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ABSTRACT
Electric vehicles (EVs) are becoming more popular due to environmental consciousness. However, the
limited availability of charging stations (CSs) compared to the number of EVs on the road has increased
range anxiety and CS queries during trips. Simultaneously, personal data use for various forms of analytics
is growing at an unprecedented rate, raising concerns about privacy violations. One standard for formalising
location privacy is geo-indistinguishability as a generalisation of local differential privacy. However, the
noise has to be carefully calibrated considering the implications of potential utility loss. In this paper, we
introduce the notion of approximate geo-indistinguishability (AGeoI) which allows the EVs to obfuscate
the individual query locations while ensuring that they remain within their preferred area of interest. It is
vital because journeys are often sensitive to a sharp drop in quality of service (QoS), which has a high
cost for the extra distance to be covered. Our proposed method combines the application of AGeoI and
the generation of dummy data to provide two-fold privacy protection (individual query locations and the
trajectory of the entire journeys) for EVs while preserving a high level of QoS. Analytical insights and
experiments are used to demonstrate that a very high percentage of EVs get “privacy for free” and that
the utility loss caused by the gain in privacy guarantees is minuscule. Aside from harbouring a high QoS
for the EVs, using the iterative Bayesian update, our method allows for a private and precise prediction
occupancies of CSs which is vital in unprecedented traffic congestion scenarios and efficient route-planning.

INDEX TERMS Charging Station, Electric Vehicle, Geo-Indistinguishability, Location Privacy, Privacy-
Utility Trade-off.

I. INTRODUCTION
Air pollution is one of the immediate issues that the world
is experiencing [1], [2], [3]. In the United Kingdom in
2019, 27% of all greenhouse gas emissions came from trans-
portation, as the largest emitting sector [4], [5], [6]. Hence,
the transportation industry and academic communities are
increasingly interested in developing alternative energy ve-
hicles to reduce emissions. Automobile manufacturers are
introducing a new generation of electric vehicles (EVs) that
often employ connected and automated driving functions [7].

EVs are regarded as one of the most promising means
of reducing emissions and reliance on fossil fuels. Along
with environmental benefits, EVs provide superior energy
efficiency to conventional vehicles [8]. As the cost of
batteries continues to decrease, the large-scale adoption of
EVs is becoming more viable [9]. Despite the advantages
and competitive cost, many customers remain concerned
about running out of battery power before reaching their
destination or waiting for their EVs to charge. The primary
obstacles to EV adoption are the availability of chargers and
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the range that can be travelled on a single charge, often
referred to as range anxiety in the literature [10].

There has been some recent focus on forecasting how
busy the charging stations (CS) are in certain areas to ensure
that the EVs can plan their journeys conveniently [11], [12].
However, the existing research in this direction, primarily
founded upon machine learning based methods, does not
address the privacy concerns involved in such predictive
techniques and does not consider situations where there
may arise unprecedented traffic congestion (e.g. due to a
one-off concert or an event). One of the most successful
approaches for protecting the privacy of personal data while
analysing and exploiting the utility of data is along the lines
of differential privacy (DP) [13], [14], which mathematically
guarantees that the query output does not change signifi-
cantly regardless of whether a specific personal record is
in the dataset or not. Our proposed method, in addition to
allowing the EVs to have formal privacy guarantees on their
queries to locate the nearest CS, enables the users to estimate
the live occupancy of the CS efficiently allowing convenient
journey planning.

However, the classical central DP requires a trusted curator
who is responsible for adding noise to the data before
publishing or performing analytics on it. A major drawback
of such a central model is that it is vulnerable to security
breaches because the entire original data is stored in a central
server. Moreover, there is the risk of having an adversarial
curator. To circumvent the need for such a central depen-
dency, a local model of DP, also called local differential
privacy (LDP) [15], has been getting a lot of attention lately.
In this model, users apply the LDP mechanism directly to
their data and send the locally changed data to the server.

LDP is particularly suitable for situations where users need
to communicate their personal data in exchange for some ser-
vice. One such scenario is the use of location-based services
(LBS), where a user typically reports her location in ex-
change for information like the shortest path to a destination,
points of interest in the surroundings, traffic information,
friends nearby, etc. One of the recently popularised standards
in location privacy is geo-indistinguishability (GeoI) [16],
which optimises the quality of service (QoS) for users while
preserving a generalised notion of LDP on their location
data. The obfuscation mechanism of GeoI depends on the
distance between the original location of a user and a
potential noisy location that they report [17], [18]. GeoI
can be implemented directly on the user’s device (tablet,
smartphone, etc.). The fact that the users can control their
explicit privacy-protection level for various LBS makes it
very appealing. However, a drawback of injecting noise
locally to the datum is that it deteriorates the QoS due to
the lack of accuracy of the data.

On the other hand, future vehicles are getting more
sophisticated in their sensory, onboard computation, and
communication capacities. Furthermore, the emergence of
Mobile Edge Computing (MEC) also changes the Intelligent

Transportation Systems (ITS) by providing a platform to
assist computationally heavy tasks by offloading the compu-
tation to the Edge cloud [19]. This architecture often employs
three tiers, with the vehicle on the first, MEC on the second,
and standard cloud services on the third [20]. Figure 1 shows
the system architecture for the location privacy framework
proposed in this paper.

ITS provides a platform containing distributed and
resource-constrained systems to support real-time vehic-
ular functions where these functions’ efficacy relies on
the data shared across entities. However, the risk of pri-
vacy disclosure and tracking increases due to data shar-
ing [21]. Privacy-preserving schemes are developed using
established techniques such as group signature, anonymity,
and pseudonymity [22], [23]. However, it is possible to iden-
tify privatised data with adequate background information.
Hence, DP approaches have emerged as the gold standard of
data privacy because they provide a formal privacy guarantee
independent of a threat actor’s background knowledge and
computing capability [24].

GeoI is the state-of-the-art method for location privacy-
preserving with LDP. It can preserve one’s location privacy
among a set of locations with similar probability distributions
without requiring a trusted third-party. It provides rigorous
privacy for location-based query processing and location data
collection by modelling the location domain based on the
Euclidean plane. However, vehicles are located on the road
network under normal circumstances. For vehicular location
queries, GeoI mechanism may result in publishing unrealistic
privatised locations such as houses, parks, or lakes. Thus,
there is a need for an adapted model of GeoI for vehicular
application. This paper proposes a novel privacy model
called AGeoI, based on the notion of GeoI by using a discrete
road network graph. Our key contributions in this paper are
outlined as follows.

• We present the notion of approximate geo-
indistinguishability (AGeoI), a formal standard
of location-privacy in a bounded co-domain,
by generalising the classical paradigm of geo-
indistinguishability We illustrate its applicability by
proving the compositionality theorem. Moreover, we
show that the truncated Laplace mechanism canonically
guarantees AGeoI.

