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1 Introduction

We study line defects in conformal field theory (CFT). Such one-dimensional operators
undergo a defect Renormalization Group (RG) flow, [1–5]. We focus on the fixed points of
this flow, i.e., conformal line defects. Due to the absence of one-dimensional anomalies, such
operators can be placed along an arbitrary smooth path without breaking their conformal
symmetry. In particular, the expectation value of such an operator is a conformal invariant
functional of the path. This functional is a fundamental probe of the theory. For example, it
can serve as an order parameter for the confinement/deconfinement transition. In holographic
large-N gauge theories, the expectation value of a certain conformal defect is dual to the
string partition function in AdS.

The only known examples where such a functional is explicitly known are in 2d YM [6],
and related to it, for a certain class of BPS lines on S2 ⊂ R4 in N = 4 SYM theory, [7].
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However, these examples are rather degenerate because the expectation value depends only
on a two-dimensional area that is enclosed by the loop.1 See [8–14] for more examples in
which such functionals were studied at different limits.

In this paper, we develop a bootstrap method to study smooth line defects. We apply it
to one of the simplest, yet nontrivial, examples of conformal defects. These are the ones that
are realized in the t’ Hooft large N limit of three-dimensional Chern-Simons (CS) theories
with matter in the fundamental representation. In these cases, we formulate the bootstrap
problem in terms of three assumptions. They consist of the conformality of the line defect,
large N factorization, and the spectrum of the two lowest-lying operators at the end of the
line. We find that imposing the conformal symmetry of a flat (straight) defect is insufficient
for fixing its expectation value when the line is not straight. On the other hand, imposing
the conformal symmetry of the defect along an arbitrary smooth path leads to new nontrivial
functional constraints.2 In particular, they result in a unique bootstrap solution. We use it to
solve the line CFT and compute the defect expectation value in a systematic expansion around
the straight line. Our results are in perfect agreement with those that we have obtained
in [15, 16] using an all-loop resummation of the perturbative expansion. Our consideration
resembles those of conformal perturbation theory (see, e.g. [17–24] for examples of the method
and its many applications). For other methods of studying line defects that are based on
conformal symmetry, see [25, 26] and references therein.

Famously, CS-matter theories possess a strong-weak bosonization duality. This duality
maps the theory coupled to bosons to another theory coupled to fermions; see [16] and the
references therein. Our bootstrap axioms are blind to which of the two dual descriptions
has been used to realize the line defects.

The paper is organized as follows. In section 2 we set up the bootstrap problem. We
detail the axioms on which it is based and our bootstrap strategy. As a warm-up, in section 3,
we compute the first-order variation of a mesonic line operator. This order follows directly
from our axioms and does not require a bootstrap. We use it to set our notation and
regularization scheme. In section 4 we bootstrap the second-order variation and use it to
solve the line CFT. All the ingredients that appear at higher-order variations are present
at the third order. In section 5 we bootstrap it and discuss its higher-order generalization.
We end in section 6 with a discussion.

1Stated differently, in these examples, the two-point function of the displacement operator and the cusp
anomalous dimension are trivial.

2This fact can be understood by drawing an analogy to correlation functions of local operators in QFT
with symmetry. Imposing the conformal symmetry on a smooth path is analogous to Ward identities for the
correlators. The latter are nontrivial constraints on top of the invariance of the vacuum. They arise only when
we deform the vacuum with a set of operators. Here, the straight line is analogous to the vacuum and other
smooth lines are deformations of it.
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2 Setup

Our main objective in this paper is to determine the expectation value of mesonic line operators

M [x(·)] = ⟨M[x(·)]⟩ = ⟨O(x1)W[x(·)]O(x0)⟩ , (2.1)

where W is a conformal line operator along a smooth path, and x(s) is some parameterization
of the path. This path is oriented from the right boundary operator O at x0 ≡ x(0) to
the conjugate left boundary operator O at x1 ≡ x(1). Instead of the mesonic line, we can
consider the expectation value of a closed loop. As will become clear in the following, the
latter is determined from the former.

Such operators are realized in CS theory with matter in the fundamental representation.
For example, in CS theory with one fermion, W can be a Wilson line in the fundamental
representation that is stretched between fundamental and anti-fundamental fermion fields, [16].

We now detail three minimal properties of this observable, which we assume to hold
throughout this paper. They were derived in [16] by an explicit resummation of the ’t
Hooft perturbative expansion.

2.1 Bootstrap axioms

Axiom I — Conformal invariance. The first axiom concerns the conformal invariance of
the line operator W . Under a conformal transformation, x → x̃, the line operator transforms as

W[x(·)] 7→ W̃[x̃(·)] = W[x̃(·)] . (2.2)

It follows from this axiom that an infinite straight line preserves an SL(2,R) × U(1)
subgroup of the three-dimensional conformal group. Here, SL(2,R) is the conformal symmetry
of the line, and the U(1) factor stands for rotations in the transverse plane to the line.
Consequently, the operators on the line and those on which the line can end are classified by
their (unitary) SL(2,R) representation and their U(1) transverse spin. Such operators can
be divided into SL(2,R) primaries and descendants. The latter can be obtained from the
former using longitudinal derivatives. The primaries are characterized by their dimension
∆, and their transverse spin s. We define the sign of the transverse spin to be correlated
with the orientation of the line so that the spin of x+ = (x1 + ix2)/

√
2 is +1 for a line

oriented in the x̂3 direction.
When the line is smooth (but not necessarily straight), we can zoom in close to a point

on the line. Locally, it is approximately straight, and we can use the same classification of
line and boundary operators as those on, and at the ends of, a straight line.3

Operators with non-zero transverse spin are equipped with a transverse polarization
vector n, with O = O∆,s(x, n). A transverse rotation of this polarization vector results in an
overall phase factor of e±isθ. The transverse spin of these operators may be factional. As a
result, the line expectation value acquires a phase under 2π rotation of one of the boundary
polarization vectors in the plane transverse to the line. In this paper, we will be concerned

3Namely, ∆ and s dictate how the operator transforms under the SL(2,R) × U(1) transformations that
preserve the straight line that is tangent to the line at that point.
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with the deformation of a straight line with an arbitrary normalization, which will be factored
out. Therefore, keeping track of this e±2πis phase is not relevant to us.4

Axiom II — Factorization. We are concerned with a “large N CFT”, where correlation
functions factorize as

⟨M[x(·), n]M̃[x̃(·), ñ]⟩ = ⟨M[x(·), n]⟩ × ⟨M̃[x̃(·), ñ]⟩ × (1 +O(1/N)) . (2.3)

Another large N simplification is the factorization of line operators into a product of
two boundary operators,

Oline = O ×O . (2.4)

In large N CS-matter theory, the operators Oline transform in the adjoint representation, and
the two boundary operators, O and O, transform in the fundamental and anti-fundamental,
respectively.5 Here, the transverse polarization vectors of the right and left boundary
operators are the same.

Therefore, the properties of the line operators follow those of the left and right boundary
operators in the product (2.4). In particular, it follows from (2.3) and (2.4) that the correlation
function of operators on the line factorizes into a product of expectation values of mesonic
line operators (2.1)

⟨. . .WOlineW . . .⟩ = ⟨. . .WO⟩ × ⟨OW . . .⟩ × (1 +O(1/N)) . (2.5)

Note that axioms I and II do not imply that the correlation functions of operators on
a straight line are trivial. Although their dependence on the positions of the operators
factorizes, their spectrum and (properly normalized) overall coefficient are nontrivial. As a
result, the dependence of M on the shape of the path is nontrivial. We will bootstrap them
using one more assumption about the low-lying operator spectrum.

Axiom III — Boundary spectrum. The spectrum of boundary operators on the left
end of the line is the same as that on the right, with the only difference being that the
transverse spin is flipped,

(∆O, sO) = (∆O,−sO) . (2.6)

This relation is inherited from the CPT symmetry of the theory, which simultaneously reflects
the transverse plane and interchanges the left and right ends of the oriented line.

The third axiom concerns the spectrum of the low-lying SL(2,R) primary boundary
operators at the right end of the line. It states that the primary operator with s ≤ 1

2 and
minimal conformal dimension is

(∆O, sO) = (∆, 1/2−∆) , (2.7)
4In order to have a single-valued expectation value, one can introduce a framing vector, which is a transverse

polarization along the line. The boundary value of this vector is the boundary polarization vector, whereas
the dependence of the mesonic line on the bulk value of this vector is topological. Having such a topological
framing vector is natural from the perturbative definition of Wilson lines in CS theory [27].

5The singlet line operators are suppressed at large N .
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and that the one with s ≥ 1
2 is

(∆O, sO) = (2−∆, 3/2−∆) , (2.8)

where ∆ ∈ [0, 1]. We also assume that the transverse spin of these primary operators is
not degenerate. That is, all other primary operators have a different transverse spin than
those in (2.7) and (2.8). This assumption can be traced back to having a CS-matter theory
with a single flavor.

2.2 Discussion

One direct consequence of the axioms is that the primary operator on the line with the lowest
dimension is given by a factorized product of the right operator (2.7) and its CPT conjugate

Obi-scalar ≡ O∆,1/2−∆ ×O∆,∆−1/2 , with ∆bi-scalar = 2∆ , sbi-scalar = 0 . (2.9)

For ∆ ∈ [0, 1/2), it is relevant, and therefore the conformal fixed point on the line is unstable.
On the other hand, for ∆ ∈ (1/2, 1], that scalar primary operator is irrelevant and the
fixed point is stable.6

Chern-Simons theory with bosonic or fermionic fundamental matter has two different
conformal line operators, one unstable and the other stable, [15, 16]. By allowing ∆ to take a
value in [0, 1], we cover both types of lines. In particular, the case where ∆ = 1/2 corresponds
to the free bosonic description, and the cases where ∆ = 0 or ∆ = 1 correspond to the
free fermionic description. In these cases, the bootstrap deserves special care because, at
these values, certain relevant or irrelevant operators become marginal. In this paper, we
will avoid them by further assuming that ∆ ̸= 0, 1/2, 1. These values can still be obtained
by analytic continuation.

