
1

Avoidance of Concave Obstacles
through Rotation of Nonlinear Dynamics

Lukas Huber1, Jean-Jacques Slotine2, Aude Billard1

Abstract—Controlling complex tasks in robotic systems, such
as circular motion for cleaning or following curvy lines, can
be dealt with using nonlinear vector fields. This paper intro-
duces a novel approach called the rotational obstacle avoidance
method (ROAM) for adapting the initial dynamics when obstacles
partially occlude the workspace. ROAM presents a closed-form
solution that effectively avoids star-shaped obstacles in spaces of
arbitrary dimensions by rotating the initial dynamics toward the
tangent space. The algorithm enables navigation within obstacle
hulls and can be customized to actively move away from surfaces
while guaranteeing the presence of only a single saddle point
on the boundary of each obstacle. We introduce a sequence
of mappings to extend the approach for general nonlinear
dynamics. Moreover, ROAM extends its capabilities to handle
multi-obstacle environments and provides the ability to constrain
dynamics within a safe tube. By utilizing weighted vector-tree
summation, we successfully navigate around general concave
obstacles represented as a tree-of-stars. Through experimental
evaluation, ROAM demonstrates superior performance in mini-
mizing occurrences of local minima and maintaining similarity to
the initial dynamics, outperforming existing approaches in multi-
obstacle simulations. Due to its simplicity, the proposed method
is highly reactive and can be applied effectively in dynamic
environments. This was demonstrated during the collision-free
navigation of a 7-degree-of-freedom robot arm around dynamic
obstacles.

I. INTRODUCTION

Reactive motion plays a crucial role in numerous real-world
robotics applications. When operating outside the controlled
environments of factory floors, robots are exposed to unpre-
dictable and dynamic surroundings, making precise estimation
challenging. As a result, real-time adaptive controllers are
essential to enable robots to adapt and reevaluate their actions
in response to changing conditions.

A primary constraint when navigating dynamic and cluttered
environments is ensuring the safety of individuals moving
around the robot. This requires the robot to constantly and
rapidly replan its path to avoid collisions while maintaining
its intended task and adhering to the originally intended
movement dynamics. Furthermore, it is crucial to design a
smooth system to protect physical hardware from potential
damage caused by high accelerations. Additionally, collision

This work was supported by EU ERC grant SAHR.
1 LASA Laboratory, Swiss Federal School of Technology in Lausanne -

EPFL, Switzerland. {lukas.huber;aude.billard}@epfl.ch
3 Nonlinear Systems Laboratory, Massachusetts Institute of Technology,

USA. jjs@mit.edu

(a) QOLO-robot navigating within small labyrinth

(b) Initial dynamics (c) Rotated dynamics

Fig. 1: An autonomous wheelchair is guided by obstacle avoidance
to navigate in an environment of complex obstacles (c). The intensity
of the shading in (a) and (b) indicates the magnitudes of the velocity.

avoidance needs to seamlessly integrate with reactive control
techniques (Figure 1).

Control methods based on vector fields [1] and dynami-
cal systems [2] have proven well-suited for addressing the
challenges posed by such scenarios. Rather than precom-
puting a trajectory for the robot, these methods generate a
(nonlinear) control field that is evaluated in real-time at the
robot’s position. This allows the robot to react instantaneously
to disturbances and perceive environmental changes. In this
work, we leverage the dynamical systems and vector fields
framework to develop an adaptive obstacle avoidance approach
capable of modifying nonlinear motion in dynamic and com-
plex environments (Fig. 1).

Dynamical systems represent the evolution of a system’s
state without considering its history, effectively capturing the
system’s dynamics as a vector field. In robotics, dynamical
systems have been employed for learning complex dynamics
[3] and enforcing stability guarantees through techniques such
as Lyapunov Stability [4] or Contraction Theory [2]. Force
control in robotics often utilizes second-order dynamical sys-

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

tems [5], while obstacle avoidance typically relies on first-
order systems that output desired velocities based on the
current position [6]. Consequently, additional controllers are
employed to ensure force- and torque-controlled robots follow
the desired motion of the dynamical system [7].

The desired dynamics based on the position can be analo-
gously represented as a vector field [1]. These nonlinear vector
fields can be designed to ensure convergence and stability
properties. Nonlinear vector fields designed for path following,
known as ”vector-field-guided path following,” enable smooth
convergence towards a desired path, reducing path-following
errors [8].

In this chapter, we develop an adaptive obstacle avoid-
ance framework capable of modifying nonlinear motion in
response to dynamic and complex environments. The proposed
approach aims to navigate the control system safely while
maintaining the integrity of the intended motion dynamics.
The effectiveness of our approach is demonstrated through
experiments.

A. Related Work

Obstacle avoidance methods are often categorized into local
and global strategies [9]. Global methods focus on conver-
gence to the goal, while local methods prioritize reactive
collision avoidance in dynamic scenarios.

Global sampling-based methods, such as Rapidly Exploring
Random Trees (RRT), have been widely utilized to populate
the search space by branching out a space-filling tree to
find a feasible path [10]. Building upon RRT, the RRT*
algorithm was introduced to automatically scale the sampling
length during the search, resulting in improved performance
and convergence rate [11]. Similarly, Probabilistic Roadmaps
(PRM) employ space sampling to determine the collision-
free status of points. Local connectivity graphs are formed by
connecting the collision-free samples, enabling graph-search
algorithms to find an optimal path from the initial position
to the goal [12]. Although PRM and RRT are probabilistic-
complete, meaning they can find a feasible path if one ex-
ists [13], the sampling-based approach incurs a significant
computational cost. This renders it unsuitable for real-time
recomputation, which is essential for dynamic environments.
Sampling algorithms like RRT and PRM exhibit a complexity
that is linear to the number of nodes n in the sampled
tree, represented as O(n) = O(exp(N)) [14]. Even in two-
dimensional environments, the trees must cover the entire
workspace, leading to many nodes. Initial paths are often
reshaped to address the computational challenges and facilitate
fast computation in dynamic environments. One approach
involves interpreting trajectories as elastic strips, enabling
efficient adaptation and obstacle avoidance [15]. However, this
comes at the loss of convergence guarantees.

Motion Optimization (MO) has been employed to dynam-
ically adapt the originally sampled trajectories, analogous to
stretching an elastic band around an object [16]. However,
MO performs poorly in highly non-convex problems and
often converges to suboptimal local minima. To alleviate this
issue, Markov chains have been utilized for joint-space control

[17], while other approaches incorporate Riemann geometry
and geometric constraints to improve convergence heuristics
[18], [19]. Nonetheless, MO remains local and often fails to
converge when dealing with non-convex motions.

Model Predictive Control (MPC) reduces the optimization
problem to a finite time horizon, thereby reducing the con-
vergence time [20]. The increased computational power in
recent years has facilitated the utilization of MPC for real-
time collision avoidance [21]. Sampling-based MPC has been
employed for dynamic configuration-space collision avoidance
scenarios where an analytic cost function is absent [22], [23].
However, the limited time horizon of MPC often limits the
problem to local optimality, and global convergence cannot
always be guaranteed. Conversely, MPC can be used to create
the global path by elevating an elastic-band description of the
path. This is combined with a local space partitioning, to create
simplified local regions of attractions [24].

In recent years, the application of Machine Learning (ML)
in collision avoidance for robotics has gained significant trac-
tion. End-to-end learning approaches have enabled collision-
free multi-robot navigation [25], while fuzzy artificial potential
fields augmented with neural networks have been utilized for
motion planning of mobile robots [26]. Conversely, RRT has
served as a foundation for training reinforcement learning
algorithms [27]. While learning-based methods demonstrate
impressive performance, they often lack collision avoidance
guarantees and cannot ensure convergence to a reliable solu-
tion. Deep learning methods, such as multi-layer neural net-
works, incur a computational cost that scales with the number
of parameters p, denoted as O(p) [28]. Since modern neural
networks frequently comprise millions of parameters, the in-
ference process becomes the most time-consuming component
of the control loop. In numerous robotic implementations,
the vision-based neural network constitutes the most time-
intensive aspect of the control loop [29]. However, employ-
ing neural networks to output control commands introduces
substantial computation time to the control loop [23], [27].

While most global methods cannot adapt to dynamic envi-
ronments, this limitation can be overcome by employing local
methods. Many local methods can be interpreted as nonlinear
feedback controllers.

One of the early collision avoidance methods in robotics is
Artificial Potential Fields (APF). APF represents each obstacle
as a repulsive field through which the agent navigates [30].
The reactive nature of APF makes it suitable for dynamic
environments, such as tracking moving targets [31]. APF has
also been integrated with closed-feedback loops for real-time
collision avoidance of robotic manipulators [32]. While APF
is efficient and easy to implement, it is prone to local minima
in multi-obstacle environments [33].

Navigation functions (NFs) were developed to address the
issue of multiple local minima by constructing a potential
field with a single minimum [34]. While initially designed for
sphere worlds, NFs utilize diffeomorphic mappings between
star-worlds and sphere-worlds to extend their applicability
to more general scenarios [35]. These functions can also
be employed to navigate around inverted obstacles that rep-
resent space boundaries, and their scope has been further

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

expanded to include navigation around trees-of-stars [36].
However, achieving optimal performance with NFs requires
comprehensive knowledge of the obstacle distribution, making
tuning critical parameters challenging. Efforts have been made
to enhance NFs by eliminating critical parameters in sphere
worlds [37], and alternative approaches have been proposed to
automate the tuning process [38]. NFs offer the advantage of
quick re-evaluation, making them robust against disturbances.
Nonetheless, due to the inherent difficulty in tuning them for
general obstacle configurations, NFs pose challenges when
applied in dynamic environments. Furthermore, as NFs rely
on the gradient of the potential function to guide the system
dynamics, they cannot effectively track arbitrary nonlinear
dynamics.

Vector fields (VF) employ highly nonlinear vector fields to
navigate paths while ensuring collision avoidance. They have
been successfully applied to evade multiple circular obstacles
in two-dimensional space using local repulsive fields [39]. VF
techniques have also been utilized for controlling fixed-wing
aircraft [40] and extended to accommodate initially nonlinear
dynamics, such as following a limit cycle [41]. Nonetheless,
it involves switching between different dynamics, which can
result in high accelerations. However, VF methods typically
handle one obstacle at a time, imposing a conservative con-
straint where the influence regions of obstacles cannot overlap.

Harmonic potential functions (HPF) are intriguing because
they guarantee the absence of topologically critical points in
free space. While analytical HPFs are often elusive, numer-
ical approximations have been employed [42]. Linear panel
representations for obstacles enable the generation of closed-
form HPFs [43]. Although this linear approximation can be
extended to concave obstacles, its application is limited to
two-dimensional environments [44].

Dynamical system modulation (DSM) has emerged as an
effective approach for collision avoidance in reactive environ-
ments by redirecting initial dynamics away from obstacles [6].
To overcome challenges posed by intersecting, convex obsta-
cles in three dimensions, DSM was extended to incorporate
switching to surface following [45]. In our previous research,
we successfully imitated the behavior of harmonic potential
functions to ensure the convergence of DSM around concave
(star-shaped) obstacles [2]. Furthermore, we expanded the
scope of DSM to encompass indoor environments, facilitating
reactive avoidance based on sensor data [29], [46]. While DSM
traditionally assumes a zero-dimensional point, we achieved
collision-free rigid-body dynamics by representing mobile
agents through multiple control points [47]. However, it is
important to note that DSM utilizes straight dynamics towards
an attractor as an input, and the convergence guarantees are
presently limited to star-shaped obstacles.

B. Contributions

This work significantly expands upon previously devloped
DSM approach, enabling obstacle avoidance with nonlinear
dynamical systems and for general concave obstacles. The
chapter’s technical contributions are outlined as follows:

• We introduce the Rotational Obstacle Avoidance Method
(ROAM), which ensures local minima-free obstacle
avoidance for nonlinear dynamics (Section III).

• We present a diffeomorphic mapping that guarantees
convergence while maintaining proximity to the general
nonlinear dynamics while trying to preserve the initial
flow (Section IV).

• We extend the ROAM formulation to handle obstacle
avoidance of multiple dynamic obstacles and enclosed
spaces, utilizing the concept of inverted obstacles as
introduced in [34], [46] (Section V).

• Finally, we demonstrate the application of ROAM for
avoiding general obstacles represented by trees-of-stars
in the presence of nonlinear dynamics (Section VI).

• Additionally, we develop a method for vector rotation in
general dimensions and the weighted summing of trees
of vector rotations (Appendix A).

To validate the properties of ROAM, we conducted the
following evaluations:
• We performed a quantitative comparison of ROAM

against two recent analytical obstacle avoidance methods
through simulations, assessing convergence rate, similar-
ity to unperturbed motion, and acceleration along the
trajectories (Section VII).

• Furthermore, we conducted a qualitative evaluation of
ROAM’s application in controlling a 7DoF robot arm to
avoid trees-of-stars in three dimensions (Section VII-D2).

The proposed rotation obstacle avoidance method (ROAM)
ensures collision avoidance in a local minima-free vector
field in the presence of initial nonlinear dynamics. Moreover,
the influence regions of the obstacle can overlap, and the
method has been extended to inverted obstacles, too, as well
as multiple obstacles with overlapping regions of influence,
as can be seen in the comparison with similar algorithms in
Table I.

