem of controlling aliases to mutable

state. CSC controls these aliases as you need. By default, it allows aliases to mutable state, but keeps

track of them through types. Then, when the need for data race prevention arises, it restricts the

previously-tracked aliases to reject aliasing patterns that cause data races. In this section, we will

develop the core concepts of CSC piece by piece.

2.1 Capturing Types for Descriptive Alias Tracking
We start by introducing capturing types, the alias tracking device in CSC. They are an idea proposed

in CC<: [Odersky et al. 2022].

Originally proposed for effect tracking, capturing types have the form 𝑇 ∧ {𝑥1, · · · , 𝑥𝑛}, where
– 𝑇 is the shape type, which describes the shape of a value, e.g. a function mapping String

to Unit,
– and {𝑥1, · · · , 𝑥𝑛} is the capture set, which is an upper bound of the variables captured by

the value.

CC<: takes an object-capability-based perspective towards effect tracking [Miller 2006; Odersky

et al. 2022]. In CC<: , programs perform effects through object capabilities, and object capabilities

are represented as regular program variables. Given that the capture sets in capturing types predict

captured variables of values, CSC is capable of reasoning about the set of capabilities a closure at

most accesses, and thus the effects it at most performs. Take the following closure as an example:
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val sayHello = (name: String) => console.log("Hello, " + name)

Assume that console is a capability for console I/O. The closure writes to the console through the

console capability. It is typed as String ->{console} Unit, which signifies that the closure can at

most perform console I/O.

To capture is to retain a reference, or an alias, to a variable. Therefore, capturing types track

aliases as well: the capture set of a closure is the set of variables it at most captures references to.

val sum = new Ref(0)
val incr = () => { sum += 1; sum }

In this example, sum is a mutable variable and incr is a function that increments it. incr has the

type (() -> Unit)^{sum}, which tracks the function’s reference to sum in the capture set. In fact,

one can view accessing a mutable variable as an effect, and the variable itself as a capability for that

effect. In that sense, to track mutable state aliases and to track the effects for accessing mutable

state are essentially equivalent.

When tracking mutable state aliases for data race prevention, it is useful to differentiate between

immutable and mutable references. It adds to the flexibility of the system: a mutable variable is

allowed to be referenced by multiple threads as long as all references are immutable. The capability

hierarchy in capturing types can be used for that. In CC<: , any capability is derived from a set

of existing capabilities, obtaining the authority to perform effects from them, and thus forming

a hierarchy. Sitting at the root of the hierarchy is the universal capability cap, from which all

capabilities are utimately derived.

class Counter(x: Ref[Int]^{cap}):
def incr(): Unit = x.update(_ + 1)
def get: Unit = x.get

val x: Ref[Int]^{cap} = new Ref(0)
val counter: Counter^{x} = new Counter(x)

In this example, the Counter class creates a counter capability from a mutable variable. We derive

counter from x. The derived capability counter has no more authority for performing effects other

than that obtained from x. Notice that in the example above, the mutable variable x is derived

from the universal capability cap. In the actual system of CSC, we introduced the reference root

capability ref, which is a special universal capability from which all mutable variables are derived.

In other words, when allocating a new mutable variable x in CSC like the example before, the type

of x is Ref[Int]^{ref}.

The derivation of capabilities aligns with the relation between immutable and mutable references.

Through a mutable reference one can either read from or write to a variable, while an immutable

one can only perform read. If we view a mutable variable as a full capability for mutably accessing

itself, then it is natural to view an immutable reference as a capability derived from the full one

that can only perform reads. Inspired by this idea, CSC introduces reader capabilities, which are

capabilities derived from mutable variables, holding only authorities for reading from them. The

idea is similar to that of fractional permissions [Boyland 2010].

The most important design goal of CSC is the compatibility with existing programming patterns.

Therefore, as a basis of CSC, CC<: itself should be flexible and lightweight enough: it should not

be too restrictive to express common patterns, and introducing it should only require minimal

additional annotations. Thankfully, CC<: is ergonomic enough to be integrated into an existing

language with reasonable effort. One reason is that capturing types are descriptive: they faithfully

track captures in types with minimal restrictions enforced [Odersky et al. 2022]. Furthermore,

CC<: expresses effect polymorphism in a lightweight yet expressive manner. For example, after

introducing effect checking, the list map function should be polymorphic over the effects performed
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by the mapping function. This is a long-standing problem in effect systems [Brachthäuser et al.

2020; Leijen 2017; Odersky et al. 2022], and often requires refactoring existing function signatures.

How does CC<: express that?

class List[+A]:
def map[B](f: A => B): List[B]

Surprisingly, it looks exactly the same as what it was in Scala’s standard library. Recall that A => B

stands for (A -> B)^{cap}. This type ranges over functions that perform effects through the cap

capability. Based on the capture hierarchy, any capability ultimately obtains its authority from cap,
and therefore any effect is ultimately performed through cap. So A => B effectively ranges over

functions that perform any effect: the map function is effect polymorphic.

These advantages of CC<: are inherited by CSC. Capturing types enable descriptive alias

tracking, which by default does not restrict established aliasing patterns. Furthermore,CSC naturally

expresses in a lightweight manner higher-order functions that are polymorphic over the aliases

their arguments may capture.

2.2 Separation for Flexible Alias Prevention
We have seen how CSC employs capturing types to track aliases. We have seen capturing types in

CC<: and how it can be employed to track aliases. CSC, which is built on top of CC<: , inherits its

ability for descriptive alias tracking. The next question naturally arises: how does it regulate these

tracked aliases to prevent race conditions? To this end, CSC introduces the concept of separation,

along with two associated formal devices: separation degrees and separation checking.

A separation degree specifies a set of variables that a variable is separated from. Separation in

CSC does not mean the disjointness of memory locations used by two parties. Instead, it means

non-interference: if a mutable variable is referenced by both parties, then both references are read-

only. The following two functions construct a pair given two elements that are lazily evaluated.

However, seq evaluates the two elements sequentially, while par evaluates them in parallel.

def seq[A, B](op1: () => A, op2: () => B): (A, B) =
(op1(), op2())

def par[A, B](op1: () => A, sep{op1} op2: () => B): (A, B) =

letpar a = op1() in
(a, op2())

The part highlighted in grey denotes a separation degree. Here, it signifies that the second

argument op2 should be separated from the first argument, op1. This ensures that the two operations

op1 and op2 can be evaluated in parallel safely in par.

The letpar 𝑥 = 𝑡 in 𝑢 form is a parallel let expression. Its binding and body terms are evaluated

in parallel. It has a form of fork-join parallelism, and its semantics is similar to futures: viewing 𝑥

as a future that runs 𝑡 , mentioning 𝑥 in 𝑢 is like awaiting the future 𝑥 , which blocks the evaluation

of 𝑢 until 𝑥 is evaluated to a value.

When a parallel let expression is type-checked, separation checking ensures the separation

between the binding and the continuation. The separation check here is the essence of CSC’s

data race prevention mechanism: the terms that are evaluated in parallel at runtime are statically

guaranteed to be non-interfering with each other.

When type-checking a function application, separation checking ensures the separation degree

declared by the formal parameter is respected. For instance, we can use par to parallelize two

updates to disjoint mutable variables:
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val a = new Ref(0)
val b = new Ref(0)
par( () => a.set(42)︸                  ︷︷                  ︸

captures{𝑎}

, () => b.set(0)︸                ︷︷                ︸
should be separated from{𝑎}

)

When type-checking the second argument, separation checking ensures that the declared separation

degree, {op1}, is respected, which, in this case, requires the separation between {a} and {b}.
It is straightforward to see that {a} can be safely assumed to be separated from {b}: both are

freshly allocated mutable variables and therefore not aliased by anything else. But how is this

freshness expressed in the formalism? In CSC, one can arbitrarily specify the separation degree of a

freshly-allocated mutable variable, possibly declaring it to be separated from anything else in the

context. This mirrors the fact that a fresh mutable variable is not aliased by anything else.

val a = new Ref(0)
val b = new Ref(true)
val c = new Ref("Hello")

For instance, in the code above, one can declare the separation degree of a to be empty, that of b
to be {a}, and that of c to be {a, b}. Note that, although these declared separation degrees are

assymetric, separation checking is symmetric and the separation between any two of a, b and c
can be established.

Separation checking, as suggested by its name, checks whether two sets of variables are separated.

It is a symmetric relation over two capture sets. Separation between two capture sets {𝑥1, · · · , 𝑥𝑛}
and {𝑦1, · · · , 𝑦𝑚} is established by the pairwise separation between variables in the two sets, i.e.

𝑥𝑖 being separated from 𝑦 𝑗 for all 𝑖 ∈ {1, · · · , 𝑛} and 𝑗 ∈ {1, · · · ,𝑚}. To establish the separation

between two variables, separation checking makes use of separation degrees, and follows the aliases

tracked by capturing types. Specifically, if 𝑥 has the separation degree {𝑦1, · · · , 𝑦𝑛}, then any 𝑦𝑖 for

𝑖 ∈ {1, · · · , 𝑛} is considered separated from 𝑥 , and vice versa. For instance, in the previous code

snippet, the separation between any two among a, b and c can be established using the declared

separation degrees.

The following example, which is a continuation of the previous code snippet, illustrates how

separation checking follows aliases:

val counter : Counter ∧ {a} = new Counter(a)

val f : () ->{counter} Unit = () => counter.incr()

val g : () ->{b,c} Unit = () => {

b.set(false)
c.update(s => s + " World")

}
par(f, g) // ok

The text colored in grey shows the type of each variable in the context. For the last line to

type-check, the separation between f and g should be established. It works as follows:

– Neither f nor g has a separation degree attached, so we follow their aliases tracked in the

types. Hence, we intend to establish the separation between {counter} and {b, c}.
– That requires counter to be separated from both b and c. We take the separation between

counter and b as an example. The other case is similar.

– We follow the alias of counter again, which is a. So the goal becomes the separation

between a and b.
– It holds, as a is in b’s separation degree.
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Separation is the formal device for data race freedom in CSC: given two programs 𝑡1 and 𝑡2
and their captured variables {𝑥1, · · · , 𝑥𝑛} and {𝑦1, · · · , 𝑦𝑚}, executing 𝑡1 and 𝑡2 in parallel will not

cause data races if the separation between {𝑥1, · · · , 𝑥𝑛} and {𝑦1, · · · , 𝑦𝑚} is established. Separation
degrees track separations in the context, whereas separation checking enforces separations between

terms.

2.3 A Case Study
Now we study an example to see how CSC works in action.

class Loss(alpha: Double):
val invokes: Ref[(Int, Int)]^{ref} = new Ref((0, 0))
val recordL1: () ->{invokes} Unit = () =>

invokes.update((n1, n2) => (n1 + 1, n2))
val recordL2: () ->{invokes} Unit = () =>

invokes.update((n1, n2) => (n1, n2 + 1))

def l1Loss(output: Tensor, truth: Tensor): Tensor =
val result =

// ... compute l1 loss ...
recordL1()
result

def l2Loss(output: Tensor, truth: Tensor): Tensor =
val result =

// ... compute l2 loss ...
recordL2()
result

def combinedLoss(output: Tensor, truth: Tensor): Tensor =
val l1 = l1loss(output, truth)
val l2 = l2loss(output, truth)
alpha * l1 + (1.0 - alpha) * l2

Listing 1. A class that computes loss functions. It computes L1 loss, L2 loss and a weighted average of them.

Also, it profiles how many times L1 and L2 losses are computed.

Listing 1 shows a class that compute loss functions in a hypothetical deep learning framework

[Goodfellow et al. 2016]. It assumes a standard tensor implementation Tensor which supports

regular tensor operations. Its methods l1Loss and l2Loss compute the L1 and L2 loss functions,

respectively [Goodfellow et al. 2016]. The combinedLoss method, on the other hand, computes the

weighted average of the two losses. The class also profiles how many times L1 and L2 losses are

computed. To do that, it has a mutable variable invokes which counts the invocations of the two

loss functions. recordL1 and recordL2 increment the counter for the two losses respectively.

By far, the code works as expected and is devoid of data races. It is well-typed in CSC. The

method l1Loss has the type (Tensor, Tensor) ->{recordL1} Tensor, and l2Loss has the type

(Tensor, Tensor) ->{recordL2} Tensor. Although both l1Loss and l2Loss capture mutable aliases

to the invokes variable, they are used sequentially in combinedLoss and do not cause a race condition.

What if one wants to accelerate the computation of combinedLoss by parallelizing the calculation

of the L1 and L2 loss? Listing 2 shows a parallelized version of combinedLoss. Although it is subtle,
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this method is indeed subject to data races. It is because l1Loss and l2Loss are parallelized, but

both of them mutate the mutable variable invokes.

class Loss(alpha: Double):
/* ... same as above ... */
def combinedLossFast(output: Tensor, truth: Tensor): Tensor =
letpar l1 = l1Loss(output, truth) in
val l2 = l2Loss(output, truth)
l1 * alpha + l2 * (1 - alpha)

Listing 2. A new method in Loss which parallelize loss calculations for acceleration.

This race-prone state sharing pattern will be detected and reported by CSC, as the separation

check for the letpar form will fail:

– To succeed the separation check, the separation between l1Loss and l2Loss needs to be

established.

– By following aliases, this ends up requiring the separation between invokes and itself, which

is false.

class Loss(alpha: Double)
val invokesL1: Ref[Int]^{ref} = new Ref(0)
val invokesL2: Ref[Int]^{ref} = new Ref(0)
val recordL1: () ->{invokesL1} Unit =

() => invokesL1.update(_ + 1)
val recordL2: () ->{invokesL2} Unit =

() => invokesL2.update(_ + 1)

/* ... same as above ... */

Listing 3. One possible refactorization of the code so that it passes separation checks.

The failed separation check provides useful hints for refactoring. Listing 3 shows a possible fix for

the code. It splits the mutable variable into two, counting the invocations of the two loss functions

separately. Now the code is race-free and well-typed: by following the aliases, the separation

between l1Loss and l2Loss is established from the separation between invokesL1 and invokesL2.

2.4 Reader Capabilities
Now, we have seen how CSC statically prevents data races by regulating aliases to mutable state:

it tracks aliases in capturing types, and controls aliases by establishing separations. Modeling

immutable aliases adds to the expressiveness of the system: unlike mutable aliases, immutable

aliases can safely co-exist in parallel without inducing race conditions. CSC distinguishes between

immutable and mutable aliases by introducing reader capabilities.

Recall that a mutable variable can be viewed as a capability for mutably accessing itself. In CSC,

we allow deriving a reader capability from a mutable variable, which only possesses the authority

to read from the mutable variable.

val a = new Ref(0)

val r : Rdr[Int] ∧ {a} = a.reader

par(() => a.set(0), () => a.set(42)) // error
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par(() => a.set(0), () => r.get) // error
par(() => r.get, () => r.get) // ok

The example shows how reader capabilities work. We first create a mutable variable a. Then, we
derive a reader capability r from it. The type of r is Rdr[Int] ∧ {a}, where

– the shape type Rdr[Int] signifies that r is a reader capability for a mutable variable that

holds an integer;

– and the capture set {a} signifies that r is derived from a.

Separation checking treats reader capabilities differently: since only reads can be performed

through a reader capability, and concurrent reads never interfere with each other, separation

between reader capabilities can always be established. Recall that the function par requires the

separation between its two arguments. The first two invocations of par are both subject to data

races and ill-typed. The first call is ill-typed because a is not separated from itself. Typing the

second one needs to establish the separation between a and r, which, following the aliases, requires
the separation between a and itself, which is false. Conversely, the last invocation of par is data-

race-free. Though both arguments access the mutable variable a, both accesses are through a reader

capability and thus read-only. Indeed, the last line is well-typed in CSC: the separation between r
and itself can be established since r is a reader capability.

We have seen that cap can be used as a device for alias polymorphism. However, a function of

type A ->{cap} B could retain aliases to any mutable variable, so it cannot be parallelized with itself.

For instance, one may want to implement a parmap function which maps a function in parallel on a

list:

class List[+A]:
def parmap[B](f: A ->{cap} B): List[B] = this match
case Nil => Nil
case x :: xs =>

letpar x1 = f(x) in
val xs1 = xs.parmap(f)
x1 :: xs1

It is subject to race conditions. The letpar form parallelizes two invocations to f. A data race occurs

if f mutates any mutable variable. The code is ill-typed in CSC: the separation between f and itself

cannot be established.

However, it is safe to parallelize a function with itself if that function only performs reads.

Therefore, it is useful to express polymorphism over read-only functions. To do that,CSC introduces

the reader root rdr.

class List[+A]:

def parmap[B](f: A ->{ rdr } B): List[B] = ...

After changing the signature of parmap to the above, the code complies, and data race freedom is

still statically guaranteed. A function of type A ->{rdr} B could reference any reader capability. In

other words, it can read arbitrary mutable state. Parallelizing such a function with itself is indeed

data-race-free.

3 A CALCULUS FOR SAFE CONCURRENCY
In this section, we present the formal definitions of CSC. It is based on CC<: , which itself is based

on System F<: in monadic normal form, where most syntactical structures are standard. Figure 1

and 2 show the syntax and typing rules of CSC, with the changes from CC<: highlighted in gray .
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Type Variable 𝑋,𝑌, 𝑍

Variable 𝑥,𝑦, 𝑧, cap, rdr, ref

Let Mode 𝑚 ::= 𝜖 | par

Value 𝑣,𝑤 ::= 𝜆(𝑥 :𝐷 𝑇 )𝑡 | 𝜆[𝑋 <: 𝑆]𝑡 | 𝑥 | reader 𝑥

Answer 𝑎 ::= 𝑣 | 𝑥

Term 𝑠, 𝑡 ::= 𝑎 | 𝑥 𝑦 | 𝑥 [𝑆] | let𝑚 𝑥 = 𝑠 in 𝑡 | 𝐶 � 𝑥 |
var𝐷 𝑥 := 𝑦 in 𝑡 | read𝑥 | 𝑥 := 𝑦

Shape Type 𝑆 ::= 𝑋 | ⊤ | ∀(𝑥 :𝐷 𝑈 )𝑇 | ∀[𝑋 <: 𝑆]𝑇 | 𝑇 |
Ref[𝑆] | Rdr[𝑆]

Type 𝑇,𝑈 ::= 𝑆 | 𝑆 ∧𝐶

Capture Set 𝐶 ::= {𝑥1, · · · , 𝑥𝑛}
Separation Degree 𝐷 ::= 𝐶 if cap, ref, rdr ∉ 𝐶

Typing Context Γ ::= ∅ | Γ, 𝑋 <: 𝑆 | Γ, 𝑥 :𝐷 𝑇

Store 𝛾 ::= · | 𝛾, val 𝑥 = 𝑣 | 𝛾, var 𝑥 := 𝑣 | 𝛾, set 𝑥 := 𝑣

Evaluation Context 𝑒 ::= [] | let𝑚 𝑥 = 𝑒 in 𝑢 | letpar 𝑥 = 𝑡 in 𝑒

Fig. 1. Syntax of CSC.

3.1 Syntax
Monadic normal form. CSC inherits the monadic normal form (MNF) fromCC<: , where operands

in a application are restricted to variables [Odersky et al. 2022]. This does not lead to loss of

expressiveness: a general application 𝑡1 𝑡2 can be encoded in MNF as let 𝑥 = 𝑡1 in let 𝑦 = 𝑡2 in 𝑥 𝑦.

The monadic normal form simplifies the formalism. Given that capture sets and separation degrees

could mention term variables, the types in CSC are reference-dependent. Thanks to MNF, typing

applications only involve variable renaming in the result types. MNF is also adopted in Dependent

Object Types (DOT), the theoretical foundation of Scala, for similar reasons.[Amin et al. 2016;

Rapoport and Lhoták 2019]

Capturing types. The syntactic forms of types in CSC are mostly the same as in CC<: , stratified

into shape types 𝑆 and capturing types 𝑆 ∧ 𝐶 . The capture set 𝐶 is a set of program variables

including the three root capabilities cap, ref and rdr. The shape types inherit the type constructors
in System F<:: type variables, the top type, funtion types, and polymorphic types. Shape types that

are introduced by CC<: and CSC will be explained later. We freely use a shape type 𝑆 where a

capturing type is expected with the isomorphism 𝑆 ≡ 𝑆 ∧ {}.

Mutable variables. var𝐷 𝑥 := 𝑦 in 𝑡 allocates a new mutable cell. It initializes the cell with the

value of 𝑦, and binds the reference to the cell as 𝑥 in 𝑡 . The shape type Ref[𝑆] describes a reference
to a mutable cell whose content is of type 𝑆 . It declares a separation degree 𝐷 for the mutable

variable. It can be chosen arbitrarily, possibly spanning over the entire domain of the environment.

This reflects the freshness of the newly-allocated variable: it is separated from everything else in the

program. The form reader 𝑥 derives a reader capability from the mutable variable 𝑥 , and Rdr[𝑆] is
the shape type for readers. The forms 𝑥 := 𝑦 and read𝑥 write to and read from mutable variables

respectively.

Separation degrees. Like a capture set, a separation degree is a set of program variables, but it

syntactically excludes the three root capabilities cap, ref and rdr. This is because a separation
degree with root capabilities in it does not make sense. All term bindings in CSC carry a separation
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Subcapturing Γ ⊢ 𝐶1 <: 𝐶2

Γ ⊢ 𝐶1 <: 𝐶2

Γ ⊢ 𝐶2 <: 𝐶3

Γ ⊢ 𝐶1 <: 𝐶3

(sc-trans)

𝑥 : 𝑆 ∧𝐶 ∈ Γ

Γ ⊢ {𝑥 } <: 𝐶

(sc-var)

Γ ⊢ {𝑥1 } <: 𝐶2

· · ·
Γ ⊢ {𝑥𝑛 } <: 𝐶2

Γ ⊢ {𝑥1, · · · , 𝑥𝑛 } <: 𝐶2

(sc-set)

𝑥 ∈ 𝐶

Γ ⊢ {𝑥 } <: 𝐶

(sc-elem)

Γ ⊢ {rdr} <: {cap}
(sc-rdr-cap)

Γ ⊢ {ref} <: {cap}
(sc-ref-cap)

is-readerΓ 𝑥

Γ ⊢ {𝑥 } <: {rdr}
(sc-reader)

where is-readerΓ 𝑥 ≜ (𝑥 : 𝑇 ∈ Γ) ∧ (Γ ⊢ 𝑇 <: Rdr[𝑆 ] ∧𝐶 ) for some𝑇,𝐶, 𝑆

Subtyping Γ ⊢ 𝑇 <: 𝑈

Γ ⊢ 𝑇 <: 𝑇 (refl)

Γ ⊢ 𝑇1 <: 𝑇2 Γ ⊢ 𝑇2 <: 𝑇3

Γ ⊢ 𝑇1 <: 𝑇3
(trans)

𝑋 <: 𝑆 ∈ Γ

Γ ⊢ 𝑋 <: 𝑆
(tvar)

Γ ⊢ 𝑇 <: ⊤ (top)

Γ ⊢ 𝑈2 <: 𝑈1

Γ, 𝑥 :𝐷 𝑈2 ⊢ 𝑇1 <: 𝑇2

Γ ⊢ ∀(𝑥 :𝐷 𝑈1 )𝑇1 <: ∀(𝑥 :𝐷 𝑈2 )𝑇2
(fun)

Γ ⊢ 𝑆2 <: 𝑆1
Γ, 𝑋 <: 𝑆2 ⊢ 𝑇1 <: 𝑇2

Γ ⊢ ∀[𝑋 <: 𝑆1 ]𝑇1 <: ∀[𝑋 <: 𝑆2 ]𝑇2
(tfun)

Γ ⊢ 𝐶1 <: 𝐶2

Γ ⊢ 𝑆1 <: 𝑆2

Γ ⊢ 𝑆1 ∧𝐶1 <: 𝑆2
∧𝐶2

(capt)

Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ 𝑇1 <: 𝑇2
(boxed)

Separation Checking Γ ⊢ 𝐶1 ⊲⊳ 𝐶2

Γ ⊢ 𝐶1 ⊲⊳ 𝐶2

Γ ⊢ 𝐶2 ⊲⊳ 𝐶1

(ni-symm)

Γ ⊢ {𝑥1 } ⊲⊳ 𝐶2

· · ·
Γ ⊢ {𝑥𝑛 } ⊲⊳ 𝐶2

Γ ⊢ {𝑥1, · · · , 𝑥𝑛 } ⊲⊳ 𝐶2

(ni-set)

𝑥 :𝐷 𝑇 ∈ Γ
𝑦 ∈ 𝐷

Γ ⊢ {𝑥 } ⊲⊳ {𝑦}
(ni-degree)

𝑥 :𝐷 𝑆 ∧𝐶 ∈ Γ
Γ ⊢ 𝐶 ⊲⊳ {𝑦}
Γ ⊢ {𝑥 } ⊲⊳ {𝑦} (ni-var)

Γ ⊢ {𝑥 } <: {rdr}
Γ ⊢ {𝑦} <: {rdr}
Γ ⊢ {𝑥 } ⊲⊳ {𝑦}

(ni-reader)

Typing Γ ⊢ 𝑡 : 𝑇

𝑥 : 𝑆 ∧𝐶 ∈ Γ

Γ ⊢ 𝑥 : 𝑆 ∧ {𝑥 } (var)

Γ ⊢ 𝑡 : 𝑇
Γ ⊢ 𝑇 <: 𝑈

Γ ⊢ 𝑡 : 𝑈 (sub)

Γ, 𝑥 :𝐷 𝑈 ⊢ 𝑡 : 𝑇
Γ ⊢ 𝑈 wf Γ ⊢ 𝐷 wf

Γ ⊢ 𝜆 (𝑥 :𝐷 𝑈 ) .𝑡 : ∀(𝑥 :𝐷 𝑈 )𝑇 ∧
cv (𝑡 ) \𝑥

(abs)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑆 wf

Γ ⊢ 𝜆[𝑋 <: 𝑆 ] .𝑡 : ∀[𝑋 <: 𝑆 ]𝑇 ∧
cv (𝑡 ) (tabs)

Γ ⊢ 𝑥 : ∀(𝑧:𝐷𝑇 )𝑈 ∧𝐶

Γ ⊢ 𝑦 : 𝑇 Γ ⊢ {𝑦} ⊲⊳ 𝐷

Γ ⊢ 𝑥 𝑦 : [𝑧 ↦→ 𝑦 ]𝑈 (app)

Γ ⊢ 𝑥 : ∀[𝑋 <: 𝑆 ]𝑇 ∧𝐶

Γ ⊢ 𝑥 [𝑆 ] : [𝑋 ↦→ 𝑆 ]𝑈 (tapp)

Γ ⊢ 𝑥 : 𝑆 ∧𝐶

𝐶 ⊆ dom(Γ) ∪ {ref}

Γ ⊢ 𝑥 : 𝑆 ∧𝐶
(box)

Γ ⊢ 𝑥 : 𝑆 ∧𝐶

𝐶 ⊆ dom(Γ) ∪ {ref}

Γ ⊢ 𝐶 � 𝑥 : 𝑆 ∧𝐶
(unbox)

Γ ⊢ 𝑠 : 𝑇
Γ, 𝑥 :{} 𝑇 ⊢ 𝑡 : 𝑈 𝑥 ∉ fv(𝑈 )

Γ ⊢ 𝑠 ⊲⊳ 𝑡 if𝑚 = par

Γ ⊢ let𝑚 𝑥 = 𝑠 in 𝑡 : 𝑈
(let)

Γ ⊢ 𝑦 : 𝑆
Γ, 𝑥 :𝐷 Ref[𝑆 ] ∧ {ref} ⊢ 𝑡 : 𝑈
𝑥 ∉ fv(𝑈 ) Γ ⊢ 𝐷 wf
Γ ⊢ var𝐷 𝑥 := 𝑦 in 𝑡 : 𝑈

(dvar)

Γ ⊢ 𝑥 : Ref[𝑆 ] ∧𝐶

Γ ⊢ reader 𝑥 : Rdr[𝑆 ] ∧ {𝑥 }
(reader)

Γ ⊢ 𝑥 : Rdr[𝑆 ] ∧𝐶

Γ ⊢ read𝑥 : 𝑆
(read)

Γ ⊢ 𝑥 : Ref[𝑆 ] ∧𝐶
Γ ⊢ 𝑦 : 𝑆

Γ ⊢ 𝑥 := 𝑦 : 𝑆
(write)

Reduction 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′

𝛾 (val 𝑥 ) = 𝜆 (𝑧 :𝐷 𝑇 )𝑡
𝛾 | 𝑒 [ 𝑥 𝑦 ] ↦−→ 𝛾 | 𝑒 [ [𝑦/𝑧 ]𝑡 ] (apply)

𝛾 (val 𝑥 ) = 𝜆[𝑋 <: 𝑆′ ]𝑡
𝛾 | 𝑒 [ 𝑥 [𝑆 ] ] ↦−→ 𝛾 | 𝑒 [ [𝑆/𝑋 ]𝑡 ] (tapply)

𝛾 (val 𝑥 ) = □ 𝑦
𝛾 | 𝑒 [𝐶 � 𝑥 ] ↦−→ 𝛾 | 𝑒 [ 𝑦 ] (open)

𝛾 (val 𝑥 ) = reader 𝑦
𝛾 (var 𝑦) = 𝑣

𝛾 | 𝑒 [ read𝑥 ] ↦−→ 𝛾 | 𝑒 [ 𝑣 ] (get)

fv(𝑣) ⊆ dom(𝛾 )
𝛾 | 𝑒 [ let𝑚 𝑥 = 𝑣 in 𝑡 ] ↦−→ 𝛾, val 𝑥 = 𝑣 | 𝑒 [ 𝑡 ] (lift-let) 𝛾 | 𝑒 [ let𝑚 𝑥 = 𝑦 in 𝑡 ] ↦−→ 𝛾 | 𝑒 [ [𝑦/𝑥 ]𝑡 ] (rename)

𝛾 (val 𝑦) = 𝑣

𝛾 | 𝑒 [ var𝐷 𝑥 := 𝑦 in 𝑡 ] ↦−→ 𝛾, var 𝑥 := 𝑣 | 𝑒 [ 𝑡 ] (lift-var)

𝛾 (val 𝑦) = 𝑣

𝛾 | 𝑒 [ 𝑥 := 𝑦 ] ↦−→ 𝛾, set 𝑥 := 𝑣 | 𝑒 [ 𝑣 ] (lift-set)

Fig. 2. Typing and Evaluation Rules of System CSC



Degrees of Separation: A Flexible Type System for Safe Concurrency 136:13

degree. For instance, the function value 𝜆(𝑥 :𝐷 𝑇 )𝑡 , the function type ∀(𝑥 :𝐷 𝑇 )𝑈 , and the term

bindings in typing contexts Γ, 𝑥 :𝐷 𝑇 .

