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The use of machine learning for predicting ecotoxicological outcomes is promising, but underutilized.
The curation of data with informative features requires both expertise in machine learning as well as

a strong biological and ecotoxicological background, which we consider a barrier of entry for this kind
of research. Additionally, model performances can only be compared across studies when the same
dataset, cleaning, and splittings were used. Therefore, we provide ADORE, an extensive and well-
described dataset on acute aquatic toxicity in three relevant taxonomic groups (fish, crustaceans, and
algae). The core dataset describes ecotoxicological experiments and is expanded with phylogenetic
and species-specific data on the species as well as chemical properties and molecular representations.
Apart from challenging other researchers to try and achieve the best model performances across the
whole dataset, we propose specific relevant challenges on subsets of the data and include datasets and
splittings corresponding to each of these challenge as well as in-depth characterization and discussion
of train-test splitting approaches.

Background & Summary

Regulation of chemicals aims to protect both human health and the environment, with ecotoxicological research
focusing on the latter. Regulatory hazard assessment relies on extensive animal testing, e.g., in the European
Union, acute fish toxicity testing for chemicals of a manufacturing or import volume >10 tons p.a. is required
by the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) legislation’. A recent
pre-print estimates the global annual usage of fish and birds to range between 440,000 and 2.2 million indi-
viduals at a cost upwards of $39 million p.a.2. With over 200 million substances in the archive of the Chemical
Abstracts Service (CAS, https://www.cas.org) and more than 350,000 chemicals and mixtures currently regis-
tered on the market worldwide®, chemical hazard assessment is a major challenge.

These ethical and financial considerations are incentives for alternatives to animal testing, which include
computational (in silico) methods. A long established in silico method is Quantitative structure-activity relation-
ship (QSAR) modeling. It aims to predict biological and chemical properties of compounds based on linear or
nonlinear relationships of their molecular structure and experimentally determined activities and properties*.
The increase of computational capacities and accessibility of educational resources and software led to the adop-
tion of machine learning (ML, computational methods that continually improve their prediction without addi-
tional outside intervention) in ecotoxicology over the past decade. Published studies on predicting ecotoxicity
are for the most part limited to aquatic systems. They are using animal-derived (in vivo) data and encompass
supervised learning approaches: classification of chemicals into toxicity brackets, and regression-based predic-
tion of concrete toxicity values®”’. The latter more closely resembles the outcome of ecotoxicity experiments,
where specimens are exposed to multiple concentrations of the same substance and an effect is recorded at cer-
tain time intervals. A non-linear regression model is then fit to the data to derive toxicity values.

Biological and ecotoxicological expertise is required to guide informative feature selection and data cleaning
prior to ML modeling, and to help interpret results®. In ML-based research, insufficient reporting and data avail-
ability hinders reproducibility and comparison across studies and, thus, objective judgment of model perfor-
mances’. Additionally, the way a dataset is split into training and test data immensely affects model performance
and can inflate it through data leakage (i.e., the model is trained and tested on similar data)'°.
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Ultimately, realistically assessing and comparing model performance among different works is only feasi-
ble when training and testing were performed on the same dataset, using the same data cleaning and splitting
strategy. This is fundamental to ML-based research and demonstrated by the plethora of publications associated
with long-standing benchmark datasets, such as CIFAR and ImageNet and many others (for example, in the
NeurIPS benchmark data track). Compared to NeurIPS, environmental sciences are slowly progressing towards
adopting the best practices in the field of ML, including the availability of standard datasets, with a notable pio-
neer being the CAMELS dataset from hydrology! !> with its recent evolution to CARAVAN'*!“, Indeed, to serve
as benchmark requires a well-characterized, expert-curated and -described, freely available dataset, which we
provide with the ADORE dataset in this work'. The focus of our dataset is mortality and related endpoints for
the three taxonomic groups fish, crustaceans, and algae, extracted from the ECOTOX database!®. The dataset
is supplemented by chemical, phylogenetic, and species-specific features that can be used in modeling toxicity
outcomes or in addressing other questions.

Here, we describe the data sources and the reasoning behind data selection and processing steps. We provide
defined splits of the data, based on chemical occurrence and molecular scaffolds. We propose concrete chal-
lenges to the community, including extrapolation across taxonomic groups, to learn more about the potential
and limitations of ML in ecotoxicology.

Methods

The dataset is assembled from different sources. The core contains ecotoxicology data, e.g., toxicity values and
experimental conditions. These are expanded with species-related and chemical data (Fig. 1). Data sources,
filtering and other processing steps are described in the following subsections. The section “Data records” is
focused on the different files that contain subsets of the data, whereas data characteristics are shown in the
Section “Technical validation”. A glossary of all features is given in Supplementary Table 1.

Ecotoxicology data. Core dataset on acute mortality. 'The main source of our dataset is the ECOTOX
database (https://cfpub.epa.gov/ecotox/) from the United States Environmental Protection Agency (US EPA).
ECOTOX is updated on a quarterly basis. Our dataset is based on the release from September 2022, which
contains over 1.1 million entries of more than 12,000 chemicals and close to 14,000 species!®. The EnviroTox
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Fish Crustaceans Algae

Mortality (MOR) Mortality (MOR) Mortality (MOR)

— Intoxication (ITX; immobilization) | Growth (GRO)

— — Population (POP)
— — Physiology (PHY)

Table 1. Effect groups for different taxonomic groups. Definitions are given in Supplementary Information
section 2.

database!” is similar to our dataset, but without the additional chemical- and species-specific features which we
curated with ML modeling in mind, and without a standardization that allows straightforward comparability
between studies. We had to evaluate a trade-off between a more noisy dataset encompassing more chemical and
organismal diversity, and a substantially smaller, but cleaner dataset that is not as chemically and taxonomically
diverse.

We include entries for three distinct taxonomic and trophic levels of importance in aquatic ecotoxicology:
fish, crustaceans, and algae. These taxonomic groups represent some of the biggest data subsets available in
ECOTOX by covering 41% of all the entries.

ECOTOX distinguishes between effects and endpoints. Effects are observed responses resulting from chem-
ical exposure, ranging from mortality (MOR), i.e., death of the specimen, to more subtle effects like behavioral
changes, and gene regulation. Endpoints are the targets which can be numerically determined, e.g.,, LC50 and
EC50. The use of the lethal concentration 50 (LC50), the concentration at which 50% of specimen died after
a certain time period, is very common and allows for comparison of toxicity across chemicals and species. In
aquatic ecotoxicology, the LC50 refers to the concentration of a substance in the test medium water surrounding
a species'®. For effects that are not lethality-based, toxicity is commonly described as the effective concentration
50 (EC50), that analogously describes the induction of a 50% effect level, often compared to a negative and/or
positive control treatment. Both can be expressed in a mass-based (e.g., mg/L) and a mol-based (e.g., mol/L)
manner. The former is easier to correlate to environmental concentrations, while the latter is more biologically
informative, assuming that a molecule is the entity that induces the biological response on a molecular level.

Our dataset focuses on short-term lethal (acute) mortality and we included other endpoints that are com-
parable to mortality (Table 1). Effects manifest differently in different taxa. Mortality was the sole effect cho-
sen in fish, based on standardized test guidelines such as the Organisation for Economic Co-operation and
Development (OECD) Test guideline 203'. For crustaceans, mortality and immobilization, the latter catego-
rized in ECOTOX under intoxication (ITX), are used interchangeably in the respective test guidelines, e.g.,
OECD Test guideline 202%. For algae, the focus is rarely on the individual, but often related to population
health/size as a proxy for toxicity. Population growth is the most commonly used approach to testing effects
in algae, e.g., OECD guideline 2012!, which led to the inclusion of data related to effects encoded as mortality,
growth (GRO), population (POP), and physiology (PHY) (Table 1).