• We propose a two-fold privacy-preserving navigation
method for EVs dynamically querying for CS on road
networks – the method protects against threats to indi-
vidual locations of queries with formal AGeoI guaran-
tees and against adversaries tracing the trajectories of
the EVs in an online setting.

• Using real vehicular data and real locations of CSs from
San Francisco, we experimentally show that our method
ensures a very high fraction of EVs to have “privacy
for free” and that the utility-loss for the EVs is very
low compared to the gain in privacy.
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• Our method not only ensures location-privacy guar-
antees but also enables EVs to estimate the real-time
occupancy of CSs using sanitised queries to help users
to plan their journeys efficiently.

The rest of this paper is organised as follows. Section
II reviews some of the related work in this area. Section
III introduces some fundamental notions on DP and GeoI.
Section IV develops the mathematical theory of AGeoI.
Section V elucidates the model of our proposed mechanism
by formalizing the problem we are tackling, thoroughly
discussing system architecture, and laying out the privacy-
threat landscape we are addressing in this work. Section VI
analyzes the cost of privacy on the EVs induced by our
mechanism. Section VII presents the experimental results to
illustrate the working of our mechanism, and Section VIII
concludes the paper.

II. RELATED WORK
Both corporate and academic communities have recently
piqued interest in advancing EVs and charging infrastructure
to improve the transportation system’s sustainability. Despite
the advancements, the EV sector confronts challenges that
delay the adoption process, such as range anxiety, an ab-
sence of convenient and available charging infrastructure and
waiting time to charge [25], [26]. An offline static map of
CS is insufficient to resolve these obstacles since EVs may
need to reserve a charging station when a trip is planned
or query the available stations based on their battery state,
and CS must be reserved. Thus, live vehicular and charging
station data is utilised in querying and reservation/scheduling
mechanisms [27], [28], [29]. Encryption techniques can be
used in such mechanisms to prevent external intrusions, but
they cannot preserve users’ privacy from malicious servers
and third-parties.

Several data types are considered in these mechanisms,
including real-time location, intended route, battery level,
and station availability, to ensure the drivers are not detoured
from their intended route[27], [30]. Although disclosing such
information poses privacy concerns for the driver’s location
and vehicle tracking, the privacy requirements of such mech-
anisms are not sufficiently studied in the literature. Existing
methods for planning charging points for EV journeys are
considered mechanisms for confidentiality and integrity, but
the drivers’ location privacy is regarded as an issue of trust
in the third-party service provider [31], [32].

This problem can be addressed by several approaches
based on the threat model of the system. Location anonymity
is achieved through cloaking an area [33], [34]. This ap-
proach can only be applied to the Edge of our system model
to provide anonymity to a group of EVs, but we consider
the Edge as an honest-but-curious threat actor and aim to
preserve vehicles’ privacy locally. Thus, such techniques
are not trivially applicable to our considered threat model.
Furthermore, anonymity techniques do not provide a formal
privacy guarantee [35]. Similarly, mix-network approaches

cannot be applied because there is no guarantee that multiple
vehicles will be present in an Edge’s coverage in any
timestamp due to vehicles’ movement [36].

An applicable approach to download the charging station’s
live map on EVs to search for the nearest or on-the-
route available charging station has been considered and
studied by the community [37]; however, the communication
overhead of this technique is predicted to be much higher
than the vehicles’ location-based inquiry since it will require
downloading a recent snapshot of the map for each query
and, thus, has been criticised in the literature [38]. Moreover,
due to the absence of data sharing, such methods hinder
the statistical utility of the location data for the servers that
may be useful for a variety of purposes (e.g. providing vital
statistics to industries and institutions for optimally placing
the CS on the map based on the query densities) and prevent
the EVs from receiving any information about the traffic
around and occupancy of certain CS restricting them to plan
their journeys accordingly.

DP methods are gaining widespread usage in safeguarding
location privacy across various domains, including automo-
tive systems. The studies in [39], [40] proposed models
by deploying a GeoI-based mechanism on the Edge for
LBS. However, their approach did not consider preserving
vehicles’ locations against the Edge. An approach that com-
plements the problem we aim to address in this paper was
proposed by Qiu et al. in [41] where the authors proposed
a technique to crowd-source a task in a vehicular network
while preserving GeoI of the location of the vehicles offering
Mobility as a Service in the spatial network to solve a task
at a publicly known location in the map (e.g. taxi services).
The problem formulation in this work is the inverse of what
we aim to achieve in this paper. Hence, this work cannot be
extended to address the privacy concerns induced by multiple
dynamically generated queries throughout the journey.

In [42], Cunningham et al. studied the problem of tra-
jectory sharing under DP and proposed a mechanism to
address it. However, this work assumes the setting of an
offline trajectory sharing which breaks down in the practical
environment where the trajectories are being shared online as
there is no prior information or limitation on the number of
queries made by an EV during a journey and their respective
locations. Therefore, the method proposed by the authors in
[42] cannot be directly adapted to our dynamic environment
closely simulating the real-world scenario for such a use
case.

Of late, a major direction of research is along the lines of
studying the statistical utility of differentially private data. A
standard notion of statistical utility, which is extended to a
variety of contexts, is the precision of the estimation of the
distribution of the original data from that of the noisy data.
Iterative Bayesian update (IBU) [43], [44], an instance of
the famous expectation maximization method from statistics,
provides one of the most flexible and powerful estimation
techniques and has recently become in the focus of the com-
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munity [45], [46]. In this work, we use IBU to approximate
the distribution of the true locations of the queries made to
the server and based on that, the users of the EVs can predict
the availability of the CS around them in real-time and plan
their route accordingly.

III. PRELIMINARIES
The most successful approach to formally address the privacy
risks is DP, mathematically guaranteeing that the query
output does not change significantly regardless of whether a
specific personal record is in a dataset or not. Most research
performed in this area probes two main directions. One is
the classical central framework [13], [14], in which a trusted
third-party (the curator) collects the users’ personal data and
obfuscates them with a differentially private mechanism.

Definition III.1 (Differential privacy [13], [14]). For a
certain query, a randomizing mechanism R provides ϵ-DP
if, for all neighbouring1 datasets, D and D′, and all S ⊆
Range(R), we have P[R(D) ∈ S] ≤ eϵ P[R(D′) ∈ S].

A major drawback of the central model is that it is
vulnerable to security breaches because the entire original
data is stored in a central server. Moreover, there is the risk
that the curator may be corrupted. Therefore, a local variant
of the central model has been widely popularized of late [15],
where the users apply a randomizing mechanism locally on
their data and send the perturbed data to the collector such
that a particular value of a user’s data does not have a major
probabilistic impact on the outcome of the query.