Boxes. Boxes are a construct introduced in CC<: , type variables are bounded by and instantiated

to only shape types (as seen in the forms ∀[𝑋 <: 𝑆]𝑇 , 𝜆[𝑋 <: 𝑆]𝑡 and 𝑥 [𝑆]). It is shown that

this restriction not only simplifies the formalism, but also adds to the expressiveness of capture

polymorphism [Odersky et al. 2022]. To recover type polymorphism over capturing types, boxes are

introduced: a boxed type □𝑇 , which is a shape type, encapsulates a capturing type𝑇 . A type variable

can therefore be instantiated to a boxed capturing type. There are two box-related expressions: the

box form □ 𝑥 and the unbox form 𝐶 � 𝑥 introduce and eliminate a box respectively.

Parallel let bindings. The let form let𝑚 𝑥 = 𝑡 in 𝑢 has a mode𝑚, which is either par or 𝜖 . par

signifies a parallel let binding, where the binding 𝑡 and the continuation 𝑢 are evaluated in parallel.

It is a form of fork-join parallelism and has a future-like semantics: 𝑥 is as if bound to a future

running 𝑡 in 𝑢, and to mention 𝑥 is to await that future. When𝑚 = 𝜖 , the expression is a regular

sequential let binding.

3.2 Subcapturing and Subtyping
Throughout the presentation and the metatheory of the calculus, we adopt the Barendregt con-

vention where all bound variables are distinct. For instance, given any typing context Γ, 𝑥 : 𝑇 , we

assume that 𝑥 ∉ dom(Γ).
The subcapturing rules establish a pre-order between capture sets. Intuitively, the subcapturing

relation compares how much a capture set captures: the left-hand-side captures less than the

right-hand-side. In this sense, subset should imply subcapturing, which is established by the rules

(sc-elem) and (sc-set). (sc-trans) establishes the transitivity of subcapturing. (sc-var) reflects

the capability hierarchy in CC<: (and CSC). The rule states that a capability 𝑥 : 𝑆 ∧𝐶 ∈ Γ is a

subcapture of the set of capabilities from which it is derived (i.e. 𝐶). For instance, in a context Γ,
given a mutable state 𝑥 : Ref[𝑆] ∧ {cap} ∈ Γ, and its reader capability 𝑦 : Rdr[𝑆] ∧ {𝑥} ∈ Γ, we can
derive Γ ⊢ {𝑦} <: {𝑥}. Although there is no such rule for the subcapturing relation 𝐶 <: {cap} for
an arbitrary capture set 𝐶 , it follows directly from the subcapturing hierarchy: all capabilities are

ultimately derived from cap. Therefore, by repeated application of (sc-set), (sc-var) and (sc-trans),
we can derive 𝐶 <: {cap} for any capture set 𝐶 .

The last three rules (sc-ref-cap), (sc-rdr-cap) and (sc-reader) are the new rules introduced

by CSC. The first rule encodes the subcapturing relation between the reference root capability

ref and the universal root capability cap. The other two deal with the subcapturing relations

regarding the reader root capability rdr. The rule (sc-rdr-cap) encodes the subcapturing relation

between rdr and the universal root capability cap. cap is the top in the capability hierarchy, being a

supercapture of all capture sets. The rule (sc-reader) establishes the subcapturing relation between

reader capabilities and the reader root capability rdr. It detects whether a variable 𝑥 is a reader

capability by checking whether the type of 𝑥 is a subtype of the reader trait Rdr[𝑆].
CSC does not introduce any change to the subtyping rules of CC<: . We show the subtyping rules

for the completeness of our presentation. The subtyping rules of CC<: extend the subtyping rules

in System F<:. Compared to System F<:, System CC<: adds the rules for comparing subcapturing

types and boxed types. The (capt) rule states that 𝑆1
∧𝐶1 is a subtype of 𝑆2

∧𝐶2 if 𝑆1 is a subtype of

𝑆2 and 𝐶1 subcaptures 𝐶2. The (boxed) rule propagates the subtyping between two types to their

boxed versions.
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3.3 Separation Checking
The separation checking judgement is a key element of our approach to statically ensuring data

race freedom. It is symmetric (the (ni-symm) rule). The (ni-set) together with the (ni-symm) rule

imply that and the separation between two capture sets 𝐶1 and 𝐶2 is established from the pairwise

separation between each element in the two sets, i.e. {𝑥𝑖 } ⊲⊳
{
𝑦 𝑗

}
for any 𝑥𝑖 ∈ 𝐶1 and 𝑦 𝑗 ∈ 𝐶2. The

(ni-degree) rule make use of separation degrees. The (ni-var) rule follows aliases: 𝑥 is separated

from 𝑦 as long as what it captures, or aliases, is separated from 𝑦. The last rule, (ni-reader),

establishes the separation between two reader capabilities. It uses subcapturing to check whether a

variable is a reader capability. Γ ⊢ 𝑠 ⊲⊳ 𝑡 denotes the separation between two terms:

Γ ⊢ 𝑠 ⊲⊳ 𝑡 ≜ Γ ⊢ cv (𝑠) ∩ dom(Γ) ⊲⊳ cv (𝑡) ∩ dom(Γ)

3.4 Typing
The (var) rule looks up variable 𝑥 in the environment Γ. Given the binding 𝑥 : 𝑆 ∧𝐶 , it types 𝑥 as

𝑆 ∧ {𝑥}. The capture set {𝑥} is smaller than 𝐶 based on the (sc-var) rule. The environment type

𝑆 ∧𝐶 can be recovered with subtyping.

The (abs) and (tabs) rule types term and type lambdas. Γ ⊢ 𝑇 wf denotes the well-formedness

judgement. It is standard: capture sets in types should only mention variables defined in the

environment, along with the root capabilities cap, ref and rdr.

Γ ⊢ 𝑆 wf 𝐶 ⊆ dom(Γ) ∪ {cap, ref, rdr}
Γ ⊢ 𝑆 ∧𝐶 wf

(wf-capt)

The cv (·) function computes the set of variables captured by a term. And it is used to determine

the capture sets in the function types.

Definition 3.1 (Captured Variables). The definition of cv (·) is given as follows, with the changes
from CC<: highlighted in gray:

cv (𝜆(𝑥 : 𝑇 )𝑡) = cv (𝑡) \ 𝑥,
cv (𝜆[𝑋 <: 𝑆]𝑡) = cv (𝑡) ,
cv (𝑥) = {𝑥} ,
cv (let𝑚 𝑥 = 𝑣 in 𝑢) = cv (𝑢) , if 𝑥 ∉ cv (𝑢)
cv (let𝑚 𝑥 = 𝑡 in 𝑢) = cv (𝑡) ∪ cv (𝑢) \ 𝑥,
cv (𝑥 𝑦) = {𝑥,𝑦} ,
cv (𝑥 [𝑆]) = {𝑥} ,
cv (□ 𝑥) = {} ,
cv (𝐶 � 𝑥) = 𝐶 ∪ {𝑥} ,

cv (var𝐷 𝑥 := 𝑦 in 𝑢) = {𝑦} ∪ cv (𝑢) \ 𝑥,

cv (𝑥 := 𝑦) = {𝑥,𝑦} ,

cv (reader 𝑥) = {𝑥} ,

cv (read𝑥) = {𝑥} .
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def withFile[T](path: String)(op: (f: File^{cap}) => T): T =
val f = new File(path)
val result = op(f)
f.close()
result

val content = withFile("path/to/file"): f => // ok
f.read()

val leaked = withFile("path/to/file"): f => // error
() => f.read()

leaked()

Listing 4. Definition of withFile in Scala. It creates a local file capability f and passes it to an function to

operate on it, after which the file is closed.

Compared to the cv (·) function in CC<: [Odersky et al. 2022], CSC adds cases for the new

syntactic forms and keeps other cases the same. The new cases are highlighted in grey . cv (·) is
similar to free variables, except that the box form hides captures, while the unbox form pops the

hidden captures out. For let𝑚 𝑥 = 𝑣 in 𝑢, the captures of 𝑣 is only counted if 𝑥 is mentioned in 𝑢.

This rule results in smaller captured variable sets when interacting with boxes. For instance, thanks

to this rule, the following term that creates a closure that retains an capability called io and boxes

the closure has an empty captured variable set:

let𝜖 𝑥 𝑓 =

𝜆(𝑧 : ⊤).io
in □ 𝑥 𝑓

The (app) rule types function applications. Importantly, we check whether the declared separation

degree 𝐷 is respected by checking the separation between {𝑦} and 𝐷 . The (tapp) rule types the

type function.

The (box) and (unbox) rules introduce and eliminate boxed types. They requires that the

encapsulated capture set only contains variables bound in the environment or the reference root

capability ref. Therefore, a boxed value whose capture set under the box includes the root capability
cannot be unboxed and used. This is how CC<: ensures the scoping of local capabilities [Odersky

et al. 2022]. Listing 4 shows an example of a scoped capability. The function withFile creates a

local file capability f for a given path, and passes it to a function to operate on it. Since the file is

closed after the operation, it is local, and its scope should be confined to the function passed to

withFile. CC<: is able to enforce this scoping by the box/unbox mechanism: it accepts the first

usage of withFile, but rejects the second one as it leaks the local capability. Allowing values that

capture ref to be boxed and unboxed implies that mutable references are not scoped capabilities.

Indeed, in CSC, the lifetime of a mutable variable is not confined to the scope of the var-definition

that introduces it. Mutable variable semantics will be discussed in more details in the next section

(Section 3.5).

The (let) rule types let bindings. It first types the binding term, extends the environment with a

new type assumption, then types the continuation. The local variable is always introduced with an

empty separation degree, but there is no loss of precision: its separation with other capture sets

can be established by following the aliases in the capture set. Note that, to ensure that the result

type is well-formed, it cannot mention the locally-bound variable. This rule types both parallel and

sequential let bindings. In the parallel case, it checks the separation between the binding term and

the body term.
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The (dvar) rule types the variable bindings. Note that we restrict the content of mutable variables

to have a pure type (or, shape type). We do so to avoid violating the scoping of local capabilities. If

the mutable cell were to contain an impure value, one could leak a local capability by assigning it

to the cell, bypassing the scope restrictions imposed by boxes:

val x = new Ref(new File("dummy"))
withFile("path/to/file"): f =>
x.set(f)

The separation degree for the new variable can be chosen arbitrarily, reflecting the freshness of

the variable. Similar to (let), the result type cannot mention the locally-bound variable.

The (reader) rule types reader creations. Given a mutable variable 𝑥 , the type of the created

capability captures 𝑥 , reflecting the fact that the reader is derived from 𝑥 . The (read) and (write)

rules type reads and writes to mutable variables. The read operation needs a reader capability, while

the write operation needs a mutable variable, which can be viewed as a full read-write capability to

a mutable cell.

3.5 Reduction
The reduction judgement 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′ reduces an evaluation configuration to another. A

evaluation configuration consists of a store context and the term being reduced. The store context

maps immutable variables to their values, and keeps the initial value and each update to the mutable

variables. The semantics for mutable variables will be explained later.

The redex is embedded in an evaluation context. Normally, the evaluation context always focuses

on the binding term of a let expression. This is the same as the semantics of lets in CC<: . However,

for a parallel let, its continuation can be focused as well. This makes possible interleaved evaluation

of binding and continuation terms of parallel lets. This is where the parallelism and nondeterminism

in CSC comes from.

Now we inspect how reduction rules act on redexes. The (apply) and (tapply) rules are standard.

They look up the function in the store and reduce to the function body with the formal parameter

substituted with the actual argument. The rule for unboxing (open) is the same as in CC<: . It looks

up the value of an immutable variable in the store and then drops the box in it. The (lift-let)

acts on a let expression whose binding term has been reduced to a value. Since substituting the

bound variable with the reduced value breaks the monadic normal form of terms, the reduced

binding is lifted to the store. The (rename) rule is applicable on the let bindings whose binding

term is reduced to a variable. In this case, instead of lifting the binding to the store, we rename the

variables in the body term.

Now we illustrate a concrete example for the reduction of parallel let bindings. Let the following

be the initial evaluation configuration:

𝛾 | letpar 𝑧1 =
let𝜖 𝑧2 = read𝑥 in

𝜆(𝑧 : Nat). 𝑧2 + 𝑧

in let𝜖 𝑧3 = read𝑦 in 𝑧1 𝑧3

It reads two mutable variables 𝑥 and 𝑦 (or the reader capabilities or the two mutable states) and

adds them together. Note that, for the sake of this example, we assume standard natural numbers

as part of the language. Additionally, we assume the initial store to be 𝛾 with the value resulted

from reading 𝑥 and 𝑦 being 1 and 2 respectively. We reduce the reading operation from 𝑥 in the
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first step (which is in the binding term of the parallel let binding), resulting in the following term:

𝛾 | letpar 𝑧1 =
let𝜖 𝑧2 = 1 in

𝜆(𝑧 : Nat). 𝑧2 + 𝑧

in let𝜖 𝑧3 = read𝑦 in 𝑧1 𝑧3

The second step focuses on the body term of the parallel let binding, reducing it to:

𝛾 | letpar 𝑧1 =
let𝜖 𝑧2 = 1 in

𝜆(𝑧 : Nat). 𝑧2 + 𝑧

in let𝜖 𝑧3 = 2 in 𝑧1 𝑧3

This demonstrates the parallelism of CSC’s reduction: the binding term and the body term of the

parallel binding are reduced interleavingly. We continue to evaluate the body term, reducing it into:

(𝛾, val 𝑧3 = 2 ) | letpar 𝑧1 =
let𝜖 𝑧2 = 1 in

𝜆(𝑧 : Nat). 𝑧2 + 𝑧

in 𝑧1 𝑧3

This step uses the (lift-let) rule to lift the value of 𝑧3 to the store context. At this point, we cannot

evaluate the body term any further, since it requires the value of 𝑧1, which is not available yet.

The reduction of body term is blocked until the binding term is fully reduced, which is similar to

awaiting a future. We continue to reduce the binding term, lifting the evaluated value to the store:

(𝛾, val 𝑧3 = 2, val 𝑧2 = 1 , val 𝑧1 = 𝜆(𝑧 : Nat). 𝑧2 + 𝑧 ) | 𝑧1 𝑧3

The lifted store binding unblocks the reduction of the body term. This is like the resolution of a

future. Finally, we use the (apply) rule and reduce the term into:

(𝛾, val 𝑧3 = 2, val 𝑧2 = 1, val 𝑧1 = 𝜆(𝑧 : Nat). 𝑧2 + 𝑧) | 3

CSC models mutable variables by keeping the trace. Specifically, there are two kinds of store

bindings for mutable variables: var 𝑥 := 𝑣 signifies the definition of a new mutable cell along with

its initial value; and set 𝑥 := 𝑣 tracks an update to 𝑥 . The value of a mutable variable 𝑥 is determined

by its most recent set 𝑥 := 𝑣 binding. If none exists, the initial value is used. The idea is reflected by

the following definition of mutable variable lookup.

Definition 3.2 (Mutable variable lookup). 𝛾 (var 𝑥) denotes the result of looking up the mutable

variable 𝑥 in the store 𝛾 . It is defined as follows:

𝛾 (var 𝑥) = 𝑣, if 𝛾 = (𝛾 ′, set 𝑥 := 𝑣),
𝛾 (var 𝑥) = 𝑣, if 𝛾 = (𝛾 ′, var 𝑥 := 𝑣),
𝛾 (var 𝑥) = 𝛾 ′ (var 𝑥), if 𝛾 = (𝛾 ′, var 𝑦 := 𝑣),
𝛾 (var 𝑥) = 𝛾 ′ (var 𝑥), if 𝛾 = (𝛾 ′, set 𝑦 := 𝑣),
𝛾 (var 𝑥) = 𝛾 ′ (var 𝑥), if 𝛾 = (𝛾 ′, val 𝑦 = 𝑣).
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The (lift-var) rule creates a new mutable variable. It first looks up the immutable variable 𝑦 to

obtain the initial value 𝑣 , then lifts the var 𝑥 := 𝑣 binding to the store. The (write) rule updates a

mutable variable 𝑥 to a new value 𝑣 by creating a set 𝑥 := 𝑣 binding in the store. The (read) rule

looks up the value of a mutable variable using the 𝛾 (var 𝑥) function.
An alternative for modelling mutable variables is to update its value in-place when a variable is

mutated. The problem is that it complicates the typing of the store, as in-place updates can result

in forward dependency between bindings, where earlier bindings depend on later ones. Now we

inspect an example:
5

var 𝑓 = 𝜆(𝑥 : Int).𝑥 in

var 𝑔 = 𝜆(𝑥 : Int).(read 𝑓 ) 𝑥 in

𝑓 := 𝜆(𝑥 : Int).(read𝑔) 𝑥

If we update the store bindings in place, the evaluation of this term will result in such a store:

𝛾, var 𝑓 := 𝜆(𝑥 : Int).(read𝑔) 𝑥, var 𝑔 := 𝜆(𝑥 : Int).(read 𝑓 ) 𝑥
The value of 𝑓 depends on a later binding, 𝑔. In fact, 𝑓 and 𝑔 are mutually recursive in this case.

The typing of such stores will arguably much more sophisticated in order to model the mutual

dependencies between bindings.

By contrast, the trace-based semantics always result in a store with only backward dependency

(i.e. later bindings depend on earlier bindings), so that the store can be typed in a standard way. For

instance, the trace-based store after the evaluation of the above term is:

𝛾, var 𝑓 := 𝜆(𝑥 : Int).𝑥, var 𝑔 := 𝜆(𝑥 : Int).(read 𝑓 ) 𝑥, set 𝑓 := 𝜆(𝑥 : Int).(read𝑔) 𝑥

4 METATHEORY
We prove the type soundness of CSC through the standard progress and preservation theorems.

Additionally, we prove the execution of well-typed programs is data-race-free by establishing the

confluence of reduction semantics. The full proof of the theorems in this section can be found in

Appendix A.

4.1 Proof Devices
We first introduce the supporting proof devices.

4.1.1 Store Typing. Figure 3 defines the typing of stores and evaluation contexts. ⊢ 𝛾 ∼ Γ states

that the store 𝛾 can be typed as a typing context Γ. (st-val) and (st-var) types the immutable and

mutable bindings in the store. (st-val) types the value 𝑣 as capturing a precise capture set cv (𝑣),
and (st-var) introduces the mutable variable binding with the separation degree spanning over the

entire context (i.e. being dom(Γ)). These treatments type the store as a precise and strong typing

context, which eases the proof. The (st-set) rule types an update to the variable 𝑥 by verifying

that the mutable variable 𝑥 is defined in the context and the type of the new value 𝑣 matches the

type of 𝑥 .

4.1.2 Evaluation Context Typing. CSC additionally introduces the typing of evaluation contexts.

Γ ⊢ 𝑒 ∼ Δ states that the evaluation context 𝑒 can be typed as Δ under an existing typing context

Γ, where in the metatheory the Γ is always obtained from the typing of a store 𝛾 ( ⊢ 𝛾 ∼ Γ). The
need for this judgment arises from the parallel semantics of the calculus. When reasoning about a

5
For the simplicity of presentation, the example does not strictly follow the MNF, but the translation into MNF is

straightforward.
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Store Typing ⊢ 𝛾 ∼ Γ

⊢ · ∼ ∅ (st-empty)

⊢ 𝛾 ∼ Γ Γ ⊢ 𝑣 : 𝑆 ∧
cv (𝑣)

⊢ (𝛾, val 𝑥 = 𝑣) ∼ Γ, 𝑥 :{} 𝑆 ∧
cv (𝑣)

(st-val)

⊢ 𝛾 ∼ Γ Γ ⊢ 𝑣 : 𝑆
⊢ (𝛾, var 𝑥 := 𝑣) ∼ Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref}

(st-var)

⊢ 𝛾 ∼ Γ 𝑥 :𝐷 Ref[𝑆] ∧𝐶 ∈ Γ
Γ ⊢ 𝑣 : 𝑆

⊢ (𝛾, set 𝑥 := 𝑣) ∼ Γ
(st-set)

Evaluation Context Typing Γ ⊢ 𝑒 ∼ Δ

Γ ⊢ [] ∼ ∅ (ev-empty)

Γ ⊢ 𝑒 ∼ Δ

Γ ⊢ let𝑚 𝑥 = 𝑒 in 𝑠 ∼ Δ
(ev-let-1)

Γ ⊢ 𝑠 : 𝑇 Γ, 𝑥 :{} 𝑇 ⊢ 𝑒 ∼ Δ

Γ ⊢ letpar 𝑥 = 𝑠 in 𝑒 ∼ 𝑥 :{} 𝑇,Δ
(ev-let-2)

Fig. 3. Store and Evaluation Context Typing

term 𝑒 [ 𝑠 ] under a store 𝛾 (typed as ⊢ 𝛾 ∼ Γ), there may be not-yet reduced parallel bindings in 𝑒

and they can be referred to in 𝑠 . Therefore, to reason about the focused term 𝑠 we have to extract

and type the bindings from the evaluation context 𝑒 as well (using the judgment Γ ⊢ 𝑒 ∼ Δ), so
that 𝑠 is well-typed under Γ,Δ.
In the proof we use ⊢ 𝛾 ; 𝑒 ∼ Γ;Δ as a shorthand for ( ⊢ 𝛾 ∼ Γ) ∧ (Γ ⊢ 𝑒 ∼ Δ), and 𝛾 ⊢ 𝑡

denotes ∃Γ,𝑇 .( ⊢ 𝛾 ∼ Γ) ∧ (Γ ⊢ 𝑡 : 𝑇 ).

4.1.3 Well-Formed Environment. In the metatheory we assume that all environments we deal with

are well-formed. An environment Γ is well-formed if all bindings it contains are well-formed in the

defining environment, i.e. given Γ0, 𝑥 : 𝑇 , we have Γ0 ⊢ 𝑇 wf. Since well-formedness is implicitly

assumed, all the transformations on the environments should preserve well-formedness.

4.1.4 Inertness. We introduce the notion of inertness, which is a property for typing contexts,

to reflect the idea that the separation degrees of the bindings are well-grounded. Specifically, the

separation degree should either

– be introduced by a mutable variable binding, as a fresh mutable variable can specify an

arbitrary separation degree;

– or be derivable from the capture set of the type. In other words, given a binding 𝑥 :𝐷 𝑆 ∧𝐶 ,

𝐷 is derivable from the capture set 𝐶 if 𝐶 ⊲⊳ 𝐷 .

Definition 4.1 (Inert environment). We say Γ is inert iff ∀𝑥 :𝐷 𝑆 ∧𝐶 ∈ Γ and Γ = Γ1, 𝑥 :𝐷 𝑆 ∧

𝐶, Γ2 for some Γ1 and Γ2, one of the following holds:

– 𝐶 = {ref}, and 𝐷 = dom(Γ1),
– or 𝐶 ∩ {cap, ref, rdr} = {}, and Γ1 ⊢ 𝐷 ⊲⊳ 𝐶 .

The following facts can be straightforwardly verified by inspecting the definition of store and

evaluation context typing.

Fact 4.1. ⊢ 𝛾 ∼ Γ implies that Γ is inert.
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Fact 4.2. Γ ⊢ 𝑒 ∼ Δ implies that Δ is inert.

4.2 Type Soundness
To establish the type soundness of CSC, we prove the standard preservation and progress theorems

[Wright and Felleisen 1994].

Theorem 4.3 (Preservation). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑡 : 𝑇 , and (iii) 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′, then ∃Γ′
such that (i) ⊢ 𝛾 ′ ∼ Γ′ and (ii) Γ′ ⊢ 𝑡 ′ : 𝑇 .

Theorem 4.4 (Progress). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑡 : 𝑇 , then either 𝑡 is an answer, or ∃𝛾 ′, 𝑡 ′ such
that 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′.

When proving preservation, we need to deal with the interaction between the evaluation context

and the typing of the term. Specifically, given a term 𝑒 [ 𝑠 ], we have to inspect the typing of 𝑠 under
the evaluation context 𝑒 , and after reducing 𝑠 to 𝑠′ we have to plug the reduced term back into the

evaluation context 𝑒 (to obtain 𝑒 [ 𝑠′ ]). To analyze the typing of the “hole” inside an evaluation

context 𝑒 , we introduce the notion of evaluation context inversion and prove the corresponding

lemma for inverting an evaluation context.

Definition 4.2 (Evaluation context inversion). We say Γ ⊢ 𝑒 ∼ Δ : [𝑈 @ 𝑠] ⇒ 𝑇 iff (i)

Γ ⊢ 𝑒 ∼ Δ, (ii) ∀𝑠′ . Γ,Δ ⊢ 𝑠′ : 𝑈 and Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 imply Γ ⊢ 𝑒 [ 𝑠′ ] : 𝑇 .

Lemma 4.5 (Inversion of evaluation contexts). If Γ ⊢ 𝑒 [ 𝑠 ] : 𝑇 , then ∃Δ,𝑈 such that (i)

Γ ⊢ 𝑒 ∼ Δ : [𝑈 @ 𝑠] ⇒ 𝑇 , and (ii) Γ,Δ ⊢ 𝑠 : 𝑈 .

To plug a term 𝑠′ back, it should not only match the type required by the hole, but also be fresher

than the term 𝑠 . In the metatheory, the term 𝑠 is always the original term focused by the evaluation

context 𝑒 (i.e. 𝑒 [ 𝑠 ] is the term being reduced). A fresher term achieves a larger degree of separation

in terms of separation checking. In other words, for all separation checks that 𝑠 passes, a term 𝑠′

fresher than 𝑠 should also pass. This idea is captured by the following definition.

Definition 4.3 (Fresher Term). The term 𝑠 is considered fresher than another term 𝑡 under typing

context Γ,Δ (written Γ;Δ ⊢ 𝑠 ⊳ : 𝑡), iff given any Δ1,Δ2, 𝑒 , such that Δ = Δ1,Δ2, Γ,Δ1 ⊢ 𝑒 ∼ Δ2 we

have ∀𝐶. Γ,Δ1 ⊢ 𝑒 [ 𝑡 ] ⊲⊳ 𝐶 implies Γ,Δ1 ⊢ 𝑒 [ 𝑠 ] ⊲⊳ 𝐶 .

The freshness of 𝑠′ is needed when plugging it into a parallel let binding, whose typing rule

requires the separation between the binding term and the body. Specifically, given the original term

𝑒 [ 𝑠 ] = 𝑒′
[
letpar 𝑥 = 𝑠 in 𝑡

]
, to plug a term 𝑠′ into the hole (i.e. replacing 𝑠 with 𝑠′) and preserve

the typing, we have to ensure the separation between 𝑠′ and 𝑡 ,
The lemmas needed for the preservation and progress theorems are standard. We refer the reader

to the appendix for the full proofs.

4.3 Data Race Freedom
We prove that CSC statically ensures data race freedom by proving the confluence of its reduction.

In other words, despite that the reduction of the binding term and the body in parallel let bindings

can be arbitrarily interleaved, the final result of reducing a well-typed term is deterministic and

independent of the order of reduction. This means that no data races can occur during the reduction.

Theorem 4.6 (Confluence). Given two equivalent configurations 𝛾1 | 𝑡 � 𝛾2 | 𝑡 , if (1) 𝛾1 ⊢ 𝑡
and 𝛾2 ⊢ 𝑡 ; (2) 𝛾1 | 𝑡 ↦−→∗ 𝛾 ′

1
| 𝑡1; and (3) 𝛾2 | 𝑡 ↦−→∗ 𝛾 ′

2
| 𝑡2, then there exists 𝛾 ′′

1
, 𝑡 ′, 𝛾 ′′

2
such that (1)

𝛾 ′
1
| 𝑡1 ↦−→∗ 𝛾 ′′

1
| 𝑡 ′, (2) 𝛾 ′

2
| 𝑡2 ↦−→∗ 𝛾 ′′

2
| 𝑡 ′, and (3) 𝛾 ′′

1
| 𝑡 ′ � 𝛾 ′′

2
| 𝑡 ′.



Degrees of Separation: A Flexible Type System for Safe Concurrency 136:21

Theorem 4.7 (Uniqeness of Answer). For any 𝑡 , if (i) 𝛾 ⊢ 𝑡 , (ii) 𝛾 | 𝑡 ↦−→∗ 𝛾1 | 𝑎1 and (iii)

𝛾 | 𝑡 ↦−→∗ 𝛾2 | 𝑎2 then 𝑎1 = 𝑎2 and 𝛾1 � 𝛾2.

