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Abstract

As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high

data quality is imperative for constructing models. Crowdsourcing, community sensing, and

data filtering have long been the standard approaches to guaranteeing or improving data

quality. The underlying theory, mainly incentive mechanism design, is often limited in its

scope of applicability. A subset of incentive mechanisms designed to handle unverifiable

or inherently subjective data - Peer Prediction mechanisms - is generally only applicable to

settings where the data signal comes from a discrete distribution. In this thesis, we expand the

scope of applicability of Peer Prediction mechanisms in two parts.

In the first part, we address a constrained extension of Peer Prediction that is applicable to

machine learning. A data collecting entity, known as a Center, may not need to learn a joint

distribution of (x, y) pairs. It may only need to learn a parameterized model that minimizes a

loss function on the joint distribution. We analyze a statistical measure known as Influence,

which can be interpreted as a form of Peer Prediction. We will show that the Peer Truth Serum

(PTS) is a special case of Influence, and that Influence has desirable game-theoretic properties

as an incentive mechanism.

We then take the analysis of Influence into the regime of data filtering, which is uniquely

challenging compared to crowdsourcing. We use asymptotic analysis to show that, in the

limit of infinite samples, the ability to filter training data using Influence is constrained by the

degree of corruption in the validation data. However, finite sample analysis reveals that one

can exceed the quality of the validation data if conditions are met regarding higher moments

of the data models.

In the second part, we move on from this more constrained extension to the most general

extension of Peer Prediction: learning arbitrary distributions. Many crowdsourcing problems

involve absolutely continuous distributions, such as Gaussian distributions. The standard

approach is to discretize the space and apply a discrete Peer Prediction mechanism. This

approach has numerous issues: coarse discretizations result in inaccurate approximations of

the distribution and loose incentives, while fine discretizations result in volatile payments,

which tend to fail in real world applications. We expand the theory of Peer Prediction, rather

than seek a better implementation of current theory. We consider two approaches.

In the first approach, one can discretize the space, which we call partitioning into bins, but

pick from a set of partitions rather than just one. In this regime, the notion of peer matching
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Abstract Chapitre 0

in Peer Prediction is generalized with the concept of Peer Neighborhoods. With a reasonable

strengthening of the Agent update condition, we obtain a valid extension of the PTS on

arbitrary distributions.

The partitioning approach for arbitrary distributions reveals a more precise theory. By chang-

ing perspective from partitioning according to the Lebesgue measure on the space of reports

to partitioning according to the public probability measure, we obtain a payment function that

doesn’t rely on discretization. Using this function as the basis for a mechanism, a Continuous

Truth Serum, reveals solutions to other underlying problems with Peer Prediction, such as the

unobserved category problem.

Key words: Game Theory, Incentive Mechanisms, Peer Prediction, Machine Learning, Data

Valuation, Data Filtering
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Résumé

Alors que les grands modèles d’intelligence artificielle basés sur des données deviennent

omniprésents, il est impératif de garantir la qualité des données pour construire les modèles.

Le crowdsourcing, la détection communautaire et le filtrage des données sont depuis long-

temps des approches standard pour garantir ou améliorer la qualité des données. La théorie

sous-jacente, principalement la conception de mécanismes d’incitation, est souvent limitée

dans son champ d’application. Un sous-ensemble de mécanismes incitatifs conçus pour

traiter des données invérifiables ou intrinsèquement subjectives - les mécanismes Peer Pre-

diction - n’est généralement applicable qu’à des contextes où le signal de données provient

d’une distribution discrète. Dans cette thèse, nous élargissons le champ d’application des

mécanismes Peer Prediction en deux parties.

Dans la première partie, nous abordons une extension contrainte du Peer Prediction qui est

applicable à l’apprentissage automatique. Une entité de collecte de données, connue sous

le nom de Centre, peut ne pas avoir besoin d’apprendre une distribution conjointe de paires

(x, y). Elle peut seulement avoir besoin d’apprendre un modèle paramétré qui minimise une

fonction de perte sur la distribution conjointe. Nous analysons une mesure statistique connue

sous le nom de Influence, qui peut être interprétée comme une forme de Peer Prediction.

Nous montrerons que le Peer Truth Serum (PTS) est un cas particulier de l’Influence, et que

l’Influence possède des propriétés souhaitables en théorie des jeux en tant que mécanisme

d’incitation.

Nous poussons ensuite l’analyse de l’Influence dans le régime du filtrage des données, qui est

un défi unique par rapport au crowdsourcing. Nous utilisons une analyse asymptotique pour

montrer que, dans la limite d’échantillons infinis, la capacité à filtrer les données d’appren-

tissage à l’aide d’Influence est limitée par le degré de corruption des données de validation.

Cependant, l’analyse des échantillons finis révèle que l’on peut dépasser la qualité des don-

nées de validation si les conditions sont remplies en ce qui concerne les moments supérieurs

des modèles de données.

Dans la deuxième partie, nous passons de cette extension plus contrainte à l’extension la

plus générale du Peer Prediction : l’apprentissage de distributions arbitraires. De nombreux

problèmes de crowdsourcing impliquent des distributions absolument continues, telles que

les distributions gaussiennes. L’approche standard consiste à discrétiser l’espace et à appliquer

un mécanisme Peer Prediction discret. Cette approche pose de nombreux problèmes : les
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discrétisations grossières donnent lieu à des approximations inexactes de la distribution

et à des incitations peu rigoureuses, tandis que les discrétisations fines donnent lieu à des

paiements volatils, qui ont tendance à échouer dans les applications réelles. Nous développons

la théorie du Peer Prediction, plutôt que de chercher une meilleure mise en œuvre de la théorie

actuelle. Nous envisageons deux approches.

Dans la première approche, on peut discrétiser l’espace, ce que nous appelons le partition-

nement en bacs, mais en choisissant parmi un ensemble de partitions plutôt qu’une seule.

Dans ce régime, la notion d’appariement des pairs dans Peer Prediction est généralisée avec le

concept de Peer Neighborhoods. Avec un renforcement raisonnable de la condition de mise à

jour de l’agent, nous obtenons une extension valide du STP sur des distributions arbitraires.

L’approche du partitionnement pour les distributions arbitraires révèle une théorie plus

précise. En changeant de perspective et en passant d’un partitionnement en fonction de la

mesure de Lebesgue sur l’espace des rapports à un partitionnement en fonction de la mesure

de probabilité publique, nous obtenons une fonction de paiement qui ne repose pas sur la

discrétisation. L’utilisation de cette fonction comme base d’un mécanisme, un Continuous

Truth Serum, révèle des solutions à d’autres problèmes sous-jacents de la prédiction par les

pairs, tels que le problème de la catégorie non observée.

Mots clefs : Théorie des jeux, mécanismes d’incitation, prédiction par les pairs, apprentissage

automatique, évaluation des données, filtrage des données
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Zusammenfassung

Da große, datengesteuerte Modelle der künstlichen Intelligenz allgegenwärtig werden, ist die

Gewährleistung einer hohen Datenqualität für die Konstruktion von Modellen unerlässlich.

Crowdsourcing, Community Sensing und Datenfilterung sind seit langem die Standardansätze

zur Gewährleistung oder Verbesserung der Datenqualität. Die zugrunde liegende Theorie, vor

allem die Gestaltung von Anreizmechanismen, ist in ihrem Anwendungsbereich oft begrenzt.

Eine Untergruppe von Anreizmechanismen, die für den Umgang mit nicht verifizierbaren

oder inhärent subjektiven Daten entwickelt wurde - Peer Prediction-Mechanismen - ist im

Allgemeinen nur in Situationen anwendbar, in denen das Datensignal aus einer diskreten

Verteilung stammt. In dieser Arbeit erweitern wir den Anwendungsbereich von Peer Prediction-

Mechanismen in zwei Teilen.

Im ersten Teil behandeln wir eine eingeschränkte Erweiterung von Peer Prediction, die auf

maschinelles Lernen anwendbar ist. Eine datenerfassende Instanz, ein sogenanntes Zentrum,

muss möglicherweise keine gemeinsame Verteilung von (x, y)-Paaren lernen. Es muss lediglich

ein parametrisiertes Modell lernen, das eine Verlustfunktion auf die gemeinsame Verteilung

minimiert. Wir analysieren ein statistisches Maß, bekannt als Influence, das als eine Form

von Peer Prediction interpretiert werden kann. Wir werden zeigen, dass Peer Truth Serum

(PTS) ein Spezialfall von Influence ist und dass Influence wünschenswerte spieltheoretische

Eigenschaften als Anreizmechanismus hat.

Anschließend führen wir die Analyse von Influence in den Bereich der Datenfilterung ein, der

im Vergleich zum Crowdsourcing eine einzigartige Herausforderung darstellt. Wir verwenden

asymptotische Analysen, um zu zeigen, dass die Fähigkeit, Trainingsdaten mit Influence zu

filtern, im Grenzfall unendlicher Stichproben durch den Grad der Korruption in den Validie-

rungsdaten eingeschränkt wird. Die Analyse endlicher Stichproben zeigt jedoch, dass man die

Qualität der Validierungsdaten übertreffen kann, wenn die Bedingungen hinsichtlich höherer

Momente der Datenmodelle erfüllt sind.

Im zweiten Teil gehen wir von dieser eher eingeschränkten Erweiterung zur allgemeinsten Er-

weiterung von Peer Prediction über: dem Lernen beliebiger Verteilungen. Viele Crowdsourcing-

Probleme beinhalten absolut kontinuierliche Verteilungen, wie z. B. Gauß-Verteilungen. Der

Standardansatz besteht darin, den Raum zu diskretisieren und einen diskreten Peer Prediction-

Mechanismus anzuwenden. Dieser Ansatz ist mit zahlreichen Problemen behaftet: Grobe

Diskretisierungen führen zu ungenauen Annäherungen an die Verteilung und lockeren An-

vi



Abstract Chapter 0

reizen, während feine Diskretisierungen zu volatilen Zahlungen führen, die in realen Anwen-

dungen eher versagen. Wir erweitern die Theorie von Peer Prediction, anstatt eine bessere

Implementierung der aktuellen Theorie zu suchen. Wir betrachten zwei Ansätze.

Beim ersten Ansatz kann man den Raum diskretisieren, was wir als Partitionierung in Bins

bezeichnen, aber aus einer Reihe von Partitionen statt nur einer auswählen. In diesem Regime

wird der Begriff des Peer Matching in Peer Prediction mit dem Konzept von Peer Neighborhoods

verallgemeinert. Mit einer angemessenen Verstärkung der Agentenaktualisierungsbedingung

erhalten wir eine gültige Erweiterung des PTS auf beliebige Verteilungen.

Der Partitionierungsansatz für beliebige Verteilungen offenbart eine präzisere Theorie. Indem

wir die Perspektive von der Partitionierung nach dem Lebesgue-Maß auf dem Raum der Be-

richte zur Partitionierung nach dem öffentlichen Wahrscheinlichkeitsmaß ändern, erhalten

wir eine Zahlungsfunktion, die nicht auf Diskretisierung angewiesen ist. Die Verwendung die-

ser Funktion als Grundlage für einen Mechanismus, einen Continuous Truth Serum, offenbart

Lösungen für andere zugrundeliegende Probleme mit Peer Prediction, wie das Problem der

unbeobachteten Kategorie.

Stichwörter: Spieltheorie, Anreizmechanismen, Vorhersage durch Gleichgestellte, maschinel-

les Lernen, Datenbewertung, Datenfilterung

vii



Contents
Acknowledgements i

Abstract (English/Français/Deutsch) ii

List of figures xi

List of tables xiv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Game Theory and Mechanism Design . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Peer Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Influence Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Influence Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Peer Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Continuous Truth Serum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Peer Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Distributed Learning Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Peer Consistency Generalizations . . . . . . . . . . . . . . . . . . . . . . . 16

2 Influence Mechanisms 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Influence-based Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 The Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Dominant Strategy Incentive-Compatibility . . . . . . . . . . . . . . . . . 23

2.3 Incentives for the Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Budgeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Improved Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Relation with Peer Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



CONTENTS Chapter 0

2.5 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Influence Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Sequential Data Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 M-Loss and M-Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Influence Filtering 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 Shapley value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Influence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Infinite Sample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Finite Sample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Filtering Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Threshold Influence Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Iterative Minimal Influence Filtering . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Uniform Probabilistic Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Infinite Sample Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Finite Sample Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Peer Neighborhoods 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Peer Neighborhood Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Peer Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2 Partition Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 The Mechanism Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 Incentive-Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Analysis of Update Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Update Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Satisfying the Update Conditions . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Bin Edge Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Report Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Payment Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



Chapter 0 CONTENTS

5 Continuous Truth Serum 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Improving Peer Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 A Continuous Truth Serum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 The Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Replicating the Peer Truth Serum . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Incentive-Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 The Ratio Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Report Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.3 Sufficient Maximizing Conditions . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.4 Additional Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Report Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 Tent Function Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.3 Fixed Discretization Payments . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.4 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusion 116

6.1 Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Peer Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography 122

Curriculum Vitae 127

x



List of Figures

1.1 The Ex-Ante Peer Prediction Game Setting for an Agent. . . . . . . . . . . . . . . 7

1.2 The Ex-Interim Peer Prediction Game Setting for an Agent. . . . . . . . . . . . . 8

2.1 Empirically observed decrease of Influence on a typical regression model as

more and more data is collected. Each batch corresponds to 100 data points.

Both the exact Influence and the 2nd order approximation are shown. . . . . . 27

2.2 The exact influence is shown to become computationally prohibitive for logistic

regression with only a moderate number of data points, while the computation

time for the approximate influence increases relatively slowly. . . . . . . . . . . 34

2.3 M-Loss is trained on all points in current batch, with Influence computed by re-

moving a point. M-Gain is trained on all prior batches, with Influence computed

by adding a point from current batch. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Ratio between Sum of Influences and Change in Loss with respect to batch size. 37

3.1 Mean Influences over number of data points. Growth rate of Influences matches

O( 1
N 2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Average over all regression datasets with LS corruption. Y values are the Q values

that set the average Influence of accurate and corrupted points equal. Error bars

are one standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Heat map over all datasets with LS corruption. Coloration represents the differ-

ence between average Influence of accurate and corrupted data with q = p ±ϵ
for ϵ ∈ {0.05,0.1,0.2}. More blue means more simulations with accurate data

achieving higher Influence, more red means the opposite. . . . . . . . . . . . . . 52

3.4 Crime dataset with AGN corruption. Noise mean 0. Noise variance ranges from

0 to 20. p and q are fixed at 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Normalized difference in average Influence aggregated over all regression datasets.

p and q fixed at 0.75. Error bars are one standard deviation. . . . . . . . . . . . . 55

3.6 (a) Crime dataset with AGN corruption. Noise variance is 0. Noise mean ranges

from 0 to 20. p and q fixed at 0.25. (b) Crime dataset with AGN corruption. Noise

variance is 0. Noise mean ranges from 0 to 20. p and q fixed at 0.5. (c) Crime

dataset with AGN corruption. Noise variance is 0. Noise mean ranges from 0 to

20. p and q fixed at 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



Chapter 0 LIST OF FIGURES

3.7 Filter performance metrics averaged across all combinations of datasets with

LS, XuYu, and XgmmYu corruption. q value is fixed at 0.8. (a) Change in p value.

Error bars are 1
2 standard deviation. A higher value is better. (b) Relative change

in real loss, real loss being the loss measured only against the target distribution.

Error bars are 1
5 standard deviation. A lower value is better. . . . . . . . . . . . . 57

4.1 An example of a partition family on R2 with θ representing translations of the

bins: β0(i ) transforms into βθ(i ). Partition families are used to construct Peer

Neighborhoods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Expected payments for reports perturbed from the observation, computed over

an Agent’s posterior. Error bars are one standard deviation. In the 2D figures, red

lines show the location of the maximum expected payment. . . . . . . . . . . . 78

4.3 Expected payments for reports perturbed from the observation, computed over

truthful Peer reports. Error bars are one standard deviation. In the 2D figures,

red lines show the location of the maximum expected payment. . . . . . . . . . 79

4.4 Smaller bins produce a larger variance in payments. Error bars are one standard

deviation squared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 True, Public, Kernel, and Posterior distributions for 1D Empirical distribution,

Empirical update perturbation simulations. . . . . . . . . . . . . . . . . . . . . . 82

4.6 True, Public, Kernel, and Posterior distributions for 2D Empirical distribution,

Empirical update perturbation simulations. . . . . . . . . . . . . . . . . . . . . . 83

4.7 True, Public, Kernel, and Posterior distributions for 1D GMM distribution, Pyra-

mid update perturbation simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 True, Public, Kernel, and Posterior distributions for 2D GMM distribution, Pyra-

mid update perturbation simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 True, Public, Kernel, and Posterior distributions for Empirical distribution, Em-

pirical update bin size simulations. The Kernel and Posterior distributions are

taken with the largest bin size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.10 True, Public, Kernel, and Posterior distributions for GMM distribution, Pyramid

update bin size simulations. The Kernel and Posterior distributions are taken

with the largest bin size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Blue and light-blue represent bins with fixed probability measure 1
n in R, with

the Gaussian density function fR (x) shown in orange. As the blue bins rotate

around the circle according to the parameter θ transforming into the light-blue

bins, they deform to maintain the 1
n probabilities. . . . . . . . . . . . . . . . . . . 89

5.2 Blue and light-blue represent bins with fixed probability measure in R. In the

real domain, these categories transform into each other according to FR , but

in the quantile domain they transform with offsets. Taking the expectation

over a uniform distribution of these offsets, which is equivalent to taking the

expectation over R in the real domain, produces a payment taking the form of

this tent function as in Equation 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xii



LIST OF FIGURES Chapter 0

5.3 For a categorical distribution, mapping the report to q in the middle of the

left and right limits allows the tent function to be contained entirely inside the

step interval with small enough b. The tent function integrates to 1, so inte-

grating over Q−1
R (r ) lets the mechanism pick up the length of the step interval,

reproducing the Peer Truth Serum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Expected payments over deviation from truthful. Green plot taken over 100 fixed

peer reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Expected payments over tent width b. Green plot taken over 100 fixed peer reports.110

5.6 Expected payments over bin size for a fixed discretization. Plots averaged over

1000 observations from true distribution. This mechanism is only truthful up to

the resolution of the bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Expected payments over deviation from truthful with fixed discretization pay-

ment. Green plot taken over 100 fixed peer reports. . . . . . . . . . . . . . . . . . 112

5.8 True, Public, Kernel, and Posterior distributions for Report Perturbations . . . . 113

5.9 True, Public, Kernel, and Posterior distributions for Tent Function Dependence. 114

5.10 True and Public distributions for Fixed Discretization Payments. . . . . . . . . . 114

5.11 True, Public, Kernel, and Posterior distributions for Report Perturbations with

Fixed Discretization Payments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xiii



List of Tables
3.1 Shapley value vs. Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xiv



1 Introduction

1.1 Background

Understanding the world around us requires gathering data and analyzing that data to rec-

ognize patterns, make forecasts, and come to conclusions about pressing questions. In 3800

BC, the Babylonian Empire took the first known census, in which they counted livestock and

quantities of butter, honey, milk, wool, and vegetables. Presumably the Babylonian govern-

ment did so to answer a number of questions: What is the economic state of the empire? How

should certain resources be allocated? How should the tax code be optimized? Today, the

quantity and specificity of the data that we analyze is on an unimaginably different scale. To

handle synthesizing all this data, we’ve come up with tools such as statistics and machine

learning. Data aggregation has proven itself useful. The aggregation of countless individuals

making decisions, largely in their own self-interests, forms what Adam Smith referred to as the

"invisible hand" of the free market economy. In James Surowiecki’s "The Wisdom of Crowds,"

this idea is examined in more granular detail, showing that aggregate decision making is more

accurate than most individual decision making (Surowiecki, 2005). The book opens with an

anecdote about a crowd of people guessing the weight of an ox. The mean of all the guesses

turns out to be more accurate than the majority of guesses.

But self-interested entities can act in ways detrimental to the goal of data gathering and

analysis. In ancient Babylon, people would likely wish to hide their true quantity of livestock,

butter, honey, and other goods in order to lower their tax burdens. Today, people may wish to

hide data for similar reasons, for issues of privacy, or simply because acquiring and reporting

data may take effort they don’t wish to expend. The content of a website might not be worth the

effort spent solving an onerous CAPTCHA. In many modern applications, especially machine

learning, the problem of acquiring correct and useful data is critical. Machine learning models

can be highly sensitive to the presence of inaccurate data.
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1.1.1 Game Theory and Mechanism Design

The notion of analyzing the behavior of self-interested entities has been formalized in the field

of Game Theory. And the application - asking the right questions to elicit the right data - is

addressed in the sub-field Incentive Mechanism design. This thesis attempts to address some

problems on the cutting edge of Incentive Mechanism design theory. In order to describe

these problems, we must first cover some of the basic formalism. Game theory studies how

rational self-interested entities, often called players or Agents, interact within the context of a

game. A game is a mathematical construct which distributes utility to the Agents for playing

strategies within a predetermined set of rules. Utility is an abstracted quantifiable reward,

which can take the form of money, access, or any other object or service desired by an Agent.

