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Self-propelled particles such as bacteria or algae swimming through a fluid are non-equilibrium
systems where particle motility breaks microscopic detailed balance, often resulting in large-scale
collective motion. Previous theoretical work has identified long-ranged hydrodynamic interactions as
the driver of collectivemotion in unbounded suspensions of rear-actuated (“pusher”) microswimmers.
In contrast, most experimental studies of collective motion in microswimmer suspensions have been
carried out in restricted geometries where both the swimmers’motion and their long-range flow fields
become altered due to the proximity of a boundary. Here, we study numerically a minimal model of
microswimmers in such a restricted geometry, where the particles move in themidplane between two
no-slip walls. For pushers, we demonstrate collectivemotion with short-ranged order, in contrast with
the long-ranged flows observed in unbounded systems. For front-actuated (“puller”) microswimmers,
we discover a long-wavelength density instability resulting in the formation of dense microswimmer
clusters. Both types of collective motion are fundamentally different from their previously studied
counterparts in unbounded domains. Our results show that this difference is dictated by the
geometrical restriction of the swimmers’motion,while hydrodynamic screeningdue to thepresenceof
a wall is subdominant in determining the suspension’s collective state.

Large-scale collective motion is a generic feature of biological and
synthetic active matter systems across lengthscales. On the micro-
scopic scale, one of the most well-studied systems is a suspension of
flagellated microswimmers such as bacteria, algae or spermatozoa1–3.
According to their swimming mechanism, one can differentiate
between pusher- and puller-type microswimmers, where the former
are rear-actuated and expel fluid along their main axis, while the latter
are front-actuated and expel fluid perpendicular to this axis. The
interactions in 3-dimensional (3d), unbounded microswimmer sus-
pensions are often dominated by long-ranged hydrodynamic inter-
actions (HIs)1, which for sufficiently high densities lead to
hydrodynamically induced collective motion, so-called “bacterial
turbulence”4–7, a phenomenon absent in puller suspensions8,9. This
experimentally observed behaviour is in qualitative accordance with
kinetic theories predicting a long-wavelength hydrodynamic
instability above a threshold pusher density nc; in unbounded, 3d

pusher suspensions this threshold density, nc3d , is given by10,11

nc3d ¼
5λ
Bκ

; ð1Þ

where λ denotes the frequency of random bacterial reorientations (tum-
bling), κ the dipolar strength, and B is the Bretherton parameter describing
the swimmer’s shape, where B = 0 corresponds to a sphere and B = 1 to a
needle-like particle12. In their natural habitats, many microswimmers
however reside in geometrically restricted environments, such as micro-
organisms living in porous soil13 or spermatozoa swimming in the
reproductive tract14. Moreover, most laboratory experiments on biological
microswimmers, including those where collective motion is observed, have
been performed in quasi-2d geometries such as near solid surfaces, in thin
films, or in microfluidic devices4,15–22. Thus, direct comparisons between
experimentsperformed in confinedgeometries andpredictions fromkinetic
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theories of unbounded microswimmer suspensions is not straightforward,
due to the long-ranged nature of hydrodynamic swimmer–swimmer and
swimmer–wall interactions. This subtlety is further confirmed by experi-
mental measurements of flow fields around confined microswimmers15

which show that these strongly depend on the details of the swimming
mechanism, swimmer orientation, and nature of the confinement.

In unbounded suspensions, the transition to active turbulence is driven
bymutual reorientation due to the long-ranged dipolar flow fields of pusher
microswimmers, decaying as r−2, where r is the swimmer–swimmer
separation1,23–25. To leading order in r, the flow field at a point r due to a
swimmer with orientation p placed at the origin reads

udðrÞ ¼
κ

8π
3ðp � rÞ2

r2
� 1

� �
r
r3
; ð2Þ

where all the details of the microswimmer itself enter solely via the dipolar
strength κ.