Theorem 4.7 is a corollary of Theorem 4.6. 𝛾 | 𝑡 ↦−→∗ 𝛾 ′ | 𝑡 ′ denotes the transitive and reflexive

closure of the small step reduction 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′. 𝛾 ⊢ 𝑡 is a shorthand for ∃Γ,𝑇 such that

⊢ 𝛾 ∼ Γ and Γ ⊢ 𝑡 : 𝑇 . In the theorem, we use the equivalence between evaluation configurations

𝛾1 | 𝑡 � 𝛾2 | 𝑡 instead of the equality. 𝛾1 | 𝑡1 � 𝛾2 | 𝑡2 is a shorthand for the conjunction of the

equivalence between two stores 𝛾1 � 𝛾2 and the equality between two terms 𝑡1 = 𝑡2. Two equivalent

stores 𝛾1 � 𝛾2 have their bindings ordered differently but represent exactly the same state of

immutable and mutable variables, in the sense that looking up any variable in both stores yields

the same result. In other words, though they have different internal representations, the two stores

are externally indistinguishable. For instance, var 𝑥 := 0, var 𝑦 := 0, set 𝑥 := 10, set 𝑦 := 11 and

var 𝑦 := 0, var 𝑥 := 0, set 𝑦 := 11, set 𝑥 := 10 are not equal but equivalent stores. The following

definition formalizes this idea.

Definition 4.4 (Eqivalent stores). We say two stores 𝛾1 and 𝛾2 are equivalent, written 𝛾1 � 𝛾2,

iff

(1) 𝛾2 is permuted from 𝛾1;

(2) ∀𝑥 ∈ bvar (𝛾1), 𝛾1 (var 𝑥) = 𝛾2 (var 𝑥).

Definition 4.5 (Eqivalent configurations). We say two configurations 𝛾1 | 𝑡1 and 𝛾2 | 𝑡2 are
equivalent iff 𝛾1 � 𝛾2 and 𝑡1 = 𝑡2.

We need the notion of store equivalence because two different paths of reduction will generally

not converge to having the same store (as store bindings are lifted in different orders), but they will

converge to having equivalent stores.

We take the standard approach towards confluence by proving the diamond property [Church

and Rosser 1936]. The following theorem establishes the diamond property for a single step of

reduction.

Theorem 4.8 (Diamond property of reduction). Given two equivalent configurations 𝛾1 | 𝑡 ≡
𝛾2 | 𝑡 , if (1) 𝛾1 ⊢ 𝑡 and 𝛾2 ⊢ 𝑡 ; (2) 𝛾1 | 𝑡 ↦−→ 𝛾 ′

1
| 𝑡1; and (3) 𝛾2 | 𝑡 ↦−→ 𝛾 ′

2
| 𝑡2, then either 𝑡1 = 𝑡2, or

there exists 𝛾 ′′
1
, 𝑡 ′, 𝛾 ′′

2
such that (1) 𝛾 ′

1
| 𝑡1 ↦−→ 𝛾 ′′

1
| 𝑡 ′, (2) 𝛾 ′

2
| 𝑡2 ↦−→ 𝛾 ′′

2
| 𝑡 ′, and (3) 𝛾 ′′

1
| 𝑡 ′ ≡ 𝛾 ′′

2
| 𝑡 ′.

This is a prerequisite for proving Theorem 4.6, which is essentially the diamond property for

multi-step reduction.

The following two propositions play an important role when establishing the diamond property.

They state that as long as the two references are statically known to be separated, they do not alias

the same state and therefore cannot introduce data races.

Proposition 4.9. If (i) Γ ⊢ {𝑥} ⊲⊳ {𝑦}, (ii) 𝑥 : 𝑆1
∧ {ref} ∈ Γ and (iii) 𝑦 : 𝑆2

∧ {ref} ∈ Γ, then we

have 𝑥 ≠ 𝑦.

Proposition 4.10. If (i) Γ ⊢ {𝑥} ⊲⊳ {𝑦}, (ii) 𝑥 : Rdr[𝑆1] ∧ {𝑧} ∈ Γ and (iii) 𝑦 : 𝑆2
∧ {ref} ∈ Γ, then

𝑧 ≠ 𝑦.

5 DISCUSSION
We discuss backward compatibility guarantees of CSC, one of its primary design goals. We also

discuss how CSC can handle linked object graphs.
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5.1 Backward Compatibility
Backward compatibility means that if a program is well-typed in a pre-CSC system, it remains

typeable with the introduction of CSC. This goal is realized by two key features of CSC:

– Separation checking is opt-in. Since separation degrees can be set to empty by default, and

empty separation degrees does not require any separation checking, we can avoid affecting

existing codebases upon the introduction of CSC.

– The system is permissive to local aliasing. Local aliases are always allowed, yet tracked, as

long as they do not violate separation degree requirements.

Another essential aspect of backward compatibility is the way to model complex object graphs,

which revolves around allowing objects to be encapsulated and aggregated. The literature on this

topic is vast. Examples include reference capabilities [Castegren and Wrigstad 2016; Gordon et al.

2012], ownership types [Boyapati and Rinard 2001; Clarke et al. 1998], and balloon types [Servetto

et al. 2013]. There are diverse possibilities for extendingCSCwith the support for modelling complex

object graphs, each with its own challenges and trade-offs. Instead of prematurely committing to

any particular approach, CSC is a minimal core system, a lean foundation for our approach to

separation which remains open to future extensions.

5.2 Handling Complex Object Graphs
Although it is a minimal formalisation, CSC is capable of typechecking certain linked object graphs.

We demonstrate how CSC typechecks singly-linked lists of mutable references. We also show that

CSC can model simple mutable and cyclic object graphs, assuming a simple class extension.

5.2.1 Linked Lists. We demonstrate an example of typechecking linked object graphs in CSC:

singly linked lists. The following snippet shows how a church-encoding of a singly-linked list of

mutable integer references:

type IntList[C] = [R] ->^C (init: R) ->^C (op: (x: Ref[Int]^) => R => R) ->^C R
def nil: (IntList[{}]) = [R] => init => op => init
def cons(x: Ref[Int]^, xs: IntList[{cap}]): (IntList[{x, xs}]) =

[R] => init => op => op(x, xs(init)(op))

Recall that T^ is a syntactic sugar for T^{cap}. Besides, IntList[C] is an abbreviation which expands

to the RHS of the type definition.

We can define the following operations on the list:

def sum(xs: IntList[{cap}]): Int =
xs(0)((x, acc) => x.reader.get + acc)

def inc(xs: IntList[{cap}]): Int =
xs(unit)((x, acc) => x.set(x.reader.get + 1); unit)

This example also shows that the separation approach proposed in CSC is opt-in by its nature.

This program is how users could write a linked list of integer references in a system before separation

checking is introduced, and remains as it is and well-typed with separation checking turned on.

The user is not forced to reason about the ownership or uniqueness of the integer references stored

in the linked list or of the linked list itself.

When the separation between linked lists matters, the user can ask the type system to enforce it

by adding sep annotations, like the following:

def sumPar(xs1: IntList[{cap}], sep{xs1} xs2: IntList[{cap}]) =
letpar s1 = sum(xs1) in
val s2 = sum(xs2)
s1 + s2
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The program will not typecheck without the sep annotation on the argument xs2.

Furthermore, CSC is capable of encoding a list of mutually separated integer references.

type SepIntList[C] = [R] ->^C (init: R) ->^C (op: (x: Ref[Int]^) -> R -> R) ->^C R
def nil: (SepIntList[{}]) = [R] => init => op => init
def cons(x: Ref[Int]^, sep{x} xs: SepIntList[{cap}]): (IntList[{x, xs}]) =
[R] => init => op =>

letpar acc = xs(init)(op) in
op(x, acc)

Compared to IntList, the cons function requires the tail of the list, passed in as the argument xs,

to be separated from the head x. The separation between the list elements is then made use of in

the cons function, which performs the fold of the list in parallel.

One limitation of this encoding is that the op argument in the type definition of SepIntList has

to be pure. Otherwise the cons function, which concurrently calls op and accesses x and xs, will not

typecheck.

5.2.2 Cyclic and Mutable Object Graphs. In the following, we demonstrate that the system is

capable of typechecking cyclic and mutable object graphs.

class Node:
val data: Ref[Int]^{ref}
val next: Ref[□ Node^{ref}]^{ref}

This defines a node in the object graph. It assumes a class extension to the calculus. Studying the

interaction between the separation calculus and classes is an important future direction, and is

a natural next step when applying our approach to a language like Scala. But it is left as future

work and the example is a proof-of-concept. Each node contains a mutable integer and a pointer to

another node. The pointer is mutable and can be updated to point to a different node. The following

example is a simple cyclic object graph that consists of two nodes pointing to each other:

// (1) Create payloads
val a: Ref[Int]^{ref} = new Ref(42)
val b: Ref[Int]^{ref} = new Ref(42)
// (2) Allocate references to nodes
val pa: Ref[□ Node^{ref}]^{ref} = new Ref(null)
val pb: Ref[□ Node^{ref}]^{ref} = new Ref(null)
// (3) Create the two nodes
val na: Node^{a, pa} = Node(a, pa)
val nb: Node^{b, pb} = Node(b, pb)
// (4) Let them point to each other
pa.set(□ nb)
pb.set(□ na)

The following code demonstrates a simple usage of this object graph. It follows the pointer next of

the node na and updates the mutable integer of the node pointed to:

// (1) Read the `next' field of `na'
val boxedNode: □ Node^{ref} = na.next.reader.get
// (2) Unbox the reference
val node: Node^{ref} = {ref} � boxedNode
// (3) Mutate the integer payload
node.data.set(0)
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6 RELATEDWORK
Linearity and Uniqueness. There is a rich literature on linear and uniqueness types [Barendsen

and Smetsers 1996; Boyland 2001; Fähndrich and Deline 2002; Marshall et al. 2022; Wadler 1990].

Both are type systems that enforces strict alias prevention invariants. A linear value should be

consumed exactly once, and is unusable after consumption. This requirement makes linear types a

perfect match for checking resource protocols. For instance, a file handle, once opened, should be

closed exactly once and discarded afterwards: forgetting to close it leads to a resource leak, using

it after closing it results in a use-after-free error, and closing it twice causes undefined behaviors.

Classical linear types enforces a strict alias-free invariant: since linear values can only be used once,

they are guaranteed to be un-aliased. Uniqueness types similarly guarantees an alias-free invariant

for unique values. Linearity plays an important role in Rust’s fearless concurrency [Klabnik and

Nichols 2018;Weiss et al. 2019]. Rust mandates that a thread takes ownership of whatever it captures,

and the linear ownership system effectively precludes potential aliases to the data captured by

a thread. It is widely recognized that the alias restriction of these systems is too strict for many

practical use cases, and there have been attempts to relax the restriction [Clarke and Wrigstad 2003;

Fähndrich and Deline 2002; Noble et al. 2022; Odersky 1992]. However, the alias-free invariant still

lies at the heart of these systems and additional annotations or code refactoring are required to

adopt them into existing code bases.

Ownership types. Ownership types [Clarke et al. 1998] provides a type system that is capable of

enforcing encapsulation, or representation containment. It precludes aliases to data owned by an

object that cross the boundary of the object. Viewing a thread as an object, ownership types can

be used to model thread-local data that cannot be aliased by other threads [Boyapati and Rinard

2001] and can thus be accessed freely without introducing data races. Ownership types can be

extended with uniqueness [Boyapati and Rinard 2001; Hogg 1991; Servetto et al. 2013] to enforce

expressive alias prevention invariants. However, ownership types place restrictions on inter-object

aliasing, which often requires rethinking the organization of program data when they are adopted

into existing code bases.

Reference capabilities. Reference capabilities [Castegren and Wrigstad 2016; Gordon et al. 2012]

tags object references with modes. The type system enforces different alias invariants for different

modes. For instance, in 𝜅 [Castegren and Wrigstad 2016], a linear reference is globally unique,

while a thread reference allows aliases within the same thread, and precludes sharing across threads.

Fractional permissions. Fractional permissions allow temporarily share a mutable variable im-

mutably [Boyland 2010]. In this system, accessing mutable variables requires permissions. Once

created, a mutable variable is associated with a full permission, which authorizes write access to

the variable. One can split the full permission into multiple read permissions to perform read

operations on the variable in a shared manner. Afterwards, all read permissions have to be relin-

quished to regain the full permission so that the variable can be mutated again. This reflects the

multiple-reader-single-writer model in concurrent programming. Similar ideas can be found in

other systems [Crary et al. 1999; Fähndrich and Deline 2002]. In CSC, a reader capability can be

viewed as a fraction of the full capability. However, a reader capability can co-exist with a full

capability and be used together sequentially. Only the parallel usage of reader capabilities and the

full capability of a variable is prohibited.

Reachability types. The recent proposal, reachability types [Bao et al. 2021; Wei et al. 2023],

tracks lifetimes and sharing with reachability qualifiers in types. The reachability qualifier in a

type indicates the set of variables that is reachable from the value of that type. The first version of
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reachability types, System 𝜆∗, is proposed by Bao et al.. As long as the reachability qualifiers in the

types of two values are disjoint, the two values are guaranteed to reach disjoint objects. However, 𝜆∗

is monomorphic and it turns out that a naive polymorphism extension makes the system unsound

[Wei et al. 2023]. Later, Wei et al. proposes Polymorphic Reachability Types (System 𝜆♦) to address

that limitation. 𝜆♦ inherits the reachability qualifiers, and is polymorphic over both types and

qualifiers. Qualifiers and capture sets are similar in spirit. Both can be viewed as a alias tracking

device. The diamond ♦ in 𝜆♦ resembles the universal capability cap in CSC. When appearing in

a capture set, cap stands for an arbitrary set of variables aliased by a value, while ♦ indicates an
arbitrary set of variables that are reachable from a value and separated from the current context.

To enforce the separation invariant of ♦, 𝜆♦ has a dedicated application rule for functions that take

a ♦-qualified parameter: the separation between the function and the argument is checked by that

rule. The analogy of a ♦-qualified argument in CSC would be a parameter capturing cap with a

separation degree being the captured variables of the function body:

𝜆(𝑧 :cv(𝑡 ) 𝑆 ∧ {cap}). 𝑡

When type-checking the application of this function, the separation between the function body 𝑡 and

the argument will be established. The function is polymorphic over the aliasing of the parameter,

and the parameter 𝑧 is assumed separated from the whole observable context of the function.

Compared to CSC, reachability types enforces the separation between arguments and function

bodies by default, and permits aliases with explicit annotations. Therefore, considerable annotations

are required to allow for established aliasing patterns when reachability types are introduced to

existing languages. Additionally, since data races are not a central concern of reachability types,

immutable sharing of mutable state is not modelled by the system.

Flexibility. There have been lots of research interest in the flexibility of alias prevention systems.

The control-as-you-need principle of CSC resembles that of syntactic control of interference (SCI)

[O’Hearn et al. 1999; Reynolds 1978]: interference is possible, but should be syntactically detectable.

The passive expressions in SCI are similar to an expression in CSC whose captured variables are

upper bounded by rdr. However, alias tracking in SCI is not as expressive as that provided by

capturing types in CSC: in SCI, distinct variables are always non-interfering. This is equivalent to

having the largest separation degree (which is, all other variables defined in the context) for every

variable in CSC. Recently, Milano et al. proposes a flexible type system for alias prevention. Its key

concept is tempered domination: the proposed iso reference by default dominates its reachable object

graph, whichmeans that it is the unique reference to that graph. This uniqueness requirement can be

relaxed by the focus mechanism, which allows objects reachable from an iso reference to be aliased

as long as the aliasing is tracked in the type system. Their system naturally expresses interlinked

data structures, like doubly-linked lists, and operations on them. However, the domination property

of iso references still by default imposes restrictions on heap structures, and therefore requires code

refactoring when adopted into existing code bases. Besides, their system models message-passing

concurrency, where reachable object graphs between threads are always disjoint, while CSCmodels

shared-memory concurrency, where mutable state can be immutably shared across threads. Finally,

unlike CSC, which originates from System F<: and is thus close to a functional language, Milano

et al.’s system studies an imperative language.

7 CONCLUSION
In this paper, we have developped CSC, a calculus for static data-race-free concurrency. It addresses

the backward-compatibility problem: it is expressive enough to prevent race conditions statically,

but is also flexible to accommodate existing programming patterns. We envision this promotes the
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adoption of static race freedom to existing code bases by easing the migration of existing code. It

achieves this flexibility by following a control-as-you-need principle. Aliases are allowed by default,

but are tracked in the types. When data races are a concern, the tracked aliases are controlled and

data-race-prone aliasing patterns are rejected. In the metatheory, we establish the type soundness

of CSC through the standard progress and preservation theorems. Furthermore, we prove that

the reduction of well-typed programs is confluent, which formally justifies the static race freedom

guarantee of CSC.
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A PROOF
Throughout the proof, we follow the Barendregt convention where all the bound variables are

distinct.

A.1 Proof Devices
In addition to the proof devices introduced in Section 4, the following devices are used in the

metatheory as well. Now we define them and explain their usage.

A.1.1 Binding Depth. Binding depth is the “index” of a binding in the context. It helps us to define

the induction schemes on capture sets.

Definition A.1 (Depth). We define the depth of the variable 𝑥 in an environment Γ as the index

of 𝑥 in Γ, i.e.

depthΓ,𝑥 :𝑇 (𝑥) = |Γ |
depthΓ,𝑥 :𝑇 (𝑦) = depthΓ (𝑥)

Note that depthΓ (𝑥) is a partial function: it is only defined on the domain of Γ. Notably, it is not
defined on the special root capabilities cap, rdr and ref.

Definition A.2 (Depth of Capture Set). We define the depth of a capture set𝐶 , written ⟦𝐶⟧, as
the maximal depth of the variables in 𝐶 , i.e.

⟦𝐶⟧ = max

𝑥∈𝐶\{cap,rdr,ref}
depthΓ (𝑥) .

https://doi.org/10.1145/2818302.2818306
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Specially, we let ⟦𝐶⟧ = −1 if 𝐶 \ {cap, rdr} is empty.

In Lemma A.27, the induction is carried out on a lexical order of the depth of the capture set and

the height of the derivation tree.

A.1.2 Auxilliary Judgment for is-reader. The (sc-reader) subcapturing rule uses the is-readerΓ 𝑥
judgment, which itself depends on subtyping. This results in the subcapturing and the subtyping

rules being mutually dependent, which complicates the induction scheme on this two judgments.

To disentangle subcapturing and subtyping rules, we define the following judgment which is

equivalent to the check implemented by is-reader, but eliminates the dependency on subtyping.

Γ ⊢ Rdr[𝑆] ∧𝐶 ↑ Rdr (rd-reader) 𝑋 <: 𝑆 ∈ Γ Γ ⊢ 𝑆 ∧𝐶 ↑ Rdr

Γ ⊢ 𝑋 ∧𝐶 ↑ Rdr

(rd-tvar)

Later, we will prove the equivalence between Γ ⊢ 𝑇 ↑ Rdr and ∃𝐶, 𝑆.Γ ⊢ 𝑇 <: Rdr[𝑆] ∧𝐶 .

A.2 Soundness
A.2.1 Properties of Subcapturing.

Lemma A.1 (Decomposition of subcapturing). Γ ⊢ 𝐶1 <: 𝐶2 implies ∀𝑥 ∈ 𝐶1.Γ ⊢ {𝑥} <: 𝐶2.

Proof. By induction on the subcapture derivation.

Case (sc-var), (sc-elem), (sc-ref-cap), (sc-rdr-cap) and (sc-reader). The proof is concluded

trivially since in these cases 𝐶1 is a singleton set.

Case (sc-set). This case follows directly from the preconditions.

Case (sc-trans). Then Γ ⊢ 𝐶1 <: 𝐶 and Γ ⊢ 𝐶 <: 𝐶2. By using the IH, we have Γ ⊢ {𝑥} <: 𝐶
𝑥∈𝐶1

,

from which we can conclude by using the (sc-trans) rule repeatedly. □

Lemma A.2 (Reflexivity of subcapturing). Γ ⊢ 𝐶 <: 𝐶 .

Proof. We begin by showing that Γ ⊢ {𝑥} <: 𝐶
𝑥∈𝐶

using the (sc-elem) rule. Afterwards, we

may conclude this case by the (sc-set) rule. □

Lemma A.3 (Set inclusion implies subcapturing). 𝐶1 ⊆ 𝐶2 implies Γ ⊢ 𝐶1 <: 𝐶2.

Proof. By repeated (sc-elem) and (sc-set). □

Lemma A.4. Γ ⊢ 𝐶1 <: 𝐶 and Γ ⊢ 𝐶2 <: 𝐶 implies Γ ⊢ 𝐶1 ∪𝐶2 <: 𝐶 .

Proof. We begin by showing that Γ ⊢ {𝑥} <: 𝐶
𝑥∈𝐶1

and Γ ⊢ {𝑥} <: 𝐶
𝑥∈𝐶2

using Lemma A.1.

Now we can conclude this case by applying the (sc-set) rule. □

Lemma A.5. Γ ⊢ 𝐶 <: 𝐶1, implies Γ ⊢ 𝐶 <: 𝐶1 ∪𝐶2.

Proof. By induction on the subcapture derivation.

Case (sc-set). Then𝐶 = {𝑥} and 𝑥 ∈ 𝐶1. We have 𝑥 ∈ 𝐶1 ∪𝐶2 and conclude this case by applying

the (sc-set) rule again.

Other cases. By IH and the same rule. □

Corollary A.6. Γ ⊢ 𝐶1 <: 𝐶2 and Γ ⊢ 𝐷1 <: 𝐷2 implies Γ ⊢ 𝐶1 ∪ 𝐷1 <: 𝐶2 ∪ 𝐷2.

Lemma A.7 (Capture set is irrelevant in reader checking). If Γ ⊢ 𝑆 ∧𝐶 ↑ Rdr then Γ ⊢
𝑆 ∧𝐶′ ↑ Rdr.
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Proof. By straightforward induction on the derivation. In the (rd-reader) case we conclude

from the premise immediately. In the (rd-tvar) case we conclude by the IH and the same rule. □

Lemma A.8 (Subtyping preserves reader checking). If Γ ⊢ 𝑇 ↑ Rdr and Γ ⊢ 𝑇 ′ <: 𝑇 then

Γ ⊢ 𝑇 ′ ↑ Rdr.

Proof. By induction on the subtyping derivation.

Case (refl). Immediate.

Case (capt). By the IH and Lemma A.7.

Case (trans). By repeated application of the IH.

Case (tvar). Then 𝑇 ′ = 𝑋 and 𝑋 <: 𝑇 ∈ Γ. We conclude by using the (rd-tvar) rule. □

Lemma A.9 (Eqivalence between reader checking). Γ ⊢ 𝑇 ↑ Rdr iff ∃𝐶, 𝑆. Γ ⊢ 𝑇 <: Rdr[𝑆] ∧

𝐶 .

Proof. We prove the two directions in the equivalence respectively.

(⇒): Proceed the proof by induction on the derivation. In the (rd-reader) case, we conclude

immediately by the reflexivity of subtyping. In the (rd-tvar) case, we conclude by the IH and the

(tvar) rule.

(⇐). By induction on the subtyping derivation. In the (refl) case we conclude immediately by

the (rd-reader) rule. In the (trans) case, we have Γ ⊢ 𝑇 <: 𝑇 ′
and Γ ⊢ 𝑇 ′ <: 𝐶 Rdr[𝑆] for some 𝑇 ′

.

We first use the IH to show that Γ ⊢ 𝑇 ′ ↑ Rdr. Then we invoke Lemma A.8 to conclude this case.

Finally, the (tvar) case can be concluded immediately using the (rd-tvar) rule. □

Lemma A.10 (Reader checking strengthening). Given Γ = Γ1,Δ, Γ2, if Γ
′ = Γ1, Γ2 is still

well-formed, Γ ⊢ 𝑇 ↑ Rdr, and 𝑇 is well-formed in Γ′, then Γ′ ⊢ 𝑇 ↑ Rdr.

Proof. By straightforward induction on the derivation. In the (rd-reader) case we conclude

immediately using the same rule. In the (rd-tvar) case, we have 𝑇 = 𝑋 ∧ 𝐶 , 𝑋 <: 𝑅 ∈ Γ, and
Γ ⊢ 𝑅 ↑ Rdr. By the well-formedness of Γ′ we can show that 𝑅 is well-formed in Γ′. Then we

conclude by the IH and the (rd-tvar) rule. □

Corollary A.11 (is-reader strengthening). Given Γ = Γ1,Δ, Γ2, if Γ
′ = Γ1, Γ2 is still well-formed,

Γ ⊢ 𝑇 ↑ Rdr, and 𝑥 ∈ dom(Γ′), then is-readerΓ′ 𝑥 .

Lemma A.12 (Subcapture strengthening). Given Γ = Γ1,Δ, Γ2, if Γ
′ = Γ1, Γ2 is still well-formed,

and Γ ⊢ 𝐶1 <: 𝐶2, then Γ′ ⊢ 𝐶1 \ dom(Δ) <: 𝐶2 \ dom(Δ).

Proof. By induction on the subcapture derivation.

Case (sc-trans). Then Γ ⊢ 𝐶1 <: 𝐶 and Γ ⊢ 𝐶 <: 𝐶2 for some 𝐶 . By the IH we can show that

Γ′ ⊢ 𝐶1 \ dom(Δ) <: 𝐶 \ dom(Δ) and Γ′ ⊢ 𝐶 \ dom(Δ) <: 𝐶2 \ dom(Δ). Hence we conclude using
the (sc-trans) rule.

Case (sc-var). Then 𝐶1 = {𝑥}, and 𝑥 :𝐷 𝑆 ∧𝐶 ∈ Γ. Proceed by a case analysis on whether 𝑥 is

bound in Δ.

– If 𝑥 ∈ dom(Δ), we have 𝐶1 \ dom(Δ) = ∅ and can conclude this case by (sc-set).

– If 𝑥 ∉ dom(Δ), by the well-formedness of Γ′ we have 𝐶 ∩ dom(Δ) = ∅, which implies that

𝐶 \ dom(Δ) = 𝐶 . Note that {𝑥} \ dom(Δ) = {𝑥}. We can therefore apply the (sc-var) rule

to conclude.

Case (sc-elem). Then 𝐶1 = {𝑥} and 𝑥 ∈ 𝐶2. Again we proceed by a case analysis on whether 𝑥 is

bound in Δ.

– If 𝑥 ∈ dom(Δ), we have 𝐶1 \ dom(Δ) = ∅ and thus conclude this case using the (sc-set)

rule.
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– Otherwise if 𝑥 ∉ dom(Δ), we have 𝑥 ∈ 𝐶2 \ dom(Δ) and can conclude this case by the

(sc-elem) rule.

Case (sc-set). We conclude by repeated IH and the same rule.

Case (sc-rdr-cap). We conclude immediately using the same rule since {rdr} \ dom(Δ) = {rdr}
and {cap} \ dom(Δ) = {cap}.
Case (sc-ref-cap). Analogous to the case for (sc-rdr-cap).

Case (sc-reader). Then 𝐶1 = {𝑥}, is-readerΓ,𝑥 :𝐷𝑃,Δ 𝑥 , and 𝐶2 = {rdr}. If 𝑥 ∈ dom(Δ), then
𝐶1 \ dom(Δ) = {} and we can conclude directly. Otherwise, if 𝑥 ∉ dom(Δ), we can show that

𝑥 ∈ dom(Γ′), and then use Corollary A.11 to conclude to show that is-readerΓ′ 𝑥 . Note that

{rdr} \ dom(Δ) = {rdr}. Now we can conclude this case by the (sc-reader) rule. □

A.2.2 Properties of Typing and Subtyping.

Lemma A.13 (Subtype inversion: type variable). If Γ ⊢ 𝑈 <: 𝑋 ∧𝐶 , then 𝑈 = 𝑌 ∧𝐶′
for some

𝐶′, 𝑌 , such that Γ ⊢ 𝐶′ <: 𝐶 , and Γ ⊢ 𝑌 <: 𝑋 .

Proof. By induction on the subtype derivation, wherein only the following cases are possible.

Case (refl). Immediate.

Case (tvar). Then𝑈 = 𝑌 , 𝑌 <: 𝑋 ∈ Γ, and 𝐶 = {}. Now we conclude by applying the (tvar) rule

again.

Case (trans). Then Γ ⊢ 𝑈 <: 𝑈 ′
and Γ ⊢ 𝑈 ′ <: 𝑋 ∧𝐶 for some 𝑈 ′

. By IH, we can first show that

𝑈 ′ = 𝑌 ∧𝐶′
for some 𝐶′

and 𝑌 . Now, we can invoke IH on the derivation Γ ⊢ 𝑈 <: 𝑌 ∧𝐶′
to show

that 𝑈 = 𝑍 ∧𝐶′′
, Γ ⊢ 𝐶′′ <: 𝐶′

and Γ ⊢ 𝑍 <: 𝑌 . Finally we conclude by the transitivity of both

subcapturing and subtyping.

Case (capt). Then𝑈 = 𝑆 ∧𝐶′
for some 𝐶, 𝑆 , Γ ⊢ 𝐶′ <: 𝐶 , and Γ ⊢ 𝑆 <: 𝑋 . Now we invoke the IH

To show that 𝑆 = 𝑌 ∧𝐶′′
for some 𝑌 , where 𝐶′′ = {} (note that we consider 𝑆 to be equivalent to a

capturing type with an empty capture set), and Γ ⊢ 𝑌 <: 𝑋 . This case is therefore concluded. □

Lemma A.14 (Subtype inversion: mutable reference). If Γ ⊢ 𝑈 <: Ref[𝑆] ∧𝐶 , then either (i)

𝑈 is of the form 𝑋 ∧𝐶′
, Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 <: Ref[𝑆], or (ii) 𝑈 is of the form Ref[𝑆] ∧𝐶′

, and

Γ ⊢ 𝐶′ <: 𝐶 .

Proof. By induction on the subtype derivation. wherein only the following cases apply.

Case (refl). Then𝑈 = Ref[𝑆] ∧𝐶 . This case is concluded immediately.

Case (tvar). Then𝑈 = 𝑋 and 𝑋 <: Ref[𝑆] ∈ Γ. We conclude this case by the (tvar) rule.

Case (capt). By IH. □

Lemma A.15 (Subtype inversion: reader). If Γ ⊢ 𝑈 <: Rdr[𝑆] ∧𝐶 , then either (i)𝑈 in the form of

𝑋 ∧𝐶′
where Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 <: Rdr[𝑆], or (ii)𝑈 is in the form of𝐶′ Rdr[𝑆], where Γ ⊢ 𝐶′ <: 𝐶 .

