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The autoregressive neural network architecture of
the Boltzmann distribution of pairwise interacting
spins systems
Indaco Biazzo 1✉

Autoregressive Neural Networks (ARNNs) have shown exceptional results in generation

tasks across image, language, and scientific domains. Despite their success, ARNN archi-

tectures often operate as black boxes without a clear connection to underlying physics or

statistical models. This research derives an exact mapping of the Boltzmann distribution of

binary pairwise interacting systems in autoregressive form. The parameters of the ARNN are

directly related to the Hamiltonian’s couplings and external fields, and commonly used

structures like residual connections and recurrent architecture emerge from the derivation.

This explicit formulation leverages statistical physics techniques to derive ARNNs for specific

systems. Using the Curie–Weiss and Sherrington–Kirkpatrick models as examples, the pro-

posed architectures show superior performance in replicating the associated Boltzmann

distributions compared to commonly used designs. The findings foster a deeper connection

between physical systems and neural network design, paving the way for tailored archi-

tectures and providing a physical lens to interpret existing ones.
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The cross-fertilization between machine learning and sta-
tistical physics, in particular of disordered systems, has a
long history1,2. Recently, the development of deep neural

network frameworks3 have been applied to statistical physics
problems4 spanning a wide range of domains, including quantum
mechanics5,6, classical statistical physics7,8, chemical and biolo-
gical physics9,10. On the other hand, techniques borrowed from
statistical physics have been used to shed light on the behavior of
Machine Learning algorithms11,12, and even to suggest training or
architecture frameworks13,14. In recent years, the introduction of
deep generative autoregressive models15,16, like transformers17,
has been a breakthrough in the field, generating images and text
with a quality comparable to human-generated ones18. The
introduction of deep Autoregressive Neural Networks (ARNNs)
was motivated as a flexible and general approach to sampling
from a probability distribution learned from data19–21.

In classical statistical physics, the ARNN was introduced, in a
variational setting, to sample from a Boltzmann distribution (or
equivalently an energy-based model22) as an improvement over
the standard variational approach relying on the high expres-
siveness of the ARNNs8.

Then similar approaches have been used in different contexts,
and domains of classical23–27 and quantum statistical
physics28–34. The ability of ARNNs to efficiently generate sam-
ples, thanks to the ancestral sampling procedure, opened the way
to overcome the slowdown of Monte Carlo methods for frustrated
or complex systems, although two recent works questioned the
real gain in very frustrated systems35,36.

The use of ARNNs in statistical physics problems has largely
relied on pre-existing neural network architectures which may
not be well-suited for the particular problem at hand. This
approach has been largely favored due to the high expressive
capacity of ARNNs, which can encapsulate the complexity of the
Boltzmann probability distribution, remapped in an auto-
regressive form, within their parameters that, typically, grow
polynomially with system size. To encode this complexity exactly,
however, one might expect the need for an exponentially large
number of parameters.

This work aims to demonstrate how knowledge of the physics
model can inform the design of more effective ARNN archi-
tectures. I will present the derivation of an ARNN architecture
that encodes exactly the classical Boltzmann distribution asso-
ciated with a general pairwise interaction Hamiltonian of binary
variables. The resulting architecture has the first layer’s para-
meters, which scale polynomially with the system size, fixed by
the Hamiltonian parameters. The analytic derivation leads to the
emergence of both residual connections and recurrent structures.
As expected for the exact architecture of the general case, the
resulting deep ARNN architecture has the number of hidden
layer parameters scaling exponentially with the system’s size. In
the general case, it is possible to approximate these hidden layers
with feed-forward neural network structures containing a poly-
nomial number of free parameters. The advantage of this
approach over existing architectures is that the first layer’s
parameters can be fixed by the Hamiltonian, reducing the num-
ber of parameters to be learned and trained. For instance, the
proposed architecture could be used in accelerating Markov chain
simulations23,24.

The quality of the approximation of the Boltzmann distribu-
tion relies on both the architecture of the feed-forward neural
network used and the complexity of the problem being tackled.
However, the physical interpretation of the architecture allows us
to leverage problem-specific knowledge to develop specific feed-
forward neural network architectures. As an example, standard
statistical physics techniques will be used in the following to find
feasible ARNN architecture for specific Hamiltonian. To

showcase the potential of the derived representation, the ARNN
architectures for two well-known mean-field models are derived:
the Curie–Weiss (CW) and the Sherrington–Kirkpatrick (SK)
models. These fully connected models are chosen due to their
paradigmatic role in the history of statistical physics systems.

The CW model, despite its straightforward Hamiltonian, was
one of the first models explaining the behavior of ferromagnet
systems, displaying a second-order phase transition37.