Definition III.2 (Local differential privacy [15]). Let X and
Y denote the spaces of original and noisy data, respectively.
A randomizing mechanism R provides ϵ-LDP if, for all
x, x′ ∈ X , and all y ∈ Y , we have P[R(x) = y] ≤
eϵ P [R(x′) = y].

Recently, GeoI [16], a variant of the local DP capturing the
essence of the distance between locations [17], [18] has been
in focus as a standard for privacy protection for location-
based services, being motivated by the idea of preserving the
best possible quality of service despite the local obfuscation
operated on the data.

Definition III.3 (Geo-indistinguishability [16]). Let X be a
space of locations and let dE(x, x

′) denote the Euclidean
distance between x ∈ X and x′ ∈ X . A random-
izing mechanism R is ϵ-geo-indistinguishable if for all
x1, x2 ∈ X , and every y ∈ X , we have P[R(x) = y] ≤
eϵdE(x1,x2) P [R(x′) = y].

Definition III.4 (Iterative Bayesian update [43], [44]). Let C
be a privacy mechanism that locally obfuscates points from
the discrete space X to Y such that Cxy = P(y|x) for all
x, y ∈ X ,Y . Let X1, . . . , Xn be i.i.d. random variables on
X following some distribution πX . Let Yi denote the random
variable of the output when Xi is obfuscated with C.

1differing in exactly one place

TABLE 1: List of key notations
Notation Description

X Domain of original locations
dX Distance on X
Y Domain of obfuscated locations
dY Distance on Y

PK [y|x] Prob. that mechanism K, applied to value x, reports y

I Fixed Edge in the network
R(I) Area of coverage by I

m Number of locations reported by each EV
lu Vector of locations reported by EV u

L(t) Set of location vectors received by I at time t

L′(t) Shuffled set of all individual locations queried at time t

R(t) Set of nearest CS for L′(t)

G Road network graph
dG Travelling distance in graph G

Let y ∈ Yn be a realisation of {Y1, . . . , Yn} and q be the
empirical distribution obtained by counting the frequencies
of each element of Y as observed in y. The iterative
Bayesian update (IBU) is a cutting-edge and strong technique
for expectation maximization in statistics that can be used
to estimate πX by converging to the maximum likelihood
estimate of πX with the knowledge of y and C. IBU works
as follows:

1) Start with any full-support PMF θ0 on X .
2) Iterate θt+1(x) =

∑
y∈Y

q(y)
θt(x)Cxy∑

z∈X
θt(z)Czy

for all x ∈ X .

IV. APPROXIMATE GEO-INDISTINGUISHABILITY (AGEOI)
In the classical framework of GeoI [16], the space of the
noisy data is, in theory, unbounded under the planar Laplace
mechanism. Under a certain level of GeoI that is achieved,
the planar Laplace mechanism ensures a non-zero probability
of obfuscating an original location to a privatised one which
may be quite far, thus inducing a possibility of a substantial
deterioration in the QoS of the users. This loss of QoS can be
more sensitive in the context of the navigation of EVs, where
it is extremely important to prioritize a bounded domain
where a user is willing to drive – this may be a result of time
constraints, the rising cost of fuel, geographical boundaries
(e.g. international borders), etc. – giving rise to an idea of
area of interest for each EV. This motivated us to extend the
classical GeoI to a more generalized, approximate paradigm,
inspired by the approach of the development of approximate
DP from its pure counterpart.

Let X and Y be the spaces of the real and nosy locations
equipped with distance metrics dX and dY , respectively. In
general (X , dX ) and (Y, dY) may be different and unrelated.
However, for simplicity, here we assume X ⊆ Y and,
therefore, dX = dY = d, and we proceed to define the
notion of approximate geo-indistinguishability. Note that d
may not necessarily need to be symmetric, i.e., there may
exist x1, x2 ∈ Y such that d(x1, x2) ̸= d(x2, x1).
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Definition IV.1 (Approximate geo-indistinguishability).
A mechanism K is approximately geo-indistinguishable
(AGeoI) or (ϵ, δ)-geo-indistinguishable if for any set of
values S ⊆ Y and any pair of values x, x′ ∈ X , there
exists some ϵ, δ ∈ R≥0 such that δed(x,x

′) ∈ [0, 1], we have:

PK [y ∈ S|x] ≤ eϵ d(x,x
′)PK [y ∈ S|x′] + δ ed(x,x

′) (1)

One of the biggest advantages of DP and all of its variants
that are accepted by the community is the property of compo-
sitionality, where the level of privacy can be formally derived
with a repeated number of queries. Thus, we now enable
ourselves to investigate the working of the compositionality
theorem with the AGeoI which we defined, to stay consistent
with the literature [35].
Theorem IV.1. [Compositionality Theorem for AGeoI] Let
mechanisms K1 and K2 be (ϵ1, δ1) and (ϵ2, δ2) geo-
indistinguishable, respectively. Then their composition is
(ϵ1 + ϵ2, δ1 + δ2)-geo-indistinguishable. In other words, for
every S1, S2 ⊆ Y and all x1, x

′
1, x2, x

′
2 ∈ X , we have:

PK1,K2
[(y1, y2) ∈ S1 × S2|(x1, x2)]

≤ eϵ1 d(x1,x
′
1)+ϵ2 d(x2,x

′
2)

PK1,K2 [(y1, y2) ∈ S1 × S2|(x′
1, x

′
2)]

+ (δ1 + δ2) e
d(x1,x

′
1)+d(x2,x

′
2) (2)

Proof:
Let us simplify the notation and denote:

Pi = PKi [yi ∈ Si|xi] , P
′
i = PKi [yi ∈ Si|x′

i] , δ̃i = δi e
d(xi,x

′
i)

for i ∈ {1, 2}. As mechanisms K1 and K2 are applied
independently, we have:

PK1,K2 [(y1, y2) ∈ S1 × S2|(x1, x2)] = P1P2 (3)
PK1,K2 [(y1, y2) ∈ S1 × S2|(x′

1, x
′
2)] = P ′

1P
′
2 (4)

Therefore, PK1,K2
[(y1, y2) ∈ S1 × S2|(x1, x2)] = P1P2

≤
(
min

(
1− δ̃1, e

ϵ1 d(x1,x
′
1)P ′

1

)
+ δ̃1

)(
min

(
1− δ̃2, e

ϵ2 d(x2,x
′
2)P ′

2

)
+ δ̃2

)
≤ m1m2 + δ̃1m2 +m1δ̃2 + δ̃1δ̃2[
where mi = min

(
1− δ̃i, e

ϵi d(xi,x
′
i)P ′

i

)]
≤ eϵ1 d(x1,x

′
1)+ϵ2 d(x2,x

′
2)P ′

1P
′
2

+ δ̃1 − δ̃1δ̃2 + δ̃2 − δ̃1δ̃2 + δ̃1δ̃2

≤ eϵ1 d(x1,x
′
1)+ϵ2 d(x2,x

′
2)PK1,K2

[(y1, y2) ∈ S1 × S2|(x′
1, x

′
2)]

+ (δ1 + δ2) e
d(x1,x

′
1)+d(x2,x

′
2)

We now proceed to generalize the conventional planar
Laplace mechanism [47] to define the truncated Laplace
mechanism extended to a generic metric space.

