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Abstract—We introduce a new family of single-photon
avalanche diodes (SPADs) with enhanced depletion regions in
a 55-nm Bipolar-CMOS-DMOS (BCD) technology. We demon-
strate how to systematically engineer doping profiles in the main
junction and in deep p-well layers to achieve high sensitivity and
low timing jitter. A family of sub 10 µm SPADs was designed
and fully characterized. With the increase of the well-defined
depletion region, the breakdown voltages of three variants are
17.1, 20.6, and 23.0 V, respectively, the peak PDP wavelengths are
450 nm, 540 nm, and 640 nm, respectively. The timing jitter below
50 ps (FWHM) at 5 V excess bias voltage are achieved in SPAD1
and SPAD2. SPAD3 shows a high PDP over a wide spectral range,
with a peak PDP of 41.3% at 640 nm, and 22.3% at 850 nm, and
the timing jitter 96 ps at 3 V excess bias voltage. The proposed
SPADs are suitable to low-pitch, large-format image sensors for
high-speed, time-resolved applications and quantum imaging.

Index Terms—Single-photon avalanche diode (SPAD), BCD,
doping engineering, single-photon imaging, quantum imaging.

I. INTRODUCTION

S INGLE-photon avalanche diodes (SPADs) in monolithic
CMOS technology [1] have been receiving great attention

in recent years for scientific, industrial, and consumer applica-
tions, such as time-of-flight (TOF) sensing [2]–[4] , low-light
photon counting and imaging [5], [6], biomedical imaging
[7], [8], quantum random number generation (QRNG) [9].
However, CMOS SPADs using advanced technology nodes,
below 180 nm, tend to have limited photon detection prob-
ability (PDP) in a small range of wavelengths and generally
low sensitivity in near-infrared (NIR) spectral range, due to
narrow depletion regions available in these technologies [10].

Significant improvements in NIR and an overall wide spec-
tral range has recently been achieved in submicron CMOS
technologies [10]–[14] and the use of electrical microlensing
[15], also known as charge focusing [16], has been shown to
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be useful to improve PDP. Electrical microlensing consists of
forcing photo-generated carriers to drift towards the multipli-
cation region by gradual doping profiles or non-vertical electric
fields. However, wide and deep depletion regions appear to be
the most effective means to improve NIR PDP. For instance,
Webster et al. have achieved over 40% PDP from 410 nm
to 760 nm at high excess bias by burying the multiplication
region in 130 nm CMOS technology. Niclass et al. have used
fully depleted SPAD structures in 180 nm CMOS technology
achieved PDP of 64.8% and 24% at 610 nm and 850 nm,
respectively at moderate excess bias.

Recently, advanced backside illuminated (BSI) 3D stacking
technologies have emerged with high fill factor, making high
NIR PDP SPAD sensors possible. A BSI charge-focusing
SPAD achieved a PDE (photon detection efficiency) of 24.4%
at the wavelength of 940 nm with optical microlenses and a
dedicated light trapping technique [6]. Another work reported
a PDE of 21.8% for only 2.5 µm pitch with an optimized
gapless microlens and pyramid surface for diffraction (PSD)
[17]. The PDE of 36.5% at 940 nm, the world’s highest value
so far, was achieved by combining dual diffraction and 2x2
on-chip lens [18]. However, the BSI technology typically is
high cost, and requires long delivery time.

In this paper, we report on a new family of frontside-
illuminated (FSI) SPADs with a pitch of 8.5 µm characterized
by fully depleted main junction and 3 different depletion DPW
layers, with the potential of being miniaturized further. We
first demonstrate how to systematically engineer the doping
profile of the main junction and of the deep p-well layers,
and then fully characterize the impact of doping engineering
in small SPADs. The proposed structures are called SPAD1,
SPAD2, and SPAD3, where SPAD1 and SPAD2 are optimized
for timing jitter, with less than 50 ps (FWHM) at 5 V excess
bias voltage, while SPAD3 was red and NIR enhanced, with
a comparably low timing jitter.

II. SPAD STRUCTURE AND SIMULATION

Fig. 1(a) shows the cross-section of the FSI SPAD family in
55 nm BCD process. The SPAD is based on a shallow N-well
(NW) and P-well (PW) junction. The pitch is 8.5 µm. All the
SPADs presented in this study were designed and realized in a
round shape with an avalanche diameter of 4.4 µm, achieving
a fill factor of 21%. Based on the achieved results, a parameter
optimization can be performed to achieve a higher fill factor in
future generations. Fig. 1(b) shows the doping profile versus
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Fig. 1. (a) Simplified cross-section of the proposed SPAD. The structure is
based on shallow NW and PW layers. Three different DPW layers are also
implemented. All 3 SPADs have the same drawn avalanche area and pitch.
(b) The simplified doping profile versus depth below silicon surface. Layers
DPW1-3 are used in SPAD1-3, respectively.

depth below surface. The substrate features a gradient of p-
type doping in the epitaxial layer, and the SPAD incorporates
three different deep P-well (DPW) layers below the junction.