We provide the formal definition of a game according to Von Neumann and Morgenstern,

2007:

Definition 1.1.1 (Game). A game is a triplet (A ,S ,u) where A is a finite set of Agents

{Ai }i∈[1,n], S is a space of strategies, and u: S n → Rn is a payoff function from a vector

of strategies, one for each Agent, called a strategy profile, to a vector of utilities, one for each

Agent, called an outcome.

Agent "rationality" is an assumption that the Agents will play strategies within a game which

maximize their utilities. Game theory has proven itself to be a powerful tool in understanding

large scale human systems, where many of the irrational idiosyncrasies of individual human

behavior are averaged out. It has been applied successfully to fields including economics,

voting systems, auctions, and prediction markets. The definition of a game is broad, as it

places no restrictions on the complexity of the game’s internal structure. It is often relevant to

consider how an outcome might be computed from a strategy profile by setting limitations

on this structure. Typically there is some causal structure involving decision points for the

Agents, which we call game nodes, where Agents take actions according to their strategies.

When an Agent makes a decision at a game node, the Agent can use any information that

may be available at that particular game node. For example, an Agent might get to observe

the sequences of actions made by the other Agents at preceding game nodes. We call the

information used to determine an action at a game node the information set. In this context,

a strategy is realized as a mapping from a game node and information set to an action in

a predetermined action space. A strategy is called pure if it deterministically maps a game

node and information set to a single action. A strategy is called mixed if it produces random

variables over the space of possible actions. Under mixed strategies, the payoff function

u would be computed by taking expectations over the random variables produced by the

strategies. In this work, we generally assume that Agents can adopt mixed strategies unless

specified otherwise.

The payoff function is defined to be deterministic given the strategy profile. In a round of

poker, if we interpret each player’s winnings as the payoff, then the game definition requires

that the card ordering is determined. Alternatively, we may want to consider a round of poker
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where the card ordering is unknown. This would result in randomness in the sequence of

game nodes, subsequently leading to randomness in the actual winnings of the players. In this

case, the payoff function is computed by taking an expectation over the actual winnings. Such

games are often referred to as Bayesian games, because Agents have incomplete information

about the game structure.

The game theorist is often concerned with identifying properties of games called equilibria.

The mechanism designer, on the other hand, is less concerned with analyzing games than with

constructing them. We say a mechanism designer wishes to find a utility function such that a

particular strategy profile satisfies a particular solution concept under the assumption of Agent

rationality. In other words, the highest payoff strategies should satisfy certain conditions:

Definition 1.1.2 (Solution Concept). A solution concept is a predicate on a strategy profile in

a game that is consistent with rationality under certain conditions.

The best examples of such solution concepts are equilibrium concepts:

Definition 1.1.3 (Dominant Strategy Equilibrium). A Dominant Strategy Equilibrium (DSE)

is a solution concept which is satisfied by a strategy profile if and only if, for each strategy

in the strategy profile, that strategy has the highest payoff for that Agent regardless of the

strategies of the other Agents.

Definition 1.1.4 (Bayes-Nash Equilibrium). A Bayes-Nash Equilibrium is a solution concept

which is satisfied by a strategy profile if and only if, for each strategy in the strategy profile,

that strategy is the highest payoff given all the other strategies in the profile.

Such equilibria can also be strict if the strategy for each Agent is uniquely highest payoff under

the assumed conditions. There are many other solution concepts considered in the field of

game theory, such as Subgame-Perfect Nash Equilibria, an important concept in economics,

especially concerning Stackelberg leadership models (Von Stackelberg, 2010). As we will see,

the DSE and BNE solution concepts take on special significance in mechanism design.

The mechanism designer, often referred to as the principle or the Center, must have some

motive for constructing a game. The motive of the Center must depend on properties of the

Agents, otherwise there is no point in involving the Agents. Furthermore, it must depend on

hidden properties of the Agents, otherwise the Center doesn’t need to construct a game, it

can just perform a computation directly on the known properties. So, in a mechanism design

problem, each Agent has access to its own private information as part of its information set

for at least some game nodes. This private information might be intrinsic to the Agent, such

as private medical data. It might be derived from nature, for example, the Agent might be

performing some measurement which the Center is not capable of performing itself. We then

say that the private information determines the Agent’s type. The type is a formal construct

typically denoted by θ in some space of types Θ. We say a set of Agents participating in a game

constructed by the Center has a type profile θ̂.
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The motive of the Center is to produce some outcome which depends on the type profile,

formally defined as the social choice function f , which maps a type profile to a game payoff

outcome. A straightforward example of a social choice function is one which maximizes the

social utility of the outcome - the sum of utilities over all the Agents - in a resource allocation

game. Suppose each Agent has private individualized utilities assigned to each resource in a

set of finite resources. These private utilities constitute each Agent’s type. The Center wishes to

allocate the resources in order to maximize the social utility. The social choice function would

then take the Agents’ types and assign each resource to the Agent who attains the highest

individual utility for that resource. We say the reason to construct a game is to implement the

social choice function:

Definition 1.1.5 (Implementing a Social Choice Function). A game with payoff function u

implements a social choice function f over a solution concept if and only if, given a type profile

θ̂, for any strategy profile ŝ which satisfies the solution concept, u(ŝ) = f (θ̂).

In our example, the Center might construct a game which asks the Agents to reveal their

private utilities. But Agents receive higher utilities by acquiring more resources, so they may

want to lie about their private utilities to acquire more resources. The Center then wants to

construct the game such that it would be irrational to lie about private utilities under some

assumed solution concept. The social choice function need not be concerned with the utilities

distributed to the Agents per se, it might maximize some value for the Center, such as profit.

Finally, we can state the formal goal of mechanism design:

Definition 1.1.6 (Problems of Mechanism Design). A problem of mechanism design involves

a Center which chooses a solution concept and a social choice function f . The Center then

constructs a game with payoff function u, the mechanism, where the Agents take actions

which involve reporting a type to the Center. The problem for the Center is to construct u so

that the game implements f over the solution concept.

The task of the Center can be quite difficult. It’s conceivable that there are payoff functions

that implement the social choice function without revealing the Agents’ types. The Center

might have to explore the space of all possible games in order to find such a payoff function.

The Center’s job would be significantly easier if the strategy profiles which satisfy the solution

concept actually do reveal the Agents’ true types:

Definition 1.1.7 (Direct Mechanisms). A mechanism is direct over a solution concept if and

only if the strategy profile in which each Agent reports its true type satisfies the solution

concept.

We now introduce a concept that will be the focus of much of this work:

Definition 1.1.8 (Incentive-Compatibility). A mechanism is incentive-compatible if the mech-

anism directly implements a social choice function over either the DSE solution concept or

the BNE solution concept. Respectively, we say that a mechanism is either Dominant-Strategy

Incentive-Compatible (DSIC) or Bayesian-Nash Incentive-Compatible (BNIC).
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A powerful result known as the revelation principle undergirds the field of incentive-compatible

mechanism design. Since its discovery, it has been expanded upon and stated in the most

general terms. We state it formally:

Theorem 1.1.9. If there exists a mechanism which implements a social choice function over the

DSE or BNE solution concepts, then there exists a DSIC or BNIC mechanism, respectively, which

implements the social choice function.

The revelation principle for DSE mechanisms was discovered by Gibbard, 1973. The principle

for BNE mechanisms was later discovered by P. Dasgupta et al., 1979, Holmström, 1978, and

Myerson, 1979. The consequence of this principle is that, if the DSE or BNE solution concepts

are desirable, the Center only needs to concern itself with discovering direct mechanisms,

since if an indirect mechanism exists, a direct one must also exist. We often refer to such

mechanisms as truthful, although it means the same thing as incentive-compatible.

1.1.2 Peer Prediction

It is intuitive that when the Center has some method to perform baseline evaluations of the

Agent reports, such as a set of known correct reports for comparison, this can make it much

easier to construct incentive-compatible mechanisms. But there are many reasons why a

Center may not have access to such a baseline. The data may be held privately by Agents, such

as personal medical data. The data might require Agents taking active roles in completing

some tasks with unknown solutions, Or the data might be inherently subjective, such as

product ratings. In such a setting, the Center can only compare Agent reports to the reports

of other Agents, known as Peer reports. Mechanisms that operate in this setting are called

Peer Prediction mechanisms. A common feature of a Peer Prediction setting is that the Agents

must incur some cost of effort to observe or report their own type. This could be because the

data is sensitive and they wish to keep it private, such as personal medical data. Or acquiring

the data might require the Agent to expend time and mental effort, such as for completing

tasks. Either way, this cost of effort must be adequately compensated for by the mechanism.

Suppose the cost of effort is less than $1. A naive Center might offer $1 for a data report in

order to overcome this cost of effort, but a rational, strategic Agent could then report some

random or fixed data which has no relation to the correct data, eschewing the cost of effort but

receiving the $1 reward. Such a strategy is referred to as a heuristic strategy. Sometimes the

Agents or the Center are assumed to have some prior knowledge about the game setting, such

as a prior guess about the distribution of Agent types. These are generally referred to as beliefs.

Generally, a Peer Prediction setting and mechanism are designed to cover a set of consid-

erations for real world applicability. We list these considerations, similar to those found in

Faltings, n.d.:

• Prior Details: How much knowledge do the Agents or Center require about the setting

and what are the structures of beliefs? No prior assumptions is known as detail-free and
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is most general.

• Dimensionality: Are Agents observing a univariate signal (single-task) or multivariate

(multi-task) signal? Univariate signals are more general.

• Solution Concept: Is the mechanism DSIC or BNIC? If BNIC, is the truthful equilibrium

highest payoff? Are there equilibria where Agents reveal no information about types to

the Center (uninformed equilibria)? DSIC is the most desirable solution concept.

• Finite Agents: Is the mechanism incentive-compatible with a finite set of Agents?

• Minimalism: How much information do Agents need to report? If Agents only report a

type, the mechanism is minimal and most practical in this respect.

• Generality: Can the mechanism be applied to arbitrary signal distributions?

1.2 Contributions

1.2.1 Problem Statement

The problem this thesis seeks to address follows a track of progress on Peer Prediction mech-

anisms. We consider a class of minimal mechanisms which are in general univariate and

are incentive-compatible with finite agents. The prior details that we consider range in their

generality, but they tend to follow the track of Peer Consistency mechanisms. Peer Consistency

mechanisms are a sub-class of Peer Prediction mechanisms with these same considerations.

This choice of considerations makes it difficult for a mechanism to perform any comparison

between reports other than matching. For this reason, most Peer Consistency mechanisms

operate only on finite discrete distributions. The prior details for most Peer Consistency

mechanisms involve a shared prior belief between the Center and the Agents about the distri-

bution of Peer reports, but allow for heterogeneous belief updates among the Agents. Peer

Consistency mechanisms generally describe a payment function that admits a particular class

of belief updates. The conditions for being in this class are known as update conditions.

The primary goal of the thesis is to construct and analyze mechanisms with these consid-

erations, but extend the applicability to a broader set of distributions than simply discrete.

The ultimate goal is to extend Peer Consistency mechanisms to arbitrary distributions, and

describe the update conditions which are admitted. Because of the generality of the setting for

Peer Consistency, it is quite difficult for such a mechanism to be DSIC, so we focus on BNIC

mechanisms with some allowance for DSIC in special circumstances.

Problem Setting

Throughout this thesis, we assume a standard crowdsourcing setting for a Peer Prediction

mechanism. There is a Center that wishes to implement a social choice function. In this work,
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we do not explicitly state the social choice function, we assume that the Center wishes to

accurately model a distribution of signals received by a set of Agents. The Center establishes

the game in which Agents will strategize and submit reports, subsequently receiving a payoff

according to the mechanism set by the Center. In the first part of this thesis, we consider that

the Center is modeling a mapping between variables in the signal, corresponding to a standard

supervised machine learning setting. In the second part, we consider the more general

problem of a Center learning the distribution directly by collecting independent samples.

We assume that the Center is crowdsourcing because it is either impossible or prohibitively

expensive for it to sample the signal distribution directly. The Agents, however, can sample the

signal distribution by expending effort, which manifests as a negative utility. These negative

utilities can be heterogeneous with respect to the Agents, and may depend on the particular

observed signal. In order for the Center’s incentive mechanism to be incentive-compatible, it

most overcome this cost of effort.

Center

Agent

Public Knowledge

Prior 
Distribution 

π

Heuristic Strategy

Observation Strategy

Prior Information Set

Compute Optimal 
Heuristic Strategy

Heuristic Report

Compute Optimal 
Observation Strategy 

Conditioned on Prior π

Ex-Interim 
Game

Ex-Ante Peer Prediction Game

Figure 1.1: The Ex-Ante Peer Prediction Game Setting for an Agent.

Prior to observing a signal, we say an Agent plays the ex-ante game, as shown in Figure 1.1:

Definition 1.2.1 (Ex-ante Game). The ex-ante game for Peer Prediction is a game in which an

Agent with a prior information set, which it uses to construct a prior belief about the signal

distribution, chooses either to play an uninformed heuristic strategy, or to play an observation

strategy, receiving an expected payoff conditioned on the prior belief.

Definition 1.2.2 (Uninformed Heuristic Strategy). An uninformed heuristic strategy is one in

which the Agent chooses a report purely on his prior belief, i.e. without making an observation

by sampling the signal distribution.

Definition 1.2.3 (Observation Strategy). An observation strategy is one in which the Agent

expends effort to sample the signal distribution, then makes an report based on his updated

information set.

In the ex-ante game, the Agent doesn’t know what effort it will expend until it makes the

observation, so it computes the expected effort based on its prior belief. It also computes
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the expected reward for the observation strategy as the expectation over the rewards for the

optimal strategy on a new information set, conditioned on the prior belief as the distribution

of samples which get added to the information set.
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Figure 1.2: The Ex-Interim Peer Prediction Game Setting for an Agent.

Assuming the Agent does not already know the signal distribution and consequently must

expend effort to sample it, the first requirement for a Peer Prediction mechanism is that an

ex-ante observation strategy has a higher expected payoff than any ex-ante heuristic strategy,

even taking into account the negative utility from the expended effort. A truthful strategy is an

example of an observation strategy, but an Agent could also apply some data processing after

the observation in order to come up with a higher payoff, non-truthful report. After playing

the ex-ante game to determine if the Agent will make an observation, we say the Agent then

plays the ex-interim game where it decides what signal to report to the Center, as shown in

Figure!1.2:

Definition 1.2.4 (Ex-Interim Game). The ex-interim game for Peer Prediction is a game in

which an Agent with an updated information set chooses to report the point with the highest

expected reward, conditioned on his updated information set and some solution concept

which determines the possible strategies of the Peers.

If the Agent plays an ex-ante heuristic strategy, the ex-interim game is the same as the ex-ante

game because the Agent has not updated its information set. If the Agent plays an ex-ante

observation strategy, the information set now contains the observation, and the effort has

been expended. We often refer to the information set in the ex-interim game as the posterior

beliefs. With this structure, a mechanism will be incentive-compatible if truthfulness is a

highest expected payoff ex-interim observation strategy, either as a Dominant Strategy or

conditioned on the Peers playing a truthful strategy, and it is higher expected payoff than any

ex-ante heuristic strategy. This decoupling of the different strategy types makes it easier to

prove incentive-compatibility, and we make use of it throughout the thesis.

One of the most straightforward models of prior and posterior beliefs is for the Agents to

estimate the distribution of signals. When an Agent plays an observation strategy, it performs
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a belief update from its prior to its posterior, conditioned on the observed signal. The problem

can then be posed purely according to priors and belief updates. We will further simplify this

by considering uninformed Agents:

Definition 1.2.5 (Uninformed). An uninformed Agent is one who constructs his information

set exclusively from information made publicly available by the Center.

If all Agents are uninformed, they will construct homogeneous prior beliefs, so the problem of

incentive-compatibility comes down to the belief updates. It is clear that totally unconstrained

belief updates will make the problem impossible, as there will be no information to exploit

from Agents’ posteriors. To constrain the problem, the mechanism designer will propose,

along with the mechanism, a set of belief update conditions:

Definition 1.2.6 (Belief Update). A belief update is a predicate on a posterior belief, condi-

tioned on a prior belief and a given observation.

The mechanism designer will then prove incentive-compatibility with respect to a set of belief

update conditions. Much of the preceding work on Peer Consistency first presents the belief

update conditions, justifies their "reasonableness" for practical settings, then defines the

mechanism and proves its incentive-compatibility. In some cases, it is also possible to prove

the uniqueness of the particular incentive-compatible mechanism with respect to the update

conditions, as is the case for the Peer Truth Serum with respect to the Self-Predicting update

condition (Faltings et al., 2014). In much of this thesis, we will work backwards. The structure

of analysis we use for assessing Peer Prediction mechanisms is generally as follows:

• Present a Mechanism.

• Compute the expected payoff for an Agent conditioned on its prior and posterior beliefs.

• Analyze the expected payoff to determine what conditions produce truthfulness as a

maximum payoff strategy.

• Assess the reasonableness of the update conditions in practical contexts.

1.2.2 Influence Mechanisms

Many modern crowdsourcing problems are related to creating supervised learning models.

In these settings, the Center is not concerned with learning the underlying data distribution,

which is some joint distribution of inputs and labels (x, y). The Center is concerned with

learning a mapping between the inputs and labels that minimizes some loss function over

the distribution, where the loss function is chosen a priori by the Center in order to achieve

some predetermined goal. This imposes additional structure for the incentive mechanism

to exploit. A new input and label sample will be used by the Center to adjust the model to

minimize the loss function. This adjustment will affect the loss function evaluated on all the
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remaining samples. In this way, the Center is automatically provided a relation between an

Agent report and a Peer report to use for a Peer Consistency mechanism.

A natural approach to understanding this relation comes from statistics and is known as

marginal Influence (Cook and Weisberg, 1980). Influence quantifies the "value" of an input-

label sample in helping a model predict other input-label samples, but this value is contingent

on the other samples used for model optimization, which we call training samples. The

Influence of a training sample on a target sample is the difference in loss on the target sample

produced by the optimal model with and without the training sample. A practical use for

Influence is explaining unexpected behavior of large learning models. Cook and Weisberg,

1982 and Koh and Liang, 2017 demonstrate how Influence can be used to debug "black-box"

models by quantitatively identifying which training samples are most responsible for specific

predictions. As Influence is defined, it requires retraining the model for every training point.

Koh and Liang, 2017 also demonstrate that Influence can be approximated efficiently, and

that the approximation has meaningful explanatory power even when the optimal model is

not learned.

In studying Influence for Peer Prediction, we are only concerned with approximations from a

practical implementation standpoint. We first propose an Influence-based mechanism, then

demonstrate update conditions for which the mechanism is incentive-compatible. We show

that under some strict assumptions and mechanism implementations, the mechanism can

be DSIC, but in general it is BNIC. We theoretically demonstrate that it is a generalization of

other Peer Consistency mechanisms by showing that the PTS mechanism is a special case of

Influence.

We then move on to some practical considerations for the Center. We consider a regime

in which the Center itself is a player in the game and receives utility based on the loss of

the model. Under some very realistic assumptions, such as bounded utility, the Center can

tune the mechanism to optimize its own utility with respect to Agent effort levels within a

bounded budget. We also show that the approximation suggested in Koh and Liang, 2017 is

theoretically insufficient for incentive mechanisms, and propose an alternative approximation

using higher order terms in the Taylor expansion of the loss function. While the higher order

approximation is more computationally expensive than the linear approximation, it is still

incomparably more efficient than retraining large models. In addition, we show how batch

processing of samples can mitigate the computational expense while maintaining reasonable

budget approximations.

1.2.3 Influence Filtering

The efficacy of Influence depends on having a clean set of validation samples, where cleanli-

ness means that the validation samples are independently drawn from the underlying distri-

bution of interest. In incentive mechanism design, this is either accomplished by assumption,

which yields a DSIC mechanism, or it’s a consequence of a truthful Bayes-Nash Equilibrium
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when validation samples are taken from Agent reports. In real world applications, there are

many circumstances that can damage the Bayes-Nash Equilibrium. Some Agents may have an

interest in the outcome of the model, they may have an interest in maintaining a degree of

privacy by adding noise to the reports, or they may simply misunderstand the incentives. For

this reason it is important to consider the robustness of the truthful incentives. We refer to this

as the filtering problem. Even when an incentive mechanism is properly implemented, the

data the Center elicits may not all come from the distribution of interest. We call the data from

this distribution accurate, and other data is corrupted. So the goal of the filtering problem is to

remove as much corrupted data as possible while keeping as much accurate data as possible.

We use two methods of analysis to understand the incentives in a regime when there is

corrupted data. The first method examines the infinite sample regime, where the model

converges to the optimal model. We show that, given any proportion of corruption (1− q)

in the validation sample set, there is a mixed DSE of reporting truthfully with probability

p = q and reporting from the corrupt samples with probability (1−p). Furthermore, these

DSE are stable in the sense that any Agent who believes p < q has a DSE of truthful reporting

and, symmetrically, any Agent who believes p > q has a DSE of corrupt reporting. In both

cases, the DSE would drive the training sample set towards the p = q mixed DSE. We then

apply a second analytical method for finite samples by assuming that the optimal models

are Gaussian distributed over the distributions of finite training sample sets. We call these

the model posteriors. We see then that the optimal model with finite samples has some

expected deviation from the optimal model for infinite samples. The presence of an accurate

or corrupt sample in the training set then has an effect on this deviation, which corresponds to

an expected Influence value. We obtain an inequality, which depends on the variances of the

model posteriors, that determines when an accurate sample has higher expected Influence

than a corrupt sample. This can modify the p = q equilibria. The infinite sample analysis

unfortunately suggests that there are mixed BNE which are potentially higher payoff than

the truthful BNE, but the finite sample analysis demonstrates that this requires a degree of

coordination on the part of the Agents. Using this analysis, we then suggest a probabilistic

Influence-based filtering algorithm and compare it to more natural deterministic Influence-

based algorithms. We show that it achieves similar performance to the best deterministic

Influence-based filtering at much lower computational cost.