The axiom I (2.2) states that the line is conformally invariant. Hence, the only source in
a conformal transformation of the mesonic line operators comes from the boundary. These are
taken to be SL(2,R) primary operators of dimension ∆O and transverse spin sO. Consequently,
if we transform both the path and the boundary polarizations, the only source comes from
the boundary conformal weight

Õ∆′,s′(x̃1, ñ1)W[x̃(·)]Õ∆,s(x̃0, ñ0)
O∆′,s′(x1, n1)W[x(·)]O∆,s(x0, n0)

= [conformal factor] . (2.10)

To compute this factor, we decompose the conformal transformation at the boundary
of the line, x → x̃, into translation, three-dimensional rotation, and dilation

∂x̃µ

∂xν
= Ω(x)Λµ

ν(x) , where detΛµ
ν = 1 . (2.11)

The dilatation Ω is part of the SL(2,R) subgroup, under which the boundary operator has
dimension ∆O. Hence,

[conformal factor] = Ω(x0)−∆ × Ω(x1)−∆′
. (2.12)

6In the case where ∆ = 1/2, the two fixed points collide. At that point, one sign of the coupling in front of
Obi-scalar is marginally irrelevant and the other is marginally relevant.
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One can also rewrite this equation in a form where the polarization vector is not
transformed and the boundary spin dependence is manifest. Note that the rotation matrix
Λ ∈ SO(3) is, however, not a transverse rotation. Hence, the transverse planes before and after
the conformal transformation are not the same. The only way that the boundary polarization
vector on the transformed path would point in the same direction as that on the original
path is if it points in the direction of the intersection between these two transverse planes.
This is equivalent to starting with (2.10) and rotating both n and ñ, each in its transverse
plane, so that they point in the same direction. Doing so results in the phase factor

[spin factor] = eisθ0 × eis′θ1 , (2.13)

where θ0 and θ1 are the total transverse rotation angles at the two end points. Let us focus on
the right angle, θ0. We denote by e0 and ẽµ

0 = Λµ
νeν

0 the unit tangent vectors before and after
the conformal transformation. The deformation angle, θ0, is equal to the difference between
two angles. One is the angle between ñ and the intersection of the two transverse planes,
nint ∝ e0 × ẽ0, which comes from the numerator in (2.10). From it we subtract the angle
between n and nint, which comes from the denominator in (2.10). This difference is defined in
such a way that it vanishes when the conformal transformation is trivial. All together, we have

Õ∆′,s′(x̃1, nint
1 )W[x̃(·)]Õ∆,s(x̃0, nint

0 )
O∆′,s′(x1, nint

1 )W[x(·)]O∆,s(x0, nint
0 )

= [conformal factor]× [spin factor] . (2.14)

Consider, for example, the case where the two boundary operators are primaries with
the same conformal dimension and opposite transverse spin. In this case, the expectation
value of the mesonic line operator takes the form

⟨O∆,−s(x1, n1)W[x(·)]O∆,s(x0, n0)⟩ =
(2n+

0 n−
1 )s

|x0 − x1|2∆ × F∆[x(·)] , (2.15)

where F is a conformal invariant functional of the path that we would like to compute.
Here, we have used light-cone coordinates to parameterize the transverse planes at the two
endpoints, d2s⊥ = 2dx+dx−.

2.3 Notations

We adopt the notation where the right and left boundary operators are denoted by

O(m,ℓ) and O(m,ℓ)
, (2.16)

where, ℓ is the transverse spin at ∆ = 1/2. That is, in the free bosonic theory. Here, m ≥ 0 is
the integer SL(2,R) descendant level. The descendant operators have their dimension shifted
by m while their transverse spin remains the same as that of the primary.

In this notation, the only primary operators that we assume to exist are

{O(0,0),O(0,1)} and {O(0,0)
,O(0,−1)} . (2.17)

Nevertheless, we adopt the general notation (2.16), informed by the retrospective under-
standing that the bootstrap constraints examined in this paper are consistent only if the
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spectrum of boundary operators comprises two non-degenerate, infinite towers of operators,
characterized by increasing and decreasing transverse spins, respectively

(∆(0,ℓ), s(0,ℓ)) =


(
∆, 1

2 −∆
)

+(|ℓ|, ℓ) ℓ ≤ 0 ,(
2−∆, 3

2 −∆
)
+(ℓ − 1, ℓ − 1) ℓ ≥ 1 ,

(2.18)

where ℓ ∈ Z.
The spectrum given above is invariant under the transformation of the parameter

∆ → (2−∆) together with a sign flip of the transverse spin. This symmetry transformation
interchanges the two towers. We denote it tower-swap.

We will also use the shorthand notation for the expectation value of mesonic lines with
primary boundary operators

M
(ℓ,ℓ′)
st [x(·)] ≡ ⟨O(0,ℓ)(xs)W[x(·)]O(0,ℓ′)(xt)⟩ , (2.19)

where we have dropped the dependence of the boundary operators on their transverse
polarization vectors. In the case when the line is straight we will also drop the dependence
of M on x(·) and express (2.19) as

M
(ℓ,ℓ′)
st [xstraight(·)] ≡ M

(ℓ,ℓ′)
st ≡ ⟨⟨O(0,ℓ)(xs)O(0,ℓ′)(xt)⟩⟩ . (2.20)

2.4 Bootstrap strategy

Using axioms I, II and III, we can now systematically bootstrap the expectation value of
mesonic line operators along a smooth path. Our strategy is to start from a straight mesonic
line, whose only nonzero expectation values are those that preserve the boundary spin ℓ′ = −ℓ.
Their dependence on the length of the line is fixed by symmetry to be given by

M
(ℓ,ℓ′)
10 = δℓ′,−ℓ

cℓ

|x10|2∆ℓ
, (2.21)

where ∆ℓ = ∆(O(0,ℓ)) is the dimension of O(0,ℓ) and cℓ is a number that depends on our
normalization of the boundary operators. It is convenient to choose the two boundary
polarization vectors to be the same, so that the factor 2n+

0 n−
1 = n2 = 1 in (2.15) and cl is real.

We then smoothly deform the straight line

xstraight(s) → x(s) = xstraight(s) + v(s) , (2.22)

and bootstrap M [x(·)] order by order in the smooth deformation profile v(s)/|x1 − x0|. More
concretely, we express the deformed operator in terms of operator insertions along the straight
line and bootstrap their coefficients. This allows us to explicitly compute the mesonic line
expectation value, order-by-order, in the deformation.

To impose conformal symmetry on the expansion, we construct a one-parameter family
of transformations, xs → x̃β(xs). They can be any combination of translations, rotations,
dilatation, and special conformal transformations, that are smoothly connected to the identity
at β = 0.7 For convenience, we tune the deformation so that it deforms the endpoints in the

7For example, a special conformal transformation can be parametrized as x̃µ
β(x) = xµ−β2 b̂µ(b̂·x)

1−2β(b̂·x)+β2 b̂2x2 , where
b̂ is some unit vector.
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transverse plane only. We then expand the deformed path x̃β(xs) = xs + vs(β) in powers
of β and reparameterize it so that at any point along the line the deformation vector is
transverse to the original straight line, vs(β) · ẋs = 0. Because vs(β) depends nonlinearly on
β, this expansion in powers of β is not the same as the expansions in powers of v(β). The
two expansions, however, only start to differ at the third order (see appendix A for details).

3 First order

Consider the variation of the path (2.22) to first order in v/|x1 − x0|. It can be expressed as
a linear combination of local operators inserted on the line and at the two boundaries

δM = OδWO + δOWO +OWδO . (3.1)

These boundary and line variations consist of all operators that are allowed by symmetry.

3.1 Line variation

The first order line variation can be brought to the form8

δW =
1∫

0

ds |ẋs|vµ
s P[Dµ(xs)W] , (3.2)

where we have used integration by parts to remove any derivatives from v. The line operator
D is called the displacement operator. It follows from (3.2) and axiom I that it is a dimension
two primary operator with transverse spin equal to one. The form of this operator is uniquely
fixed by the spectrum of lowest dimension operators, (2.7), and (2.6), to be given by

D+(x) = η
[
O(0,1)(x, n)×O(0,0)(x, n)

]
(
√
2n+) ,

D−(x) = η
[
O(0,0)(x, n)×O(0,−1)(x, n)

]
(
√
2n−) .

(3.3)

Here, n is an arbitrary unit transverse polarization vector and therefore (
√
2n±) is a phase.

The proportionality factor, η, depends on our choice of normalization of the boundary
operators in (2.7), (2.8), and can conveniently be set to one. Here, we have chosen to keep
it undetermined and identical for the two transverse directions.

Using (2.21) and the form of the displacement operator (3.3) we have that

⟨⟨. . . D−O(0,ℓ)⟩⟩ ∝ ⟨⟨O(0,−1) O(0,ℓ)⟩⟩ = 0 for ℓ ̸= 1 , (3.4)

⟨⟨. . . D+ O(0,ℓ)⟩⟩ ∝ ⟨⟨O(0,0) O(0,ℓ)⟩⟩ = 0 for ℓ ̸= 0 , (3.5)

where the dots stand for some left operator. Similarly,

⟨⟨O(0,ℓ) D− . . .⟩⟩ = 0 for ℓ ̸= 0 , (3.6)

⟨⟨O(0,ℓ) D+ . . .⟩⟩ = 0 for ℓ ̸= −1 . (3.7)
8In three dimension one can also write the structure ϵµνρẋµvνD̂ρ. However, keeping in mind that the line

is oriented, it is not independent of D in (3.2). Explicitly, they are related by the redefinition Dµ = ϵµνρeνD̂ρ,
where eµ = ẋµ/|ẋ|.
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3.2 Boundary variation

The boundary variation may include derivatives of v,

δO = vµδ(0)
µ O + dvµδ(1)

µ O + ddvµδ(2)
µ O + . . . . (3.8)

Here, dv = v̇/|ẋ|, is the path derivative of the variation vector v at the boundary. Similarly,
ddv = v̈/|ẋ|2 − v̇∂s|ẋ|/|ẋ|3, etc., are the higher-order reparametrization invariant derivatives
of v along the path. All terms on the right-hand side of (3.8) must have the same conformal
dimension and spin as those of O. Because ∆(v) = −1, ∆(dv) = 0, ∆(ddv) = 1, etc., it
follows that the dimension of the boundary operators δ

(n)
µ O grows with n. For a transverse

variation, the operators δ
(n)
µ O have one more unit of transverse spin with respect to that

of O, while for a longitudinal variation, it remains the same. Note that because we have
already fixed the line variation to be given by (3.2), we no longer have the freedom to shift
terms between δO, δO, and δW in (3.8) using integration by parts.