As was first shown by Liron andMochon26, confinement of a Stokeslet
(i.e. a force monopole) between two no-slip walls separated by a distance h
(Fig. 1a) introduces ahydrodynamic screening in thedirectionparallel to the
walls, leading to a faster power-law decay of the flow field. The corre-
spondingflowfield for a force dipole can then be obtained by differentiation
of the Stokeslet expressions26–28, yielding a far-field flow which has the
symmetry of a source quadrupole flow but decays as r−3 for r≫ h15,26. In
Fig. 1b, c, we show the correspondingflowfield obtainednumerically froma
lattice Boltzmann simulation, as described further in the “Methods” section.
In strongly confined systems, where h is comparable to the microswimmer
size, this screening suppresses bacterial turbulence and the dynamics are

instead characterised by qualitatively different forms of collective motion
dictated by the effective friction between the swimmer and the confining
wall29,30. In the opposite limit, corresponding to h→∞, the swimmer’s flow
field retains its bulk form (2), and the system thus corresponds to a 2d sheet
of microswimmers embedded in a 3d fluid. In spite of the absence of
hydrodynamic screening in this limit, in a recent study31 we showed that this
restrictionof the swimmerdynamics to a lower-dimensional space than that
of the flow field induces a novel set of hydrodynamic instabilities that are
qualitatively different from the fully 3d case. In that study, we analysed the
stability of a homogeneous isotropic sheet of microswimmers described
through mean-field kinetic theory, similar to the derivation previously
carried out for 3d bulk suspensions leading to the instability criterion in
Eq. (1)10,11. For a sheet of pushers, we showed that the long-wavelength
instability in the orientationfield leading to active turbulence is transformed
into a short-wavelength one, occurring at a lengthscale comparable to the
typical swimmer-swimmer separation. Additionally, we showed that a 2d
sheet of pullers embedded in a 3d fluid exhibits a novel instability in the
microswimmer density field. Unlike the pusher instability, this instability
occurs on the scale of the system size and is enabled by the fact that the
in-plane component u∥ = (ux, uy) of ud in Eq. (2) is effectively compressible
(i.e.∇2d ⋅ u∥≠ 0) evenwhen the 3dfluid is incompressible,making pullers act
as effective in-plane sinks and pushers as sources. This previously neglected
effect is likely responsible for the clustering of active particles near boundaries
observed previously in experiments32 and simulations33 where the particle
dynamics were restricted to a lower dimension than the swimmer flow field
due to the presence of afluid or a solid boundary. In equilibrium systems, this
type of restriction has been shown to induce a substantial increase in the
collective diffusion coefficient for Brownian colloids compared to the bulk
case34–36. The analytic results in ref. 31 focussed on the linear instability of the

Fig. 1 | A single microswimmer between two no-
slip walls. a Schematic representation of the model
system: the microswimmers are restricted to move
in the mid-plane of a box of lateral dimensions
H ×H and confined by two no-slip walls separated
by a height h. bNumerically calculated in-plane flow
field of a confined pusher dipole; due to the con-
finement, the far-field flow has a quadrupolar sym-
metry. Vector colours indicate the relative
magnitude of the flow on a logarithmic scale from
black to yellow. cMagnitude u∥ of the angle-aver-
aged, in-plane flow field u∥ in b: for r≫ h, the flow
field decays as r−3 instead of r−2.
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mean-field orientation and density fields, and therefore did not characterise
the ensuing, nonlinear steady states, which requires numerical simulations;
this topic is instead the focus of the present study.

The effects of confinement on collective motion in microswimmer
suspensions have previously been addressed mainly using particle-based
simulations of both dipolar microswimmers37–39 and “squirmers” that swim
through tangentially imposed flow fields along their bodies40–45. These stu-
dies demonstrated a range of collective phenomena depending on the
properties of the flow field, including polar flocks39, dynamical clusters42,43,
and chaotic flows37,38,44. However, due to the complexity and specific details
of these swimmer models and how their confinement is treated computa-
tionally, a full analysis of the underlying causes behind the observed col-
lective phenomena and their connection to system geometry is challenging.
In this work, we seek to remedy this difficulty and instead use a minimal
model designed to investigate the combined effects on collective motion
from geometric restriction of the swimmer dynamics and hydrodynamic
screening by the boundaries. The swimmers are restricted tomove in a two-
dimensional sheet in themid-plane between two solid, no-slipwalls (Fig. 1a)
separatedby afluid layerofheighth, with each swimmer actingwith apairof
equal and opposite point forces on the fluid. We assume that the confine-
ment height h is significantly larger than themicroswimmer dimensions, so
that friction between the swimmer body and the confining walls can be
neglected29,30. In the limit h→∞, we recover a 2d sheet of microswimmers
interacting via 3d flow fields, coinciding with the system studied by mean-
field kinetic theory in ref. 31. The assumption that the swimmer positions
and orientations are perfectly restricted to the midplane is clearly a sim-
plification, introduced as a well-controlled way of isolating two important
effects occurring exclusively for microswimmers swimming near bound-
aries, namely (i) effective in-plane compressibility and (ii) hydrodynamic
screening of dipolar flows. While a sheet of microswimmers cannot be a
priori expected to remain stable in the absence of external forces46, in
experimental realisations this restriction of the swimmer dynamics is
instead maintained via additional physical effects such as gravity, surface
tension, or activity, that ensure that the microswimmers are restricted to
move near the boundary32,47,48.