Proof. Analogous to the proof of Lemma A.14. □

Lemma A.16 (Subtype inversion: term abstraction). If Γ ⊢ 𝑃 <: ∀(𝑥 :𝐷 𝑈 )𝑇 ∧𝐶 , then either (i)

𝑃 is of the form 𝑋 ∧𝐶′
, Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 <: ∀(𝑥 :𝐷 𝑈 )𝑇 , or (ii) 𝑃 is of the form ∀(𝑥 :𝐷 𝑈 ′)𝑇 ′ ∧𝐶′

such that Γ ⊢ 𝐶′ <: 𝐶 , Γ ⊢ 𝑈 <: 𝑈 ′
, and Γ, 𝑥 :𝐷 𝑈 ′ ⊢ 𝑇 ′ <: 𝑇 .

Proof. By induction on the subtype derivation.

Case (refl). Then 𝑈 = ∀(𝑥 :𝐷 𝑈 )𝑇 ∧𝐶 . We conclude immediately by the reflexivity of subcapture

and subtyping.

Case (tvar). Then 𝑃 = 𝑋 , 𝐶 = {}, and 𝑋 <: ∀(𝑥 :𝐷 𝑈 )𝑇 . Then we conclude immediately.

Case (fun). Then 𝑃 = ∀(𝑥 :𝐷 𝑈 ′)𝑇 ′ ∧𝐶′
and we conclude from the preconditions.
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Case (trans). Then Γ ⊢ 𝑃 <: 𝑃 ′
and Γ ⊢ 𝑃 ′ <: 𝐶 ∀(𝑥 :𝐷 𝑈 )𝑇 for some 𝑃 ′

. By IH we can

show that 𝑃 ′
is either of the form 𝑋 ∧ 𝐶′

such that Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 <: ∀(𝑥 :𝐷 𝑇 )𝑈 , or

𝑃 ′ = 𝐶′ ∀(𝑥 :𝐷 𝑇 ′)𝑈 ′
, such that Γ ⊢ 𝐶′ <: 𝐶 , Γ ⊢ 𝑇 <: 𝑇 ′

, and Γ, 𝑥 :𝐷 𝑇 ′ ⊢ 𝑈 ′ <: 𝑈 . In the first

case, we invoke Lemma A.13 to show that 𝑃 = 𝑌 ∧𝐶1, Γ ⊢ 𝐶1 <: 𝐶
′
, and Γ ⊢ 𝑌 <: 𝑋 . Now we can

conclude by the transitivity of subcapturing and subtyping. In the other case, we invoke IH again

on the first subtype derivation and conclude by the transitivity of subcapturing and subtyping.

Case (capt). By IH. □

Lemma A.17 (Subtype inversion: type abstraction). If Γ ⊢ 𝑃 <: ∀[𝑋 <: 𝑆]𝑇 ∧𝐶 , then either (i)

𝑃 is of the form 𝑌 ∧𝐶′
, Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑌 <: ∀[𝑋 <: 𝑆]𝑇 , or (ii) 𝑃 is of the form ∀[𝑋 <: 𝑆 ′]𝑇 ′ ∧𝐶′

such that Γ ⊢ 𝐶′ <: 𝐶 , Γ ⊢ 𝑆 <: 𝑆 ′, and Γ, 𝑋 <: 𝑆 ′ ⊢ 𝑇 ′ <: 𝑇 .

Proof. Analogous to the proof of Lemma A.16. □

Lemma A.18 (Subtype inversion: boxed term). If Γ ⊢ 𝑃 <: (□ 𝑇 ) ∧𝐶 , then either (i) 𝑃 is of the

form 𝑌 ∧𝐶′
, Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑌 <: □ 𝑇 , or (ii) 𝑃 is of the form (□ 𝑇 ′) ∧𝐶′

such that Γ ⊢ 𝐶′ <: 𝐶 ,
and Γ ⊢ 𝑇 ′ <: 𝑇 .

Proof. Analogous to the proof of Lemma A.16. □

A.2.3 Properties of Separation Checking.

Lemma A.19 (Separation checking inversion: elements). If Γ ⊢ 𝐶1 ⊲⊳ 𝐶2, then (1) ∀𝑥 ∈ 𝐶1

we have Γ ⊢ 𝑥 ⊲⊳ 𝐶2; and (2) ∀𝑥 ∈ 𝐶2 we have Γ ⊢ 𝐶1 ⊲⊳ 𝑥 .

Proof. By induction on the derivation.

Case (ni-symm). Concluding by swapping the two conclusions in the IH.

Case (ni-set). Then we have Γ ⊢ 𝑥 ⊲⊳ 𝐶2

𝑥∈𝐶1

. The first part of the goal is immediate. Now we

show the second part of the goal. By applying IH repeatedly we can deduce that ∀𝑥1 ∈ 𝐶1,∀𝑥2 ∈ 𝐶2

we have Γ ⊢ 𝑥1 ⊲⊳ 𝑥2. We therefore show that ∀𝑥2 ∈ 𝐶2 we have Γ ⊢ 𝐶1 ⊲⊳ 𝑥2 by (ni-symm) and

(ni-set), thus concluding this case.

Case (ni-degree), (ni-var) and (ni-reader). These cases are immediate since both 𝐶1 and 𝐶2 are

singletons. □

Lemma A.20 (Reader capability specialization). Given any Γ and ℎ, we have: (1) |Γ ⊢ {rdr} ⊲⊳

𝐶2 | ≤ ℎ implies Γ ⊢ {𝑥} ⊲⊳ 𝐶2 for every 𝑥 such that is-readerΓ 𝑥 ; and (2) |Γ ⊢ 𝐶1 ⊲⊳ {rdr}| ≤ ℎ

implies Γ ⊢ 𝐶1 ⊲⊳ {𝑥} for every 𝑥 such that is-readerΓ 𝑥 .

Proof. By induction on the derivation depth ℎ. We prove each of the conclusion respectively,

starting by analyzing the cases of the first one.

Case (ni-symm) and (ni-set). By applying the IH.

Case (ni-degree) and (ni-var). Not applicable.

Case (ni-reader). Then 𝐶2 = {𝑦} and Γ ⊢ {𝑦} <: {rdr}. By the (sc-reader) we can show that

Γ ⊢ {𝑥} <: {rdr}. This case can therefore be concluded using the (ni-reader) rule.

Now we inspect the derivation in the second case.

Case (ni-symm). By the IH.

Case (ni-set). Then Γ ⊢ 𝑥 ⊲⊳ {rdr}
𝑥∈𝐶1

. By the IH we can show that given any 𝑦 such that

is-readerΓ 𝑦, we can show that Γ ⊢ 𝑥 ⊲⊳ 𝑦
𝑥∈𝐶1

. We can therefore conclude this case by the (ni-set)

rule.

Case (ni-degree). Not applicable.

Case (ni-var). By the IH and the same rule.

Case (ni-reader). This case can be concluded analogously to the one in the previous subgoal. □
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Lemma A.21 (Universal capability specialization). Given any Γ and ℎ, if (1) |Γ ⊢ {cap} ⊲⊳

𝐶2 | ≤ ℎ implies Γ ⊢ 𝐶 ⊲⊳ 𝐶2 for any 𝐶 , and (2) |Γ ⊢ 𝐶1 ⊲⊳ {cap}| ≤ ℎ; then Γ ⊢ 𝐶1 ⊲⊳ 𝐶 for any 𝐶 .

Proof. By induction on the derivation depth ℎ. We establish the two conclusions respectively.

We start by showing that we can prove the first one in each case.

Case (ni-symm) and (ni-set). By using the IH.

Case (ni-degree) and (ni-var). Not applicable since cap ∉ dom(Γ).
Case (ni-reader). Then Γ ⊢ {cap} <: {rdr}. By induction on the subcapturing derivation we can

derive a contradiction in each case, rendering this case impossible.

Then we show that we can prove the second conclusion in each case. Case (ni-symm) and (ni-set).

By the IH.

Case (ni-degree). Then 𝐶1 = {𝑥}, 𝑥 :𝐷 𝑇 ∈ Γ and cap ∈ 𝐷 . This is contradictory since the 𝐷

cannot contain cap.
Case (ni-var). Then 𝐶1 = {𝑥}, 𝑥 : 𝑆 ∧𝐶′ ∈ Γ and Γ ⊢ {cap} ⊲⊳ 𝐶′

. By the IH we can show that

Γ ⊢ 𝐶 ⊲⊳ 𝐶′
for any 𝐶 , and conclude by the (ni-var) rule.

Case (ni-reader). Similarly we have Γ ⊢ {cap} <: {rdr} and derive a contradiction from it. □

Lemma A.22 (Subcapture preserves separation). If Γ ⊢ 𝐶1 ⊲⊳ 𝐶2 and Γ ⊢ 𝐶0 <: 𝐶1, then

Γ ⊢ 𝐶0 ⊲⊳ 𝐶2.

Proof. By induction on the subcapture derivation.

Case (sc-trans). Then Γ ⊢ 𝐶0 <: 𝐶 and Γ ⊢ 𝐶 <: 𝐶1 for some 𝐶 . We conclude by applying the IH

twice.

Case (sc-var). Then𝐶0 = {𝑥}, 𝑥 : 𝑆 ∧𝐶 ∈ Γ, and Γ ⊢ 𝐶 <: 𝐶1. By IH we can show that Γ ⊢ 𝐶 ⊲⊳ 𝐶2,

and conclude by the (ni-var) rule.

Case (sc-elem). Then 𝐶0 = {𝑥} and 𝑥 ∈ 𝐶1. We conclude this case by Lemma A.19.

Case (sc-set). Then Γ ⊢ 𝑥 ⊲⊳ 𝐶2

𝑥∈𝐶1

. This case can be concluded by applying IH repeatedly and

using the (ni-set) rule.

Case (sc-reader). Then 𝐶0 = {𝑥}, is-readerΓ 𝑥 , and 𝐶1 = {rdr}. Now we can conclude this case

by invoking Lemma A.20.

Case (sc-rdr-cap). Then 𝐶0 = {rdr} and 𝐶1 = {cap}. Now we conclude by invoking Lemma

A.21.

Case (sc-ref-cap). Analogous to the case for (sc-rdr-cap). □

Corollary A.23 (Set inclusion preserves separation). If Γ ⊢ 𝐶1 ⊲⊳ 𝐶2 and 𝐶0 ⊆ 𝐶1, then

Γ ⊢ 𝐶0 ⊲⊳ 𝐶2.

Lemma A.24 (Evaluation context reification over subcapture). If (i) Γ ⊢ 𝑒 ∼ Δ, (ii)
Γ,Δ ⊢ cv (𝑠′) <: cv (𝑠), and (iii) 𝑠 is not a value, then Γ ⊢ cv (𝑒 [ 𝑠′ ]) <: cv (𝑒 [ 𝑠 ]).
Proof. By induction on 𝑒 .

Case 𝑒 = []. Immediate.

Case 𝑒 = let𝑚 𝑥 = 𝑒′ in 𝑢. Then we have cv (𝑒 [ 𝑠 ]) = cv (𝑒′ [ 𝑠 ]) ∪ cv (𝑢) \ {𝑥}, and cv (𝑒 [ 𝑠′ ]) ⊆
cv (𝑒′ [ 𝑠′ ]) ∪cv (𝑢) \ {𝑥}. By the reflexivity of subcapturing we have Γ ⊢ cv (𝑢) \ {𝑥} <: cv (𝑢) \ {𝑥}.
By IH, we have Γ ⊢ cv (𝑒′ [ 𝑠′ ]) <: cv (𝑒′ [ 𝑠′ ]). By Corollary A.6, we have Γ ⊢ cv (𝑒′ [ 𝑠′ ]) ∪cv (𝑢) \
{𝑥} <: cv (𝑒′ [ 𝑠′ ]) ∪ cv (𝑢) \ {𝑥}. We can therefore conclude this case.

Case 𝑒 = letpar 𝑥 = 𝑡 in 𝑒′. By inspecting the derivation of Γ ⊢ 𝑒 ∼ Δ, we can show that Δ = 𝑥 :𝐷

𝑇,Δ′
, Γ ⊢ 𝑡 : 𝑇 , and Γ, 𝑥 :𝐷 𝑇 ⊢ 𝑒′ ∼ Δ′

. Also, we have cv (𝑒 [ 𝑠 ]) = cv (𝑡) ∪ cv (𝑒′ [ 𝑠 ]) \ {𝑥} and
cv (𝑒 [ 𝑠′ ]) = cv (𝑡) ∪cv (𝑒′ [ 𝑠′ ]) \ {𝑥}. By the reflexivity of subcapture, we have Γ ⊢ cv (𝑡) <: cv (𝑡).
By IH, we have Γ, 𝑥 :𝐷 𝑇 ⊢ cv (𝑒′ [ 𝑠′ ]) <: cv (𝑒′ [ 𝑠 ]). Now we invoke Lemma A.12 and show that

Γ ⊢ cv (𝑒′ [ 𝑠′ ]) \ {𝑥} <: cv (𝑒′ [ 𝑠 ]) \ {𝑥}. We can conclude this case by Corollary A.6. □
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Lemma A.25 (Subcapture to sub-interference). Given the environment Γ,Δ and two terms

𝑠, 𝑠′, if (i) 𝑠 is not a value, and (ii) Γ,Δ ⊢ cv (𝑠′) <: cv (𝑠), then Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 .

Proof. Given any Δ1,Δ2 and 𝑒 such that Δ = Δ1,Δ2 and Γ,Δ1 ⊢ 𝑒 ∼ Δ2, the goal is to show

that ∀𝐶 Γ,Δ1 ⊢ cv (𝑒 [ 𝑠 ]) ⊲⊳ 𝐶 implies Γ,Δ1 ⊢ cv (𝑒 [ 𝑠′ ]) ⊲⊳ 𝐶 . By Lemma A.24 we have

Γ,Δ1 ⊢ cv (𝑒 [ 𝑠′ ]) <: cv (𝑒 [ 𝑠 ]). Now we conclude this case by Lemma A.22. □

Corollary A.26 (Captured set inclusion implies sub-interference). If cv (𝑠′) ⊆ cv (𝑠) and
𝑠 is not a value, then Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 .

Lemma A.27 (Widening preserves separation checking). Given an inert environment Γ, a
variable 𝑥 :𝐷 𝑇 ∈ Γ where ref ∉ cs (𝑇 ) and Γ ⊢ {𝑥} <: {rdr} does not hold, and a natural number

ℎ, then (1) |Γ ⊢ {𝑥} ⊲⊳ 𝐶 | ≤ ℎ implies Γ ⊢ cs (𝑇 ) ⊲⊳ 𝐶 , and (2) |Γ ⊢ 𝐶 ⊲⊳ {𝑥}| ≤ ℎ implies

Γ ⊢ 𝐶 ⊲⊳ cs (𝑇 ). Here, |Γ ⊢ 𝐶1 ⊲⊳ 𝐶2 | denotes the height of the derivation tree.

Proof. By induction on the lexical order (⟦𝐶⟧, ℎ). We prove the two conclusions respecitively.

We start by establishing the first one, by a case analysis on the last rule applied in the derivation of

Γ ⊢ {𝑥} ⊲⊳ 𝐶 .

Case (ni-symm). Then Γ ⊢ 𝐶 ⊲⊳ {𝑥}. This case is concluded by the IH and the same rule.

Case (ni-set). By the IH.

Case (ni-degree). Then 𝐶 = {𝑦} and 𝑦 ∈ 𝐷 . By the inertness of Γ and that ref ∉ cs (𝑇 ), we have
Γ ⊢ 𝐷 ⊲⊳ cs (𝑇 ). By Lemma A.19, Γ ⊢ 𝑦 ⊲⊳ cs (𝑇 ). Now we conclude by (ni-symm).

Case (ni-var). Then Γ ⊢ cs (𝑇 ) ⊲⊳ 𝑦 and we can conclude this case immediately.

Case (ni-reader). This case is not applicable.

The first conclusion is therefore proven. Now we proceed to the second one.

Case (ni-symm). By IH.

Case (ni-set). Then 𝐶 = {𝑦𝑖 }𝑖=1,· · · ,𝑛 , and Γ ⊢ 𝑦𝑖 ⊲⊳ 𝑥 for 𝑖 = 1, · · · , 𝑛. By repeated IH, we can

demonstrate that Γ ⊢ 𝑦𝑖 ⊲⊳ 𝐶
𝑖=1,· · · ,𝑛

. Now we conclude this case by (ni-set).

Case (ni-degree). Then𝐶 = {𝑥 ′}, 𝑥 ′ :𝐷 ′ 𝑇 ′ ∈ Γ, and 𝑥 ∈ 𝐷 ′
. If ref ∈ cs (𝑇 ′), then by the inertness

of Γ, we have𝐷 ′ = dom(Γ0) if we decompose the environment into Γ = Γ0, 𝑥
′
:𝐷 ′ 𝑇 ′, Γ1. Since 𝑥 ∈ 𝐷 ′

,

by the well-formedness of the environment, 𝑥 is bound in Γ0. Again by the well-formedness, we

have cs (𝑇 ) ⊆ dom(Γ0) = 𝐷 ′
. We can therefore prove the goal by repeated (ni-degree) and (ni-set).

Otherwise, if ref ∉ cs (𝑇 ′), we have Γ ⊢ 𝐷 ′ ⊲⊳ cs (𝑇 ′). By Lemma A.19 we have Γ ⊢ {𝑥} ⊲⊳ cs (𝑇 ′).
Note that ⟦cs (𝑇 ′)⟧ < depthΓ (𝑥 ′) by the well-formedness of Γ. We can therefore invoke IH and

show that Γ ⊢ cs (𝑇 ) ⊲⊳ cs (𝑇 ′) and conclude the case by (ni-symm).

Case (ni-var). Then 𝐶 = {𝑥 ′}, 𝑥 ′ :𝐷 ′ 𝑇 ′ ∈ Γ, and Γ ⊢ cs (𝑇 ′) ⊲⊳ 𝑥 . We conclude this case by IH

and the same rule.

Case (ni-reader). Not applicable. □

Lemma A.28 (Widening implies sub-interference). Given Γ,Δ, 𝑠, 𝑠′ where 𝑠 is not a value, if (i)
Γ,Δ is inert, (ii) 𝑥 :𝐷 𝑇 ∈ Γ where 𝑥 ∈ cv (𝑠) and ref ∉ cs (𝑇 ), (iii) cv (𝑠′) ⊆ cv (𝑠) − {𝑥, 𝑥 ′} ∪ cs (𝑇 ),
then Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 .

Proof. GivenΔ1,Δ2, 𝑒 such thatΔ = Δ1,Δ2 and Γ,Δ1 ⊢ 𝑒 ∼ Δ2, andwe have Γ ⊢ cv (𝑒 [ 𝑠 ]) ⊲⊳ 𝐶 .

Since 𝑠 is not a value, we have 𝑥 ∈ cv (𝑠) ⊆ cv (𝑒 [ 𝑠 ]). By Lemma A.19 we show that Γ ⊢ 𝑥 ⊲⊳ 𝐶 .

By Lemma A.27, we have Γ ⊢ cs (𝑇 ) ⊲⊳ 𝐶 . Therefore, Γ ⊢ cv (𝑒 [ 𝑠 ]) ∪ cs (𝑇 ) ⊲⊳ 𝐶 . Now we show

that cv (𝑒 [ 𝑠′ ]) ⊆ cv (𝑒 [ 𝑠 ]) ∪ cs (𝑇 ) and conclude this case. □

Lemma A.29 (Shifting boundary of sub-interference). Given Γ,Δ1,Δ2, Γ;Δ1,Δ2 ⊢ 𝑠′ ⊳ : 𝑠
implies Γ,Δ1;Δ2 ⊢ 𝑠′ ⊳ : 𝑠 .
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Proof. Given any Δ3,Δ4, 𝑒 such that Δ2 = Δ3,Δ4 and Γ,Δ1,Δ3 ⊢ 𝑒 ∼ Δ4, if Γ,Δ1,Δ3 ⊢ 𝑒 [ 𝑠 ] ⊲⊳

𝐶 , we can show that Γ,Δ1,Δ3 ⊢ 𝑒 [ 𝑠′ ] ⊲⊳ 𝐶 by the premise. □

Lemma A.30 (Subtyping preserves is-reader). If is-readerΓ 𝑇 and Γ ⊢ 𝑇 ′ <: 𝑇 , then is-readerΓ 𝑇 ′
.

Proof. By induction on the derivation of Γ ⊢ 𝑇 ′ <: 𝑇 . Note that by inspecting the derivation

of is-readerΓ 𝑇 we know that 𝑇 is either a type variable or a reader, which implies that only the

following cases are applicable.

Case (refl). Then 𝑇 ′ = 𝑇 , and we conclude immediately from the premise.

Case (tvar). Then 𝑇 ′ = 𝑋 , 𝑇 = 𝑆 , and 𝑋 <: 𝑆 ∈ Γ. We conclude immediately by the (rd-tvar)

rule. □

A.2.4 Structural Properties of Typing.

Lemma A.31 (Permutation). Given Γ, and Δ which is a well-formed environment permuted from

Γ:

(i) Γ ⊢ 𝑇 wf implies Δ ⊢ 𝑇 wf;
(ii) Γ ⊢ 𝐷 wf implies Δ ⊢ 𝐷 wf;
(iii) Γ ⊢ 𝑡 : 𝑇 implies Δ ⊢ 𝑡 : 𝑇 ;
(iv) Γ ⊢ 𝑇 <: 𝑈 implies Δ ⊢ 𝑇 <: 𝑈 ;

(v) Γ ⊢ 𝐶1 <: 𝐶2 implies Δ ⊢ 𝐶1 <: 𝐶2;

(vi) is-readerΓ 𝑥 implies is-readerΓ 𝑥 ;
(vii) Γ ⊢ 𝐶1 ⊲⊳ 𝐶2 implies Δ ⊢ 𝐶1 ⊲⊳ 𝐶2.

Proof. By straightforward induction on the derivations. No rule depends on the order of the

bindings. □

Lemma A.32 (Weakening). Given Γ,Δ,

(i) Γ ⊢ 𝑇 wf implies Γ,Δ ⊢ 𝑇 wf;
(ii) Γ ⊢ 𝐷 wf implies Γ,Δ ⊢ 𝐷 wf;
(iii) Γ ⊢ 𝑡 : 𝑇 implies Γ,Δ ⊢ 𝑡 : 𝑇 ;
(iv) Γ ⊢ 𝑇 <: 𝑈 implies Γ,Δ ⊢ 𝑇 <: 𝑈 ;

(v) Γ ⊢ 𝐶1 <: 𝐶2 implies Γ,Δ ⊢ 𝐶1 <: 𝐶2;

(vi) is-readerΓ 𝑥 implies is-readerΓ,Δ 𝑥 ;

(vii) Γ ⊢ 𝐶1 ⊲⊳ 𝐶2 implies Γ,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2.

Proof. As usual, the rules only check if a variable is bound in the environment and all versions

of the lemma are provable by straightforward induction. For rules which extend the environment,

such as (abs), we need permutation. All cases are analogous, so we will illustrate only one.

Case (abs). In this case, 𝑡 = 𝜆(𝑧 :𝐷 𝑈 )𝑠 , 𝑇 = ∀(𝑧 :𝐷 𝑈 )𝑇 ′
, and Γ, 𝑧 :𝐷 𝑈 ⊢ 𝑠 : 𝑇 ′

. By IH we have

Γ, 𝑧 :𝐷 𝑈 ,Δ ⊢ 𝑠 : 𝑇 ′
. Since 𝐷 and𝑈 cannot mention variables in Δ, Γ,Δ, 𝑧 :𝐷 𝑈 is still well-formed.

By permutation we have Γ,Δ, 𝑧 :𝐷 𝑈 ⊢ 𝑠 : 𝑇 ′
. This case is therefore concluded by (abs). □

LemmaA.33 (Bound narrowing). Given an environment Γ, 𝑋 <: 𝑆,Δ and the fact that Γ ⊢ 𝑆 ′ <: 𝑆 ,
the followings hold:

(1) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇 wf implies Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑇 wf;
(2) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐷 wf implies Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝐷 wf;
(3) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐶1 <: 𝐶2 implies Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝐶1 <: 𝐶2;

(4) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇 <: 𝑈 implies Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑇 <: 𝑈 ;

(5) is-readerΓ,𝑋<:𝑆,Δ 𝑥 implies is-readerΓ,𝑋<:𝑆 ′,Δ 𝑥 ;

(6) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2 implies Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2;
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(7) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑡 : 𝑇 implies Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑡 : 𝑇 .

Proof. By straightforward induction on the derivations. The only two rules that make use of

type variable bounds are (tvar) in subtyping, and (rd-tvar) in is-reader. In all other cases, we can

conclude it by utilizing the IH, other narrowing lemmas and the same rule. We will now give the

proof of the (tvar) case.

Case (tvar). In this case, 𝑇1 = 𝑌 , 𝑇2 = 𝑅, and 𝑌 <: 𝑅 ∈ Γ, 𝑋 <: 𝑆,Δ. If 𝑌 ≠ 𝑋 , then 𝑌 <: 𝑅 ∈
Γ, 𝑋 <: 𝑆 ′,Δ. Applying the (tvar) rule allows us to derive the conclusion. Otherwise, 𝑋 = 𝑌 . The

goal becomes Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑋 <: 𝑆 . By weakening we can show that Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑆 ′ <: 𝑆 . We

can therefore conclude this case by (tvar) and (trans). □

Lemma A.34 (Type narrowing). Given Γ, 𝑥 : 𝑃,Δ, and that Γ ⊢ 𝑃 ′ <: 𝑃 , the following propositions
hold:

(1) Γ, 𝑥 : 𝑃,Δ ⊢ 𝑇 wf implies Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝑇 wf;
(2) Γ, 𝑥 : 𝑃,Δ ⊢ 𝐷 wf implies Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝐷 wf;
(3) Γ, 𝑥 : 𝑃,Δ ⊢ 𝐶1 <: 𝐶2 implies Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝐶1 <: 𝐶2;

(4) Γ, 𝑥 : 𝑃,Δ ⊢ 𝑇1 <: 𝑇2 implies Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝑇1 <: 𝑇2;
(5) is-readerΓ,𝑥 :𝑃,Δ 𝑦 implies is-readerΓ,𝑥 :𝑃 ′,Δ 𝑦;

(6) Γ, 𝑥 : 𝑃,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2 implies Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2;

(7) Γ, 𝑥 : 𝑃,Δ ⊢ 𝑡 : 𝑇 implies Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝑡 <: 𝑇 .

Proof. The proof follows through a straightforward induction on the derivations, wherein only

the cases enumerated below are contigent to the variable bindings in the context. The other cases

can be deduced by employing the IH, the same rule and other narrowing lemmas.

Case (var). In this case, 𝑡 = 𝑦, 𝑦 : 𝑆 ∧𝐶 ∈ Γ, 𝑥 : 𝑃,Δ, and 𝑇 = {𝑥} 𝑆 . If 𝑥 ≠ 𝑦, then the binding for

𝑦 is remains unaffected and we can directly conclude by applying the (var) rule. Otherwise, we

have 𝑥 = 𝑦, implying that 𝑃 = 𝑆 ∧𝐶 . We can demonstrate that 𝑃 ′ = 𝑆 ′ ∧𝐶′
for some𝐶′, 𝑆 ′. Inspecting

the judgment Γ ⊢ 𝑃 ′ <: 𝑃 we can show that Γ ⊢ 𝑆 ′ <: 𝑆 . Consequently, We can establish that

Γ, 𝑥 : 𝑆 ′,Δ ⊢ {𝑥} 𝑆 ′ <: {𝑥} 𝑆 by applying the weakening lemma and the (capt) rule. Finally, we

can conclude by utilizing the (var) and the (sub) rules.

Case (sc-var). In this case, 𝐶1 = {𝑦}, 𝑦 : 𝑆 ∧𝐶 ∈ Γ, 𝑥 : 𝑃,Δ, and Γ, 𝑥 : 𝑃,Δ ⊢ 𝐶 <: 𝐶2. Using the

IH, we can demonstrate that Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝐶 <: 𝐶2. If 𝑥 ≠ 𝑦, the binding for 𝑦 remains unaffected

and we can immediately apply the IH and the (sc-var) rule to conclude. Otherwise, we have 𝑥 = 𝑦,

implying that 𝑃 = 𝑆 ∧𝐶 . Inpsecting the subtype judgment Γ ⊢ 𝑃 ′ <: 𝑃 , we can show that Γ ⊢ 𝐶′ <: 𝐶
where 𝐶′

denotes cs (𝑃 ′). Invoking the weakening lemma and the subcapturing transitivity lemma,

we can derive that Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝐶′ <: 𝐶2. Finally, we conclude by applying the (sc-var) rule.

Case (ni-var). In this case, 𝐶1 = {𝑦}, 𝐶2 = {𝑧} 𝑦 : 𝑆 ∧𝐶 ∈ Γ, 𝑥 : 𝑃,Δ and Γ, 𝑥 : 𝑃,Δ ⊢ 𝐶 ⊲⊳ 𝑧.