We refer to the operator δµO ≡ δ
(0)
µ O as the path derivative of the boundary operator

O. As we go to higher orders in the path deformation, we will have more boundary and line
operator insertions. We denote the boundary operator with higher powers of the deformation as

vµ1vµ2 . . . vµmδµ1δµ2 . . . δµmO . (3.9)

Importantly, this multi-path derivative is not a local deformation of the path. Instead, it is
the operator that stands in front of vµ1vµ2 . . . vµm in a smooth variation of the path. Hence,
unlike covariant derivatives, these path variations commute by definition,

δµδνO = δνδµO ≠ δν (δµO) . (3.10)

Using path derivatives, the descendant boundary operators are defined as

O(n+1,ℓ) = δ3O(n,ℓ) , O(n+1,ℓ) = δ3O
(n,ℓ) (3.11)

where δ3 is the longitudinal path derivative. It is oriented in the direction of the path,
from O to O.

3.3 Boundary counter-terms

The perturbative expansion of the mesonic line operator around the straight line (2.22) is a
conformal perturbation theory, parameterized by the deformation profile. To carry it out
order by order in v(s) we have to introduce a UV cutoff and renormalize the line. We denote
by ϵ the corresponding UV cutoff, which has the dimension of length.

The resulting structure of the boundary variations is largely constrained by symmetry.
Consider, for example, the operator δ−O(0,1). It has transverse spin s = s(O(0,1))−1 = 1/2−∆.
According to axiom III, the only boundary operators with this transverse spin are O(0,0) and
its descendants O(n,0). However, their conformal dimension differs from that of δ−O(0,1) by
a non-integer value ∆(O(n,0)) −∆(δ−O(0,1)) = n − 3 + 2∆. Therefore, the decomposition
of δ−O(0,1) in terms of boundary operators takes the form

δ−O(0,1) = 1
ϵ3−2∆

∞∑
n=0

bnϵn O(n,0) , (3.12)

where all coefficients, {bn}∞n=0, are scheme dependent.
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The divergent terms in (3.12) are counter-terms. Their coefficients are fixed so that they
cancel out divergences that result from the integration of the displacement operator. For
the case of δ−O(0,1), this integral takes the form

⟨⟨. . . δWO(0,1)⟩⟩ =
∫
0

ds |ẋ| ⟨⟨. . .
[
v+

s D+(xs) + v−s D−(xs)
]
O(0,1)(x0)⟩⟩ , (3.13)

where the dots stand for some left boundary operator. Only the term with D− contributes
to the expectation value; see (3.4). As a result, the integral may have a local divergence
coming from the s → 0 region of integration.

We choose a proper time parameterization of the straight line

xstraight(s) = x0 + s(x1 − x0) , (3.14)

and use a point splitting regulator, ℓ > ϵ̃ = |x10|ϵ. With this choice, the divergence takes
the form

|x10|
∫
ϵ̃

ds v+
s ⟨⟨. . . D−(xs)O(0,1)(x0)⟩⟩

= η|x10|
∫
ϵ̃

ds v+
s ⟨⟨. . . O(0,0)(xs)⟩⟩M (−1,1)

s0 (3.15)

= η c−1
|x10|3−2∆

[
v+

0 ⟨⟨. . . O(0,0)(x0)⟩⟩
∫
ϵ̃

ds

s4−2∆

+
(
v̇+

0 ⟨⟨. . . O(0,0)(x0)⟩⟩+ v+
0 |x10|⟨⟨. . . O(1,0)(x0)⟩⟩

) ∫
ϵ̃

ds

s3−2∆ + . . .

]
.

The divergences v+
0 /ϵ3−2∆ and v+

0 /ϵ2−2∆ are canceled by setting b0 = −ηc−1/(3− 2∆)
and b1 = −ηc−1/(2 − 2∆) in (3.12). Namely, we have

δ−O(0,1) = − ηc−1
(3− 2∆)ϵ3−2∆O(0,0) − ηc−1

(2− 2∆)ϵ2−2∆O(1,0) + O(ϵ2∆−1) . (3.16)

Similarly, the v̇+
0 /ϵ2−2∆ divergences are canceled by setting in (3.8)

δ
(1)
− O(0,1) = − ηc−1

(2− 2∆)ϵ2−2∆O(0,0) + O(ϵ2∆−1) . (3.17)

In this way, all the divergent terms in δ−O(0,1) are fixed.
Similarly, for δ+O(0,0) we have

δ+O(0,0) = 1
ϵ2∆−1

∞∑
n=0

b̃nϵn O(n,1) . (3.18)

The coefficients of the divergent terms are tuned to cancel those that result from the
integration of D+ in ⟨⟨. . . δWO(0,0)⟩⟩.
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3.4 The Keyhole prescription

Consider, for example, the first-order variation

δM (0,1) = ⟨⟨O(0,0)
δWO(0,1)⟩⟩+ ⟨⟨δO(0,0)O(0,1)⟩⟩+ ⟨⟨O(0,0)

δO(0,1)⟩⟩ , (3.19)

In this case, the corresponding decomposition of δO(0,0) and δO(0,1) in terms of boundary
operators (3.8) comes with fractional powers of ϵ. As discussed above, the role of these bound-
ary operators is to remove divergences that result from the integration of the displacement
operator near the boundary in

⟨⟨O(0,0)
δWO(0,1)⟩⟩ = |x10|

1−ϵ̃∫
ϵ̃

ds v−s ⟨⟨O(0,0) D−(xs)O(0,1)⟩⟩ . (3.20)

This integral takes the form

⟨⟨O(0,0)
δWO(0,1)⟩⟩ = η c0 c−1

|x10|3

1−ϵ̃∫
ϵ̃

ds
v−s

(1− s)4

(1− s

s

)2∆
. (3.21)

It has a branch cut of order ∆, with branch points s = 0 and s = 1. The result of regularizing
this integral and canceling the divergences with the boundary variations in (3.19) is equivalent
to letting the cut run between the two branch points and converting this integral into a
contour integral around it

δM
(0,1)
10 = η|x10|

2i sin(2π∆)

∮
[0,1]

ds v−s M
(0,0)
1s M

(−1,1)
s0 + [positive powers of ϵ] , (3.22)

where we have assumed that the function v−(s) does not have singularities along the segment
s ∈ [0, 1]. For convenience, we have also assumed that the variation at the boundary acts
transversely to the line, v3

0 = v3
1 = 0. Longitudinal boundary variations act trivially by

rescaling the length of the line, |x01| in (2.21). The cancellation of divergent boundary terms
against the terms in (3.18) and the conjugate of (3.12) can be understood as providing the
cup or keyhole around the end of the cut, making the integral finite.

We define the keyhole regularization prescription as9

δM
(0,1)
10 = η|x10|

2i sin(2π∆)

∮
[0,1]

ds v−s M
(0,0)
1s M

(−1,1)
s0 = η c0 c−1|x10|

2i sin(2π∆)

∮
[0,1]

ds
v−s

(1− s)4

(
s − 1

s

)2∆
,

(3.23)
without additional positive powers of ϵ. This prescription amounts to a certain choice of
coefficients in the expansion of the boundary variation. Apart from divergent counterterms,
these series consist of boundary operators with increasing dimensions and (fractional) powers
of ϵ; see, for example, (3.12). In the keyhole prescription, they are fixed so that (3.23)
holds at finite ϵ.

9For generic ∆, all divergent terms near the boundary are power-like, therefore there is no ambiguity in
the finite part in the ϵ → 0 limit, which only happens for a logarithmic divergence.
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At higher orders in the line deformation, these scheme-dependent terms with a positive
power of ϵ may combine with divergent ones to give finite contributions. The total finite
part, however, is scheme-independent. In appendix B, we demonstrate this explicitly for
two different schemes.

Similarly to (3.23), the keyhole prescription for δM (−1,0) reads

δM
(−1,0)
10 = iη|x10|

2 sin(2π∆)

∮
[0,1]

ds v+
s M

(−1,1)
1s M

(0,0)
s0 . (3.24)

In particular, for a polynomial v−s ∝ sn in (3.22), we end up with the integral

1
2i sin 2π∆

∮
[0,1]

ds
sn

s2∆(s − 1)2(2−∆) = −Γ(2∆− 3)Γ(n − 2∆ + 1)
Γ(n − 2) . (3.25)

Note the factor of Γ(n − 2) in the denominator. It means that δM (0,1) = 0 for v− ∝ s0,
v− ∝ s1, and v− ∝ s2. These correspond in turn to global translation, rotation, and special
conformal transformations, which are indeed symmetries of the mesonic line expectation
value. To be precise, O(0,0)WO(0,1) transforms covariantly under conformal transformations,
with non-zero weight at the boundaries, (2.10). These weights only start to contribute at
second order and are analyzed in the next section. Hence, to the linear order, M (−1,0) is
invariant under these transformations. There are no further constraints imposed by conformal
symmetry at this order for mesonic line operators that end on the four operators in (2.17).

We can now use (3.23) and (3.24) to compute the first-order variation of M (0,1) and M (−1,0)

as functional of the shape of the path. The overall coefficient depends on our normalization
of these operators. This freedom is reflected in the factor of η that we have chosen to keep.

4 Second order

In the second order, for the first time, finite terms with undetermined coefficients enter the
line variation. We list them explicitly in section 4.1 and then bootstrap them in section 4.2.

4.1 Line variation

The second-order variation can be divided into line and boundary contributions as

δ2M = δ2Ō W O + δ Ō W δO + Ō W δ2O

+ δŌ δW O + Ō δW δO + Ō δ2W O .
(4.1)

Because the dynamics on the line is that of a local CFT, any term in which the two
variations act at two separated points on the line is given by two first-order variations. New
operators appear when the two variations act at the same point, either at the boundary
or in the bulk of the line. At the boundary of the line, the second-order variation takes a
similar form to the first-order one in (3.8) and is given by

δ2O = vµvνδ(0)
µ δ(0)

ν O + dvµvνδ(1)
µ δ(0)

ν O + dvµdvνδ(1)
µ δ(1)

ν O + ddvµvνδ(2)
µ δ(0)

ν O + . . . , (4.2)
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where in our parametrization (3.14), dv = v̇/|x10|, etc, see definition below (3.8). At the
bulk of the line, the second order line variation reads

δ2W = |x10|2
1∫

0

ds vµ
s

1∫
0

dt vν
t P[Dµ(xs)Dν(xt)W] + |x10|

1∫
0

dsP[δD(xs)W] . (4.3)

Here, using integration by parts, we have chosen the double integral to run over two dis-
placement operators, with no derivatives of v. With this choice, the operator δD takes a
form similar to δ2O in (4.2). That is, it is a sum of operators that are weighted by vµ

s vν
s ,

and higher derivatives such as vµ
sdvν

s , etc.
We can now repeat the analogous treatment to the first-order variation, canceling

divergences using counter-terms and keeping all terms that are finite at ϵ → 0. The conclusion
of this tedious computation is, however, very simple. We may list only the regularized integrals
and boundary terms that are finite as ϵ → 0 and can appear in (4.1). The rest of the terms
are either divergent and are tuned to cancel out or go to zero as the UV cutoff is removed.
The coefficients in front of the finite terms are either fixed from the first-order variation or are
new, and therefore left unfixed. In the next section, we will bootstrap them using the axioms.