RF NF MuMo VF-CAPF ROAM
Local minima free ✓ ✓ (✓) ✓
Switching free ✓ ✓ ✓ ✓
Overlapping regions ✓ ✓ ✓ ✓
Nonlinear dynamics ✓ (✓) ✓ ✓
Dynamic environments ✓ ✓ ✓ ✓
(Optional) repulsion ✓ ✓
Inverted obstacle ✓ ✓ ✓ ✓
Trees of Obstacles ✓ ✓ ✓

TABLE I: Repulsive fields (RF) [30], navigation functions (NF)
[34], mulitple-modulation method (MuMo) [46], vector field colli-
sion avoidance path following (VF-CAPF) [41], and the proposed
rotational obstacle avoidance method (ROAM) are compared across
multiple performance criteria.

II. PRELIMINAIRIES

A. Notations

In this section, we establish the notations used throughout
this paper. We consider a space of general dimension N
as the underlying framework for our developments. Vectors
are denoted using bold symbols, and the state variable is
represented by ξξξ ∈ RN . The time derivative of a vector ξξξ

is denoted as ξ̇ξξ , assuming ξξξ is a function that is differentiable

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

with respect to time. Unless explicitly stated otherwise, the
paper employs the Euclidean norm, denoted as | · |. The circular
constant is denoted by π . The matrix III represents the identity
matrix of appropriate dimensions. The symbol ◦ signifies
the iterative evaluation of a function. For example, when
considering two functions a(·) and b(·), the expression a◦b(ξξξ)
denotes the composition a(b(ξξξ)). In the context of this paper,
the term vector field (VF) refers to the velocity field ξ̇ξξ , while
dynamical system (DS) specifically denotes the continuous-
time feedback system described in Section II-B.

B. Dynamical Systems

Consider a vector field that governs the evolution of the
position ξξξ ∈ RN of a continuous-time system, described by
the state derivative ξ̇ξξ ∈ RN :

ξ̇ξξ = fff (ξξξ) (1)

Let us define straight dynamics, that do maintain the direc-
tion along a trajectory:

Definition II.1 (Straight Dynamics). A dynamical system of
the form (1) is referred to as straight dynamics if, for all
initial conditions ξξξ 0 and ξ̇ξξ 0, the flow remains collinear with
the initial velocity, satisfying ξ̇ξξ

T
0 ξ̇ξξ t = ∥ξ̇ξξ 0∥∥ξ̇ξξ t∥, for all t ≥ 0.

The flow is said to be locally straight if it is straight within a
subdomain X s.

Multiple straight dynamics are visualized in Figure 2. In the
subsequent sections, we adopt the following parameterization
for globally straight dynamics:

fff s(ξξξ) = q(ξξξ)
(
ξξξ

a−ξξξ
)

(2)

where q : RN →R\0 represents a continuous state-dependent
scaling function that modulates the speed of the linear system
(ξξξ

a− ξξξ) towards a fixed point ξξξ
a. This scaling allows for

the adjustment of the speed of the linear dynamics as the
system approaches or moves away from the attractor ξξξ

a ∈RN ,
which serves as the unique stable fixed point or attractor of the
system (Fig. 2a). Notably, the condition q(ξξξ) ̸= 0, combined
with the continuity of q, preserves the directionality of the
flow. Consequently, the vector field consistently points towards
or away from the attractor across the state space.

Definition II.2 (Collinear Dynamics). Straight dynamics
which have the attractor positioned infinitely far away, i.e.,
lim∥ξξξ−ξξξ

a∥→∞
fff s(ξξξ) = q(ξξξ)vvva, is called (locally) collinear.

C. Obstacle Description

In accordance with [2], each obstacle is characterized by a
continuous distance function Γ(ξξξ) : RN 7→R≥0. This function
enables the differentiation of regions outside, on the boundary,
or inside the obstacle based on the isolines of Γ.

Free space: X f = {ξξξ ∈ RN : Γ(ξξξ)> 1}
Boundary: X b = {ξξξ ∈ RN : Γ(ξξξ) = 1} (3)

Interior set: X i = {ξξξ ∈ RN \ (X f ∪X b)}

(a) Globally straight (b) Globally collinear (c) Locally straight

Fig. 2: Dynamical systems can exhibit different straightness char-
acteristics. Such as globally straight with a single, stable attractor
ξξξ

a visualized as a star (a). They can be globally collinear when the
attractor is infinitely far away (b). Conversely, dynamics might be
globally defined but only locally straight in a subdomain, visualized
as the dark gray region (c).

1) Star-Shaped Obstacles: For representing star-shaped
obstacles, we adopt the notation introduced in [48], [49].
An obstacle is considered star-shaped if there exists a point
ξξξ

r with Γ(ξξξ
r
) < 1 such that every point on the boundary

or in the interior set of the obstacle, i.e., ξξξ ∈ X i and
X i : ξξξ ∈ RN ,Γ(ξξξ)≤ 1, is connected to ξξξ

r by a line segment
l(ξξξ r

,ξξξ) contained within X i.
The set of all such points ξξξ

r is referred to as the kernel of
X i and denoted as:

ker(X i) =
{

ξξξ
r ∈X i : l(ξξξ r

,ξξξ)⊂X i, ∀ξξξ ∈X i} (4)

Throughout this paper, a specific choice of ξξξ
r is referred to

as the reference point, as commonly used in [2], [46], and
represented by a cross symbol +. 1

2) Distance Function: The distance function Γ(ξξξ) in-
creases monotonically in the radial direction, i.e., along the
vector ξξξ −ξξξ

r, and has a continuous first-order partial deriva-
tive (C1 smoothness). In this paper, we compute a distance
function relative to one boundary point ξξξ

b ∈X b:

Γ(ξξξ) = ∥ξξξ −ξξξ
b∥/d0 +1 ∀ξξξ ∈X e (5)

where d0 ∈ R>0 is a scaling factor, which modulates the ob-
stacle influence. The boundary point ξξξ

b lies at the intersection
between a ball of radius R(ξξξ) around the reference point ξξξ

r:

R(ξξξ) = ∥ξξξ b−ξξξ
r∥ ξξξ

b
= brrr(ξξξ)+ξξξ

r
, b > 0 , ξξξ

b ∈X b (6)

and the reference direction vector rrr : RN \ ξξξ
r → {rrr ∈ RN :

∥rrr∥= 1}:
rrr(ξξξ) =

(
ξξξ −ξξξ

r)
/∥ξξξ −ξξξ

r∥. (7)

The boundary point is hence a function of the state, ξξξ
b
(ξξξ).

Further, the normal direction can be defined as the derivative
of the distance across space:

nnn(ξξξ) = dΓ(ξξξ)/dξξξ (8)

D. Rotated Vector Field

We present a construct that is fundamental to the obstacle
avoidance approach proposed here, inspired by the concept of

1The reference point is in literature sometimes denoted kernel point.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

stereographic projection [46]. 2 Consider a unit vector with
respect to a basis vector bbb, denoted as kkk(bbb,ξξξ) : RN

I ×RN
I →

RN−1, under the condition that ξξξ : ⟨−bbb, ξξξ ⟩ ̸=−1. This vector
extraction captures the rotation of ξξξ with respect to bbb and
has proven to be useful for minima-free vector-summing. The
relative rotation satisfies the following properties:

cos(∥kkk(bbb,ξξξ)∥) = ⟨bbb, ξξξ ⟩ and ∥kkk(bbb,ξξξ)∥< π (9)

The basis vector bbb is utilized as the first column to con-
struct the orthonormal transformation matrix BBB, enabling the
transformation into a new basis: ξ̂ξξ = BBBT

ξξξ . In the direction
space, the magnitude corresponds to the angle between the
original vector and the reference vector. The transformation
of the initial vector ξξξ in the direction space is given by:

kkk(bbb,ξξξ) =

{
arccos

(
ξ̂ξξ [1]

)
ξ̂ξξ [2:]/∥ξ̂ξξ [2:]∥ if ξ̂ξξ [1] ̸= 1

000 otherwise
(10)

Note that a vector ξξξ , which is anti-collinear to bbb, does not
have a unique transformation and is hence excluded; see [46]
for further discussion. Correspondingly, we use k̄kk(bbb, ξ̄ξξ) : RN

I ×
RN−1→ RN

I to describe the inverse mapping, such that:

ξξξ = k̄kk(bbb, ξ̄ξξ) with ξ̄ξξ = kkk(bbb,ξξξ) (11)

The mapping to the original space is evaluated as follows:

k̄kk(bbb, ξ̄ξξ) =

BBB
[
1 0 .. 0

]T
if ∥ξ̄ξξ∥= 0

BBB
[
cos(∥ξ̄ξξ∥) sin(∥ξ̄ξξ∥)ξ̄ξξ/∥ξ̄ξξ∥

]T
otherwise

(12)
It is important to note that the reverse mapping k̄kk(·) is defined
for angles larger than π , but the function is not bijective for
these values.

E. Problem Statement

We establish the following requirements for our obstacle
avoidance controller:
• Collision free: The flow must remain outside the obsta-

cles at all times, i.e., {ξξξ}t ∈X e ∀t if {ξξξ}0 ∈X e.
• State dependent: The dynamics are history-invariant

and depend solely on the current state, i.e. ξ̇ξξ t =
fff (ξξξ t ,ξξξ t−1, ..,ξξξ 0) = fff (ξξξ t).

• Local minima free: As demonstrated in [41], each C1-
smooth vector field obstacle introduces at least one sta-
tionary point on the surface. However, it must be ensured
that (1) this point is a saddle point and not a minimum
and (2) there are no additional stationary points in space.

• Limited and smooth dynamics; The magnitude of the
vector field is upper bounded, i..e., ∃vvvmax = const. : ∥ξ̇ξξ∥<
vvvmax. Additionally, the vector field is smooth, meaning
that small displacements result in proportionally small
velocities: limξξξ 1→ξξξ 2

∥ξ̇ξξ 2− ξ̇ξξ 1∥= 0.
• General dimensions: The obstacle avoidance algorithm

is applicable in a space of dimensions N ≥ 2.

2A stereographic projection maps points located on a sphere onto a plane
perpendicular to the sphere surface.

This list does not contain any kinematic constraints. Hence,
we assume that any dynamics can be assigned immediately
(or within a negligibly short time). Such a system has to be
fully actuated.

Furthermore, we assume that the environment and initial
dynamics fff (ξξξ), as described in (1), possess the following
properties:
• Star-shaped: All obstacles are star-shaped as defined in

Sec. II-C1, or are composed of obstacles (trees-of-stars)
with a nonzero intersection region among the components
of a tree, as discussed in Section II-C1.

• Limited and smooth dynamics: Analogously to the
output, the magnitude of the initial dynamics fff (ξξξ) is
required to be C1-smooth and limited, i.e., ∥ fff (ξξξ)∥ <
vmax, ∀ξξξ ∈ RN ,vmax ∈ R>0.

• Dynamics as a vector rotation: The initial dynamics
fff (ξξξ) can be evaluated as a local rotation or a sequence
of rotations (Appendix A) of globally straight dynamics
with respect to a fixed point ξξξ

a (Definition II.2).

III. OBSTACLE AVOIDANCE THROUGH ROTATION

A smooth vector field that effectively avoids an obstacle
should have the velocity ξ̇ξξ directed away from or perpendic-
ular to the normal nnn(ξξξ) ∈RN as defined in (8). This principle
is commonly expressed as follows [6], [44]:〈

nnn(ξξξ), ξ̇ξξ

〉
≥ 0 ∀ξξξ ∈X b (13)

A. Vector Rotation for Collision Avoidance

We propose a method called Rotational Obstacle Avoidance
Method (ROAM) to achieve collision-free motion. ROAM
smoothly adjusts the initial velocity fff (ξξξ) as given in Eq. (1),
rotating it towards a feasible half-space as the position ap-
proaches the obstacle (Fig. 3). The steps involved in ROAM
for avoiding a single obstacle are as follows:

1) Evaluation of pseudo-tangent direction eee(ξξξ) using the
convergence direction ccc(ξξξ) (Sec. III-A1)

2) Rotation of the initial dynamics fff (ξξξ) towards the
pseudo-tangent eee(ξξξ) to obtain the collision-free direc-
tion ξ̇ξξ (Sec. III-A2).

3) Evaluation of the velocity magnitude h(ξξξ) to ensure a
smooth vector field (Sec. III-A3)

1) Evaluation of Preferred Tangent Direction: At each
position on the surface of an obstacle, there can exist multiple
tangent directions. In the case of d = 2, there are exactly
two tangent directions, while for d ≥ 3, there are infinitely
many. To construct a smoothly defined pseudo-tangent eee(ξ),
we introduce the concept of convergence dynamics, which are
used to obtain the pseudo-tangent:

Definition III.1 (Convergence Dynamics). The C1-
smooth convergence-dynamics ccc : RN → RN guides the
initial dynamics fff (ξξξ) around obstacles. The convergence
dynamics are locally straight according to Definition II.2, on
the surface of the obstacle X b as defined in (II-C2).
Furthermore, the convergence dynamics ccc(ξξξ) is set
to never be anti-collinear to the initial dynamics, i.e.,

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

(a) Initial dynamics (b) Rotated system

Fig. 3: A nonlinear dynamical system fff (ξξξ) = diag(1 ∆ξξξ [2])∥∆ξξξ∥
with ∆ξξξ = ξξξ

a− ξξξ (a) is rotated to obtain the pseudo tangent eee(ξξξ)
using ROAM with the help of the reference direction rrr(ξξξ), the
normal nnn(ξξξ), and convergence direction ccc(ξξξ). Using this, the global
avoidance dynamics ξ̇ξξ are computed, which ensure convergence
towards the attractor ξξξ

a (black star) with a single saddle point on
the surface (b).