The standard observational period for fish acute mortality is 96 hours according to OECD guideline 203",
where mortality is recorded every 24 hours. For crustaceans, the typical experimental period is 48 hours, e.g.,
given in OECD guideline 202%, while algae are commonly exposed over 72 hours?!. Only experimental periods
up to 96 hours were included.

Since, ultimately, the goal would be to replace animal testing, we excluded in vitro endpoints, i.e., assays
based on isolated cells??, and assays based on early organismal life stages, such as eggs and embryos®. They com-
prise alternative test methods to animal testing?*. Removing eggs and embryo tests is done under the limitation
that most of the entries have uninformative values for the organism life stage and that life stages for the three
taxonomic groups are hardly comparable (Supplementary Fig. 2e).

Processing of the ECOTOX database. 'The core dataset was assembled from the downloadable, pipe-delimited
ASCII version of the ECOTOX database. It is made available as a set of.txt files. We used the files for species,
tests, results and media that contain information on the taxonomy of species, experimental-design-related fac-
tors, experimental outcomes, and media characteristics, respectively. The entries of these files can be matched
to each other using different unique keys, e.g., the test species is encoded with the key species_number that can
be used to match the taxonomic information with the test table. Each data point is uniquely identified by the
result_id.

Chemicals are identified through different descriptors, most prominently the CAS number, the DSSTox
Substance ID (DTXSID), associated with the CompTox Chemicals Dashboard by the US EPA, and the [UPAC
International Chemical Identifier (InChl) and the associated InChlIkey by the International Union of Pure
and Applied Chemistry?. These identifiers are retained in the dataset to ensure high compatibility with other
data sources and retraceability of all data points. If possible, the InChIkey was used for matching, followed by
DTXSID and CAS number. Additionally, the dataset contains Simplified Molecular Input Line Entry System
(SMILES) codes that represent the chemical structure in a string format?. Like others!”?”?%, we use the canonical
SMILES, from PubChem?-*°, which do not capture isomerism.

In the first step of the processing pipeline (Fig. 1), the ECOTOX files were separately harmonized and
pre-filtered.
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Species fileThe species file contains information on the test species. We removed all data points that had missing
values for the species group (column ecotox_group) or the taxonomic columns class, order, family, species
and genus. We then retained only entries for the three taxonomic groups of interest. This was done by filtering
the species group entries to contain either “Fish’, “Crusta’, or “Algae”

Tests fileThe tests file contains information on the different descriptors of experimental conditions. Exposure
type (exposure_type) refers to the method by which contact between the organism and the chemical is
achieved. We only retain the exposure types that are most common and ensure consistent experimental designs
(Static (S, “Toxicity tests with aquatic organisms in which no flow of test solution occurs; solutions may remain
unchanged throughout the duration of the test”), flow through (F, “continuous or very frequent passage of fresh
test solution through a test chamber with no recycling”), renewal (R, “A test without continuous flow of solution,
but with occasional renewal of test solutions after prolonged periods, e.g., 24 hours”), and not reported aquatic
experiments (NR). These definitions are from the ECOTOX term appendix). Media type (media_type)is the
liquid, in which the experiment was carried out. This feature was reduced to only contain fresh water and salt
water experiments, also with the intention to remove tests conducted in environmental water samples that are
basically non-reproducible and could have an effect by themselves.

The tests table contained other features that we retain but do not deem informative for modeling purposes.
For control type (control type), many of the data points are either not encoded or it is nontransparently
reported what the encoding entails. The test location (Location) was “laboratory” for more than 98% of the
data points. Application frequency unit (application freq_unit), describing how often the chemical was
applied/renewed in the system, had such a high variability that it was not possible to normalize to a common
unit. Most of the organism life stage (organism_ 1ifestage) levels are uniformative.

Results fileThe results file contains the information related to each result, e.g., endpoint, effect, and concentration.

Mostly, concentrations (concl mean) are given as specific EC50 values. For limit tests or if the EC50
was outside the tested concentration range, the values are only given as above or below a concentration range
(concl mean op iseither <, <, >, >). These values were removed. Other entries do not contain a mean
effect value but a minimum and a maximum value (concl mean min and concl mean max, respec-
tively). We averaged these two values if they were within one order of magnitude

Effect concentrations are given in a variety of units (concl mean unit). We only kept the units related
to a mass or molar concentration and unified them to mg/L, from which we calculated the molar concentration
in mol/L.

Similarly, experimental durations (obs_duration mean) are given in a number of different units. We
converted them to hours and retained 24, 48, 72, and 96 hours experimental periods to cover highly standard-
ized short-term toxicity scenarios. Generally, during a 96 hour experiment effects are also recorded at the previ-
ous time points. So, often, later time points are an extension of previous ones, i.e., repeated measurements in the
same test. We checked several repeated tests and could not definitively determine that with similar experimental
properties later measurements are consistently more or less sensitive than previous ones, even though this may
be disguised in the general data variability. Thus, we included all such data points. If needed, one can filter to the
latest data point for an experiment that is uniquely identified by the reference number.

For the concentration type (concl _type), we retained all the entries with the levels “active ingredient” (A),
“formulation” (F), and “total” (T). Chemicals, i.e., the active ingredient that is of interest in toxicity testing, are
often combined with other substances depending on their use case to delay or enhance their activity or facilitate
transport to the target area/organ, e.g., into a plant or adhering to a surface. We could not conclusively deduce
that either of the concentration types is consistently more toxic than another and thus decided to include this
information into our dataset.

Media characteristics fileThe media characteristics file contained temperature (nedia temperature
mean) and pH (media_ph mean) values for some of the experiments. We removed or corrected unrealistic
values (see next paragraph), calculated the average values if only minimum and maximum value were available,
and converted all temperatures to °C.

Manual filtering of unrealistic valuesThe original dataset contains several values that required manual evaluation
and cleaning/correcting. The manual filtering is documented in the code repository https://renkulab.io/gitlab/
mltox/adore in the file src/preprocessing.py using the functions remove_and_correct_entries, correct_ph_temp_
entries and remove_invalid_test_entries.

Some toxicity values were found to be either very high or very low, i.e., EC50/LC50 >10°mg/L and
<107>mg/L. Also, some values deviated strongly from the other entries of the same experimental setting. We
considered experimental settings with at least 25 repetitions and entries if their toxicity value was outside 3 times
the interquartile range of the first and third quartile (based on the “outlier” definition of boxplots). These values
were manually evaluated by checking against the original source. If the original source was not accessible, the
values were checked against comparable data in the ECOTOX database, ideally from the same chemical and the
same species. If that was not available, they were checked against the same chemical and a species from the same
taxonomic group. If that was also not available or the values differed by several orders of magnitude, the data
point in question was removed. Some data points were excluded because the toxicity values were obtained in
multi-stressor scenarios, e.g., testing chemical sensitivity in concert with salinity tolerance of a species or under
non-representative conditions, e.g., application of a chemical in orange juice as carrier medium?'. We concluded
that these toxicity values are not representative of the chemical’s toxic potential. We are aware that experimental
setups like these likely make up part of the rest of the dataset as well and that they contribute to the high variabil-
ity of effective concentrations (Fig. 2), but manually checking all values is not feasible and would negate the use
of an already assembled dataset, such as the ECOTOX database.
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Fig. 2 (a) Histogram of the number of data points associated with a combination of chemical, species, and
observation duration, concentration type, exposure type, media type, and effect type in our dataset. (b) Boxplot
for the distribution of toxicity values for experimental conditions with at least 25 values.