For pushers, we find that the nature of collective motion changes from
one dominated by large-scale flows with correlation lengths comparable to
the system size as observed in 3d49,50 into motion dominated by small-scale
vortices comparable in size to that of the individual swimmer. This beha-
viour is largely insensitive to the film thickness h, and is thus an effect of the
2d restriction of the swimmer dynamics rather than of the hydrodynamic
screening caused by the walls. For pullers, we observe a discontinuous
transition into dense puller clusters with an aster-like structure, corre-
sponding to a predicted density instability for pullers restricted to a 2d sheet
in a 3d fluid. For h→∞, the observed onset density nc2d coincides with the
analytically predicted one. nc2d furthermore increases significantly with
decreasing h, showing that hydrodynamic screening due to confinement
acts to partially suppress this long-wavelength density instability. In sum-
mary, our results show that the geometric effect of restricting the swimmers’
motion to a two-dimensional subspace of the 3d bulk system is dominant in
determining the dynamical state of geometrically confinedmicroswimmers,
while the effect of hydrodynamic screening due to the presence of a
boundary37,38 is subdominant.

Results and discussion
Model description
We consider N microswimmers swimming in a two-dimensional plane
centred between two parallel, flat walls separated by a distance h in a
simulation boxwith a quadratic base of side lengthH (see Fig. 1a), yielding a
two-dimensional number density n2d =N/H2. The swimmer positions and
orientations are restricted to the mid-plane of the simulation box (z = h/2)
andperiodic boundary conditions are applied in thex and ydirections,while
no-slip boundary conditions are applied in the z direction. Each swimmer
exerts equal and opposite forces ±F separated by a distance l on the fluid,
yielding a dipole strength κ = ±Fl/μ, where F = ∣F∣ and μ is the dynamic

viscosity of the suspending fluid; we use the convention that the micro-
swimmer is considered a pusher if κ > 0 and a puller if κ < 0. The position ri
and orientation pi of swimmer i are governed by the equations of
motion49,51,52:

_ri ¼ vspi þ UðriÞ; ð3Þ

_pi ¼ ðI� pipiÞ � ½Wþ BE� � pi: ð4Þ

Here, vs is the (constant) swimming speed, U(ri) is the fluid velocity
evaluated at the position of swimmer i, W and E are, respectively, the
vorticity and rate-of-strain tensors, and I is the unit tensor. In addition to
reorientation by the fluid, the microswimmers also change direction by
random reorientation (tumbling) with Poisson-distributed frequency λ.
Jeffery’s equation (4) describes the angulardynamics of an elongatedparticle
with shape parameter B in a shear flow, and, unless otherwise stated, we
consider the limit B = 1, corresponding to a needle-like swimmer of infinite
aspect ratio. We solve the model using the particle-based lattice Boltzmann
(LB) method described previously50,52; further details of the model para-
metrisation and units are presented in the “Methods” section.

Pusher suspensions
We begin by considering pusher suspensions, which are well-known to
exhibit a transition to bacterial turbulence in unbounded suspensions. In
Fig. 2a, we show the average of the fluid velocity variance hU2i=hU2i0 for
pusher suspensions as a function of the swimmer density, with hU2i0 being
the corresponding quantity for a suspension of noninteracting swimmers,
i.e., with all terms containingU in the equationsofmotion (3) and (4) turned
off. We can see that, for both film thicknesses studied (h = 5 and h = 50),
hU2i=hU2i0 starts to increase significantly above unity around n2d = 0.1,
indicating collective motion. Just as in unbounded, 3d pusher
suspensions49,50, this collective motion is driven by mutual reorientations:
When changing the rotational dynamics (4) to that corresponding to
spherical swimmers with B = 0 (blue line in Fig. 2a), the average fluid
velocity variance decreases dramatically, indicating a suppression of col-
lective motion. In Fig. 2b, we furthermore show a snapshot of the fluid
velocity and vorticity fields for a pusher suspension deep in the turbulent
regime (n2d = 2.0), together with the corresponding velocity field in an
unbounded 3d suspension (Fig. 2c). Even though these two snapshots show
systems at similar distances from the respective onset densities
(n2d=n

c
2d ≈ 5:0 and n3d=n

c
3d ≈ 4:7, respectively), it is clear that the collective

motion in the microswimmer sheet is dominated by much smaller-scale
flow structures than in the bulk 3d system, as further emphasised in Sup-
plementary Movies 1 and 2, respectively, showing collective motion in 2d
and 3d.