⟨ fff (ξξξ), ccc(ξξξ)⟩ ̸=−∥ fff (ξξξ)∥∥ccc(ξξξ)∥ ∀ξξξ ∈ RN .

In this section, we utilize convergence dynamics of the
form ccc(ξξξ) = ξξξ −ξξξ

a. For more general convergence dynamics,
please refer to Section IV.

The desired pseudo-tangent eee(ξξξ) is obtained by rotating the
convergence dynamics ccc(ξξξ) away from the reference direction
rrr(ξξξ) until it lies in the tangent plane (Fig. 3). Since, in the
angular space kkk(nnn, ·), given in (9), any tangent vector lies
at a distance Re = π/2 to the normal direction, the tangent
hyper-plane T forms a hyper-sphere in the direction space, as
visualized in Figure 4. Hence, the rotation of the convergence
dynamics ccc(ξξξ) away from reference direction rrr(ξξξ) can be
evaluated by intersecting the line connecting rrr(ξξξ) and ccc(ξξξ)
with a circle of radius Re ∈ [π/2,π], see Fig. 4. Thus, eee(ξξξ)
can be obtained through the following constraints3:

if ∥kkk (−nnn,ccc)∥ ≥ Re then eee = ccc otherwise
kkk (−nnn,eee) = (1−b)kkk (−nnn,rrr)+bkkk (−nnn,ccc) (14)

such that ∥kkk (−nnn,eee)∥= Re, b ∈ R>0 ∀ξξξ : ccc ̸= rrr

The solution to the above equality constraints is obtained
analytically by solving a quadratic equation with respect to
the scalar b.

As a result, the pseudo-tangent eee(ξ) can either lie in the
tangent plane T or point away from the obstacle, with a dis-
tance to the normal direction contained within the green region
depicted in Figure 4. In the special case where ccc(ξξξ) = rrr(ξξξ),
the intersection of the hyper-circle in Equation 14 does yield
a solution. However, it is ensured that the final vector field ξ̇ξξ

is continuously defined, as discussed in Section III-A2.

Lemma III.1. Let us assume the convergence dynamics ccc(ξξξ),
as given in Definition III.1. The pseudo tangent eee(ξξξ) ∈ RN

obtained through (14) is smooth and satisfies the boundary

3For conciseness dependency on ξξξ is omitted.

inequality ⟨nnn(ξξξ), eee(ξξξ)⟩ ≥ 0, stated in (13), at any position on
the surface of the obstacle but the saddle point, i.e., ξξξ ∈X b :
⟨ccc(ξξξ), nnn(ξξξ)⟩ ̸=−1}

Proof. For a starshaped obstacle, we have by definition of the
starshaped kernel space in (4), that ⟨nnn(ξξξ), rrr(ξξξ)⟩ < 0. Hence,
∥kkk(−nnn,rrr)∥ < π/2, i.e., kkk(−nnn,rrr) is strictly inside the hyper-
sphere T . Furthermore, as long as ccc(ξξξ) ̸= rrr(ξξξ), the equality
of finding the intersection of a line and a hyper-sphere from
(14) has exactly one solution with b > 0.

Concerning the boundary condition; looking at the case of
∥kkk (−nnn,ccc)∥ > Re. From the definition of the direction-space
in (9), it follows that:

⟨ccc(ξξξ), nnn(ξξξ)⟩> 0 ⇒
ccc(ξξξ)=eee(ξξξ)

⟨eee(ξξξ), nnn(ξξξ)⟩> 0 (15)

For the case that ⟨ccc(ξξξ), nnn(ξξξ)⟩< 0, from (9) and (14) we can
conclude:

⟨nnn, eee⟩= cos(∥kkk(nnn,eee)∥) =−cos(∥kkk(−nnn,eee)∥)
≥−cos(Re)≥−cos(π/2) = 0

(16)

Hence, we have a uniquely defined pseudo tangent eee(ξξξ), which
satisfies the boundary condition given in (13).

(a) Euclidean space

(b) Obtaining pseudo-tangent eee (c) Obtaining final velocity ξ̇ξξ

Fig. 4: When approaching the surface of the obstacle, the collision-
free vectors are located on one side of the tangent plane T formed by
the linearly independent tangent vectors eee(·) (a). These unit vectors
can be projected onto a circular hypersphere of dimension N − 1,
where the collision-free pseudo tangent eee is calculated (b). Any vector
ξξξ pointing towards the obstacle, i.e., ⟨nnn, ξξξ ⟩ < 0 (a), is projected to
lie inside the circle of radius π/2 (b, c), while a vector pointing away
from the obstacle is projected to the outer ring.

2) Rotation Towards Tangent Direction: In a second step,
the initial dynamics fff (ξξξ) is rotated towards the pseudo tangent
eee(ξξξ). This rotation operation is performed in the direction

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

space, as described in Section II-D, but this time with respect
to the convergence dynamics ccc(ξξξ):

ξ̇ξξ = k̄kk
(

ccc,
(
1−λ (ξξξ)

)
kkk (ccc, fff)+λ (ξξξ)kkk (ccc, eee)

)
with

λ (ξξξ) =

(
1

Γ(ξξξ)

)q

, Rr = min
(

Re−∥kkk (−nnn, rrr)∥, π

2

)
(17)

q = max
(

1,
Rr

∆kkk(ccc)

)s

, ∆kkk(ccc) = ∥kkk (−nnn, rrr)− kkk (−nnn, ccc)∥

The rotation weight λ (ξξξ) ∈ [0,1] is determined based on the
inverse of the distance Γ to ensure that the rotation has a
decreasing influence as the distance increases. This allows for
a smooth transition in the avoidance behavior. Additionally, the
smoothing factor q is introduced, which gradually decreases to
zero when the convergence dynamics point towards the robot.
This effectively cancels the rotation avoidance effect in regions
where the tangent eee(ξξξ) is not defined, resulting in a smooth
avoidance behavior across those positions. The impact of the
smoothness constant s∈R>0 can be observed in Figure 5, and
unless otherwise specified, we use s = 0.3.

Lemma III.2. The vector field ξ̇ξξ obtained through rotation
as given in (17) satisfies the boundary condition as defined in
(13) if the pseudo tangent eee(ξξξ) is tangent or pointing away
from the obstacle, i.e., ⟨eee, nnn⟩ ≥ 0, ∀ξξξ : ∆kkk(ccc) ̸= 0.

Proof. When approaching the obstacle, the rotated velocity ξ̇ξξ

is evaluated as:

lim
Γ(ξξξ)→1,

λ (ξξξ) = 1 ⇒
with (11)

lim
λ→1

〈
nnn, ξ̇ξξ

〉
= ⟨nnn, eee⟩ ≥ 0 (18)

using Lemma III.1 and that ∆kkk(ccc) ̸= 0 ⇒ q > 0 with the
smoothness factor q given in (17).

Following the same logic, we can also analyze the behavior
far away from obstacles:

lim
Γ(ξξξ)→∞

λ (ξξξ) = 0 ⇒ lim
λ→0

ξ̇ξξ = fff (ξξξ) (19)

(a) s =1e-6 (b) s = 0.3 (c) s = 1.0

Fig. 5: A smaller smoothness-constant s increases the reactivity when
approaching an obstacle (a), while a larger value ensures a smoother
transition across the (red) saddle point trajectory (b, c).

3) Evaluation of Speed: The directional space mapping kkk(·)
and its inverse mapping k̄kk(·) operate on unit vectors in the
original space. As a result, the algorithm in (17) modifies the
direction of the initial dynamics, rather than its magnitude.
To incorporate magnitude control in a decoupled manner, we
introduce an additional component using h(ξξξ) : RN → [0,1]:

∥ξ̇ξξ∥= h(ξξξ)∥ fff (ξξξ)∥ (20)

The stretching factor h(ξξξ) is designed to slow down when
pointing towards an obstacle, and the effect decreases with
increasing distance from the obstacle:

h(ξξξ) = min

(
1,
(
∥∆kkk (ccc)∥

Rr

)2

+

(
1− 1

Γ(ξξξ)

)2
)

(21)

where the reference radius Rr and the rotation space distance
∆kkk(ccc) are given in (17). In Figure 6, the velocity scaling can
be observed to decrease the magnitude of the vectors pointing
toward the obstacle.

Theorem III.3. Consider a vector field ξ̇ξξ ∈RN obtained after
a local rotation as defined in (17) of an initial dynamics fff (ξξξ)
and fixed point at ξξξ

a, with pseudo tangent eee(ξξξ) defined in (14)
with respect to initial dynamics fff (ξξξ), is locally straight on the
surface of the obstacle X b according to Definition II.2, and
motion scaling h(ξξξ) according to (21). Any motion starting
in free space {ξξξ}0 ∈X e which evolves according to ξ̇ξξ will
stay in free space for finite time {ξξξ}t ∈X e with t ∈N>0 and
maintains the stationary point, i.e., ξ̇ξξ = 000 if fff (ξξξ) = 000

Proof. From Lemma III.1, we know ⟨nnn(ξξξ), eee(ξξξ)⟩ ≥ 0 and
Lemma III.2 states that ⟨eee, nnn⟩ ≥ 0 ∀ξξξ : ∆kkk(ccc) ̸= 0. Addi-
tionally, in the latter case, the magnitude scaling from (21)
evaluates as

lim
∥∆kkk(ccc)∥→0,Γ(ξξξ)→1

h(ξξξ) = 0 (22)

Hence, the speed reaches smoothly zero as we approach
the saddle point, and its direction does not matter to fulfill
smoothness and the boundary condition given in (13).

Furthermore, far away from the obstacle, we have:

lim
Γ(ξξξ)→∞

h(ξξξ) = 1 (23)

Hence, the magnitude is equal to the original magnitude and
only vanishes around existing stationary points, i.e., fff (ξξξ) =
0.

The spurious stationary point on the surface is given by
{ξξξ : ξξξ ∈X b, ∥kkk(ccc)∥= 0}. Furthermore, by construction, the
pseudo tangent eee(ξξξ) defined in (14) points away from the
reference direction and hence points away from the stationary
point on the surface of the obstacle. Hence, it is a saddle point
with a single trajectory converging to it X s.

B. Surface Repulsion

n the vicinity of critical obstacles, it may be desirable to
incorporate active repulsion from them without significantly
altering their shape. This can be achieved by introducing a
behavior similar to artificial potential fields [36], but without
introducing spurious attractors in free space. Building upon the
developments presented in this section, we can further refine
the tangential radius. By increasing the tangential radius such
that Re ∈]π/2,π], values larger than π/2, leads to a repulsive
behavior while maintaining the avoidance properties (Fig. 6).

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

Re = /2 Re = h()0

1

Fig. 6: While a surface repulsion radius of Re = π/2 ensures collision
avoidance, an increased radius, i.e., Re ∈]π/2,π] leads to increased
repulsion around the obstacle. The initial dynamics are given by
fff (ξξξ) = (ξξξ −ξξξ

a).

C. Inverted Obstacles

Initial dynamics might be contained within a boundary, such
as an agent moving in a room or a robot staying within its
joint limits. These constraints can be incorporated by inverting
an obstacle and ensuring that the dynamics remain inside a
boundary hull (Fig. 7). Analogously to [46] , this is achieved
by inverting the distance function Γ(ξξξ), the reference direction
rrr(ξξξ) and normal vector nnn(ξξξ), defined in Sec. II-C. The
distance function divides the space into free, boundary, and
interior points, as described in (3). Consequently, the distance
for the boundary obstacle can be defined as follows:

Γ(ξξξ) =
(
R(ξξξ)/∥ξξξ −ξξξ

r∥
)2p ∀ξξξ ∈ RN \ξξξ

r (24)

with power weight p ∈ R>0, we choose p = 1.
As the normal direction points away from the surface, it

naturally points towards the interior of an inverted obstacle,
in contrast to the normal direction of a regular obstacle. Con-
sequently, in order to utilize the star-shaped constraint from
(17) of ⟨−rrr(ξξξ), nnn(ξξξ)⟩ > 0 for rotational obstacle avoidance,
we need to flip the reference direction:

rrr(ξξξ) =
(
ξξξ

r−ξξξ
)
/∥ξξξ r−ξξξ∥ ∀ξξξ ∈ RN \ξξξ

r (25)

Using the inverted values, the ROAM can be applied on as
described throughout this section (Fig. 7).

(a) Wavy DS in starshape (b) Linear DS in ellipse

Fig. 7: The inverted obstacle description is used to keep nonlinear
dynamics fff (ξξξ) within star-shaped boundaries, in (a) with fff (ξξξ) =
RRR(sin(∥ξξξ a− ξξξ∥)(ξξξ a− ξξξ) where RRR(·) is a two dimensional rotation
matrix and ξξξ

a the attractor. Further, it can be used to create active
repulsion from walls, as in (b) for globall straight dynamics with
attractor ξξξ

a.