Doping engineering is employed in both the main junction
and deep p-well layers. Fig. 2 shows simulations of the relative
electric field, as well as the depletion layer boundaries. For the
main junction, the avalanching junction is engineered through
shallow NW and PW layers and optimized to achieve a high
avalanche gain and wide depletion region. Significant efforts
are dedicated to fine-tuning the fully depleted PW layer to
achieve a higher breakdown probability. For the different DPW
layers, the depletion region can be well defined in depth, while
photo-generated carriers in the depletion region can quickly
drift towards the avalanching junction.

III. RESULTS AND DISCUSSION

A. I-V Characteristics

The static current/voltage curves of the proposed SPADs
were measured using a semiconductor analyzer, revealing
extremely low dark current levels in the pA range for all
three variants. The current-voltage curves with illumination
are shown in Fig. 3(a).

With different DPW layers, the corresponding breakdown
voltages are 17.1, 20.6, and 23.0 V, respectively. This means
that the breakdown voltage is related to both the main junction
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Fig. 2. Simulation results depicting the electric field as well as the depletion
layer boundaries for SPAD1 (a), SPAD2 (b), and SPAD3 (c) at 3V excess
bias voltage. The junction is engineered to achieve a wide depletion region.

(a)
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Fig. 3. (a) SPADs current as a function of reverse bias voltage with
illumination. (b) Breakdown voltage as a function of temperature for 3
different SPADs.

and the DPW layers for miniaturized fully depleted SPAD.
Besides, it is clearly shown that SPAD2 and SPAD3 achieve
lower photo-current above the breakdown voltage. Fig. 3(b)
shows the breakdown voltage as a function of temperature
from -40 ºC to 60 ºC. The extracted temperature coefficients
are 16.7, 44.5, and 56.5 mV/ºC, respectively. With a thicker
depletion region, the temperature coefficients grow larger [19].

B. Dark Count Rate

The dark count rates (DCRs) of 8 samples for each SPADs
were measured at room temperature. Fig. 4(a) shows the
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Fig. 4. (a) Median DCR at room temperature. The data is obtained by measuring 8 dies. (b) Temperature dependence of DCR for 3 different SPADs.
Measurements were taken from one SPAD sample each from -40 ºC to 60 ºC. (c) Arrhenius plot of the DCR for 3 different SPADs at the excess bias voltage
of 3 V.
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Fig. 5. Measured PDP as a function of wavelength for SPAD1 (a), SPAD2 (b), and SPAD3 (c) from 400 nm to 960 nm with the step of 10 nm. (d) PDP
comparison as a function of wavelength for 3 different SPADs. (e) PDP as a function of excess bias voltage at the peak wavelength for 3 different SPADs.
(f) Peak PDP and PDE as a function of draw active diameter of SPAD3. The guard ring width is same during the scaling. The PDP is calculated based on
the draw active area.

median DCR as a function of the excess bias voltage. The
median DCR of SPAD1 is 132 cps and 290 cps at 3 V and 5 V
excess bias voltage, respectively. This can be further reduced
through optimizing the guard ring to decrease the electitric
field in the junction edge. It is clear that SPAD2 shows the
best DCR performance, with the median DCR of 62.3 cps
and 132.2 cps at 3 V and 5 V excess bias voltage, respectively.
The median DCR of SPAD3 is 474.2 cps at 3 V excess bias
voltage. SPAD3 shows the worst DCR performance, due to
deep-level traps in the wide depletion region. The temperature
dependence of DCR at 3 V excess bias voltage is shown
in Fig. 4(b), whereas SPAD2 and SPAD3 show a strong

temperature dependence. As the thermal generation is the main
source of dark count rate, activation energies can be extracted
from the temperature dependence [20]. The Arrhenius plot for
3 different SPADs is shown in Fig. 4(c). At high temperature,
where SRH (Shockley-Read-Hall ) effect is the dominant,
the corresponding activation energies of the SPAD family is
0.86, 1.04, 1.18 eV, respectively. With the temperature cooling
down, the tunneling mechanism becomes more important. The
the corresponding activation energies of the SPAD family is
0.28, 0.48, 0.49 eV, respectively
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Fig. 6. (a) Timing jitter response for an 850 nm laser at 3 V excess bias
voltage. The jitter of the laser is 32 ps. (b) Timing jitter (FWHM) as a function
of excess bias voltage.