In what follows, we will first focus on the case where M = M (0,0). As before, we do not
consider longitudinal boundary variations because they act trivially.

4.1.1 Boundary terms with one variation

The boundary term with one variation on the right and the other on the left is given by

⟨⟨δO(0,0)
δO(0,0)⟩⟩ = ⟨⟨(v−1 δ− + dv−1 δ

(1)
− + . . . )O(0,0)(v+

0 δ+ + dv+
0 δ

(1)
+ + . . . )O(0,0)⟩⟩

+ ⟨⟨(v+
1 δ+ + dv+

1 δ
(1)
+ + . . . )O(0,0)(v−0 δ− + dv−0 δ

(1)
− + . . . )O(0,0)⟩⟩ .

(4.4)

The operators in the first line have expansions of the form (3.18), with fractional powers
of ϵ. The ones with negative powers of ϵ are counter-terms that cancel divergences arising
from the integrals considered below. In this order, those with positive powers of ϵ vanish as
ϵ → 0. In summary, none of the terms in the first line of (4.4) leads to a finite contribution.

The terms in the second line are operators with transverse spins s = −s̄ = (1/2−∆)− 1.
Therefore, if they exist, they are new operators. According to the axiom III, their dimension
must be strictly larger than that of O(0,0). In particular, the operators δ

(l)
− O(0,0) and δ

(l)
+ O(0,0)

with l ≥ 1 come with a positive power of ϵ and do not contribute as ϵ → 0.
We remained with the boundary operator

δ−O(0,0) ≡ ϵ∆(0,−1)−∆(0,0)−1
(
O(0,−1) +

∞∑
n=1

anϵnO(n,−1)
)

, (4.5)

and its CPT conjugate. The power of ϵ cannot be negative because there is no other
contribution at that transverse spin that can cancel with it. So ∆(0,0) < ∆(0,−1) ≤ ∆(0,0) + 1.
The operator O(0,−1) appears multiplying v−0 in (4.4) and is the operator of the lowest
dimension with that transverse spin. Therefore, if it exists, it is an SL(2,R) primary. The
operators O(n,−1) are the corresponding SL(2,R) descendants and the coefficients an are
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scheme dependent. For the second line in (4.4) to yield a finite contribute, the operator
O(0,−1) must have conformal dimension

∆(0,−1) = ∆(0,0) + 1 = ∆+ 1 . (4.6)

Below we will find that, indeed, such an operator must exist. Assuming that it does,
equation (4.4) reduces to

⟨⟨δO(0,0)
δO(0,0)⟩⟩ = v+

1 v
−
0 M

(1,−1)
10 + [positive powers of ϵ] + [negative powers of ϵ] , (4.7)

where
M

(1,−1)
10 ≡ ⟨⟨O(0,1)O(0,−1)⟩⟩ ≡ c1

|x10|2∆+2 . (4.8)

and O(0,1) is the CPT conjugate of O(0,−1).

4.1.2 Boundary terms with two variations

Next, we have new boundary terms corresponding to second-order variation at the same
boundary points, one in the plus direction and the other in the minus direction. These have
the same transverse spin as that of O(0,0) and include all possible scalar operators O(n,0),
weighted by the appropriate power of the cutoff. Because the spectrum at that transverse
spin is non-degenerate, no other new operators can appear. We end up with

⟨⟨Ō(0,0)δ2O(0,0)⟩⟩ =
[
v+

0 v
−
0

(
a0
ϵ2 + a1

ϵ
δ3 + γ0δ2

3

)
+

(
v+

0 dv
−
0 + v−0 dv

+
0

)(
a2
ϵ

+ γ1δ3

)
(4.9)

+ γ2
(
v+

0 ddv
−
0 + v−0 ddv

+
0

)
+ γ3dv+

0 dv
−
0

+
(
v+

0 dv
−
0 − v−0 dv

+
0

)(
a3
ϵ

+ γ4δ3

)
+ γ5

(
v+

0 ddv
−
0 − v−0 ddv

+
0

) ]
M

(0,0)
10 ,

where δ3 is the longitudinal path derivative (3.11). The coefficients ai are counter terms
that are tuned to cancel the divergences of the integrals.

Similarly, we have

⟨⟨δ2Ō(0,0)O(0,0)⟩⟩ =
[
v+

1 v
−
1

(
ã0
ϵ2 − ã1

ϵ
δ3 + γ̃0δ̄2

3

)
+

(
v+

1 dv
−
1 + v−1 dv

+
1

)(
ã2
ϵ

− γ̃1δ3

)
(4.10)

+ γ̃2
(
v+

1 ddv
−
1 + v−1 ddv

+
1

)
+ γ̃3dv+

0 dv
−
0

−
(
v+

1 dv
−
1 − v−1 dv

+
1

)(
ã3
ϵ

− γ̃4δ3

)
− γ̃5

(
v+

1 ddv
−
1 − v−1 ddv

+
1

) ]
M

(0,0)
10 ,

where the tilted coefficients are independent of the un-tilted ones.10

10Recall that CPT symmetry exchanges the right and left ends of the line and the transverse spin. Therefore,
as long as we choose a regularization scheme that is compatible with this symmetry, we are guaranteed to
have ãi = ai and γ̃i = γi. In what follows, we will not work with a symmetric scheme and these coefficients
will be different.
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4.1.3 Single integral

There are two types of terms with a single integral. One consists of one boundary and one
bulk variation, given by ⟨δŌδWO⟩ + ⟨ŌδWδO⟩ in (4.1). The other type of terms with a
single integral have two variations at the same point in the bulk, given by the last term
in (4.3). We now consider these contributions in turn.

The first type does not lead to a finite contribution that depends on vs at 1 > s > 0.
It does, however, lead to finite contributions concentrated at the boundaries that can be
absorbed in a shift of the coefficients γi, γ̃i in (4.9), (4.10).

Explicitly, the term ⟨Ō(0,0)δWδO(0,0)⟩ takes the form

⟨Ō(0,0)δWδO(0,0)⟩ = η |x10|
∫

ds ⟨⟨Ō(0,0)
1 O(0,0)

s ⟩⟩ v−s ⟨⟨Ō(0,−1)
s δO

(0,0)
0 ⟩⟩

= η |x10|
ϵ2∆−1

∫
ds M

(0,0)
1s v−s ⟨⟨Ō(0,−1)

s

(
v+

0 b̃0O
(0,1)
0 +O(ϵ)

)
⟩⟩ ,

(4.11)

where in the first line we have used the form of the displacement operator (3.3), and in the
second line we used the expansion of δ+O(0,0)

0 in terms of the operators O(n,1)
0 , see (3.18).

Similarly, we have

⟨δŌ(0,0)δWO(0,0)⟩ = η |x10|
∫

ds ⟨⟨δŌ
(0,0)
1 O(0,1)

s ⟩⟩ v+
s ⟨⟨Ō(0,0)

s O
(0,0)
0 ⟩⟩

= η |x10|
ϵ3−2∆

∫
ds ⟨⟨

(
v−0 b0Ō

(0,−1)
0 +O(ϵ)

)
O(0,1)

s ⟩⟩v+
s M

(0,0)
s0 ,

(4.12)

where we used the expansion of the boundary operator (3.12).
We see that these two integrands come with a fractional power of ϵ. The coefficients of

the divergent terms, ηb0 and ηb̃0, are tuned to cancel the divergences that come from the
double integral that we consider in the next subsection. Hence, the integrals (4.11) and (4.12)
do not lead to finite bulk contributions.

As for the first-order variation in section 3.3, these integrals lead to boundary terms that
can be divergent or finite. Divergences are canceled by the boundary counterterms in (4.7)
and (4.9). The finite boundary terms can be absorbed in a shift of the γi’s in (4.9).

The other type of one integral has two variations at the same point on the line and
is given by

⟨⟨O(0,0)
δD(xs)O(0,0)⟩⟩ = 1

ϵ3−2∆ ⟨⟨O(0,0)[
d1 v+

s v−s O(0,0)
s ×O(0,0)

s + O(ϵ)
]
O(0,0)⟩⟩

+ Ξ
(
dv+

s ddv−s − dv−s ddv+
s

)
⟨⟨O(0,0)O(0,0)⟩⟩ ,

(4.13)

where d1 and Ξ are numerical coefficients. Similarly to (4.12), the integrand in the first line
only has fractional powers of ϵ and, therefore, does not contribute a finite bulk contribution.
The integrand in the second line is proportional to the identity operator on the line. It
measures the local winding of the deformation and is scheme-independent. It can be changed
using integration by parts and a shift in the boundary terms. Here we have chosen to write
it in an anti-symmetric way between the plus and minus directions.11

11The sum dv+
s ddv−

s +dv−
s ddv+

s is a total derivative on the line and thus, can be absorbed into the boundary
terms. Consequently, only the anti-symmetric combination would be the genuine operator on the line.
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4.1.4 Double integral

The double integral takes the form

δ2M
(0,0)
10

∣∣∣bare

2-int
≡⟨Ō(0,0)δ2W O(0,0)⟩ − |x10|

∫
ds ⟨⟨O(0,0)

δD(xs)O(0,0) ⟩⟩ (4.14)

= η2 |x10|2
∫∫
s>t

ds dt v−s v+
t M

(0,0)
1s M

(−1,1)
st M

(0,0)
t0 .

We shall now choose a regularization scheme and tune the counter-terms in the one integral
and boundary variation to arrive at a finite regularized double integral.