In order to quantify this observeddifference, in Fig. 3weplot the spatial
correlations of the fluid velocity, c(R) = 〈U(0) ⋅U(R)〉, where the angular
brackets denote a temporal and spatial average over all points for which
∣R∣ = R. Figure 3a shows the evolution of c(R) as the density n2d is increased
in a sheet ofmicroswimmers confined between twowalls withh = 50.As the
pusher density is increased, the correlation function develops a clear
minimum, indicative of vortical flows with a selected lengthscale. The
minimum in c(R) occurs at a lengthscale of ~ 7 times the swimmer size, i.e.,
significantly smaller than the system dimensions (H = 100, h = 50) but
comparable to the microswimmer run-length. This is qualitatively different
from the corresponding correlation function in 3d (black line in Fig. 3a),
where c(R) instead decays algebraically over lengthscales comparable to the
system size50. In Fig. 3b, we furthermore show c(R) deep in the turbulent
regime calculated for different film thicknesses varying from h = 5 to h = 50.
For all values ofh, it is clear that our qualitative observationsmade forh = 50
are essentially unchanged: as the film thickness is decreased, the minimum
of c(R) is only slightly shifted towards shorter distances, showing that the
typical lengthscale of collective motion is largely unaffected by the presence
of in-plane hydrodynamic screening. This is confirmed by the analysis in
Fig. 3c,which shows thepositionof theprimaryminimumas a functionofh:
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the position of the minimum quickly saturates at a value of ~7 times the
swimmer length, comparable to the bacterial run length but much smaller
than the system dimensions, around h ~ 20. This shows that the short-
ranged nature of collective motion is not an effect of hydrodynamic
screening, but rather an effect of the restricted dynamics of the swimmers, as
we discuss further below. In Fig. 3d, we finally show the two-dimensional
swimmer-swimmer nematic order parameter S(r), defined by
SðrÞ ¼ 2hcos2θir � 1, where θ is the angle between the orientations of two
swimmers separated by a distance r. Clearly, for both extremes of the film
thickness (h = 5 and h = 50), S(r) is qualitatively very similar to c(R),
showing that thefluid correlations are drivenbyhydrodynamically induced,
short-ranged nematic ordering between pushers. The nematic order is less
pronounced and decays faster than in 3d, in spite of the larger tendency for
close encounters that lead to nematic alignment between swimmers in 2d
compared to in 3d.

Further insight can be gained by analysing the above results in light of
our recent analytical predictions from kinetic theory31, where we showed
that 3d pushers restricted to a 2d plane exhibit a hydrodynamic instability
due to the mutual, in-plane reorientation induced by HIs. Differently from
2d or 3d unbounded bulk suspensions, the most unstable wavenumber kc
corresponds to the smallest wavelength available in the system, i.e. kc→∞.
While the choice of this small-scale cutoff is not a priori obvious, we chose
the corresponding lengthscale, lc = 2π/kc, to correspond to the average
swimmer-swimmer separation, below which the continuum description of
the system breaks down. This assumption leads to the following expression
for the critical density nc2d :

nc2d ¼
4
π

λ

Bκ

� �2=3

þ 2
ffiffiffi
2

p vs
Bκ

; ð5Þ

Uω n3d = 0.5n2d = 2.0

a

b c

Fig. 2 | Collective motion in a layer of pushers. a Fluid velocity variance 〈U2〉 for
pushers normalised by the corresponding noninteracting value hU2i0 for two values
of h, as indicated. Blue symbols show results for spherical swimmers with B = 0, and
the vertical dashed line indicates the predicted onset density for B = 1 from Eq. (5).
b, c Snapshots of the fluid velocity field for 2d confined (b) and bulk 3d (c) pusher
suspensions deep inside the collective motion regime, corresponding to n2d = 2.0
and n3d = 0.550, respectively. The quasi-2d and 3d simulation boxes have the same
lateral dimensions H = 100, and the former uses h = 50. The black arrows show the
in-plane fluid velocity and the colours the vorticity (quasi-2d) and out-of plane
velocity (3d), respectively.