Similarly, we found unrealistic values for the experimental properties pH of the medium and temperature,
i.e., pH values smaller than 4 and larger than 10, and temperatures exceeding 50 °C. Again, we checked the
values manually against the original literature and excluded cases where (waste)water samples with extreme
pH were the test medium and where the pH was strongly influenced by the test substance. For temperature, we
employed expert judgment and concluded that the values were mostly conversion errors, e.g., unit given as C,
when actually E or decimal errors, e.g., 250 °C when actually 25.0°C, and adjusted the values accordingly.

Theoretically, it should be impossible to derive an EC50 value larger than the chemical’s water solubility.
Nonetheless, a number of data points contain EC50 values that lie above the given water solubility of the com-
pound. This can partly be explained by most water solubility values being based on predictions or derived from
experiments based on ultrapure water, while exposure media already contain several micronutrients and salts.
One option on how to deal with these entries is to remove all data points for which the effective concentration is
higher than the chemical’s water solubility®>. Alternatively, as was done for the EnviroTox database, entries where
the toxicity value exceeds the water solubility by a factor of 5 are specifically marked, but not removed!”. The
EC50 values in our dataset are calculated from the nonlinear regression on the concentration-response-curves
and therefore themselves come with inherent uncertainty. Accordingly, all data points are uncertain to one
degree or another, which in this case only becomes apparent for the data points where the EC50 exceeds water
solubility. Therefore, we decided against applying this filtering step.

Species-related data. We include two kinds of species-related data, species-specific ecological, life-history,
and “pseudo’-data related to the DEB modeling framework and phylogenetic distances between species.

Add my pet.  Species-specific data was acquired from the Add my Pet collection (AmP), a manually curated
database linked to the dynamic energy budget (DEB) theory framework™, that contains information for more
than 3,400 animals (August 2022). The DEB theory is based on heterotrophs, e.g., animals like fish and crusta-
ceans, and does not cover autotrophs such as algae. Therefore, comparable data on algae is not included in our
dataset. We downloaded the AmP collection (dated November 25, 2022) and extracted information for the
species present in the core dataset. This includes three types of information: Ecological data, life history data,
and pseudo-data. The included features are shown in Table 2.

EcologyThis data category includes information about ecological peculiarities and lifestyle of a species. We
selected climate zone and ecozone, i.e., the climatic and geographical area, respectively, where the species occurs
(Supplementary Tables 3, 4). Additionally, we selected migratory behavior, e.g., anadromous/catadromous spe-
cies that migrate up-/downstream for reproduction (Supplementary Table 5), and food type, e.g., carnivorous,
herbivorous, parasitic, etc. (Supplementary Table 6).

For three features, we reduced the complexity of the original encoding. The AmP collection provides 51

different levels for climate zone and 56 for ecozone, respectively. Similarly, the food encoding has 77 different
levels. These features follow a hierarchical encoding, which was reduced by retaining only the top level. Further
information on the encodings can be found in the Supplementary Tables 3-6 and on the AmP website.
Life historyThe AmP collection also provides life history data, which are usually taken from literature, but some-
times estimated or extrapolated from related species. As a consequence, some features are not available for
each species and the resulting dataset contains missing values. We included the features which had the highest
coverage of number of data points with the core dataset: life span, body length at birth, body length at puberty,
ultimate body length, and maximum reproductive rate. Life span and ultimate body length are available for all
species.
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type feature code | unit
ecozone
ecology Ch'mate‘
migration
food
life span am d
body length at birth Lb cm
life history body length at puberty Lp cm
ultimate body length Li cm
reproductive rate Ri #/d
allocation fraction to soma kap —
pseudo-data energy conductance v cm/d
volume-specific somatic maintenance cost | p_M | J/d cm®

Table 2. Add my Pet features and their encoding. See Supplementary Fig. 3 and Supplementary Tables 3-6 for
more detailed descriptions of these features.

Pseudo-dataPseudo-data are species-specific parameters related to the modeling framework that the AmP col-
lection forms the basis of. We included the three pseudo-data features showing reasonable variability across spe-
cies: allocation fraction to soma®, energy conductance, and volume-specific somatic maintenance cost. These
features are available for every species included in the AmP database. Definitions are given on the DEB-portal
and in Kooijman et al.*>.

Phylogenetic distances from timetree. ~Since closely related species often are similarly sensitive to the same
chemicals compared to distantly-related species®, we include the phylogenetic distance between species as pos-
sible modeling features. The phylogenetic distance represents how closely related a pair of species is to each
other by the time since they diverged from the last common ancestor”’. We used TimeTree Version 5 to produce
a phylogenetic tree of the species in our data. The tree was then transformed into a phylogenetic distance matrix
using the Python package dendropy?®.

Chemical data. We include several chemical features of which some are intended as modeling features,
namely chemical properties and molecular representations. The others should only be used to help interpret
modeling results, namely the ClassyFire ontology and the functional use categories.

Chemical properties. We added basic chemical properties from DSSTox*’, the PubChem database? and
through the Python package RDKit". The properties are molecular weight (MW in g/mol), water solubility
(WS in mg/L), melting point (MP in C), number of heavy atoms (i.e., all atoms excluding hydrogen), number of
bonds, double bonds, and triple bonds, number of ring structures, and the number of OH groups. Additionally,
we included the octanol-water partition coefficient (logP, sometimes referred to as logK,,, the logarithm of the
relative solubility of a compound in the solvents octanol and water*!, positive/higher values, indicate a higher
lipophilicity of a compound), and the acid dissociation constant (pKa).

The pKa regulates at which pH a substance dissociates. Since, for some compounds, the pH of the medium
influences the toxicity*?, it is reasonable to include the pKa as a feature to be used together with the medium’s
pH. The pKa values were obtained through the OECD QSAR toolbox (V4.5)*>* via the SMILES. When several
predictions were available, we used their median. Median values above 30 were excluded.

Molecular representations.  Presenting chemical structures to a ML model such that it can be used in an inform-
ative manner poses a challenge. Standard molecular formats such as connection tables and SMILES are not valid
input for most ML models. Chemicals need to be provided in a form “understandable by an algorithm” which
Staker et al.*® refers to as a molecular representation. We used three well-established molecular fingerprints*®:
MACCS", PubChem* and Morgan® fingerprints, a fingerprint developed for toxicity predictions, ToxPrint®,
the molecular descriptor Mordred® as well as the mol2vec embedding®.

Molecular representations can be divided into non-learned and learned representations*. Besides comput-
able features i.e., chemical properties, which we introduced in the previous section, molecular fingerprints are
widely used non-learned representations. Fingerprints are fixed-length, binary vectors where each bit indicates
presence (“17) or absence (“0”) of a substructure. MACCS, consisting of 166 publicly available bits, PubChem,
consisting of 881 bits, and ToxPrint, consisting of 729 bits, are substructure keys-based, i.e., each bit corre-
sponds to a predefined substructure. See these links for the definition of each MACCS bit and PubChem bit.
Additionally, we added bit description files to the repository). The Morgan fingerprint is a circular fingerprint
based on all fragments that can be extracted within a bond radius around each atom of the molecule. These
fragments are then hashed to create fingerprints comparable across chemicals of different size. We used RDKit*
to calculate the MACCS and Morgan fingerprints for all chemicals in the dataset. The Morgan fingerprint was
calculated with a radius of 2 bonds and hashed to 2048 bits. The PubChem fingerprint was extracted as CACTVS
fingerprint using PubChemPy*’. The ToxPrint was extracted using ChemoTyper editor v1.1 and ToxPrints
v2.0%°. Mordred is a collection of molecular descriptors including atom and bond counts, chemical properties
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like molecular weight and logP, and properties calculated from the 2D and 3D structures®'. These descriptors are
calculated using the Python package mordredcommunity®, a community effort to continue the initial software
implementation. We included the 719 molecular descriptors which could be calculated for all chemicals in the
preprocessed dataset.