For fixed s, the t-integral is the one we have considered before at first order. We
choose to regulate it using the keyhole prescription. We remain with the s-integral over
v−s M

(0,0)
1s δM

(−1,0)
s0 , where δM

(−1,0)
s0 is the keyhole-regulated integral in (3.24). The regions

of integration near the boundaries may still lead to divergences. Naively, close to s = 0 we
have δM

(−1,0)
s0 ∼ v+

0 /s3. However, using the fact that the keyhole integral in (3.25) vanishes
for v+

t ∼ tn = sn(t/s)n with n = 0, 1, 2, we see that δM
(−1,0)
s0 ∼ dddv+

0 and therefore the
limit lims→0 δM

(−1,0)
s0 is finite. Close to s = 1 we have M

(0,0)
1s ∝ (1− s)−2∆ with ∆ ∈ (0, 1).

Therefore, for ∆ ≥ 1/2 the integral is divergent, and we need to subtract the divergence
using boundary terms in (4.1). As before, we choose a keyhole subtraction scheme, where we
deform the integral to go around the s-cut. Unlike the one variation integral (3.21), the s-cut
that starts at s = 1 does not end at s = 0. We denote the corresponding integral as

δ2M
(0,0)
10

∣∣∣
2-int

≡ iη |x10|
2 sin(2π∆) ⊂

∫
(1,0

ds v−s M
(0,0)
1s δM

(−1,0)
s0 . (4.15)

Note that the order of integration is important — in the scheme (4.15) we first do the
t-integral using the keyhole prescription and only then plug the result into the s-integral.
Different choices of regularization of this double integral differ by the boundary term and
can be absorbed into a shift in the coefficients γi and γ̃i.12 The regularization (4.15) does
not respect CPT and therefore in this scheme γ̃i ̸= γi.

4.1.5 Summary

In total, the second-order variation takes the form

δ2M
(0,0)
10 = [int2] + [int] + [B̄B] + [B2] + [B̄2] , (4.16)

where13

[B̄B] = v+
1 v

−
0 M

(1,−1)
10 , (4.17)

[BB] =
[
γ0v+

0 v
−
0 δ2

3 + γ1
(
v+

0 dv
−
0 + v−0 dv

+
0

)
δ3 + γ4

(
v+

0 dv
−
0 − v−0 dv

+
0

)
δ3

+ γ3dv+
0 dv

−
0 + γ2

(
v+

0 ddv
−
0 + v−0 ddv

+
0

)
+ γ5

(
v+

0 ddv
−
0 − v−0 ddv

+
0

) ]
M

(0,0)
10 ,

12We have verified this explicitly for several different schemes. See appendix B for details.
13Here, the tilded coefficients are chosen such that in a PT-symmetric scheme, they are equal to the un-tilded

coefficients, γi = γ̃i. The PT symmetry exchanges the left and right endpoints, exchanges the ± component,
and introduces a negative sign to all derivatives. For instance, v+

0 dv−
0 δ3 becomes v−

1 (−d)v+
1 (−δ̄3) = v−

1 dv+
1 δ̄3.
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[B̄B̄] =
[
γ̃0v+

1 v
−
1 δ2

3 + γ̃1
(
v+

1 dv
−
1 + v−1 dv

+
1

)
δ3 − γ̃4

(
v+

1 dv
−
1 − v−1 dv

+
1

)
δ3

+ γ̃3dv+
1 dv

−
1 + γ̃2

(
v+

1 ddv
−
1 + v−1 ddv

+
1

)
− γ̃5

(
v+

1 ddv
−
1 − v−1 ddv

+
1

) ]
M

(0,0)
10 ,

[int] = Ξ
∫

ds
(
dv+

s ddv−s − dv−s ddv+
s

)
M

(0,0)
10 ,

[int2] =−
( iη|x10|
2 sin(2π∆)

)2
⊂
∫

(1,0)

ds v−s M
(0,0)
1s

( ∮
[0,s]

dt v+
t M

(−1,1)
st M

(0,0)
t0

)
.

A change in the regularization scheme amounts to a change in the regularized double integral,
[int2], together with a shift in the γi’s and γ̃i’s coefficients, in such a way that the sum (4.16)
is unaffected.

4.1.6 The normalization independent coefficients

To compute the second-order deformation of the line, we need to fix the coefficients that
appear in (4.17). These are the γi’s, γ̃i’s, η, Ξ, the overall normalization of M (0,0) and M (−1,1)

that we have denoted by c0 and c−1 in (2.21), and c1 in [B̄B]. Among these, η, c0, and
c−1 depend on the choice of normalization of the four bottom boundary operators in (2.17).
Therefore, they are not physical by themselves. However, the combination

Λ ≡ η2c0c−1 , (4.18)

is independent of the normalization of the boundary operators. This combination governs
the two-point function of the displacement operator. It is given by14

⟨⟨O(0,0)D−(xs)D+(xt)O(0,0)⟩⟩
⟨⟨O(0,0)O(0,0)⟩⟩

= Θ(s − t) Λ
x4

st

(
x10xst

x1sxt0

)2∆
, (4.21)

where Θ is the step function. Here, we have divided the correlator by the expectation
value of the same straight mesonic line operator without insertion of displacement operators.
The normalization of the displacement operator is fixed by its physical interpretation in
terms of the geometric displacement. Hence, this ratio is manifestly independent of our
choice of normalization.

Another physical combination is the ratio

Σ ≡ c1/c0
2∆(2∆ + 1) , (4.22)

14Instead, we can use the two-point function of D on ⟨⟨O(0,−1)O(0,1)⟩⟩, where it takes the form

⟨⟨O(0,−1)D+(xs)D−(xt)O(0,1)⟩⟩
⟨⟨O(0,−1)O(0,1)⟩⟩

= Θ(s − t) Λ
x4

st

(
x10xst

x1sxt0

)2(2−∆)
. (4.19)

The same Λ also governs....to the local transverse space." to "The same Λ also governs the two-point function
of the displacement operator on the circle, where it takes the more standard form

⟨D+(x0)D−(xθ)⟩circ

⟨I⟩circ
= γ

[2R2(1 − cos θ)]2 , with γ = Λ
N⟨I⟩circ

, (4.20)

where R is the radius of the circle and the ± components are with respect to the local transverse space.
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where c1 is defined in (4.8) and for convenience, we have factored out a factor of 2∆(2∆ + 1).
Provided that O(0,−1) and O(0,0), and hence their normalizations, are related by the path
derivative in (4.5), this ratio is also physical. It can be thought of as the quantum version of
the boundary equation of motion □ϕ = 0. To see this, consider the operator

M(0,−1) ≡ O(0,0)WO(0,−1) , (4.23)

along a straight line. It is invariant under constant translation in the plus direction. Us-
ing (3.1), (3.2), (3.5), (3.7), and the fact that for a constant variation vector dvµ = ddvµ = 0
in (3.8), we end with

⟨⟨O(0,1)WO(0,−1)⟩⟩+ ⟨⟨O(0,0)W δ+O(0,−1)⟩⟩ = 0 . (4.24)

Following axiom III, the only operator with the same transverse spin and conformal dimension
as that of δ+O(0,−1) is O(2,0). Hence, equation (4.24) reduces to the relation

δ+O(0,−1) = −ΣO(2,0) . (4.25)

In the free bosonic theory, this relation becomes ∂+∂−ϕ = −1
2∂2

3ϕ. Similarly, applying
constant translation in the minus direction to M(1,0) ≡ O(1,0)WO(0,0) implies

δ−O
(0,1) = −ΣO(2,0)

. (4.26)

In the following, we will use the axioms to bootstrap the γi’ s, γ̃i’s, Ξ, Λ, and Σ.

4.2 Bootstrap

4.2.1 Constraints from conformal symmetry of a straight line

Consider a general conformal transformation, xs → x̃β(xs), that may shift the endpoints of the
straight line only in the transverse direction. To linear order, the resulting deformation profile

xstraight → xstraight + vc , (4.27)

is a quadratic polynomial in s

v+
c = c+

0 + c+
1 s + c+

2 s2 , v−c = c−0 + c−1 s + c−2 s2 , (4.28)

with six independent coefficients; see appendix A for more details.
In the case of M (0,0), the conformal and spin factors in (2.14) take the form

[conformal factor] = 1− 2∆ δ log |x10|+ . . . ,

[spin factor] = 1 + s (δθ0 − δθ1) + . . . ,
(4.29)

with s = (1/2 −∆). For the conformal transformation (4.28) we find

δ log |x10| = (v+
c )

∣∣∣1
0
(v−c )

∣∣1
0 /|x10|2 = (c−1 + c−2 )(c

+
1 + c+

2 )/|x10|2 ,

(δθ0 − δθ1) =
1
2
(
v+

c ddv−c − v−c ddv+
c

)∣∣∣1
0
= (c−1 c

+
2 − c+

1 c
−
2 )/|x10|2 .

(4.30)
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It is therefore sufficient to keep the term linear in δ log |x10| and δθ in (4.29) when working
to second order in the deformation. Note that because dddvc = 0, the spin source is the
same as the spinning integral [int] in (4.17), with Ξ = s/2.

In our scheme, the double integral (4.15) vanishes for a quadratic deformation profile (3.25).
Hence, the change in the expectation value (4.29) comes only from the boundary terms. In
particular, it cannot fix Λ (4.18) because it is independent of η, (which only appears in [int2]
in (4.17)). By matching the coefficients in front of c±0 , c±1 and c±2 between [B̄B] + [B2] + [B̄2]
and (4.29) we can reduce the set of independent unknown coefficients to {γ0, γ2, γ4, γ5,Σ,Λ}.

4.2.2 Constraints from conformal symmetry of a curved line
We see that the conformal symmetry of a straight line is not sufficient to fix all the coefficients
that appear in the second-order variation (4.17). Going to higher orders in the deformation
does not improve the situation because the number of independent coefficients also grows.
To determine the remaining coefficients, we demand that the expectation value of a mesonic
line operator along an arbitrary smooth path, not necessarily straight, respects the conformal
symmetry (2.14).

Explicitly, we consider a path that we decompose into a straight line and an arbitrary
smooth deformation

xa = xstraight + va . (4.31)

We then apply a conformal transformation to it,

xa → xac = xa + vc = xstraight + va + vc . (4.32)

While for a finite deformation, vc depends on va, at second order, they are independent.
Therefore, we can simply expand M (0,0)[x(·)+ va(·)+ vc(·)] to second order using (4.16). The
term of order O(v2

c) was considered in the previous section. The term of order O(v2
a) is not

constrained because va is arbitrary. We then focus on the term of order O(vavc) and demand
that it is consistent with the conformal transformation of the deformed path (4.31). As before,
it is sufficient to have both va and vc transverse at the boundaries of the straight line.