1.2.4 Peer Neighborhoods

We move away from Influence to examine Peer Prediction generalizations with fewer prior

assumptions about the structure of the problem. In fact, we assume no prior assumptions

about the Center’s goal in collecting data, aside from learning the distribution. Prior work

on Peer Consistency presented Agent belief update conditions, justifying their real world

applicability, then constructed truthful mechanisms around those update conditions. But

the update conditions, such as self-dominating or self-predicting, are not well defined for

arbitrary distributions and do not have an obvious natural extension. Our work proposes a
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framework for extending Peer Consistency mechanisms, called Peer Neighborhoods, which

subsequently induce an extension of the update conditions. Peer Neighborhood mechanisms

are constructed by generating partitions of the sample space, and then considering a distribu-

tion over the partitions. By constructing this partition family following a few basic rules, we

show that the Peer Neighborhood extension is BNIC.

The claim of incentive-compatibility for Peer Neighborhood extensions is with respect to the

extended update conditions. We address the reasonableness of these conditions by concretely

extending the Peer Truth Serum and analyzing the extension of the Self-Predicting update

condition (Faltings et al., 2014). Intuitively, an update condition which references the proba-

bility of an observed sample cannot function when the distribution is a continuous random

variable, since single samples have probability zero. Therefore, any update condition oper-

ating on arbitrary distributions must consider neighborhoods around the observed sample.

The partitions in the Peer Neighborhood framework naturally construct these neighborhoods,

allowing for a well-defined update condition with reasonable constraints. Although such

update conditions cannot be justified by a simple application of Bayes’ Rule, as is the case for

the Self-Predicting condition, we show that the update condition corresponding to the Peer

Truth Serum Neighborhood extension admits a broad class of updates. We propose a method

for computing a set of such updates, and provide simulations demonstrating the strength and

stability of the incentives.

1.2.5 Continuous Truth Serum

In the final section of this thesis, we show that there is a natural choice for how to construct

the partitions for Peer Neighborhood extensions. When constructing a family of partitions

and picking a distribution over that family, a notion of distance emerges, corresponding to the

probability that two points are in the same bin of a partition. This distance can be constructed

somewhat arbitrarily depending on the choice of partition family and distribution. But a

natural choice exists, the shared prior already suggests a notion of distance between two

points: the prior probability between the points. We show that this is a special case of the Peer

Neighborhood extension where the partition family is the set of all partitions of connected bins

with equal probability. Analyzing this extension becomes much simpler when considering

the partitions mapped into the domain of the cumulative distribution function (CDF) of the

shared prior. In this domain, the bins become uniform width and the distribution over the

partitions is uniform. We find that this partition structure yields a payment which takes the

form of a smooth, symmetric function, which we call the tent function.

We analyze this new mechanism, which we call the Continuous Truth Serum, to discover

the update conditions which make the mechanism BNIC. We find that it is difficult to state

necessary and sufficient update conditions in a simpler form than the trivial statement:

"The expected payment with respect to the Agent’s posterior is maximized at the observed

sample." But we show that there are reasonable sufficient conditions that admit a broad class
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of updates, which correspond to a symmetric subset of updates admitted by the more general

Peer Neighborhood framework. The fact that these conditions are sufficient but not necessary

means that the true class of updates is even broader. We justify the reasonableness of the

update conditions as expressions of a necessary locality structure for any update condition

operating on arbitrary distributions. Finally, we again provide simulations demonstrating the

strength and stability of the incentives.

1.3 Related Work

1.3.1 Peer Prediction

Most of the work in this thesis adds to the field of Incentive Mechanism design, and more

specifically the sub-field of Peer Prediction mechanisms, which operate in the absence of any

baseline metrics the Center can use to evaluate the Agents’ reports. Some of the first Peer

Prediction mechanisms came about from addressing a tangential problem: reputation systems,

as in Jurca and Faltings, 2003. The setting involves Agents playing an iterated prisoner’s

dilemma game where sequences of actions determine an Agent’s reputation. They present a

mechanism which pays a constant when an Agent’s report matches with a randomly selected

Peer’s report. This simple mechanism became known as Output Agreement, and has been

studied extensively. Von Ahn and Dabbish, 2004 demonstrate how the Output Agreement can

be effectively utilized for an image labelling game.

The term "Peer Prediction" would not be coined until the seminal work of N. Miller et al., 2005.

Using the mechanism design considerations listed in the introduction, N. Miller et al., 2005

propose a minimal mechanism that is strictly BNIC with prior details being that there is a

shared, static prior belief about the reports of Peers that is known to the Center. It can operate

on univariate signals with finite Agents, and can even accommodate continuous signals. The

mechanism concept draws from previous work in economics, showing that proper scoring

rules can be used to construct incentive-compatible mechanisms (Gneiting and Raftery, 2007).

Other work has shown proper scoring rules to be useful for evaluating prediction markets

(Hanson, 2007). The primary limitations of this mechanism are that the truthful BNE is not

necessarily highest payoff, and the prior detail assumptions are very strong and therefore don’t

correspond to many real world settings.

There was clear room for improvement, and the history of Peer Prediction mechanism design

quickly branched into multiple tracks. Much work focused on the track of single-task mecha-

nisms while trying to reduce the prior details towards detail-free, and working to improve on

the solution concept. The Disagreement Mechanism eliminates the need for the shared prior

to be known to the Center, but it is still static (Kong and Schoenebeck, 2016). The solution con-

cept is also refined such that the truthful BNE is at least as high payoff as a set of undesirable

"relabeling strategies". The Shadow Peer Prediction mechanism improves on this by allowing

for private priors and satisfies a highest payoff BNE solution concept (Witkowski and Parkes,
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2012). However, this more general mechanism is achieved at the cost of minimalism - Agents

are required to report before and after observing a signal.

Non-Minimal Mechanisms

One track in Peer Prediction development explores the power of non-minimalism demon-

strated by the Shadow Peer Prediction mechanism. Along this line, d’Aspremont and Gérard-

Varet, 1979 and McAfee and Reny, 1992 describe mechanisms to elicit private, correlated

information in an economics setting. d’Aspremont and Gérard-Varet, 1979 mostly explore

how incentive mechanisms affect budgetary concerns for the Center, but in the process they

discover that by having Agents report their beliefs about the Peer reports, the Center can

constrain the budget for the incentive mechanism. McAfee and Reny, 1992 survey auction

mechanisms and show that bargaining mechanisms can generally handle the problem of

private information. The bargaining process is an effective example of non-minimalism.

The work of d’Aspremont and Gérard-Varet, 1979 was expanded on by Prelec, 2004, who

proposed the Bayesian Truth Serum (BTS). The BTS is a detail-free, strictly highest payoff

BNIC mechanism which requires Agents to report both a type and a belief about the distri-

bution of Peer signals. The primary downsides, aside from non-minimalism, are that the

signals are assumed to be binary, and the mechanism is only incentive-compatible in the

limit of infinite Agents. Radanovic and Faltings, 2013 extend the BTS to non-binary signals,

and later Radanovic and Faltings, 2014 extend this further to continuous signals, but still

require infinite Agents. Witkowski and Parkes, 2012 propose a similar mechanism which is

incentive-compatible for non-binary discrete signals with finite Agents. In general, we refer to

mechanisms which require both type reports and belief reports as BTS-like. They have also

been analyzed extensively in practice and shown to be effective in real world settings (Frank

et al., 2017; Loughran et al., 2014; S. R. Miller et al., 2014; Weaver and Prelec, 2013).

Multi-task Mechanisms

Another track in Peer Prediction explores multi-task mechanisms rather than non-minimal

mechanisms. A. Dasgupta and Ghosh, 2013 construct a mechanism with a highest payoff

truthful BNE for binary signals from multiple tasks. The mechanism is not detail-free, but

it assumes a broad setting in which Agents can exert up to some maximum effort to make

a noisy observation, with the noise scaled inversely with the effort. This mechanism is later

expanded upon by Shnayder et al., 2016 to form the Correlated Agreement (CA) mechanism,

which operates on multiple tasks with discrete signals, rather than binary. Furthermore, they

propose a detail-free version of Correlated Agreement, but it is only incentive-compatible

in the limit of infinite tasks. Kong and Schoenebeck, 2019 show that the CA mechanism has

a truthful DSE in the infinite task limit. They do so by analyzing the mechanism from an

information-theoretic perspective. They introducing the concept of information-theoretic

mechanisms, which function broadly by examining the mutual information between an

14



Introduction Chapter 1

Agent’s report and Peer reports, and improve on the CA mechanism with the Determinant

based Mutual Information mechanism, which achieves this truthful DSE with finite tasks.

The common thread between the BTS-like and multi-task mechanisms is that Agents provide

reports beyond a single signal. Although this provides a lot of power for constructing incentive-

compatible mechanisms in very general settings, there is concern about the practicality of

these mechanisms. This is especially the case for BTS-like variants which require a report

containing a description of an Agent’s belief about the distribution of Peer reports. This makes

it difficult to extend BTS-like mechanisms to arbitrary non-discrete distributions because

belief reports require the distribution to be finitely parameterizable.

Peer Consistency

Another track, which is the track this thesis follows, explores minimal, single-task mechanisms

with Agent belief settings which may not be detail-free, but apply broadly to real world applica-

tions. They generally work by providing tuned payments when an Agent report matches with

a Peer report. Such mechanisms are commonly referred to as Peer Consistency (Huang and Fu,

2013). Most generally, a Peer Consistency mechanism describes a mechanism in which Agent

types are correlated in some way, and the quality of the reports can be measured by how they

follow this correlation. The canonical example is simply the Output Agreement mechanism

from earlier, but this idea is extended to the Peer Truth Serum (PTS) mechanism (Faltings

et al., 2014). The key insight is to notice that Agent beliefs do not necessarily need to be known

to the Center, as they are in the seminal work of N. Miller et al., 2005. Rather, only some

limited structure needs to be known. This is typically characterized by belief update conditions.

In a Peer Consistency setting, the Agents may share some prior belief known to the Center,

but after observing signals, the Agents will update to posterior beliefs. These updates can be

heterogeneous, but they must follow certain conditions. The strictness of these conditions

determine the relative practicality of the mechanism.

The Output Agreement can be described as the incentive-compatible Peer Consistency mech-

anism corresponding to the self-dominating update condition, which states that the observed

signal must have the maximal probability in the posterior belief. Waggoner and Chen, 2014

similarly show how Output Agreement can be characterized as eliciting "common knowledge",

rather than as an incentive-compatible mechanism in certain settings. The self-dominating

update condition is too strong for most practical applications, because an Agent may not

consider an rare signal to be common simply because they observed it once. The Peer Truth

Serum is the incentive-compatible Peer Consistency mechanism corresponding to the self-

predicting update condition, which states that the observed signal should have the greatest

increase in log-likelihood from the prior to the posterior (Faltings et al., 2017). This condition

admits a much broader class of updates than self-dominating, and satisfies Bayes’ Rule.
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1.3.2 Distributed Learning Metrics

In the second and third chapters of this thesis we consider the use of Influence as an evaluation

metric for the purpose of incentive mechanisms and data filtering (Cook and Weisberg, 1980).

We choose Influence because of its applicability to crowdsourcing data for a Center looking to

construct a machine learning model, especially a federated learning model, which is trained

in a distributed manner among independent Agents. Soltani et al., 2023 survey evaluation

metrics for this purpose. The proposals include evaluations based on the amount of data

contributed by an Agent (Feng et al., 2019). This work proposes a mechanism for negotiating

data contributions based on effort levels, but assumes truthfulness. Zhang et al., 2021 propose

a centralized evaluation framework when the Center has access to validation data, while Che

et al., 2022 propose a similar evaluation framework in a decentralized setting. Both proposals,

however, require an iterated reputation-based mechanism.

Many evaluation metric proposals touch on concepts closely related to Influence. A number

of examples consider examining group Influences and clustering Agents accordingly (Chai

et al., 2020; Lai et al., 2021; Wu and Wang, 2022). Other proposals consider the Shapley Value

of data contributions. The Shapley Value is a concept from game theory which considers the

utilities in cooperative games of Agents in all possible coalitions (Shapley et al., 1953). But this

concept requires defining a utility function. In the examples of Jia et al., 2019 and Ghorbani

and Zou, 2019 this utility function is the loss of the model. Under this formulation the Shapley

Value actually becomes the average Influence over all orderings of the data. We show that

it is not necessary to undergo the computational expense of computing Shapley Values for

the purpose of incentive mechanisms. Another proposal considers evaluating contributions

based on the change in model parameters (Zhao et al., 2022). This is also closely related to

Influence, as it is an element of the Taylor expansion-based approximation method laid out in

Koh and Liang, 2017. We focus on Influence because of its close relationship to a number of

these concepts, and we show that it is also closely related to previous work in Peer Consistency

by reducing it to the Peer Truth Serum mechanism under specific constraints.

There are other metrics for data cleaning in contexts other than federated learning, such as

in Rahm, Do, et al., 2000, Dasu and Loh, 2012, or more recently in Ilyas and Chu, 2019. We

see that most examples of scoring functions are highly context-dependent, such as Language

Model Cross-Entropy in Mansour et al., 2011, DFIRE in Soto et al., 2008, or noise scoring in

Luengo et al., 2018. We further note that the analysis of such scoring functions all assume that

the evaluation of the score itself is reliable. We relax this assumption in our work.

1.3.3 Peer Consistency Generalizations

In the fourth and fifth chapters of this theses we consider more general extensions of Peer

Consistency mechanisms to accommodate settings where the underlying signals can have

arbitrary distributions. A primary disadvantage of Peer Consistency mechanisms is the ability

to accommodate non-discrete distributions, because they generally rely on the notion of
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an exact match between two independent reports. If the underlying signal is a continuous

random variable, the probability of an exact match is 0. The attempts at generalization tend

to rely on additional prior details about Agent belief structures. The Logarithmic Peer Truth

Serum achieves the goal of extending the PTS to arbitrary distributions, with truthful reporting

as the highest payoff BNE (Radanovic and Faltings, 2015a, 2015b). But it assumes that Agents

can be grouped based on some latent variable which represents a locality structure, with the

relationship between the latent variables and the underling distribution known to the Center.

Agents from different groups are assumed to observe independent samples conditioned on

the latent variables. Goel and Faltings, 2020 build on this work with the Personalized Peer

Truth Serum, which assumes that Agents have latent attributes which are Gaussian clustered,

rather than simply categorized in independent groups. There have also been generalizations

based on mutual information, as proposed in Kong and Schoenebeck, 2019, but they require

that the underlying distribution be drawn from a known, finitely parameterizable distribution

family. In addition, they are only truthful in the infinite Agent limit.

We focus on extensions with minimal additional prior details. Instead, we consider more

general frameworks for extending Peer Consistency mechanisms, and work backwards to

identify the belief update conditions that satisfy incentive-compatibility.
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2 Influence Mechanisms

2.1 Introduction

The success of machine learning depends to a large extent on the availability of high quality

data. For many applications, data has to be elicited from independent and sometimes self-

interested data providers. A good example is federated learning, where a single Center (e.g.

a large company) collects data from a set of Agents to jointly learn a model (Konečnỳ et

al., 2016). Other examples of such settings can be found in crowdsourcing. We consider a

setting in which a Center wishes to construct a predictive model with the prediction accuracy

measured according to some non-negative loss function, where lower loss means a more

accurate model. The Center does not possess sufficient data with which to learn this model

via supervised learning, so it must collect data by crowdsourcing. In federated learning, a set

of Agents jointly learns a predictive model without revealing their data to each other. The

Center communicates with the Agents and distributes the federated learning model to all of

them. Agents can contribute actual data or changes that improve the current model based on

the data, which may be more compact (Yang et al., 2019). If we consider this as a setting for

applying a Peer Prediction mechanism for crowdsourcing, the current model is similar to a

shared public prior. We will consider the slightly more canonical setting for Peer Consistency

where there is a shared histogram of prior samples among the Center and Agents, and this

shared set of prior samples determines a prior model. Agents will also directly contribute data

samples rather than model updates.

There is clearly an incentive to free-ride: an Agent can benefit from the joint model or the

mechanism rewards without contributing any novel or useful data, for example by fabricating

data that fits the current model, or using random noise. If the rewards for data contributions

do not have the correct incentives, the Agent can also benefit from supplying meaningless data.

We call such strategies that are not based on the truthful data heuristic strategies. An Agent may

also wrongly report its data, for example by obfuscating it to achieve differential privacy Dwork,

2008. There is no way for the Center to tell a priori if data has been manipulated, and given

that it can strongly degrade the model, it is important to protect the process against it. Even
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worse, a malicious Agent could intentionally insert wrong data and poison the model; we do

not consider malicious behavior and assume that Agents have no interest in manipulating the

model.

Free-riding can be avoided by incentives that compensate for the effort of a contributing Agent.

An incentive scheme will distribute rewards to Agents in return for data samples. An instance

of the game in this setting involves two game nodes in which Agents take actions:

• observation node: Agents decide if they will make the necessary effort to obtain truthful

data, rather than use a heuristic strategy to make up data with no effort,

• reporting node: Agents decide what data sample to report to the Center.

A truthful strategy involves expending the necessary effort to obtain truthful data at the

observation node, then truthfully reporting that data at the reporting node. We observe that

both properties can be satisfied if contributions are rewarded according to their Influence Cook

and Weisberg, 1980 on the model.

A similar question to the one in this section was considered by Cai et al., 2015, where the

authors design strategy-proof mechanisms for eliciting data and achieving a desired trade-off

between the accuracy of the model and the payments issued. The guarantees provided, while

desirable, require the adoption of certain strong assumptions. The authors assume that each

Agent chooses an effort level, and the variance of the accuracy of their reports is a strictly

decreasing convex function of that effort. Furthermore, this function needs to be known to the

Center. We will see that our only requirement is that the cost of effort is bounded by a known

quantity. Furthermore, our strategy space is more expressive in the sense that, as in real-life

scenarios, data providers can choose which data to provide and not just which effort level to

exert.

2.1.1 Model

We say that there is a distributionΦ, called the target distribution, which produces independent

random variables z = (x, y), where x and y are referred to as inputs and labels respectively. The

Agents can independently sample Φ by exerting effort, and an Agent Ai has his own personal

effort function ei (z) which may depend on the sample z which gets observed. The effort might

come from the Agent having to solve a problem to acquire data, or the data might be of a

personal nature so the Agent is reluctant to access or utilize it. We adopt a simple but general

effort model, in which the Agent makes a binary choice either to exert effort to acquire data, or

exert no effort and report based on some heuristic. When the Agent decides to expend effort,

there is some expected effort ei = EΦ[ei (z)] over the distribution of observations, and ei is

known to the Agent a priori.

For machine learning the Center is not actually concerned with learning the joint distribution

Φ, rather, it is concerned with learning a mapping between x and y that minimizes some loss
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function. To make the problem tractable, the Center restricts the mapping to a parameterizable

model family:

Definition 2.1.1 (Model Family). Let f be a model family parameterized by θ such that

fθ(x) = ŷ where ŷ is the estimate of the representative value of Φy |x , otherwise known as the

prediction.

The Center performs some optimization to pick the model from the family which minimizes a

loss function. For the Influence, we are not concerned with the particulars of the optimization

procedure, we are only concerned with the outcome:

Definition 2.1.2 (True Risk and Optimizer). Let L(y, ŷ) be a non-negative loss function. Let Φ

be the target distribution of the random variable z = (x, y), with Ω the fundamental set. The

true risk is given by Lθ(Φ) =
∫
ΩL(y, fθ(x))dΦ(z). We will often write L(y, fθ(x)) as Lθ(z). Then

the true optimizer is given by θ̂(Φ) = argminθ Lθ(Φ).

Since Φ is unknown, the optimization is performed over a set of samples called the training

set:

Definition 2.1.3 (Empirical Risk and Optimizer). Let Z = {zi }i∈[1,n] be a set of n input-label

pairs. The empirical risk is given by Lθ(Z ) = 1
n

∑n
i =1 Lθ(zi ). Then the empirical risk optimizer is

given by θ̂(Z ) = argminθ Lθ(Z ).

Initialization

We assume the Center possesses at least a small amount of prior knowledge about the distri-

bution Φ. Regardless of the prior knowledge, the Center will construct a prior sample set ZR

assumed to be sampled i.i.d from a prior belief R about the distribution Φ. The Center might

already be in possession of some samples, in which case ZR is automatically determined.