Fig. 3 | Spatial correlations in a layer of pushers are short-ranged. a, bNormalised
spatial correlation functions c(R) of the fluid velocity in two dimensions for pusher
suspensions for a h= 50 and varying density n2d, and b for varying box dimensions h and
n2d= 5.0. The grey line/square symbols in a shows the corresponding c(R) in a 3d bulk

suspension in the turbulent regime (n3d= 0.5)
50. c Position of the primary minimum in

c(R) as a function of h, obtained by a cubic splines fitting to the data in b (inset).
d Nematic order parameter S(r) of pushers for two different film heights h at n2d= 5.0.
The black line shows the corresponding result in the same 3d suspension as in a.
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where the first term on the right-hand-side is due to the short-range cutoff
introduced by the finite value of kc. Note that, unlike the bulk 3d instability
criterion (1), the criterion for a sheet of pushers explicitly depends on the
swimming speed vs, in addition to the dipole strength κ and tumbling rate λ.
Similar to the bulk 3d case, the critical density diverges as B→ 0, illustrating
that the instability is driven by swimmer reorientation and therefore is
absent for spherical swimmers, as illustratednumerically inFig. 2a. Inserting
our simulation parameters yieldsnc2d ¼ 0:40, which is shownby the vertical
line in Fig. 2a.While the very gradual increase to collective motionmakes it
difficult to quantitatively verify the instability criterion in (5), the predicted
critical density coincides well with the density region where the velocity
variance starts increasing significantly above its noninteracting value (note
the double logarithmic scale in Fig. 2a). The observations made in Fig. 3
furthermore makes it clear that the short-wavelength nature of the pusher
instability manifests itself as a qualitatively different form of collective
motion than in bulk 3d systems. Since the analysis in ref. 31 corresponds to
the limit h→∞, it furthermore supports the notion that this is not an effect
of hydrodynamic screening of the in-plane flows, but rather of restriction of
the microswimmer dynamics to a 2d subspace of the 3d fluid.

Puller suspensions
We now turn to the case of puller suspensions in the same quasi-2d geo-
metry, where we observe a distinctly different form of collective behaviour.
For large enoughdensitiesnc2d , a suddendestabilisationoccurs in the system,
whereby localised, dense microswimmer clusters form (see Fig. 4a and
SupplementaryMovies 3 and 4). As shown in Fig. 4b, the internal structure
of these clusters is aster-like, with pullers pointing their heads towards the
centre of each cluster. In the plane of the swimmers, this leads to a sink-like
flow field around each cluster (Fig. 4c), structurally similar to an array of+1
defects, separated by lines of low in-plane velocities where the fluid

recirculates. The sink-like flows attract additional swimmers and eventually
leads to cluster coalescence, although the late-stage coarsening is too slow for
us to definitively assess the nature of the steady state. The flow field in the z
direction (Fig. 4d) points out of the swimmer plane above and below each
cluster in order to satisfy the overall incompressibility of thefluid.Unlike the
pusher case, this instability is fully driven by mutual swimmer-swimmer
advection rather than reorientation, verified by the fact that the clustering
completely disappears when the advection term in the swimmer dynamics
(3) is turned off.

The above observations are in line with the derived hydrodynamic
instability for pullers in ref. 31. There, we showed that pullers confined
to move in a 2d plane are unstable to density fluctuations, and that
the instability occurs at the longest wavelength available to the system.
In the case of a vertically unbounded fluid (h→∞), this wavelength
corresponds to the lateral system size H, leading to a critical density nc2d
given by

nc2d ¼
8π
H

v2s
λjκj : ð6Þ

This criterion shows that a sheet of pullers is unstable for anydensity in
the infinite-system limitH, h→∞. Unlike the pusher instability in Eq. (5),
nc2d is independent of the shape parameterB, showing that it is indeeddriven
by interparticle advection rather than reorientation. To test the prediction of
Eq. (6), in Fig. 5a we plot the observed onset density nc2d for clustering as a
functionof thefilmheighth, wherenc2d is definedas the lowest densitywhere
a random initial configuration of microswimmers goes unstable towards
clustering. Since the instability is a long-wavelength one, it is strongly
affected by the hydrodynamic screening induced by confinement, which
considerably increases nc2d for small h. As h is increased, the onset density