Using IH, we can demonstrate that Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝐶 ⊲⊳ 𝑧. If 𝑦 ≠ 𝑥 , then the binding for 𝑦 stays

unaffected and we can immediately invoke the IH and the (ni-var) rule to conclude. Otherwise

we have 𝑦 = 𝑥 , implying that 𝑃 = 𝑆 ∧𝐶 . From the subtype judgment Γ ⊢ 𝑃 ′ <: 𝑃 we can show that

Γ ⊢ 𝐶′ <: 𝐶 where 𝐶′
is cs (𝑃 ′). We invoke the weakning lemma and Lemma A.22 to prove that

Γ, 𝑥 : 𝑃 ′,Δ ⊢ 𝐶′ ⊲⊳ 𝑧. Finally, we can apply the (ni-var) rule to conclude this case. □

Lemma A.35 (Separation degree expansion). Given Γ, 𝑥 :𝐷 𝑇,Δ, and that 𝐷 ⊆ 𝐷 ′
, the following

propositions hold:

– Γ, 𝑥 :𝐷 𝑇,Δ ⊢ 𝑇 wf implies Γ, 𝑥 :𝐷 ′ 𝑇,Δ ⊢ 𝑇 wf;
– Γ, 𝑥 :𝐷 𝑇,Δ ⊢ 𝐷 wf implies Γ, 𝑥 :𝐷 ′ 𝑇,Δ ⊢ 𝐷 wf;
– Γ, 𝑥 :𝐷 𝑇,Δ ⊢ 𝐶1 <: 𝐶2 implies Γ, 𝑥 :𝐷 ′ 𝑇,Δ ⊢ 𝐶1 <: 𝐶2;

– Γ, 𝑥 :𝐷 𝑇,Δ ⊢ 𝑇1 <: 𝑇2 implies Γ, 𝑥 :𝐷 ′ 𝑇,Δ ⊢ 𝑇1 <: 𝑇2;
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– is-readerΓ,𝑥 :𝐷𝑇,Δ 𝑦 implies is-readerΓ,𝑥 :𝐷′𝑇,Δ 𝑦;

– Γ, 𝑥 :𝐷 𝑇,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2 implies Γ, 𝑥 :𝐷 ′ 𝑇,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2;

– Γ, 𝑥 :𝐷 𝑇,Δ ⊢ 𝑡 : 𝑈 implies Γ, 𝑥 :𝐷 ′ 𝑇,Δ ⊢ 𝑡 : 𝑈 .

Proof. The proof is carried out through straightforward induction on the derivations. Only the

(ni-degree) case depends on the separation degrees. Other cases can be concluded by IH, other

expansion lemmas and the same rule.

Case (ni-degree). Then 𝐶1 = {𝑧1}, 𝐶2 = {𝑧2}, 𝑧1 :𝐷1
𝑇1 ∈ Γ, 𝑥 :𝐷 𝑇,Δ, and 𝑧2 ∈ 𝐷1. If 𝑧1 = 𝑥 ,

then 𝐷1 = 𝐷 . Considering 𝐷 ⊆ 𝐷 ′
, we can show that 𝑧2 ∈ 𝐷 ′

. Finally, we invoke (ni-var) and

conclude. □

A.2.5 Properties of Evaluation Configurations.

Lemma A.36 (Value typing (I)). If Γ ⊢ 𝑣 : 𝑇 then 𝑇 is not in the form of 𝑋 ∧𝐶 .

Proof. By straightforward induction on the derivation.

Case (sub). Then Γ ⊢ 𝑣 : 𝑇 ′
, and Γ ⊢ 𝑇 ′ <: 𝑇 . By IH we know that 𝑇 ′

is not in the form of 𝑋 ∧𝐶 .

If 𝑇 is in the form of 𝑋 ∧𝐶 , then we invoke Lemma A.13 and derive a contradiction. We therefore

conclude.

Other cases. Other cases for typing values are immediate. □

Lemma A.37 (Value typing (II)). If Γ ⊢ 𝑣 : 𝑇 then 𝑇 is not in the form of Ref[𝑆] ∧𝐶 .

Proof. By straightforward induction on the typing derivation. No typing rule for values results

in a Ref[𝑆] ∧𝐶 type. In the (sub) case, we have Γ ⊢ 𝑣 : 𝑇 ′
and Γ ⊢ 𝑇 ′ <: 𝑇 . By IH we have 𝑇 ′

is not

in the form of Ref[𝑆] ∧𝐶 . By induction on the Γ ⊢ 𝑇 ′ <: 𝑇 we can show that 𝑇 is also not in this

form. We can therefore conclude this case. □

Lemma A.38 (Store lookup: mutable variables). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑥 : Ref[𝑆] ∧𝐶 , then

∃𝑣 .𝛾 (var 𝑥) = 𝑣 .

Proof. By induction on ⊢ 𝛾 ∼ Γ.
Case (st-empty). Then 𝛾 = Γ = ∅. It is contradictory to have ∅ ⊢ 𝑥 : Ref[𝑆] ∧𝐶 .

Case (st-val). Then 𝛾 = 𝛾0, val𝐷 𝑦 ↦→ 𝑣 Γ = Γ0, 𝑦 :𝐷 cv (𝑣) 𝑆 ′, and Γ0 ⊢ 𝑣 : cv (𝑣) 𝑆 ′.
– If 𝑥 = 𝑦, by induction on the typing judgment and applying weakening, we can show

that Γ ⊢ 𝑆 ′ ∧
cv (𝑣) <: Ref[𝑆] ∧ 𝐶 . By Lemma A.14 and Lemma A.36, we can show that

Γ ⊢ cv (𝑣) <: 𝐶 and 𝑆 ′ = Ref[𝑆]. By Lemma A.37 we can derive the contradiction.

– If 𝑥 ≠ 𝑦, then we can show that 𝑥 ∈ dom(Γ0), and therefore Γ0 ⊢ 𝑥 : 𝐶 Ref[𝑆]. We conclude

this case by IH.

Case (st-var). Then 𝛾 = 𝛾0, var 𝑦 = 𝑣 , and Γ = Γ0, 𝑦 :dom(Γ0 ) Ref[𝑆 ′] ∧ {ref}. If 𝑦 = 𝑥 , we conclude

this case by the fact that 𝛾 (var 𝑥) = 𝑣 . Otherwise, we have Γ0 ⊢ 𝑥 : 𝐶 Ref[𝑆] and conclude again by

IH.

Case (st-set). Analogous to the previous case. □

Lemma A.39 (Store lookup: pure values). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑥 : 𝑆 , then ∃𝑣 .𝛾 (val 𝑥) = 𝑣 .

Proof. By induction on the derivation of ⊢ 𝛾 ∼ Γ.
Case (st-empty). Contradictory.

Case (st-val). Then 𝛾 = 𝛾0, val 𝑦 ↦→ 𝑣 , ⊢ 𝛾0 ∼ Γ0, Γ0 ⊢ 𝑣 : 𝑇 , and Γ = Γ0, 𝑦 :{} 𝑇 . If 𝑥 ≠ 𝑦 we

conclude by IH. Otherwise we have 𝑣 such that 𝛾 (val 𝑥) = 𝑣 .

Case (st-var). Then 𝛾 = 𝛾0, var 𝑦 = 𝑣 , ⊢ 𝛾0 ∼ Γ0, Γ0 ⊢ 𝑆 ′ : , and Γ = Γ0, 𝑦 :dom(Γ0 ) Ref[𝑆 ′] ∧ {ref}.
If 𝑥 = 𝑦, we can show that Γ ⊢ {ref} <: {} which is contradictory. Otherwise we conclude the case

by IH.
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Case (st-set). By IH. □

Lemma A.40 (Store lookup: term abstractions). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑥 : ∀(𝑧 :𝐷 𝑈 )𝑇 ∧𝐶 ,

then ∃𝑣 .𝛾 (val 𝑥) = 𝑣 .

Proof. By induction on the ⊢ 𝛾 ∼ Γ derivation.

Case (st-empty). Contradictory.

Case (st-val). Then 𝛾 = 𝛾0, val 𝑦 ↦→ 𝑣 , ⊢ 𝛾0 ∼ Γ0, Γ0 ⊢ 𝑣 : 𝑇 , and Γ = Γ0, 𝑦 :𝐷 𝑇 . If 𝑥 = 𝑦, then we

conclude immediately. Otherwise we conclude the goal by IH.

Case (st-var). Then 𝛾 = 𝛾0, var 𝑦 = 𝑣 , ⊢ 𝛾0 ∼ Γ0, Γ0 ⊢ 𝑣 : 𝑆 ′, and Γ = Γ0, 𝑦 :dom(Γ0 ) Ref[𝑆 ′] ∧ {ref}.
If 𝑥 = 𝑦, we can show that Γ ⊢ Ref[𝑆 ′] ∧ {ref} <: ∀(𝑧 :𝐷 𝑇 )𝑈 ∧𝐶 . By Lemma A.16, we can derive a

contradiction. Otherwise, 𝑥 ≠ 𝑦. We conclude this case by IH.

Case (st-set). As above. □

Lemma A.41 (Store lookup: type abstractions). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑥 : ∀[𝑋 <: 𝑆]𝑇 ∧𝐶 ,

then ∃𝑣 .𝛾 (val 𝑥) = 𝑣 .

Proof. Analogous to the proof of Lemma A.40. □

Lemma A.42 (Store lookup: reader). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑥 : Rdr[𝑆] ∧𝐶 , then ∃𝑣 .𝛾 (val 𝑥) = 𝑣 .

Proof. Analogous to the proof of Lemma A.40. □

Lemma A.43 (Inversion of evaluation contexts). If Γ ⊢ 𝑒 [ 𝑠 ] : 𝑇 , then ∃Δ,𝑈 such that (i)

Γ ⊢ 𝑒 ∼ Δ : [𝑈 @ 𝑠] ⇒ 𝑇 , and (ii) Γ,Δ ⊢ 𝑠 : 𝑈 .

Proof. By induction on 𝑒 .

Case 𝑒 = []. Set Δ = ∅ and𝑈 = 𝑇 . This case can be concluded immediately.

Case 𝑒 = let𝑚 𝑥 = 𝑒′ in𝑢. Then Γ ⊢ let𝑚 𝑥 = 𝑒′ [ 𝑠 ] in𝑢 : 𝑇 . By induction on this typing derivation.

The sub-goal is that Γ ⊢ 𝑒′ [ 𝑠 ] : 𝑇0 for some 𝑇0, Γ, 𝑥 :{} 𝑇0 ⊢ 𝑢 : 𝑇 , 𝑥 ∉ fv(𝑇 ), and Γ ⊢ 𝑒′ [ 𝑠 ] ⊲⊳ 𝑢 if

𝑚 = par.

– Case (let). Conclude immediately from the premises.

– Case (sub). In this case, Γ ⊢ letpar 𝑥 = 𝑒′ [ 𝑠 ] in 𝑢 : 𝑇 ′
for some 𝑇 ′

, and Γ ⊢ 𝑇 ′ <: 𝑇 . We

conclude this case by IH and (sub).

– Other cases. Not applicable.

Now we invoke IH on Γ ⊢ 𝑒′ [ 𝑠 ] : 𝑇0 and show that ∃Δ0,𝑈0 such that Γ ⊢ 𝑒′ ∼ Δ0 : [𝑈0 @ 𝑠] ⇒ 𝑇0.

Now we set Δ = Δ0 and 𝑈 = 𝑈0. First, we have Γ ⊢ 𝑒 ∼ Δ by (ev-let-1). Given 𝑠′ such that

Γ,Δ ⊢ 𝑠′ : 𝑈 and Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 , we have Γ ⊢ 𝑒′ [ 𝑠′ ] : 𝑇0 by IH. Also, since we have Γ ⊢ 𝑒′ ∼ Δ,
from Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 we can show that Γ ⊢ 𝑒′ [ 𝑠′ ] ⊲⊳ 𝑢. We can conclude this case by (let).

Case 𝑒 = letpar 𝑥 = 𝑡 in 𝑒′. Then Γ ⊢ letpar 𝑥 = 𝑡 in 𝑒′ [ 𝑠 ] : 𝑇 . By a similar induction on this typing

derivation, we can show that Γ ⊢ 𝑡 : 𝑇0 for some 𝑇0, Γ, 𝑥 :{} 𝑇0 ⊢ 𝑒′ [ 𝑠 ] : 𝑇 , 𝑥 ∉ fv(𝑇 ), and Γ ⊢ 𝑡 ⊲⊳

𝑒′ [ 𝑠 ]. Now we invoke IH to show that ∃Δ0,𝑈0 such that Γ, 𝑥 :{} 𝑇0 ⊢ 𝑒′ ∼ Δ0 : [𝑈0 @ 𝑠] ⇒ 𝑇 , and

Γ, 𝑥 :{} 𝑇0,Δ0 ⊢ 𝑠 : 𝑈0. Set Δ = 𝑥 :{} 𝑇0,Δ0 and𝑈 = 𝑈0. We have Γ ⊢ 𝑒 ∼ 𝑥 :{} 𝑇0,Δ0 by (ev-let-2).

∀𝑠′ such that Γ,Δ ⊢ 𝑠′ : 𝑈 and Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 . the goal is to show that Γ ⊢ letpar 𝑥 = 𝑡 in 𝑒′ [ 𝑠′ ] : 𝑇 .
By Lemma A.29, we have Γ, 𝑥 :{} 𝑇0;Δ0 ⊢ 𝑠′ ⊳ : 𝑠 . By IH we can show that Γ, 𝑥 :{} 𝑇0 ⊢ 𝑒′ [ 𝑠′ ] : 𝑇 .
From Γ;Δ ⊢ 𝑠′ ⊳ : 𝑠 we can show that Γ, 𝑥 :{} 𝑇0 ⊢ cv (𝑡) ⊲⊳ cv (𝑒′ [ 𝑠′ ]). By strengthening, we show
that Γ ⊢ cv (𝑡) ⊲⊳ cv (𝑒′ [ 𝑠′ ]) \ {𝑥}, which is the same as Γ ⊢ 𝑡 ⊲⊳ 𝑒′ [ 𝑠′ ]. This case is therefore
concluded by (let). □

Lemma A.44 (Weakening of evaluation context inversion). Γ ⊢ 𝑒 ∼ Δ : [𝑈 @ 𝑠] ⇒ 𝑇

implies Γ,Δ ⊢ 𝑒 ∼ Δ : [𝑈 @ 𝑠] ⇒ 𝑇 .
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Proof. By weakening of environment matching, typing and separation checking. □

LemmaA.45 (Downgrading separation degree preserves subcapturing). Given Γ = Γ1, 𝑥 :dom(Γ1 )
𝑆 ∧ {ref}, Γ2, and 𝑦 :𝐷 𝑇 ∈ Γ1 where cs (𝑇 ) ∩ {cap, rdr, ref} = {}, Γ ⊢ 𝑇1 <: 𝑇2 implies Γ′ ⊢ 𝑇1 <: 𝑇2
where Γ′ = Γ2, 𝑥 :dom(Γ1 )/𝑦 𝑆 ∧ {ref}, Γ2.

Proof. By straightfoward induction on the derivation, wherein no rule makes use of the separa-

tion degrees in the context. □

Lemma A.46 (Downgrading separation degree preserves separation checking). Given

Γ = Γ1, 𝑥 :dom(Γ1 ) 𝑆
∧ {ref}, Γ2, and 𝑦 :𝐷 𝑇 ∈ Γ1 where cs (𝑇 ) ∩ {cap, rdr, ref} = {}, Γ ⊢ 𝐶1 ⊲⊳ 𝐶2

implies Γ′ ⊢ 𝐶1 ⊲⊳ 𝐶2 where Γ
′ = Γ1, 𝑥 :dom(Γ1 )/𝑦 𝑆 ∧ {ref}, Γ2.

Proof. By induction on the separation checking derivation.

Case (ni-symm). By IH and (ni-symm) again.

Case (ni-set). Then 𝐶1 = {𝑥𝑖 }𝑖=1,· · · ,𝑛 , and Γ ⊢ {𝑥𝑖 } ⊲⊳ 𝐶2

𝑖=1,· · · ,𝑛
. By repeated IH, we have

Γ′ ⊢ {𝑥𝑖 } ⊲⊳ 𝐶2

𝑖=1,· · · ,𝑛
. This case is therefore concluded by (ni-set).

Case (ni-degree). Then 𝐶1 = {𝑧1}, 𝐶2 = {𝑧2}, 𝑧1 :𝐷1
𝑇1 ∈ Γ, and 𝑧2 ∈ 𝐷1. If 𝑧1 = 𝑥 and 𝑧2 = 𝑦,

Since by the well-formedness of the environment and that cs (𝑇 ) does not contain root capabilities,

we have cs (𝑇 ) ⊆ dom(Γ). We can therefore show that Γ ⊢ {𝑥} ⊲⊳ cs (𝑇 ) by (ni-var) and (ni-set).

Otherwise the goal follows directly from the preconditions.

Case (ni-var). By applying the IH and the same rule.

Case (ni-reader). By applying Lemma A.45 and the same rule. □

Lemma A.47 (Downgrading separation degree preserves subtyping). Given Γ = Γ1, 𝑥 :dom(Γ1 )
𝑆 ∧ {ref}, Γ2, and 𝑦 :𝐷 𝑇 ∈ Γ1 where cs (𝑇 ) ∩ {cap, rdr, ref} = {}, Γ ⊢ 𝑇 <: 𝑈 implies Γ′ ⊢ 𝑇 <: 𝑈

where Γ′ = Γ1, 𝑥 :dom(Γ1 )/𝑦 𝑆 ∧ {ref}, Γ2.

Proof. By straightforward induction on the subtyping derivation. No rule makes use of the

separation degree on the bindings. □

Lemma A.48 (Downgrading separation degree preserves typing). Given Γ = Γ1, 𝑥 :dom(Γ1 )
𝑆 ∧ {ref}, Γ2, and 𝑦 :𝐷 𝑇 ∈ Γ1 where cs (𝑇 ) ∩ {cap, rdr, ref}, Γ ⊢ 𝑡 : 𝑇 implies Γ′ ⊢ 𝑡 : 𝑇 where

Γ′ = Γ1, 𝑥 :dom(Γ1 )/𝑦 𝑆 ∧ {ref}, Γ2.

Proof. By induction on the typing derivation.

Case (var). By the precondition and the same rule.

Case (sub). By IH, Lemma A.47, and the same rule.

Case (app) and (let). By IH, Lemma A.46 and the same rule.

Other cases. By IH and the same rule. □

Lemma A.49 (Evaluation context inversion and reification for mutable variables).

Γ ⊢ 𝑒 [ var 𝑥 = 𝑦 in 𝑠 ] : 𝑇 implies ∃Δ, 𝑆,𝑈 such that (i) Γ ⊢ 𝑒 ∼ Δ, (ii) Γ,Δ ⊢ 𝑦 : 𝑆 , (iii) Γ, 𝑥 :dom(Γ)
Ref[𝑆] ∧ {ref} ,Δ ⊢ 𝑠 : 𝑈 , and (iv) Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ⊢ 𝑒 [ 𝑠 ] : 𝑇 .

Proof. By induction on 𝑒 .

Case 𝑒 = []. Then Γ ⊢ var 𝑥 = 𝑦 in 𝑠 : 𝑇 . By induction on the typing derivation we can show that

Γ ⊢ 𝑦 : 𝑆 for some 𝑆 , and Γ, 𝑥 :𝐷 Ref[𝑆] ∧ {ref} ⊢ 𝑠 : 𝑇 for some 𝐷 . We set Δ = ∅ and𝑈 = 𝑇 . We can

conclude this case by separation degree expansion.

Case 𝑒 = let𝑚 𝑧 = 𝑒′ in 𝑢. Then Γ ⊢ let𝑚 𝑧 = 𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ] in 𝑢 : 𝑇 . By inspecting this

derivation, we can show that Γ ⊢ 𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ] : 𝑇0 for some 𝑇0, Γ, 𝑧 :{} 𝑇0 ⊢ 𝑢 : 𝑇 , and

Γ ⊢ 𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ] ⊲⊳ 𝑢. By IH, we show that ∃Δ0, 𝑆0,𝑈0 such that Γ ⊢ 𝑒′ ∼ Δ0, Γ,Δ0 ⊢ 𝑦 : 𝑆0,
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Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ,Δ0 ⊢ 𝑠 : 𝑈0, and Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ⊢ 𝑒 [ 𝑠 ] : 𝑇 . Note that

Γ ⊢ 𝑒 ∼ Δ0. By weakening, we can show that Γ, 𝑥 :dom(Γ) ⊢ 𝐷 ′ ⊲⊳ cs (𝑇0). We can show that

cv (𝑒′ [ 𝑠 ]) ⊆ cv (𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ])\{𝑦}∪{𝑥}. Now, we can show that Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ⊢
cv (𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ]) \ {𝑦} ⊲⊳ cv (𝑢) \ {𝑧} from the precondition and weakening. Then, we can

show that Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ⊢ 𝑥 ⊲⊳ cv (𝑢) \ {𝑧} by (ni-degree) and (ni-set). We can

therefore show that Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ⊢ 𝑒′ [ 𝑠 ] ⊲⊳ 𝑢. This case is therefore concluded by

setting Δ = Δ0 and𝑈 = 𝑈0, and using the (let) rule.

Case 𝑒 = letpar 𝑧 = 𝑡 in 𝑒′. Then Γ ⊢ letpar 𝑧 = 𝑡 in 𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ] : 𝑇 . By inspecting the

typing derivation we can show that Γ ⊢ 𝑡 : 𝑇0 for some 𝑇0, Γ, 𝑧 :{} 𝑇0 ⊢ 𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ] : 𝑇 ,
and Γ ⊢ 𝑡 ⊲⊳ 𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ]. Now we invoke IH on the typing derivation Γ, 𝑧 :{} 𝑇0 ⊢
𝑒′ [ var 𝑥 = 𝑦 in 𝑠 ] : 𝑇 to show that ∃Δ0, 𝑆0,𝑈0 such that Γ, 𝑧 :{} 𝑇0 ⊢ 𝑒′ ∼ Δ0, Γ, 𝑧 :{} 𝑇0,Δ0 ⊢ 𝑦 : 𝑆0,
Γ, 𝑧 :{} 𝑇0, 𝑥 :dom(Γ)∪{𝑧} Ref[𝑆0] ∧ {ref} ,Δ0 ⊢ 𝑠 : 𝑈0 and Γ, 𝑥 :dom(Γ) Ref[𝑆0] ∧ {ref} , 𝑧 :{} 𝑇0 ⊢
𝑒′ [ 𝑠 ] : 𝑇 . SetΔ = 𝑧 :{} 𝑇0,Δ0.We can first show that Γ ⊢ 𝑒 ∼ 𝑧 :{} 𝑇0,Δ0. Also, we have Γ,Δ ⊢ 𝑦 : 𝑆0.
Then we have to show that Γ, 𝑥 :dom(Γ) Ref[𝑆0] ∧ {ref} ,Δ ⊢ 𝑠 : 𝑈0, which requires dropping 𝑧 from

the separation degree of 𝑥 . Now we invoke Lemma A.48 to show that Γ, 𝑧 :{} 𝑇0, 𝑥 :dom(Γ) Ref[𝑆0] ∧

{ref} ,Δ0 ⊢ 𝑠 : 𝑈0. Then by permutation we have Γ, 𝑥 :dom(Γ) Ref[𝑆0] ∧ {ref} ,Δ ⊢ 𝑠 : 𝑈0. We can

similarly show that Γ, 𝑥 :dom(Γ) Ref[𝑆0] ∧ {ref} , 𝑧 :{} 𝑇0 ⊢ 𝑒′ [ 𝑠 ] : 𝑇 . Similar to the previous case,

we can show that Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ⊢ 𝑡 ⊲⊳ 𝑒′ [ 𝑠 ]. We can therefore conclude this case by

(let). □

A.2.6 Substitution.

Term Substitution.

Lemma A.50 (Term substitution preserves readers). If (i) Γ, 𝑥 : 𝑃,Δ ⊢ 𝑇 ↑ Rdr, and (ii)

Γ ⊢ 𝑥 ′ : 𝑃 , then is-readerΓ,𝜃Δ 𝜃𝑇 , where 𝜃 = [𝑥 ↦→ 𝑥 ′].

Proof. By induction on the first derivation.

Case (rd-reader). We conclude by the same rule.

Case (rd-tvar). Then𝑇 = 𝑋 ∧𝐶 , 𝑋 <: 𝑆 ∈ Γ for some 𝑆 , and is-readerΓ,𝑥 :𝐷𝑃,Δ 𝐶 𝑆 . Now we inspect

where 𝑋 <: 𝑆 is bound, wherein in each case we can show that 𝑋 <: 𝜃𝑆 ∈ 𝜃Γ, 𝜃Δ. Now we conclude

by using the IH and the same rule.

□

Lemma A.51 (Term substitution preserves is-reader). If (i) is-readerΓ,𝑥 :𝑃,Δ 𝑧, and (ii) Γ ⊢ 𝑥 ′ : 𝑃 ,
then is-readerΓ,𝜃Δ 𝜃𝑧, where 𝜃 = [𝑥 ↦→ 𝑥 ′].

Proof. We have 𝑧 : 𝑇 ∈ Γ, 𝑥 : 𝑃,Δ for some 𝑇 and Γ, 𝑥 : 𝑃,Δ ⊢ 𝑇 <: Rdr[𝑆] ∧𝐶 for some 𝐶, 𝑆 .

We first invoke Lemma A.9 to show that Γ, 𝑥 : 𝑃,Δ ⊢ 𝑇 ↑ Rdr. Using Lemma A.50 we can show

that is-readerΓ,𝜃Δ 𝜃𝑇 . Then we perform a case analysis on where 𝑧 is bound. If 𝑧 = 𝑥 then we

have 𝜃𝑧 = 𝑥 ′ and Γ, 𝜃Δ ⊢ 𝜃𝑃 ↑ Rdr. By induction on the derivation of Γ ⊢ 𝑥 ′ : 𝑃 we can show that

there exists 𝑆 ′ ∧𝐶′
such that 𝑥 ′ : 𝑆 ′ ∧𝐶′ ∈ Γ and Γ ⊢ 𝑆 ′ ∧ {𝑥 ′} <: 𝑃 . By the well-formedness of the

environment, we can show that 𝜃𝑃 = 𝑃 , implying that Γ, 𝜃Δ ⊢ 𝑃 ↑ Rdr. Now, by weakening and

Lemma A.8, we can show that Γ, 𝜃Δ ⊢ 𝑆 ′ ∧ {𝑥 ′} ↑ Rdr. Finally, we use Lemma A.7 to show that

Γ, 𝜃Δ ⊢ 𝑆 ′ ∧𝐶′ ↑ Rdr, and then use Lemma A.9 again to conclude this case. If 𝑧 is bound in Γ or Δ,
in both cases we can show that 𝑧 : 𝜃𝑇 ∈ Γ, 𝜃Δ and therefore conclude directly. □

Lemma A.52 (Term substitution preserves subcapturing). If (i) Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝐶1 <: 𝐶2, and

(ii) Γ ⊢ 𝑥 ′ : 𝑃 then Γ, 𝜃Δ ⊢ 𝜃𝐶1 <: 𝜃𝐶2 where 𝜃 = [𝑥 ↦→ 𝑥 ′].

Proof. By induction on the subcapture derivation.

Case (sc-trans). By applying the IH twice and use the same rule.
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Case (sc-elem). Then 𝐶1 = {𝑦}, and 𝑦 ∈ 𝐶2. If 𝑦 ≠ 𝑥 , we can show that 𝑥 ∈ 𝜃𝐶2, and therefore

conclude the case by (sc-elem) again. Otherwise, if 𝑦 = 𝑥 , we can show that 𝑥 ′ ∈ 𝜃𝐶2. This case is

therefore conclude by (sc-elem).

Case (sc-set). Then Γ, 𝑥 :𝐷 𝑃,Δ ⊢ {𝑥} <: 𝐶2

𝑥∈𝐶1

. By applying the IH repeatedly, we can show

that Γ, 𝜃Δ ⊢ 𝜃 {𝑥} <: 𝜃𝐶2

𝑥∈𝐶1

. Note that 𝜃𝐶1 =
⋃

𝑥∈𝐶1

𝜃 {𝑥}. This case is therefore concluded by

(sc-set).

Case (sc-var). Then 𝐶1 = {𝑧}, and 𝑧 : 𝑆 ∧𝐶2 ∈ Γ, 𝑥 :𝐷 𝑃,Δ. Now we inspect where 𝑧 is bound.

– When 𝑥 = 𝑧. The goal becomes Γ, 𝜃Δ ⊢ 𝑥 ′ <: 𝜃𝐶2. By inspecting the derivation of Γ ⊢ 𝑥 ′ : 𝑃 ,
we can show that 𝑥 ′ : 𝑃 ′ ∈ Γ and Γ ⊢ {𝑥 ′} <: 𝐶2. By weakening we have Γ, 𝜃Δ ⊢ {𝑥 ′} <: 𝐶2.

Also, by the well-formedness, we can show that 𝑥 ∉ 𝐶2 and therefore 𝜃𝐶2 = 𝐶2. This case is

therefore concluded.

– When 𝑧 is bound in Γ. By well-formedness we know that 𝑥 ∉ fv(𝐶2). Therefore, 𝜃𝐶2 = 𝐶2.

Also, 𝑧 : 𝑆 ∧𝐶2 ∈ Γ, 𝜃Δ, and we conclude this case by (sc-var).

– When 𝑧 is bound in Δ. Then 𝑧 : 𝜃𝐶2

∧𝜃𝑆 ∈ Γ, 𝜃Δ. Therefore this case is concluded by IH and

(sc-var).

Case (sc-rdr-cap) and (sc-ref-cap). By the same rule.

Case (sc-reader). We conclude using the IH, Lemma A.51, and the same rule. □

Lemma A.53 (Term substitution preserves subtyping). If (i) Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝑇 <: 𝑈 , and (ii)

Γ ⊢ 𝑥 ′ : 𝑃 then Γ, 𝜃Δ ⊢ 𝜃𝑇 <: 𝜃𝑈 where 𝜃 = [𝑥 ↦→ 𝑥 ′].

Proof. By induction on the subtype derivation.

Case (refl) and (top). By the same rule.

Case (capt). By IH, Lemma A.52 and the same rule.

Case (trans), (boxed), (fun) and (tfun). By IH and the same rule.

Case (tvar). Then 𝑇 = 𝑋 , 𝑈 = 𝑆 , and 𝑋 <: 𝑆 ∈ Γ, 𝑥 :𝐷 𝑃,Δ. Our goal is to show that Γ, 𝜃Δ ⊢
𝜃𝑋 <: 𝜃𝑆 . We inspect where 𝑋 is bound. First, we show that 𝜃𝑋 = 𝑋 since 𝑋 ≠ 𝑥 . If 𝑋 ∈ dom(Γ),
we can show that 𝑥 ∉ fv(𝑆) by the well-formedness of the environment. Therefore 𝜃𝑆 = 𝑆 .