C. Photon Detection Probability

PDP measurement was taken at room temperature with
10 nm interval using the continuous light technique [21]. The
calculated PDP is based on the draw avalanche area. Fig. 5
shows the measured PDP results from 400 nm to 960 nm with
the step of 10 nm for all the SPADs. With the different DPW
layers, it is clearly shown that the peak PDP wavelengths
are observed to be 450 nm, 540 nm, and 640 nm, respectively.
SPAD1 achieves peak PDP of 48.9% at 450 nm, 6.7% at
850 nm, and 2.4% at 940 nm at 5 V excess bias voltage. SPAD2
achieves peak PDP of 32.4% at 540 nm, 10.7% at 850 nm,
and 3.7% at 940 nm at 5 V excess bias voltage. Thanks to
the wider depletion region, SPAD3 shows a high PDP over
a wide spectral range, with peak PDP of 41.3% at 640 nm,
22.3% at 850 nm, and 8.3% at 940 nm at 3 V excess bias
voltage. This broad spectral response from visible to NIR
holds great potential for a diverse applications. The peak PDP
as a function of excess bias voltage is shown in Fig. 5(e).
The peak PDP of SPAD3 shows the strongest dependence
on excess bias voltage. The miniaturization of SPAD plays a
crucial role in the development of large-format image sensors.
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Fig. 7. Afterpulsing probability: measured inter-avalanche time histogram at
room temperature. (a)-(b) SPAD1 and SPAD2 at 5 V excess bias voltage. (c)
SPAD3 at 3 V excess bias voltage. The dead time of each SPAD was 100 ns.

During the pitch scaling down, same guard ring width is
maintained. However, the reduction in SPAD pitch presents
challenges in accurately evaluating the avalanche area through
light emission test, and the process mismatch can have a higher
impact. Fig. 5(f) shows the peak PDP and PDE of SPAD3
as a function of draw active diameter. The minimum active
diameter is 2.4µm, the corresponding pitch is 6.5µm. We can
see that the peak PDE decreases only a bit during the pitch
scaling from 8.5µm to 6.5µm. The lateral charge collection
by drift-diffusion can help enhance the sensitivity thanks to
the fully depleted structure.

D. Timing Jitter

A dedicated printed circuit board equipped with a fast
comparator was utilized to evaluate the timing jitter. A low
threshold voltag,which was close to the baseline of the output
pulse, was applied to detect the SPAD signal at the onset
of the avalanche phenomenon. Fig. 6(a) shows the timing
jitter at 3 V excess bias voltage with an 850-nm laser source
(NKT Photonics PiL085X). The jitter of the laser is 32 ps.
The evolution of jitter as a function of the excess bias voltage
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Fig. 8. Performance comparison of the N-on-P SPADs in monolithic CMOS
technologies. PDP at 850 nm versus timing jitter at similar excess bias voltages
is reported.

is shown in Fig. 6(b). A timing jitter of 42, 70, and 96 ps
(FWHM) is achieved at 3 V excess bias voltage, respectively.
The timing jitter at same excess voltage increases clearly with
the expansion of the depletion region, because the timing
fluctuation of the photo-generated carriers upward towards the
avalanching area will be dominant.

E. Afterpulsing Probability

Under constant low light condition, the distribution of inter-
avalanche time follows poisson statistics. An afterpulse can be
triggered by trapped carriers during recharging. The measured
afterpulsing probability (APP) is shown in Fig. 7. A high
threshold voltage of the comparator, which was close to the
peak of the output pulse, was applied to detect the output pulse.
The dead time is about 100 ns.The afterpulsing probability of
SPAD1 and SPAD2 was measured to be 3.9%, and 4.5% at 5 V
excess bias voltage. The measured afterpulsing probability of
SPAD3 was 4.7%. Due to the lack of integrated quench and
recharge circuits, a large number of carriers maybe trapped
after an avalanche. Thus, the measured afterpulsing probability
was significantly overestimated.

IV. STATE-OF-THE-ART COMPARISON

Fig. 8 shows the PDP and timing jitter comparison of
the proposed SPADs with the previously reported N-on-P
type SPADs in CMOS technology. The proposed SPAD1 and
SPAD2 show less than 50 ps timing jitter at 5 V excess bias
voltage. The proposed SPAD3 shows a high PDP at 850 nm,
while keeping a low timing jitter at 3 V excess bias voltage.
Table 1 shows the overall performance of the developed
SPADs and comparison with the state-of-the-art SPADs.

V. CONCLUSION

We demonstrate the role of doping engineering to widen
the depletion region in small SPADs with a pitch of 6.5µm to

8.5µm implemented in a 55-nm BCD process. To demonstrate
it practically, a family of SPADs was designed, realized, and
fully characterized in this technology. The doping profiles of
the avalanching junction layers were optimized to achieve red-
and NIR-enhanced sensitivity. Experimental evaluation of the
proposed SPADs revealed that the PDP peak wavelength can
be improved with a wider and deeper depletion region, thereby
achieving a high PDP over a wide spectral range, with a peak
PDP of 41.3% at 640 nm, and 22.3% at 850 nm, and the timing
jitter 96 ps at 3 V excess bias voltage. The technique is suitable
for small-pitch SPADs and large-format image sensors, with
multi-megapixel resolution, both operating in frontside- and
backside-illuminated modes.
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