Lemma III.4. The rotated dynamics ξ̇ξξ evaluated according
to (17) are C1-smooth and collision-free as shown in Theo-
rem III.3 when navigating within a boundary described as an
inverted obstacle with distance function Γ(ξξξ) as defined in
(24), and reference vector rrr(ξξξ) as given in (25).

Proof. Since the distance function Γ(ξξξ), average vector nnn(ξξξ),
and reference direction rrr(ξξξ) possess all the necessary proper-
ties outlined in Theorem III.3, the collision avoidance proper-
ties directly carry over.

The distance function Γ(ξξξ) from (24) and normal direction
(25) are not defined at the reference point ξξξ

r. However, at this
point the rotation weight λ (ξξξ) reaches zeros:

lim
ξ→ξ r

Γ(ξξξ)→ ∞ ⇒
using (17)

lim
ξ→ξ r

λ (ξξξ) = 0 ⇒ lim
ξ→ξ r

ξ̇ξξ = fff (ξξξ)

(26)
Thus, the rotation has no effect, and the system is smoothly
defined.

A more detailed analysis of inverted obstacles can be found
in [46] . Further development applies to both standard and
inverted obstacles if not stated otherwise.

IV. GENERAL NONLINEAR MOTION

For systems characterized by small nonlinearities and a
single attractor, the convergence dynamics ccc(ξξξ) exhibit global
straightness, as defined in Definition II.2, resulting in desirable
behavior. However, in systems with high nonlinearities, this
can lead to avoidance patterns that do not accurately reflect
the global dynamics, as illustrated by the example shown
in Figure 8a. To address this issue, this section introduces
modified convergence dynamics that aim to maintain similarity
with the original dynamics while being locally straight, as
depicted in Figure 8b.

(a) Globally straight ccc(ξξξ) (b) Locally straight ccc(ξξξ)

Fig. 8: For motion with initial dynamics of fff (ξξξ) =
[
−1 2
−2 −1

]
ξξξ

(gray) and a single stationary point (black star), employing a globally
straight convergence dynamics ccc(ξξξ) results in a trajectory (orange)
that deviates significantly from the original motion (a). In contrast,
by utilizing locally straight convergence dynamics, the trajectory (b)
maintains similarity to the original motion throughout its course.

A. Nonlinear Motion without Stationary Point

Let us first focus on initial dynamics fff (ξξξ) which do not
have any directional singularity point, i.e., ∄ξξξ : ∥ fff (ξξξ)∥ =
0,∇ fff (ξξξ) ̸= 0. The convergence dynamics ccc(ξξξ) of such initial

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

dynamics fff (ξξξ) is constructed by evaluating as a weighted sum
of the initial velocity at the reference point of the obstacle ξξξ

r

and at position ξξξ :

ccc(ξξξ) = wc(ξξξ) fff (ξξξ r
)+̂(1−wc(ξξξ)) fff (ξξξ) (27)

The convergence weight is chosen such that the convergence
dynamics ccc(ξξξ) is straight on the surface of the obstacle:

wc(ξξξ) =

{
1 if Γ(ξξξ)< 1
1/Γ(ξξξ) otherwise

(28)

where +̂ describes the rotational summing described in Sec-
tion A. Note that the rotation summing from (68) is not defined
for two anti-collinear vectors. Hence, we cannot apply this
summing at a directional singularity point, as will be further
discussed in the next subsection.

Lemma IV.1. The convergence dynamics ccc(ξξξ) : RN → RN

as proposed in (27) for initial dynamics without directional
singularity points, i.e., {ξξξ : ∥ fff (ξξξ)∥= 0,∇ fff (ξξξ) ̸= 0}= /0, are
straight according to Definition II.2 on the surface and inside
the obstacle, i.e, ccc(ξξξ) ∈F s, ξξξ ∈X b∪X i.

Proof. Inside and on the surface of the obstacle, we have:

ξξξ ∈X b∪X i ⇒ Γ(ξξξ)≤ 1 ⇒ wc(ξξξ) = 1 (29)

Hence the dynamics in this region are given as:

ccc(ξξξ) = 1 fff (ξξξ r
)+̂0 fff (ξξξ) = fff (ξξξ r

) ξξξ ∈X b∪X i (30)

Thus, we have locally collinear dynamics.

As the convergence dynamics ccc(ξξξ) are straight on the
surface of the obstacle, they can be used in the rotational
obstacle avoidance method defined in Section III, see Figure 9.

B. Nonlinear Motion in the Presence of a Stationary Point

Many initial dynamics can be characterized by a
motion with a single directional singularity point, i.e.,
{ξξξ : ∥ fff (ξξξ)∥= 0,∇ fff (ξξξ) ̸= 0} = {ξξξ a}. This singularity point
may correspond to a desired attractor point or arise from a
limit cycle where an unstable stationary point resides at its
center. In the presence of such a singularity point, the direc-
tional summing approach employed in (27) cannot be directly
applied. This is because we cannot smoothly define local
rotations around ξξξ

a. However, we can overcome this limitation
by unfolding the space using a sequence of mappings (Fig. 10).

1) Shrinking and Inverse Mapping: The first step is to
shrink the obstacles to a single point, i.e., all boundary points
of the obstacle X b are mapped to the reference point ξξξ

r.

Definition IV.1 (Shrinking Mapping). The shrinking mapping
mmms(ξξξ) : X e→ RN \ξξξ

r defined as

mmms(ξξξ) = ξξξ
r
+ rrr(ξξξ)

(
∥ξξξ −ξξξ

r∥−∥ξξξ b−ξξξ
r∥
)
∀ξξξ ∈X e (31)

is a bijection, and it maps the point on the obstacle’s surface to
the obstacle’s reference direction, i.e., limΓ(ξξξ)→1 mmms(ξξξ)→ ξξξ

r.

Analogously, we define the inverse of this mapping:

(a) Nonlinear dynamics to follow the line at y = 0 in
red

(b) Convergence dynamics ccc(ξξξ) are locally straight in
the gray subset

(c) Rotated avoidance without local minima

Fig. 9: The line following dynamics fff (ξξξ) = [1 −ξξξ 2]
T shown in (a)

uses locally straight convergence dynamics (b) to ensure the absence
of local minima when avoiding the obstacle (c).

Definition IV.2 (Inflating Mapping). The inflating mapping
mmmi(ξξξ) : RN \ξξξ

r→X e defined as:

mmmi(ξξξ) = ξξξ
r
+ rrr(ξξξ)

(
∥ξξξ −ξξξ

r∥+∥ξξξ b−ξξξ
r∥
)
∀ξξξ ̸= ξξξ

r (32)

is a bijection and the inverse function of the shrinking mapping
defined in (31), i.e., mmmi ◦mmms(ξξξ) = ξξξ ∀ξξξ ∈X e

The effect of shrinking and inflation mapping can be ob-
served in Figure 10.

2) Folding Mapping: Let us introduce a folding mapping
mmm f (ξξξ), which moves the stationary point infinitely far away.
Hence, the dynamics in the mapped space are without direc-
tional singularity point, which can be treated with the method
introduced in Section IV-A. Conversely, the surface of the
obstacle should not be affected by the mapping. The desired
properties of this folding mapping are given as follows:

1) the stationary point gets mapped infinitely far away

lim
ξξξ→ξξξ

a
Γ
(
mmm f (ξξξ)

)
→ ∞ (33)

2) at the reference point (which represents the surface of
the obstacle after the shrinking mapping), the effect of
the mapping vanishes

ξξξ
r
= mmm f (ξξξ

r
) (34)

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

Let us first define the unit directions in the coordinate
system, which has its center at the stationary point and the first
axis points towards the reference direction of the obstacle:

ξ̂ξξ = BBBT (ξξξ −ξξξ
a
)/∥ξξξ −ξξξ

a∥ (35)

where BBB is the orthonormal matrix of which the first row aligns
with ξξξ

r−ξξξ
a

The desired constraints of the mapping from (33) and (34)
can be achieved by uniformly stretching along dimensions i ∈
[2..N] of ξ̂ξξ as:

sssi = (2/(1+ p)−1)g ξ̂ξξ i

∥ξ̂ξξ [2:N]∥
p ∈]−1, 1], ξξξ ̸= ξξξ

a

with p =

〈
ξξξ −ξξξ

a
, ξξξ

r−ξξξ
a〉

∥ξξξ −ξξξ
a∥∥ξξξ r−ξξξ

a∥

(36)

where g ∈ R>0 is the power factor, we choose g = 2. The
above equation pushes points opposite the attractor relative to
the obstacle infinitely far away, i.e., limξξξ 1→−1 sssi→∞, see the
green line in Figure 10.

Finally, the stretching of the folding mapping along dimen-
sion i = 1 is constructed as follows:

sss1 = ∥ξξξ r−ξξξ
a∥
(

1+ ln
(
∥ξξξ −ξξξ

a∥
∥ξξξ r−ξξξ

a∥

))
(37)

Using this, the folding mapping mmm f (ξξξ) : {ξξξ ∈ RN : ξ̂ξξ 1 ̸=
−1,ξξξ ̸= ξξξ

a}→ RN is defined as:

mmm f (ξξξ) = BBBdiag(sss)BBBT (ξξξ −ξξξ
a
)+ξξξ

a ∀ξξξ ∈ R\ξξξ
a (38)

Lemma IV.2. The mapping mmm f (ξξξ) : mmm f (ξξξ) : {ξξξ ∈ RN : ξ̂ξξ 1 ̸=
−1,ξξξ ̸= ξξξ

a} → RN as given in (38) is a bijection, and
smoothly defined, i.e., limξξξ→ξξξ j

mmm f (ξξξ i) = mmm f (ξξξ j). Further-
more, the mapping has no effect at the reference point, i.e.,
mmm f (ξξξ

r
) = ξξξ

r, and the attractor is mapped infinitely far away,
i.e., limξξξ→ξξξ

a Γ
(
mmm f (ξξξ)

)
→ ∞.

Proof. The system is made up of the two transformations, one
along the ξξξ

r−ξξξ
a as given in (37), and one perpendicular to,

given in in (36). Since all the underlying functions involved
are smooth and bijective, the resulting transformation is also
smooth and bijective. However, it is important to note that
there are discontinuities at ξξξ = ξξξ

a and ξ̂ξξ 1 =−1. This points
are excluded from the input set (in Eq. 42 we will additionally
ensure that the corresponding weight goes to zero, for a
smooth effect).

Furthermore for an input value of ξξξ
r in (37), we get that

sss1 = ∥ξξξ r−ξξξ
a∥, and using (36) we get sssi = 0 with i ∈ [2..d].

Hence, the transformation in (38) yields,

mmm f (ξξξ
r
) = BBB diag(sss)BBBT (ξξξ

r−ξξξ
a
)+ξξξ

a

= BBB diag(sss)
[
1 0 .. 0

]T
+ξξξ

a

= BBB
[
∥ξξξ r−ξξξ

a∥ 0 .. 0
]T

+ξξξ
a

= ξξξ
r−ξξξ

a
+ξξξ

a
= ξξξ

r

(39)

For the region ξ̂ξξ 1 =−1, we get for the stretching factors si→
∞ for d ∈ [2..d] from (36).

Fig. 10: The initial dynamics fff (ξξξ) undergo a series of three
consecutive mappings, depicted in a clockwise manner starting from
the top left. The convergence weight wc(ξξξ) is evaluated in the
transformed space, where its value is represented by the gray shading.
Notably, the weight diminishes to zero at the attractor point ξξξ

a. The
directional summing operation from (27) is performed to obtain the
convergence dynamics ccc(ξξξ). This step is carried out in the mapped
space. To obtain the reverse mapping, the vector rotation vvvr(·) is
simply evaluated in the original space. The folding mapping mmm f (ξξξ)

maps the attractor infinitely far away in the −ξ̂ξξ 1 direction, whereas
the line with ξ̂ξξ 1 =−1 is folded out to be infinitely far in the directions
of ±ξ̂ξξ [2..d].

3) Evaluation of the Relative Rotation: The total mapping
can be written as follows:

mmm(ξξξ) = mmmi ◦mmm f ◦mmms(ξξξ) (40)

Since this mapping transforms the attractor infinitely far
away, it produces a vector field without directional singular-
ity, as Section IV-A requires. Thereof, we can evaluate the
convergence dynamics in the mapped space:

c̄cc(ξξξ) = wm ◦mmm(ξξξ) fff (ξξξ r
)+̂
(
1−wm ◦mmm(ξξξ)

)
fff (ξξξ) (41)

the symbol +̂ implies the directional summing as defined in
Section A.

The mapping weight is defined as:

wm(ξξξ) = 1/
√(

Γ(ξξξ)−1
)(

Γ(m(ξξξ))−1
)
+1 (42)

This weight function is designed to ensure a decreasing
influence as the distance from the obstacle increases, as well
as a decreasing influence when the position is opposite to
the singularity point relative to the obstacle (green line in
Figure 10). Additionally, it ensures that the weight approaches
one when the position lies on the surface of the obstacle.

Finally, the mapping into the original space can be made
through a vector rotation

ccc(ξξξ) = vvvr (β , c̄cc) (43)

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

where the vector rotation vvvr and angle beta are obtained
according to Eq. (68), using input vector vvvi = mmm(ξξξ)−ξξξ

a and
output vector vvvo = ξξξ −ξξξ

a.