Definition IV.2 (Truncated Laplace mechanism). The trun-
cated Laplace mechanism L on a space X equipped with,
not necessarily symmetric, distance metric d truncated to a

radius r, is defined as:

PL[y|x] =

{
c e−ϵ d(y,x) if d(x, y) ≤ r

0 otherwise
(5)

where c is the truncated normalization constant defined
such that

∫
y∈Y

PL[y|x]dy = 1, and ϵ is the desired privacy

parameter. Let us call r to be the radius of truncation for L.

Note that for a discrete domain Y , c is defined by
normalizing

∑
y∈Y

PL[y|x] = 1, and, in this case, L is a

truncated geometric mechanism [48] extended to a generic
metric space.

Lemma IV.2. e−ϵ d(x1,x2)P[y|x1]−P[y|x2]

e(1−ϵ) d(x1,x2) er ≤ 1, where r is the
radius of truncation for L, as in (1).

Proof:

e−ϵ d(x1,x2)P [y|x1]− P [y|x2]

e(1−ϵ) d(x1,x2)
er ≤ 1

⇐⇒ c
(
e−ϵd(x1,x2)+d(x1,y) − e−ϵd(x2,y)

)
≤ e(1−ϵ)d(x1,x2)−r (6)

Now we observe that d(x1, x2)+d(x1, y) ≥ d(x2, y) due to
the fact that d is a metric and it satisfies the triangle inequal-
ity. Immediately, we have e−ϵd(x1,x2)+d(x1,y)− e−ϵd(x2,y) ≤
0 for any ϵ ∈ R≥0. Therefore, as c ≥ 0, (6) is trivially
satisfied as the RHS is always non-negative.
Theorem IV.3. L satisfies (ϵ, δ)-geo-indistinguishability
where

δ = max

 max
S⊆Y

x1,x2∈X

e−ϵ d(x1,x2)P[y|x1]−P[y|x2]

e(1−ϵ) d(x1,x2) , 0

.

Proof:
Trivially δed(x1,x2) > 0 for any x1, x2 ∈ X as δ > 0.
Moreover, Lemma IV.2 ensures that δed(x1,x2) < 1. Now
observe that for every S ⊆ Y and for all x1, x2 ∈ X , we
have:

e−ϵ d(x1,x2)PL [y|x1]− PL [y|x2] ≤ δ e(1−ϵ) d(x1,x2)

=⇒ PL [y|x1]− eϵ d(x1,x2)PL [y|x2] ≤ δ ed(x1,x2)

The explicit process of sampling private locations satis-
fying AGeoI from a given set of original locations through
a truncated Laplace mechanism on a discrete location space
has been described in Algorithms 1 and 2.

V. SYSTEM MODEL
This section details our privacy-preserving model for finding
an optimal charging station in the Internet of Vehicles (IoV)
as a use case of the proposed AGeoI technique. We begin
with a discussion of the location privacy problems inherent
in finding optimal CS in the IoV. This is followed by
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Algorithm 1: Discrete and truncated Laplace mech-
anism (DTLap)
Input: Discrete domain of original locations: X ,

Discrete domain of private locations: Y , Desired
privacy parameter: ϵ, Desired truncation radius: r;
Output: Channel C satisfying (5);

Function DTLap(X ,Y, ϵ, r):
Set C ← empty channel;
Set Y ← empty list;
for x ∈ X do

cx = 1∑
y∈Y

d(x,y)≤r

e−ϵ d(x,y) ;

for y ∈ Y do
if d(x, y) ≤ r then

C[x, y] = 0
else

C[x, y] = cx e
−ϵ d(x,y)

Return: C;

Algorithm 2: Sampling private locations with DTLap
(DTLapSamp)
Input: Discrete domain of original locations: X ,

Discrete domain of private locations: Y , Desired
privacy parameter: ϵ, Desired truncation radius: r;
Vector of original locations: X;

Output: Corresponding vector of private locations:
Y ;

Function DTLapSamp(X ,Y, ϵ, r,X):
C = DTLAP(X ,Y, ϵ, r);
Set Y ← empty list;
for x ∈ X do

Randomly sample y ∈ Y ∼ C[x, :];
Append y to Y

Return: Y ;

road networking modelling, a description of the system
architecture for differentially private location sharing, the
trust relationship between system tiers, and the privacy threat
model.

A. Problem Statement
EVs have emerged as crucial components of future sus-
tainable transportation systems, aimed at reducing CO2
emissions. Consequently, they have received considerable
attention from both academia and industry [26]. However,
due to their limited battery capacity, EVs often need to visit
CS during journeys. This requirement leads to range anxiety
among some drivers, where they fear that their vehicles lack
sufficient battery power to reach their intended destinations.
Range anxiety has been identified as a significant barrier

to the widespread adoption of EVs [49]. While CS are
not always readily available, as it takes time to sufficiently
charge EVs, the implementation of a CS booking service can
help alleviate range anxiety.

To minimize charging wait times, EVs can access CS
booking services through third-party providers, enabling
them to discover the nearest and readily available CS. This
can be achieved through static or live location queries.
However, location sharing raises privacy challenges, such as
vehicle tracking. GeoI technique provides a formal privacy
guarantee for location queries. However, it is not highly
applicable to this use case for two reasons. It does not
consider the feasible locations where a vehicle can be
present, and it does not stop vehicle tracking in the case of
linked queries during the vehicle trajectory. Thus, a tailored
privacy-preserving mechanism is facilitated by combining
the proposed AGeoI technique with dummy location gen-
eration.