Since 𝑋 <: 𝑆 ∈ Γ, 𝜃Δ, we can conclude this case by (tvar). Otherwise if 𝑋 ∈ dom(Δ), we have
𝑋 <: 𝜃𝑆 ∈ Γ, 𝜃Δ. This case is therefore concluded by (tvar) too. □

Lemma A.54 (Term substitution preserves separation). If (i) Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2, (ii)

Γ ⊢ 𝑥 ′ : 𝑃 and (iii) Γ ⊢ 𝐷 ⊲⊳ 𝑥 ′, then Γ, 𝜃Δ ⊢ 𝜃𝐶1 ⊲⊳ 𝜃𝐶2 where 𝜃 = [𝑥 ↦→ 𝑥 ′].

Proof. By induction on the separation derivation.

Case (ni-symm). Then Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝐶2 ⊲⊳ 𝐶1. We conclude this case by IH and the same rule.

Case (ni-set). Then 𝐶1 = {𝜏𝑖 }𝑖=1,· · · ,𝑛 . By repeated IH we have Γ, 𝜃Δ ⊢ 𝜃𝜏𝑖 ⊲⊳ 𝜃𝐶2

𝑖=1,· · · ,𝑛
. Note

that 𝜃𝐶1 =
⋃

𝑖=1,· · · ,𝑛 𝜃𝜏𝑖 . we can therefore conclude this case by (ni-set).

Case (ni-degree). Then 𝐶1 = {𝑧1}, 𝐶2 = {𝑧2}, 𝑧1 :𝐷1
𝑇 ∈ Γ, 𝑥 :𝐷 𝑃,Δ, and 𝑧2 ∈ 𝐷1. Now we do a

case analysis on where 𝑧1 is bound.

– When 𝑧1 = 𝑥 . Thenwe have𝜃𝐶1 = 𝑥 ′ and 𝑧2 ∈ 𝐷 . By thewell-formedness of the environment,

𝑥 ∉ 𝐷 , therefore 𝑧2 ≠ 𝑥 and 𝜃𝑧2 = 𝑧2. The goal becomes Γ, 𝜃Δ ⊢ 𝑥 ′ ⊲⊳ 𝑧2. Note that we have

Γ ⊢ 𝐷 ⊲⊳ 𝑥 ′, on which we can invoke Lemma A.19 to show that Γ ⊢ 𝑧2 ⊲⊳ 𝑥 ′. Now we

conclude by (ni-symm) and weakening.

– If 𝑧1 ∈ dom(Γ). We have 𝜃𝐷1 = 𝐷1, and 𝑥 ∉ 𝐷1 by the well-formedness. Therefore, we have

𝑧2 ≠ 𝑥 , which implies that 𝜃 {𝑧2} = {𝑧2}. Now we can conclude this case by (ni-degree)

– If 𝑧1 ∈ dom(Δ). Then 𝑧1 :𝜃𝐷1
𝜃𝑇 ∈ 𝜃Δ. We can show that 𝜃𝑧2 ∈ 𝜃𝐷1. This case is therefore

concluded by IH and (ni-degree).
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Case (ni-var). Then 𝐶1 = {𝑦}, 𝑦 :𝐷1
𝑇 ∈ Γ, 𝑥 :𝐷 𝑃,Δ, and Γ, 𝑥 :𝐷 𝑃,Δ ⊢ cs (𝑇 ) ⊲⊳ 𝐶2. By the IH

we can show that Γ, 𝜃Δ ⊢ 𝜃cs (𝑇 ) ⊲⊳ 𝜃𝐶2. Now we inspect where 𝑦 is bound.

– If 𝑥 = 𝑦, then 𝐷 = 𝐷1 and 𝑇 = 𝑃 . The goal becomes Γ, 𝜃Δ ⊢ 𝑥 ′ ⊲⊳ 𝜃𝐶2. By inspecting the

derivation of Γ ⊢ 𝑥 ′ : 𝑃 , we can show that Γ ⊢ {𝑥 ′} <: cs (𝑃). By the well-formedness we

can show that 𝜃cs (𝑃) = cs (𝑃). Now we can conclude this case by Lemma A.22.

– If𝑦 ∈ dom(Γ)∪dom(Δ), we can show that in both cases𝑦 :𝜃𝐷1
𝜃𝑇 ∈ Γ, 𝜃𝐷 . We can conclude

immediately by using the IH and the (ni-var) rule.

Case (ni-reader). Then 𝐶1 = {𝑧1}, 𝐶2 = {𝑧2}, and Γ ⊢ {𝑧𝑖 } <: {rdr} for 𝑖 = 1, 2. We conclude by

using Lemma A.52. □

Lemma A.55 (Term substitution preserves typing). If (i) Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝑡 : 𝑇 , (ii) Γ ⊢ 𝑥 ′ : 𝑃 and

(iii) Γ ⊢ 𝐷 ⊲⊳ 𝑥 ′, then Γ, 𝜃Δ ⊢ 𝜃𝑡 : 𝜃𝑇 where 𝜃 = [𝑥 ↦→ 𝑥 ′].

Proof. By induction on the typing derivation.

Case (var). Then 𝑡 = 𝑦 and 𝑦 :𝐷𝑦
𝑇 ∈ Γ, 𝑥 :𝐷 𝑃,Δ. If 𝑥 = 𝑦, we have 𝑇 = 𝑃 and the goal is to

show that Γ, 𝜃Δ ⊢ 𝑥 ′ : 𝜃𝑃 . By the well-formedness of Γ, 𝑥 :𝐷 𝑃 , 𝑥 ∉ 𝜃𝑃 . Therefore, 𝜃𝑃 = 𝑃 and we

conclude this case from the premise. Otherwise, if 𝑥 ≠ 𝑦, we have 𝜃𝑡 = 𝑦, and we proceed by a case

analysis on where 𝑦 is bound.

– If 𝑦 ∈ dom(Γ), then 𝑥 ∉ 𝑇 by the well-formedness of Γ, 𝑥 :𝐷 𝑃 , and therefore 𝜃𝑇 = 𝑇 . This

case can be concluded by (var).

– If 𝑦 ∈ dom(Δ), then the goal becomes Γ, 𝜃Δ ⊢ 𝑦 : 𝜃𝑇 . We have 𝑦 :𝜃𝐷 𝜃𝑇 ∈ Δ and this case is

again concluded by (var).

Case (sub). By IH, Lemma A.53, and (sub).

Case (abs). Then 𝑡 = 𝜆(𝑧 :𝐷𝑧
𝑈 )𝑠 , 𝑇 = cv (𝑠) /𝑧 ∀(𝑧 :𝐷𝑧

𝑈 )𝑄 , and Γ, 𝑥 :𝐷 𝑃,Δ, 𝑧 :𝐷𝑧
𝑈 ⊢ 𝑠 : 𝑄 . By

IH we show that Γ, 𝑥 :𝐷 𝑃, 𝜃Δ, 𝑧 :𝜃𝐷𝑧
𝜃𝑈 ⊢ 𝜃𝑠 : 𝜃𝑄 . This case is therefore concluded by (abs).

Case (tabs). As above.

Case (app). Then 𝑡 = 𝑦1 𝑦2, Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝑦1 : 𝐶 ∀(𝑧 :𝐷𝑓
𝑈 )𝑇 ′

where𝑇 = [𝑧 ↦→ 𝑦2]𝑇 ′
, Γ, 𝑥 :𝐷 𝑃,Δ ⊢

𝑦2 : 𝑈 , and Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝐷 𝑓 ⊲⊳ 𝑦2. By IH, Γ, 𝜃Δ ⊢ 𝜃𝑦1 : 𝜃𝐶 ∀(𝑧 :𝜃𝐷𝑓
𝜃𝑈 )𝜃𝑇 and Γ, 𝜃Δ ⊢ 𝜃𝑦2 :𝐷 ′′

𝑓
𝜃𝑈 .

By Lemma A.54, we can show that Γ, 𝜃Δ ⊢ 𝜃𝐷 𝑓 : 𝜃𝑦2. Now we can invoke (app-r) to show that

Γ, 𝜃Δ ⊢ 𝜃 (𝑦1 𝑦2) : [𝑧 ↦→ 𝜃𝑦2] (𝜃𝑇 ′). Since 𝑧 is fresh we have 𝜃 ( [𝑧 ↦→ 𝑦2]𝑇 ′) and conclude this case.

Case (tapp). As above.

Case (box). Then 𝑡 = □𝑦, and Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝑦 : 𝑆 ∧𝐶 and 𝑇 = □𝑆 ∧𝐶 . By IH, we have Γ, 𝜃Δ ⊢
𝜃𝑦 : 𝜃 (𝑆 ∧ 𝐶). Since 𝜃𝐶 ⊆ dom(Γ, 𝜃Δ), we can show that Γ, 𝜃 ⊢ 𝜃 (□𝑦) : □𝜃 (𝑆 ∧ 𝐶) by (box) and

conclude this case.

Case (unbox). As above.

Case (let). Then 𝑡 = let𝑚 𝑧 = 𝑠 in 𝑢, Γ, 𝑥 :{} 𝑃,Δ ⊢ 𝑠 : 𝑈 , Γ, 𝑥 :𝐷 𝑃,Δ, 𝑧 :{} 𝑈 ⊢ 𝑢 : 𝑇 , and

Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝑠 ⊲⊳ 𝑢. By IH, we have Γ, 𝜃Δ ⊢ 𝜃𝑠 : 𝜃𝑈 , and Γ, 𝜃Δ, 𝑧 :{} 𝜃𝑈 ⊢ 𝜃𝑢 : 𝜃𝑇 . By Lemma A.54,

we show that Γ, 𝜃Δ ⊢ 𝜃𝑠 ⊲⊳ 𝜃𝑢. Now we can conclude this case by (let).

Case (dvar). Then 𝑡 = var𝐷𝑧
𝑧 := 𝑦 in 𝑠 , Γ, 𝑥 :𝐷 𝑃,Δ ⊢ 𝑦 : 𝑆 , Γ, 𝑥 :𝐷 𝑃,Δ, 𝑧 :𝐷𝑧

Ref[𝑆] ∧ {ref} ⊢ 𝑠 : 𝑇 .
We can conclude this case by IH and (dvar).

Case (read) and (write). By IH and the same rule. □

Type Substitution.

Lemma A.56 (Type substitution preserves reader checking). If (i) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇 ↑ Rdr,
and (ii) Γ ⊢ 𝑅 <: 𝑆 , then is-readerΓ,𝜃Δ 𝜃𝑇 , where 𝜃 = [𝑋 ↦→ 𝑅].

Proof. By induction on the derivation.

Case (rd-reader). We conclude immediately using the same rule.
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Case (rd-tvar). Then 𝑇 = 𝑋 ∧𝐶 for some 𝐶,𝑌 , 𝑌 <: 𝑆0 ∈ Γ, 𝑋 <: 𝑆,Δ, and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑆0 ∧𝐶 ↑
Rdr. By the IH we can show that Γ, 𝜃Δ ⊢ 𝜃 (𝑆0 ∧𝐶) ↑ Rdr. Now, we proceed by a case analysis on

where 𝑌 is bound.

– If 𝑌 = 𝑋 . Then 𝜃 (𝑌 ∧𝐶) = 𝑅 ∧𝐶 and 𝑆0 = 𝑆 . First, by the wellformedness we can show

that 𝜃 (𝑆0 ∧𝐶) = 𝑆0
∧𝐶 , and therefore Γ, 𝜃Δ ⊢ 𝑆0

∧𝐶 ↑ Rdr. Now we conclude this case by

weakening and Lemma A.8.

– If 𝑌 is bound in either Γ or Δ then in both cases we have 𝑌 <: 𝜃𝑆0 ∈ Γ, 𝜃Δ. We conclude by

the IH and the (rd-tvar) rule.

□

Lemma A.57 (Type substitution preserves is-reader). If (i) is-readerΓ,𝑋<:𝑆,Δ 𝑧, and (ii) Γ ⊢ 𝑅 <:

𝑆 , then is-readerΓ,𝜃Δ 𝜃𝑧, where 𝜃 = [𝑋 ↦→ 𝑅].

Proof. Then we have 𝑧 : 𝑇 ∈ Γ, 𝑋 <: 𝑆,Δ, and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇 <: Rdr[𝑆0] ∧𝐶0 for some 𝐶0, 𝑆0.

We first invoke Lemma A.8 to show that Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇 ↑ Rdr. Then, by Lemma A.56 we can show

that Γ, 𝜃Δ ⊢ 𝜃𝑇 ↑ Rdr. By inspecting where 𝑧 is bound, we can show that 𝑧 : 𝜃𝑇 ∈ Γ, 𝜃Δ, and finally

conclude by Lemma A.9 and the (rd-tvar) rule.

□

Lemma A.58 (Type substitution preserves subcapturing). If (i) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐶 <: 𝐷 , and

(ii) Γ ⊢ 𝑅 <: 𝑆 , then Γ, 𝜃Δ ⊢ 𝐶 : 𝐷 , where 𝜃 = [𝑋 ↦→ 𝑅].

Proof. By induction on the subcapture derivation, wherein most cases do not rely on the type

bindings in the context and thus can be concluded immediatley by the IH and the same rule. In the

(sc-reader) case we invoke Lemma A.57 to conclude. □

Lemma A.59 (Type substitution preserves subtyping). If (i) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇 <: 𝑈 , and (ii)

Γ ⊢ 𝑅 <: 𝑆 , then Γ, 𝜃Δ ⊢ 𝜃𝑇 <: 𝜃𝑈 , where 𝜃 = [𝑋 ↦→ 𝑅].

Proof. By induction on the subtype derivation.

Case (refl) and (top). By the same rule.

Case (capt). By Lemma A.58, and (capt).

Case (trans), (boxed), (fun) and (tfun). By IH and application of the same rule.

Case (tvar). Then 𝑇 = 𝑌 , 𝑌 <: 𝑆 ′ ∈ Γ, 𝑋 <: 𝑆,Δ, and𝑈 = 𝑆 ′. Our goal is Γ, 𝜃Δ ⊢ 𝜃𝑌 <: 𝜃𝑆 ′. Now
we inspect where 𝑌 is bound.

– When 𝑋 = 𝑌 . Then 𝑆 ′ = 𝑆 , and the goal becomes Γ, 𝜃Δ ⊢ 𝑅 <: 𝜃𝑆 . By the well-formedness,

we can show that 𝑋 ∉ fv(𝑆) and therefore 𝜃𝑆 = 𝑆 . Now we conclude by weakening the

premise.

– When 𝑌 ∈ dom(Γ). By the well-formedness, 𝑋 ∉ fv(𝑆 ′). Therefore, 𝜃𝑆 ′ = 𝑆 ′. Also, 𝜃𝑌 = 𝑌 ,

and 𝑌 <: 𝑆 ′ ∈ Γ, 𝜃Δ. This case is therefore concluded by (tvar).

– When 𝑌 ∈ dom(Δ). Then 𝑌 <: 𝜃𝑆 ′ ∈ Γ, 𝜃Δ. This case is therefore concluded by (tvar).

□

Lemma A.60 (Type substitution preserves separation). If (i) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐶1 ⊲⊳ 𝐶2, and (ii)

Γ ⊢ 𝑅 <: 𝑆 , then Γ, 𝜃Δ ⊢ 𝐶1 ⊲⊳ 𝐶2, where 𝜃 = [𝑋 ↦→ 𝑅].

Proof. By induction on the non-intereference derivation.

Case (ni-symm). Then Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐶2 ⊲⊳ 𝐶1. We conclude this case by the IH and (ni-symm).

Case (ni-set). Then Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑦 ⊲⊳ 𝐶2

𝑦∈𝐶1

. By applying the IH repeated, we can show that

Γ, 𝜃Δ ⊢ 𝑦 ⊲⊳ 𝐶2

𝑦∈𝐶1

. This case is therefore concluded by (ni-set).
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Case (ni-degree). Then 𝐶1 = {𝑥}, 𝐶2 = {𝑦}, 𝑥 :𝐷 𝑇 ∈ Γ, 𝑋 <: 𝑆,Δ, and 𝑦 ∈ 𝐷 . Note that 𝑋 ∉ 𝐷 ,

therefore we have 𝜃𝐷 = 𝐷 . Therefore, no matter where 𝑥 is bound, we have 𝑥 :𝐷 𝑇 ′ ∈ Γ, 𝜃Δ. This
case can therefore be concluded by (ni-degree).

Case (ni-var). Then 𝐶1 = {𝑥}, 𝐶2 = {𝑦}, 𝑥 :𝐷 𝑇 ∈ Γ, 𝑋 <: 𝑆,Δ, and Γ, 𝑋 <: 𝑆,Δ ⊢ cs (𝑇 ) ⊲⊳ 𝑦.

Depending on where 𝑥 is bound, either 𝑥 :𝐷 𝑇 ∈ Γ, 𝜃Δ, or 𝑥 :𝜃𝐷 𝜃𝑇 ∈ 𝜃Δ. Since 𝑋 ∉ cs (𝑇 ), we
can show that cs (𝜃𝑇 ) = 𝜃cs (𝑇 ) = cs (𝑇 ). By IH, we can show that Γ, 𝜃Δ ⊢ cs (𝑇 ) ⊲⊳ 𝑦. We can

therefore conclude this case by (ni-var).

Case (ni-reader). By applying the IH, Lemma A.58 and the same rule. □

Lemma A.61 (Type substitution preserves typing). If (i) Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑡 : 𝑇 , and (ii) Γ ⊢ 𝑅 <: 𝑆 ,

then Γ, 𝜃Δ ⊢ 𝜃𝑡 : 𝜃𝑇 where 𝜃 = [𝑋 ↦→ 𝑅].

Proof. By induction on the typing derivation.

Case (var). Then 𝑡 = 𝑥 , 𝑥 : 𝑆 ′ ∧𝐶 ∈ Γ, 𝑋 <: 𝑆,Δ, and the goal becomes Γ, 𝜃Δ ⊢ 𝜃𝑥 : 𝜃 (𝑆 ′ ∧ {𝑥}).
Since 𝑥 ≠ 𝑋 , we have 𝜃𝑥 = 𝑥 . Now we inspect where 𝑥 is bound.

– When 𝑥 ∈ dom(Γ). By the well-formedness we can show that 𝑋 ∉ fv(𝑆 ′ ∧𝐶). Therefore,
𝜃𝑆 ′ = 𝑆 ′. We have 𝑥 : 𝑆 ′ ∧𝐶 ∈ Γ, 𝜃Δ. This case is concluded by (var).

– When 𝑥 ∈ dom(Δ). We have 𝑥 : 𝜃 (𝑆 ′ ∧𝐶) ∈ Γ, 𝜃Δ. This case is therefore concluded by (var).

Case (abs) and (tabs). In both cases we conclude by IH and the same rule.

Case (app-r). Then 𝑡 = 𝑥 𝑦, Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑥 : 𝐶 ∀(𝑧 :𝐷 𝑈 )𝑇 ′
, Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑦 : 𝑈 , Γ, 𝑋 <: 𝑆,Δ ⊢

𝐷 ⊲⊳ 𝑦, and 𝑇 = [𝑧 ↦→ 𝑦]𝑇 ′
. We can conclude this case by IH, Lemma A.60, the fact that

𝜃 [𝑧 ↦→ 𝑦]𝑇 ′ = [𝑧 ↦→ 𝑦] 𝜃𝑇 ′
and the (app-r) rule.

Case (tapp). Then 𝑡 = 𝑥 [𝑆 ′], Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑥 : 𝐶 ∀[𝑍 <: 𝑆 ′]𝑇 ′
and 𝑇 = [𝑍 ↦→ 𝑆 ′]𝑇 ′

. The

goal becomes Γ, 𝜃Δ ⊢ 𝜃 (𝑥 [𝑆 ′]) : 𝜃 [𝑍 ↦→ 𝑆 ′]𝑇 ′
. By IH we have Γ, 𝜃Δ ⊢ 𝜃𝑥 : 𝜃𝐶 ∀[𝑍 <: 𝜃𝑆 ′]𝜃𝑇 ′

.

By (tapp) we can show that Γ, 𝜃Δ ⊢ 𝜃 (𝑥 [𝑆 ′]) : [𝑍 ↦→ 𝜃𝑆 ′] 𝜃𝑇 ′
. We observe that [𝑍 ↦→ 𝜃𝑆 ′] 𝜃𝑇 ′ =

𝜃 [𝑍 ↦→ 𝑆 ′]𝑇 ′
and conclude this case.

Case (box). Then 𝑡 = □ 𝑦 Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑦 : 𝑆 ′ ∧𝐶 , and 𝐶 ⊆ dom(Γ, 𝑋 <: 𝑆,Δ). The goal becomes

Γ, 𝜃Δ ⊢ 𝜃 (□ 𝑦) : 𝜃 (□ 𝑆 ′ ∧𝐶). Note that since 𝑦 ≠ 𝑋 , we have 𝜃𝑦 = 𝑦. Proof proceeds by inspecting

the location of 𝑦 in the context.

– When 𝑦 ∈ dom(Γ). By the well-formedness we can show that 𝑋 ∉ fv(𝑆 ′ ∧𝐶). Therefore,
𝜃 (𝑆 ′ ∧𝐶) = 𝑆 ′ ∧𝐶 . We observe that 𝑦 : 𝑆 ′ ∧𝐶 ∈ Γ, 𝜃Δ, and show that Γ, 𝜃Δ ⊢ 𝑦 : 𝑆 ′ ∧𝐶 by (var).

Now this case can be concluded by (box).

– When 𝑦 ∈ dom(Δ). Then we observe that 𝑦 : 𝜃 (𝑆 ′ ∧𝐶) ∈ Γ, 𝜃Δ, and derive that Γ, 𝜃Δ ⊢
𝑦 : 𝜃 (𝑆 ′ ∧𝐶) by (var). This case is concluded by (box).

Case (unbox). Analogous to the previous case.

Case (sub). By IH, Lemma A.59 and (sub).

Case (let). Then 𝑡 = let𝑚 𝑥 = 𝑠 in 𝑢, Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑠 : 𝑇0, Γ, 𝑋 <: 𝑆,Δ, 𝑥 :{} 𝑇0 ⊢ 𝑢 : 𝑇 , and

Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑠 ⊲⊳ 𝑢. By IH we can show that Γ, 𝜃Δ ⊢ 𝜃𝑠 : 𝜃𝑇0, and Γ, 𝜃Δ, 𝑥 :{} 𝜃𝑇0 ⊢ 𝜃𝑢 : 𝜃𝑇 . Since
𝑋 ∉ cv (𝑠) , cv (𝑢) , cs (𝑇0), we can show that 𝜃cv (𝑠) = cv (𝑠), and 𝜃cv (𝑢) = cv (𝑢). By Lemma A.60,

we can show that Γ, 𝜃Δ ⊢ 𝜃𝑠 ⊲⊳ 𝜃𝑢. We can therefore conclude this case by (let).

Case (dvar). Then 𝑡 = var 𝑥 = 𝑦 in 𝑠 , Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑦 : 𝑆 , Γ, 𝑋 <: 𝑆,Δ, 𝑥 :𝐷 Ref[𝑆] ∧ {ref} ⊢ 𝑠 : 𝑇 ,
and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐷 wf. By IH we can show that Γ, 𝜃Δ ⊢ 𝜃𝑦 : 𝜃𝑆 , and Γ, 𝜃Δ, 𝑥 :𝜃𝐷 𝜃 (Ref[𝑆] ∧

{ref}) ⊢ 𝜃𝑠 : 𝜃𝑇 . Also, we can show that Γ, 𝜃Δ ⊢ 𝐷 wf. This case is therefore concluded by (dvar).

Case (read) and (write). By IH and the same rule. □

A.2.7 Soundness Theorems.

Lemma A.62 (Canonical forms: term abstraction). Γ ⊢ 𝑣 : 𝐶 ∀(𝑥 :𝐷 𝑈 )𝑇 implies 𝑣 = 𝜆(𝑥 :𝐷

𝑈 ′)𝑡 for some𝑈 ′
and 𝑡 , such that Γ ⊢ 𝑈 <: 𝑈 ′

and Γ, 𝑥 :𝐷 𝑈 ′ ⊢ 𝑡 : 𝑇 .
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Proof. By induction on the typing derivation.

Case (abs). We conclude immediately from the premise.

Case (sub). Then Γ ⊢ 𝑣 : 𝑇0, and Γ ⊢ 𝑇0 <: 𝐶 ∀(𝑥 :𝐷 𝑈 )𝑇 . By Lemma A.16 and Lemma A.36, we can

show that 𝑇0 = 𝐶0,∀(𝑥 :𝐷 𝑈0)𝑇0, Γ ⊢ 𝑈 <: 𝑈0, and Γ, 𝑥 :𝐷 𝑈0 ⊢ 𝑇0 <: 𝑇 . Invoking IH, we can show

that 𝑣 = 𝜆(𝑥 :𝐷 𝑈 ′)𝑡 such that Γ ⊢ 𝑈0 <: 𝑈 ′
, and Γ, 𝑥 :𝐷 𝑈 ′ ⊢ 𝑡 : 𝑇0. We conclude by the (trans)

and the (sub) rule. □

Lemma A.63 (Canonical forms: type abstraction). Γ ⊢ 𝑣 : 𝐶 ∀[𝑋 <: 𝑆]𝑇 implies 𝑣 = 𝜆[𝑋 <:

𝑆 ′]𝑡 for some 𝑆 ′ and 𝑡 , such that Γ ⊢ 𝑆 <: 𝑆 ′ and Γ, 𝑋 <: 𝑆 ′ ⊢ 𝑡 : 𝑇 .

Proof. Analogous to the proof of Lemma A.62. □

Lemma A.64 (Canonical forms: boxed term). Γ ⊢ 𝑣 : 𝐶 □ 𝑇 implies 𝑣 = □ 𝑥 for some 𝑥 , such

that Γ ⊢ 𝑥 : 𝑇 and cs (𝑇 ) ⊆ dom(Γ).

Proof. Analogous to the proof of Lemma A.62. □

Lemma A.65 (Canonical forms: reader). Γ ⊢ 𝑣 : 𝐶 Rdr[𝑆] implies 𝑣 = reader 𝑥 for some 𝑥 , such

that Γ ⊢ 𝑥 : 𝐶 Ref[𝑆].

Proof. Analogous to the proof of Lemma A.62. □

Lemma A.66 (Store lookup inversion: typing). If (i) ⊢ 𝛾 ∼ Γ (ii) Γ,Δ ⊢ 𝑥 : 𝑆 ∧ 𝐶 , (iii)

𝛾 (val 𝑥) = 𝑣 , then Γ,Δ ⊢ 𝑣 : 𝑆 ∧𝐶′
.

Proof. By induction on the derivation of ⊢ 𝛾 ∼ Γ.
Case (st-empty). Contradictory.

Case (st-val). Then 𝛾 = 𝛾0, val 𝑦 ↦→ 𝑣 , ⊢ 𝛾0 ∼ Γ0, Γ0 ⊢ 𝑣 : 𝑇 , and Γ = Γ0, 𝑦 : 𝑇 . If 𝑥 = 𝑦, then

𝑥 : 𝑇 ∈ Γ,Δ. We have 𝛾 (val 𝑥) = 𝑣 . By inspecting the typing derivation Γ,Δ ⊢ 𝑥 : 𝑆 ∧𝐶 , we can show

that Γ,Δ ⊢ {𝑥} <: 𝐶 and Γ,Δ ⊢ 𝑆 ′ <: 𝑆 where 𝑇 = 𝑆 ′ ∧𝐶′
for some 𝐶′

. By weakening we show that

Γ,Δ ⊢ 𝑣 : 𝑆 ′ ∧𝐶′
. Then, we invoke the (sub) rule and conclude. Otherwise, we have 𝑥 ≠ 𝑦. Finally by

the IH we conclude this case.

Case (st-var). Then 𝛾 = 𝛾0, var 𝑦 = 𝑣 , ⊢ 𝛾0 ∼ Γ0, Γ0 ⊢ 𝑣 : 𝑆 , and Γ = Γ0, 𝑦 :dom(Γ0 ) Ref[𝑆] ∧ {ref}. If
𝑥 = 𝑦, it contradicts with 𝛾 (val 𝑥) = 𝑣 . Otherwise, we have 𝑥 ≠ 𝑦, we conclude this case by the IH.

Case (st-set). By IH. □

Lemma A.67 (Store lookup inversion: term abstraction). If (i) ⊢ 𝛾 ; 𝑒 ∼ Γ;Δ; (ii) Γ,Δ ⊢
𝑥 : 𝐶 ∀(𝑧 :𝐷 𝑇 )𝑈 and (iii) 𝛾 (val 𝑥) = 𝜆(𝑧 :𝐷 𝑇 ′)𝑡 , then Γ,Δ ⊢ 𝑇 <: 𝑇 ′

and Γ,Δ, 𝑧 : 𝑇 ′ ⊢ 𝑡 : 𝑈 .

Proof. We first invoke Lemma A.66 to show that Γ,Δ ⊢ 𝜆(𝑧 :𝐷 𝑇 ′)𝑡 : ∀(𝑧 :𝐷 𝑇 )𝑈 ∧𝐶′
. By Lemma

A.62, we can show that Γ,Δ ⊢ 𝑇 <: 𝑇 ′
, and Γ,Δ, 𝑧 :𝐷 𝑇 ′ ⊢ 𝑡 : 𝑈 . We therefore conclude. □

Lemma A.68 (Store lookup inversion: type abstraction). If (i) ⊢ 𝛾 ; 𝑒 ∼ Γ;Δ; (ii) Γ,Δ ⊢
𝑥 : 𝐶 ∀[𝑋 <: 𝑆]𝑈 and (iii) 𝛾 (val 𝑥) = 𝜆[𝑋 <: 𝑆 ′]𝑡 , then Γ,Δ ⊢ 𝑆 <: 𝑆 ′ and Γ,Δ, 𝑋 <: 𝑆 ′ ⊢ 𝑡 : 𝑈 .