Because the line is not straight before the conformal transformation, the source term,
due to the boundary conformal weight (4.29), can have a support that is linear in vc. For the
same reason, the boundary polarization vector nint in (2.14) is not a vector in the transverse
plane of the straight line. Hence, to expand the mesonic lines around the straight line,
we now have to further rotate the boundary polarization vectors. After doing so, we can
compare the expansions of the numerator and denominator in (2.10) around the straight
line. Starting with n and ñ in (2.10) on either of the two sides of the line, this results in
the following sequence of rotations

ñ → ñstraight → nstraight → n , (4.33)

where n → n′ stands for a rotation of the polarization vector n to the polarization vector
n′ in the plane that these two vectors span. This sequence of rotations results in the spin
factor source

[spin factor]ac = s
[(
v+

a ddv−c − v−a ddv+
c

)
+

(
dv+

c dv−a − dv−c dv+
a

)
/2

]∣∣∣
boundary

. (4.34)

– 19 –



J
H
E
P
0
3
(
2
0
2
4
)
0
5
5

For definiteness, we take the deformed path to be a degree-four polynomial

va(s) =
4∑

n=0
a±n sn . (4.35)

Consequently, we require that the second-order variation (4.16) agrees with the spin and
conformal factors for any value of c±n=0,1,2, and a±n=0,...,4. This requirement, together with
the constraint obtained at order v2

c , fixes all coefficients and the normalization independent
quantities to

γ1 = γ3 = −γ4 = −γ̃3 = (1/2−∆)/2 ,

γ2 =− γ5 = (∆− 1)γ1 ,

γ̃1 = γ̃4 = 2γ̃2 = 2γ̃5 = −γ0 = 1/2 ,

γ̃0 = 0 ,

(4.36)

and
Λ = − 1

2π
(2∆− 1)(2∆− 2)(2∆− 3) sin(2π∆) , Ξ = 0 , Σ = 1/2 . (4.37)

Note that c1 ∝ Σ ̸= 0, (4.37). Hence, the operators O(0,−1) with dimension given in (4.6)
must exist. We see that it is required for the consistency of M (0,0) with conformal symmetry.
If instead of the second-order variation of M (0,0) we consider that of M (−1,1), we conclude
that the primary boundary operator O(0,2) must also exist, with ∆(0,2) = ∆(0,1) + 1 = 3−∆.
The two derivations are related by the tower-swap discussed below (2.18).

In general, we can use polynomials of arbitrarily high degree as the basis for smooth
path deformations. Every power of s in this deformation leads to a new constraint. For the
consistency of the solution (4.36), (4.37), all these constraints must be satisfied. By considering
polynomials of high degree, we have verified that this is indeed the case. At the third and
higher order in the deformation of the straight line, there are more and more coefficients to
fix. Correspondingly, in these orders, it is necessary to consider polynomial deformations of a
higher degree and, in that way, generate more and more independent constraints.

4.2.3 Two towers of spinning boundary operators

One of the results of the previous section is the existence of the primary boundary operators,
O(0,−1) and O(0,2). Using these operators, we can now derive the existence of two towers of
primary boundary operators with increasing transverse spin, (2.18).

Consider, for example, the second-order variation of the operator M (1,−1). The main
difference from the second-order variation of M (0,0) is that these boundary operators do not
overlap with the displacement operator. Hence, the second-order variation of the operator
M (1,−1) does not contain a double integral. It does, however, contain a single integral. The
structure of this single integral is the same as in section 4.1.3. That is, it is proportional
to the insertion of the identity on the line or comes with a (positive) fractional power of
ϵ. Therefore, the only finite terms in this case are

δ2M
(1,−1)
10 = [int] + [B̄B] + [B2] + [B̄2] . (4.38)
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Using integration by parts, the single integral can be written as

[int] = Ξ(1,−1)
∫

ds
(
dv+

s ddv−s − dv−s ddv+
s

)
M

(1,−1)
10 . (4.39)

Here, we have introduced the new parameter Ξ(1,−1) because, in principle, it could be different
from Ξ = 0. The boundary variation terms represent

[B̄B] = ⟨⟨δO(0,1)
δO(0,−1)⟩⟩ , [B2] = ⟨⟨δ2O(0,1)O(0,−1)⟩⟩ , [B̄2] = ⟨⟨O(0,1)

δ2O(0,−1)⟩⟩ . (4.40)

They consist of all finite terms that are allowed by symmetry. First, we have

δ2O(0,1) = v+
1 v

−
1 β̄0,0O

(2,1) + dv+
1 v

−
1 β̄1,0O

(1,1) + v+
1 dv

−
1 β̄0,1O

(1,1) + ddv+
1 v

−
1 β̄2,0O

(0,1)

+ v+
1 ddv

−
1 β̄0,2O

(0,1) + dv+
1 dv

−
1 β̄1,1O

(0,1) + · · · .
(4.41)

Here, we have introduced six unknown coefficients β̄, whose indices label the number of
path derivatives that act on each of the variation vectors, β̄a,bdav+

1 dbv−1 , with d0v = v,
d1v = dv, etc. The expansion of δ2O(0,−1) takes the same form, with the replacements
v1 7→ v0, β̄ 7→ β, and O 7→ O.

Next, we have the boundary operator

δO(0,−1) = v−0 δ−O(0,−1) − Σv+
0 O

(2,0) + β1dv+
0 O

(1,0) + β2ddv+
0 O

(0,0) + . . . (4.42)

where Σ = 1
2 was defined in (4.25) and determined in (4.37). For the operator δ−O(0,−1)

to give a finite contribution, it must have dimension ∆(0,−2) = ∆(0,−1) + 1 = ∆ + 2. We
denote it by O(0,−2) = δ−O(0,−1), if it exists.

Similarly, the expansion of δ−O
(0,1) is obtained from (4.42) by replacing v1 7→ v0, β̄ 7→ β,

and O 7→ O. Putting them together we get,

⟨⟨δO(0,1)
δO(0,−1)⟩⟩ = v−1 v

+
0 M

(2,−2)
01 (4.43)

+
(1
2
[
β1v−1 dv

+
0 δ̄2

3δ3 − β̄1dv−1 v
+
0 δ̄3δ2

3 + β2v−1 ddv
+
0 δ̄2

3 + β̄2ddv−1 v
+
0 δ2

3
]

+ β̄1β1dv−1 dv
+
0 δ̄3δ3 + β̄2β1ddv−1 dv

+
0 δ3 + β̄1β2dv−1 ddv

+
0 δ̄3

+ β̄2β2ddv−1 ddv
+
0 + 1

4v
−
1 v

+
0 δ2

3

)
M

(0,0)
01 ,

where
M

(2,−2)
01 = ⟨⟨O(0,2)O(0,−2)⟩⟩ = c2

|x10|2(∆+2) . (4.44)

The primary boundary operators O(0,−1) and O(0,1) have dimension ∆ + 1 and spins
s = ±(1/2 + ∆). Hence, a mesonic line that ends on these operators transforms under a
conformal transformation as

δ2⟨O(0,1)WO(0,−1)⟩
⟨O(0,1)WO(0,−1)⟩

= −2(1 + ∆) δ log |x10|+ δ[spin source] , (4.45)

where the spin source at order v2
c is given in (4.29) and at order vavc in (4.34). The

deformation (4.45) must reproduce these sources. By choosing a generic polynomial va and
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equating the terms of order O(v2
c) and O(vavc) on the two sides, we find a unique solution.15

The resulting coefficients are compatible with the CPT symmetry

βi,j = β̄j,i , βi = β̄i , ∀i, j . (4.46)

They are given by

c2 = (∆+ 1)(2∆ + 3)c1 = ∆(∆+ 1)(2∆ + 1)(2∆ + 3)c0 ,

β1,0 = β1 = 2β1,1 = −(2∆ + 1)/2 , Ξ(1,−1) = 0 ,

β0,0 = −1/2 , β0,1 = β0,2 = 0 , β2,0 = β2 = ∆β1 .

(4.47)

Because in this case, there is no integral to regularize, all of these coefficients are scheme-
independent. In particular, the values of β0,0 = β̄0,0 = −1/2 can be interpreted as the quantum
version of the equation of motion with one extra ∂+ derivative, ∂+∂−(∂+ϕ) = −1

2∂2
3(∂+ϕ).

Since c2 ̸= 0, the operators O(0,2) and O(0,−2), of conformal dimension ∆(0,−2) = ∆+ 2
must exist. We can repeat the same computation successively, starting with M (−ℓ,ℓ) for
all ℓ ≤ −2. They are related to the case of M (1,−1) by substituting ∆ → ∆ + |ℓ|, and
{c0, c1, c2} → {c−ℓ−1, c−ℓ, c1−ℓ} into the above bootstrap. In this way, we deduce the existence
of infinite towers of operators of the form O(0,−ℓ) and O(0,ℓ) with ℓ ≤ −1, whose spectrum
is given by (2.18). They are subject to the operator equation

δ−δ+O
(0,ℓ) = −1

2O
(2,ℓ)

, δ+δ−O(0,ℓ) = −1
2O

(2,ℓ) . (4.48)

Correspondingly, the expectation value of M (ℓ,ℓ′) is given by (2.21), with

cℓ+1 = (2∆ + 2ℓ + 1)(∆ + ℓ)cℓ = c0

ℓ∏
j=0

(2∆ + 2j + 1)(∆ + j) , ℓ ≥ 0 . (4.49)

Similarly, we deduce the existence of infinite towers of operators of the form O(0,−ℓ) and
O(0,ℓ) with ℓ ≥ 1, whose spectrum is given by (2.18). Their normalizations are related to c−1 as

c−ℓ−1 = (1 + ℓ −∆)(3 + 2ℓ − 2∆) c−ℓ = c−1

ℓ∏
j=1

(1 + j −∆)(3 + 2j − 2∆) , ℓ ≥ 1 . (4.50)

Their derivation is related to that above by tower-swap, see discussion below (2.18).

4.2.4 Bootstrap of spinning mesonic lines

We can also apply the bootstrap to operators that have a non-zero transverse spin and,
therefore, a zero expectation value. As an example, let us examine the operators M

(1,1)
10 and

M (0,2). These operators have two units of transverse spin, s+s̄ = 2. Hence, to absorb that spin
and have a non-zero expectation value, we need at least two variations in the plus direction.