The last representation is learned. Jaeger et al. developed the molecular embedding mol2vec, which applies
the word embedding word2vec® on substructures derived from the Morgan algorithm. This embedding treats
substructures as if they were words, and molecules as if they were sentences. Jaeger et al. trained a 300 dimen-
sional embedding on 19.9 million compounds, which is available as a Python package via https://github.com/
samoturk/mol2vec and was used to calculate 300-dimensional feature vectors for all chemicals in the dataset.

Chemical ontology from ClassyFire. Chemical structures can be organized into a taxonomical system through
the standardized classification system ClassyFire®. This information can either be retrieved using the ClassyFire
API or the Python package pybatchclassyfire based on InChlIkeys. We consider this feature more useful for the
interpretation of modeling results than for the modeling itself.

Functional use categories. 'The US EPA provides a Chemicals and Products Database (CPDat) containing prod-
uct applications and functional uses for various chemical compounds (December 2020 Release). The database
provides functional uses in two variants. The OECD function is an internationally harmonized functional use
category®, which is suitable for most chemicals in our dataset except for the category “biocide”. Biocides can
be subdivided in insecticides, herbicides, fungicides, antimicrobial agents, and others, which is relevant for our
dataset. This information is contained in the reported functional uses, which are unharmonized data entries.
Please refer to the official documentation® for definitions of the OECD functions.

We processed the data by combining closely related OECD functions as indicated by the description®, e.g.,
dye and pigment are renamed to colorant. The reported functional uses are harmonized in several steps: All
entries are set to lower case and unnecessary white space is removed. Non-informative entries such as “not
reported’, “proprietary’, or “impurity” are removed. The other entries are unified where possible, e.g., entries
starting with “herbicide” are renamed to only “herbicide’, or entries containing the term “catalyst” are renamed
to “chemical reaction regulator” as is the name of the corresponding OECD function. Then, reported functional
uses longer than 30 characters or occurring less than four times are removed. This results in 43 OECD functions
and 174 reported functional uses. For most chemicals, there are several OECD functions and reported func-
tional uses. We provide all of them as well as only the most prevalent ones, i.e., the uses making up more than
20% of the entries for a compound.

The functional use categories should not be included in modeling, but only be used to enable a better under-
standing of modeling results. In fact, its inclusion would constitute a form of data leakage, since, e.g., labeling a
substance group as biocides would correlate well with higher toxicity towards certain species, but the informa-
tion was not transmitted through a chemical feature but through this label.

Further data processing. Overlap between data categories. The data categories, described in the previ-
ous sections, did not necessarily contain a feature value for every data point, e.g., the ECOTOX data contains
1,690 species and 4,772 chemicals after processing but only data for 665 and 270 of those species are available in
TimeTree and AmP, respectively.

This leads to a trade-off between retaining more data points and expanding the feature space. The longest ver-
sion of the dataset contains more data points but has fewer features, whereas the dataset with the highest number
of features retains a far smaller number of data points. Since the bottleneck for environmental risk assessment
models is usually the scarcity of data, we prefer a bigger dataset to a larger feature space and therefore provide a
long core dataset.

Apart from using ML to predict toxicity, we envision our dataset being used for the exploration of other eco-
toxicologically relevant research questions. Therefore, we provide incomplete data tables, i.e., containing missing
values for some features, which are intended for future studies that are not tied to the challenges proposed and
discussed in this paper.

Filter by taxonomic group and effect group.  After all input data was harmonized and pre-filtered, and taxonomic
information as well as chemical properties were added, we filtered the data to only contain acute mortality
experiments for the three taxonomic groups fish, crustaceans and algae. For each taxonomic group, this encom-
passes the corresponding effect groups (Table 1). The endpoints were filtered to only include LC50 and EC50.

Final filtering. The processed data on acute mortality was then filtered to obtain a dataset suitable for mode-
ling. To employ the mol2vec embedding and compare it to the other molecular representations, we only keep
compounds which are compatible with it>. Also, we only keep compounds for which water solubility is available
as we deem it a potentially important modeling feature. Additionally, we remove data points without phyloge-
netic and AmP information. These filtering steps remove around 50% of the processed data and leaves us with a
dataset comprised of predominantly organic chemicals.

Data splittings. Data splitting, i.e., the generation of training and test data subsets, and of cross-validations
folds, can greatly affect model performance. Possible causes are the inherent variability of the data itself and
(non-obvious) data leakage. The latter describes a case where information about the target is introduced which
should not legitimately be used for modeling®’. Data leakage has also been described as a “spurious relationship
between the independent variables and the target variable”'? and leads to overestimated model performance™.
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We discuss different data splitting schemes, of which most account for some sources of data leakage. Ideally,
a combination of chemical and species would only appear in either the training or the test set. Since our dataset
is skewed both with respect to chemicals and species, splits by chemical and species would lead to highly imbal-
anced subsets and are not feasible. We can only reasonably apply a split by either chemical or species, i.e., all data
points belonging to a chemical or species, respectively, are found in either the training or the test set. We focus
on splits by chemical, due to the higher variability in chemicals compared to species and because extrapolating
across chemicals allows us to address the problem of predicting toxicity of untested or yet unknown chemicals.

Split totally at random. The simplest train-test-split can be achieved by random sampling of data points, pro-
vided by us as totally random, which has been the main approach in previous work applying ML to ecotoxicol-
ogy, and generally suffices for a well-balanced dataset without repeated experiments®>***°. For our dataset with
repeated experiments, i.e., data points coinciding in chemical, species, and experimental variables (Fig. 2), the
totally random approach has a high risk of data leakage and the associated overestimated model performances.
With this splitting, the same chemical is likely to appear in both training and test set.

Thus, we present stratified splits as alternatives which ensure that chemicals are not shared between training
and test set, and not between cross-validation folds. We provide splits for 5-fold cross-validation.

Splits by chemical compound. 'The straightforward approach is to split by chemical compound, ensuring that
a chemical is put into either the training or the test set. We provide two variants here, where compounds are
split at random by chemical compound or by occurrence of chemical compounds. For the latter, compounds are
sorted by the number of experiments performed on them, i.e., those with most experiments at the top. Then,
the first five compounds are put into the training set and the sixth is put into the test set. This is repeated with
the subsequent compounds until all are distributed. The five cross-validation folds are filled accordingly, e.g., the
most common compound goes to fold 1, the second most common to fold 2, and so on. With both variants, it is
likely that similar chemicals are shared between the training and test set, and between the cross-validation folds.

Splits by molecular scaffold. Molecular scaffolds can be used to categorize molecules based on their core struc-
ture, i.e., the molecular backbone, notwithstanding side chains and functional groups. Scaffold splitting has
been used in drug discovery® and was deemed to lead to more optimistic modeling outcomes than relying on
random splitting®. We utilize two scaffold types: the Murcko scaffold and the generic scaffold. The Murcko
scaffold reduces a molecular structure to ring systems and the structures connecting these ring systems®2. The
generic scaffold goes one step further by replacing all heteroatoms in the Murcko scaffold with carbon atoms and
all bonds with single bonds. Both scaffold types were calculated using RDKit*.