Theorem IV.3. The smoothly defined convergence dy-
namics ccc(ξξξ) as given in (43) for obstacles in a vec-
tor field with a directional singularity point ξξξ

a, i.e.,
{ξξξ : ∥ fff (ξξξ)∥= 0,∇ fff (ξξξ) ̸= 0}= {ξξξ a} is ensured to be straight
according to Definition II.2 on the surface and inside the
obstacle, i.e., ccc(ξξξ) ∈F s, ξξξ ∈X b∪X i.

Proof. Lemma IV.2 states that the unfolding has no effect at
ξξξ

r in the shrunk space, which is the surface of the obstacle in
the original space as stated in Definition IV.1. Further, the
inflating mapping is the inverse of the shrinking as stated
in Definition IV.2. Thus, when approaching the surface, i.e.,
Γ(ξξξ)→ 1, Lemma IV.1 transfers to Theorem IV.3.

4) Obstacles Across the Attractor: When an obstacle spans
across the attractor ξξξ

a, i.e., Γ(ξξξ
a
)≤ 1, the unfolding mapping

is not defined. Hence, the convergence dynamics ccc(ξξξ) must ap-
proach globally straight dynamics according to Definition II.2.
To account for this, the initial dynamics are updated as follows:

fff (ξξξ r
)← wΓsign

(
∇ fff (ξξξ)|ξξξ=ξξξ

a

)
(ξξξ

r−ξξξ
a
)+(1−wΓ) fff (ξξξ r

)

(44)
The weight is designed to reach one when the obstacle reaches
the attractor, e.g., wΓ = 1/Γ(ξξξ

a
).

V. MULTI-OBSTACLE ENVIRONMENTS

In the presence of multiple obstacles, the rotational obstacle
avoidance method for a single obstacle can be extended using a
weighted rotational summing. First, the weighted convergence
dynamics ccc(ξξξ) as introduced in (27) is averaged as follows:

ccc(ξξξ) = fff (ξξξ)+̂
Nobs

∑
o=1

woccco(ξξξ) = fff (ξξξ)+̂
Nobs

∑
o=1

wowc
o fff (ξξξ r

o) (45)

where +̂ denotes the rotational summing as defined in Sec-
tion A.

The obstacle weights have been proposed in [46] as:

wo(ξξξ) =
w̃o(ξξξ)

∑
Nobs
i=1 w̃i(ξξξ)

with wo(ξξξ) =
1

Γo(ξξξ)
∀ξξξ ∈X e (46)

The weights associated with each obstacle ensure that their
sum is at most one and converge to zero as the distance from
the respective obstacle increases. Furthermore, on the surface
of an obstacle o, the corresponding weight equals 1. Moreover,
the weighting allows for overlapping of the influence regions
of the obstacles.

These convergence dynamics are used to evaluate the pre-
ferred pseudo tangent for each obstacle eeeo(ξ) as defined in
(14). Finally, the rotation of the initial dynamics from (17)
can be restated for multi-obstacle scenarios as:

ξ̇ξξ = fff (ξξξ)+̂
Nobs

∑
o=1

woξ̇ξξ o = fff (ξξξ)+̂
Nobs

∑
o=1

λowom(ξξξ)eeeo(ξξξ) (47)

The method is summarized in Algorithm 1 and handles star-
shaped obstacles and boundaries, as shown in Figure 11.

Fig. 11: The rotational obstacle avoidance with respect to wavy
dynamics as used in Figure 7a moves towards the attractor (black star)
while avoiding collisions inside a rectangular hull with two obstacles.

Lemma V.1. The weighted rotation of the convergence dy-
namics ccc(ξξξ) from (45) and the final dynamics ξ̇ξξ from (47)
conserves impenetrability and saddle-point properties intro-
duced in Theorem III.3.

Proof. When approaching an obstacle o, the weight defined in
(46) results in limΓo(ξξξ)→1 wo(ξξξ) = 1. Hence the evaluation of
the multi-obstacle avoidance converges to the single obstacle
scenario of obstacle o. It follows that the properties of the
single obstacle case are conserved locally.

Algorithm 1 Rotational Obstacle Avoidance Method (ROAM)

Input: fff (ξξξ), Nobs obstacles
Output: ξ̇ξξ

1: for o = 1 to Nobs do
2: w̃o(ξξξ) = 1/Γo(ξξξ) {Evaluate weights (46)}
3: end for
4: wo(ξξξ) = w̃b(ξξξ)/∑

Nobs

i=1 w̃i(ξξξ) {Normalize weights (46)}
5: for o = 1 to Nobs if wo(ξξξ)> 0 do
6: fff (ξξξ r

o) {Compute DS at reference point}
7: end for
8: ccc(ξξξ) = fff (ξξξ)+̂∑

Nobs

o=1 wowc
o fff (ξξξ r

o) {Rotational average 45}
9: for o = 1 to Nobs if wo(ξξξ)> 0 do

10: eeeo(ξξξ) {Compute pseudo tangent (14)}
11: h(ξξξ) {Compute magnitude (21)}
12: end for
13: ξ̇ξξ = fff (ξξξ)+̂∑

Nobs

o=1 λowom(ξξξ)eeeo(ξξξ) {Rot. average (47)}

A. Dynamic Environments

The closed-form description of the algorithm enables short
computation time without the need for offline trajectory plan-
ning. Dynamic obstacles can be considered by transposing the
avoided direction into the moving reference frame:

ξ̇ξξ = MMM(ξξξ) fff (ξξξ)+ ˙̃
ξξξ with ˙̃

ξξξ =
Nobs

∑
o=1

wo
˙̃
ξξξ o (48)

The method’s application to dynamic obstacles is experimen-
tally evaluated in Section VII-D2.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

B. Motion within Multiple Enclosing Hulls

For example, the outer boundary might not be star-shaped
when a robot moves through a curvy corridor. However, such
a general space can be divided into multiple stars-shapes
[50], which ROAM can use to guide a motion to stay within
the boundary. This requires convergence dynamics, which
transition between the obstacles as:

ccc(ξξξ) = fff (ξξξ)+̂
Nbnd

∑
b=1

wb(ξξξ)cccb(ξξξ) (49)

where Nbnd ∈N>0 is the number of boundaries. Furthermore,
the weights of the multi-boundary environment are set to:

wb(ξξξ) =
max(Γb(ξξξ),1))−1

∑
Nbnd
i=1 max(Γi(ξξξ),1)−1

(50)

Where the local dynamics cccb(ξξξ) are locally straight according
to Definition II.2 in the subdomain of the surface of each
boundary. The attractor of each hull ξξξ

a
b is placed such that it

lies outside of the corresponding boundary b for all boundaries
that do not contain the global attractor ξξξ

a, i.e.,{
ξξξ

a
b = ξξξ

a if Γb(ξξξ
a
)> 1

ξξξ
a
b ∈X i

b ∪X b
b otherwise

(51)

The boundary encapsulation can be seen in Figure 12.

Lemma V.2. A motion starting within multiple boundaries
{ξξξ}0 ∈

⋃
b∈Nbnd X e

b and evolving according to ξ̇ξξ as described
in (47) and with convergence dynamics ccc(ξξξ) defined in (49)
will stay within the boundaries, i.e, {ξξξ}t ∈

⋃
b∈Nbnd X e

b ∀ t ∈
N>0.

Proof. If ξξξ is within multiple boundaries, and it approaches
boundary b, the weight given in in (50) evaluates to:

lim
Γb(ξ)→1

wb(ξξξ) =
0

0+∑
Nbnd

i̸=b max(Γb(ξξξ),1))−1
= 0 (52)

Hence, boundary b has no effect, and the motion can tra-
verse any boundary b = 1..Nbnd. Until, ξξξ is within only one
boundary b. In this case, the corresponding boundary weights
simplify to:

wb(ξξξ) =
max(Γb(ξξξ),1))−1

max(Γb(ξξξ),1))−1+∑
Nbnd

i ̸=b 0
= 1 (53)

given that Γb(ξξξ) > 1. Thus, the algorithm evolves according
to the single-boundary case, i.e., collision avoidance with the
boundary b is ensured.

VI. GENERAL CONCAVE OBSTACLES

A general obstacle can be described as a union of multiple
star-shaped obstacles [35], also referred to as trees of stars.
Extending the algorithm to such shapes enables navigating in
many more environments. Let us for this introduce a general
obstacle using nomenclature from graph theory [53]:

Definition VI.1 (Tree of Obstacles). A tree of star-shaped
obstacles represents a shape without holes. Each obstacle
(node) in the tree can have multiple children (successors),

6 5 4 3 2 1 0 1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(a) The data (position and velocity) are fit using Gaussian Mixture
Model (GMM) with four components [51], which is used to predict
the velocity.

6 5 4 3 2 1 0 1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(b) The GMM components are used as a multi-hull environment to
bind the dynamics and enforce leaving the boundary in the direction
of the local attractors ξξξ

a
b (colored stars).

Fig. 12: Approaches for learning nonlinear motion from demonstra-
tion can guarantee stability by ensuring that the system asymptotically
converges towards the attractor ξξξ

a [52]. However, they do not prohibit
the dynamics of taking an undesired shortcut or moving away from
the data, which is the known region (a). Convex hulls can be obtained
through trajectory learning methods, by interpreting the Gaussian
Mixture Model applied to the data as ellipse-shaped obstacles [3].
ROAM can enforce the final dynamics to stay close to the data (b).

but have exactly one single parent (predecessor), except for
the root obstacle which does not have a parent. All obstacles
have a non-zero intersection with their parent and children.
Obstacles are assigned a level l in the tree, starting from l = 0
at the root.

A. Velocity Propagation through Obstacle Tree

The avoidance velocity ξ̇ξξ in the presence of trees-of-
obstacles is obtained through the summed average of a
rotation-tree as described in Section A. The tree is constructed
as described in Algorithm 2, and the individual steps are
detailed below.

1) Surface Point Propagation: The rotational avoidance
of each obstacle o = 1..Ncom of the tree is obtained at the
corresponding surface point ssso. The surface points are obtained
by propagating the position ξξξ through the obstacle tree,
starting from the an obstacle o down to the root r:

sssp = b(ξξξ r
c− sssc)+ sssc such that Γp(sssp) = 1 (54)

where p is the parent of the component c. The factor b ∈R>0
is evaluated such that sssp lies on the parent’s surface. Note,
that the obstacles are intersecting, hence we have Γ(sssp) < 1.
See the surface points of a three-component tree in Figure 13.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

Algorithm 2 Avoidance of Tree-of-Obstacles

Input: fff (·), Ncom obstacle-components
Output: ξ̇ξξ

1: tttr(·) {Create rotation tree, see Algo. 4}
2: for o = 1 to Ncom do
3: sss0 = rrr(ξξξ) {Set initial surface point}
4: wh

o← Γo(sss0) {Compute hiding-weight (58)}
5: wo← Γo(ξξξ) {Compute obstacle weights}
6: c = o {Initialize c to obstacle o}
7: for l = l(n) to 0 do {From node to root}
8: sssp(c) = b(ξξξ r

c− sssc)+ sssc {Propagate reference (54)}
9: c = p(c) {Set iterator c to parent p}

10: end for
11: fff 0 = fff (ξξξ r

) {Set initial tangent}
12: for c = 1 to l(n) do {From root to node}
13: vvvr(·),β ← (sssc−ξξξ

r
c),(sssp(c)−ξξξ

r
p(c)) {Get rot. (68)}

14: fff c = vvvr(fff p(c),β) {Propagate rotated velocity (69)}
15: fff c⇒ tttr(·) {Append to tree}
16: end for
17: ξ̇ξξ o← fff o {Avoidance with propagated velocity (57)}
18: end for
19: w f = 1−∑o wh

owo {Weight of initial velocity fff (ξξξ)}
20: ξ̇ξξ ← tttr(w f ,wh

o(ξξξ)) {Evaluate rotation tree, Algo. 4}

2) Velocity Propagation: We can now propagate the ve-
locity fff (ξξξ r

) iteratively from parent p(c) to the component c
until we reach the respective obstacle o. The iteration starts at
the root r and is done for each obstacle, except the root. The
propagated velocity fff c is obtained as follows:

fff c = vvvr(fff p(c),φc) o = 1..Nobs \ r (55)

where vvvr(·) is the vector rotation as described in (69). The
vector rotation is obtained with respect to the vectors vvvi =
(sssc−ξξξ

r
c) and vvvo = (sssp(c)−ξξξ

r
p(c)) as described in (68). When

constructing the obstacle tree, the parent of an obstacle needs
to be chosen such that vvvi and vvvo are not anti-collinear. This
is ensured if the direction from the component to the parent
is never opposing the direction from the parent to the grand-
parent (parent of the parent):〈

ξξξ
r
p(c)−ξξξ

r
c, ξξξ

r
p(p(c))−ξξξ

r
p(c)

〉
∥ξξξ r

p(c)−ξξξ
r
c∥∥ξξξ

r
p(p(c))−ξξξ

r
p(c)∥

̸=−1 (56)

3) Tangent Evaluation: Finally, after propagating the ve-
locity to the obstacle o, the pseudo tangent is evaluated. For
trees-of-stars, we want to enforce the pseudo tangent to be
parallel to the surface at all times, hence we adopt (17) as
follows:

if
⟨−nnn, fff ⟩
∥−nnn∥∥ fff∥

> cos(Re) :

kkk (−nnn,eeeo) = kkk (−nnn,rrr)+b(kkk (−nnn,eeep)− kkk (−nnn,rrr))

such that ∥kkk (−nnn,eeep)∥= Re, b ∈ R>0

otherwise
kkk (nnn,eeeo) = kkk (nnn,−rrr)+b(kkk (nnn,eeep)− kkk (nnn,−rrr))

such that ∥kkk (nnn,eeep)∥= π−Re, b ∈ R>0

(57)

Fig. 13: The surface points sss(·) (purple) are evaluated for each
obstacle up to the root, to then propagate the desired tangent velocity
eee (green) from the root to each obstacle.