B. Road Network Model
Similar to [41], the road network G is represented as a
weighted directed graph G = (N,E,W ), where N is the set
of nodes, E ⊆ N2 is the set of edges, and W : N2 → R+

is the set of weights representing the minimum travelling
distance between any two nodes. The nodes and edges
correspond to junctions and road segments of the network,
respectively. Each edge e ∈ E is addressed by the pair
of respective starting node, ending node, and a weight
representing the travelling distance through that edge, i.e.,
e = (Ns

e , N
e
e , we) ∈ N , where the direction of the traffic is

from Ns
e to Ne

e on e. For any i ∈ N and j ∈ N , let the
sequence of edges (e1, . . . , er) denote a path from node i to
node j if Ns

e1 = i and Ne
er = j. Hence, let C(i, j) represent

the set of paths that connect node i to node j. Then W is a
N ×N matrix, where

Wij =

 min
p∈C(i,j)

∑
e∈p

we if C(i, j) ̸= ϕ

∞ otherwise

Essentially Wij is the shortest travelling distance from node
i to node j in the network. We shall address the quantity Wij

as the traversal distance between nodes i and j in the graph
G and denote it as dG(i, j) for every (i, j) ∈ N2. Note that,
as G is a directed graph, dG may not be symmetric.

C. System Architecture
IoV applications are revolutionising transportation sys-
tems by mitigating human errors, enhancing travel conve-
nience, and reducing energy, operational, and environmental
costs [50], [51]. EVs have emerged as a viable technology for
lowering carbon emissions and travel costs [52]. However,
range anxiety is one of the major challenges of their wide
adoption. Vehicular location data can be utilised to optimise
the vehicle charging plan and mitigate range anxiety. Third-
party services can assist users by recommending available
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FIGURE 1: System Architecture (EV: Electric Vehicle, RSU:
Roadside Unit, MEC: Mobile-Edge Computing Unit)

CS in close proximity. However, depending on these third-
party providers gives rise to notable privacy concerns within
the threat model of honest-but-curious service providers,
which in turn requires users to place their trust in them.

The system architecture, illustrated in Figure 1, incor-
porates vehicles within an ITS that operates on a three-
tier architecture. This architecture comprises Roadside Units
(RSUs) connected to a Mobile Edge Computing (MEC)
Server, which is connected to the Core Cloud through a
secure communication channel. The Core Cloud facilitates
the connection between vehicles and third-party services,
including the charging station recommender system, which
is the main focus of this paper. However, guaranteeing the
complete trustworthiness of the cloud architecture and third-
party service providers in handling vehicular location data
is not feasible, aligning with the honest-but-curious threat
model. Consequently, our proposed architecture only shares
privatised vehicular location data. The subsequent sections
delve into a comprehensive description of the roles and
functions of each system component.

1) Vehicle Tier
We fix a road network G with nodes G(N) and edges G(E).
We choose an arbitrary edge I ∈ G, and focus on the queries
made by the EVs in I’s range of coverage, R(I), provided by
its RSU. An EV u employs a local obfuscation technique to
protect its true location xu ∈ R(I) to xu

1 ∈ R(I) within the
coverage area R(I) of a specific edge. When an EV moves
from the area of coverage of one Edge cloud to another, we

can assume the queries and the privacy threats against the
Edge to reset as each Edge communicates with the Cloud-
based services and the third-party service providers.

2) Edge Tier
Given the substantial volume of data generated and ex-
changed between vehicles and infrastructure, the installation
of edge clouds in close proximity to vehicles becomes
essential to host off-board vehicular services, which require
low access latency from onboard vehicular services [53].
In addition to performing essential data processing and
forwarding functions, the Edge also serves as a layer for
data aggregation. Moreover, it enables the deployment of
supplementary privacy-preserving measures before sharing
the data with third-party entities.

3) Cloud Tier
It is expected to provide computation and storage capabilities
for top-level processes, including data-sharing interfaces for
third-party services.

4) Third-party Service Provider
It is the external party to ITS and is expected to enhance
the quality of the function for finding the available CS for
the vehicles by receiving search queries compromised of
privatised and dummy location vectors for the respective
vehicles.

5) Communication Channel
ITS comprises a network of RSU, vehicle on-board elec-
tronic control units (ECU), and distributed cloud computing
and storage services. Wireless communications are enabled
for V2V (Vehicle to Vehicle), V2I (Vehicle to Infrastructure)
and V2X(Vehicle to Everything) by the technologies such as
IEEE 802.11p DSRC/WAVE (Dedicated Short Range Com-
munication/Wireless Access in Vehicular Environments), cel-
lular advances such as C-V2X, and the long-term evolution
for vehicles (LTE-V) [54]. Confidentiality of the wireless
communication channel is secured by public key infrastruc-
ture (PKI) encryption methods which are beyond the scope
of this work.

D. Privacy Threat Landscape
In real-time IoV location-based applications, it is often
necessary for users to share their location information with
the service provider in order to access location-specific
services. However, this raises privacy concerns as it can
potentially expose sensitive information about individuals’
movements and activities. To address these concerns, data
perturbation techniques can be employed to protect the
privacy of users while still allowing them to access the
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services they need. These techniques introduce uncertainty or
noise into the data, preventing an attacker from identifying
the precise location of an individual. However, real-world
solutions often rely on user consent, access control, and non-
disclosure agreement-based mechanisms instead of providing
formal privacy guarantees. Thus, there are existing privacy
challenges related to shared location data, including journey
tracing and location identification.

Furthermore, apart from these major privacy challenges,
vehicular location data may also be susceptible to unau-
thorised use, data inference, retention, or insider privacy
breaches within the service provider when formal privacy
guarantees are lacking. The third-party provider is typically
considered an honest-but-curious adversary model, assuming
it is honest in accurately executing the protocol required to
provide location data. However, there is a possibility that
the provider may be curious about inferring users’ private
information based on the acquired location data [55].

This study aims to offer a formal privacy guarantee for
location-based querying that can be utilised by vehicles
throughout their trajectories to effectively address the associ-
ated privacy challenges with this process. To achieve this, the
system is considered in three categories: (i) the vehicle users
(data subject), (ii) ITS encompassing the Edge and Core
Cloud Tiers (data controller and data processor), and (iii)
the third-party that receives the privatised data through the
deployed privacy-preserving mechanisms. The third-party is
assumed to be an EV charging management system, which
may operate under a registration-based approach for a spe-
cific area. Our focus is on mitigating the following two major
sources of threats that have the potential to compromise the
privacy of EVs.

1) Location identification
It is vital to ensure that the privatized version of the true
location of the EV is within a certain radius of interest
w.p. 1, making sure that the reported location is within a
feasible and drivable distance away, and most importantly,
within the area of coverage of the Edge where its true
location lies. Therefore, we defined AGeoI as an extension of
GeoI. Thus, to ensure the privacy of any given query in the
road network, the EVs locally obfuscate their true locations
using the truncated Laplace mechanism with their desired
parameter ϵ and the radius of truncation r, which, in turn,
decide the value of δ.

2) Journey tracing
EVs may inquire about the nearest available charging station
without proceeding with the query and raise further queries
along the journey. Subsequently, additional queries may be
raised at different points during the journey. In our model,
we aim to capture this realistic setting by allowing multiple
queries to be made by the EV within a single journey.