For both scaffold types, we provide several data splits. Scaffolds are put at random into either training or test
set (scaffold-murcko and scaffold-generic). Here, we follow the procedure described by Yang et al. and put mol-
ecules whose scaffold is more common than half the test size into the training set®’. The others are distributed
at random between training and test set. Additionally, we provide two leave-one-out (LOO) splits where we put
either the most common scaffold (scaffold-murcko-loo-0 and scaffold-generic-loo-0) or the second most common
scaffold (scaffold-murcko-loo-1 and scaffold-generic-loo-1) in the test set and the others in the training set. Also,
we include a “leave-last-out” (LLO) alternative, where we put the least common scaffolds in the test set, until the
test size is reached, and the remaining ones in the training set (scaffold-murcko-llo and scaffold-generic-llo). The
last splitting scheme represents a generalization to new compounds with more exotic structures. We provide
several splits by both scaffold types since this is an area of active research and it is not yet known when and if
splits by scaffold should be used.

We provide 11 splits, including cross-validation folds if applicable, for the data subsets where we train and
test on the same taxa. For the data subsets where we train on crustaceans and algae and test on fish, we do not
provide splits by molecular scaffold. Cross-validation is applicable for totally random, random by chemical com-
pound, by occurrence of chemical compounds, scaffold-murcko and scaffold-generic but not for the LOO and LLO
options. Since the split by occurrence of chemical compounds puts one sixth, i.e., 17%, of the data points in the
test set, we maintain the associated ratio of 83:17 for all train-test-splits to have comparable sizes across the data
subsets.

Data Records

The dataset is available on the Eawag Research Data Institutional Repository (ERIC), the institutional data
repository of Eawag under https://doi.org/10.25678/0008C9". In the final dataset, there are three folders (pro-
cessed, chemicals, taxonomy). All files are provided as csv or tsv files. All data files, including the raw files, are also
part of the code repository https://renkulab.io/gitlab/mltox/adore.

Intermediate files as well as the final files, one for each prediction challenge, can be found in the folder pro-
cessed. We include the intermediate files such that the user can follow the processing steps. They encompass the
processed separate files from ECOTOX for species (ecotox_species.csv), tests (ecotox_tests.csv), results (ecotox_
results.csv), as well as compiled chemical properties (ecotox_properties.csv) in the subfolder before_aggregation.
These files are then combined to get ecotox_mortality_processed.csv and then filtered to get ecotox_mortality_fil-
tered.csv.

For each challenge, we provide a data subset which starts with the name of the challenge as given in Table 3
and ends with _mortality.csv. These datasets contain all information needed for modeling and further columns
to uniquely identify and retrace each entry (Supplementary Table 1).

Additionally, we provide five separate files in the folder chemicals. The chemical ontology (classyfire_out-
put.csv) and the functional use categories (functional_uses_output.csv) can be matched with the data in the
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Name Train on Test on Data split

a-CA2F-same | crustaceans and algae fish by occurrence of chemical compounds
a-CA2F-diff | crustaceans and algae fish by occurrence of chemical compounds
a-FCA2FCA | all data all data by occurrence of chemical compounds
t-F2F fish fish by occurrence of chemical compounds
t-C2C crustaceans crustaceans by occurrence of chemical compounds
t-A2A algae algae by occurrence of chemical compounds
s-F2F-1 Oncorhynchus mykiss (Rainbow Trout) Oncorhynchus mykiss | by occurrence of chemical compounds
s-F2F-2 Pimephales promelas (Fathead minnow) | Pimephales promelas | by occurrence of chemical compounds
s-F2F-3 Lepomis macrochirus (Bluegill) Lepomis macrochirus | by occurrence of chemical compounds
s-C2C Daphnia magna (Water Flea) Daphnia magna by occurrence of chemical compounds
s-A2C Chlorella vulgaris (Microalga) Chlorella vulgaris by occurrence of chemical compounds

« »

Table 3. Prediction challenges. The names of the challenges on the whole dataset start with “@”, those within
a taxonomic group start with “t”, and those on a single species start with “s”. The challenge “a-CA2F-diff”
generalizes both to species and chemicals whereas “a-CA2F-same” only generalizes to species. In contrast,
“a-FCA2FCA” generalizes to neither of them.

challenges files using the InChlkey or the DTXSID, respectively. Three files are explaining the bits of MACCS,
PubChem and ToxPrint (maccs_bits.tsv, pubchem_bits.csv, toxprint_bits.csv). The file tax_pdm_species.csv in the
folder taxonomy contains phylogenetic distance information which can be used for modeling.

Technical Validation
Here, we describe the dataset and its features. Information on how the dataset was compiled can be found in
the “Methods” section. We provide several data subsets related to the proposed prediction challenges presented
in the “Usage Notes” section. The figures and numbers given in this section refer to the comprehensive file
a-FCA2FCA_mortality.csv.

Ecotoxicological Data. Toxicity. The outcome of ecotoxicological experiments is a continuous value, in
our case an EC50 value, or LC50 for mortality. The distributions of the different effects for the three taxonomic
groups are shown in Fig. 3a. The overall spread of EC50 values is comparable across effect groups, especially for
fish and crustaceans. Physiology, only recorded in algae, has a bias towards low EC50 values, which is reflected
in Fig. 3c,where the distribution across toxicity classes is comparable to that across taxonomic groups (Table 4),
while few compounds were non-toxic to algae. This could entail a bias in the compounds tested on algae, either
with the expectation of high toxicity or because algae are more sensitive than the other taxonomic groups.
Similarly, since the database has grown over time, it could hint to historical shifts related to the inclusion of algae
as model organisms. Supplementary Fig. 1 confirms that the first reported tests on algae was done in 1974, 28
years and 10 years later than for fish and crustaceans, respectively. Figure 3b,c visualize the distribution of data
points across the three taxonomic groups for either a binary or a multi-class classification, respectively.

Repeated experiments and reproducibility. ~ As we are dealing with highly variable in vivo data, experiments with
the same experimental conditions can lead to differing results. The dataset contains a large fraction of “repeated
experiments’, i.e., data points that overlap in species, chemical, and the experimental parameters effect type,
media type, observation duration, exposure type and concentration type. As a consequence, our modeling target
EC50 rather resembles a probability distribution than a singular ground truth. We show this in Fig. 2a with a his-
togram of the number of data points sharing a parameter combination. Most experiments have only been done
once or repeated a few times. There are three experimental settings that have been repeated around 80 times
each: the pesticide Trichlorfon (CAS number 52-68-6) has been tested on the rainbow trout (Oncorhynchus
mykiss) 96 times while the insecticide Methoxychlor (72-43-5) has been tested on the brook trout (Salvelinus
fontinalis) over an experimental duration of 24 and 96 hours, respectively, 79 and 82 times. Some of the experi-
mental outcomes vary up to several orders of magnitude, even within this restrictive set of parameter values, as
can be seen in Fig. 2b,which shows experiments repeated at least 25 times. This variability needs to be considered
when evaluating model predictions originating from this data.

Experimental features. Experimental features like media type and observation duration may influence the
experimental outcome. See Supplementary Fig. 2 for an overview of the features and their levels.

Species-related data. In total, there are 203 species across all taxonomic groups of which fish make up
around two third (Table 4). A few species have been tested much more often than most, causing the dataset to
be skewed with respect to species. For fish, those are rainbow trout (Oncorhynchus mykiss), fathead minnow
(Pimephales promelas), and the bluegill sunfish (Lepomis macrochirus) (Fig. 4a). By far the most tested crustacean
species is the waterflea Daphnia magna, followed by another water flea species, Daphnia pulex (Fig. 4b). For algae,
the microalgae Chlorella vulgaris and the green algae Chlamydomonas reinhardtii are the most abundant species
in the dataset (Fig. 4c).
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Fig. 3 (a) Overview of the toxicity distributions across effect groups by taxonomic groups. (b,c) Toxicity classes
across taxonomic groups in a binary and 5-level classification system, respectively.