Alternatively, the Center might have information about the distribution Φ. For example, the

Center might know bounds on the values of z ∼Φ. In this case the Center could construct R

as the maximal entropy distribution with this property, in other words R would be uniform

over the range of values. As another example, the Center might only know the mean and

covariance of z ∼Φ. Again, the Center would construct R as the maximal entropy distribution,

which would be Gaussian with the known mean and covariance. After constructing R, the

Center would sample R to generate ZR , with the number of samples representing the degree

of confidence the Center has in the prior R. If the Center has effectively no confidence, it

would only sample R a minimal number of times in order to determine an initial model θ. For

example, if the model family is a one-dimensional linear regression, there needs to be at least

two samples to determine a model.
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2.1.2 Influence

In order to compute Influence, the Center will use two sets of samples ZT and ZV as the

training set and validation set respectively. We write Z−i
T as the set ZT with zi removed. The

Influence is a pair-wise score which quantifies the effect of one training sample on the model

family’s loss with respect to a validation sample:

Definition 2.1.4 (Influence). Given a model family f parameterized by θ to minimize a loss

function L, and given zi ∈ ZT and z j ∈ ZV , the Influence of zi on z j is given by:

I (zi , ZT , z j ) = Lθ̂(Z−i
T )(z j )−Lθ̂(ZT )(z j ) (2.1)

We often consider the average Influence over the validation set, written as:

I (zi , ZT , ZV ) = Lθ̂(Z−i
T )(ZV )−Lθ̂(ZT )(ZV ) (2.2)

We will often omit ZT or ZV from the argument when they are clear from context. We can also

write I (zi , ZT ,ψ) as the expected Influence over validation points sampled from a distribution

Ψ.

Clearly, Influence is a useful measure from the point of view of the Center, since it rewards

contributions that make the model converge as fast as possible. We will see that a mechanism

which rewards Agents according to Influence, under some basic assumptions, has the following

incentives:

• Truthful Dominant Strategy Equilibrium: when the validation set is known to be sampled

from Φ.

• Truthful Bayes-Nash Equilibrium: when the validation set is taken randomly from Agent

reports.

2.2 Influence-based Incentives

2.2.1 The Mechanism

In a single round of data collection, the Center shares the model family f , the loss function L,

and the prior sample set ZR with the Agents. It is assumed that both the Center and the Agents

are capable of computing θ̂(Z ) for any finite set of samples Z . The Center then collects a set of

samples ZA from the Agents during a data collection period. The Center may or may not be in

possession of a private trusted validation set ZV with samples drawn i.i.d. from Φ. If there is

not a trusted validation set, the Center can construct the validation set by randomly picking

some proportion (1− s) of the samples ZA . With the validation set, the Center can randomly

pick a validation sample and compute the Influence of a training sample on that validation

sample. Alternatively, the Center could compute the average Influence on the validation set,
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which gives an equivalent incentive, since the Agent computes its score as an expectation over

the distribution of validation samples. We will use this formulation.

There are also two possible ways to construct the training set ZT . When computing the

Influence for a particular Agent with a particular report z, the training set could be constructed

as ZT = ZR ∪z. We call this a single-trained mechanism. Alternatively, the training set could be

constructed as ZT = ZR ∪ZA , which we call a mixed-trained mechanism.

Given a training set ZT and a validation set ZV , the reward given to an Agent for reporting a

sample zi ∈ ZT is given by:

τ(zi , ZT , ZV ) = F (ZV )+ cI (zi , ZT , ZV )

where F (ZV ) = EZV ∈ZV [ f (ZV )] and c > 0 is a constant. In the case when ZV is constructed with

a proportion (1− s) of the Agent reports, those samples receive a reward of 0, so the remaining

samples must be scaled:

τ∗(zi , ZA) =


τ(zi ,ZT ,ZV )

s zi ∉ ZV

0 zi ∈ ZV

Since zi ∉ ZV with probability s, the expected reward over this random choice is s τ(zi ,ZT ,ZV )
s +

(1− s)∗0 = τ(zi , ZT , ZV ). So the expected reward is the same as in the case when there is a

trusted validation set.

We will first show that if a truthful dominant strategy exists in the case of a trusted validation

set, then there must be a truthful Bayes-Nash Equilibrium in the case of a validation set taken

from Agent reports:

Proposition 2.2.1. If an Agent has a truthful dominant strategy when rewarded according to

τ with a trusted ZV , then there exists a truthful BNE when rewarded according to τ∗ with ZV

taken from a random proportion (1− s) of the Agent reports.

Proof. If an Agent has a truthful dominant strategy when rewarding according to τ with a

trusted ZV , then if he observes sample o from Φ, ∀Z−i
T , reporting zi = o yields the highest

expected reward for the Agent according to τ. If ZV is taken from a proportion (1− s) of Agent

reports, and the other Agents report truthfully, then with probability (1− s), zi will be in ZV

and the Agent will receive a reward of 0, and with probability s, zi will not be in ZV , so ZV

will consist of truthful samples, making it equivalent in distribution to the trusted ZV . The

expected payment of the Agent is τ(zi , ZT , ZV ), which has highest payoff for zi = o. Therefore,

if other Agents report truthfully, it is highest expected payoff for the Agent to report truthfully,

so there is a truthful BNE.

We can now focus our attention on the case of a trusted validation set and search for a

Dominant Strategy Equilibrium.
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2.2.2 Dominant Strategy Incentive-Compatibility

Agent Beliefs

In order for an Agent to compute a report to optimize the reward, it must have some belief

about the distribution of the validation set ZV . Since the validation set is private and trusted,

this is equivalent to having a belief about the distribution Φ. We assume that, prior to the data

collection period, Agents are uninformed about the distribution Φ:

Definition 2.2.2 (Uninformed as Representative). An Agent is uninformed if he adopts ZR as

representative of the distribution Φ.

What does it mean for a sample set ZR to be representative of a distribution? The Agent must

ultimately construct a distribution of ZV to compute expected Influences. The Agent can

use a number of potential distribution modeling techniques to construct a prior π from the

prior samples ZR . Most simply, π could be the empirical measure of ZR : π(a) = 1
|ZR |

∑
z∈ZR

1z∈a

where a is some event. Alternatively, π could be constructed as a Gaussian mixture model of

ZR . However, the prior π must be constructed in a way that the optimizer of π is the same as

the optimizer of ZR :

Definition 2.2.3 (Representative). A set of samples Z is representative of a distribution π with

respect to a model family f if and only if θ̂(π) = θ̂(Z ).

We can also consider going in the reverse direction. Given some distributionπ, we can consider

the equivalence class of representative samples of size n:

Definition 2.2.4 (Representation Class). Given a distribution π and a positive integer n, Zπ,n

is the class of sets of samples Z such that |Z | = n and Z is representative of π.

After constructing a prior π, the Agent might expend effort and observe a sample o of Φ, after

which they update their prior to a posterior πo . Behind the prior π is the representative sample

set Zπ with n samples. Most naturally, the Agent would simply add o to the sample set to

produce Zπo = Zπ∪o, then use the same process of mapping a sample set to a distribution to

produce πo such that Zπo is a representative:

Definition 2.2.5 (Empirically Consistent). An Agent’s belief update is empirically consistent if

and only if, for a prior π constructed from a prior sample set Zπ with size n, Zπ∪o ∈ Zπo ,n+1

for the posterior πo .

Single-Trained Mechanism

An uninformed, empirically consistent Agent Ai will adopt the prior sample set ZR as rep-

resentative of a prior belief R, the Agent’s estimate of Φ. After making an observation o, the

Agent will update his belief to a posterior belief Ro such that ZR ∪o is representative of Ro . In

23



Chapter 2 Influence Mechanisms

order for truthfulness to be a dominant strategy, it must be highest payoff regardless of the

strategy profile of the Peers. In this case, the Peer reports have no effect on the payment to the

Agent. The Agent computes the expected reward for reporting r :

τ(r, ZR ∪ r,Ro) = F (Ro)+ cI (r, ZR ∪ r,Ro)

= F (Ro)+ c(Lθ̂(ZR )(Ro)−Lθ̂(ZR∪r )(Ro))

Maximizing this over r is equivalent to minimizing Lθ̂(ZR∪r )(Ro) over r . Since ZR ∪o is repre-

sentative of Ro , θ̂(Ro) = θ̂(ZR ∪o), so r = o is a minimizer of Lθ̂(ZR∪r )(Ro):

Proposition 2.2.6. An uninformed, empirically consistent Agent who observes o has a dominant

strategy of reporting r = o when ZT = ZR ∪ r .

Proof. An uninformed, empirically consistent Agent who observes o constructs the distribu-

tion Ro as an estimate of Φ such that θ̂(ZR ∪o) = θ̂(Ro):

θ̂(Ro) = argmin
θ

Lθ(Ro)

⇒ θ̂(ZR ∪o) = argmin
θ

Lθ(Ro)

⇒∀z ̸= o : Lθ̂(ZR∪o)(Ro) ≤ Lθ̂(ZR∪z)(Ro)

⇒ Lθ̂(ZR )(Ro)−Lθ̂(ZR∪o)(Ro) ≥ Lθ̂(ZR )(Ro)−Lθ̂(ZR∪z)(Ro)

⇒ τ(o, ZR ∪o,Ro) ≥ τ(z, ZR ∪ z,Ro)

Mixed-Trained Mechanism

Now suppose that the mechanism constructs ZT = ZR ∪ZA . Let us right Z−r
A as the set of Agent

reports excluding the particular Agent with report r , in other words Z−r
A are the Peer reports.

Once again, the Agent computes the expected reward for reporting r :

τ(r, ZR ∪ZA ,Ro) = F (Ro)+ cI (r, ZR ∪ZA ,Ro)

= F (Ro)+ c(Lθ̂(ZR∪Z−r
A )(Ro)−Lθ̂(ZR∪Z−r

A ∪r )(Ro))

In order for r = o to be a maximizer, the following inequality must hold:

∀z ̸= o : Lθ̂(ZR∪Z−r
A )(Ro)−Lθ̂(ZR∪Z−r

A ∪o)(Ro) ≥ Lθ̂(ZR∪Z−r
A )(Ro)−Lθ̂(ZR∪Z−r

A ∪z)(Ro)

⇒ Lθ̂(ZR∪Z−r
A ∪o)(Ro) ≤ Lθ̂(ZR∪Z−r

A ∪z)(Ro)

This is clearly no longer satisfied for any choice of Z−r
A , so there can be no Dominant Strategy

Equilibrium. However, there may still be a optimal strategy when the other Agents are truthful,

in other words, a truthful Bayes-Nash Equilibrium. Under a truthful BNE, the Agent believes
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that the samples in Z−r
A are distributed according to Ro . The Agent also believes that Ro is the

true distribution and that θ̂(ZR ∪o) is the true optimizer of this distribution. When adding a

random variable to the sample set, the Agent computes the optimal model to be the model

which optimizes the expected loss over the distribution of the random variable:

Lemma 2.2.7. Let z be a random variable distributed according to a distribution π and let Z be

a set of samples which are representative of π. Then θ̂(Z ∪ z) = θ̂(Z ).

Proof. From Definition!2.1.3, θ̂(Z ) = argminθ
∑

z ′∈Z Lθ(z ′) = argminθ Ez∼π[
∑

z ′∈Z Lθ(z ′)]. Also,

θ̂(π) = argminθ Ez∼π[Lθ(z)]. Since Z is representative of π, from Definition 2.2.3 θ̂(Z ) = θ̂(π).

Therefore θ̂(Z ) = argminθ Ez∼π[Lθ(z)]+Ez∼π[
∑

z ′∈Z Lθ(z ′)] = Ez∼π[Lθ(z)+∑
z ′∈Z Lθ(z ′)] = θ̂(Z ∪

z).

Corollary 2.2.8. Let Z∗ be a finite set of random variables i.i.d. according to a distribution π

and let Z be a set of samples which are representative of π. Then θ̂(Z ∪Z∗) = θ̂(Z ).

Corollary 2.2.8 follows directly from Lemma 2.2.7 by induction.

We can now prove the existence of a truthful optimal strategy.

Proposition 2.2.9. An uninformed, empirically consistent Agent who observes o has a highest

payoff strategy of reporting r = o when ZT = ZR ∪ZA and the Peers report truthfully.

Proof. Since the Peers are truthful, the Agent believes that Z−r
A is composed of i.i.d. samples

distributed according to Ro . From the assumption that the Agent is uninformed and empiri-

cally consistent, ZR ∪o is representative of Ro . Then from Corollary 2.2.8, θ̂(ZR ∪Z−r
A ∪o) =

θ̂(ZR ∪o) = θ̂(Ro). The argument then follows directly along the lines of Proposition 2.2.6.

Eliminating Heuristic Strategies

We have shown when there are dominant truthful strategies after observing a sample o,

but observing the sample requires effort. The Agent can play a heuristic strategy without

expending effort and making an observation. We will first show that a heuristic strategy will

have an expected payoff of F (R) when the Agent is uninformed and believes the model family

is risk-monotonic with respect to Φ:

Definition 2.2.10 (Risk-monotonic). A model family fθ minimizing a loss function L is risk-

monotonic with respect to a distribution Φ if ∀n > nmin and z, zi ∼ Φ, E[Lθ̂({zi }i∈[1,n−1])
(z)] ≥

E[Lθ̂({zi }i∈[1,n])
(z)]. The model family is strictly risk-monotonic if this inequality is strict.

Risk-monotonicity simply states that when sampling from a distribution, the empirical opti-

mizer on the samples is expected to improve its predictions on the distribution. While Loog
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et al., 2019 show that not all model families are risk-monotonic, their counter-examples are ad-

versarially constructed. As Agents have no prior knowledge about Φ, we consider it reasonable

to make this an assumption.

An uninformed Agent does not know anything about the relationship between R and Φ. In

general, a report r is a random variable based on some reporting strategy. If the random

variable r is not distributed according to R, and the Agent believes it will be higher scoring

than a report distributed according to R, then the Agent must believe that the distribution of

r is closer to Φ than R is, otherwise risk-monotonicity is violated. This would mean that the

distribution of r represents a better prior estimate of Φ than R, violating the assumption that

the Agent is uninformed. So we have the relation:

F (R)+ c Ez∼r [I (z, ZT ,R)] ≤ F (R)+ c Ez∼R [I (z, ZT ,R)]

Prior to making an observation, if ZT = ZR ∪ z, or ZT = ZR ∪ ZA and the Peers are truthful,

then Ez∼R [I (z, ZT , ZV )] = Lθ̂(R)(R)−Lθ̂(R)(R) = 0. So the payment for any uninformed heuristic

strategy is at most F (R). We compare the expected payoff of a truthful strategy to that of a

heuristic strategy, noting that a truthful optimal strategy requires that the truthful report be

highest payoff:

Ezi∼Φ[τ(zi , ZT , ZV )−ei (z)] = F (ZV )+ c Ezi∼Φ[I (zi , ZT , ZV )]−ei > F (ZV )

⇒ c Ezi∼Φ[I (zi , ZT , ZV )]−ei > 0

As long as Ezi∼Φ[I (zi , ZT , ZV )] > 0, the Center can choose c > ei
E

zi ∼Φ
[I (zi ,ZT ,ZV )] to satisfy the

inequality. The inequality Ezi∼Φ[I (zi , ZT , ZV )] > 0 follows directly from the risk monotonicity

assumption.

Incentive-Compatibility

We can finally make a statement about the existence of truthful dominant strategies:

Theorem 2.2.11. Given c > ei
E

z∼Φ[I (z,ZT ,ZV )] in τ for an uninformed, empirically consistent

Agent, the Agent has a highest payoff strategy of reporting r = o when the model family is

risk-monotonic and either: 1) ZT = ZR ∪ r , or 2) ZT = ZR ∪ZA and the Peers are truthful.

Proof. We have c > ei
E

z∼Φ[I (z,ZA ,ZV )] ⇒ Ezi∼Φ[τ(zi , ZA , ZV )−ei (z)] > 0, so uninformed heuristic

strategies are expected to be lower payoff than truthful reporting prior to making an observa-

tion. Truthful reporting is highest payoff after making an observation o following Propositions

2.2.6 and 2.2.9.

Corollary 2.2.12. There exists a Bayes-Nash Equilibrium of truthful reporting under pay-

off function τ∗ given the same assumptions as in Theorem 2.2.11, but with ZV composed of

randomly selected reports.
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Figure 2.1: Empirically observed decrease of Influence on a typical regression model as more
and more data is collected. Each batch corresponds to 100 data points. Both the exact
Influence and the 2nd order approximation are shown.

Proof. This follows directly from Theorem 2.2.11 and Proposition 2.2.1.

2.3 Incentives for the Center

2.3.1 Budgeting

In general, the share of an additional data point in a model based on n−1 earlier data points is

1/n. Many loss functions, such as the mean-squared error or the cross entropy error, decrease

as 1/n with the number of samples. The Influence is proportional to the derivative of the

loss function and thus decreases as 1/n2. Figure 2.1 shows an example of the actual decrease

of Influence on a regression model. We can observe two phases: an initial phase, where

additional data is necessary to make the model converge, and a converged phase where the

expected Influence is close to zero. This is because the model is never a perfect fit to the data,

but always leaves some remaining variance. Once this variance is reached, additional data will

not help to reduce it, and no further incentives should be given to provide such data.

Using Influence as an incentive has the property that the expected reward is either close to 0,

or it decreases as 1/n2. Therefore, it is always best for Agents to report data as early as possible.

This is a valuable property for real world application. If an Agent is incentivized to wait to
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submit data, the Center might never be able to learn a good model.

More importantly, Influence mechanisms allow for bounded budgeting by the Center. The

Center must have a reason to be building a model. Suppose the Center has a value function

V (L) which returns the Center’s utility for a model with true risk L on Φ. We assume that the

value increases as the risk of the model decreases, so V is monotonically decreasing. Let us

assume that, prior to the crowdsourcing endeavor, the Center possesses a baseline model

with risk L0 attaining an initial value V (L0) = 0 without loss of generality. There is also some

minimum risk Lmin which is achieved by the true optimizer, and achieves a maximum value

Vmax = V (Lmin).

Let us examine the values a Center might expect to achieve through crowdsourcing via an

Influence mechanism. For simplicity we will set F (ZV ) = 0 in the payment function τ. For a

particular choice of c, when the Center elicits n reports, it expects to pay c
∫ n

1
I0

n2 = cI0
n−1

n

where I0 is the initial Influence value. The risk attained by the model is expected to be

Lmin + L0−Lmin
n , so the value is V (Lmin + L0−Lmin

n ). A particularly risk averse Center might want

an assurance that it never loses value during the data collection process. Perhaps the Center

may stop before exhausting the budget, hoping to have attained some value. In other words,

the Center requires that cI0
n−1

n <V (Lmin + L0−Lmin
n ). This yields a simple relation for choosing

c: c < nV (Lmin+ L0−Lmin
n )

(n−1)Io
. We see that c is a function of n, so this can be adjusted over multiple

data collection periods.

If the Center is not risk averse in this way. Suppose the Center has some a priori budget B

and it wishes to exhaust this budget to attain as much value as possible. The Center must

attain at least a value B , so it can compute the expected number of points it needs by finding

nmin = minn : V (Lmin + L0−Lmin
n ) > B . The Center can achieve this by choosing a constant

c < nminB
(nmin−1)I0

.

We see, however, that the budget constraints also constrain the Agents. An Agent is only

incentivized to make an observation and report truthfully if the Agent’s expected effort level

satisfies c > e
E

z∼Φ[I (z,ZA ,ZV )] ∼ n2e
I0

. So now we see our constraints for viable mechanisms

satisfying both budget and effort constraints for the case of dynamic and fixed c:

n2e

I0
<c < nV (Lmin + L0−Lmin

n )

(n −1)Io

n2
mine

I0
<c < nminB

(nmin −1)I0

We examine when it is not possible to satisfy these constraints:

e ≥ V (Lmin + L0−Lmin
n )

n(n −1)

e ≥ B

nmin(nmin −1)
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The Center can use these expressions to determine not only the budgeting for a crowdsourc-

ing project, but it can determine a priori if the project is practically viable if it has a priori

knowledge about Agent effort levels.

2.3.2 Improved Equilibria

A Bayes-Nash Equilibrium is a weaker solution concept than a Dominant Strategy Equilibrium,

so it is interesting to ask if the Center can make truthful behavior the dominant strategy even

when test data has to be obtained from Agents. Clearly, if all test data is supplied by Agents, this

is not possible: consider the example where all but one Agent Ai submit test data according to

a synthetic model θ′, but only Agent Ai observes true data according Φ, which has a different

true optimizer θ∗. Then it will be better for Agent i to report incorrectly according to model θ′,
so truthful behavior cannot be a Dominant Strategy.

However, it turns out that if only a fraction of the test data is supplied by untrusted Agents, we

can place a bound on this fraction so that truthful behavior is still a highest payoff strategy.

To obtain such a result, we need to exclude consideration of the cost of effort and focus on

the reporting strategy only, since we do not know what is the relative cost of obtaining true vs.

heuristic data.

Let Φ1 be the distribution of truthful reports and Φ2 be the distribution of heuristic reports.