4) Hiding Weights: An obstacle o which is occluded by its
parent p(o) should not influence the avoidance velocity. For
this reason, we introduce the hiding weight which reaches zero
at full occlusion:

wh
o =

1 if Γ(ssso)> 1

Γ(ssso)
1

1−b if b < 1
0 otherwise

b =

〈
ξξξ −ξξξ

r
o, ξξξ

r
p(o)−ξξξ

r
o

〉
∥ξξξ −ξξξ

r
o∥∥ξξξ

r
p(o)−ξξξ

r
o∥

(58)

Lemma VI.1. Let us assume a tree with obstacle components
o = 1..Ncom and the corresponding reference points ξξξ

r
o, which

all lie within obstacle o and the corresponding parent p, i.e.,
ξξξ

r
o ∈X i

o ∩X i
p(o). Conversely, the reference of each parent lies

outside of the obstacle, i.e., ξξξ
r
p(o) ∈ X i

p(o) \X i
o . Moreover,

the direction from obstacle to parent is never opposing the
direction from the parent to the grandparent as described in
(56). Let us assume the dynamics fff (ξξξ) are locally straight in
the surrounding of the obstacle according to Definition II.2.
The vector field ξ̇ξξ obtained through the propagation of the
velocity fff (ξξξ) as described in (55), with the rotation of the
final velocity given by (57), and vector tree summing using the
weights wh

o given in (58) ensures collision avoidance according
to the boundary condition (13) with the absence of local
minima in free-space.

Proof. As shown in Lemma III.1, the tangent is defined every-
where as long as the reference direction rrro(ξξξ) is not parallel
to the propagated velocity fff o(ξξξ). Moreover, smoothness is
ensured due to the adaptable rotation weight λ (ξξξ) as shown
in Theorem III.3.

Furthermore, the rotation defined in (55) is smoothly defined
for obstacle-parent-pair, due to the fact that the reference point
of the parent is required to lay outside of the child obstacles,
and the parent-opposing inequality from (56).

This is also ensured for the last surface point so, i.e., the
projection of the position on the obstacle’s surface since the

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

hiding weight wh
o goes to zero if the two vectors are opposing:〈

sssc−ξξξ
r
c, sssp(c)−ξξξ

r
p(c)

〉
∥sssc−ξξξ

r
c∥∥sssp(c)−ξξξ

r
p(c)∥

⇒ b = 1 ⇒ wh = 0 (59)

Hence, the corresponding tangent and the vector can be
omitted.

Since all weights and corresponding vectors are smoothly
defined, according to Lemma A.1 the vector tree evaluation
leads to continuous and minima-free dynamics.

Furthermore, from Lemma V.1 we know that the impene-
trability of the obstacles is preserved as a single component
dominates when approaching the corresponding surface.

1.0 0.5 0.0 0.5 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 14: Obstacle avoidance of a two-dimensional human with a
total of seven sub-obstacles (corresponding reference points as black
crosses) of a circular motion with a single stationary point (black
star).

B. Convergence Sequence

The obstacle avoidance algorithm is dependent on locally
straight dynamics on the surface of the tree-of-obstacles. Since
the general shapes described can be encapsulating directional
singularity points, such as attractors, the design of convergence
direction requires special care. The computation has to ensure
smoothness when getting closer to the directional singularity
point ξξξ

a. It is detailed in Algorithm 3.

C. Mapping Weight Normalization

A mapping weight wm
o as introduced in (60) approaching

one indicates that the ξξξ is on the surface of the corresponding
obstacle o. To ensure that this weight remains high while
taking into account other obstacles, the normalized weights
are defined as follows:

wn
o =

{
ŵn

o/∑
Ncom

i ŵn
i if ∑

Ncom

i ŵn
i > 1

ŵn
o otherwise

, ŵn
o = 1/(1−wo)

(60)
for all obstacle o = 1...Nobs.

Algorithm 3 Convergence Direction for Tree-of-Obstacles.
The abbreviation pred. refers to the predecessor of the direc-
tion tree.
Input: fff (ξξξ), Ncom obstacle-components
Output: ccc(ξξξ) Locally straight dynamics

1: wm
1 (ξξξ) {Mapping weight for root component (42)}

2: fff (ξξξ),(ξξξ −ξξξ
a
)⇒ vvvr,i(·),βi {Initial rotation (68)}

3: vvvr,c(·),βc← fff (ξξξ r
),(ξξξ

r−ξξξ
a
) {Convergence rot. (68)}

4: vvvr,a(·),βa← (ξξξ −ξξξ
a
),(ξξξ

r−ξξξ
a
) {Get rotation (68)}

5: tttr
1(·)← vvvr,i(·),vvvr,a(·),vvvr,c(·) {Create rotation tree}

6: {Tree reduction with Algo. 1 using vector-weight pairs:}
tttr

1
(
[fff (ξξξ r

),wm
1], [fff (ξξξ),(1−wm

1)]
)
⇒ tttr(·)

7: for n = 1 to Ncom, i ̸= r do {Iteration over components}
8: c← n {Set initial node}
9: wm

i (ξξξ) {Mapping weight (42)}
10: for l = l(n) to 0 do {From node to root}
11: (ξξξ

r
p(c)−ξξξ

r
c)⇒ tttr(·) {Append to tree with pred. c}

12: c← p(c) {Set current node iterator to its parent}
13: end for
14: vvvr,c(·)⇒ tttr(·) {Append to tree with pred. c = r}
15: end for
16: wn

o← wm
o {Weight normalization (60)}

17: ccc(ξξξ)← tttr(wn
o) {Tree reduction, Algo. 4}

VII. EVALUATION

A. Computational Cost

The most computationally intensive part of the ROAM
algorithm is the matrix-vector multiplication in N dimensions
for the stereographic projections and unfolding mappings.
Therefore, the algorithm’s complexity, given O obstacles, K
components, and an obstacle tree of level L, can be expressed
as O(N2OKL).

B. Obstacle Avoidance While Following a Stable Limit Cycle

1) Setup: We compare the three algorithms MuMo [46],
VF-CAPF [41], and ROAM (proposed approach). The chosen
scenario uses initial dynamics and the obstacle distribution
as proposed in [41]. The initial dynamics represent a circular
limit cycle of the form:

fff (ξξξ) =
([

0 1
−1 0

]
+2(R0−∥ξξξ∥)III

)
ξξξ (61)

where the circle radius is R0 = 2, and III is the two-dimensional
identity matrix. The environment contains six convex obsta-
cles, and the agent is aware of their location at all times (see
Fig. 15). A grid of 10x10 evenly distributed starting points was
constructed, of which 93 were in free space. The trajectory
is evaluated for these starting points through Euler integration
with a time step dt = 0.01s and a maximum of 500 iterations.4

2) Metrics: The trajectories are compared by observing the
local minima, the distance to the desired limit cycle, and the
similarity between the velocity after obstacle avoidance and
the initial velocity. Furthermore, we look at the evolution of
the velocity over time, i.e., the discrete acceleration.

4Source code on https://github.com/hubernikus/nonlinear obstacle
avoidance.git, 2022/02/31

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
ROAM
MuMo
VC-CAPF
Original

Fig. 15: MuMo [46], VF-CAPF [41] and ROAM are used to guide
a nonlinear, limit-cycle-following vector field around six concave
obstacles. The resulting limit cycles are visualized as a solid line
in the respective color. Additionally, the trajectories from specific
starting points (black circles) are visualized with a dashed line.

The root mean square error (RMSE), i.e., RMSE =

∑
M
m=1 ∥vvvi − uuui∥ is used, as well as the normalized inverted

cosine similarity (NICS)

NICS =
1
2

(
1− 1

M

M

∑
m=1

⟨vvvi, uuui⟩
∥vvvi∥∥uuui∥

)
(62)

with NICS ∈ [0,1]. Note that the smaller NICS, the higher the
similarity of the two vectors.

3) Results: In Table II, it can be observed that MuMo is
the only method among the three that results in trajectories
ending up in local minima on the surface of an obstacle in
almost half of the cases. These local minima lie on the limit
cycle, suggesting that by increasing the step number, all MuMo
trajectories would eventually converge to these local minima.
Due to this behavior, MuMo is deemed inappropriate for the
proposed scenario. Its limited applicability to nonlinear initial
dynamics as pointed out in Table I.

The focus of the comparison is thus between ROAM and
VF-CAPF. ROAM demonstrates better path following, with
trajectories maintaining a shorter distance to the reference
circle throughout the motion. Moreover, ROAM exhibits lower
acceleration along the path, indicating smoother motion with
fewer abrupt changes. Additionally, ROAM shows higher
similarity to the initial dynamics compared to VF-CAPF.

These findings can be qualitatively observed in Figure 15,
where VF-CAPF closely follows the initial path (gray) outside
the obstacle region and deviates only when in close proximity
to the obstacle. The metrics indicate that this behavior leads
to higher accelerations and more significant deviations from
the initial trajectory overall. On the other hand, MuMO moves
more directly towards the limit cycle compared to ROAM, but
at the expense of creating local minima on the surface of the
bottom obstacle.

ROAM MuMo VF-CAPF Original
(proposed) dynamics

Nm 0% 48% 0% 0%
RMSE(ξξξ ,R0) 1.46 ± 1.11 1.24 ± 1.15 1.48 ± 0.87 0.93 ± 0.96
RMSE(ξ̇ξξ , fff 0) 0.15 ± 0.07 0.04 ± 0.09 0.47 ± 0.43 0.00 ± 0.00
NICS(ξ̇ξξ , fff 0) 0.04 ± 0.02 0.01 ± 0.02 0.12 ± 0.11 0.00 ± 0.00
RMSE(ξ̇ξξ t , ξ̇ξξ t+1) 2.51 ± 2.66 2.04 ± 5.98 3.47 ± 2.14 0.27 ± 0.17
NICS(ξ̇ξξ t , ξ̇ξξ t+1)[10−4] 0.63 ± 0.66 0.51 ± 1.49 1.08 ± 0.82 0.07 ± 0.04

TABLE II: The different trajectories are compared in (1) the ratio
of trajectories which end up in a local minimum on the obstacle
Nm, (2) the distance to the desired trajectory, i.e., the difference to
radius R0. Furthermore, (3) RMSE and NICS between all approaches
to the original DS are evaluated, as well as (4) the change of the
dynamics over time (corresponds to acceleration). The mean and
standard deviation are evaluated over the 93 trajectories.

C. Nonlinear Path Following with Autonomous Wheelchair

1) Experimental Setup: In the second evaluation, the au-
tonomous wheelchair QOLO was employed, and various initial
vector fields combined with avoidance methods were tested.
The control point of the wheelchair was positioned in front of
the wheel axis to ensure effective maneuverability. To account
for the shape and size of the QOLO wheelchair, a margin of
0.7 meters was added to the obstacles during the evaluation.

The path followed by the wheelchair consisted of three
road segments, denoted as s = 1, the segment closest to the
goal, up to s = 3. Although there was no strict constraint
to remain within the road boundaries, the initial dynamics
were specifically designed to guide the wheelchair towards
the center of the road, promoting adherence to the desired
path (see Fig. 16a).

Seven tables were randomly placed along the path, with
their centers positioned on the path itself. The tables were
positioned away from the starting point and the attractor.
Additionally, no more than two tables intersected, including
the margin, allowing all table shapes to be represented as star-
shapes, as required by MuMo.

2) Navigation Algorithms: Three approaches are used to
navigate in this environment.

Local straight dynamics (2) are combined with MuMo.
The initial dynamics consist of three separate vector fields
with corresponding local attractors (star), see Fig. 16b. The
attractor switches when transitioning from one region to the
next (crossing the line).