Taxonomic group | Number of species | N %
Fish 140 26,114 78.1
Crustaceans 17 6,630 19.8
Algae 46 704 2.1
All 203 33,448 100.0

Table 4. Total number of data points after processing. N: number of data points.

Generally, apart from the dominance of a number of model species, the diversity of organisms included in
the dataset is high and many taxonomic sublevels are present. A dendrogram of the species visualizing the phy-
logenetic distances between species are shown in Fig. 4d. The length of lines after branching indicates the dis-
tance between species. This is most striking in the early branching of the algae from the two animalia groups fish
and crustaceans (black line). Even though we consider it a good indicator of species relatedness, the user needs
to consider that the phylogenetic distance matrix cannot straightforwardly be used with every type of model.

Other species-related data are focused on ecology, life-history, and pseudo-data from the DEB theory
framework, originating from the AmP database. The distributions of these species-specific features are shown
in Supplementary Fig. 3. They are only available for fish and crustaceans. Many species are found in several
climate and ecozones, or accept different kinds of food. Therefore, we included all these combinations of lev-
els in the data. The level abbreviations are divided by an underscore and are meant to be reformatted into
multi-hot-encoded matrices for modeling use (Supplementary Fig. 3a). Definitions for the encoding levels are
provided in the Supplementary Tables 3-6. The life history data and the pseudo-data are given in Supplementary
Fig. 3b. The histograms are dominated by the variability in fish species whereas crustaceans cover smaller ranges.
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a Fish b Crustaceans C Algae
Oncorhynchus mykiss -| _ Daphnia magna Chlorella vulgaris
Pimephales promelas - _ Daphnia pulex Chlamydomonas reinhardtii -
Lepomis macrochirus - _ Gammarus pulexq Microcystis aeruginosa 4
Cyprinus carpio - _ Gammarus pseudolimnaeus - Thalassiosira pseudonana -
Ictalurus punctatus - _ Asellus aquaticus 4 Isochrysis galbana -
Poecilia reticulata - _ Lepeophtheirus salmonis 4 Phaeodactylum tricornutum -
$ Cyprinodon variegatus -| _ 8 Homarus americanus - 8 Pandorina morum 4
'8 Carassius auratus - _ -g Penaeus japonicus 4 .g Gomphonema parvulum -
(f-)' Oryzias latipes - _ (% Crangon crangon 4 (% Nitzschia palea
Danio rerio - _ Pacifastacus leniusculus 4 Fragilaria crotonensis 4
Gambusia affinis - _ Gammarus fossarum Anabaena cylindrica 4
Salvelinus fontinalis - _ Eurytemora affinis Achnanthidium minutissimum 4
Oncorhynchus kisutch < _ Leptodora kindtii Ulnaria ulna 4
Oreochromis mossambicus -| _ Homarus gammarus Aphanizomenon flos-aquae -
Oreochromis niloticus -| _ Penaeus semisulcatus Aulacoseira granulata -

i 10 100 1000 10000 10 100 1000 10000 i 10 100 1000 10000
Number of entries Number of entries Number of entries

d

Fig. 4 (a—c) Overview of the top 15 species per taxonomic group. (d) The phylogenetic distances as circular
dendrogram. Line lengths after branching indicate phylogenetic distances.

This is more prominent for the life history features, body length at three stages and reproductive rate, than for
the pseudo-data features. The dataset contains many fish species of which some grow large, whereas the covered
crustaceans all belong to fairly small-bodied taxonomic orders.

The importance of these parameters for modeling is difficult to foresee but we are positive that information
distinguishing species is valuable to at least partly explain variation in the response of animals.

Chemical data. In total, the dataset encompasses ecotoxicological tests on 2,408 chemicals. Substances are
routinely tested on several species and taxonomic groups, which is reflected in the Venn diagram in Fig. 5a. 111
chemicals have been tested in all three taxonomic groups, while 1,905 and 1,444 have been tested on fish, and
crustaceans, respectively, while only 174 chemicals have been tested on algae. Likewise, Fig. 5b visualizes the
imbalance between the number of chemicals tested on different pairings of taxonomic groups and the number of
data points for these tests. As an example, the 111 chemicals tested in all taxonomic groups represent 10,568 data
points, while the 453 chemicals tested just on crustaceans only make up 825 data points.

As with species, some chemicals have been tested much more often than others. Figure 6a—c show the num-
ber of data points by taxonomic group for the top 15 chemicals with the most associated data points. Primarily,
chemicals are tested on fish, then on crustaceans, and lastly on algae. The insecticide Carbaryl (63-25-2) has
been tested most often on fish with almost 600 data points, whereas the pesticide Sodium Pentachlorophenate
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Fig.5 (a) Venn diagram of the 2,408 tested chemicals. As reading example, 914 chemicals were tested only on
fish, 867 chemicals were tested on fish and crustaceans, and 111 chemicals were tested on all taxonomic groups.
(b) Overview of the number of chemicals tested (left) in the different combinations of taxonomic groups and
the related number of data points (right), indicating that many tested chemicals do not automatically translate
to many data points.

(131-52-2) has been tested most often on crustaceans. For algae, the herbizide Atrazine (1912-24-9) makes up
around 15% of the data points.

To better understand the chemical space of our dataset, we look at pairwise similarities between chemicals.
The Tanimoto similarity was shown to be an appropriate choice for similarities based on molecular fingerprints®
and is given as a value between 0 (dissimmilar) and 1 (equal). We calculated the similarity using the MACCS
fingerprint with the BulkTanimotoSimilarity function from the Python package RDKit. Supplementary Fig. 4
depicts a histogram of all pairwise comparisons of the 2,408 chemicals in our dataset, which shows that the
majority of chemicals are fairly dissimilar, with a mean similarity of 0.085 as indicated by the dotted vertical line.