We assume they describe an input-output relationship such that Φ(x, y) = q(x)p(y |x), and

q1(x) = q2(x). This assumption merely asserts that the data we are collecting is drawn from

the same distribution of inputs regardless of the distribution of the output. Distributions

Φ1 and Φ2 determine, in expectation, true optimizer models θ1 and θ2 respectively. Let us

now define Li , j as the expected risk of model θi evaluated on distribution Φ j . Given some

fixed training data set with points drawn from a mixture of Φi and Φ j , let Ii , j be the expected

Influence of a data point sampled from distribution Φi on a test point from distribution

Φ j . Using the standard mean-squared-error loss function, we have that Li , j = L j , j + r where

r = Ex∼q [( fθi (x)− fθ j (x))2]. We can then state the following:

Theorem 2.3.1. As long as the test data contains at most a fraction

p < I2,2/L2,2

I1,1/L1,1 +I2,2/L2,2
+ I1,1 −I2,2

r (I1,1/L1,1 +I2,2/L2,2)

of non-truthful reports, truthful reporting remains the highest payoff strategy for Agents that do

not choose to opt out.

Proof. Now suppose we sample n1 points from Φ1 and n2 points from Φ2 to form our training

set {z}, and call the resulting distribution Φc . Note that as L1,2 −L1,1 = r , and Influence is

proportional to the empirical risk, the Influence of a sample following θ1 but tested on a
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sample from Φ2 is decreased as follows:

I1,2 = I1,1(1− r /L1,1)

and so the expected Influence when evaluating on the mixture (n1,n2) is

I1,c = I1,1(1− r /L1,1
x2

n
) = I1,1(1−pr /L1,1)

I2,c = I2,2(1− r /L2,2
x1

n
) = I2,2(1− r (1−p)/L2,2)

To ensure that reporting samples from Φ1 carry a higher expected reward, we want to satisfy:

I1,c >I2,c

I1,1 −I2,2(1− r /L2,2) > pr (I1,1/L1,1 +I2,2/L2,2)

p < I1,1 −I2,2(1− r /L2,2)

r (I1,1/L1,1 +I2,2/L2,2)

=
I2,2/L2,2

I1,1/L1,1 +I2,2/L2,2
+ I1,1 −I2,2

r (I1,1/L1,1 +I2,2/L2,2)

If I2,2/L2,2 = I1,1/L1,1, the first term is = 1/2. The second term is a correction: if I1,1 >I2,2,

more non-truthful reports are tolerated as the Influence when improving the first model is

stronger, otherwise it is the other way around.

A Center could use this result to decide how much test data to obtain from Agents. As the

underlying phenomenon could evolve over time, it is advantageous for the Center to include

some contributed data in its test set so that such evolution can be tracked. To evaluate the

bound, the Center could compare the statistics of scores obtained with trusted test data with

those obtained using contributed test data, and thus estimate the parameters Ii , j , as well

as the empirical risks of models fitted to the trusted and contributed data to estimate the

parameters Li , j . The Center could thus obtain a stronger guarantee on the quality of the test

data.

2.4 Relation with Peer Consistency

We have shown that, under certain assumptions, an Influence-based mechanism is incentive-

compatible. It is also clear that Influence mechanisms operate on arbitrary distributions, with

the caveat that the model family and loss function are not arbitrary. But in the case of the

distribution Φ being finite and discrete, the setting is the same as the classical crowdsourcing

setting for Peer Consistency. We show that with the correct model family and loss function,
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the Influence mechanism actually replicates the rewards structure of the Peer Truth Serum

(Faltings et al., 2014). We write the PTS reward function here for reference:

Definition 2.4.1 (Peer Truth Serum Reward). The PTS reward function is given by

τPTS(r,r r,R) = f (r r )+ c1r =r r

R(r )
(2.3)

where r is the Agent’s report, r r is a randomly chosen Peer report, and R is the current estimate

of the distribution Φ by the Center.

In this setting, the Center constructs a model of the distribution Φ as a histogram of the

observations reported by the Agents. Suppose there are k discrete elements x j of Φ. In the

machine learning setting, Agents observe input-label pairs. In this setting, the current estimate

R of φ is made

Given a dataset Z with n elements, let n j be the number of samples equal to x j so that∑k
j =1 n j = n. Let the empirical optimizer θ̂(Z ) = 〈n1

n , n2
n , . . . , nk

n 〉 and the model simply returns

the value of the index: fθ(z) = θ j for x j = z. At the start of a data collection period, the Center

possess a current empirical optimizer model θ̂(Z ) constructed by a set of samples Z of size n.

If the Center observes a new sample x j , the model is updated to θ̂(Z ∪x j ) such that:

θ̂ j (Z ∪x j ) = δ+ (1−δ)θ̂ j (Z )(z)

θ̂i (Z ∪x j ) = (1−δ)θ̂i (Z ) for i ̸= j

with δ = 1
n+1 .

The Center’s model is minimizing over the logarithmic scoring rule (LSR), which is given by:

LLSR
θ (z) = − log( fθ(z)) (2.4)

We briefly show that the fθ̂(Z )(x j ) = θ̂ j (Z ) is the empirical optimizer of LLSR. The empirical

risk is given by − 1
n

∑n
i =1 log( fθ(zi )) = −∑k

j =1
n j

n log(θ j ). We wish to minimize this subject to

the constraint
∑k

j =1θ j = 1. We do so via Lagrange multiplier method: ∂
∂θ j

(−∑k
j =1

n j

n log(θ j )−
λ(

∑k
j =1θ j −1)) = − n j

nθ j
−λ. Setting this to 0 yields θ j = − 1

λ

n j

n for all j , so
∑k

j =1θ j = − 1
λ

∑k
j =1

n j

n =

− 1
λ . So λ must be −1, yielding θ j =

n j

n . The second derivative of the loss is − ∂
∂θ j

n j

n θ
−1
j =

n j

nθ2
j

=
n
n j

> 0, confirming that this solution is a minimizer.

We could compute the Influence of a new data point on the loss function directly. However, it

is instructive to consider an approximation using the Taylor expansion of the loss function.

We note that the derivative of θ̂(Z ∪x j ) with respect to the parameter δ is as follows:

∂θ̂(Z ∪x j )

∂δ
= 1 j − θ̂(Z )
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where 1i = j = 〈0,0, . . . ,1, . . . ,0〉 with 1 only at index j . The derivative of the log scoring rule is:

∂LLSR
θ̂(Z )

(x j )

∂θ̂ j (Z )
= − 1 j

θ̂(Z )

and so the Taylor expansion of the logarithmic scoring rule applied to the assumed distribution

is as follows. Since we would like random reporting according to the prior distribution θ̂(Z ) to

be equal to 0, we make this the starting point of the expansion. We can then write the payment

for a sample x j on a validation sample xl as:

LLSR
θ̂(Z )

(xl )−LLSR
θ̂(Z∪x j )

(xl )

≈−δ
k∑

i =1

∂LLSR
θ̂(Z )

(xl )

∂θ̂i (Z ∪x j )

d θ̂i (Z ∪x j )

dδ

= δ
1l

θ̂(Z )
(1 j − θ̂(Z ))

= δ

(
1 j =l

θ̂(Z )
−1

)
We note that the Influence of an Agent depends on whether its reported value matches the

value of the validation sample, however, the Influence is scaled by the inverse of the prior

probability of this value, so that unlikely values carry a higher Influence. From there, we can

derive the following payment function:

τI
PTS(x j , ZV , θ̂(Z )) = δ

(
1

|ZV |
∑

xi∈ZV

1 j =i

θ̂ j (Z )
−1

)

where δ is a scaling factor, for example δ = 1
n+1 . If the values don’t match, the Agent has to pay

δ (which could be a participation fee charged up front). We note that when δ is a constant, for

example δ = 1, this scheme exactly matches the Peer Truth Serum.

We also note that the general condition for having a strictly truthful dominant strategy with an

Influence-based mechanism is :

∀z ̸= o : Lθ̂(Rα,o )(Ro) < Lθ̂(Rα,z )(Ro)

⇒ Lθ̂(R)(Ro)−Lθ̂(Rα,o )(Ro) > Lθ̂(R)(Ro)−Lθ̂(Rα,z )(Ro)

⇒ log( fθo (o))− log( fθR (o)) > log( fθo (z))− log( fθR (z))

⇒ fθo (o)

fθR (o)
> fθo (z)

fθR (z)

This is the exact form of the self-predicting update condition, which ensures incentive-

compatibility of the Peer Truth Serum mechanism.
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2.5 Practical Considerations

2.5.1 Influence Approximation

Trying to practically implement an Influence incentive mechanism imposes a host of chal-

lenges. The first is the computational cost of computing the Influence for an Agent. Specifically,

given a set of n Agent reports ZA , for every zi ∈ ZA , the center must compute θ̂(Z−i
A ), which

requires retraining the model n times. Koh and Liang, 2017 present an approximation method

where each sample in ZA is assigned a weight of 1. First the change in model parameters θ̂

is approximated by a Taylor expansion around the training loss. Then a Taylor expansion is

taken around the the validation loss with respect to the model parameters. We present this

approximation formula with the first order terms of the expansions, as shown in Koh and

Liang, 2017:

I (zi , ZT , ZV ) = − 1

n
∇θLθ̂(ZT )(ZV )⊤H−1

θ ∇θLθ̂(ZT )(zi )

where Hθ = 1
n

∑
z∈ZT

∇2
θ

Lθ̂(ZT )(z) is the Hessian. This approximation, however, has the unde-

sirable property that the mean Influence of the training samples is 0 in many cases. From

Definition 2.1.3, θ̂ is a solution to
∑

z∈ZT
∇θLθ̂(ZT )(z) = 0, if it exists. As the Influence mechanism

relies on the fact that the expected Influence of a truthful sample is positive for strictly risk-

monotonic model families, this approximation is insufficient for providing proper incentives.

We therefore include the 2nd order term in the Taylor expansions of both the training risk and

the validation risk. Let ∂θi be the change in θ due to increasing the weighting a training point

zi , and let Hzi = ∇2
θ

Lθ̂(ZT )(zi ) be the Hessian computed only on zi .

∂θi =
1

n
H−1
θ ∇θLθ̂(ZT )(zi )+ 1

n2 H−1
θ Hzi H−1

θ ∇θLθ̂(ZT )(zi )

Then the second order approximation of the loss on a validation sample when computing the

Influence is:

I (zi , ZT , ZV ) = (∇θLθ̂(ZT )(ZV )+ 1

2
HZV ·∂θi ) ·∂θi

Although this is significantly more computationally expensive than the first order approxi-

mation, since Hzi must be computed for every zi , it is still far easier than retraining a deep

neural network. Additionally, the stochastic estimation techniques used for improving com-

putation time suggested in Koh and Liang, 2017 can still be applied to computing the term

H−1
θ

Hzi H−1
θ

∇θLθ̂(ZT )(zi ).

Experimental Results

We run simulations to confirm the improved accuracy of the 2nd order approximation method

and to demonstrate its computational efficiency. For the case of linear regression, computing
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Figure 2.2: The exact influence is shown to become computationally prohibitive for logistic
regression with only a moderate number of data points, while the computation time for the
approximate influence increases relatively slowly.

the exact Influence for each data point can be computationally feasible, but with a high enough

input dimension the approximation will be more computationally efficient. For a model that is

learned via a gradient descent method, such as a logistic regressor, it is clear that the Influence

approximation will provide significant improvements, as shown in Fig. 2.2. For all of our other

simulations, we used the following datasets with a linear regression model:

• Linear Generated: We generate linear regression data as follows: pick an angle θ uni-

formly in [−π/2,π/2], and a bias term from N (0,1). Using θ and the bias to determine a

linear model, we uniformly sample x ∈ [−1,1] and determine ground truth yg t values.

We then add a noise variable drawn from N (0,1) to produce observations y .

• Red Wine and White Wine Cortez et al., 2009, Air Quality De Vito et al., 2008, Com-

munities and Crime (Crime) Redmond and Baveja, 2002, Parkinsons Telemonitoring

(Parkinsons) Tsanas et al., 2009: All data sets from the UCI databse. We removed at-

tributes that were non-predictive, redundant, or had a substantial number of missing

values.

34



Influence Mechanisms Chapter 2

Using 1000 points for training and 200 for testing, we evaluated the exact Influence, 1st order

approximation and 2nd order approximation for each data point, recording the L1 and L2

norms between the approximations and the exact Influence. We then evaluated the worst

case and average improvement factors for the 2nd order approximation over the 1st order

approximation (2nd order error / 1st order error).

The worst case improvement for the L1 norm was 0.410, with the average being 0.0789 (lower

is better). The worst case improvement for the L2 norm was 0.482, with the average being

0.0821. This means that for both the L1 and the L2 norms, the 2nd order approximation was

on average about 12 times as accurate as the 1st order approximation. We also report the

means of the L1 and L2 norms between the 2nd order approximation and the exact Influence

to demonstrate that it is indeed accurate: 1.16∗10−3 for L1 and 2.45∗10−5 for L2.

2.5.2 Sequential Data Gathering

In a practical implementation, data arrives sequentially. Prior, we assumed that the Influences

would be computed over the entire set of reports once they have been collected. Ideally,

the Center could compute the Influence and provide the payment immediately when a data

point arrives. This has the advantage of allowing the Center to perform even more accurate

budgeting. Suppose we have a sample set {zi } such that i indicates the time of arrival of each

sample starting form 1 up to n. Then the sum of Influences is the overall change in risk on a

fixed validation set ZV .

n∑
j =1

I (z j , ZR ∪ {zi }i≤ j , ZV ) =
n∑

j =1
Lθ̂ZR∪{zi }i< j

(ZV )−Lθ̂ZR∪{zi }i≤ j
(ZV ) = Lθ̂ZR

(ZV )−Lθ̂{zi }
(ZV )

When the Center constructs the validation set from Agent reports, it may want to add more

reports to the validation set over time. In this case, the sum of Influences may not be quite the

same as the change in empirical validation risk, but if the reports are truthful, it will be the

same in expectation. With the Center having a known value function V (L), it does not need

to rely on estimating the change in risk and Influence over time with the 1
n and 1

n2 models

respectively. Setting b = 0 and having a fixed c in the reward function τ, the Center computes

the budget necessary to achieve a final risk L f as c(L0 −L f ) where L0 = Lθ̂ZR
(ZV ), achieving a

gain in value of V (L f ). Therefore the overall utility is V (L f )−c(L0−L f ). In order for the Center

to profit, this quantity must be positive, so the Center computes the necessary value of c to

achieve a profit with a model of final risk L f as c < V (L f )
(L0−L f ) .

2.5.3 M-Loss and M-Gain

Computing the Influence for each data point as it arrives can be computationally prohibitive,

even using the Influence approximation. The computation time of the approximation, in

terms of complexity, is dominated by computing H−1, which must be computed every time
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the model is updated. The Center can strike a balance between the two extremes by grouping

the data into batches, such that H−1 is only computed once per batch. With respect to a single

batch, the incentives are the same as the one-batch case, however, we must now consider how

batch processing affects incentives with respect to the time of reporting. We observe that the

1st order Influence approximation has absolute error with respect to the exact Influence of

O( 1
n2 ), and is 0 in expectation. Therefore, as mentioned previously, the exact Influence is O( 1

n2 ).

With this, it is clear that batch processing incentivizes Agents to report as early as possible.

With batch processing, the Center has two choices in how to implement the mechanism. The

Center may include the most current batch in updating the model and compute the Influence

of each data point as though it were removed, or it could exclude the current batch and

compute the Influence of each data point as though it were added to the rest. We call these two

methods M-Loss and M-Gain respectively, as shown in Fig. 2.3. It is clear by construction that

for a batch size of one, these two methods are equivalent, and the sum of Influences is equal

to the overall change in risk. For the sake of computational efficiency, the Center will want

to choose a batch size greater than 1. We note that M-Loss will underestimate the expected

Influence in the 1-batch case because the Influence of points that arrive early in the batch

won’t be computed until the later points arrive. Symmetrically, M-Gain will overestimate.

If the Center has a fixed a priori budget B and wants to compute the reward scaling c, it is

necessary to compensate for the underestimation or overestimation of M-Loss or M-Gain

respectively. Fortunately, this is quite simple as the Center computes the change in risk over an

entire batch. The Influence of a data point within a batch is simply multiplied by the change in

risk and divided by the sum of Influences in the batch. With Influences normalized to match

the change in risk, the Center can very easily apply the appropriate scaling factor and maintain

accurate budgeting.

We wish to characterize the extent to which M-Loss and M-Gain underestimate and overesti-

mate respectively, so the Center can compensate. We restrict ourselves to the case of linear

regression, but the analysis can be extended to any model in which the optimal parameters

have a closed-form solution.

Let us consider two probability distributions Φ1 and Φ2. As before, we assume they describe

an input-output relationship such that Φ(x, y) = q(x)p(y |x), and q1(x) = q2(x). Distributions

Φ1 and Φ2 determine, in expectation, models θ1 and θ2 respectively. Let us now define Li , j as

the expected risk of model θi evaluated on distribution Φ j . Using the standard mean-squared-

error loss function, we have that Li , j = L j , j + r where r = Ex∼q [( fθi (x)− fθ j (x))2]. Now suppose

we sample n1 points from Φ1 and n2 points from Φ2 to form our training set ZT . Because the

linear regression solution is linear with respect to y , and q(x) is fixed, then ZT determines

in expectation a model θc such that Eq [ fθc ] =
n1 Eq [ fθ1 ]+n2 Eq [ fθ2 ]

n1+n2
. With this, let us consider the

practical application where Φ1 is the initialization distribution and Φ2 is the distribution of

reports from the Agents. Then when we evaluate the model, we are only concerned with the
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Figure 2.3: M-Loss is trained on all points in current batch, with Influence computed by
removing a point. M-Gain is trained on all prior batches, with Influence computed by adding
a point from current batch.

Figure 2.4: Ratio between Sum of Influences and Change in Loss with respect to batch size.

error of the mixed model θc evaluated on Φ2:

Lc,2 = L2,2 +
(

n1

n1 +n2

)2

r

To simplify, we fix n1 = p as the number of points used for initialization and we let n2 vary as x.

Then we have our expected empirical risk in terms of x:

L(x) =
p2r

(p +x)2 +R2,2

We can approximate the Influence of a data point arriving after x data points as the negative
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of the derivative of the risk:

−∂L

∂x
=

2p2r

(p +x)3

Now we consider batch size b. We can compute the expected overall change in loss of some

arbitrary batch k, with k index starting at 1.

∆Lb(k) = L((k −1)b)−L(kb) =
bp2r (2p + (k −1)b)2

(p + (k −1)b)2(p +kb)2

Now we consider the sum of Influences of points in batch k for M-Loss and M-Gain.

Sloss,b(k) = −b
∂L

∂x

∣∣∣∣
kb

=
2bp2r

(p +kb)3

Sgain,b(k) = −b
∂L

∂x

∣∣∣∣
(k−1)b

=
2bp2r

(p + (k −1)b)3 ,

Comparing these to the change in risk, we get the following ratios:

D loss,b(k) =
Sloss,b(k)

∆Lb(k)
=

2(p + (k −1)b)2

(p +kb)(2p + (2k −1)b)

Dgain,b(k) =
Sgain,b(k)

∆Lb(k)
=

2(p +kb)2

(p + (k −1)b)(2p + (2k −1)b)

By computing these values, the Center can pick an arbitrary batch size and divide the Influence

scores by these formulas such that the expected sum of Influences is equal to the overall change

in risk, as in the case of batch size 1. We note that these formula have constant growth rate

with respect to the number of points p +kb and they asymptotically approach the constant

function Db(k) = 1. Therefore, dividing the Influence scores by these formulas will not affect

the incentive for early reporting.

We note that this analytic method only applies to linear regression, and that it can be reason-

ably extended to learners with closed-form solutions for the optimal parameters. However,

the Center can approximate this method by using the observed Influences and change in risk

across a batch and re-scaling with the ratio of these two empirical values, rather than the

a-priori expected ratio.

Experimental Results

We present experimental results to demonstrate the validity of the re-scaling formula in real

scenarios. We ran simulations, using the same datasets as in Section 2.5.1, to estimate the

effect of the batch size on the ratios D loss and Dgain. We ran each simulation with 1500 total

training points with a varying batch size. Given a fixed batch size, we ran 10 trials for every

dataset and aggregated them to form a more general estimate of Sloss, Sgain, and ∆R . We then
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took the ratios of these aggregates and compared against our theoretical results for D loss and

Dgain in Fig. 2.4. We ran this same simulation with different numbers of initial points 20, 100,

200, and 500. We have chosen only to show the case with 500 initial points, although the other

simulations show the same relationship. Each line represents a different batch size. We have

chosen to plot batch sizes 30, 100, and 300 for ease of visualization.

2.6 Summary

First, we present the concept of using Influence as a scoring function for a Peer Prediction

incentive mechanism. We first demonstrate that such an incentive mechanism is incentive-

compatible when Agents have uninformed prior beliefs, and update their beliefs such that the

underlying data is representative. We find that the mechanism is DSIC for a single-trained

mechanism and BNIC for a mixed-trained mechanism.

We then show how the mechanism allows for a priori budgeting for the Center. Depending

on the Center’s beliefs about the expected effort levels of the Agents, the Center can know

ahead of time if the crowdsourcing is economically viable. We show that the incentives are

also robust to a certain degree of corruption, i.e. if some proportion of Agents do not report

truthfully.