The SK model38 is a fully connected spin glass model of dis-
ordered magnetic materials. The system admits an analytical
solution in the thermodynamic limit, Parisi’s celebrated39 k-step
replica symmetric breaking (k-RSB) solution40,41. The complex
many-valley landscape of the Boltzmann probability distribution
captured by the k-RSB solution of the SK model is the key con-
cept that unifies the description of many different problems, and
similar replica computations are applied to very different
domains like neural networks42,43, optimizations44, inference
problems11, or in characterizing the jamming of hard
spheres45,46.

Thanks to the explicit autoregressive representation of the
Boltzmann distribution, an exact ARNN architecture at finite N
and an approximated architecture in the thermodynamic limit for
the Curie–Weiss model are presented. Both have a number of
parameters scaling polynomially with the system’s size. Moreover,
an ARNN architecture of the Boltzmann distribution of the SK
model for a single instance of disorder with a finite number of
variables will be shown. The derivation will be based on the
k-RSB solution, resulting in a deep ARNN architecture with
parameters scaling polynomially with the system size. The pro-
posed architectures exhibit enhanced performance in sampling
the Boltzmann distribution of the associated models compared to
standard architectures in the literature. This work strengthens the
connection between physical systems and neural network design,
offering a way to devise tailored architectures and a physical
perspective interpretation of existing neural network architecture.

Results and discussion
Autoregressive architecture of the Boltzmann distribution of
pairwise interacting systems. The Boltzmann probability dis-
tribution of a given Hamiltonian H[x] of a set of N binary spin
variables x= (x1, x2, . . . xN) at inverse temperature β is PBðxÞ ¼ e�βH xð Þ

Z ,
where Z ¼ ∑xe

�βH xð Þ is the normalization factor. It is generally
challenging to compute marginals and average quantities when N is
large and in particular, generate samples on frustrated systems. By
defining the sets of variables x<i ¼ x1; x2 ¼ xi�1

� �
and x > i ¼

xiþ1; xiþ2 ¼ xN
� �

respectively with an index smaller and larger than
i, then if we can rewrite the Boltzmann distribution in the auto-
regressive form: PB xð Þ ¼QiP xijx<i

� �
, it becomes straightforward to

produce independent samples from it, thanks to the ancestral sam-
pling procedure8. It has been proposed8 to use a variational approach
to approximate the Boltzmann distribution with trial autoregressive
probability distributions where each conditional probability is
represented by a feed-forward neural network with a set of para-
meters θ, Qθ xð Þ ¼QiQ

θi xijx<i
� �

.
The parameters θ can be learned minimizing the variational

free energy of the system:

F½P� ¼ ∑
xf g
P½x� 1

β
log P½x� þH½x�

� �
: ð1Þ

Minimizing the variational free energy F[Qθ] with respect to the
parameters of the ARNN is equivalent to minimizing
Kullback–Leibler divergence with the Boltzmann distribution as
the target8. The computation of F[Qθ] and their derivatives with
respect to the ARNN’s parameters involve a summation overall
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the configurations of the systems, that grows exponentially with
the system’s size, making it unfeasible after a few spins. In
practice, they are estimated summing over a subset of configura-
tions sampled directly from the ARNN thanks to the ancestral
sampling procedure8. Beyond the minimization procedure, the
selection of the neural network architecture is crucial for
accurately approximating the Boltzmann distribution.

In the parameterization Qθi xi ¼ 1jx<i
� �

of the single variable
conditional probability distribution P xi ¼ 1jx<i

� �
as a feed-

forward neural network, the set of variables x<i is the input, and a
nested set of linear transformations, and non-linear activation
functions is applied on them. Usually, the last layer is a sigma
function σðxÞ ¼ 1

1þe�x , assuring the output is between 0 and 1.
The set of parameters θi are the weights and biases of the
linear transformations. Then, the probability Qθi xi ¼ �1jx<i

� � ¼
1� Qθi xi ¼ 1jx<i

� �
is straightforward to obtain. In the following,

I will rewrite the single variable conditional probability of the
Boltzmann distribution as a feed-forward neural network.

The generic i-th conditional probability factor of the
Boltzmann distribution can be rewritten in this form:

P xijx<i
� � ¼ P x<iþ1

� �
P x<i
� � ¼ ∑x>i

P xð Þ
∑x>i�1

P xð Þ ¼
∑x>i

e�βH

∑x>i�1
e�βH

¼ f xi; x<i
� �

∑xi
f xi; x<i
� � :

ð2Þ
where I defined:

f xi ¼ ± 1; x<i
� � ¼ ∑

x>i
e�βHδxi;± 1: ð3Þ

The δa,b is the Kronecker delta function that is one when the
two values (a, b) coincide and zero otherwise. Now, imposing to
have as the last activation function a sigma function, with simple
algebraic manipulations, we obtain:

P xi ¼ 1jx<i
� � ¼ f 1; x<i

� �
f 1; x<i
� �þ f �1; x<i

� � ¼ 1

1þ f �1;x<ið Þ
f 1;x<ið Þ

¼ σ log f 1; x<i
� �� �� log f �1; x<i

� �� �� � ð4Þ

Consider a generic two-body interaction Hamiltonian of binary
spin variables xi∈ {− 1, 1}, H=−∑i<jJijxixj−∑ihixi, where the
sets of Jij are the interaction couplings and hi are the external
fields. Taking into account a generic variable xi the elements of
the Hamiltonian can be grouped into the following five sets:

Hss ¼ � ∑
s;s0<i

Jss0xsxs0 �∑
s<i

hsxs

Hsi½xi ¼ ± 1� ¼ �Hsi ¼ �ð∑
s<i

Jsixs þ hiÞ

Hil½xi ¼ ± 1� ¼ �Hil ¼ �∑
l>i
J ilxl

Hsl ¼ � ∑
s<i;l>i

Jslxsxl

Hll ¼ � ∑
l;l0>i

J ll0xlxl0 �∑
l>i
hlxl

where the dependence on the variable xi has been made explicit.
Substituting these expressions in Eq. (4), we obtain:

P xi ¼ 1jx<i
� � ¼ σ 2βHsi½x<i� þ logð�ρþi ½x<i�Þ � logð�ρ�i ½x<i�Þ

� �
;

ð5Þ
where:

�ρ±
i ½x<i� ¼ ∑

x>i
e�βð ±HilþHsl ½x<i�þHllÞ ð6Þ

The set of elements Hss cancels out.
The conditional probability, Eq. (5), can be interpreted as a

feed-forward neural network, following, starting from the input,

the operation done on the variables x<i. The first operation on the
input is a linear transformation. Defining:

x1i ¼ 2βHsi ¼ 2βð∑
i�1

s¼1
Jsixs þ hiÞ; ð7Þ

x1il ¼ ∑
i�1

s¼1
Jslxs; ð8Þ

as outputs of the first layer (see Fig. 1), we can write the
conditional probability as a feed-forward neural network:

Pi xi ¼ 1jx<i
� � ¼ σ x1i þ log ρþi � log ρ�i

� � ð9Þ

ρ±
i ¼ ∑

c
e
b±
c þ ∑

N

l¼iþ1
wclx

1
il ð10Þ

As shown in Fig. 1, a second linear transformation acts on the
set of x1il variables. The parameters of the second layer are

b±
c ¼ β ∑

N

l¼iþ1
ð± Jil þ hl þ ∑

N

l0¼lþ1
J ll0x

c
l0 Þxcl ð11Þ

wcl ¼ βxcl ; ð12Þ
where c is the index of the configuration of the set of x>i variables.
This second linear transformation compute the 2N−i possible
values of the exponent in the ρ±

i functions, Eq. (10). Next, the two
functions ρ±

i are obtained by first applying the exponential
function to the output of the second layer. Then, for each of ρ±

i ,
we sum their elements and finally apply the logarithmic function.
As the last layer, the values log ρ±

i and x1i are combined with the
right signs, and the sigma function is applied. The entire ARNN
architecture of the Boltzmann distribution of the general pairwise
interaction Hamiltonian (H2ARNN) is depicted in Fig. 1. The
total number of parameters scales exponentially with the system
size, making its direct application infeasible for the sampling
process. Nevertheless, the H2ARNN architecture shows the
following features:

Fig. 1 The autoregressive neural network architecture of pairwise
interaction Hamiltonian. The diagram shows the autoregressive neural
network architecture of a single Boltzmann conditional probability of a
pairwise interaction Hamiltonian, H2ARNN, Eq. (9). The x<i variables are the
input, the output provides an estimation of the conditional probability
Pðxi ¼ 1jx< iÞ. The first layer computes the x1i and x1il variables, see Eq. (7),
where the weight and bias, directly related to the Hamiltonian parameters,
are shown in orange. The non-linear operators are represented by square
symbols. The width of the second layer increases exponentially with the
system size. The log∑ expðxÞ ¼ log∑ie

xi represents the set of linear
transformations and non-linear activation functions acting on the second
layer. The last layer is the sigma function.
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● The weights and biases of the first layer are the parameters
of the Hamiltonian of the Boltzmann distribution.

● Residual connections among layers, due to the x1i variables,
naturally emerge from the derivation. The importance of
residual connections has recently been highlighted47 and
has become a crucial element in the success of the ResNet
and transformer architectures48, in classification and
generation tasks. They were presented as a way to improve
the training of deep neural networks avoiding the
exploding and vanishing gradient problem. In this context,
they represent the direct interactions among the variable xi
and all the previous variables x<i.

● The H2ARNN exhibits a recurrent structure3,49. The first
layer, as seen in Fig. 1, is composed of a set of linear
transformations (see eq. (7) and (8)). The set of x1il ¼
∑i�1

s¼1 Jsixs variables, can be rewritten in recursive form
observing that:

x1il ¼ x1i�1;l þ Ji�1;lxi�1 ð13Þ
The output of the first layer of the conditional probability
of the variable i depends on the output of the first layer,
x1i�1;l , of the previous i− 1 conditional probability. In
practice, we can explicitly write the following dependence:
Pðxi ¼ 1jx<iÞ ¼ Pðxi ¼ 1jx<i; x1i�1;iþ1; ¼ x1i�1;N Þ. The
recurrent structure can reduce the number of parameters
of the neural network and its total computational cost if
efficiently implemented.