Understanding the chemical space can also be approached using the chemical ontology ClassyFire*, whose
hierarchical structure for our dataset is shown in the icicle chart in Supplementary Fig. 5. 2,250 of the 2,408
chemicals in the dataset could be categorized with ClassyFire. Our dataset mainly consists of organic com-
pounds, which is a consequence of the final filtering step which only includes water soluble and mol2vec com-
patible compounds. The largest superclass of the 17 superclasses, benzenoids, in total makes up more than
a third of the chemicals, followed by organoheterocyclic compounds, and organic acids and derivatives.
The chemicals are further divided into 140 classes and 251 subclasses, thus indicating a wide variety of com-
pounds in the dataset. The selected chemical properties are described in Table 5 and histograms shown in
Supplementary Fig. 6. The ranges of the chemical properties indicated in the histograms are a simple approach to
describe the applicability domain of models trained on the dataset. Predictions for chemicals whose properties
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a Fish d Fish: top Murcko scaffolds
Carbaryl (63-25-2) _ clcceect (N=8300; 564) - _
Fenitrothion (122-14-5) _ No scaffold (N=6129; 533) - _
p,p'-DDT (50-29-3) _ z clece(Ce2eecce2)eet (N=990; 19)- _
Pentachlorophenol (87-86-5) _ 'g clcencet (N=728; 41)+ _
Trichlorfon (52-68-6) _ § clccc2cccec2et (N=718; 20) - _
@‘ Malathion (121-75-5) _ E 0=C(OCc1ccee(Oc2ceeee2)c1)C1CCT (N=715; 13) - _
% Endrin (72-20-8) _ § C1=CC2CC1C1C3CC(C40C34)C21 (N=714; 2)~ _
E Methoxychlor (72-43-5) _ .E; C1CCCCC1 (N=479; 24)- _
-Té Glyphosate-isopropylamine (38641-94-0) _ é 0=C(Nciceeeet)cTeceee! (N=461; 9)+ _
% Azinphos-methyl (86-50-0) _ g O=c1[nH]nnc2ccece2 (N=353; 2) - _
Dieldrin (60-57-1) _ 2 0=510CC2C3C=CC(C3)C2CO1 (N=350; 3)- _
Endosulfan (115-29-7) _ g cincnent (N=326; 19) - _
Sodium pentachlorophenate (131-52-2) _ 3 clenenct (N=302; 7)4 _
3-Trifluoromethyl-4-nitrophenol (88-30-2) _ 0=C1c2ccc3c(c20C2C0c4ccecc4C12)CCO3 (N=285; 1)+ _
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b Crustaceans e Crustaceans: top Murcko scaffolds
Sodium pentachlorophenate (131-52-2)- - ciccocet (N=2216; 414)- _
Sodium dodecyl sulfate (151-21-3)- - No scaffold (N=1542; 383) _
Pentachlorophenol (87-86-5) - @ 0=C(OCc1ceee(Oc2eeece2)e)C1CCT (N=269; 9) _
Deltamethrin (52918-63-5) - -g clecc2oocee2et (N=172; 18) _
Phenol (108-95-2) - % cleee(Ce2eeccc2)ect (N=139; 16)- _
o
§ Carbaryl (63-25-2) - g clconcet (N=131; 19)+ _
E 3,4-Dichloroaniline (95-76-1)- . é cienenct (N=82; 5) _
-Tg Fenvalerate (51630-58-1) . é C1CCCCCT (N=81; 17)+ _
% Fenitrothion (122-14-5) . _L'é 0=C(Ceecooet)OCeTceec(Oc2eeeee2)et (N=77; 4)+ _
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Carbendazim (10605-21-7)- . c1cee(Oc2cccee2)cet (N=45; 16)- -
Parathion (56-38-2) . C1=NCCN1Cclccenct (N=45; 1)+ -
3 200 400 600 T 0 100 1000 10000
Number of data points Number of entries
c Algae f Algae: top Murcko scaffolds
Atrazine (1912-24-9) cecooet (N=220; 49)
Diuron (330-54-1) :] cinenent (N=159; 7)
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Paraquat (4685-14-7) I % O=clcconnt-ciceecet (N=16; 1)
= o
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-TE Isoproturon (34123-59-6) N g clcencet (N=7; 2) :]
% Terbutryn (886-50-0) I g 0=C(Nctncnen1)NS(=0)(=0)ctcceeet (N=6; 3) :]
Bromoxynil (1689-84-5) f é ¢1eee(C20C2(Cn2enen2)c2cccoc2)oct (N=6; 1) :]
3,4-Dichloroaniline (95-76-1) I g 0=C(Ncceeeet)cleceeet (N=5; 1) :]
Pentachlorophenol (87-86-5) I H C1CCCCCt (N=5; 1) :]
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Fig. 6 Top chemicals (a—c) and Murcko scaffolds (d-f) for the three taxonomic groups. Supplementary Table 7
gives an overview of the structures of each scaffold.

fall outside of any of these ranges will not be trustworthy. More advanced approaches to characterizing the appli-
cability domain are discussed elsewhere®.

Benzenoids being the most prevalent chemical superclass coincides with the findings from the Murcko scaf-
folds. There are 525 different Murcko scaffolds in our dataset of which a benzene ring and “no scaffold”, i.e., the
molecule does not contain a ring system, are by far most common for all taxonomic groups (Fig. 6d-f). For
algae, 1,3,5-Triazine (cIncncnl) is more common than “no scaffold”. The latter is a very heterogenous group,
since the only commonality among them is the lack of rings in their structure. The generic scaffold can be
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Chemical property Abbreviation | Unit | Source(s)

Molecular weight MW g/mol | DSSTox*

Octanol-water partition coefficient | logP, logK,,, — RDKit*

Water solubility WS mg/L | DSSTox®

Melting point MP °C DSSTox*

Number of heavy atoms — PubChem?

Number of bonds — manually calculated from PubChem? data
Number of double bonds — manually calculated from PubChem? data
Number of triple bonds — manually calculated from PubChem? data
Number of ring structures — RDKit*

Number of OH groups — RDKit"

Acid dissociation constant pKa — QSAR toolbox*

Chemical ontology ClassyFire>

Functional use category CPDat*

Table 5. Overview of the chemical properties and their sources. CPDat: Chemicals and Product Database.

considered more reductionist by creating even broader scaffold categories. Here, the most common scaffolds are
“no scaffold’, and cyclohexane.

Chemicals associated with different scaffolds produce different toxicity ranges which can be seen by the
different toxicity ranges covered by the top 15 Murcko scaffolds (Fig. 7). The structures of these 15 Murcko
scaffolds are depicted in Supplementary Table 7. The two main scaffolds cover a fairly similar toxicity range,
whereas less-represented scaffolds either mostly represent a narrower or sometimes a broader part of the
toxicity range. Some scaffold are particularly toxic or non-toxic for certain taxonomic groups, e.g., the
O =C(OCclcccc(Oc2eceec2)c1)CICCI scaffold is less toxic to algae than to fish and crustaceans. It is the back-
bone of pyrethroid insecticides, most notably Permethrin, Deltamethrin, and Cypermethrin. On the other hand,
chemicals based on the 1,3,5-Triazine scaffold are more toxic to algae and include primarily herbicides such as
Atrazine, Simazine, and Terbutryn. These findings, apparent from the raw data, underline the informational
value contained in the grouping according to scaffolds.

A relationship between logP and toxicity has been established for a number of chemicals, most commonly
those with a Verhaar classification as non-polar narcotics (Verhaar category I) and polar narcotics (Verhaar
category I1)®>%. While not linear across the whole spectrum of logP values, this relationship forms the basis of
many QSAR models®. These models then are limited in their applicability domain for the logP range for which
this relationship has been established. For ADORE, the relationship of logP and toxicity is shown in Fig. 8 for the
three taxonomic groups. While the relationship is visible, we highlight that this relationship is noisy (indicated
by the range of data points per logP value) and the LC50 cannot be only explained through the logP. The major-
ity of chemicals in ADORE could not be assigned to an informative Verhaar class with the QSAR toolbox* (data
not shown), which is in line with the findings of Ebbrell et al.®®. They reported out of domain categorizations
(Verhaar class V) for 31% of industrial chemicals in their dataset and as much as 70% of active pharmaceutical
ingredients. Our goal with ADORE was to compile a broadly applicable dataset that can be used beyond the
applicability domains of conventional QSARs and not only for specific modes of action. To reduce the potential
for data leakage, we did not include any mode of action classifications in the dataset.

Additional information on the functional use categories is given in Supplementary Fig. 7 as an overview of
the most prevalent OECD functions and their non-harmonized counterpart. For 570 of the 2,408 chemicals
in our dataset, we could determine a functional use. Biocides are by far the most common, making up 43%,
followed by fragrances (11%) and solvents (9%). For the biocides, insecticides are most common (21% of all
chemicals with a functional use category), followed by fungicides (13%, and therefore more common than fra-
grances and solvents), and herbicides (3%). This result is not surprising as an ecotoxicological dataset is inher-
ently biased towards toxic compounds. The information on the most common functional use categories has to
be considered with caution as no function use information is available for most of the data.

Data splittings. We have a closer look at three splitting schemes representative for the three splitting catego-
ries in Fig. 9: totally random (a) where data leakage is expected, by occurrence of chemical compounds (b), and by
Murcko scaffold (c). For each splitting, we compare the distributions for toxicity (as EC50), molecular weight, and
logP for the training and test sets. Totally random splitting results in coinciding distributions of the three param-
eters across both training and test set. Splitting by occurrence and by Murcko scaffold produces EC50 distributions
that cover a similar range but peaking at different EC50 values, which is more pronounced for the splitting by
Murcko scaffold. The distributions for molecular weight and logP are less similar, but generally cover similar
ranges. Therefore, predictions based on these splits originate from the same toxicity range they were trained on.
Intuitively, the model performance should be better when the toxicity range for the test set is included in the range
that was contained in the training set. Exceptions can arise from activity cliffs, structurally similar compounds
that differ strongly in biological activity®”S8.