The Influence mechanism is shown to be an extension, in some ways a generalization, of the

Peer Truth Serum mechanism for discrete valued reports. In this way, Influence is in line with

prior work on Peer Consistency.

Finally, we address some practical implementation concerns. We present an approximation

method that is theoretically sound for the purpose of the incentive mechanism. We also

introduce the possibility of sequential data gathering with batch influence computation to

strike a balance between computational complexity and budget accuracy.
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3.1 Introduction

In the previous chapter, we proposed using the classical statistical notion of Influence as

an incentive mechanism. We constructed such a mechanism and proved that it’s incentive-

compatible, with a truthful Dominant Strategy Equilibrium solution when the validation set

is composed of truthful samples, and a truthful Bayes-Nash Equilibrium solution when the

validation set is composed of randomly selected reports. We also addressed some practical

considerations for implementing such a mechanism, including an Influence approximation

method and a batch processing method. In this chapter, we address a much more difficult

practical consideration: what happens when Agents don’t act perfectly rationally? Influence

relies on trusted validation samples in order to accurately reflect the quality of the training

samples on model accuracy with respect to the distribution which generates the trusted

validation samples, which we refer to as the target distribution. In reality, the validation

set may contain corrupted samples, such as mislabeled samples or heuristic reports from

irrational Agents. We model this as a probabilistic combination of two distributions: the

target distribution and the corrupted distribution. Samples from the target distribution are

referred to as accurate while samples from the corrupted distribution are simply referred

to as corrupted. The corrupted distribution could itself be a combination of many different

distributions from different sources, but we absorb them into one distribution because we

assume no prior information about how this distribution is composed. We observe the

surprising behavior that, even with a small amount of corruption in the validation samples, a

single corrupted samples in training will have an extremely high Influence on the corrupted

samples in validation, outweighing any small negative Influence it might have on all the

accurate samples in validation. This is because of the statistical properties of Influence, which

decreases as O( 1
n2 ) with the number of training points N as shown in the previous chapter.

With only one corrupted sample, one can think of the accurate samples as being further along

in this curve and thus achieving a lower expected Influence.

We have yet to see other work examining the properties of Influence when the validation
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Figure 3.1: Mean Influences over number of data points. Growth rate of Influences matches
O( 1

N 2 ).

samples are untrusted. Intuitively, if the validation samples are drawn from a completely

different distribution from the target distribution, a scoring function may not give the Center

any relevant information about the training sample in question. We examine two intimately

related practical use cases of Influence as a scoring function: incentives and data filtering,

which can be applied to many practical settings including federated learning. We assume

that the Agents providing samples are self-interested and must be compensated for their

reports. The Center does this by constructing a reward function that induces the desired

Agent behavior, which is to contribute accurate instances of the target distribution, known as

truthful reporting. According to the game theoretic principle of Agent rationality, in order for

an incentive mechanism to induce the desired behavior, such behavior must maximize Agent

utility functions in expectation. By extension, it is necessary and sufficient that the scoring

function is maximized in expectation on accurate sample reports. For data filtering, on the

other hand, the Center must use the scoring function to establish a partial ordering on the

samples, representing their relative values in contributing to model accuracy. So not only

do we require that accurate samples have the maximal score in expectation, we require that

accurate samples be ordered above corrupted samples.

41



Chapter 3 Influence Filtering

3.1.1 Our Approach

The Influence, as defined in the previous chapter, quantifies the effect of a single training

sample on the parameters of a learning model, but Influence is not an absolute quality metric,

rather it is relative. The Influence of a training samples depends on all the other training

samples that are present. If one wished to track all the cross-dependencies in the training

samples, one would be forced to examine the Influences of all possible coalitions of training

samples, which is equivalent to computing the Shapley value of each report. We show that,

while the Shapley Value is vastly more computationally intensive, it still suffers from the same

theoretical disadvantage that it assumes the presence of trusted validation samples. In the

case of regression models, analyzing the Influence allows us to consider decomposing a model

into components constructed entirely from either accurate or corrupted samples, since the

Influence describes a tractable perturbation of the combination of these model components.

Using this method, we’re able to compute conditions under which accurate samples can

be partially distinguished from corrupted samples according to their expected Influences.

Let us define p to be the proportion of accurate samples in training, the other (1−p) being

proportion being corrupted samples. Similarly, let us define q to be the proportion of accurate

samples in validation. We find that, given infinite samples, if and only if p < q , the average

Influence of an accurate sample will be greater than that of a corrupted sample, and vice versa

when p > q . In the case of finite samples, these conditions are slightly modified according

to the means and variances of the model predictions produced by samples of the target and

corrupted distributions. With this modification, even if p > q by some small amount, the

accurate samples might still have a greater expected Influence if the corrupted distribution

produces models with higher variance than models produced by the target distribution.

These conditions describe a class of equilibria when using Influence as an incentive mecha-

nism: there are Dominant Strategy Equilibria symmetric about perturbations of every p = q

value, which drive the system to converge towards a mixed Bayes-Nash Equilibrium at p = q .

They also naturally lead to the construction of a theoretically sound Probabilistic Filtering

scheme. The probabilistic filtering requires a choice of CDF PZ (zi ) for zi ∈ Z . We will show

that a uniform CDF is the most natural choice, which we call Uniform Probabilistic Filtering

(UPF), with protocol described in Figure 3. The choice of α and β can be tuned as hyper-

parameters to adjust the sensitivity of the filter, but the intuitive choices are α = mini I (zi , Z )

and β = maxi I (zi , Z )−mini I (zi , Z ). We prove that, in the untrusted validation regime, UPF

is expected to improve the true model accuracy, i.e. the accuracy evaluated only on the target

distribution, up to a certain limit. We also consider more intuitive deterministic filtering

schemes, the first being a naive filtering protocol, Threshold Influence Filtering (TIF), which

removes all data points with Influence values below a threshold, as described in Figure 1.

We refine such a scheme to iteratively remove minimal Influence data points with Iterative

Minimal Influence Filtering (IMIF); protocol described in Figure 2. We prove that, in a trusted

validation regime, IMIF with a threshold of 0 is guaranteed to improve model accuracy. How-

ever, using only the analysis we present, one cannot make any guarantees about the filtering
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performance of such deterministic filters in the untrusted validation regime.

3.1.2 Model

We consider the same model as in the previous chapter. We repeat definitions for ease of

reading:

Definition 3.1.1 (Model Family). Let f be a model family parameterized by θ such that

fθ(x) = ŷ where ŷ is the estimate of the representative value of Φy |x , otherwise known as the

prediction.

Definition 3.1.2 (True Risk and Optimizer). Let L(y, ŷ) be a non-negative loss function. Let Φ

be the true distribution of the random variable z = (x, y), with Ω being the fundamental set.

The true risk is given by L∗
θ

=
∫
ΩL(y, fθ(x))dΦ(z). We will often write L(y, fθ(x)) as Lθ(z). Then

the true optimizer is given by θ∗ = argminθ L∗
θ

.

The true optimizer may not be unique. It is sometimes possible to not only minimize over the

joint distribution Φ, but to minimize over all the conditional distributions Φy |x .

Definition 3.1.3 (Absolute Optimizer and Realizability). Let L(y, ŷ) be a non-negative loss

function. Let Φy |x be the true conditional distribution of y given x, and let Φx be the true

marginal distribution of x, with Ωx and Ωy being the fundamental sets in the x and y co-

ordinates. The absolute optimizer is f ∗ : Ωx →Ωy where ∀x in the support of Φx , f ∗(x) =

infŷ
∫
Ωy

L(y, ŷ)dΦy |x (y). We say f ∗ is realizable if ∃θ∗ such that fθ∗ = f ∗. We say it is uniquely

realizable of θ∗ is unique.

Definition 3.1.4 (Empirical Risk and Optimizer). Let Z = {zi }i∈[1,n] be a set of n input-label

pairs. The empirical risk is given by Lθ(Z ) = 1
n

∑n
i =1 Lθ(zi ). Then the empirical risk optimizer is

given by θ̂(Z ) = argminθ Lθ(Z ).

Definition 3.1.5 (Influence). Given a model family f parameterized by θ to minimize a loss

function L, and given zi ∈ ZT and z j ∈ ZV , the Influence of zi on z j is:

I (zi , ZT , z j ) = Lθ̂(Z−i
T )(z j )−Lθ̂(ZT )(z j ) (3.1)

We often consider the average Influence over the validation set, written as:

I (zi , ZT , ZV ) = Lθ̂(Z−i
T )(ZV )−Lθ̂(ZT )(ZV ) (3.2)

We will often omit ZT or ZV from the argument when they are clear from context.

Corruption Model

In many circumstances, the Center is assumed to have a set of data points that it knows to be

accurate samples from Φ, making it relatively easy to perform meaningful evaluation metrics,
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like Influence, on samples in the training set. In our setting, we relax this assumption. If the

Center is crowdsourcing data or has acquired data from an untrusted source, there might be a

subset of samples which are corrupted. This corruption might come from a variety of sources,

such as Agents injecting noise for privacy reasons, Agents with faulty sampling procedures, or

even malicious Agents. The subset of corrupted points might even come from a combination

of these sources, but we can fold all the sources together and generally state that the corruption

comes from some corrupted distribution ΦC , as opposed to the accurate distribution which

we will write as ΦA . We assume that the marginal distributions of x are the same, so that the

corruption is in the labels y : ΦC ,x =ΦA,x .

The Center has collected a training set ZT = ZT,A ∪ZT,C where ZT,A are sampled i.i.d. from ΦA

and ZT,C are sampled i.i.d. from ΦC . We say the mixing proportion is p = |ZT,A |
|ZT | . Similarly, the

Center has collected a validation set ZV = ZV ,A ∪ZV ,C with mixing proportion q = |ZV ,A |
|ZV | . The

Center may potentially know these mixing proportions, but it does not know which samples

are from which distribution. It wants to perform some filtering, i.e. removing points from the

training set, in order to improve the "model accuracy". We use the term "model accuracy"

loosely, because the Center may be able to lower the true risk of the empirical risk minimizer

by removing more accurate samples than corrupted samples, but intuitively this would be a

pathological case. As a proxy, we say that the "model accuracy" is improved on average when

the mixing proportion p of the training set increases. So then the goal of filtering is to remove

proportionately more corrupted than accurate data samples.

3.1.3 Shapley value

We consider the Shapley value of Influences as an alternative to the marginal Influence (Shap-

ley et al., 1953). We provide the definition of the Shapley value:

Definition 3.1.6 (Shapley Value). Let N be the number of players in a game, v the characteris-

tic function of the game (how much utility each coalition generates), Σ the set of all possible

orderings of players, and Cσ the coalition formed by players according to the ordering σ. Then

the Shapley value φi (v) for player i is given by:

φi (v) =
1

N !

∑
σ∈Σ

(v(Cσ∪ {i })− v(Cσ)),

In our case, the quantity v(Cσ∪ {i })− v(Cσ) represents the Influence of player i in coalition

Cσ. So the Shapley value of Influences is the average Influence of a report r among all possible

subsets of reports containing r in the training set. The Shapley value has nice intuitive

properties in the machine learning context. The value of a particular sample might vary greatly

depending on what other samples are present in the training set. The Influence may not

capture these group-dependencies in an adequate way.

Although the Shapley value captures the group-dependencies of samples, we are not con-
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cerned with how the scoring function affects a particular sample, rather we are concerned with

how the scoring function affects filtering performance in expectation. Let ΦA be the accurate

distribution and ΦC be the corrupted distribution. We ask if the Shapely value affects the

expected Influences of the two groups in the training set, i.e. does the Shapely value introduce

a bias as compared to the Influence? Symmetry dictates that it cannot introduce a bias if

the two distributions are equally represented, but we conduct empirical analysis to see if the

Shapely value tends to favor a group when they are unbalanced.

We conduct experiments with 1000 total training points, 750 from group one and 250 from

group two. "Artificial Linear" data is generated by picking an slope uniformly at random, then

sampling points with mean 0 variance 1 additive Gaussian noise. Details for the other data sets

can be found in Section 3.4. Influences are evaluated against 250 validation points from each

group and the average is taken. The exact Shapley value is prohibitively expensive to compute,

so we approximate it as follows: we iterate over a sampling of coalition sizes and sum over

them weighted according to their binomial coefficients. For each coalition size, we iterate over

each possible linear combination of groups, weighted according to its binomial coefficient.

For each of these, we conduct 5 trials randomly selecting points from each group. We then

compare these values to expected Influences at the mean of the binomial distribution.

Table 3.1: Shapley value vs. Influence

Group One Group Two

Name Shapley value Influence Name Shapley value Influence

Artificial Linear 9.69772e-5 9.46879e-5 Artificial Linear -2.56188e-4 -2.51391e-4

Red Wine 8.41934e-3 8.38264e-3 Artificial Linear -2.38488e-2 -2.39453e-2

Air Quality 4.61109e-2 4.67155e-2 Artificial Linear -1.31635e-1 -1.34375e-1

Parkinsons 2.44179e-1 2.41919e-1 Random Binary -5.45787e-1 -5.41967e-1

Crime 1.41606e-4 1.41072e-4 Artificial Linear -1.39161e-4 -1.31191e-4

Artificial Binary 1.73201e-6 1.77475e-6 Random Binary -4.40148e-6 -4.55086e-6

In Table 3.1 we observe that the Shapley value is indeed very close to the expected Influence at

the mean for both groups. The L1 error is on the order of one in a thousand, which could easily

be due to the sub-sampling we perform for the Shapley value approximation. In addition, there

is no discernible bias. This suggests that, while the Shapley value may have some desirable

properties over Influence in terms of individual data valuation, it has no clear advantage when

it comes to filtering.

3.2 Influence Analysis

In order for the Center to successfully perform filtering using the Influence score, it must

observe some differentiation in the distributions of Influences of accurate and corrupted data

samples. We begin by examining the Influences in an infinite sample regime.
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3.2.1 Infinite Sample Analysis

Analyzing the distribution of Influences with no assumptions about the loss function is very

unconstrained. The loss function can impose arbitrary relationships between points. In

addition, we require that the corrupted and accurate distributions are different in terms of

optimal modeling. We call this guarantee discernibility:

Definition 3.2.1 (Discernibility). Let ΦC and ΦA be the corrupt and accurate distributions

with a shared marginal distribution Φx . Let L(y, ŷ) be a non-negative loss function, producing

absolute optimizers f ∗
A and f ∗

C for ΦC and ΦA respectively. We say ΦC and ΦA are discernible

by L if Φx ({x : f ∗
C (x) = f ∗

A (x)}) < 1.

To further simplify the analysis, we assume that the loss function is the mean squared error

so the learning model is a least-squares regressor. Then the absolute optimizer is simply the

expected values of the conditionals.

Proposition 3.2.2. Let L(y, ŷ) = (y − ŷ)2. Then f ∗(x) = EΦy |x [y].

This follows directly from the fact that the expected value of a distribution is the variance

minimizer. Finally, we must make an assumption about the degree of stochasticity in the

model family. There are potential pathological examples of model families and distributions

for which the optimal model can have arbitrary variability in its predictions, even in the limit

of infinite samples. This is only the case of the absolute optimal model is not realizable, but

this is a stronger assumption than necessary. Instead, we assert that the model family must

have limited stochasticity with respect to the training distribution:

Definition 3.2.3 (Limited Stochasticity). Given a training distribution ΦT and a model family

f , let Zn = {zi }i∈[1,n] be a set of n i.i.d. random variables sampled from ΦT . We call ΦT,n the

distribution of Zn . The model family has limited stochasticity with respect to ΦT if ∀ϵ > 0 :

limn→∞ΦT,n({Zn : (maxx | fθ̂(Zn )(x)− fθ∗(x)|) > ϵ}) = 0.

In other words, as the number of samples goes to infinity, the probability of getting a set

of samples which causes a deviation from the optimal predictions goes to 0. With these

assumptions, we can then prove the following statement about the expected Influence values

of corrupt and accurate data samples:

Theorem 3.2.4. Let L(y, ŷ) = (y − ŷ)2. Let ΦC and ΦA be the corrupt and accurate distributions

such that they are discernible by L. Let the training set be mixed by p and the testing set be mixed

by q, such that the training distribution is Φp and the validation distribution is Φq . Suppose the

model family has limited stochasticity with respect to Φp . Then p < q if and only if the expected

Influence of a training point zA ∼ΦA is greater than the expected Influence of a training point
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zC ∼ΦC :

EzA∼ΦA
[EzV ∼Φq

[I (zA , ZT , zV )]

>EzC∼ΦC
[EzV ∼Φq

[I (zC , ZT , zV )]

⇐⇒ p < q (3.3)

Proof. We consider the optimal models produced by the accurate and corrupt distributions

individually. Let f ∗
A (x) = Ey∼ΨA,(y |x)

[y] and f ∗
C (x) = Ey∼ΨC ,(y |x)

[y]. Consider the mixed model with

mixture proportion p at a x: f ∗
p (x) = p f ∗

A (x)+ (1−p) f ∗
C (x).

But f ∗
p may not be realizable, so there will be a residual term that we cannot determine a priori.

We model this residual term as a random variable δx over y , so fθ∗(x) = f ∗
p (x)+δx . We first

observe that EΨT,(y |x)
[δx ] = 0 since θ∗ is a variance minimizer. We then compute the expected

risk LV
θ∗ on the validation set with mixture proportion q > p. Let :

LV
θ∗ = Ex∼Ψx

[Ey∼ΨV ,(y |x)
[EΨT,(y |x)

[L(y, fθ∗(x))]]]

= EΨx
[EΨV ,(y |x)

[L(y, f ∗
p (x))+EΨT,(y |x)

[δ2
x ]]]

= EΨx
[EΨV ,(y |x)

[L(y, f ∗
p (x))]]+Ex∼Ψx

[EΨT,(y |x)
[δ2

x ]]

= EΨx
[(q EΨA,(y |x)

+(1−q)EΨC ,(y |x)
)[L(y, f ∗

p (x))]]+∆

Differentiating with respect to p, we obtain:

d

d p
Lv
θ∗ = 2(p −q)Ex∼Ψx

[L(y, f ∗
p (x))]

From the discernibility of ΦA and ΦC by L, the expectation is strictly positive, so d
d p Lv

θ∗ =

α(p −q) with α> 0.

Finally, the limited stochasticity assumption yields lim|ZT |→∞EzT ∼ΦA
[EzV ∼ΦV ,q

[I (zT , ZT , zV )]] =

− d
d p LV

θ∗ , which is positive for p < q .

By symmetry, we find that: lim|ZT |→∞EzT ∼ΦC
[EzV ∼ΦV ,q

[I (zT , ZT , zV )]] < 0.

An obvious corollary is that the expected Influences are equal when p = q .

3.2.2 Finite Sample Analysis

The infinite sample analysis reveals an intuitive, but disheartening result: filtering via the

expected Influences cannot perform better than the proportion of corruption in the validation

set. We will elaborate on what precisely it means to filter via expected Influences later. The

analysis relies on the fact that in the infinite sample regime, the model converges to the

expected value, but in reality, with noisy data and a finite number of training points, the
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Center will never actually acquire the expected value of the mixed model. It will acquire some

perturbation of the expected model. A new sample added to the training set from either the

accurate or corrupt distribution will tend to drive this perturbed model towards the limiting

expected value model at different rates. Since the expected value model is the risk minimizer,

we’d expect the sample which drives the model towards this limiting model faster to be the

one with the higher Influence.

Analyzing this effect will require understanding the distributions of the perturbed models,

which we call the posterior distributions. We will see that, unlike in the infinite sample analysis,

this effect depends on higher moments of these posterior distributions. The analysis becomes

prohibitively complicated when considering arbitrary posterior distributions, so we will make

the simplifying assumption that the posteriors are Gaussian distributions:

Definition 3.2.5 (Gaussian Posterior). Let Zn = {zi }i∈[1,n] sampled i.i.d. from some distribution

Φ. Denote the distribution of Zn as Φn . Then given some model family f , the empirical

optimizer θ̂(Zn) is a random variable according to Φn , so fθ̂(Zn )(x) is also a random variable

with some distribution. We say the model family f has Gaussian posterior if ∀x in the support

of Φx , fθ̂(Zn )(x) ∼ N (µ(x),σ(x)2) where N (µ,σ2) is the normal distribution with mean µ and

variance σ2.

To demonstrate the effect of the higher moments, in this case simply the variance, we will

assume p = q so that the expected Influences would be equal in the limit of infinite samples.

Definition 3.2.6 (Mixture Component Distributions). Suppose ZT = {zi }i∈[1,n] with mixture

proportion p. Let us denote ZT,A as the set of points from ΦA so the distribution of ZT,A is

ΦA,pn . We similarly denote ZT,C distributed according to ΦC ,(1−p)n .