Local PF (path following) is combined with ROAM. The
local PF dynamics are given as:

fff s(ξξξ) = uuus + ⟨∆ξξξ , uuus⟩uuus−∆ξξξ with ∆ξξξ = (ξξξ −ξξξ
a
s) (63)

for all segments s = 1..3, where uuus ∈R2 is the (local) nominal
direction pointing along the road segment, and ξξξ

a
s ∈R2 is the

local attractor.
Global PF dynamics is evaluated by using directional-

tree averaging as described in Appendix A. The root of the
direction-tree is given as vvv0,1 = ξξξ − ξξξ

a. The direction tree is
populated iteratively:

• vvvs,1(ξξξ) = uuus with respective parent direction vvvs−1,1
• vvvs,2(ξξξ) = fff s(ξξξ) with respective parent direction vvvs,1

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16

(a) QOLO-robot navigating along a wavy road using global PF

(b) Local straight - initial (c) Local straight - avoiding

(d) Local PF - initial (e) Local PF - avoiding

(f) Global PF - initial (g) Global PF - avoiding

Fig. 16: The robot is navigating between static tables on a wavy road
(gray) through a grass field (green). The initial dynamics and the
reference trajectory (orange) are on the left, with the corresponding
obstacle dynamics on the right. The local attractors (colored starts)
and switching regions (colored lines) are used to create global
dynamics (a, c). The global path following (f) uses a single attractor
only.

for all segments s = 1..3. The final dynamics are obtained
through the weighted evaluation described Algorithm 4, using
the following weights

ws,1(ξξξ) = 0, ws,2(ξξξ) =
1
ds
(1+min(

〈
vvvs, ξξξ

a
s −ξξξ

〉
,0)) (64)

where ds ∈R≥0 the distance to the line segment s. The segment
weights ws(ξξξ)∈ [0,1] are normalized if their sum exceeds one.

3) Results: Combining the global PF with ROAM ensures
the convergence of all trajectories, as shown in Table III.

The other two methods achieve a convergence rate of ap-
proximately 92%. This can be attributed to using a high-level
planner, specifically switching between the local dynamics.
Since this conflicts with the guarantees of absences of local
minima. While more sophisticated switching or transitioning
methods may exist, to the best of our knowledge, there is no
global path sequencer that can guarantee these convergence
properties within a finite time. Furthermore, when using the
local potential field (PF) with ROAM, the robot spends less
time on the desired path. It has a greater average distance to
the path boundaries compared to the local straight algorithm
combined with MuMo. However, the average distance traveled
remains approximately the same across all methods.

Local straight Local PF Global PF
Converged [] 92% 92% 100%
Off-track [%] 1.49 ± 0.00 0.79 ± 0.00 1.89 ± 0.00
∆d [m] 1.54 ± 0.04 1.73 ± 0.02 1.65 ± 0.04
Distance [m] 20.2 ± 3.4 21.0 ± 3.8 20.8 ± 2.8

TABLE III: The three approaches for following the local path are
compared based on the following metrics: the convergence ratio to the
attractor, the ratio of trajectories deviating from the path, the distance
to the road border ∆d, and the total length of the trajectory. The
reported values represent the mean and standard deviation calculated
from 100 runs with randomly distributed furniture while keeping the
start and endpoints consistent. The local straight approach use the
obstacle avoidance as proposed in [2], while the other methods use
the approach developed here.

D. Obstacle Avoidance in Three Dimensions
1) Spiraling Motion Around Human in Simulation: Inspired

by (61), we propose spiraling dynamics as:

fff (ξξξ) = BBBT
([

0 1
−1 0

]
+2
(

R0−∥BBBξ̃ξξ∥
)

III
)

BBBξ̃ξξ + ppp(ξξξ)

with BBB =

[
1 0 0
0 0 1

]
and ppp(ξξξ) =

[
0 1 0

]T (65)

with the spiraling radius of R0 = 0.1 m and ξ̃ξξ = ξξξ − ξξξ
a the

relative position with respect to the center ξξξ
a.

The obstacle tree representing the human in ROAM consists
of components corresponding to the limbs and main body, with
the core serving as the tree’s root. When applying ROAM for
collision avoidance, see Figure 17, it can be observed that all
trajectories successfully avoid the human without becoming
trapped in local minima. Furthermore, the system’s dynamics
return to the initial state, far away from the obstacle, both at the
beginning and after successfully avoiding the collision. This
behavior highlights the effectiveness of ROAM in generating
smooth and convergent trajectories while maintaining the
desired dynamics of the system.

2) Qualitative Evaluation on Robot Arm: Experiments
were performed using the 7 DoF Panda robot by Franka
Emika on a fixed base (see Fig. 18). The scenario chosen
is the automated disinfecting of a running conveyor belt,
which transports various parcels. The initial dynamics fff (ξξξ)
are similar to the spiral motion in (65), but the basis BBB and
perpendicular dynamics ppp(ξξξ) given by:

BBB =

[
1 0 0
0 1 0

]
and ppp(ξξξ) =

[
0 0

(
ξξξ

a
(t)−ξξξ

)]T (66)

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

17

(a) Initial spiraling motion fff (ξξξ)

(b) Rotated motion ξ̇ξξ around human

Fig. 17: ROAM guides trajectories from 16 different initial positions
and ensures that all trajectories successfully avoid the static human
in simulation.

Moreover, the attractor is dynamic and moves back and forth
the conveyor belt:

ξξξ
a
(t) =

[
0.5 0.6+0.1sin

(
π

10 t
)

0.3
]T (67)

As a result, the initial dynamics fff (ξξξ , t) are time-varying, too.
It is assumed that the robot has complete knowledge of the

relative position and shape of the conveyor belt. The position
and velocity of the parcel are determined using reflective
markers (Optitrack). The analytical shape of the objects is
known analytically. Additionally, an operator handles parcels
on the conveyor belt, but the robot is not aware of its presence.
However, the robot can adapt to physical interactions since an
impedance controller is employed [7].

Fig. 18: The robot is aware of the two obstacles (brown shapes)
as well as the conveyor belt (green block) to obtain the avoidance
dynamics (blue arrow). The center of the initial dynamics (blue dot)
is moving across the conveyor belt.

The robot successfully avoids both the parcels and the con-
veyor belt while maintaining adherence to the initial dynamics
whenever feasible. By utilizing trees-of-stars to represent the
concave obstacle and positioning the reference point of the
root component on the conveyor belt, the robot effectively

avoids the parcel from above (see Fig. 19). Notably, com-
parable methods such as MuMo [46] or VF-CAPF [41] do
theoretically not permit the placement of a reference point in
trees of obstacles that facilitates collision avoidance in such
environments.

VIII. DISCUSSION

The proposed rotational obstacle avoidance method
(ROAM) has successfully addressed the challenge of avoiding
collisions with initially nonlinear dynamics around general
concave obstacles without holes. To the best of our knowl-
edge, it is the first state-dependent solution for trees-of-stars
obstacles free from local minima regardless of hyperparameter
choice. Furthermore, ROAM enables obstacle avoidance while
attempting to maintain nonlinear dynamics, which is a sig-
nificant advantage. The algorithm has demonstrated improved
convergence and motion similarity compared to the baseline
methods in experimental evaluations. Moreover, its low com-
putational cost has allowed its application to dynamic obstacle
avoidance scenarios involving a robotic arm.

A. Stationary Points

ROAM introduces a new stationary point for each obstacle
(or obstacle tree). However, due to the topological properties
of smooth vector fields, at least one fixed point is created for
each obstacle (a hole in space). These fixed points are observed
to be saddle points and the probability of reaching them is
effectively zero. Additionally, any noise or perturbation in the
system pushes the motion away from these unstable points. It
is worth noting that while ROAM is used for dynamic scenar-
ios, the trajectories of these saddle points should be preserved
as they reflect the smoothness of the velocity. Smoothness is
crucial as it ensures that even with uncertainties in perception
or unexpected disturbance, there are no discontinuity in the
desired velocity command ξ̇ξξ . Nevertheless, the removal of
saddle points could be achieved by setting the smoothness
factor q to 1 in (17) and selecting any tangent direction for
eee(ξξξ) when ccc(ξξξ) and rrr(ξξξ) are collinear.

B. Trees of Stars

ROAM relies on a star-shaped (or trees-of-stars) obstacle
environment. While in certain real-world scenarios, such divi-
sion can be achieved based on the rigid-body features of the
surroundings (e.g., dividing a human into limbs and core or a
table into plate and legs), it is often challenging to determine
such divisions for more complex obstacles or in higher-
dimensional spaces, such as joint space collision avoidance.
Some propositions for extracting star-shaped environments
exist [54]; however, further research is needed to extend these
approaches for real-time applications.

However, algorithms exist to simplify general shapes by
approximating them as a union of overlapping spheres [55],
which could serve as the basis for constructing the obstacle
tree in future work. Additionally, using a circular shape
reduces the computational complexity of tasks such as check-
ing for component intersections and evaluating the normal
direction and distance to the obstacles.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

18

(a) (b) (c) (d) (e) (f)

Fig. 19: The 7 DoF robot arm adeptly avoids the star-shaped parcel that is being transported on the conveyor belt.

C. Application to Robotic Systems

The proposed algorithm assumes that the robot is a point
mass. However, it can be extended to real robots by introduc-
ing a margin around the obstacles or using multiple control
points, as proposed [46] . It is important to note that the
latter method does not guarantee full convergence in general
scenarios. Alternative methods employ a full body collision
model for task planning involving sampling or optimization
[19], [23]. However, they cannot guarantee finding a feasible
path in a finite time. Therefore, future work should focus
on extending ROAM to handle analytic avoidance scenarios
where trees of stars represent both the agent and the obstacle.

D. Tangent Following on the Surface

Each tree of stars has exactly two saddle points, which lie on
the convergence direction line passing through the tree’s root.
At any other surface position, the velocity is tangent to the
surface. This can lead to extensive wall-following behaviors
for obstacles with multiple levels. Moreover, for obstacle-tree
with high concavities, this can lead to a fast change of the
desired velocity. As on each side of the concavity, the vector
field might point in the opposite direction. While theoretically
still smooth, in practice this can lead to jittery behavior.
To address this, future work should focus on optimizing the
selection of saddle points and allowing the rotated velocity to
deviate from the obstacle’s tangent plane. However, this would
require a combination of ROAM with high-level planning.

E. Region of Influence during Task Obstruction

In the experiment on the robot arm, the size of the limit
cycle radius was small compared to the obstacle. Hence, a
small region of influence is chosen, in which the obstacle
affects the environmental dynamics. As the obstacle passes
through the center of the limit cycle, the robot is guided by
the global vector field which tries to approach the limit cycle,
additionally ROAM repulses from the obstacle. The algorithm
ensures a smooth and minima-free transition between these
opposing dynamics. Yet, integrated into the control loop such
regions of high directional change can exert jerky behavior,
as observed during the experiment. This limitation opens up
extensions of ROAM in future work which are twofold. On
the one hand, the region of influence of the obstacles should
be adapted based on the local curvature of space. As such, in
regions with fast change, the transition between two opposing

dynamics should be slower and smoother. On the other hand,
a single, temporarily smooth, vector field cannot represent
all the intricacies of a dynamically changing environment.
Imagine, an operator trying to wipe the conveyor belt at all
costs as obstacles pass. This is expected to lead to jerky
behavior. However, as humans, we use a logic similar to a state
machine. The global task is chosen based on the environment,
hence there is a switching between polishing the conveyor belt
and waiting for passing obstacles. Even though ROAM exerts
remarkable adapting capabilities, for applications it should be
coupled with a high-level logical planner.

APPENDIX

A. Vector Rotations

The rotational obstacle avoidance method (ROAM) requires
weighted summing between vectors as well as partial (sequen-
tial) rotations applied to vector fields. Herefore, we introduce
vector math concepts to simplify these operations.

1) Perpendicular Rotation Base: Let us consider two initial
directions vvvi,vvvo ∈RN \000. They are used to construct the base
vectors bbbi,bbbo ∈ {bbb ∈ RN : ∥bbb∥= 1}:

bbbi =
vvvi

∥vvvi∥
, bbbo =

b̂bbo

∥b̂bbo∥
, β = arccos

(
⟨vvvi, vvvo⟩
∥vvvi∥∥vvvo∥

)
(68)

with b̂bbo = vvvo− vvvi ⟨vvvi, vvvo⟩ , ∀vvvi,vvvo :
⟨vvvi, vvvo⟩
∥vvvi∥∥vvvo∥

̸=−1

The angle β and two vectors bbbi, bbbo represent the rotation
of a vector in N dimensions, this is equivalent to 2N + 1
parameters.5

2) Rotating a Vector: Rotating a vector vvv entails rotating
the component which lies in the plane spanned by bbbi and bbbo,
while conserving the part orthogonal to the plane.

vvvr
(
vvv,β ,bbb{i,o}

)
= p0bbbi cos(φ)+bbbo sin(φ)+ vvv− ∑

j∈{i,o}
bbb j
〈
bbb j, vvv

〉
with φ = φ0 +β , tan(φ0) =

⟨bbbi, vvv⟩
⟨bbbo, vvv⟩

, (69)

p0 =

√
⟨bbbi, vvv⟩2 + ⟨bbbo, vvv⟩2

Note that by changing the rotation angle β , a partial rotation
or over-rotation can be applied to a vector, too. In this work,
the basis is only explicitly stated if not clear from the context.

5This compares to N(N−1)/2 parameters required to describe rigid body
rotation in N dimensions. Hence, already at N = 4 the rigid body orientation
uses more parameters to describe vector rotation, and stays more efficient for
higher dimensions.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

19

Moreover, as each rotation basis is defined by the two
vectors bbbi and bbbo, a rotation can be rotated, too. For example, a
rotation expressed in a relative reference frame can be rotated
to the global frame. This allows for the evaluation of weighted
rotation sequences, as will be discussed later in this section.