Fig. 4 | Clustering in a layer of pullers. a Snapshots
of cluster formation in a sheet of pullers at three
consecutive times after initialisation from a random
configuration at h = 25 and n2d = 5.0.
(b) Visualisation of the microswimmer orientation
after clustering. The swimmers are visualised as
rods, with their swimming direction in yellow; note
that, for visualisation purposes, only a small subset
of the swimmers in each cluster are shown.
c, d Velocity field in c and perpendicular to (d) the
plane of the swimmers for the same configuration as
in b. The location of the yz-cut is indicated by the red
dashed line in c. Note that puller clusters act as
effective sinks in the swimmer plane, while expelling
fluid into the z-direction.
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gradually decreases, and for h =H = 100 reaches the theoretically predicted
value from Eq. (6) (dashed line in Fig. 5a) both for needle-like (B = 1) and
spherical (B = 0) swimmers. The strong h-dependence of the dynamics is
also evident in the kinetics of the clustering and subsequent coarsening (see
Supplementary Movies 3 and 4), which become significantly faster as h is
increased. In Fig. 5b, we furthermore showhysteresis curves, where the total
density of the systemis gradually changedbyfirst adding and then removing
swimmerswith respect to the previous configuration, and letting the system
reach steady state at each new density. Both film thicknesses exhibit strong
hysteresis effects, highlighting the discontinuous nature of the transition, in
stark contrast with the collective motion in pusher suspensions where we
observe no history-dependent effects.

The very high microswimmer densities observed in the point-like
puller clusters after the instability are clearly not representative of actual
microswimmer suspensions due to the absence of excluded volume
interactions and near-field HIs. Thus, studying the internal dynamics of
the clusters after the instability is not physically meaningful. Never-
theless, due to its long-wavelength nature and since the puller instability
occurs at arbitrarily dilute concentrations (nc2d ! 0 as H→∞), the far-
field description remains relevant for describing the onset of clustering
in real-world realisations of puller suspensions. We finally note that the
occurrence of aster-like clusters in puller suspensions was previously
observed by Li and Ardekani53; these were however observed in bulk 2d
suspensions where in-plane flow fields are fully incompressible, and
must therefore be due to a different physical mechanism than those
observed here.

Conclusions
In this work, we have studied the combined effects of in-plane restriction
and hydrodynamic screening on the collective motion of microswimmer
suspensions, using a minimal dipolar swimmer model of biological
microswimmers such as bacteria andalgae.The swimmerswere restricted to
move in the mid-plane between two rigid, non-slip walls with varying
separation h to qualitatively mimic the effect on collective motion from
confinement near a solid or fluid interface. While simplistic, this setup
allows us to carefully test the combined effects of (i) geometric restriction of
the swimmer dynamics to a 2d plane, and (ii) hydrodynamic screening due
to the confinement by no-slip walls on the ensuing collective motion. Our
results are compatible with the hydrodynamic instabilities in a sheet of
microswimmers derived using mean-field kinetic theory in the unconfined
(h→∞) limit31 and supports the interpretation of these instabilities as
indicators of the onset of collective motion. This connection is however not
obvious a priori: while the linear pusher instability in 3dhas generically been
interpreted as being equivalent to the onset of bacterial turbulence in
unconfined systems9, a general connection between such instabilities and
the ensuing, strongly nonlinear states is not possible. Firstly, the pusher
instability occurs at short scales, where it is unclear whether the coarse-
graining procedure used to derive the kinetic theory is accurate. Secondly,
the analytical model neglects the effect of hydrodynamic screening due to
confinement, where our numerical results indicate that the observed col-
lective behaviour is indeed qualitatively robust even in the presence of
physical boundaries.