15In practice, we find that choosing v±
a = a±0 s3 + a±1 s4 + a±2 s5 to be a fifth-order polynomial in s determines

the answer completely.
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The operator M
(1,1)
10 . The only finite contributions to the second-order variation of this

operator have one bulk integration. They take the form

δ2M
(1,1)
10 =

1∫
0

ds
[
v−1 v−s ⟨⟨δ−O

(0,1)D−(xs)O(0,1)⟩⟩+
(
v−s

)2 ⟨⟨O(1,0)D−−(xs)O(0,1)⟩⟩
]

reg
, (4.51)

where [. . . ]reg stands for a regularized integral. The boundary variation δ−O
(0,1), appearing in

the second term, was defined below (4.42). The coefficients in (4.42) are scheme independent
and were fixed in (4.47). The line operator D−− is some linear combination of primary
operators of dimension 3 and spin 2. Among these, only O(0,−1)O(0,−1) can contribute
to (4.51). We denote its coefficient by η(−1,−1),

D−− = η(−1,−1)
[
O(0,−1) ×O(0,−1)] (2n2

−) + . . . , (4.52)

where the dots stand for operators that do not overlap with either O(0,1) on the right end
of a straight line or with O(0,1) on the left end.

We proceed as before, picking a sufficiently generic deformation va and applying a
conformal transformation to it. Because the operator M(1,1), and its first-order variation
δM(1,1) have zero expectation value, so do their conformal transformations. Consequently, at
second order, the terms O(vavc) and O(v2

c) on the right-hand side of (4.51) must independently
sum to zero.

We have used the keyhole regularization scheme to evaluate the two integrals in (4.51),
which are, however, scheme independent. The vanishing of the O(vavc) contribution fixes

η(−1,−1) = 1
2 . (4.53)

It is worth mentioning that although the values of β1 and β2 were found in the preceding
section, we can also fix them using the bootstrap equation used in this section. Because
these are coefficients of local operators on the line, the result is, of course, consistent with
what we have found before. The order in which one solves the bootstrap constraints is
a matter of preference.

The operator M
(0,2)
10 . Similarly, for this operator we have

δ2M
(0,2)
10 =

1∫
0

ds
[
v−s v−0 ⟨⟨O

(0,0)D−(xs)δ−O(0,2)⟩⟩+ (v−s )2⟨⟨O(0,0)D−−(xs)O(0,2)⟩⟩
]

reg
, (4.54)

Because of the different boundary spin assignment, we can now probe the coefficient of
O(0,0)O(0,−2) in D−−,

D−− = η(0,−2)
[
O(0,0) ×O(0,−1)] (2n2

−) + . . . . (4.55)

The expansion of δ−O(0,2) in terms of boundary operators takes the form

δ−O(0,2) = −v−0
1
2O

(2,1) + β1dv−0 O(1,1) + β2ddv−0 O(0,1) + . . . . (4.56)
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We find

β1 = ∆− 5
2 , β2 = (2−∆)β1 , η(0,−2) = 1

2 . (4.57)

This result can also be obtained simply by interchanging ∆ → 2−∆ in the deformation
of M (−1,−1). That is due to the invariance of the spectrum under tower-swap.

To summarize, at second order, we always find a unique bootstrap solution. It can now
be used to explicitly compute δ2M for an arbitrary smooth deformation profile.

5 Third order

We can apply the bootstrap method developed in the previous sections to higher-order
deformations. At each order, we pick a regularization scheme, list all the finite terms that can
appear, and fix their coefficients by imposing the conformal symmetry of a curved line. All the
ingredients that appear in higher orders are already present at the third order. In this section,
we carry out the method in third order explicitly and discuss the higher-order generalizations.
Our main point in doing so is to demonstrate that the bootstrap solution is unique and that
it allows one to systematically compute the expectation value of mesonic lines to any order.

5.1 Line variation

The third-order variation of any mesonic line can be divided into boundary and bulk variations
as follows

δ3M = δ3Ō W O + δ2 Ō W δO + Ō W δ3O + δŌ W δ2O

+ δŌ δW δO + δ2 Ō δW O + Ō δW δ2O

+ Ō δ2W δO + δŌ δ2W O + Ō δ3W O .

(5.1)

As before, these expressions encode many contributions. In particular, the third-order
variation at the bulk of the line, δ3W , includes the integration of three displacement operators

[int3]bare = |x10|3
1∫

0

ds vµ
s

s∫
0

dt vν
t

t∫
0

du vρ
u ⟨⟨ODµ(xs)Dν(xt)Dρ(xu)O⟩⟩ . (5.2)

The transverse spin of a third-order deformation is either one or three. Hence, to have a
non-zero variation, we need to start with a spinning straight mesonic line. In the following,
we have chosen to present the third-order variation of M

(0,1)
10 .

Local, scheme-independent terms in δ3M involving one or two variations are the same
as they are at second order. For example, we have

⟨δŌ(0,0) δ2W O(0,1)⟩ = v+
1

∫
ds(v−s )2⟨⟨O(0,1)D−−(xs)O(0,1)⟩⟩+ . . .

= v+
1 η(−1,−1)

∫
ds (v−s )2 M

(1,−1)
1s M

(−1,1)
s0 + . . . ,

(5.3)

where η(−1,−1) was determined in (4.53). If we use the same regularization scheme that
we have used at second order, then other local scheme-dependent terms would also be the
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same. For that purpose, we first regularize the triple integral in (5.2) by converting the
middle integral into a contour integral using (3.24). We then use the keyhole prescription
to regulate the remaining right and left integrals16

[int3] =
(

η|x10|
2i sin(2π∆)

)2
⊂
∫

(1,0

ds v−s ⊃
∫

s,0)

du v−u M
(0,0)
1s δM (−1,0)

su M
(−1,1)
u0 , (5.5)

where the order of the last s and u integrals does not matter.17

In this regularization scheme, which is compatible with our second-order variation, the
only new coefficients are those that multiply finite terms with three variations at the same
point. All such terms have a single integral. They take the form

[int]mid = η|x10|
2i sin(2π∆)

∮
ds M

(0,0)
1s

[
χ0 v+

s (v−s )2δ2
3 +

(
χ1 (v−s )2dv+

s + χ2 v+
s v−s dv−s

)
δ3 (5.6)

+
(
χ3 v−s dv+

s dv−s + χ4 v+
s (dv−s )2 + χ5 (v−s )2ddv+

s + χ6 v−s v+
s ddv−s

)]
M

(−1,1)
s0 ,

where, for convenience, we have used integration by parts to put all the longitudinal operator
derivatives on the right.18 We have regularized the divergences by converting the integral
into a contour integral and absorbing all factors into the χ’s.

Altogether, the third-order variation takes the form

δ3M
(0,1)
10 = η|x10|

2i sin(2π∆)

∮
[0,1]

ds v−s
[
M

(0,0)
1s

(
[BB](−1,1)

s0 + η(0,−2)v−s v+
0 M

(−2,2)
s0

)
(5.7)

+
(
[B̄B̄](0,0)

1s + η(−1,−1)v−s v+
1 M

(1,−1)
1s

)
M

(−1,1)
s0

]
+ [int]mid + [int3] ,

where [B̄B̄](0,0)
1s is given in (4.17) and is evaluated along x1s instead of x10. [BB](−1,1)

s0
can be obtained from [B̄B̄](0,0)

1s using tower-swap and CPT, see the discussion below (2.18)
and (5.4). In practice, [BB](−1,1)

s0 is related to [BB](0,0)
s0 by first exchanging the γ’s with the

corresponding γ̃’s, then flipping the signs of γ4,5 and γ̃4,5, and finally replacing ∆ → 2−∆.

5.2 Bootstrap

To fix the coefficients χi in (5.6) we impose the consistency of (5.7) with conformal sym-
metry. That is, we impose that the mesonic line transforms covariantly under conformal
transformations x → x̃β(x). As before, we choose the conformal transformations such that

16To regularize the double integral contribution to δ2M
(0,0)
10 we have used the scheme of (4.15). Similarly,

for the double integral in δ2M
(−1,1)
10 we use

δ2M
(−1,1)
10

∣∣∣
2-int

≡ iη |x10|
2 sin(2π∆) ⊃

∫
1,0)

ds v−
s δM

(−1,0)
1s M

(−1,1)
s0 . (5.4)

17This occurs because, after the middle integral, the integrals over s and u factor out into two separate
integrals: one depends only on s, and the other only on u.

18The boundary terms that result from these i.b.p. are counter-terms and therefore do not produce finite
contributions.
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they move the endpoints in the transverse directions. Recall that β parameterizes a family
of conformal transformations that continuously interpolate between x = x̃0(x) and x̃β(x).
Unlike the previous orders, at third order, the expansion in the deformation of the path
and the expansion in powers of β are not the same.

Consider first the conformal transformation of a straight line, (4.27). The conformal
deformation profile vc can be expanded as

vc = v(1)
c + v(3)

c + O(β4) , (5.8)

where v(n)
c ∝ βn, see appendix A for explicit expressions. Because M (0,1) has zero expectation

value, the constraint coming from the conformal variation of a straight line reads,

δ3
v(1)

c
M

(0,1)
10 + δ1

v(3)
c

M
(0,1)
10 = 0 , (5.9)

where δ1
v(3)

c

M
(0,1)
10 is the first order variation (3.24), evaluated with the profile v(3)

c . Similarly,

δ3
v(1)

c

M
(0,1)
10 is the third-order variation (5.7), evaluated with the profile v(1)

c .
If instead of the straight line, we apply a conformal transformation to a deformed

line (4.31), then the conformal deformation profile admits a double expansion, in β and in va,

vc = v(1,0)
c + v(3,0)

c + v(1,2)
c + v(2,1)

c + . . . , (5.10)

where v(n,m)
c ∝ βnvm

a , see appendix A for explicit expressions.
We now impose the conformal covariance of M (0,1) at orders βv2

a and β2va. The
conformal and spin sources are proportional to the mesonic line expectation value before
the conformal transformation. The latter starts at order va. Hence, the corresponding
bootstrap constraint reads(

δ3
v(1)

c +va
− δ3

va
+ δ1

v(3)
c +v(2,1)

c +v(1,2)
c

)
M

(0,1)
10

= ([conformal factor] + [spin factor]) δ1
va

M
(0,1)
10 .