3) Weighted Rotation Summing: Let us assume that we
have Nvec ∈ N>0 vector rotations which are defined with
respect to a shared basis vector bbbi. The rotations have a
respective second basis vector bbbo,v and rotation angle βv with
v ∈ 1..Nvec. The basis and angle of the weighted average
rotation is defined as:

b̂bbo = BBB(bbbi)

(
Nvec

∑
v=1

BBBT (bbbi)wvβvbbbo,v

)
and β̂ = ∥b̂bbo∥ (70)

where wv ∈ [0,1] are the vector weights, and BBB(bbbi) is an
orthonormal basis with respect to the vector bbbi.

We further define the rotational sum using the symbol +̂
as:

v̂vv = vvv0+̂
Nvec

∑
v=1

wvvvvv (71)

where the summation is performed according to (70), with
normalization of the vector pairs [vvv0,vvvv] to obtain the rotations
as described in (68).

4) Weighted Rotation Sequence: Let us assume that we
have Nrot sequential rotations such that the output vector bbbo,n
of the element n is equal to the input vector of the next in
the sequence n + 1, i.e., bbbo,n = bbbi,n+1 with n = 1..Nrot − 1.
To evaluate the weighted sequence each basis is adapted with
respect to all the parent rotations as:

bbb{i,o},c← vvvr((wn−1)βn, bbb{i,o},c) n= 1..Nrot−1, c> n (72)

The full weighted rotation of the sequence is obtained using
the vector rotation as defined in (68) with input vector bbbi,1 and
output vvvo,n = vvvr((1−wn)βn, bbbo,n) with n = Nrot.

5) Direction Tree Evaluation: Let us define a direction tree
with nodes n = 1..Nnode. There exists a single (unique) root
node r, which has no parent. All other nodes n have single
parent p(n), but a node can have multile children, given by
the set Cn. The set of all offspring, i.e., including the children
of children etc., is referred to as C tot

n . Each node has a level l,
which indicates the discrete distance to the root. The value of
each node corresponds to a unit vector vvvi, and hence the vector
rotation between the parent and the node can be evaluated
using (68). For given weights wn, the weighted direction is
evaluated as described in Algorithm 4. The rotation tree is
interpreted as a combination of weighted summations and
sequences, as described earlier in this section.

Lemma A.1. The vector rotation as described in Algorithm 4
ensures a smooth vector summing for weights wn ∈ [0,1]
such that ∑

Nnode

n=1 wn = 1, such that we reach converge to a
vector when its corresponding weight is approaching one, i.e.,
limwi→1 vvv∗ = vvvi.

Proof. When a specific direction-node n has weight wn = 1, it
follows from Algorithm 4 all the child-nodes weight one and
zero otherwise:

wc =

{
1 if c ∈ Cn

0 otherwise
(73)

Algorithm 4 Rotation Tree Summing

Input: wn, vvvn for n = 1..Nnode

Output: Averaged vector-rotation vvv∗

1: for l = Lmax ..1 do {Reverse iteration over levels}
2: for n : ln = l do {For all nodes of the same level}
3: wp(n)← wp(n)+wn {Update cumulative weight}
4: end for
5: end for
6: vvv∗1 = vvvr {Initialize base of root r}
7: for l = 2 ..Lmax do {Iteration over levels}
8: vvv∗l = vvv∗l−1+̂∑

lc==l
c vvvc {Weighted average from (71)}

9: vvvr(·),β ← vvv∗l−1,vvv
∗
l {Rotation from vectors (68)}

10: for c ∈ C tot
l do {For all offsprings of l}

11: vvvr,c(·),βc← vvv∗l ,vvvc {Rotation from vectors (68)}
12: bbb j,c← vvvr,c(−βc, bbb j,c) {Sequence inversion (72)}
13: bbb j,c← vvvr(β ,bbb j,c) {Apply rotation to vvv∗l as (69)}
14: end for
15: end for
16: vvv∗ = vvv∗Lmax

Hence, we have a rotation sequence of the form (72). Due to
the sum of the weights of all sequence elements being equal
to one, the summed weight equals bbbo,e where e is the index
of the ending element. Note successive vectors cannot be anti-
parallel, as denoted in (68).

Note, that the weighted evaluation of the direction tree can
be reduced to a single vector vvv∗, or the whole sequence can
be kept by storing all vvv∗(·). If all node-parent pair had an angle
β < π , then this will be the case for the resulting sequence,
too.

REFERENCES

[1] V. M. Goncalves, L. C. Pimenta, C. A. Maia, B. C. Dutra, and
G. A. Pereira, “Vector fields for robot navigation along time-varying
curves in n-dimensions,” IEEE Transactions on Robotics, vol. 26,
no. 4, pp. 647–659, 2010.

[2] L. Huber, A. Billard, and J.-J. Slotine, “Avoidance of convex and
concave obstacles with convergence ensured through contraction,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1462–1469,
2019.

[3] N. Figueroa and A. Billard, “A physically-consistent bayesian non-
parametric mixture model for dynamical system learning,” in 2nd An-
nual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland,
29-31 October 2018, Proceedings, vol. 87, 2018.

[4] J.-J. E. Slotine, W. Li, et al., Applied nonlinear control. Prentice hall
Englewood Cliffs, NJ, 1991, vol. 199.

[5] S. S. M. Salehian and A. Billard, “A dynamical-system-based ap-
proach for controlling robotic manipulators during noncontact/contact
transitions,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2738–2745, 2018.

[6] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, 2012.

[7] K. Kronander and A. Billard, “Passive interaction control with dynam-
ical systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 106–113, 2015.

[8] Y. A. Kapitanyuk, A. V. Proskurnikov, and M. Cao, “A guiding vector-
field algorithm for path-following control of nonholonomic mobile
robots,” IEEE Transactions on Control Systems Technology, vol. 26,
no. 4, pp. 1372–1385, 2017.

[9] K. M. Lynch and F. C. Park, Modern robotics. Cambridge University
Press, 2017.

[10] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool
for path planning,” 1998.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

20

[11] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[13] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the rela-
tionship between classical grid search and probabilistic roadmaps,”
The International Journal of Robotics Research, vol. 23, no. 7-8,
pp. 673–692, 2004.

[14] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using
rrt* based approaches: A survey and future directions,” International
Journal of Advanced Computer Science and Applications, vol. 7,
no. 11, 2016.

[15] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” The International Journal of
Robotics Research, vol. 21, no. 12, pp. 1031–1052, 2002.

[16] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Robotics and Automation, 1993. Proceedings., 1993
IEEE International Conference on, IEEE, 1993, pp. 802–807.

[17] M. Zucker, N. Ratliff, A. D. Dragan, et al., “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[18] N. Ratliff, M. Toussaint, and S. Schaal, “Understanding the geom-
etry of workspace obstacles in motion optimization,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), IEEE,
2015, pp. 4202–4209.

[19] J. Mainprice, N. Ratliff, M. Toussaint, and S. Schaal, “An inte-
rior point method solving motion planning problems with narrow
passages,” in 2020 29th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), IEEE, 2020,
pp. 547–552.

[20] I. Sánchez, A. D’Jorge, G. V. Raffo, A. H. González, and A.
Ferramosca, “Nonlinear model predictive path following controller
with obstacle avoidance,” Journal of Intelligent & Robotic Systems,
vol. 102, pp. 1–18, 2021.

[21] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357,
2017.

[22] M. Bhardwaj, B. Sundaralingam, A. Mousavian, et al., “Storm: An
integrated framework for fast joint-space model-predictive control for
reactive manipulation,” in Conference on Robot Learning, PMLR,
2022, pp. 750–759.

[23] M. Koptev, N. Figueroa, and A. Billard, “Neural joint space implicit
signed distance functions for reactive robot manipulator control,”
IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 480–487,
2022.

[24] C. Tiseo, V. Ivan, W. Merkt, I. Havoutis, M. Mistry, and S. Vi-
jayakumar, “A passive navigation planning algorithm for collision-
free control of mobile robots,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2021, pp. 8223–8229.

[25] B. Riviere, W. Hönig, Y. Yue, and S.-J. Chung, “Glas: Global-to-local
safe autonomy synthesis for multi-robot motion planning with end-
to-end learning,” IEEE robotics and automation letters, vol. 5, no. 3,
pp. 4249–4256, 2020.

[26] D. Wang, S. Chen, Y. Zhang, and L. Liu, “Path planning of mobile
robot in dynamic environment: Fuzzy artificial potential field and
extensible neural network,” Artificial Life and Robotics, vol. 26,
pp. 129–139, 2021.

[27] M. Cai, E. Aasi, C. Belta, and C.-I. Vasile, “Overcoming exploration:
Deep reinforcement learning for continuous control in cluttered en-
vironments from temporal logic specifications,” IEEE Robotics and
Automation Letters, 2023.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[29] L. Huber, J.-J. Slotine, and A. Billard, “Fast obstacle avoidance based
on real-time sensing,” IEEE Robotics and Automation Letters, 2022.

[30] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1,
pp. 90–98, 1986.

[31] L. Huang, “Velocity planning for a mobile robot to track a moving tar-
get—a potential field approach,” Robotics and Autonomous Systems,
vol. 57, no. 1, pp. 55–63, 2009.

[32] A. Tulbure and O. Khatib, “Closing the loop: Real-time perception
and control for robust collision avoidance with occluded obstacles,”

in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2020, pp. 5700–5707.

[33] Y. Koren and J. Borenstein, “Potential field methods and their in-
herent limitations for mobile robot navigation,” in Proceedings. 1991
IEEE International Conference on Robotics and Automation, IEEE
Computer Society, 1991, pp. 1398–1399.

[34] D. E. Koditschek and E. Rimon, “Robot navigation functions on
manifolds with boundary,” Advances in applied mathematics, vol. 11,
no. 4, pp. 412–442, 1990.

[35] E. Rimon and D. E. Koditschek, “The construction of analytic diffeo-
morphisms for exact robot navigation on star worlds,” Transactions
of the American Mathematical Society, vol. 327, no. 1, pp. 71–116,
1991.

[36] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[37] S. Paternain, D. E. Koditschek, and A. Ribeiro, “Navigation func-
tions for convex potentials in a space with convex obstacles,” IEEE
Transactions on Automatic Control, vol. 63, no. 9, pp. 2944–2959,
2017.

[38] S. G. Loizou, “The navigation transformation,” IEEE Transactions on
Robotics, vol. 33, no. 6, pp. 1516–1523, 2017.

[39] D. Panagou, “Motion planning and collision avoidance using nav-
igation vector fields,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2014, pp. 2513–2518.

[40] J. P. Wilhelm and G. Clem, “Vector field uav guidance for path
following and obstacle avoidance with minimal deviation,” Journal
of Guidance, Control, and Dynamics, vol. 42, no. 8, pp. 1848–1856,
2019.

[41] W. Yao, B. Lin, B. D. Anderson, and M. Cao, “Guiding vector
fields for following occluded paths,” IEEE Transactions on Automatic
Control, 2022.

[42] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using
laplace’s equation,” in Robotics and Automation, 1990. Proceedings.,
1990 IEEE International Conference on, IEEE, 1990, pp. 2102–2106.

[43] J.-O. Kim and P. K. Khosla, “Real-time obstacle avoidance using
harmonic potential functions,” IEEE Transactions on Robotics and
Automation, vol. 8, no. 3 Ju, 1992.

[44] H. J. S. Feder and J.-J. Slotine, “Real-time path planning using
harmonic potentials in dynamic environments,” in Proceedings of
International Conference on Robotics and Automation, IEEE, vol. 1,
1997, pp. 874–881.

[45] D. Zheng, X. Wu, Y. Liu, and J. Pang, “A dynamical system ap-
proach to real-time three-dimensional concave obstacle avoidance,” in
2020 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), IEEE, 2020, pp. 1082–1087.

[46] L. Huber, J.-J. Slotine, and A. Billard, “Avoiding dense and dynamic
obstacles in enclosed spaces: Application to moving in crowds,” IEEE
Transactions on Robotics, 2022.

[47] F. M. Conzelmann, L. Huber, D. Paez-Granados, A. Bolotnikova,
A. Ijspeert, and A. Billard, “A dynamical system approach to decen-
tralized collision-free autonomous coordination of a mobile assistive
furniture swarm,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2022, pp. 7259–7265.

[48] H. Brunn, “Über kerneigebiete,” Mathematische Annalen, vol. 73,
no. 3, pp. 436–440, 1913.

[49] G. Hansen, I. Herburt, H. Martini, and M. Moszyńska, “Starshaped
sets,” Aequationes mathematicae, vol. 94, pp. 1001–1092, 2020.

[50] S. R. Lindemann and S. M. LaValle, “Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell
decompositions,” The International Journal of Robotics Research,
vol. 28, no. 5, pp. 600–621, 2009.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[52] N. Perrin and P. Schlehuber-Caissier, “Fast diffeomorphic matching
to learn globally asymptotically stable nonlinear dynamical systems,”
Systems & Control Letters, vol. 96, pp. 51–59, 2016.

[53] D. E. Knuth, The art of computer programming. Pearson Education,
1997, vol. 3.

[54] A. Dahlin and Y. Karayiannidis, “Creating star worlds: Reshaping the
robot workspace for online motion planning,” IEEE Transactions on
Robotics, 2023.

[55] P. M. Hubbard, “Approximating polyhedra with spheres for time-
critical collision detection,” ACM Transactions on Graphics (TOG),
vol. 15, no. 3, pp. 179–210, 1996.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3344034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