For a sheet of pushers, our results show that the short-wavelength
hydrodynamic instability corresponds to a significantly different type of
collectivemotion characterised by small-scale vortical flows compared to in
3d unbounded suspensions. In the latter case, the emerging lengthscales are
much larger than themicroswimmer size, and are expected to diverge close
to the onset to collective motion50. For the model parameters used here,
chosen to mimic those of E. coli, the critical density nc2d≈0:4 from Eq. (5)
roughly corresponds to an experimental number density of 0.1 μm−2, which
is relatively high but not unphysical: assuming a film height of h = 5 μm, it
corresponds to a volume density of ~2 × 1010 mL−1, comparable to experi-
mental E. coli densities54. The emerging picture of short-ranged collective
motion in a microswimmer sheet naturally raises the question of whether
the far-field hydrodynamic picture used here remains relevant for
describing active turbulence in films or other geometrically restricted
microswimmer systems. The fact that the instability in a sheet of pushers
occurs at wavelengths comparable to the swimmer size means that the far-
field HIs will likely be outcompeted by near-field HIs and non-
hydrodynamic forces such as excluded volume. Since these interactions are
more specific to each organism than the generic far-field flows, our results
indicate that, differently from dilute 3d suspensions, quantitative predic-
tions for confined systems are unlikely to be accessible using generic
microswimmer models.

For sheets of pullers,we see evenmore strikingdifferences compared to
3-dimensional systems, where no collective behaviour is present for pullers.
For pullers restricted to a 2d sheet, we observe a sharp transition to a
clustered state, occurring at a density that decreases with h. The critical
density for this advection-driven onset of clustering is in quantitative
accordance with predictions from mean-field kinetic theory in the uncon-
fined (h→∞) limit31, again validating our interpretation of this hydro-
dynamic instability. The density instability highlights a peculiar property of
swimming near a confining wall: since swimmers can expel fluid into the
third dimension, the in-plane flow fields are effectively compressible with-
out violating the global incompressibility condition, leading to significantly
enhanced density fluctuations compared to in unbounded microswimmer
suspensions, where no density instabilities are present.

To summarise, we have demonstrated a number of striking differences
betweencollectivemotion inbulk and inmicroswimmersmoving in aplane.
Since our results take account for two generic aspects of microswimmers
moving in confined geometries, they highlight that the details of both the
sample geometry and swimmer dynamics need to be carefully considered

Fig. 5 | Clustering behaviour in a puller layer depends strongly on the confine-
ment height. aMeasured onset density nc2d for clustering in puller suspensions as a
functionof thefilm thicknessh. Ash approaches the lateral systemsizeH,nc2d approaches
the theoretical value from Eq. (6) (dashed line, nc2dðhÞ=nc2dðh ! 1Þ ¼ 1), valid in the
h→∞ limit. The orange triangle shows the clustering density measured for B = 0,
corresponding to spherical swimmers, illustrating that the instability is independent of
swimmer shape. bHysteresis curve for pullers, showing the normalised fluid velocity
variance for two different film thicknesses while cycling the total density first upwards,
then downwards, as indicated. The system density was increased (decreased) by adding
(removing) swimmers in randompositions and then letting the system reach steady state
at the new density. Note the significant hysteresis effects due to the discontinuous nature
of the transition.
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when analysing experimental and computational results in active systems
dominated by long-ranged interactions.

Methods
We solve the model using the particle-based LB method described
previously50,52. In LB units, measured in terms of the lattice spacing Δx and
timestepΔt, the swimmers have a length l = 1and swimwith a constant speed
of vs = 10

−3. We furthermore used λ = 2 × 10−4, F = 1.55 × 10−3, and μ = 1/6.
In these units, we used a lateral system size ofH= 100 while the film height
wasvariedbetweenh = 5and100.The swimmers interact solely through their
long-ranged flow fields, where the divergence is numerically regularised as
described in ref. 52, and possess no additional, non-hydrodynamic interac-
tions. Although this is obviously a simplification compared to real systems,
this choice allowsa systematic studyof aminimalmodel systemwitha limited
number of free parameters, in a spirit similar to the Vicsek model of polar
flocks55. The parameters correspond to a reduced run length vs/(λl) = 5 and
velocity field strength Flλ2=ðμv3s Þ ¼ 0:37, which are comparable to the
corresponding quantities in E. coli suspensions frequently used in experi-
ments on bacterial turbulence. All results are presented in terms of the
(dimensional) 2dmicroswimmerdensityn2d=N/H

2, while lengths and times
are non-dimensionalised using the swimmer length l and persistence time
l/vs, respectively. For comparison, we also included some results obtained
from unbounded, 3d pusher suspensions, as described previously in ref. 50.

Data availability
Data sets generated during the current study are available from the corre-
sponding author on reasonable request.

Code availability
The lattice Boltzmann software used to generate data for the study is
available upon request from the corresponding author.
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