However, this introduces a potential threat of approximately
tracing the trajectory of the EV’s journey by interpolating
the locations of the queries, despite each individual location
being AGeoI-protected. This is due to the fact that the
obfuscated location of each query is not distinguishable from
the real location, but they are not too far off from each other
with a very high probability. Consequently, if a large number
of queries are made within a single journey, it becomes
relatively straightforward to approximate the trajectory of
the EV’s journey.

Cunningham et al. [42] proposed a mechanism to securely
share trajectories under LDP. However, the authors in [42]
assumed a model of offline sharing of the entire trajectory
and, hence, sanitising it with the proposed mechanism to en-
gender LDP guarantees. In our setting, this method cannot be
directly implemented as we consider a dynamic environment
where the queries made by the EVs are in real-time, with
the server not having any prior knowledge of the number or
the location of the queries made by a certain EV. Therefore,
the mechanism of [42] cannot trivially be extended in the
online location-sharing environment, and hence, the threat
of adversaries able to reconstruct the journey of a particular
EV with a high number of queries remains as a concern.

E. Proposed Query Model
During the journey, an EV u located within the coverage of
an Edge I locally obfuscates its true location xu ∈ R(I) to
xu
1 ∈ R(I) using the truncated Laplace mechanism guaran-

teeing AGeoI, and generates m−1 feasible dummy locations
{xu

2 , . . . , x
u
m} ∈ R(I)m−1, i.e., locations that cannot be

trivially identified as being artificially generated given the
query of the previous time stamp w.r.t. realistic speed limits,
travelling conditions, etc. For the first query that u makes
along its journey, it generates random m−1 dummy locations
in R(I). Thus, each query of u consists of reporting the
vector of m locations, lu = (xu

1 , . . . , x
u
m) ∈ R(I)m, to I for

the Edge to process and communicate the query to the Cloud
services and the third-parties to find the nearest available
CS in R(I). This approach ensures that the adversary will
have at least m possible trajectories that the EV could have
realistically followed at every time stamp, making it highly
improbable for the Edge and the third-party to be able to
conclude which of them was the actual journey as, after
k queries made along a single journey, each interpolated
trajectory will have a probability of at least 1/mk of being
the real one.

Figure 2 illustrates 10 reported dummy locations along
with the privatized location for two consecutive time win-
dows. Notably, the dummy locations in the subsequent time
window can be feasibly linked to at least one of the preceding
dummy locations. At any given time, the Edge collects all
the reported locations from the querying EVs, shuffles them
by effacing the links between the location vectors and the
corresponding EVs, and sends this jumbled collection of all
the reported locations in the network to know their respective
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FIGURE 2: Reported dummy and privatised locations for two respective time windows (White Pins: Privatised locations,
Orange Pins: Dummy locations in 1st Time window, Blue Pins: Dummy locations in 2nd Time window)

nearest available CS to the third-party service provider. After
receiving the response, the Edge, which internally keeps the
record of the IDs of the EVs against their queried locations,
assigns the corresponding vector of locations of the nearest
available CS to each EV and communicates them back to
the respective vehicles.

In other words, at time t, if the Edge receives the location
vectors from kt querying EVs as L(t) = {lu1 , . . . , lukt

},
the Edge is responsible for shuffling all the individual
locations in these reported vectors and forward the scrambled
collection L′(t) = {xu

i :u ∈ {u1, . . . , ukt , i ∈ [m]} to the
Cloud and the third-party, while internally keeping a track
of the IDs of the EVs to reconnect the query-response back
to the corresponding users. Setting x̂ as the location of the
nearest available charging station from location x in R(I),
the Edge receivesR(t) = {x̂u

i :u ∈ {u1, . . . , ukt , i ∈ [m]} as
the response from the third-party service provider handling
the CS data real-time. After this, matching the IDs of the
EVs with the locations of the CS, the Edge communicates
the response vector l̂u = (x̂u

i : i ∈ [m]) back to the
corresponding EV u. Then the EV can choose to navigate
to argminx∈l̂u

{dG(x, xu)}, where xu is the real location of
u. The overview of this mechanism is given in Figure 1.

VI. COST OF PRIVACY ANALYSIS
Definition VI.1 (Cost of privacy). Suppose an EV u at
location xu chooses to locally obfuscate its real location of
a query as xu

1 using the truncated Laplace mechanism Lϵ,r

satisfying (ϵ, δ)-geo-indistinguishability with a correspond-
ing radius of truncation r. Then we define the cost of privacy
(CoP) of EV u as CoP(u,Lϵ,r) = c(xu, x̂u

1 ) − c(xu, x̂u),
where x̂u and x̂u

1 are the nearest available CS in the network
to xu and xu

1 , respectively, and c : G(N)2 7→ R+ is any
cost function that reflects the “cost” of the commute from
locations x to y in the network.

In other words, CoP, as in Definition VI.1, essentially
captures the extra cost that an EV needs to cover as a result
of the privatized location it reports to the Edge satisfying
AGeoI, as opposed to its true location. In this paper, for
the purpose of simplicity of the analysis, we considered the
cost function as the travelling distance in the network, i.e.,
c = dG. However, in practice, any suitable cost function
could be used (e.g. fuel efficiency, time, etc.) could be
used as c, depending on the context and requirement of the
architecture. To formally characterize and analyze the CoP of
the EVs in the network, inspired from the classical version of
Voronoi decomposition, we extend the concept in the setting
of our road network in the network coverage for a fixed Edge
w.r.t. graph-traversal distance, dg.

Definition VI.2 (Voronoi decomposition). Let G be the
graph representing the road network equipped with travelling
distance dG. Let the set of CS in G be CG = {c1, . . . , cnG

}.
Then the Voronoi decomposition on G w.r.t. CG is defined
as VG = {Vi: i ∈ [nG]} such that Vi∩Vj = ϕ for any i ̸= j
and

⋃
i∈[nG]

Vi = G, where

Vi = {x ∈ G: dG(x, ci) ≤ dG(x, cj) ∀ j ∈ [nG], j ̸= i}

Definition VI.3 (Closed ball around a location). For any
x ∈ G and r ∈ R≥0, the closed ball of x of radius r is
defined as βr(x) = {y ∈ G: dG(x, y) ≤ r}

Definition VI.4 (Fenced Voronoi decomposition). For any
r ∈ R≥0 and charging station i, let the r-fenced Voronoi
decomposition on road network G be defined as V −r

G =
{V r

i : i ∈ [nG]} such that V −r
i ∩ V −r

j = ϕ for i ̸= j

and V −r
i = {x ∈ Vi: Br(x) ⊆ Vi}. In other words, V −r

i

essentially constructs an area contained within Vi restricted
by a fence at a distance r from the edge of Vi.