Proof. Analogous to the proof of Lemma A.67. □

Lemma A.69 (Store lookup inversion: boxed term). If (i) ⊢ 𝛾 ; 𝑒 ∼ Γ;Δ; (ii) Γ,Δ ⊢ 𝑥 : 𝐶′ □ 𝑆 ∧𝐶

and (iii) 𝛾 (val 𝑥) = □ 𝑦, then Γ,Δ ⊢ 𝑦 : 𝑆 ∧𝐶 .

Proof. Analogous to the proof of Lemma A.67. □

Lemma A.70 (Store lookup inversion: reader). If (i) ⊢ 𝛾 ; 𝑒 ∼ Γ;Δ; (ii) Γ,Δ ⊢ 𝑥 : 𝐶 Rdr[𝑆] and
(iii) 𝛾 (val 𝑥) = reader 𝑦, then Γ,Δ ⊢ 𝑦 : 𝐶′ Ref[𝑆].

Proof. Analogous to the proof of Lemma A.67. □
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Lemma A.71 (Value typing with strict capture set). Γ ⊢ 𝑣 : 𝑇 implies ∃𝑇 ′
such that Γ ⊢ 𝑣 : 𝑇 ′

and cs (𝑇 ′) = cv (𝑣).

Proof. By induction on the typing derivation. Only the following cases are applicable.

Case (abs). Then 𝑣 = 𝜆(𝑥 :𝐷 𝑈 )𝑡 , Γ, 𝑥 :𝐷 𝑈 ⊢ 𝑡 : 𝑇 ′
, and 𝑇 = cv (𝑡) /𝑥 ∀(𝑧 :𝐷 𝑈 )𝑇 ′

. Then

cs (𝑇 ) = cv (𝑣) = cv (𝑡) /𝑥 . This case is therefore concluded.
Case (tabs) and (box). Analogous to (abs).

Case (sub). By IH. □

Lemma A.72 (Value typing inversion: capture set). Γ ⊢ 𝑣 : 𝑇 implies Γ ⊢ cv (𝑣) <: cs (𝑇 ).

Proof. Analogous to the proof of Lemma A.71. □

Theorem 4.3 (Preservation). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑡 : 𝑇 , and (iii) 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′, then ∃Γ′
such that (i) ⊢ 𝛾 ′ ∼ Γ′ and (ii) Γ′ ⊢ 𝑡 ′ : 𝑇 .

Proof. Proceed by case analysis on the reduction derivation.

Case (apply). Then 𝑡 = 𝑒 [ 𝑥 𝑦 ], 𝛾 (val 𝑥) = 𝜆(𝑧 :𝐷 𝑈 )𝑠 , 𝑡 ′ = [𝑧 ↦→ 𝑦] 𝑠 , and 𝛾 ′ = 𝛾 . By Lemma 4.5,

∃Δ, 𝑄 such that Γ ⊢ 𝑒 ∼ Δ : [𝑄 @ 𝑥 𝑦] ⇒ 𝑇 and Γ,Δ ⊢ 𝑥 𝑦 : 𝑄 ′
, where 𝑄 = [𝑧 ↦→ 𝑦]𝑄 ′

. Now, by

induction on this typing derivation, we prove that (i) Γ,Δ ⊢ 𝑥 : 𝐶 ∀(𝑧 :𝐷 𝑈 ′)𝑄 ′
(ii) Γ,Δ ⊢ 𝑦 :𝐷 ′ 𝑈 ′

,

and (iii) Γ,Δ ⊢ 𝐷 ⊲⊳ 𝑦. For the (app) case, it is conclude immediately from the preconditions. For

the (sub) case, it can be concluded from IH and (sub). Other cases are not applicable. By Lemma

A.67, we can show that Γ,Δ ⊢ 𝑈 ′ <: 𝑈 , and Γ,Δ, 𝑧 :𝐷 𝑈 ⊢ 𝑠 : 𝑄 ′
. We invoke Lemma A.55 to show

that Γ,Δ ⊢ [𝑧 ↦→ 𝑦] 𝑠 : [𝑧 ↦→ 𝑦]𝑄 ′
. Since 𝛾 (val 𝑥) = 𝜆(𝑧 :𝐷 𝑈 )𝑠 and ⊢ 𝛾 ∼ Γ, we have 𝑥 : 𝑇𝑥 ∈ Γ

for some 𝑇𝑥 where cs (𝑇𝑥 ) = cv (𝑠) /𝑧. We can show that cv ( [𝑧 ↦→ 𝑦] 𝑠) ⊆ cv (𝑥 𝑦) \ {𝑥} ∪ cs (𝑇𝑥 ).
Now we invoke Lemma A.28 to show that Γ;Δ ⊢ [𝑧 ↦→ 𝑦] 𝑠 ⊳ : 𝑥 𝑦. By evaluation context reification,

we show that Γ ⊢ 𝑒 [ [𝑧 ↦→ 𝑦] 𝑠 ] : 𝑇 and conclude this case.

Case (tapply). As above, but making use of Corollary A.26.

Case (open). As above, but making use of Lemma A.25.

Case (get). As above.

Case (lift-let). Then 𝑡 = 𝑒 [ let𝑚 𝑥 = 𝑣 in 𝑠 ], 𝛾 ′ = 𝛾, val𝑚 𝑥 ↦→ 𝑣 , 𝑡 ′ = 𝑒 [ 𝑠 ], and fv(𝑣) ∪ 𝐷 ⊆
dom(𝛾). Nowwe invoke Lemma 4.5 to show that∃Δ, 𝑄 such that Γ ⊢ 𝑒 ∼ Δ : [𝑄 @ let𝑚 𝑥 = 𝑣 in 𝑠] ⇒
𝑇 , and Γ,Δ ⊢ let𝑚 𝑥 = 𝑣 in 𝑠 : 𝑄 . By inspecting this typing derivation, we can show that Γ,Δ ⊢ 𝑣 : 𝑈 ,

Γ,Δ, 𝑥 :{} 𝑈 ⊢ 𝑠 : 𝑄 , and Γ,Δ ⊢ 𝑣 ⊲⊳ 𝑠 if 𝑚 = par. By Lemma A.71, narrowing, and Lemma

A.22, we can show that ∃𝑈 ′
such that cs (𝑈 ′) = cv (𝑣), Γ,Δ ⊢ 𝑣 : 𝑈 ′

, and Γ,Δ, 𝑥 :𝐷 𝑈 ′ ⊢ 𝑠 : 𝑄 .

Set Γ′ = Γ, 𝑥 :𝐷 𝑈 ′
. We can show that ⊢ 𝛾 ′ ∼ Γ′ by (st-val). In the next, we show that

Γ,Δ, 𝑥 :𝐷 𝑈 ′ ⊢ cv (𝑠) <: cv (let𝐷 𝑥 = 𝑣 in 𝑠). If 𝑥 ∉ cv (𝑠), we have cv (let𝐷 𝑥 = 𝑣 in 𝑠) = cv (𝑠) =
cv (𝑠) \ {𝑥}. And the sub-goal is proven by the reflexivity of subcapturing. Otherwise, if 𝑥 ∈ cv (𝑠),
we have cv (let𝐷 𝑥 = 𝑣 in 𝑠) = cv (𝑠) \ {𝑥} ∪ cv (𝑣), and cv (𝑠) ⊆ cv (𝑠) \ {𝑥} ∪ {𝑥}. We can

show that Γ,Δ ⊢ {𝑥} <: cv (𝑣). By the reflexivity of subcapturing and Corollary A.6, we can

prove the goal. Since cv (𝑣) ⊆ dom(𝛾), we can show that Γ, 𝑥 :{} 𝑈 ′
is well-formed. There-

fore by permutation we have Γ, 𝑥 :{} 𝑈 ′,Δ ⊢ cv (𝑠) <: cv (let𝐷 𝑥 = 𝑣 in 𝑠). Now we invoke

Lemma A.25 to show that Γ, 𝑥 :{} 𝑈
′
;Δ ⊢ 𝑠 ⊳ : let𝐷 𝑥 = 𝑣 in 𝑠 . By Lemma A.44, we can show

that Γ, 𝑥 :{} 𝑈
′ ⊢ 𝑒 ∼ Δ : [𝑄 @ let𝐷 𝑥 = 𝑣 in 𝑠] ⇒ 𝑇 . Again by permutation, we show that

Γ, 𝑥 :{} 𝑈 ′,Δ ⊢ 𝑠 : 𝑄 . We can therefore invoke the reification to show that Γ′ ⊢ 𝑒 [ 𝑠 ] : 𝑇 and

conclude this case.

Case (rename). Then 𝑡 = 𝑒 [ let𝑚 𝑥 = 𝑦 in 𝑠 ], 𝑡 ′ = 𝑒 [ [𝑥 ↦→ 𝑦] 𝑠 ], and𝛾 ′ = 𝛾 . We start by invoking

Lemma 4.5 to show that ∃Δ, 𝑄 such that Γ ⊢ 𝑒 ∼ Δ : [𝑄 @ let𝑚 𝑥 = 𝑦 in 𝑠] ⇒ 𝑇 and Γ,Δ ⊢ let𝑚 𝑥 =

𝑦 in 𝑠 : 𝑄 . By inspecting this typing derivation, we can show that Γ,Δ ⊢ 𝑦 : 𝑈 for some𝑈 , Γ,Δ, 𝑥 :𝑚

𝑈 ⊢ 𝑠 : 𝑄 , and Γ,Δ ⊢ 𝑦 ⊲⊳ 𝑠 . Nowwe invoke Lemma A.55 to show that Γ,Δ ⊢ [𝑥 ↦→ 𝑦] 𝑠 : [𝑥 ↦→ 𝑦]𝑄 .
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Since 𝑥 ∉ fv(𝑄), we have [𝑥 ↦→ 𝑦]𝑄 = 𝑄 . Note that we have cv ( [𝑥 ↦→ 𝑦] 𝑠) = cv (let𝐷 𝑥 = 𝑦 in 𝑠).
By Corollary A.26, we can show that Γ;Δ ⊢ [𝑥 ↦→ 𝑦] 𝑠 ⊳ : let𝐷 𝑥 = 𝑦 in 𝑠 . Now we invoke the

reification of evaluation context to show that Γ ⊢ 𝑒 [ [𝑥 ↦→ 𝑦] 𝑠 ] : 𝑇 and conclude this case.

Case (lift-var). Then 𝑡 = 𝑒 [ var 𝑥 = 𝑦 in 𝑠 ], 𝛾 (val 𝑦) = 𝑣 , 𝛾 ′ = 𝛾, var 𝑥 = 𝑣 , and 𝑡 ′ = 𝑒 [ 𝑠 ]. By
Lemma A.49, we show that Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} ⊢ 𝑒 [ 𝑠 ] : 𝑇 . We can show that Γ ⊢ 𝛾 ′ ∼
Γ, 𝑥 :dom(Γ) Ref[𝑆] ∧ {ref} by the (st-var) rule. We can therefore conclude this case.

Case (lift-set). Then 𝑡 = 𝑒 [ 𝑥 := 𝑦 ],𝛾 (val𝑦) = 𝑣 , 𝑡 ′ = 𝑒 [ 𝑣 ], and𝛾 ′ = 𝛾, set 𝑥 = 𝑣 . Nowwe invoke

Lemma 4.5 to show that ∃Δ, 𝑄 such that Γ ⊢ 𝑒 ∼ Δ : [𝑄 @ 𝑥 := 𝑦] ⇒ 𝑇 , and Γ,Δ ⊢ 𝑥 := 𝑦 : 𝑄 . By

induction on this typing derivation, we can show that ∃𝑆 such that Γ,Δ ⊢ 𝑥 : 𝐶 Ref[𝑆], Γ,Δ ⊢ 𝑦 : 𝑆 ,
and Γ,Δ ⊢ 𝑆 <: 𝑄 . By Lemma A.66, we can show that Γ,Δ ⊢ 𝑣 : 𝑆 . By Lemma A.72, we have

Γ,Δ ⊢ cv (𝑣) <: ∅. Therefore we have Γ,Δ ⊢ cv (𝑣) <: cv (𝑥 := 𝑦). Now we invoke Lemma A.25 to

show that Γ;Δ ⊢ 𝑣 ⊳ : 𝑥 := 𝑦. Now we reify the evaluation context to show that Γ ⊢ 𝑒 [ 𝑣 ] : 𝑇 . The
remaining to be shown is that ⊢ 𝛾 ′ ∼ Γ. By inverting the typing judgment Γ,Δ ⊢ 𝑥 : Ref[𝑆] ∧𝐶 and

considering that 𝑥 ∈ dom(Γ), we can show that 𝑥 :𝐷 Ref[𝑆] ∧𝐶′ ∈ Γ. By induction on ⊢ 𝛾 ∼ Γ, we
can show that Γ ⊢ 𝑣 : 𝑆 by the fact that 𝛾 (val 𝑦) = 𝑣 and weakening. Now ⊢ 𝛾 ′ ∼ Γ can be derived

by (st-set). This case is therefore concluded. □

Lemma A.73 (Evaluation context trampolining). Consider a reduction derivation 𝛾 | 𝑡 ↦−→
𝛾 ′ | 𝑡 ′. We have 𝛾 | 𝑒 [ 𝑡 ] ↦−→ 𝛾 ′ | 𝑒 [ 𝑡 ′ ] for any 𝑒 .

Proof. By straightforward case analysis on the reduction derivation. No rule makes use of the

evaluation context. All cases are analogous, thus we present only the (apply) case.

Case (apply). Then 𝑡 = 𝑒′ [ 𝑥 𝑦 ], 𝛾 (val 𝑥) = 𝜆(𝑧 :𝐷 𝑇 )𝑠 , 𝛾 ′ = 𝛾 , and 𝑡 ′ = 𝑒′ [ [𝑧 ↦→ 𝑦] 𝑠 ]. None of
these preconditions depends on the evaluation context 𝑒 . We therefore conclude this case by the

same rule. □

Theorem A.74 (Progress). If (i) ⊢ 𝛾 ∼ Γ, (ii) Γ ⊢ 𝑡 : 𝑇 , then either 𝑡 is an answer, or ∃𝛾 ′, 𝑡 ′ such
that 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′.

Proof. By induction on the typing derivation.

Case (var). Then 𝑡 = 𝑥 . We can conclude this case because 𝑥 is an answer.

Case (sub). We directly apply the IH and conclude.

Case (abs), (tabs), (box) and (reader). We conclude these cases because 𝑡 is a value.

Case (app). Then 𝑡 = 𝑥 𝑦, Γ ⊢ 𝑥 : 𝐶 ∀(𝑧 :𝐷 𝑈 )𝑇 ′
where 𝑇 = [𝑧 ↦→ 𝑦]𝑇 ′

, and Γ ⊢ 𝑦 : 𝑈 . By

Lemma A.40, we can show that there exists 𝑣 such that 𝛾 (val 𝑥) = 𝑣 . By Lemma A.66, we have

Γ ⊢ 𝑣 : 𝐶 ∀(𝑧 :𝐷 𝑈 )𝑇 ′
. By Lemma A.62, we have 𝑣 = 𝜆(𝑧 :𝐷 𝑈 ′)𝑠 for some 𝑈 ′

and 𝑠 . Now we

conclude by (apply).

Case (tapp). As above.

Case (unbox). Then 𝑡 = 𝐶 � 𝑥 , Γ ⊢ 𝑥 : □ (𝑆 ∧𝐶), and𝐶 ⊆ dom(Γ). By Lemma A.39, we can show

that ∃𝑣 such that 𝛾 (val 𝑥) = 𝑣 . By Lemma A.66, we can show that Γ ⊢ 𝑣 : □ (𝑆 ∧𝐶). By Lemma A.64,

we have 𝑧 = □ 𝑦 for some 𝑦. Now we conclude by (open).

Case (let). Then 𝑡 = let𝑚 𝑥 = 𝑠 in 𝑢, Γ ⊢ 𝑠 : 𝑇0 for some 𝑇0, and Γ, 𝑥 :{} 𝑇0 ⊢ 𝑠 : 𝑇 . Proceed by a

case analysis on the kind of 𝑠 .

– If 𝑠 is a value, we can show that fv(𝑠) ⊆ dom(Γ) = dom(𝛾). This allows for the application
of the (lift-let) rule.

– If 𝑠 is a variable, we can conclude by (rename).

– Otherwise 𝑠 is a term. By IH we can show that 𝛾 | 𝑠 ↦−→ 𝛾 ′ | 𝑠′ for some 𝛾 ′ and 𝑠′. By
Lemma A.73, we can derive that 𝛾 | let𝐷 𝑥 = 𝑠 in 𝑢 ↦−→ 𝛾 ′ | let𝐷 𝑥 = 𝑠′ in 𝑢 and conclude

this case.
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Case (dvar). Then 𝑡 = var 𝑥 = 𝑦 in 𝑠 , Γ ⊢ 𝑦 : 𝑆 , and Γ, 𝑥 :𝐷 Ref[𝑆] ∧ {ref} ⊢ 𝑠 : 𝑇 . Using Lemma

A.39, we can show that 𝛾 (val 𝑦) = 𝑣 for some 𝑣 . This case is therefore concluded by (lift-var).

Case (read). Then 𝑡 = read𝑥 , and Γ ⊢ 𝑥 : Rdr[𝑆] ∧ 𝐶 . By Lemma A.42, we can show that

∃𝑦.𝛾 (val 𝑥) = reader 𝑦. Now we invoke Lemma A.65 to show that Γ ⊢ 𝑦 : Ref[𝑆] ∧𝐶 . By using

Lemma A.38 we can show that ∃𝑣 such that 𝛾 (var 𝑦) = 𝑣 . Now we conclude this case by (get).

Case (write). Then 𝑡 = 𝑥 := 𝑦, Γ ⊢ 𝑥 : Ref[𝑆] ∧𝐶 , and Γ ⊢ 𝑦 : 𝑆 . By Lemma A.39, we can show that

∃𝑣 such that 𝛾 (val 𝑦) = 𝑣 . Now we conclude this case by (lift-set). □

A.3 Confluence
A.3.1 Properties of Evaluation Context Focuses. A focus is one way to split a term 𝑡 into an

evaluation context 𝑒 and the focused term 𝑠 such that 𝑡 = 𝑒 [ 𝑠 ]. When evaluating a let-binding,

either the bindee or the continuation get reduced, resulting in multiple possible focuses for the

same term. Each focus is determined by the part we choose to reduce for each let expression.

Definition A.3 (Subfocus). We say 𝑡 = 𝑒1 [ 𝑡1 ] is a subfocus of 𝑡 = 𝑒2 [ 𝑡2 ], written 𝑒1 [ 𝑡1 ] ⪯
𝑒2 [ 𝑡2 ], iff ∃𝑒 such that 𝑡1 = 𝑒 [ 𝑡2 ] and 𝑒2 = 𝑒1 [ 𝑒 ].

Definition A.4 (Branched focus). We say 𝑡 = 𝑒1 [ 𝑡1 ] and 𝑡 = 𝑒2 [ 𝑡2 ] are a pair of branched
focuses, written 𝑒1 [ 𝑡1 ] ↔ 𝑒2 [ 𝑡2 ], iff ∃𝑒, 𝐷, 𝑒′

1
, 𝑒′

2
such that 𝑡 = 𝑒

[
let𝐷 𝑥 = 𝑒′

1
[ 𝑡1 ] in 𝑒′

2
[ 𝑡2 ]

]
,

𝑒1 = 𝑒
[
let𝐷 𝑥 = 𝑒′

1
[ ] in 𝑒′

2
[ 𝑡2 ]

]
, and 𝑒2 = 𝑒

[
let𝐷 𝑥 = 𝑒′

1
[ 𝑡1 ] in 𝑒′

2
[ ]

]
.

Lemma A.75 (Extending subfocus). Given two focuses of the same term 𝑡 = 𝑒1 [ 𝑠1 ] = 𝑒2 [ 𝑠2 ],
we can show that for any 𝑒′, 𝑒1 [ 𝑠1 ] ⪯ 𝑒2 [ 𝑠2 ] implies 𝑒′ [ 𝑒1 [ 𝑠1 ] ] ⪯ 𝑒′ [ 𝑒 [ 2 ] ].

Proof. Then for some 𝑒 , we have 𝑠1 = 𝑒 [ 𝑠2 ], and 𝑒2 = 𝑒1 [ 𝑒 ] First of all, we can show that

𝑒 [ 𝑡 ] = 𝑒 [ 𝑒1 [ 𝑠1 ] ] = 𝑒 [ 𝑒2 [ 𝑠2 ] ], which means that the extended focuses are still for the same

term. 𝑠1 = 𝑒 [ 𝑠2 ] is unaffected by the extension. And 𝑒′ [ 𝑒2 ] = 𝑒′ [ 𝑒1 [ 𝑒 ] ] is trivial. □

Lemma A.76 (Extending branched focus). Given two focuses of the same term 𝑡 = 𝑒1 [ 𝑠1 ] =
𝑒2 [ 𝑠2 ], for any 𝑒′ we can show that 𝑒1 [ 𝑠1 ] ↔ 𝑒2 [ 𝑠2 ] implies 𝑒′ [ 𝑒1 [ 𝑠1 ] ] ↔ 𝑒′ [ 𝑒2 [ 𝑠2 ] ].

Proof. Analogous to proof of Lemma A.75. □

Lemma A.77 (Different focuses of the same term). Given two focuses 𝑒1 [ 𝑠1 ] and 𝑒2 [ 𝑠2 ] of
the same term 𝑡 , we can show that one of the followings holds:

(i) 𝑒1 [ 𝑠1 ] ⪯ 𝑒2 [ 𝑠2 ];
(ii) 𝑒2 [ 𝑠2 ] ⪯ 𝑒1 [ 𝑠1 ];
(iii) 𝑒1 [ 𝑠1 ] ↔ 𝑒2 [ 𝑠2 ];
(iv) 𝑒2 [ 𝑠2 ] ↔ 𝑒1 [ 𝑠1 ].

Proof. We begin by induction on the first evaluation context 𝑒1.

Case 𝑒1 = []. Then we can demonstrate that 𝑒1 [ 𝑠1 ] ⪯ 𝑒2 [ 𝑐2 ] by setting 𝑒 = 𝑒2.

Case 𝑒1 = let𝐷 𝑥 = 𝑒′
1
in 𝑢. We proceed the proof by induction on 𝑒2.

– Case 𝑒2 = []. Then we conclude by showing that 𝑒2 [ 𝑠2 ] ⪯ 𝑒1 [ 𝑠1 ].
– Case 𝑒2 = let𝑚 𝑥 = 𝑒′

2
in 𝑢. We can invoke IH and use Lemma A.75 and Lemma A.76 to

conclude this case.

– Case 𝑒2 = let𝑚 𝑥 = 𝑢′ in 𝑒′
2
. Then we can show that 𝑢′ = 𝑒′

1
[ 𝑠1 ] and 𝑢 = 𝑒′

2
[ 𝑠2 ]. We can

therefore conclude this case immediately by showing that 𝑒1 [ 𝑠1 ] ↔ 𝑒2 [ 𝑠2 ].
Case 𝑒1 = let𝑚 𝑥 = 𝑢 in 𝑒′

1
. Analogous to the previous case. They are symmetric. □



136:48 Yichen Xu, Aleksander Boruch-Gruszecki, and Martin Odersky

A.3.2 Confluence Theorems. Now we demonstrate that the reduction of the calculus is confluent.

This means that though we can arbitrarily interleave the reduction of both sides of the let bindings,

the result of the program will always be the same, which implies the absence of data races and thus

achieves the safe concurrency guarantee.

First of all, in different reduction paths, the store bindings can be lifted to the store in different

orders. For example, we may introduce variables in different orders, or have the set-bindings

arranged in different ways. Regardless of these permutations, the respective stores should possess

the same interpretations. Thus, to carry out the proof we have consider the equivalence between

the stores up to the permutations. To this end, we define the equivalence between two evaluation

stores up to permutation.

Definition A.5 (Eqivalent stores). We say two stores 𝛾1 and 𝛾2 are equivalent, written 𝛾1 � 𝛾2,

iff

(1) 𝛾2 is permuted from 𝛾1;

(2) ∀𝑥 ∈ bvar (𝛾1), 𝛾1 (var 𝑥) = 𝛾2 (var 𝑥).

Definition A.6 (Eqivalent configurations). We say two configurations 𝛾1 | 𝑡1 and 𝛾2 | 𝑡2 are
equivalent iff 𝛾1 � 𝛾2 and 𝑡1 = 𝑡2.

Fact A.78 (Store eqivalence is an eqivalence relation). The equivalence between stores

𝛾1 � 𝛾2 is an equivalence relation: it is reflexive, symmetric and transitive.

Lemma A.79 (Value lookup in eqivalent stores). If 𝛾1 � 𝛾2 then 𝛾1 (val 𝑥) = 𝛾2 (val 𝑥).

Proof. By the definition of store equivalence and the lookup function. The result of the lookup

function does not rely on the order of bindings. □

Lemma A.80 (Variable lookup in eqivalent stores). If 𝛾1 � 𝛾2, then 𝛾1 (var 𝑥) = 𝛾2 (var 𝑥).

Proof. This follows directly from the definition of store equivalence. □

Lemma A.81 (Typing implies separation). Given non-value terms 𝑠1 and 𝑠2, Γ ⊢ letpar 𝑥 =

𝑒1 [ 𝑠1 ] in 𝑒2 [ 𝑠2 ] : 𝑇 implies Γ ⊢ 𝑠1 ⊲⊳ 𝑠2.

Proof. By induction on the typing derivation.

Case (let). Then we have Γ ⊢ 𝑒1 [ 𝑠1 ] ⊲⊳ 𝑒2 [ 𝑠2 ]. Since neither 𝑠1 nor 𝑠2 is a value, by straight-

forward induction on 𝑒1 and 𝑒2 we can show that cv (𝑠1) ∩ dom(Γ) ⊆ cv (𝑒1 [ 𝑠1 ]) ∩ dom(Γ) and
cv (𝑠2) ∩ dom(Γ) ⊆ cv (𝑒2 [ 𝑠2 ]) ∩ dom(Γ). Now we can conclude by applying Corollary A.23.

Case (sub). By the IH. □

Lemma A.82 (Reference root is separated only from empty captures). If Γ ⊢ 𝐶1 ⊲⊳ 𝐶2,

then (i) ref ∈ 𝐶1 implies Γ ⊢ 𝐶2 <: {}, and (ii) ref ∈ 𝐶2 implies Γ ⊢ 𝐶1 <: {}.

Proof. By induction on the derivation.

Case (ni-symm). By swapping the two conclusions in the IH.

Case (ni-set). Then Γ ⊢ 𝑥 ⊲⊳ 𝐶2

𝑥∈𝐶1

. By applying the IH repeatedly, we can show that for any

𝑥 ∈ 𝐶1, we have (1) ref ∈ {𝑥} implies Γ ⊢ 𝐶2 <: {}, and (2) ref ∈ 𝐶2 implies Γ ⊢ {𝑥} <: {}. First, if
ref ∈ 𝐶1, then exists 𝑥 ∈ 𝐶1 such that ref ∈ {𝑥}, which implies that Γ ⊢ 𝐶2 <: {} by the IH. Besides,
if 𝑥 ∈ 𝐶2, we can show that Γ ⊢ {𝑥} <: {} for any 𝑥 ∈ 𝐶1. By invoking Lemma A.4 repeatedly we

can show that Γ ⊢ 𝐶1 <: {}. We can therefore conclude this case.

Case (ni-degree). Then 𝐶1 = {𝑥} and 𝐶2 = {𝑦}. We can show that 𝑥 ≠ ref and 𝑦 ≠ ref by
definition, and thus conclude this case.
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Case (ni-var). Then 𝐶1 = {𝑥}, 𝐶2 = {𝑦}, 𝑥 : 𝑇 ∈ Γ, and Γ ⊢ cs (𝑇 ) ⊲⊳ 𝑦. Firstly, we have 𝑥 ≠ ref
and therefore ref ∉ {𝑥}. Secondly, if ∗ ∈ {𝑦} then by the IH we can show that Γ ⊢ cs (𝑇 ) <: {}.
Now we conclude this case using the (sc-var) rule.

Case (ni-reader). Then 𝐶1 = {𝑥}, 𝐶2 = {𝑦}, Γ ⊢ {𝑥} <: {rdr}, and Γ ⊢ {𝑦} <: {rdr}. By
straightforward induction on Γ ⊢ {𝑥} <: {rdr} we can show that ref ∉ {𝑥} and similarly for

ref ∉ {𝑦}. We can therefore conclude this case. □

Lemma A.83 (A variable reference interferes with itself). Given any 𝑥 :𝐷 𝑆 ∧ {ref} ∈ Γ,
Γ ⊢ {𝑥} ⊲⊳ {𝑥} is impossible.

Proof. By induction on the derivation of Γ ⊢ {𝑥} ⊲⊳ {𝑥}, wherein we derive contradiction for

each case.

Case (ni-symm) and (ni-set). By the IH.

Case (ni-degree). Then 𝑥 ∈ 𝐷 . This is contradictory with the well-formedness.

Case (ni-var). Then Γ ⊢ {ref} ⊲⊳ 𝑥 . By Lemma A.82 we can show that Γ ⊢ {𝑥} <: {}. By
straightforward induction on it we can derive the contradiction.

Case (ni-reader). Then Γ ⊢ {𝑥} <: {rdr}. By straightforward induction on this derivation, we

can derive the contradiction too. □

Lemma A.84 (A variable reference interferes with its reader). In an inert environment Γ,
given any 𝑥 :𝐷𝑥

Rdr[𝑆] ∧ {𝑦} ∈ Γ, and 𝑦 :𝐷𝑦
𝑆 ′ ∧ {ref} ∈ Γ, Γ ⊢ {𝑥} ⊲⊳ {𝑦} is impossible.