The most computationally demanding part of the H2ARNN
architecture is the computation of the ρ±

i functions, Eq. (10);
their parameters scale exponentially with the system size,
proportionally to 2N−i. However, generally, the ρ±

i functions
can be approximated using standard feed-forward neural network
structures, possessing a polynomial number of parameters. Here,
the input variables are those of the first layer (x1i;iþ1; ¼ x1i;N ),
while the parameters of the first layer remain unchanged,
maintaining the skip connection. Instead of exploring this
possibility, I will show how to derive ARNN architectures for
specific systems. In fact, the ρ±

i function can be interpreted as the
partition function of a system, where the variables are the x>i and
the external fields are determined by the values of the variables
x<i. Based on this observation, in Methods, I will show how to use
standard tools of statistical physics to derive deep ARNN
architectures that eliminate the exponential growth of the number
of parameters.

Computational results. In this section, various ARNN archi-
tectures are compared for their ability to generate samples from
the Boltzmann distribution of the CW and SK models. Addi-
tionally, the correlation between the Hamiltonian couplings and
the first layer parameters of the derived neural networks, trained
on Monte Carlo-generated instances, will be shown. The CWN,
CW∞ and SKRS/kRSB architectures, derived in the Methods sec-
tion, are compared with:

● The one parameter (1P) architecture, where a single weight
parameter is multiplied by the sums of the input variables,
and then the sigma function is applied. This architecture
was already used for the CW system in36. The total number
of parameters scales as N.

● The single layer (1L) architecture, where a fully connected
single linear layer parametrizes the whole probability
distribution, where a mask is applied to a subset of the
weights in order to preserve the autoregressive properties.
The width of the layer is N, and the total number of
parameters scale as N215.

● The MADE architecture15, where the whole probability
distribution is represented with a deep sequence of fully
connected layers, with non-linear activation functions and
masks in between them, to assure the autoregressive
properties. Compared to 1L, MADE offers greater expres-
sive power at the expense of higher computational and
parameter costs. The MADEdc used has d hidden layers,
each of them with c channels of width N. For instance, the
1L architecture is equivalent to the MADE11 and MADE23
has two hidden fully connected layers, each of them
composed of three channels of width N.

The parameters of the ARNN are trained to minimize the
Kullback–Leibler divergence or, equivalently, the variational free
energy (see Eq. (1)). Given an ARNN, Qθ, that depends on a set of
parameters θ and the Hamiltonian of the system H, the
variational free energy can be estimated as:

F½Qθ� ¼ ∑
xf g
Qθ 1

β
logQθ þH½x�

� �

� ∑
x�Qθ

1
β
logQθ þH½x�

� �
:

The samples are drawn from the trial ARNN, Qθ, using ancestral
sampling. At each step of the training, the derivative of the
variational free energy with respect to the parameters θ is
estimated and used to update the parameters of the ARNN. Then
a new batch of samples is extracted from the ARNN and used
again to compute the derivative of the variational free energy and
update the parameters8. This process was repeated until a stop
criterion is met or a maximum number of steps is reached. For
each model and temperature, a maximum 1000 epochs are
allowed, with a batch size of 2000 samples, and a learning rate of
0.001. The ADAM algorithm50 was applied for the optimization
of the ARNN parameters. An annealing procedure was used to
improve performance and avoid mode-collapse problems8, where
the inverse temperature β was increased from 0.1 to 2.0 in steps of
0.05. The code was developed with the PyTorch framework51 and
has been made publicly available on GitHub52. The CWN has all
its parameters fixed and precomputed analytically, see Eq. (18).
The CW∞ has one free parameter for each of its conditional
probability distributions to be trained, and one shared parameter,
see Eq. (21). The parameters of the first layer of the SKRS/kRSB

architecture are shared and fixed by the values of the couplings
and fields of the Hamiltonian. The parameters of the hidden
layers are free and trained. The parameters of the MADEdc, 1L
and 1P architectures are free and trained. The variational free
energy F[Qθ] is always an upper bound of the free energy of the
system. Its value will be used, in the following, as a benchmark for
the performance of the ARNN architecture in approximating the
Boltzmann distribution. After the training procedure, the
variational free energy was estimated using 20,000 configurations
sampled from each of the considered ARNN architectures. The
training procedure was the same for all the experiments unless
conversely specified.