(5.11)

The terms in the bracket on the r.h.s. all starts at order O(β2) and O(βva). The
conformal factor reads

[conformal factor] = −2∆ δ log |x10| , (5.12)

where the change in distance is evaluated using v(1)
c + va. The spin factor is given by

[spin factor] = 1
2
(
sS0 + s′S1

)
, (5.13)

where S = S(1,1) + S(2,0) and

S(1,1) =2(ddv(1)
c )−v+

a − 2(ddv(1)
c )+v−a + (dv(1)

c )−dv+
a − (dv(1)

c )+dv−a ,

S(2,0) =(v(1)
c )+(ddv(1)

c )− − (v(1)
c )−(ddv(1)

c )+ .
(5.14)

By implementing (5.11) in Mathematica and using a polynomial of degree four or higher
for va we obtain a unique and consistent solution for the χ’s. They are given by

χ1 = χ2 = 0 , χ0 = χ3
2 = χ4 = 2χ5 = χ6 = −1

2 . (5.15)
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5.3 Higher orders

The third-order analysis is sufficient to demonstrate the general structure. We work recursively
in the order of the deformation. At the n’th order, we list all finite terms that can contribute
to the mesonic line expectation value. Due to the locality of the line effective action, the
coefficients of most of these terms are determined from lower orders, provided that we keep
using the same regularization scheme. The only new terms have all the n variations at the
same point. This point can either be integrated along the line or at the boundary.19 To fix
these coefficients, we impose that the deformed line, along xa (4.31), transforms covariantly
under conformal transformations. For that aim, we expand x̃β(xa) in powers of β and va,
keeping the sum of the two powers equal to n. We then collect all terms with fixed power
βmvn−m

a in the variation of the straight line. These receive contributions from all orders in
the line variation, up to order n. We equate the result to the expansion of the spin source
and the conformal source at order βmvn−m

a .
By considering a polynomial deformation profile, va, we generate a sufficient set of

equations to fix the solution. These equations are all linear in the new coefficients. Generating
more equations serves as a consistency check for the solution. Once all coefficients are fixed,
we can go back and evaluate the n’th order line variation explicitly.

6 Discussion

In this paper, we have developed a bootstrap method for studying conformal line defects. We
have found that imposing the conformal symmetry of line defects along an arbitrary smooth
path leads to new nontrivial functional constraints. Focusing on line defects in CS-matter
theories at large N , we have observed that these constraints lead to a unique bootstrap
solution and are therefore sufficient to fix the defect expectation value. The following is a
list of future directions that we find interesting.

The one-dimensional defect CFT that we considered is relatively simple. This is largely
due to the factorization of the correlators on the line. In particular, we used it to compute
the correlation functions between n insertions of the displacement operator that arise at the
n’th order of the line deformation. In other theories, with more complicated line defects, such
correlators are unknown functions of the conformal cross-ratios. It would be interesting to see
if these functions can be bootstrapped in a similar way and used to compute the expectation
value of the defect. What makes us optimistic is that the smooth line deformation profile,
va(s), entering the bootstrap constraints, is arbitrary. Therefore, it generates a functional
bootstrap equation that can be used to gradually localize the individual deformation points
and fix the n-point correlation of the displacement operator.

Large N CS-matter theories are expected to be holographically dual to parity-breaking
versions of Vasiliev’s higher-spin theory, [28–35]. The massless high-spin spectrum of this
theory suggests that a unified description in terms of a tensionless, partly topological string
may exist. In particular, it is not known how to incorporate the mesonic lines into Vasiliev’s

19In the case of the third-order deformation of M (0,1), the terms with the three variations at the same
boundary point are either irrelevant or that they are divergent counter-term.
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higher-spin theory. We expect that doing so will require a stringy description and that the
mesonic lines may even be instrumental in constructing it.

The bootstrap method that we have employed gives the defect expectation value in an
expansion around the straight line. It would be interesting to resum this expansion and find a
more explicit representation of the conformal invariant functional of the path F [x(·)] in (2.15).
We expect the holographic description of the mesonic line to be such a representation.

Finally, CS-matter theories possess a higher spin symmetry that is broken only at order
1/N . An implication of this symmetry is the existence of protected primary tilt operators on
the line, [16]. It would be interesting to fix these operators and use them to derive bootstrap
constraints in the same way that we have used the conformal symmetry. These high-spin
constraints are expected to become important at the next order in 1/N , while at the planar
order at which we are working, they are redundant.
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A Conformal transformation of a curved line

In this section, we study conformal transformations of arbitrary paths. We parameterize
the path by its projection on the x3 axis,

xa(s) = (v1
a(s), v2

a(s), s) , (A.1)

assuming that the transverse vector function v⃗a(s) ≡ {v1
a(s), v2

a(s)} is single valued and
smooth. We then apply the following conformal transformation to it

xa → xac = Rx̂1(c2
1) · Rx̂2(c1

1) · Bb(xa) + {c1
0, c2

0, a3} , (A.2)

where Rn̂(θ) denotes the finite rotation of angle θ around axis n̂. Bb(xa) denotes the special
conformal transformation

Bb(x)µ ≡ xµ − bµx2

1− 2b · x + b2x2 , with b = (−c1
2,−c2

2, b3) . (A.3)

The last term in (A.2) is a constant shift. The transverse vectors c⃗0, c⃗1, and c⃗2 are a set
of continuous parameters that we use to parameterize the conformal transformation (4.28).
Here, we did not include rotations around the x̂3 axis, which leaves the straight line invariant.

For generic values of the conformal transformation parameters, the two endpoints trans-
form in all three directions. Using translation invariance, we can assume without loss of
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generality that the endpoint x0 transforms only in the transverse direction. This choice
fixes the value of a3. We then further impose that the endpoint x1 also transforms in the
transverse direction. This condition fixes b3 in terms of the other parameters. There are two
solutions for b3 and we pick the one that connects smoothly to the identity.20

After doing so, we are left with a conformal transformation that depends on three
transverse vectors, c⃗1, c⃗2 and c⃗3, just as we have in equation (4.28). We assume that these
parameters are small and of the same order O(β), and expand xac.

Leading order. To leading order, the conformal transformation just added up to the
xa path21

xac = xa + (⃗c0 + c⃗1s + c⃗2s2, 0) + O(β2) . (A.4)

Second order. There is no second-order contribution to xac for the conformal transfor-
mation we are considering

xac = xa + (⃗c0 + c⃗1s + c⃗2s2, 0) + O(β3) . (A.5)

Third order. In general, the conformal transformation moves the points on the line in
the transverse direction as well as along the line. As a result, at third order, we also have
to perform a reparameterization of the path, keeping the deformation vector vc transverse
to the straight line.

Another subtlety that first appears in the third order is that the deformation profile of
the path due to the conformal transformation starts to depend on va. It has the following
decomposition

vc = v(1,0)
c + v(3,0)

c + v(1,2)
c + v(2,1)

c + . . . , (A.6)

where v(n,m)
c ∝ βnvm

a . The first-order term, v(1,0)
c , is given by the second term in (A.4).

The third-order terms read(
v(3,0)

c

)±
s
= 2c∓2 c

±
2

2
s4 + 2c±2 s3(c∓2 c

±
1 + c∓1 c

±
2 )

+ 1
4s2

(
2c∓2 c

±
1

2 + c±2

(
10c∓1 c

±
1 − c∓1

2 + c±1
2))

+ 1
24s

(
−3c∓1

2
c±1 + 15c∓1 c

±
1

2 + c∓1
3 + 3c±1

3)
,(

v(1,2)
c

)±
s
= s2v̇±0 (c∓1 v±0 − (c∓1 + 2c∓2 )v

±
1 + c±1 v∓0 − (c±1 + 2c±2 )v

∓
1 )

+ 2s
(
v±s

(
c∓2 v̇±0 − c∓1 v±0 + (c∓1 + 2c∓2 )v

±
1 − c±1 v∓0 + (c±1 + 2c±2 )v

∓
1

)
+ c±2 v∓s v̇±0

)
+ v̇±0 (c∓1 v±s − c∓1 v±0 + c±1 v∓s − c±1 v∓0 )− 2c∓2 v±s

2
,(

v(2,1)
c

)±
s
= 2c∓2 c

±
2 s3v̇±0 + s2

(
2c±2

2
v∓s − (c∓1 c

±
1 + 2c∓2 c

±
2 )v̇

±
0

)
+ s

(
c∓1 c

±
1 v̇±0 + 2(c∓1 + c∓2 )(c

±
1 + 2c±2 )v±s − 2c±2 (c

∓
1 v±0 + c±1 v∓0 ) + 2c±1 c

±
2 v∓s

)
+ 1

4
(
2c±1 (c

±
1 (v∓s − 2v∓0 )− 2c∓1 v±0 ) +

(
2c∓1 c

±
1 − c∓1

2 + c±1
2)

v±s

)
.

(A.7)
20For va that does not move the endpoints, a3 = 0 and b3 does not depend on the original path. Otherwise,

a3 and b3 depend on va at the endpoints.
21To leading order there is no need to re-parameterize the deformed path.
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Here, for notational simplicity, we have omitted the index a from va. In this context, the
lower s-index of v indicates the position. For example, v±s ≡ v±a (s), and so on.

B Scheme-independence of the second order variation

The regularization scheme that we have used to regularize the double integral in (4.15) is
not unique. We can instead choose to perform the s integral first,[∫∫

Pds dt . . .

]
reg 2

= i
2 sin(2π∆) ⊃

∫
1,0)

dt

∮
[1,t]

ds . . . . (B.1)

or to average the both orders,[∫∫
Pds dt . . .

]
reg 3

= 1
2 × i

2 sin(2π∆)

[
⊃
∫

1,0)

dt

∮
[1,t]

ds . . .+ ⊂
∫

(1,0

ds

∮
[s,0]

dt . . .

]
. (B.2)

For the first regularization scheme (B.1), we find that the values of the invariants Λ, Ξ,
and Σ remain the same, see (4.37). The values of the boundary terms, however, are swapped
and can be obtained by exchanging γj ↔ γ̃j in (4.36).

For the second symmetric regularization scheme (B.2) we can repeat the bootstrap above.
The values of the invariants Λ, Ξ, and Σ remain the same as in (4.37). This scheme preserves
the CPT symmetry, which interchanges the left-right ends. Thus, the resulting boundary
terms are symmetric. They are given by

γ0 = γ̃0 = −1
4 , γ1 = γ̃1 = 3− 2∆

8 ,

γ2 = γ̃2 = ∆(3− 2∆)
8 , γ3 = γ̃3 = 0,

γ4 = γ̃4 = 1 + 2∆
8 , γ5 = γ̃5 = 1

8(2∆
2 − 3∆− 2) .

(B.3)

From the two examples above, we can see that different regularization schemes of the
double integral result in different values for the boundary coefficients.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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