Theorem 3.2.7. Let the training set ZT,n,p = ZT,A ∪ ZT,C = {zi }i∈[1,pn] ∪ {z j } j∈[1,(1−p)n] with

zi ∼ ΦA and z j ∼ ΦC . Let the validation set be similarly mixed according to q = p. Suppose

the model family has Gaussian posterior with respect to both ZT,A and ZT,C , with respective

distributions N (µA(x),σA(x)2) and N (µC (x),σC (x)2). Then the expected Influence of a training

sample zA ∼ΦA is greater than the expected Influence of a training sample zC ∼ΦC if and only

if Ex∼Φx
[(σ2

C (x)−σ2
A(x))+ (2p −1)(µC (x)−µA(x))2] > 0:

EzA∼ΦA
[EzV ∼ΦV

[I (zA , ZT,n,p , zV )]

>EzC∼ΦC
[EzV ∼ΦV

[I (zC , ZT,n,p , zV )]

⇐⇒ Ex∼Φx
[(σ2

C (x)−σ2
A(x))+ (2p −1)(µC (x)−µA(x))2] > 0 (3.4)

so that in the limit of infinite validation samples, we can say that each sample is distributed

according to Φq = qΦA + (1−q)ΦC .

Proof. Note that fθ̂(ZT,A)(x) can be written as µA(x)+σA(x)r A(x) and fθ̂(ZT,C )(x) can be written

as µC (x)+σC (x)rC (x) where r A and rC are independent normal random variables N (0,1). Sup-
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pose the center observes some mixed model value fθ̂(ZT,n,p )(x) = p fθ̂(ZT,A)(x)+ (1−p) fθ̂(ZT,C )(x).

Then we can decompose this value into its constituents from the two partial models. Let

L(x)2 = p2σ2
A(x)+ (1−p)2σ2

C (x). Let FA(x) be the random variable distributed according to

fθ̂(ZT,A )(x) conditioned on fθ̂(ZT,n,p )(x), and let FC (x) be the random variable distributed ac-

cording to fθ̂(ZT,C )(x) conditioned on fθ̂(ZT,n,p )(x). For now we omit the argument x for ease of

notation:

FA ∼ N (µ̂A , σ̂2
A)

FC ∼ N (µ̂C , σ̂2
C )

where

µ̂A =
pσ2

A( fθ̂(ZT,n,p ) − (1−p)µC )

L2

σ̂2
A =

(1−p)2σ2
Aσ

2
C

L2

µ̂C =
p2σ2

AµC + (1−p)σ2
C fθ̂(ZT,n,p )

L2

σ̂2
C =

p2σ2
Aσ

2
C

L2

Critically, we observe that the conditional decompositions are still Gaussian random variables.

We now compute the expected values. Define F A = E[FA] and F C = E[FC ]. We also define

F p = E[ fθ̂(ZT,n,p )] = pµA + (1−p)µC . Note that fθ̂(ZT,n,p ) is a linear combination of r A and rC , so

we can find a new basis such that fθ̂(ZT,n,p ) is aligned with a basis vector.

[
w∥
w⊥

]
=

1

L

[
pσA (1−p)σC

−(1−p)σC pσA

][
r A

rC

]

Inverting, we have:[
r A

rC

]
=

1

L

[
pσA −(1−p)σC

(1−p)σC pσA

][
w∥
w⊥

]

fθ̂(ZT,n,p ) is some deviation from the mean F p , and we know that as we add more points,

this model will converge to the mean. So we wish to know which of the two partial models

contribute more towards pushing fθ̂(ZT,n,p ) towards the mean. Since the loss function is the

squared error, we compute the distribution of the squared error from the mean ( fθ̂(ZT,A) −F p )2
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conditioned on the mixed model fθ̂(ZT,n,p ).

( fθ̂(ZT,A) −F p )2 = (σAr A − (F p −µA)))2

= (
σA

L
(pσA w∥− (1−p)σC w⊥)− (F p −µA)))2

= (
σA

L
(−(1−p)σC w⊥)− (F p −µA − σA

L
pσA w∥))2

Define EA = ( fθ̂(ZT,A) −F p )2| fθ̂(ZT,n,p ), and define EC similarly. Conditioning on fθ̂(ZT,n,p ) is equiv-

alent to conditioning on w∥, so this yields:

EA =
((1−p)σAσC )2

L2 + (F p −µA − σA

L
pσA w∥)2

=
((1−p)σAσC )2

L2 + (F p −µA − σ2
A

L2 p( fθ̂(ZT,n,p ) −F p ))2

By symmetry, we have:

EC =
(pσAσC )2

L2 + (F p −µC − σ2
C

L2 p( fθ̂(ZT,n,p ) −F p ))2

We wish to consider what the expected contribution from each distribution will be over the

distribution of fθ̂(ZT,n,p ):

E[EA] =σ2
A + (1−p)2(µC −µA)2

E[EC ] =σ2
C +p2(µC −µA)2

Finally, we restore the argument x and consider the expectation of these values over the

distribution Φx :

EΦx
[E[EA(x)]] = EΦx

[σ2
A(x)+ (1−p)2(µC (x)−µA(x))2]

EΦx
[E[EC (x)]] = EΦx

[σ2
C (x)+p2(µC (x)−µA(x))2]

Intuitively, the lower the value, the more a random sample from the corresponding distribution

is expected to contribute towards moving the current mixed model towards the expected value

of the mixed model, leading to a greater expected Influence:

EΦx
[σ2

A(x)+ (1−p)2(µC (x)−µA(x))2]

<EΦx
[σ2

C (x)+p2(µC (x)−µA(x))2]

⇒EΦx
[(σ2

C (x)−σ2
A(x))+ (2p −1)(µC (x)−µA(x))2]

>0
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Figure 3.2: Average over all regression datasets with LS corruption. Y values are the Q values
that set the average Influence of accurate and corrupted points equal. Error bars are one
standard deviation.

We examine the consequences of this inequality in some simplified contexts. First, we consider

obfuscation used to achieve privacy, such as in a differential privacy setting, where some agents

add noise to their data. In this case, we have µC −µA = 0, and EΦx
[σ2

A(x)] < EΦx
[σ2

C (x)]. This

confirms the intuition that an Agent who uses less noise will in expectation have less privacy

but contribute more value to the model. On the other hand, if the variances of the distributions

are the same, then the more valuable distribution is determined by majority vote according to

the (2p −1) term. This satisfies the intuition that equally accurate partial models are a priori

indistinguishable in terms of their contributions to the mixed model. Most importantly, this

analysis suggests that in the finite sample regime, filtering might be able to achieve a training

set mixing proportion better than p = q . It is important to note that the variances themselves

depend in some way on the value of p: the higher the p value, the more samples are used to

determine fθ̂(ZT,n,p ), so the variance of the posterior will be lower.

3.3 Filtering Schemes

In the previous sections we demonstrated that relative expected Influences of accurate and

corrupt data samples depend on their relative presence in the training samples as well as how

noisy the corresponding models are. We propose a number of filtering schemes which we apply

to the untrusted validation data regime. We first examine two filtering schemes which would

be natural to consider in a trusted validation data regime, in which lower Influence values

reliably indicate lower quality data. In the untrusted validation regime, lower Influence values

can only indicate lower quality data probabilistically in relation to the average Influence value.

This is also contingent on the variables which determine the relative expected Influences

according to the previous analysis. We propose a probabilistic filtering scheme which seeks to

take advantage of the differences in expected Influences when these variables are favorable to

the Center, i.e. the validation samples are untrusted but at least more trusted than the training
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Figure 3.3: Heat map over all datasets with LS corruption. Coloration represents the difference
between average Influence of accurate and corrupted data with q = p ±ϵ for ϵ ∈ {0.05,0.1,0.2}.
More blue means more simulations with accurate data achieving higher Influence, more red
means the opposite.

Algorithm 1 Threshold Influence Filtering (TIF)

Input: Z , I , τ
Output: Z f

Initialize Z f = Z
for ∀i do

if I (zi , Z ) < τ then
Remove zi from Z f

end if
end for

samples.

3.3.1 Threshold Influence Filtering

A common filtering scheme would be to compute some performance score for each data

sample, rank them, then eliminate the samples with the worst performance score. We could

treat the Influence score the same way, resulting in the naive Threshold Influence Filtering

(TIF) scheme, as described in Algorithm 1.

With the analysis in the previous sections, we have a better understanding of the structure

of expected Influence values in an untrusted validation data regime. Unfortunately, this

does not tell us much about the TIF scheme, as the expected Influence score gives very little

information about the overall distribution of Influences. The TIF scheme is concerned with

which data samples are most likely to have the lowest Influence score. This is related to

higher moments in the distribution of Influences, which is difficult to analyze without strong

assumptions. Nonetheless, it only requires a single round of Influence computations. Let

g (n) be the computational complexity of computing a single Influence score when there are n
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Algorithm 2 Iterative Minimal Influence Filtering (IMIF)

Input: Z , I , τ
Output: Z f

Initialize Z f = Z
while minzi∈Z f I (zi , Z f ) < τ do

Remove argminzi∈Z f
I (zi , Z f ) from Z f

end while

Algorithm 3 Uniform Probabilistic Filtering (UPF)

Input: Z , I , α ∈R, β ∈ (0,∞)
Output: Z f

Initialize Z f = {}
for ∀i do

p = I (zi ,Z )−α
β clipped to [0,1]

With probability p, add zi to Z f

end for

training points, with O(g (n)) >O(n). Then, ignoring the complexity of sorting the Influence

scores, the computational complexity of the TIF scheme is O(n g (n)). TIF is also the most

intuitive way to approach filtering with Influence scores.

3.3.2 Iterative Minimal Influence Filtering

The TIF scheme suffers from a moving target problem. Suppose we run TIF to remove all the

data samples with negative Influence in one shot. Instead, if we were to remove them one at a

time, the Influences of the remaining samples will change, and some might become positive.

So the order of removal matters, and the data samples can have complicated relationships with

each other than affect Influence scores. We consider an "optimal" Influence filtering scheme,

in the sense that it will filter out data samples such that the resulting empirical risk minimizer

has the minimum possible risk on a filtered training set. We simply check the empirical risk for

every possible subset of the training set, down to some minimal number of samples necessary

for determining a model, and pick the subset which produces the model with the lowest

empirical risk. This would be an absurd proposition to attempt in practice, but we observe

that for this optimal subset, the set of samples that gets removed has some properties in terms

of Influence values. If we were to check the average Influence of each of these samples over

every possible ordering of removal, we would find that the average Influence of each point

must be negative. Furthermore, if we were to rank the average Influence of every sample in

every possible ordering of removal down to the minimum subset size, we would find that these

points have the lowest average Influence. These averages can be said to be the Shapley values

of Influence for each sample.

Unfortunately, computing Shapley values of Influence is still prohibitively computationally

expensive, but outside of some pathological counterexamples, filtering the data sample with
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the minimum Influence score one at a time would not be much worse than filtering according

to minimum Shapley value, especially for large training sets. We call such a filtering scheme

Iterative Minimal Influence Filtering (IMIF), and the protocol is shown in Algorithm 2. As long

as the threshold for removal is 0, IMIF is guaranteed to improve the model risk. Because of this

property, and its relationship to the optimal filtering scheme using Shapley values, we say that

this scheme is a near-optimal greedy filtering scheme. Despite begin far less computationally

complex than computing Shapley values, the IMIF scheme is still significantly more complex

than TIF. IMIF can perform up to
∑n

i =1 n g (n) operations, which is O(n2 g (n)).

3.3.3 Uniform Probabilistic Filtering

Finally, we address the notion of "filtering according to expected Influence". Since we do not

have information about how the Influence values of samples from the accurate and corrupt

distributions should be ordered, we cannot address this with deterministic filtering schemes

like TIF or IMIF. Instead, we propose a probabilistic filtering scheme. The probabilistic fil-

tering requires a choice of CDF PZT (zi ) for zi ∈ ZT . We will show that a uniform CDF is the

most natural choice. We call the probabilistic filtering scheme with uniform CDF Uniform

Probabilistic Filtering (UPF), with protocol described in Algorithm 3. The choice of α and β

can be tuned as hyper-parameters to adjust the sensitivity of the filter, but the intuitive choices

are α = mini I (zi , Z ) and β = maxi I (zi , Z )−mini I (zi , Z ). We prove that, in the untrusted

data regime, UPF is expected to improve the true model accuracy, i.e. the accuracy evaluated

only on the target distribution, up to a certain limit determined by the expected Influence

score equilibrium set forth by the infinite and finite sample analyses.

Theorem 3.3.1. Let ZT be the training set with n samples and mixed according to p. Let the

validation set be mixed according to q with p < q. Then the expected probability of filtering

out a point za ∈ ZT drawn from Φa is less than the probability of filtering out a point zc ∈ ZT

drawn from ΦC , according to the UPF protocol.

Proof. From Theorem 3.2.4 we have

E[I (za , ZT )] > E[I (zc , ZT )]

⇒ E[I (za , ZT )]−α
β

> E[I (zc , ZT )]−α
β

⇒ E[
I (za , ZT )−α

β
] > E[

I (zc , ZT )−α
β

]

We note the computational complexity of UPF is O(n ∗ g (n)), the same as TIF.
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Figure 3.4: Crime dataset with AGN corruption. Noise mean 0. Noise variance ranges from 0
to 20. p and q are fixed at 0.75.
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Figure 3.5: Normalized difference in average Influence aggregated over all regression datasets.
p and q fixed at 0.75. Error bars are one standard deviation.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Noise Mean

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Av
g 

In
flu

en
ce

 o
f G

ro
up

Influences over Noise Mean: p=0.25
Group: Accurate
Group: Corrupted

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Noise Mean

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Av
g 

In
flu

en
ce

 o
f G

ro
up

Influences over Noise Mean: p=0.5
Group: Accurate
Group: Corrupted

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Noise Mean

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Av
g 

In
flu

en
ce

 o
f G

ro
up

Influences over Noise Mean: p=0.75
Group: Accurate
Group: Corrupted

Figure 3.6: (a) Crime dataset with AGN corruption. Noise variance is 0. Noise mean ranges
from 0 to 20. p and q fixed at 0.25. (b) Crime dataset with AGN corruption. Noise variance is 0.
Noise mean ranges from 0 to 20. p and q fixed at 0.5. (c) Crime dataset with AGN corruption.
Noise variance is 0. Noise mean ranges from 0 to 20. p and q fixed at 0.75.

3.4 Empirical Analysis

For our simulations we use a combination of real datasets, many from the UCI Machine

Learning Repository (Dua and Graff, 2017) and different forms of data corruption, which we
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outline here:

• Regression

– Air Quality (De Vito et al., 2008)

– Communities and Crime (Crime) (Redmond and Baveja, 2002)

– Parkinsons Telemonitoring (Parkinsons) (Tsanas et al., 2009)

– Red Wine (Cortez et al., 2009)

– White Wine (Cortez et al., 2009)

• Classification

– Audit Risk (Audit) (Hooda et al., 2018)

– Banknote Authentication (Bank) (Dua and Graff, 2017)

– MNIST (Deng, 2012)

We provide a representative selection of data when it is not sensible to aggregate all the

datasets. For all the datasets, we removed attributes that were non-predictive, redundant, or

had a substantial number of missing values.

Data from these sources are treated as accurate. For corruption we use the following methods:

• Label Shuffle (LS): All labels in the dataset are shuffled uniformly prior to sampling. This

represents a common form of corruption due to human error.

• Uniform Input, Uniform Label (XuYu): Both input and label values are sampled from a

uniform distribution inside the bounding box of the data.

• Gaussian Mixture Input, Uniform Label (XgmmYu): Label values are sampled from

a uniform distribution inside the bounding box. The distribution of input values of

the data is approximated by a Gaussian Mixture Model. The input values of the data

are given equal weight and each Gaussian has the same covariance. We compute the

covariance of all the input values. We then compute the average density of the data as

D = volume of bounding box
# of data points . Finally, we normalize the covariance as Cov∗D

Tr(Cov) .

• Additive Gaussian Noise (AGN): Gaussian noise is added to the labels. This is only

applicable to regression data and is used for simulations related to the finite sample

regime.

3.4.1 Infinite Sample Regime

We check if empirical results match the predicted behavior in an infinite sample regime by

varying the training dataset mixture proportion p. In all experiments, validation is performed

56



Influence Filtering Chapter 3

0.2 0.4 0.6 0.8
P value

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125
 P

Change in P over P
UPF
TIF
IMIF

0.2 0.4 0.6 0.8
P value

1.0

0.5

0.0

0.5

1.0

1.5

 L
os

s/
In

iti
al

 L
os

s

Relative Change in True Loss over P

UPF
TIF
IMIF

Figure 3.7: Filter performance metrics averaged across all combinations of datasets with LS,
XuYu, and XgmmYu corruption. q value is fixed at 0.8. (a) Change in p value. Error bars are 1

2
standard deviation. A higher value is better. (b) Relative change in real loss, real loss being
the loss measured only against the target distribution. Error bars are 1

5 standard deviation. A
lower value is better.

on a large number of both accurate and corrupted data. We can then simulate a validation

dataset mixture according to q by taking an appropriately weighted combination of the aver-

age Influence on each group. The theory predicts that setting q = p should set the expected

Influences of accurate and corrupted training points to be equal. Figure 3.2 shows behavior

that is clearly consistent with theory, with low deviation from the predicted behavior. Unfortu-

nately, the simulations with the classification datasets produce more instability and thus don’t

demonstrate the theory on visual inspection. To show that the theory is consistent across

datasets, Figure 3.3 shows that when we are perturbed from the q = p regime, nearly every

simulation produces behavior consistent with the theory: when p < q , accurate data achieves

a higher Influence score, and vice versa when p > q .

3.4.2 Finite Sample Regime

We check if empirical results match the predicted behavior in a finite sample regime when

p = q . We set (µC −µT )2 = 0 by having the corrupted data draw samples from the same dataset

as the accurate data, but with mean 0 Gaussian noise added. This is sufficient to demonstrate

the theory. Although we do not estimate the variances of the model posteriors directly, we

simply note that increasing variance in the noise will result in an increase in the variance of the

posterior. Of course we cannot "de-noise" the accurate data, and the underlying distributions

are the same, so reversing the inequality is symmetric. It is clear that with finite samples,

increasing the variance of the noise will increase the variance of the corresponding model

posterior. We also expect that as the inequality becomes more pronounced, the difference in

expected Influence should increase. Figure 3.4 clearly reveals this separation for one particular

dataset. We include an aggregation of all the datasets in figure 3.5 to demonstrate that they

follow the predicted trend, i.e. the difference in expected Influences increases.
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Figure 3.6 demonstrates the correctness of Formula 3.4 when the variances are equal. We

observe that when the (2p −1) term is non-zero, the differences in average Influences increase

with the difference in means. The direction of this separation is reversed between p = 0.25 and

p = 0.75. Intuitively, there is no way to distinguish the target distribution from the corrupted

distribution, the labels are arbitrary. But if we do have some a priori knowledge about whether

or not the trusted distribution is the majority, this can help distinguish them. When p = 0.5,

the majority selection term (2p −1) is 0, so we expect no separation as is shown by Figure 3.6.

3.4.3 Incentives

Figure 3.3 demonstrates the robustness of the incentives when deviating from p = q . Such

an incentive mechanism will induce reports that asymptotically achieve p = q . Formula 3.4

modifies the location of this asymptote to some perturbation of p = q . Figures 3.4 and 3.6

clearly illustrate that this perturbation grows as the inequality becomes more pronounced.

Nonetheless, in real world settings this perturbation will be small, as is demonstrated by the

consistency of figure 3.3.

3.4.4 Filtering

We evaluate filter performance across many datasets for different p values and a fixed q =

0.8. For all filters, s is simply Influence. For UPF, α = min j s(z j , Z ) and β = max j s(z j , Z )−
min j s(z j , Z ). For TIF and IMIF, τ = 0. We consider two performance metrics: 1) The change

in the proportion p of accurate data in the training dataset, and 2) The change in real loss,

i.e. the loss evaluated against only accurate data. We consider real loss over validation loss

because it is the desired performance metric of the center. We observe in Figure 3.7 that

IMIF and UPF perform similarly for both metrics, granting a small improvement in p, but a

significant improvement in true loss (up to a 40% reduction), with IMIF performing slightly

better. UPF having comparable performance despite far lower computational complexity

than IMIF demonstrates the efficacy of the theory and suggests that probabilistic filtering

techniques may be under-explored. The surprising observation that TIF performs significantly

better in Figure 3.7 on the ∆p metric but worse in Figure 3.7 on true loss can be explained

by TIF naively removing points with a very small negative value, which if correctly classified

have the same effect on p as removing more influential points, but have little effect on the loss.

Filter performance becomes detrimental when p > q , as predicted by the theory.

3.5 Summary

We examine the use of Influence for the problem of data filtering, which is related to the

problem of incentive mechanism design, but different in that scores like Influence cannot be

used to exploit knowledge gaps between Agents’ prior and posterior beliefs. Instead, the scores

must reflect the actual properties of the data. Because of this difficulty, most data filtering
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schemes rely on a trusted validation data set for producing accurate scores and metrics. We

examine the setting when both the training data set and the validation data set are untrusted.

By analyzing Influence scores in the infinite sample limit, we obtain a straightforward result

that the expected influence scores of accurate data will only be greater than the expected

influence scores of corrupted data when the relative presence of accurate data is higher in the

validation data set. An alternative form of analysis in a finite sample regime demonstrates

that this result can be slightly modified depending on the variances of the model posteriors

produced by finite samplings of accurate or corrupt data.