Proof. By induction on the derivation of Γ ⊢ {𝑥} ⊲⊳ {𝑦}.
Case (ni-symm) and (ni-set). By the IH.

Case (ni-degree). Then 𝑥 ∈ 𝐷𝑦 or 𝑦 ∈ 𝐷𝑥 , where 𝐷𝑥 and 𝐷𝑦 denotes the separation degree of

𝑥 and 𝑦 in the environment respectively. Since the type of 𝑥 mentions 𝑦, by the wellformedness

of the environment, 𝑥 must be defined after 𝑦. Therefore we have 𝑥 ∉ 𝐷𝑦 . If 𝑦 ∈ 𝐷𝑥 , then by the

inertness we can show that Γ ⊢ {𝑦} ⊲⊳ {𝑦}. Now we derive the contradiction via Lemma A.83.

Case (ni-var). Then either Γ ⊢ {ref} ⊲⊳ {𝑥}, or Γ ⊢ {𝑦} ⊲⊳ {𝑦}. In the first case we can show

that Γ ⊢ {𝑥} <: {} by Lemma A.82, from which we can derive the contradiction. In the second case,

we invoke Lemma A.83 to derive the contradiction.

Case (ni-reader). Then we have Γ ⊢ {𝑦} <: {rdr}. By induction on the derivation of it, we can

show contradiction in each case. □

Corollary A.85. If (i) Γ ⊢ {𝑥} ⊲⊳ {𝑦}, (ii) 𝑥 : 𝑆1
∧ {ref} ∈ Γ and (iii) 𝑦 : 𝑆2

∧ {ref} ∈ Γ, then we

have 𝑥 ≠ 𝑦.

Corollary A.86. If (i) Γ ⊢ {𝑥} ⊲⊳ {𝑦}, (ii) 𝑥 : Rdr[𝑆1] ∧ {𝑧} ∈ Γ and (iii) 𝑦 : 𝑆2
∧ {ref} ∈ Γ, then

𝑧 ≠ 𝑦.

Theorem 4.8 (Diamond property of reduction). Given two equivalent configurations 𝛾1 | 𝑡 ≡
𝛾2 | 𝑡 , if (1) 𝛾1 ⊢ 𝑡 and 𝛾2 ⊢ 𝑡 ; (2) 𝛾1 | 𝑡 ↦−→ 𝛾 ′

1
| 𝑡1; and (3) 𝛾2 | 𝑡 ↦−→ 𝛾 ′

2
| 𝑡2, then either 𝑡1 = 𝑡2, or

there exists 𝛾 ′′
1
, 𝑡 ′, 𝛾 ′′

2
such that (1) 𝛾 ′

1
| 𝑡1 ↦−→ 𝛾 ′′

1
| 𝑡 ′, (2) 𝛾 ′

2
| 𝑡2 ↦−→ 𝛾 ′′

2
| 𝑡 ′, and (3) 𝛾 ′′

1
| 𝑡 ′ ≡ 𝛾 ′′

2
| 𝑡 ′.

Proof. Begin with a case analysis on the derivation of 𝛾1 | 𝑡 ↦−→ 𝛾 ′
1
| 𝑡1.

Case (apply), (tapply) and (open). Proceed by a case analysis on the derivation of𝛾2 | 𝑡 ↦−→ 𝛾 ′
2
| 𝑡2.

– Case (apply), (tapply), (open) and (get). We only present the proof when both derivations

are derived by the (apply) case, and all other possibilities follow analogously. Firstly, from

the preconditions we know that 𝑡 = 𝑒1 [ 𝑥1 𝑦1 ] for some 𝑒1, 𝑥1, 𝑦1, 𝛾1 (val 𝑥1) = 𝜆(𝑧 : 𝑇1)𝑠1,
and 𝑡 ′

1
= 𝑒1 [ [𝑧 ↦→ 𝑦1] 𝑠1 ]. Also, we have 𝑡 = 𝑒2 [ 𝑥2 𝑦2 ] for some 𝑒2, 𝑥2, 𝑦2, 𝛾2 (val 𝑥2) = 𝜆(𝑧 :

𝑇2)𝑠2, and 𝑡 ′2 = 𝑒2 [ [𝑧 ↦→ 𝑦2] 𝑠2 ]. By invoking Lemma A.77, we can show that either 𝑒1 = 𝑒2
and 𝑥1 𝑦1 = 𝑥2 𝑦2, or 𝑒1 [ 𝑥1 𝑦1 ] ↔ 𝑒2 [ 𝑥2 𝑦2 ], or 𝑒2 [ 𝑥2 𝑦2 ] ↔ 𝑒1 [ 𝑥1 𝑦1 ].
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– When 𝑒1 = 𝑒2, 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2.

– When 𝑒1 [ 𝑥1 𝑦1 ] ↔ 𝑒2 [ 𝑥2 𝑦2 ]. Then 𝑡 = 𝑒 [ let𝐷 𝑥 = 𝑒1 [ 𝑥1 𝑦1 ] in 𝑒2 [ 𝑥2 𝑦2 ] ]. There-
fore, we have 𝑡1 = 𝑒 [ let𝐷 𝑥 = 𝑒1 [ [𝑧 ↦→ 𝑦1] 𝑠1 ] in 𝑒2 [ 𝑥2 𝑦2 ] ]. We let 𝑡 ′ = 𝑒 [ let𝐷 𝑥 =

𝑒1 [ [𝑧 ↦→ 𝑦1] 𝑠1 ] in 𝑒2 [ 𝑒2 [ [𝑧 ↦→ 𝑦2] 𝑠2 ] ] ], and can derive that 𝛾1 | 𝑡1 ↦−→ 𝛾1 | 𝑡 ′.
Similarly, we can show that 𝛾2 | 𝑡2 ↦−→ 𝛾2 | 𝑡 ′, and thus conclude by the fact that

𝛾1 � 𝛾2.

– When 𝑒2 [ 𝑥2 𝑦2 ] ↔ 𝑒1 [ 𝑥1 𝑦1 ]. Analogous to the previous case.

– Case (lift-let). We only present the proof of the (apply) case, and other cases follows

analogously. Then 𝑡 = 𝑒1 [ 𝑥1 𝑦1 ] for some 𝑒1, 𝑥1, 𝑦1, 𝛾1 (val 𝑥1) = 𝜆(𝑧 : 𝑇1)𝑠1, and 𝑡1 =

𝑒1 [ [𝑧 ↦→ 𝑦1] 𝑠1 ]. Also, 𝑡 = 𝑒2 [ let𝐷 𝑥 = 𝑣 in 𝑢 ], 𝛾 ′
2
= 𝛾2, val 𝑥 ↦→ 𝑣 , and 𝑡2 = 𝑒2 [𝑢 ]. Now

we proceed the proof by invoking Lemma A.77 to analyze the relationship of two focuses

𝑡 = 𝑒1 [ 𝑥1 𝑦1 ] = 𝑒2 [ let𝐷 𝑥 = 𝑣 in 𝑢 ].
– When 𝑒1 [ 𝑥1 𝑦1 ] ⪯ 𝑒2 [ let𝑚 𝑥 = 𝑣 in 𝑢 ]. This implies that for some 𝑒 we have 𝑥1 𝑦1 =

𝑒 [ let𝑚 𝑥 = 𝑣 in 𝑢 ], which is impossible.

– When 𝑒2 [ let𝑚 𝑥 = 𝑣 in 𝑢 ] ⪯ 𝑒1 [ 𝑥1 𝑦1 ]. Then for some 𝑒 we have let𝑚 𝑥 = 𝑣 in 𝑢 =

𝑒 [ 𝑥1 𝑦1 ] and 𝑒1 = 𝑒2 [ 𝑒 ]. By analyzing the equality, we can show that 𝑡 = 𝑒2 [let𝑚 𝑥 =

𝑣 in 𝑒′ [ 𝑥1 𝑦1 ]] and 𝑒1 = 𝑒2 [ let𝑚 𝑥 = 𝑣 in 𝑒′ ]. Set 𝑡 ′ = 𝑒2 [ 𝑒′ [ [𝑧 ↦→ 𝑦1] 𝑠1 ] ]. First,
we can derive that 𝛾1 | 𝑒1 [ [𝑧 ↦→ 𝑦1] 𝑠1 ] ↦−→ 𝛾1, val 𝑥 ↦→ 𝑣 | 𝑒2 [ 𝑒′ [ [𝑧 ↦→ 𝑦1] 𝑠1 ] ]
by showing that fv(𝑣) ⊆ dom(𝛾1) and then apply the (lift-let) rule. Then, we can

derive that 𝛾2, val 𝑥 ↦→ 𝑣 | 𝑒2 [ 𝑒′ [ 𝑥1 𝑦1 ] ] ↦−→ 𝛾2, val𝐷 𝑥 ↦→ 𝑣 | 𝑒2 [ 𝑒′ [ [𝑧 ↦→ 𝑦1] 𝑠1 ] ]
by applying Lemma A.79 and the (apply) rule. Now we can show that (𝛾1, val 𝑥 ↦→
𝑣) � (𝛾2, val 𝑥 ↦→ 𝑣) and conclude this case.

– When 𝑒1 [ 𝑥1 𝑦1 ] ↔ 𝑒2 [ let𝑚 𝑥 = 𝑣 in 𝑢 ]. Then 𝑡 = 𝑒 [let𝑛 𝑦 = 𝑒′
1
[ 𝑥1 𝑦1 ] in 𝑒′

2
[let𝑚 𝑥 =

𝑣 in 𝑢]] for some 𝑒, 𝑛,𝑦, 𝑒′
1
and 𝑒′

2
. Let 𝛾 ′′

1
= 𝛾1, val𝑚 𝑥 ↦→ 𝑣 , 𝛾 ′′

2
= 𝛾2, val𝑚 𝑥 ↦→ 𝑣 , and

𝑡 ′ = 𝑒
[
let𝐸 𝑦 = 𝑒′

1
[ [𝑧 ↦→ 𝑦1] 𝑠1 ] in 𝑒′

2
[𝑢 ]

]
. For both 𝑡1, 𝑡2, we can invoke the other

rule to reduce to 𝑡 ′. We can therefore conclude this case.

– When 𝑒2 [ let𝑚 𝑥 = 𝑣 in 𝑢 ] ↔ 𝑒1 [ 𝑥1 𝑦1 ]. Analogous to the above case. These two cases
are symmetric.

– Case (rename), (lift-var) and (lift-set). Analogous to the previous case.

Case (get). Then 𝑡 = 𝑒1 [ read𝑥 ], 𝑡1 = 𝑒1 [ 𝑣 ], 𝛾 (val 𝑥) = reader 𝑥 ′ and 𝛾 (var 𝑥 ′) = 𝑣 . We proceed

the proof by case analysis on the second derivation, wherein the (apply), (tapply) and the (open)

cases are symmetric to the above proven cases. The proof of (lift-let), (lift-var) and (rename) is

analogous to the previous case. Notably, in the (lift-var) we are sure that the lifted variable is not

𝑥 since it is a freshly created local variable.

– Case (get). To prove this case, we begin by invoking Lemma A.77 to analyze the relation

between two focuses, wherein in each possibility we can invoke Lemma A.80 to demonstrate

the equality between the result of variable lookup in two equivalent stores, and therefore

invoke (get) again to reduce both sides to the same term.

– Case (lift-set). Then 𝑡 = 𝑒2 [𝑦1 := 𝑦2 ], 𝛾2 (val 𝑦2) = 𝑤 , 𝛾 ′
2
= 𝛾2, set 𝑦1 = 𝑤 , and 𝑡2 = 𝑒2 [𝑤 ].

Now we have to show that 𝑦1 ≠ 𝑥 ′ so that the read and the write can be swapped. We first

invoke Lemma A.77 to analyze the relation between two focuses. The two cases where

𝑒1 [ read𝑥 ] ⪯ 𝑒2 [𝑦1 := 𝑦2 ] or 𝑒2 [𝑦1 := 𝑦2 ] ⪯ 𝑒1 [ read𝑥 ] are impossible. Now we show

the proof when 𝑒1 [ read𝑥 ] ↔ 𝑒2 [𝑦1 := 𝑦2 ], whereas the other case is analogous. We have

𝑡 = 𝑒
[
let𝑚 𝑥 = 𝑒′

1
[ read𝑥 ] in 𝑒′

2
[𝑦1 := 𝑦2 ]

]
. Let 𝑡 ′ = 𝑒

[
let𝑚 𝑥 = 𝑒′

1
[ 𝑣 ] in 𝑒′

2
[𝑤 ]

]
. By

invoking Lemma A.79 we can show that 𝛾1 (val𝑦2) = 𝑤 , and therefore derive that 𝛾1 | 𝑡1 ↦−→
𝛾1, set 𝑦1 = 𝑤 | 𝑡 ′ by the (lift-set) rule. Since 𝛾2 ⊢ 𝑡 we know that Γ2 ⊢ 𝑡 : 𝑇2 for some Γ2 and
𝑇2. By Lemma 4.5 we can show that Γ2,Δ2 ⊢ let𝑚 𝑥 = 𝑒′

1
[ read𝑥 ] in 𝑒′

2
[𝑦1 := 𝑦2 ] : 𝑈 for
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some Δ2 and𝑈 . Now we invoke Lemma A.81 and Lemma A.19 to show that Γ2,Δ2 ⊢ 𝑥 ⊲⊳ 𝑦1.

By induction on ⊢ 𝛾 ∼ Γ2, we can show that𝑥 : {𝑥 ′} Rdr[𝑆0] ∈ Γ2, and𝑦1 : {∗} Ref[𝑆1] ∈ Γ2
for some 𝑆0, 𝑆1. Now we invoke Corollary A.86 to show that 𝑥 ′ ≠ 𝑦1. Therefore, we can

show that 𝛾 ′
2
(var 𝑥 ′) = 𝛾 (var 𝑥 ′) = 𝑣 where 𝛾 ′

2
= 𝛾2, set 𝑦1 = 𝑤 . We can thus derive that

𝛾 ′
2
| 𝑡2 ↦−→ 𝛾 ′

2
| 𝑡 ′. Finally, we can show that 𝛾1, set 𝑦1 = 𝑤 and 𝛾2, set 𝑦1 = 𝑤 are still

equivalent and conclude this case.

Case (rename). Then 𝑡 = 𝑒1
[
let𝐷1

𝑥1 = 𝑦1 in 𝑠1
]
for some 𝑒1, and 𝑡1 = 𝑒1 [ [𝑥 ↦→ 𝑦] 𝑢 ]. We

proceed by case analysis on the other reduction. The proof of (apply), (tapply), (open) and (get)

cases are symmetric to the proof of the previous cases.

– Case (rename). Then 𝑡 = 𝑒2
[
let𝐷2

𝑥2 = 𝑦2 in 𝑠2
]
for some 𝑒2. Now we use Lemma A.77 to

analyze the relation between two focuses.

– When 𝑒1
[
let𝐷1

𝑥1 = 𝑦1 in 𝑠1
]

⪯ 𝑒2
[
let𝐷2

𝑥2 = 𝑦2 in 𝑠2
]
. Then we have let𝐷1

𝑥1 =

𝑦1 in 𝑠1 = 𝑒
[
let𝐷2

𝑥2 = 𝑦2 in 𝑠2
]
for some 𝑒 , and 𝑒2 = 𝑒1 [ 𝑒 ]. If 𝑒 = [], then we

have 𝑡1 = 𝑡2. This means that 𝑡 = 𝑒1
[
let𝐷1

𝑥1 = 𝑦1 in 𝑒′ [ let𝐷 𝑥2 = 𝑦2 in 𝑠2 ]
]
for some

𝑒′. Set 𝑡 ′ to

𝑒1 [𝑒′ [[𝑥1 ↦→ 𝑦1] [𝑥2 ↦→ [𝑥1 ↦→ 𝑦1]𝑦2] 𝑠2]] .

Nowwe inspect whether 𝑥1 = 𝑦2, and in both cases we can derive that𝛾1 | 𝑡1 ↦−→ 𝛾1 | 𝑡 ′,
and 𝛾2 | 𝑡2 ↦−→ 𝛾1 | 𝑡 ′, which allow us to conclude this case.

– When 𝑒2
[
let𝐷2

𝑥2 = 𝑦2 in 𝑠2
]
⪯ 𝑒1

[
let𝐷1

𝑥1 = 𝑦1 in 𝑠1
]
. Analogous to the previous

case.

– When 𝑒1
[
let𝐷1

𝑥1 = 𝑦1 in 𝑠1
]
↔ 𝑒2

[
let𝐷2

𝑥2 = 𝑦2 in 𝑠2
]
. Then for both directions, we

can apply (rename) to rename the variable in the other branch, wherein the renaming

in one branch is independent from the renaming in the other branch. We can therefore

conclude this case.

– When 𝑒2
[
let𝐷2

𝑥2 = 𝑦2 in 𝑠2
]
↔ 𝑒1

[
let𝐷1

𝑥1 = 𝑦1 in 𝑠1
]
. Analogous to the previous

case.

– Case (lift-let). Then 𝑡 = 𝑒2
[
let𝐷2

𝑥2 = 𝑣2 in 𝑠2
]
, 𝛾 ′

2
= 𝛾2, val𝐷 𝑥2 ↦→ 𝑣2, and 𝑡2 = 𝑒2 [ 𝑠2 ].

Now we apply Lemma A.77 to analyze the relation between two focuses.

(i) When 𝑒1
[
let𝐷1

𝑥1 = 𝑦1 in 𝑠1
]
⪯ 𝑒2

[
let𝐷2

𝑥2 = 𝑣2 in 𝑠2
]
. Then, by inspecting the equal-

ity we can show that 𝑡 = 𝑒1
[
let𝐷1

𝑥1 = 𝑦1 in 𝑒
[
let𝐷2

𝑥2 = 𝑣2 in 𝑠2
] ]

. We set 𝑡 ′ to

𝑒1 [ 𝑒 [ [𝑥1 ↦→ 𝑦1] 𝑠2 ] ] .

Importantly, since cv (𝑣2) ∩ 𝐷2 ⊆ dom(𝛾2), we can show that [𝑥1 ↦→ 𝑦1] 𝑣2 = 𝑣2
and [𝑥1 ↦→ 𝑦1] 𝐷2 = 𝐷2. We can derive that 𝛾1 | 𝑡1 ↦−→ 𝛾1, val𝐷2

𝑥2 ↦→ 𝑣2 | 𝑡 ′ and
𝛾2, val𝐷2

𝑥2 ↦→ 𝑣2 | 𝑡2 ↦−→ 𝛾2, val𝐷2
𝑥2 ↦→ 𝑣2 | 𝑡 ′. This case can thus be concluded as

𝛾1, val𝐷2
𝑥2 ↦→ 𝑣2 and 𝛾2, val𝐷2

𝑥2 ↦→ 𝑣2 are still equivalent.

(ii) Other cases. In these cases, the renaming and the binding lifting do not influence each

other. So in each case, for both directions we apply the corresponding rule in the other

direction to conclude.

– Case (lift-var) and (lift-set). In this two cases, we can show that the variable that is looked

up is already in the store, and by the well-formedness their value does not mention the

renamed variable, thus staying unaffected by the renaming. We can apply the corresponding

rule to conclude each case.

Case (lift-let) and (lift-var). Proceed by case analysis on the other reduction derivation. The

proof of the (apply), (tapply), (open), (get), and (rename) cases are again symmetric to the previous
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proof. In the remaining cases, we can always swap the order the two lifted store bindings while

preserving store equivalence.

Case (lift-set). We do a case analysis on the other reduction derivation, wherein all but one cases

can be proven symmetrically to the previous ones. The only unproven case is when both reductions

are derived by the (lift-set) rule. Then 𝑡 = 𝑒1 [ 𝑥1 := 𝑦1 ], 𝛾1 (val 𝑦1) = 𝑣1, 𝛾
′
1
= 𝛾1, set 𝑥1 = 𝑣1,

and 𝑡1 = 𝑒1 [ 𝑣1 ]. Also, 𝑡 = 𝑒2 [ 𝑥2 := 𝑦2 ], 𝛾2 (val 𝑦2) = 𝑣2, 𝛾
′
2
= 𝛾2, set 𝑥2 = 𝑣2, and 𝑡2 = 𝑒2 [ 𝑣2 ].

By invoking Lemma A.77 we can show that either 𝑒1 = 𝑒2, or 𝑒1 [ 𝑥1 := 𝑦1 ] ↔ 𝑒2 [ 𝑥2 := 𝑦2 ] or
𝑒2 [ 𝑥2 := 𝑦2 ] ↔ 𝑒1 [ 𝑥1 := 𝑦1 ]. In the first case we can conclude immediately since this implies that

𝑡1 = 𝑡2. Otherwise, we invoke Lemma 4.5, Lemma A.81, and Corollary A.85 to show that 𝑥1 ≠ 𝑥2.

Therefore, swapping the two set-bindings preserves the store equivalence. For both directions, we

can apply the (lift-set) rule to reduce to the same term. This case is therefore concluded. □

Definition A.7 (Reduction closures). We define 𝛾 | 𝑡 ↦−→∗ 𝛾 ′ | 𝑡 ′ as the reflexive and
transitive closure of 𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′. 𝛾 | 𝑡 ↦−→≤1 𝛾 ′ | 𝑡 ′ denotes the union of the reduction relation

𝛾 | 𝑡 ↦−→ 𝛾 ′ | 𝑡 ′ and the reflexive relation. In other words, 𝛾 | 𝑡 ↦−→≤1 𝛾 ′ | 𝑡 ′ means a reduction of

zero or one step.

Corollary A.87 (Diamond property of ↦−→≤1
). Given two equivalent configurations 𝛾1 | 𝑡 �

𝛾2 | 𝑡 , if (1) 𝛾1 ⊢ 𝑡 and 𝛾2 ⊢ 𝑡 ; (2) 𝛾1 | 𝑡 ↦−→≤1 𝛾 ′
1
| 𝑡1; and (3) 𝛾2 | 𝑡 ↦−→≤1 𝛾 ′

2
| 𝑡2, then there exists

𝛾 ′′
1
, 𝑡 ′, 𝛾 ′′

2
such that (1) 𝛾 ′

1
| 𝑡1 ↦−→≤1 𝛾 ′′

1
| 𝑡 ′, (2) 𝛾 ′

2
| 𝑡2 ↦−→≤1 𝛾 ′′

2
| 𝑡 ′, and (3) 𝛾 ′′

1
| 𝑡 ′ � 𝛾 ′′

2
| 𝑡 ′.

Fact A.88. The transitive and reflexive closure of 𝛾 | 𝑡 ↦−→≤1 𝛾 ′ | 𝑡 ′ equals 𝛾 | 𝑡 ↦−→∗ 𝛾 ′ | 𝑡 ′.

Lemma A.89 (Store eqivalence preserves reduction). If (i) 𝛾1 | 𝑡 ↦−→ 𝛾 ′
1
| 𝑡 ′ and (ii) 𝛾1 � 𝛾2

then there exists 𝛾 ′
2
such that (i) 𝛾2 | 𝑡 ↦−→ 𝛾 ′

2
| 𝑡 ′ and (ii) 𝛾 ′

1
� 𝛾 ′

2
.

Proof. By straightforward case analysis on the reduction derivation, wherein in each case we

apply the same typing rule. In the cases where store lookup is involved, we use Lemma A.79 and

Lemma A.80 to show that the result is the same under the two equivalent stores. In the cases where

the store is extended in the reduction step, we can straightforwardly show that the resulted stores

are still equivalent to each other. □

Corollary A.90. If (i) 𝛾1 | 𝑡 ↦−→∗ 𝛾 ′
1
| 𝑡 ′ and (ii) 𝛾1 � 𝛾2 then there exists 𝛾 ′

2
such that (i)

𝛾2 | 𝑡 ↦−→∗ 𝛾 ′
2
| 𝑡 ′ and (ii) 𝛾 ′

1
� 𝛾 ′

2
.

Lemma A.91 (Asymmetric diamond property of reduction closure). Given two equivalent

configurations𝛾1 | 𝑡 � 𝛾2 | 𝑡 , if (1)𝛾1 ⊢ 𝑡 and𝛾2 ⊢ 𝑡 ; (2)𝛾1 | 𝑡 ↦−→≤1 𝛾 ′
1
| 𝑡1; and (3)𝛾2 | 𝑡 ↦−→∗ 𝛾 ′

2
| 𝑡2,

then there exists 𝛾 ′′
1
, 𝑡 ′, 𝛾 ′′

2
such that (1) 𝛾 ′

1
| 𝑡1 ↦−→∗ 𝛾 ′′

1
| 𝑡 ′, (2) 𝛾 ′

2
| 𝑡2 ↦−→≤1 𝛾 ′′

2
| 𝑡 ′, and (3)

𝛾 ′′
1
| 𝑡 ′ � 𝛾 ′′

2
| 𝑡 ′.

Proof. By induction on the length of the reduction 𝛾2 | 𝑡 ↦−→∗ 𝛾 ′
2
| 𝑡2.

When there is zero step. Then 𝛾 ′
2
= 𝛾2 and 𝑡2 = 𝑡 . We can set 𝑡 ′ = 𝑡1, then reduce 𝑡2 one step to 𝑡1,

and reduce 𝑡1 zero step.

When 𝛾2 | 𝑡 ↦−→∗ 𝛾 ′
2
| 𝑡2 = 𝛾2 | 𝑡 ↦−→≤1 𝛾0 | 𝑡0 ↦−→∗ 𝛾 ′

2
| 𝑡2. By Corollary A.87 we can show

that there exists 𝑡 ′ such that 𝛾 ′
1
| 𝑡1 ↦−→≤1 𝛾 ′′

1
| 𝑡 ′, 𝛾0 | 𝑡0 ↦−→≤1 𝛾 ′

0
| 𝑡 ′, and 𝛾 ′′

1
� 𝛾 ′

0
Now we

use the preservation theorem so that we can invoke IH to show that there exists 𝑡 ′′ such that

𝛾 ′
0
| 𝑡 ′ ↦−→∗ 𝛾 ′′

0
| 𝑡 ′′, 𝛾 ′

2
| 𝑡2 ↦−→≤1 𝛾 ′′

2
| 𝑡 ′′, and 𝛾 ′′

0
� 𝛾 ′′

2
. Now we invoke Corollary A.90 to show

that there exists 𝛾 ′′′
1

such that 𝛾 ′′
1
| 𝑡 ′ ↦−→∗ 𝛾 ′′′

1
| 𝑡 ′′, and 𝛾 ′′′

1
� 𝛾 ′′

0
. Therefore, we can show that

𝛾 ′
1
| 𝑡1 ↦−→∗ 𝛾 ′′′

1
| 𝑡 ′′. Also, we can show that 𝛾 ′′′

1
� 𝛾 ′′

2
, and thus conclude this case. □

Proof. By induction on the length of the first reduction.

When the length is zero. This case can be trivially concluded.
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When 𝛾1 | 𝑡 ↦−→≤1 𝛾0 | 𝑡0 ↦−→∗ 𝛾 ′
1
| 𝑡1. We first invoke Lemma A.91 to show that ∃𝑡 ′ such that

𝛾0 | 𝑡0 ↦−→∗ 𝛾 ′
0
| 𝑡 ′, 𝛾 ′

2
| 𝑡2 ↦−→≤1 𝛾 ′′

2
| 𝑡 ′, and 𝛾 ′

0
� 𝛾 ′′

2
. Then, we use the preservation lemma so

that we can invoke IH, showing that ∃𝑡 ′′ such that 𝛾 ′
1
| 𝑡1 ↦−→∗ 𝛾 ′′

1
| 𝑡 ′′, 𝛾 ′

0
| 𝑡0 ↦−→∗ 𝛾 ′′

0
| 𝑡 ′′,

and 𝛾 ′′
1
� 𝛾 ′′

0
. Now by Corollary A.90 we can show that ∃𝛾 ′′′

2
such that 𝛾 ′′

2
| 𝑡 ′ ↦−→∗ 𝛾 ′′′

2
| 𝑡 ′′ and

𝛾 ′′′
2
� 𝛾 ′′

0
. Therefore, we have 𝛾 ′

2
| 𝑡2 ↦−→∗ 𝛾 ′′′

2
| 𝑡 ′′ and can show that 𝛾 ′′′

2
� 𝛾 ′′

1
, thus concluding

this case. □

Lemma A.92 (Answers do not reduce). Given any store 𝛾 and an answer 𝑎, 𝛾 | 𝑎 ↦−→ 𝛾 ′ | 𝑡 ′ is
impossible.

Proof. By straightforward case analysis on the reduction derivation, wherein none of the rules

reduces an answer. □

Corollary A.93. Given any store 𝛾 and an answer 𝑎, 𝛾 | 𝑎 ↦−→∗ 𝛾 ′ | 𝑡 implies that 𝛾 ′ = 𝛾 and

𝑡 = 𝑎.

Theorem 4.7 (Uniqeness of Answer). For any 𝑡 , if (i) 𝛾 ⊢ 𝑡 , (ii) 𝛾 | 𝑡 ↦−→∗ 𝛾1 | 𝑎1 and (iii)

𝛾 | 𝑡 ↦−→∗ 𝛾2 | 𝑎2 then 𝑎1 = 𝑎2 and 𝛾1 � 𝛾2.

Proof. We first use Theorem 4.6 to show that ∃𝛾 ′
1
, 𝛾 ′

2
, 𝑡 ′ such that 𝛾1 | 𝑎1 ↦−→∗ 𝛾 ′

1
| 𝑡 ′ and

𝛾2 | 𝑎1 ↦−→∗ 𝛾 ′
2
| 𝑡 ′ where 𝛾 ′

1
� 𝛾 ′

2
. Now we use Corollary A.93 to show that 𝑡 ′ = 𝑎1 = 𝑎2, 𝛾1 = 𝛾 ′

1

and 𝛾2 = 𝛾 ′
2
, which conclude our goal. □
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