Theorem VI.1. Suppose an EV u positioned at xu on G
obfusucates its location using AGeoI with any radius of
truncation r ∈ R≥0. Let x̂u be the location of the nearest
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available charging station to the true location xu. Then
P [CoP(u,Lϵ,r) = 0] = 1 for every xu ∈ V −r

x̂u . In other
words, if an EV lies in the r-fenced Voronoi decomposition
for its nearest available CS, it has a zero cost for privacy
w.p. 1.

Proof:
Immediate from Definition VI.4.
Theorem VI.2. Suppose an EV u lies in Vx̂u \ V −r

x̂u and it
uses AGeoI to obfuscate its true location xu to xu

1 with a
radius of truncation r and privacy parameter ϵ for making a
private query to the Edge. Then P [CoP(u,Lϵ,r) = 0] = 1−∑

xu
1∈V c

x̂u
ce−ϵdG(xu,xu

1 ), where c is the normalizing constant
of the truncated Laplace mechanism as in Definition IV.2.

Proof:
To compute P [CoP(u,Lϵ,r) = 0], we only need to exclude
the possibilities where the reported location of the EV lies
outside the Voronoi decomposition of the station x̂u, which,
essentially, is 1−

∑
xu
1∈V c

x̂u
ce−ϵdG(xu,xu

1 ).

VII. EXPERIMENTAL STUDY
This section presents the experimental study with the objec-
tives as follows: (i) to validate proposed theoretical claims
and solutions empirically; (ii) to use the method to find
the nearest available charging station for EVs as a case
study; (iii) to investigate the cost of privacy in real-time
settings; and (iv) to conduct a real-time CS occupancy
prediction technique from the noisy vehicle distribution.
Standard Python packages are used to run the experiments
in an environment with an Intel core i7 processor, 16 GB of
RAM, and an Ubuntu 20.04 operating system.

A. Dataset Preparation
The road network data extracted from OpenStreetMap [56].
The cost of privacy is calculated as the additional routing dis-
tance caused by noise in vehicular locations during queries
to identify the optimal charging station. The cost of privacy
depends on the sparsity of CS. We prepared two datasets: one
with 404 existing charging station locations in San Francisco
obtained from the United States Department of Energy [57],
and another by merging existing and planned charging sta-
tion locations with on-street and off-street parking locations
from DataSF [58], resulting in 716 independently distributed
locations.

The EPFL mobility dataset includes GPS records of 536
taxi trajectories in San Francisco over four weeks [59].
The dataset provides information such as the taxi identifier,
latitude, longitude, occupancy state (vacant or occupied),
and a UNIX epoch timestamp. Leveraging the occupancy
information, we were able to split the complete taxi trajec-
tories into individual customer trajectories, resulting in over
450,000 exported trajectories. For our study, we randomly
selected 536 trajectories from each taxi.

B. Experimental Setup
A group of EVs sends out location queries to find the closest
available CS during their journeys on the road network G.
The edges of the road network G are truncated into discrete
segments with an equal k travel distance, similar to the work
in [41]. DTLap is utilised to generate the privacy channel by
using the Laplace mechanism for the user’s desired values
for privacy budget ϵ and truncation radius r. Following this,
DTLapSamp is used to generate privatised locations with
respect to the users’ real locations.

A location query contains a privatised location and m− 1
dummy locations as a vector and is collected by the Edge
for sending them to the third-party through the core cloud
as a single vector of all locations. The third-party responds
to the locations in the vector with the closest available CS
for each, and the Edge sends vehicle location vectors to the
related vehicles without being able to differentiate privatised
and dummy locations.

For IBU to approximate the original distribution of the
query locations of the EVs in the road network in order
to predict the availability of the CS and, thus, assist the
users in planning their journeys appropriately, we note that
each original query location goes through two independent
steps of sanitization: a) locally using the truncated Laplace
mechanism to achieve AGeoI and b) generating the realistic
dummy locations in the area of coverage of the Edge to
ensure protection against attacks reconstructing their jour-
neys. Setting the domain X as the area of coverage of the
RSU of the fixed Edge that we focus on, while the former
is a straightforward use of the channel L, the latter can
be thought of as m − 1 independent applications of the
uniform channel U , where U : X 2 7→ R with Ux,y denoting
PU [y|x] = 1/|X |, by each EV. Therefore, after accounting
for the normalization, the channel incorporating the local
obfuscation and the generation of the dummy locations used
by each EV reduces down to 1

mL+
m−1
m U which we use as

the privacy channel to implement IBU.
The first set of experiments examines the CoP for ran-

domly selected 536 vehicle traces, where each trace contains
a series of GPS coordinates and 3 randomly selected points
along each for the real locations of the queries. The discrete
road network is generated by setting the distance k = 100
meters. The parameters of ϵ and r are varied in the range of
0.2 to 2, and 1 to 20, respectively.

The privatised location, together with the dummy loca-
tions, is sent to the third-party for a query to prevent the
third-party from tracking the vehicle. The area of Edge cov-
erage, rather than the vehicle’s area of interest, is considered
for dummy location generation rather than the vehicle’s area
of interest, as the centre of mass may give away the true
location. The second set of experiments examined the impact
of dummy locations on the CoP.

The location queries could be used for real-time predic-
tive analysis on the optimisation of the smart power grid,
managing staff, and determining where new CS should be
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deployed. Thus, service providers can have the utility of
the datasets (e.g., train ML models, etc.) with DP-based
methods while the privacy of individuals is preserved. The
third set of experiments utilises the IBU method to retrieve
the true distribution of locations of the queries from the noisy
distribution, which includes privatised and dummy locations.

C. Results and Discussion
1) Cost of Privacy
DP approaches introduce a trade-off between privacy and
data utility, with a higher level of privacy requiring a greater
level of noise. The efficacy of the respective service may
correspondingly decrease due to the fall in data utility, and
this difference in the quality of service is referred to as the
‘cost of privacy’ (CoP) in this study. In particular, in the
context of the use case considered in this paper, the CoP is
formalised in Definition VI.1.

The following results are achieved by carrying out the
experiments for 3 linked queries of 536 randomly selected
vehicle trajectories for varying values of ϵ or r ranging from
0.2 to 2, and 1 to 20, respectively. Figure 3 demonstrates
the CoP in terms of the extra travelling distance due to
the privacy-preserving mechanism, where a similar pattern
is observed for both of the datasets. Another observation
is that a high frequency of queries resulted in no cost for
privacy preservation. Figure 4 shows the fraction of the
queries with “privacy for free” where both datasets followed
similar patterns. Vehicle queries contain dummy locations
and their privatised true locations. It is possible that the
dummy locations can sometimes provide a better utility, but
our experiments consider the utility of a privatised location
as the worst-case for analysis.