Intuitively, splitting by scaffold (with the second largest compound group having “no scaffold” due to a lack of
ring structures), presents a very challenging generalization task. During training, the model will only be presented
with a rather heterogenous subset of chemicals that are very different from the chemicals in the other scaffold bins.
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Fig. 7 Effective concentration 50 (EC50, in mg/L) values for the top 15 Murcko scaffolds.
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Fig. 8 Relationship between logP and the effective concentration 50 (EC50, in mg/L) for the three taxonomic
groups. Point transparency is set to 25% to account for overplotting in areas with high point density.

Usage Notes

Prediction challenges. Here, we propose several tasks to be addressed with our dataset, so, ultimately,
results can be compared between modeling studies based on this dataset. For each data subset, we provide the
training and test sets as described in the corresponding “Methods” subsection. We also provide cross-validation
folds if the splitting scheme is suitable for it. Model selection should be performed on the training set, and the test
set should only be used once, at the end of the study, to assess the generalization performance of the model. The
test set must not be used for model training'.

For all challenges, we suggest to split by occurrence of chemical compounds which prevents data leakage
through the same chemicals being both in training and test sets. Splits by scaffolds are worth exploring to gain a
better understanding of how they affect model outcome and whether they are suitable for splitting schemes. We
strongly advise against the use of the totally random split as it will lead to overestimated model performances.
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Fig. 9 Overview of EC50 (log10-transformation of the mass concentration in mg/L), molecular weight (in
g/mol), and logP for three data splittings: a: Totally random, b: by occurrence of chemical compound, and c: by
Murcko scaffold.

Using the whole dataset.  Ultimately, the goal of in silico methods is to replace in vivo experiments, at least with
vertebrates. We propose two ways to approach this. The first option is a generalization to species, i.e., train on
crustaceans and algae, and test the models on fish (Table 3, a-CA2F-same and a-CA2F-diff). If it is possible to
learn from invertebrate and algae in vivo data, which are considered less ethically problematic and more cost effi-
cient, the number of tests on fish may be reduced in the future. This generalization to species can be performed
either on the same chemicals (a-CA2F-same) or on different chemicals (a-CA2F-diff). The latter corresponds
to a generalization to both species and chemicals, which presumably is the hardest challenge we propose. The
second option is to train and test on all data of the three taxonomic groups to improve predictions for the species
and chemicals available in the dataset (a-FCA2FCA).

Within a taxonomic group. The three taxonomic groups might be too different to be modelled together.
Alternatively, we propose prediction challenges within each taxonomic group (Table 3). These challenges may
help to gain a better understanding of mortality within each taxonomic group and to determine whether the
inclusion of species-related features helps to find explainable models with good prediction quality.

On single species.  Since most previous studies focused on single species, we also provide challenges for the
most prominent species for each taxonomic group in our dataset (Table 3). For fish, we provide the top 3 species
whereas for crustaceans and algae, we only provide the top species. For these challenges, species-specific features
are not informative and need to be ignored.

Limitations. We would like to address some limitations that concern the field of predictive ecotoxicology in
general and our dataset in particular.

In vivo data is, by nature, highly variable and our core dataset spans several decades of experimental work
(Supplementary Fig. 1). During that time, several standards and test guidelines, like those from the ISO and
OECD, were instituted to achieve higher reproducibility of experiments. Similarly, not all information desirable
for modeling is contained in the original sources. Generally, the abundance of features comes with the caveat
that not all parameters were recorded in all experiments, resulting in a fair amount of “Not recorded” (NR,
NC) values. For some parameters we remove those entries, for others they make up the majority of entries and
could therefore not be removed, e.g., the organism life stage as shown in Supplementary Fig. 2e. The inclusion
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of an appropriate control treatment is under most circumstances a requirement of the ECOTOX selection pro-
cess'®. Nonetheless, the encoding in the database includes the factors “inappropriate”, “unsatisfactory”, “not
reported”, and “unspecified”. These encodings indicate for which entries the desirable control types, i.e., nega-
tive, positive, and solvent control, were not included in the original study®). Nonetheless, certain data points are
included by ECOTOX, when the use of controls can be deduced from the original source. Here, we decided to
trust the selection criteria for the ECOTOX database, but advise against using control type as modeling feature
(Supplementary Table 1).

Furthermore, the toxicity of different compounds, especially metals, is highly dependent on the medium
composition and medium properties. This behavior is very complex and hard to predict, but to a degree inter-
linked with the acid dissociation constant pKa’. Therefore, we included this parameter such that its impact on
model performance can be studied. Concurrently, isomerism and 3D structures of molecules are not captured
by the molecular representations used here.

Ideally, chemical properties, molecular representations, and species-related information would fully explain
all toxicity outcomes by covering every physical, chemical, and biological dimension of an experiment. This,
however is not the case with the features currently available. Mortality in itself is a highly unspecific endpoint
that can be caused through a plethora of different mechanisms, particularly when considering the differing
biology of the studied organism types fish, crustaceans, and algae. Cheminformatics use cases following a more
mechanistic focus, e.g., modeling the interaction of a molecule with a specific molecular targets such as trigger-
ing a molecular event/receptor response/gene expression change’’; likely have a higher benefit from molecular
representations, since there is an immediate cause-and-effect-relationship between the molecular structure and
the molecular target at hand. With predictive ecotoxicology still in its infancy, this dataset hopefully fosters
exploration and a better understanding of what kind of data is helpful or lacking to further progress the field.
Accordingly, our goal is to help the field of predictive ecotoxicology progress by enabling reproducibility and
comparability across studies based on our dataset.

Model implementation. Here, we highlight best practices and common pitfalls to be considered when
modeling with the ADORE dataset'>. Recently, several researchers have addressed sources of reproducibility
issues in ML-based research!®>73, Checklists on how to circumvent these pitfalls by following best practices
regarding model implementation and reporting have been published?®”+7>. Accordingly, we urge researchers to
adhere to these best practices, to acquaint themselves with common issues, and to strive to serve as positive
examples when implementing and reporting their models, results and conclusions. As previously discussed, the
dataset contains many repeated experiments, increasing the likelihood of data leakage and, as a consequence,
overestimated model performances'’. To avoid this and to ensure comparability of studies based on ADORE,
we urge users to adhere to the exact splittings we provide with the different challenges. This precaution is in line
with the three checkpoints on data leakage by Kapoor et al.” 1. separation of training and test data is maintained
throughout the process and the test set is only used at the very end, e.g., ensure to preprocess features only on
the training data; 2. be mindful of dependencies or duplicates, i.e., do not use the totally random split; 3. feature
legitimacy;, i.e., do not use features that are proxies for the target response (mode of action, labels of the Globally
Harmonized System of Classification and Labelling of Chemicals (GHS) system or other hazard classifications,
etc.)’*. In the glossary, we indicate which features are suitable for modeling.

Code availability

The code used to load and process the input data and generate the output dataset was created and run in Python
3.9 and is made available on https://renkulab.io/gitlab/mltox/adore. The repository contains code on how to load
the data, prepare it for modeling, e.g., create one-hot and multi-hot-encodings for categorical features, and apply
the train-test-split for 5-fold cross-validation. A good starting point are the files in the folder scripts for random
forests (14_analysis_regression_rf.py and 34_analysis_regression_test_rf.py).
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