The results on the CW model, with Hamiltonian parameters
J= 1 and h= 0 (see Eq. (14)), are shown in Fig. 2. The panels a, b,
and c, in the first row, show the relative error of the free energy
density (fe[P]= F[P]/N), with respect to the exact one, computed
analytically37, see the Supplementary Note 2 for details, for
different system sizes N. The variational free energy density
estimated from samples generated with the CWN architecture
does not have an appreciable difference with the analytic solution,
and for the CW∞, it improves as the system size increases. The
panel d in Fig. 2 plots the error, in the estimation of the free
energy density for the architectures with fewer parameters, 1P
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and CW∞ (both scaling linearly with the system’s size); It shows
clearly that a deep architecture with skip connections, in this case
with only one more parameter, in the skip connection, improves
the accuracy by orders of magnitude. The need for deep
architectures, already on a simple model as the CW, is indicated
by the poor performance of the 1L architecture, despite its scaling
of parameters as N2, achieving similar results to the 1P. The
MADE architecture obtained good results but was not compar-
able to CWN, even though it has a similar number of parameters.
The panel e in Fig. 2 shows the distribution of the overlaps,
qa;b ¼ 1

N ∑iaibi where ai, bi are two system configurations,
between the samples generated by the ARNNs. The distribution
is computed at β= 1.3 for N= 200. It can be seen that the poor
performance of the 1-layer networks (1P, 1L) is due to the
difficulty of correctly representing the configurations with
magnetization different from zero in the proximity of the phase
transition. This could be due to mode-collapse problems36, which
do not affect the deeper ARNN architectures tested.

In Fig. 3, the results of the SK model, with J= 1 and h= 0 (see
the Hamiltonian definition Eq. (22)) are shown; as before, in
panels a, b, and c in the first row, there is the relative error in the
estimation of the free energy density at different system sizes. In
this case, the exact solution, for a single instance of the disorder
and a finite N is not known. The free energy estimation of the
SK2RSB was taken as the reference to compute the relative
difference. The free energy estimations of SKkRSB with k= 1, 2 are
very close to each other. The performance of the SKRS net is the
same as the 1L architecture even with a much higher number of

parameters. The MADE architecture tested, even with a similar
number of parameters of the SKkRSB nets, see panel d of Fig. 3,
estimate a larger free energy, with differences increasing with N.
To better assess the difference in the approximation of the
Boltzmann distribution of the architecture tested, I consider to
check the distributions of the overlaps q among the generated
samples. The SK model, with J= 1 and h= 0, undergoes a phase
transition at β= 1, where a glassy phase is formed, and an
exponential number of metastable states appears53. This fact is
reflected in the distribution of overlaps that have values different
from zero in a wide region of values of q54. Observing the
distribution of the overlaps in the glassy phase, β= 1.3, between
the samples generated by the ARNNs, panel e in Fig. 3, we can
check as the distribution generated by the SKkRSB is higher in the
region between the peak and zero overlaps, suggesting that these
architectures better capture the complex landscape of the SK
Boltzmann probability distribution54.

The final test for the derived SKkRSB architectures involves
assessing the correlation between Hamiltonian couplings and the
parameters of the first layers. This is done without fixing these
parameters and by using only samples extracted from the
Boltzmann distribution of a single instance of the SK model in
the glassy phase at β= 2. The Metropolis Monte Carlo algorithm
was used to sample, every 200 Monte Carlo sweeps, 10,000 system
configurations. The SK1RSB was trained to minimize the log-
likelihood computed on these samples (see Supplementary Note 4
for details). According to the derivation of the SKkRSB

architecture, the weights of the first layer of the neural network

Fig. 2 Results for Curie–Weiss (CW) model. The CW model considered has J= 1 and h= 0 (see eq. (14)). The system undergoes a second-order phase
transition at β= 1 where a spontaneous magnetization appears37. Six different architectures, the 1P, CW∞, 1L, CWN, MADE21, MADE22, are represented in
the panels in the figure in, respectively, orange (or orange-circle), light-blue (or light-blue-circle), green, yellow, blue and red. a–c Relative error in the
estimation of the free energy for different system sizes with respect to the analytic solution. The CWN architecture has its parameters fixed and
precomputed analytically, and the error is too small to be seen at this scale. The y-axis is plotted on a logarithmic scale down to 10−4 and then linearly to
zero. d The dependence on N of the mean and maximum relative error of the two smaller architectures, 1P and CW∞, both of which scale linearly with the
size of the system. e Distribution of the overlaps of the samples generated by the ARNNs for the CW system with N= 200 variables and β= 1.3.
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should correspond to the coupling parameters of the Hamilto-
nian. Due to the gauge invariance of the Hamiltonian with respect
to the change of sign of all the couplings Js, I will consider their
absolute values in the comparison. The weight parameters of the
first layers of the SK1RSB were initialized at small random values.
As shown in Fig. 4, there is a strong correlation between the
weights of the first layer and the couplings of the Hamiltonian,
even though the neural network was trained in an over-
parametrized setting; it has 60,000 parameters, significantly more
than the number of samples.