Figure 3 shows that our method provides a negligible cost
of utility loss for the formal privacy gain enjoyed by the
EVs. By increasing the truncation radius, an abrupt drop in
the distance between the location of the nearest available
charging station for the true location of the query and that
of the privatised one implies that the cost of the extra travel
distance needed to be taken due to the AGeoI guarantee is
almost negligible. A similar trend is seen for the varying ϵ
with a fixed radius. As the level of privacy decreases, the
fraction of EVs in the network enjoying privacy for free
grows to be more than 60% for a radius of truncation of
merely 10 road segments, where each segment is 100 meters
long, for ϵ ≥ 0.5. However, more than 90% of the EVs
achieve a zero cost of privacy for ϵ ≥ 1.5, irrespective of the
truncation radius as illustrated in Figure 4. Due to increasing
perturbation for the disclosed locations, the width of the
confidence interval for zero cost of privacy increases, as seen
in Figure 4. The likelihood of achieving zero cost of privacy
fluctuates over a wider range and it does not monotonically
decrease with the growing radius due to rising randomness.

2) Impact of Dummy Data Generation
Considering an adversary interested in finding the true lo-
cations of the EVs, (α, β]-identifiability is defined for any
location x as P[d(y, x) < α) > β, where y is any guessed
location by the adversary. With the proposed method, with
a sufficiently small radius of truncation to obfuscate the
true location using the truncated Laplace and generating
m − 1 dummy locations in the area of coverage of the
Edge, the probability of hitting the true x within an error
of α is P[d(x, y) < α] = m−1ce−ϵα = β, where c is the
normalising constant.

There has been some work in this area from the perspec-
tive of just GeoI [41], [40], [39], [60], [61] or just from
the standpoint of generating dummy locations exploiting
anonymisation techniques [62], [63]. One of the first major
concerns in using only GeoI is when we allow dynamic and
multiple queries along the journey of the EVs, as individual
locations, despite being privatised, can still be interpolated
to approximate the entire trace. If only dummy locations
are used, however, any estimated (or observed) y could be
the real location w.p. 1

m−1 , as there is no formal privacy
guaranteed, i.e., every location x has, is (0, (m − 1)−1)-
identifiable among (m−1) dummy locations. With potential
parallel processing, brute-force attacks are just one way that
it has been shown that anonymisation techniques are not
sufficient to protect privacy [64].

Figure 5 illustrates how the CoP increases with an increase
in the noise due to the lack of dummy locations under the
same level of identifiability. To achieve the same (α, β)-
identifiability with just AGeoI without dummy locations, the
parameter ϵ needs to be scaled by (lnm)

−1, i.e., more noise
needs to be added, which results in having a worse trade-off
between privacy and CoP for the same level of privacy.

3) Real-time Predictive Study
Predicting the availability of CS is a crucial component
of EV trip planning and can help ease range anxiety.
Some existing methods adhered to machine learning-based
approaches to develop such prediction models [65], [66],
[67], [68], [69]. The main consideration of these models is
that drivers can book timeslots for CS and the prediction
is made based on factors such as past usage of CSs, traffic
density, and some other features such as weather conditions.
However, such consideration may be limited to facilitating
effective EV journey planning, given that traffic is highly
dynamic and subject to unexpected changes. Due to the
traffic, EVs may be late for their scheduled charging time,
and another EV cannot be navigated to charge from the
same station, despite the fact that it is empty. Hence, a
real-time predictive analysis would be critical to determine
the likelihood of a CS being available when an EV arrives.
Our proposed method provides privacy-preserved live traffic
distribution of the querying vehicles. IBU is applied to
estimate the real-time distribution of the traffic and, hence,
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FIGURE 3: CoP (i.e., by Definition VI.1, the difference in the distance an EV needs to cover to reach the nearest CS with
and without local obfuscation to achieve AgeoI) for varying ϵ or r of AGeoI (1st row is for sparse CS, 2nd row is for
dense CS).

the statistical distance between the estimated and the original
distributions are shown in Figure 6. We considered two
different levels of AGeoI with ϵ = 0.6 and ϵ = 2 and IBU
was run for 100 iterations. The results demonstrate that the
distance between the original and the estimated distributions
of the traffic is decreasing. The accuracy of the estimation of
the original distribution from the noisy locations is illustrated
by the heatmaps of Figure 6 depicting the original, noisy,
and estimated traffic distributions. This essentially highlights
the high statistical utility of our proposed method and,
specifically, helps in the prediction of how likely a CS will be
available when the vehicle arrives and the traffic, in general.

VIII. CONCLUSION
This paper studied a fundamental problem of the risk of
privacy violation for EVs dynamically querying for CS along
their journeys. The setting of the problem has not been
addressed in the literature, and some of the related techniques

along the lines of privacy-preserving vehicle routing cannot
be adapted directly into the practical model considered in
this work. To address this, we theorised the notion of AGeoI
allowing us to attain GeoI in a strictly bounded space of
secrets. Formally justifying its soundness and applicability
by proving the compositionality theorem, we derived the
appropriate privacy parameters to prove that the truncated
Laplace mechanism satisfies AGeoI and used it to propose
a location privacy-preserving method for EVs querying for
CS. Our method protects the privacy of both the specific
positions of the queries and the trace of the entire journey.

In the experiments, datasets with real vehicle traces and
locations were used to demonstrate the trade-off between
privacy and utility and the impact of dummy locations
on this trade-off. We used IBU for real-time estimation
of the original distribution of the EVs from the reported
(noisy) locations.Thus, our method can capture the effect
of unprecedented traffic variations on the occupancy of the
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FIGURE 4: Fraction of EVs incurring no CoP for varying ϵ or r of AGeoI (1st row is for sparse CS, 2nd row is for dense
CS).

FIGURE 5: Impact of introducing dummy locations along with AGeoI on the CoP.

CSs. Using IBU, we are capable of predicting the likelihood
of a particular station being occupied by another vehicle at
the time of arrival and, hence, enable an online prediction
technique to estimate the availability of CS around an EV
and, in turn, allowing users to do convenient route planning.
A consistent trend of a substantial majority of the EVs
to have “privacy for free” was observed across all the
experiments, i.e., most of the EVs suffer no loss of utility
even for fairly high-level formal AGeoI. In general, we
observe that the cost of privacy induced by our method is
fairly low across settings, thus, ensuring privacy protection

for the location of the EVs without incurring a high price to
pay for that. We dissected this cost of privacy incurred by
our method using Voronoi decomposition to draw insight into
the privacy-utility trade-off from a foundational perspective.
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