Conclusions
In this study, the exact autoregressive neural network architecture
(H2ARNN) of the Boltzmann distribution of the pairwise inter-
action Hamiltonian was derived. The H2ARNN is a deep neural
network, with the weights and biases of the first layer corre-
sponding to the couplings and external fields of the Hamiltonian,
see eqs. (7) and (8). The H2ARNN architecture has skip con-
nections and a recurrent structure. Although the H2ARNN is not
directly usable due to the exponential increase in the number of
hidden layer parameters with the size of the system, its explicit
formulation allows using statistical physics techniques to derive
tractable architectures for specific problems. For example, ARNN
architectures, scaling polynomially with the system’s size, are
derived for the CW and SK models. In the case of the SK model,
the derivation is based on the sequence of k-step replica sym-
metric breaking solutions, which were mapped to a sequence of
deeper ARNNs architectures.

The results, checking the ability of the ARNN architecture to
learn the Boltzmann distribution of the CW and SK models,

indicate that the derived architectures outperform commonly
used ARNNs. Furthermore, the close connection between the
physics of the problem and the neural network architecture is
shown in the results of Fig. 4. In this case, the SK1RSB architecture
was trained on samples generated with the Monte Carlo techni-
que from the Boltzmann distribution of an SK model; the weights

Fig. 3 Results for Sherrington–Kirkpatrick (SK) model. The SK model considered has J= 1 and h= 0 (see the Hamiltonian definition Eq. (22)). The
system undergoes a phase transition at β= 153. Six different architectures, the 1L, SKRS, SK1RSB, SK2RSB, MADE23, MADE32, are represented in the panels in
the figure in, respectively, orange, light-blue, green, yellow, blue, and red. The translucent error bands surrounding the plotted lines represent the 95%
confidence intervals. a–c Relative difference in the estimation of the free energy for increasing system sizes with respect to the free energy computed by
SK2RSB architecture. The results are averaged over 10 instances of the disorder. The y-axis is plotted on a logarithmic scale down to 10−4 and then linearly
to −104. d Scaling with N of the number of parameters of the autoregressive neural network (ARNN) architectures. e Distribution of the overlaps of the
samples generated by the ARNN architectures for the SK model with N= 200 variables and β= 1.5, averaged over 10 different instances.

Fig. 4 Scatter plot of the weights vs the couplings. Scatter plot of the
absolute values of weights of the first layer of a SK1RSB vs the absolute
values of the coupling parameters of the Sherrington–Kirkpatrick (SK)
model. The weights are trained over 10,000 samples generated by the
Metropolis Monte Carlo algorithm on a single instance of the SK model
with N= 100 variables at β= 2. They are initialized at small random values.
The blue line is the fit of the blue points, clearly showing a strong
correlation between the weights and the coupling parameters of the
Hamiltonian. The Pearson coefficient is 0.64 with p-values of 0.0.
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of the first layer of the SK1RSB were found to have a strong cor-
relation with the coupling parameters of the Hamiltonian.

Even though the derivation of a simple and compact ARNN
architecture is not always feasible for all types of pairwise inter-
actions and exactly solvable physics systems are rare, the explicit
analytic form of the H2ARNN provides a means to derive
approximate architectures for specific Boltzmann distributions.

In this work, while the ARNN architecture of an SK model was
derived, its learnability was not thoroughly examined. The pro-
blem of finding the configurations of minimum energy for the SK
model is known to belong to the NP-hard class, and the effec-
tiveness of the ARNN approach in solving this problem is still
uncertain and a matter of ongoing research27,35,36. Further sys-
tematic studies are needed to fully understand the learnability of
the ARNN architecture presented in this work at very low tem-
peratures and also on different systems.

There are several promising directions for future research to
expand upon presented ARNN architectures. For instance,
deriving the architecture for statistical models with more than
binary variables. In statistical physics, the models with variables
that have more than two states are called generalize Potts models.
The probabilistic model learned by modern generative language
systems, where each variable represents a word, and could take
values among a huge number of states, usually more than tens of
thousands possible words (or states), belong to this set of systems.
The generalization of the present work to Potts models could
allow us to connect the physics of the problem to recent language
generative models like the transformer architecture55. Another
direction could be to consider systems with interactions beyond
pairwise, to describe more complex probability distributions.
Additionally, it would be interesting to examine sparse interacting
system graphs, such as systems that interact on grids or random
sparse graphs. The first case is fundamental for a large class of
physics systems and image generation tasks, while the latter type,
such as Erdos–Renyi interaction graphs, is common in
optimization44 and inference problems56.

Methods
Derivation of ARNN architecture for specific models. In the
following subsection, the derivation of ARNN architectures for
the CW and SK models is shown.

ARNN architectures of the Curie–Weiss model. The Curie–Weiss
model (CW) is a uniform, fully connected Ising model. The
Hamiltonian, with N spins, is:

H xð Þ ¼ �h ∑
N

i¼1
xi �

J
N
∑
i<j
xixj: ð14Þ

The conditional probability of a spin i, Eq. (5), of the CW
model is:

PCW xi ¼ 1jx<i
� �

¼ σ 2βhþ 2β
J
N

∑
i�1

s¼1
xs þ logðρþi ½x<i�Þ � logðρ�i ½x<i�Þ

� 	
;

ð15Þ

where:

ρ±
i ½x<i� / ∑

x>i
eβ h± J

Nþ J
N∑s<ixsð Þ∑l>i xlþ βJ

2Nð∑l;l0>i xlxl0 Þ ð16Þ

Defining h±
i ½x<i� ¼ h± J

N þ J
N ∑

i�1
s¼1 xs, at given x<i, Eq. (16) is

equivalent to the partition function of a CW model, with N− i
spins and external fields h±

i . As shown in Supplementary Note 1,
the summations over x>i can be easily done, finding the following

expression:

ρ±
i ½x<i� ¼ ∑

N�i

k¼0
e
b±
ikþwik ∑

s
xs ð17Þ

where we defined:

b±
ik ¼ log

N � i
k

� 	
þ βJ

2N
N � i� 2kð Þ2 þ N � i� 2kð Þ βh±

βJ
N

� 	
ð18Þ

ωik ¼
βJ
N

N � i� 2kð Þ: ð19Þ

The final feed-forward architecture of the Curie–Weiss
Autoregressive Neural Network (CWN) architecture is:

PCWN xi ¼ þ1jx<i
� �

¼ σ bþ ω ∑
i�1

s¼1
xs þ log ∑

N�i

k¼0
e
bþikþwik ∑

i�1

s¼1
xs

 !
� log ∑

N�i

k¼0
e
b�ikþwik ∑

i�1

s¼1
xs

 !" #
;

ð20Þ

where b= 2βh, ω ¼ 2βJ
N are the same, and so shared, among all the

conditional probability functions, see Fig. 5. Their parameters
have an analytic dependence on the parameters J and h of the
Hamiltonian of the systems.

The number of parameters of a single conditional probability
of the CWN is 2+ 4(N− i), which decreases as i increases. The
total number of parameters of the entire conditional probability
distribution scales as 2N2.

If we consider the thermodynamical limit, N≫ 1, the ARNN
architecture of the CW model, named CW∞, simplifies (see

Fig. 5 CWN and CW∞ architectures of a single conditional probability.
Diagrams a and b represent the CWN and CW∞ architectures, respectively.
Both diagrams involve the operation of the sum of the input variables x<i. A
skip connection, composed of a shared weight (represented by the orange
line), is also present in both cases. In the CWN architecture, 2(N− 1) linear
operations are applied (with fixed weights and biases, as indicated in Eq.
(7)), followed by two non-linear operations represented by log∑ expðxÞ. On
the other hand, in the CW∞ architecture, apart from the skip connection,
the input variables undergo a sgn operation before being multiplied by a
free weight parameter and passed through the final layer represented by
the sigma function. The number of parameters in the CWN architecture
scales as 2N2, while in the CW∞ architecture, it scales as N plus a shared
parameter ω for the skip connection and a bias b= 2βh different from zero
only when the external field h is present.
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Supplementary Note 1 for details) to the following expression:

PCW1 xi ¼ 1jx<i
� � ¼ σ bþ ω ∑

i�1

s¼1
xs þ ω1

i sgn ∑
i�1

s¼1
xs

� 	� 	
ð21Þ

where b= 2βh, ω ¼ 2βJ
N are the same as before, and shared, among

all the conditional probability functions, see Fig. 5. The ω1
i ¼

�2βJjmij is different for each of them and can be computed
analytically. The total number of parameters of the CW∞ scales as
N+ 2.

ARNN architectures of the SK model. The SK Hamiltonian, con-
sidering zero external fields for simplicity, is given by:

H xð Þ ¼ �∑
i<j
J ijxixj ð22Þ

where the set of couplings, J , are i.i.d. random variable drawn
from a Gaussian probability distribution PðJÞ ¼ N ð0; J2=NÞ.

To find a feed-forward representation of the conditional
probability of its Boltzmann distribution we have to compute the
quantities in Eq. (10), that, defining h±

l ½x<i� ¼ ± Jil þ x1il½x<i�, can
be written as:

ρ±
i ½x<i� ¼ ∑

x>i
exp β ∑

N

l¼iþ1
h±
l ½x<i�xl þ ∑

N

l0>l>i
J ll0xlxl0

� 	

The above equation can be interpreted as an SK model over the
variables x>i with site-dependent external fields h±

l ½x<i�. I will use
the replica trick53, which is usually applied together with the
average over the system’s disorder. In our case, we deal with a
single instance of disorder, with the set of couplings being fixed.
In the following I will assume that N− i≫ 1, and the average
over the disorder E is taken on the coupling parameters Jll0 with
l; l0>i. In practice, I will use the following approximation to
compute the quantity:

log ρ±
i � E log ρ±

i

� � ¼ lim
n!0

logðE ðρ±
i Þn

� �Þ
n

In the last equality, I use the replica trick. Implicitly, it is assumed
that the quantities log ρ±

i are self-averaged on the x>i variables.
The expression for the average over the disorder of the replicated

function is:

EJ
ll0
ðρ±

i ½x<i�Þn
� �

¼
Z Y

l<l0
dPJll0

∑
fxagNiþ1

exp β ∑
i<l ≤N

1<a<n

h±
l ½x<i�xal þ ∑

i<l<l0 ≤N

1<a≤ n

Jll0x
a
l x

a
l0

0
BBBB@

1
CCCCA

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

ð23Þ
where dPJll0

¼ PðJll0 ÞdJll0 , and the set of xa are the replicated spin
variables. Computing the integrals over the disorder, we find:

EJ
ll0
ðρ±

i ½x<i�Þn
� � / Z Y

a<b

dQabe
�N

2β
2Q2

a;b

Y
l

∑
fxal g

exp β h±
l ½x<i�∑

a
xal þ β ∑

a<b
Qabx

a
l x

b
l

� �
 �" # ð24Þ

where in the last line I used the Hubbard–Stratonovich
transformation to linearize the quadratic terms. See Supplemen-
tary Note 3 or, for instance,57, for details about the formal
mathematical derivations of the previous and following expres-
sions. The Parisi solution of the SK model prescribes how to
parametrize the matrix of the overlaps {Qab}53. The easiest way to
parametrize the matrix of the overlaps is the replica symmetric
solutions (RS), where the overlaps are equal and independent
from the replica index:

Qab ¼
0; if a ¼ b

q; otherwise



;

A sequence of better approximations can then be obtained by
breaking the replica symmetry step by step, from the 1-step
replica symmetric breaking (1-RSB) to the k-step replica
symmetric breaking (k-RSB) solution. The infinite k limit of the
k-step replica symmetric breaking solution gives the exact
solution of the SK model58. The sequence of k-RSB approxima-
tions can be seen as nested non-linear operations59, see
Supplementary Note 3 for details.

Every k-step replica symmetric breaking solution leads to
adding a Gaussian integral and two more free variational
parameters to the representation of the ρ± functions. In the
following, I will use a feed-forward representation that enlarges
the space of parameters, using a more computationally friendly

Fig. 6 SKRS/kRSB architectures of the single variable conditional probability. The diagram depicts the SKRS/kRSB architectures that approximate a single
conditional probability of the Boltzmann distribution in the Sherrington–Kirkpatrick (SK) model. The input variables are x<i, and the output is the conditional
probability QRS/k-RSB xi ¼ 1jx<i

� �
. The non-linear operations are represented by squares and the linear operations by solid lines. The parameters, in the

orange lines, are equal to the Hamiltonian parameters and shared among the conditional probabilities, as indicated in Eq. (7). The depth of the network is
determined by the level of approximation used, with the QRS architecture having only one hidden layer and the Qk-SRB architecture having a sequence of
k+ 1 hidden layers. The total number of parameters scales as 2ðk þ 1ÞN2 þOðNÞ, where the Replica Symmetric (RS) case corresponds to k= 0.
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non-linear operator. Numerical evidence of the quality of the
approximation used is shown in Supplementary Note 3. Overall,
the parameterization of the overlaps matrix, which introduces
free parameters in the derivation, allows the summing of all the
configurations of the variables xi> eliminating the exponential
scaling with the system’s size of the number of parameters. The
final ARNN architecture of the SK model is as follows (see
Supplementary Note 3 for details):

QRS/k-RSB xi ¼ 1jx<i
� �

¼ σ x1i ðx<iÞ þ log ρþ; (RS/kRSB)
i

� 
� log ρ�;(RS/kRSB)

i

� � 
:

ð25Þ
For the RS and 1-RSB cases, we have:

log ρ± ;RS ¼ ∑
N

l¼iþ1
w0 ±
il log σ

�
b1 ±il þ w1 ±

il x1ilðx<iÞ
�

log ρ± ;1RSB ¼ ∑
N

l¼iþ1
w0 ±
il log σ

�
b1 ±il þ w1 ±

il log σ
�
b2 ±il þ w2 ±

il x1ilðx<iÞ
��
:

The set of x1ilðx<iÞ is the output of the first layer of the ARNN, see
eqs. (7)-(8), and ðw0 ±

il ; b1 ±il ;w1 ±
il ; b2 ±il ;w2 ±

il Þ are free variational
parameters of the ARNN (see Fig. 6). The number of parameters
of a single conditional probability distribution scales as 2(k+ 1)
(N− i) where k is the level of the k-RSB solution used, assuming
k= 0 as the RS solution.

Data availability
The data used to produce the results of this study are generated by the code released on
GitHub with https://zenodo.org/records/838340352.

Code availability
The code needed to reproduce the results is released on GitHub with https://zenodo.org/
records/838340352.
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