Using this analysis we propose a probabilistic Influence based filtering scheme and compare

it to more straightforward deterministic filtering schemes, which would be the natural consid-

eration for a trusted validation data setting. We find that the probabilistic filtering performs

comparably to the far more computationally complex "near-optimal" deterministic filter.
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4.1 Introduction

In previous chapters we addressed Influence-based mechanisms for both crowdsourcing

and filtering. An important aspect of Influence-based mechanisms is that they operate on

a broader set of distributions than classical Peer Prediction mechanisms, which generally

operate only on categorical, or finite discrete, distributions because they rely on a notion

of report matching, i.e. the Agent and Peer report a sample from the same category. We

refer to such mechanisms as Peer Consistency mechanisms. Because they are restricted to

categorical distributions, they eschew any notion of locality among the categories. This

disadvantage presents a clear theoretical roadblock for applying such mechanisms to arbitrary

distributions, since continuous random variables are only understandable through measuring

local neighborhoods.

In this chapter, we present a novel framework for extending Peer Consistency mechanisms

to arbitrary distributions. We call such extensions Peer Neighborhood mechanisms. To our

knowledge, this is the only work that does so without assuming that the Center possesses

a priori knowledge of properties of the Agents or of the underlying distribution. We only

assume that Agents are rational and that they follow some reasonable belief update conditions,

which we will show admit a broad class of updates. By analyzing an extension of the Peer

Truth Serum, we prove that it can admit truthful Bayes-Nash Equilibria on the ex-ante game

produced by the mechanism.

4.1.1 Approach

A natural approach to extending Peer Consistency mechanisms to arbitrary distributions is to

discretize the space of reports and then apply the discrete mechanism as normal. Suppose the

Center is collecting temperature data from a set of Agents with sensors. A simple implementa-

tion would be to consider only the whole number of the temperature. This may be sufficient

for the Center’s needs if it is trying to model the temperature for a purpose that does not
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require a high degree of accuracy, like vacation planning, or if the sensors are not very accurate

themselves. It is also important to note that Agents are not incentivized to be perfectly truthful,

as decimal digits are irrelevant to the payments. The Center can also rely on the fact each

whole number temperature range is large enough that a significant number of truthful reports

would be in this range. Since Peer Consistency mechanisms pay for an exact match with a

Peer, a higher probability of matching means less volatile payments. But what if the Center

requires a much higher degree of accuracy in the reports, say up to thousandths of a degree?

The true probabilities of matching may be so small that the Center would have to collect

enormous amounts of data for the mechanism to reasonably approximate this probability

of matching via random Peer reports. This means much more volatile payments, which may

be unacceptable to a risk averse Agent. The volatility of the payments does not only affect

the Agents; the Center will have a harder time budgeting this crowdsourcing effort. We see

that the Center needs to strike a balance between the accuracy of reports and volatility of the

payments when implementing a Peer Consistency mechanism in this way. It is possible that

circumstances make it impossible to strike this balance.

The Center can improve on this paradigm by increasing the number of mechanisms it uses.

Consider again a Center collecting temperature data with a mechanism considering only

the whole number of the temperature. But now consider a second discretization with only

whole number ranges from n + 1
2 to n + 3

2 and the same mechanism applied to this discrete

set. For each of the two mechanisms, the range of values in each bin is the same, so one

can assume that the true probabilities of matching will be similar. The Center can scale the

payments from each mechanism by 1
2 to give approximately the same expected payoff, but for

the Agents there is a different pattern of payoffs. Suppose an Agent reports a value of n + 3
4 .

For one mechanism this matches with a range of Peer reports from n to n +1. For the other

mechanism this matches with a range from n + 1
2 to n + 3

2 . We see that the Agent will get the

full payment when matching with a Peer report in the intersection: the range n + 1
2 to n +1,

but only half payment for matching in the ranges n to n + 1
2 and n +1 to n + 3

2 . In this way, the

Agent’s incentive for reporting is refined to a smaller range without changing the volatility in

the payments.

This can be refined even further by adding more mechanisms with different discretizations.

The region where the Agent gets a payoff for every mechanism is the intersection of the regions

which contain the report across all the mechanisms. By construction, the intersection contains

the report, but in order for this combination of mechanisms to be truthful, the intersection

should not contain any other point. How can this be achieved? Instead of considering a

weighted sum of mechanisms, let’s consider a construction with equivalent payoff as randomly

selecting a single mechanism from a set of mechanisms, then taking the expectation over this

distribution. We can then consider a continuous distribution over a set of mechanisms, which

gives the level of refinement necessary to isolate a single point as the intersection.

But how does this construction correspond to the prior details? We have assumed that nearby

ranges of values have similar probabilities of matching, but this may not be the case. If an
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Agent believes that a small range of values has an extremely high probability, this can outweigh

the additional value achieved by matching across all the mechanisms. The applicability of

this multi-mechanism construction comes down to the reasonableness of the prior details

which guarantee incentive-compatibility. To evaluate this, we consider a prior detail setting in

which the Agents possess a prior belief about the distribution of truthful Peer reports, then

after observing a sample, they update to a posterior belief. Then the only considerations for

the prior details are the update conditions which an Agent must follow when constructing a

posterior from a prior and an observation. It is clear that a reasonable Agent should follow

some conditions. For example, on a discrete distribution the update should be consistent with

Bayes’ Rule. For a continuous distribution, it is less clear what constitutes "reasonable" update

conditions, but broadly there should be some notion of locality with respect to the observation,

i.e. probabilities of events should increase more the closer they are to the observation.

When considering a discrete mechanism to extend in this way, if the mechanism is incentive-

compatible with respect to some discrete update condition, we can present a general formu-

lation of sufficient update conditions based on this discrete update condition. To assess the

"reasonableness" of these conditions, we analyze a specific instance of this mechanism exten-

sion with respect to the Peer Truth Serum discrete mechanism (Faltings et al., 2014), which is

incentive-compatible with respect to the self-predicting update condition. We demonstrate

that the extension of the update condition still admits a broad class of updates, generally

following some locality, boundedness, and symmetry constraints. We show how to construct

some of these updates, which appear "reasonable". Finally, we will demonstrate empirically

that the incentives are clear and stable when Agents use these updates.

4.1.2 Model

In a crowdsourcing setting there is a Center that wishes to learn an arbitrary distribution Φ,

which we call the true distribution, but the Center can’t probe this distribution in a meaningful

way. The Center tries to learn the distribution by collecting reports from a set of independent,

self-interested Agents who can sample Φ to produce an observation. Because the Agents are

self-interested, they must be incentivized to produce reports that help the Center learn Φ.

The incentive an Agent experiences is a personal utility function that depends on the Agent’s

reporting strategy and a set of beliefs the Agent has about the setting, such as the distribution

Φ and the reporting strategies of other Agents. Agents always act rationally, so they will adopt

the reporting strategy which maximizes their expected utility under their current beliefs. The

Center’s goal is to choose a payment function which dispenses utility to the Agents in exchange

for reports, such that Agents will be incentivized to adopt "good" reporting strategies. In our

case, we seek truthful reporting, meaning Agents report their observations.

In the setting we consider, the Agent does not have a static set of beliefs. We refer to the

belief of the Agent about the true distribution before making the observation as π, the prior

belief. After making an observation o, the prior is updated to πo , the posterior belief. Prior to
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the data collection period, the Center also has its own belief about the true distribution, R,

which it makes public to the Agents. We refer to R as the public prior. It is assumed that these

probability measures are on a shared measurable space (Ω,Σ). When discussing arbitrary

distributions, we will assume that Ω = Rd for some d , and Σ = B(Ω), the Borel sets of Ω. At

the end of the data collection period, the Center will have received a set of reports {r }. For

each report, it randomly picks a Peer report and performs some comparison between the two

reports. This informs the payment for the report. This payment process is also made public to

the Agents.

4.2 Peer Neighborhood Mechanisms

4.2.1 Peer Consistency

In the original setting for Peer Consistency mechanisms, Φ is a categorical distribution, and

the mechanisms pay an Agent when its report matches with a randomly selected Peer report.

We formalize this concept:

Definition 4.2.1 (Peer Consistency). A Peer Consistency mechanism is a mechanism which

assumes some public prior R with categorical distribution, takes a report r from an Agent and

a report r r from a randomly chosen Peer, and pays the Agent τR (r,r r ) = f (r r )+ sR (r )∗1r =r r

where f depends only on r r and s is a non-negative scoring function.

When discussing the incentives of a Peer Consistency mechanism, this is typically in regards

to some update condition:

Definition 4.2.2 (Update Condition). Given a prior probability measure π, an observation o,

and a posterior probability measure πo , an update condition is a Boolean function S(π,πo).

We call S∗(π,πo) the natural update condition for some scoring function sπ as ∀x ̸= o :πo(o)∗
sπ(o) >πo(x)∗ sπ(x).

A notable example that we will use is the self-predicting update condition for the Peer Truth

Serum Radanovic et al., 2016. This is the natural update condition and is given by sπ(r ) = 1
π(r ) ,

so the condition is ∀x ̸= o : πo (o)
π(o) > πo (x)

π(x) .

Definition 4.2.3 (Update Process). Given a prior probability measure π and an observation

o ∈ Ω, an update process is a function U (π,o) = πo . We say an update process satisfies an

update condition S if ∀ω ∈Ω : S(π,U (π,ω)) is true.

Definition 4.2.4 (Incentive-Compatibility of Peer Consistency). A Peer Consistency mech-

anism with public prior R is considered incentive-compatible with respect to an update

condition S if an Agent, with prior set to R and an update process which satisfies S, believes

that for any observation o, their expected payment, over the Peers distributed according to

their posterior, is maximized by truthfully reporting o.
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Figure 4.1: An example of a partition family on R2 with θ representing translations of the bins:
β0(i ) transforms into βθ(i ). Partition families are used to construct Peer Neighborhoods.

Proposition 4.2.5. A Peer Consistency mechanism is incentive-compatible with respect to the

natural update condition.

Proof. Consider an Agent with prior π = R, observation o, and posterior πo . Suppose the

update satisfies ∀x ̸= o : πo(o)∗ sπ(o) > πo(x)∗ sπ(x). Then ∀x ≠ o : Er r∼πo [sR (o)∗1o=r r ] >
Er r∼πo [sR (x)∗1x=r r ] ⇒∀x ̸= o : Er r∼πo [τR (o,r r )] > Er r∼πo [τR (x,r r )].

4.2.2 Partition Spaces

Peer Neighborhood mechanisms place a layer of abstraction on top of Peer Consistency

mechanisms to introduce a notion of locality. They do so by considering a family of partitions

of the space of reports. A standard approach to applying a Peer Consistency mechanism to a

continuous distribution, such as a Gaussian distribution, is to pick some fixed discretization,

or partition. Each bin of the partition corresponds to a category for the mechanism. A truthful

mechanism for some update condition over a categorical distribution would then have a

bin-truthful Bayes-Nash Equilibrium over this continuous distribution if the Agent’s belief

update satisfies the update condition with respect to the bin-categories. An Agent would have

an equal incentive to report any value inside the bin containing the truthful report.

By considering a family of partitions rather than a single one, the incentives can be refined.

Consider a Gaussian distribution partitioned into integer length bins (n,n +1]. An incentive-

compatible Peer Consistency mechanism would then incentivize any report with the correct

integer value. If a second partition is introduced with bins (n+ 1
2 ,n+ 3

2 ], and the Agent satisfies
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the update condition for both partitions, the report is now incentivized to be within an interval

of length 1
2 , corresponding to the intersection of the truthful bins from each partition. We

will see that if the partition family is constructed correctly, this intersection can be refined to

contain only truthful report.

Definition 4.2.6 (Partition Family). A partition family T is a function which maps a set of

parameters θ ∈Θ to a partition, which is a set, of at most countable size, of measurable bins β

that are disjoint and cover Ω: T (θ) = {βθ(i )}i∈Z∗
θ

where Z∗
θ
⊆Z and βθ(i ) ∈B(Ω) such that ∀θ,⋃

i∈Z∗
θ
βθ(i ) =Ω and ∀i ̸= j , βθ(i )∩βθ( j ) = ;

A simple examples of a partition family over R2 is shown in Figure 4.1. The Center must have

some way of selecting a partition from the family. We have the Center pick the partition

randomly according to some distribution, which we call the partition selection distribution.

Definition 4.2.7 (Partition Selection Distribution and Partition Space). The partition se-

lection distribution is given by a probability measure Ψ over some measurable space (Θ,Σ),

where Θ is the set of parameters for the model family and Σ is some σ-field over Θ. Without

loss of generality, let Ψ be supported on Θ. We call the pair (T,Ψ) the partition space.

For ease of reading we will often use the bin selection function to identify the bin that contains

a particular point:

Definition 4.2.8 (Bin Selection Function). The bin selection function with respect to a partition

family T (θ) is a functionXθ :Ω→Z∗
θ

such thatXθ(z) = i if and only if z ∈βθ(i ).

The Bin Selection Function is well-defined as a result of the bins of each partition being

disjoint and covering Ω. It is important for the Center’s implementation that this function be

computable.

If an Agent is to have a strictly truthful incentive, there must be a non-zero probability of any

other report failing to match with the truthful report under the partition family. We call this

point-isolating.

Definition 4.2.9 (Point-isolating). A partition space (T,Ψ) is point-isolating over R if: ω1 ̸=ω2

in the support of R ⇒Ψ({θ :Xθ(ω1) ̸=Xθ(ω2)}) > 0.

Reports with a matching probability in R of 0 can result in infinite payments under some

Peer Consistency mechanisms. To avoid some degenerate payments, we impose the following

condition on the partition family:

Definition 4.2.10 (Bin-supported). A partition space (T,Ψ) is bin-supported over R if:

∀ω ∈Ω : Ψ({θ : R(βθ(Xθ(ω))) = 0}) = 0.
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In simpler terms, for any possible report, the probability of selecting a partition with a 0

R-probability bin containing the report is 0 in Ψ.

Proposition 4.2.11. ∀R, ∃(T,Ψ) such that (T,Ψ) is point-isolating and bin-supported over R

Proof. Suppose Ω =Rd , define T ∗(θ) = {∀n j ∈Z :
⊗d

j =1[n j +θ j ,n j +1+θ j )} and Θ =
⊗d

j =1[0,1).

Let Ψ be uniform over Θ. For all θ, we contract the partition T ∗(θ) by merging any bin with

probability 0 in R with the closest bin with positive probability in R, breaking ties with any

deterministic process. We call this new partition family T and claim that (T,Ψ) is point-

isolating and bin-supported over R.

By construction, (T,Ψ) is clearly bin-supported over R , as all bins with probability 0 have been

merged with bins of positive probability. Suppose two points ω1 ̸=ω2 are in the support of

R. Then there is a set of ω that separates them in T ∗ with probability ϵ> 0 in Ψ, but in order

for T to not be point isolating, the probability that the bin containing one of the points has 0

probability in R must be ϵ. The set of ω which places one of the points on the closed boundary

of a bin is clearly probability 0 in Ψ, and for all other θ separating the two points there exist

open sets around the two points that are contained within the bins, and there is a positive

probability in Ψ of picking partitions that separate the open sets. Because the points are in the

support of R, those open sets have positive probability in R, so the bins both have positive

probability, so they can’t be merged.

4.2.3 The Mechanism Extension

Now, we can introduce the Peer Neighborhood mechanism extension. First we must modify

the probability measures:

Definition 4.2.12 (Partitioned Probability Measure). Let π be a probability measure on

(Ω,B(Ω)). Let T (θ) be a partition of Ω. Then for i ∈Z∗
θ

, let the partitioned probability measure

πθ(i ) =π(βθ(i )).

We can then extend any Peer Consistency mechanism as follows:

Definition 4.2.13 (Peer Neighborhood Mechanism Extension). Given some Peer Consistency

mechanism with payment function τ, we define the bin-extension payment function with

respect to some partition T (θ) as τθR (r,r r ) = τRθ (Xθ(r ),Xθ(r r )). Then given some partition

selection distribution Ψ such that (T,Ψ) is point-isolating and bin-supported over R, the Peer

Neighborhood extension mechanism pays according to:

τΨR (r,r r ) = Eθ∼Ψ[τθR (r,r r )] (4.1)
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4.2.4 Incentive-Compatibility

Given some Peer Consistency mechanism with scoring function s, we wish to discover an

update condition S(T,Ψ) for which the associated Peer Neighborhood extension mechanism

is incentive-compatible. We suggested earlier that the incentivized report region could be

refined as long as the Agent is incentivized to be bin-truthful for all the partitions, so the most

straightforward condition is that S is satisfied with probability 1 in Ψ.

Definition 4.2.14 (Partition-Invariant Update Condition). Given a prior π, a posterior πo ,

a partition space (T,Ψ), and a Peer Consistency mechanism with scoring function s, the

Partition-Invariant (PI) update condition S(T,Ψ)
PI takes the form:

Ψ({θ : S∗(πθ,πθo}) = 1 (4.2)

Proposition 4.2.15. Given a Peer Consistency mechanism with payment function τ and scoring

function s, and given (T,Ψ) point-isolating over R, the Peer Neighborhood extension mechanism

τΨR (r,r r ) is incentive-compatible with respect to the update condition S(T,Ψ)
PI .

Proof. Let f (r r ) = 0 in τ w.l.g. Suppose τΨR (r,r r ) is not incentive-compatible w.r.t S(T,Ψ)
PI . Then

there exists an update process πo = U (R,o) which satisfies S(T,Ψ)
PI , but the expected payment

Er r∼πo [τΨR (o,r r )] < Er r∼πo [τΨR (x,r r )] for some x ̸= o. This implies that

Eθ∼Ψ[Er r∼πo [τθR (o,r r )]]

<Eθ∼Ψ[Er r∼πo [τθR (x,r r )]]

⇒Eθ∼Ψ[πθo(Xθ(o))∗ sRθ (Xθ(o)]

<Eθ∼Ψ[πθo(Xθ(x))∗ sRθ (Xθ(x))]

The partition space (T,Ψ) being point-isolating implies that Ψ({θ : Xθ(o) ̸=Xθ(x)}) > 0, so

there is a set of θ with positive probability in Ψ such that Ψ({θ : πθo(Xθ(o))∗ sRθ (Xθ(o)) <
πθo(Xθ(x))∗sRθ (Xθ(x))}) > 0. It follows directly that for this set of θ, S∗(Rθ,πθo) is false, violating

our assumption that U (R,o) satisfies S(T,Ψ)
PI .

While this update condition clearly guarantees incentive-compatibility of the Peer Neighbor-

hood extension mechanism, it is often stronger than necessary, and we will see that in some

cases it excludes simple update processes that have a truthful Bayes-Nash Equilibrium. We

present a more relaxed update condition:

Definition 4.2.16 (Partition-Expected Update Condition). Given a prior π, a posterior πo ,

a partition space (T,Ψ), and a Peer Consistency mechanism with scoring function s, the

Partition-Expected (PE) update condition S(T,Ψ)
PE takes the form:

∀x ̸= o :Eθ∼Ψ[πθo(Xθ(o))∗ sπθ (Xθ(o))]

>Eθ∼Ψ[πθo(Xθ(x))∗ sπθ (Xθ(x))]
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Proposition 4.2.17. Given a Peer Consistency mechanism with payment function τ and scoring

function s, and given (T,Ψ) point-isolating over R, the Peer Neighborhood extension mechanism

τΨR (r,r r ) is incentive-compatible with respect to the update condition S(T,Ψ)
PE .

Proof. This proof follows directly from the previous proof, in which we showed that if τΨR (r,r r )

is not incentive compatible with respect to S(T,Ψ)
PE , then

∃x ̸= o :Eθ∼Ψ[πθo(Xθ(o))∗ sRθ (Xθ(o)]

<Eθ∼Ψ[πθo(Xθ(x))∗ sRθ (Xθ(x))]

which violates the assumption that the update πo = U (R,o) satisfies S(T,Ψ)
PE .

Furthermore, we show that the PE condition is a relaxed form of the PI condition, in that any

update process which satisfies PI also satisfies PE.

Lemma 4.2.18. Given a partition space (T,Ψ) that is point-isolating over R, and a Peer Con-

sistency mechanism with scoring function s, any update process U (R,o) which satisfies the PI

extended update condition S(T,Ψ)
PI also satisfies the PE extended update condition S(T,Ψ)

PE .

Proof. Let πo = U (π,o), i =Xθ(o).

S(T,Ψ)
PI (π,πo)

⇒Ψ({θ : S∗(πθ,πθo)}) = 1

⇒Ψ({θ : ∀ j ̸= i :πθo(i )∗ sRθ (i ) >πθo( j )∗ sRθ ( j )}) = 1

Let jx =Xθ(x). Suppose S(T,Ψ)
PE is not satisfied, then ∀x ≠ o : Eθ∼Ψ[πθo(i )∗sRθ (i )] ≤ Eθ∼Ψ[πθo( jx )∗

sRθ ( jx )]. Then either Ψ({θ : ∀x ̸= o, jx = i }) = 1, which contradicts the assumption that the parti-

tion space (T,Ψ) is point-isolating, or Ψ({θ : ∀x ̸= o : jx ≠ i ,πθo(i )∗ sRθ (i ) < πθo( jx )∗ sRθ ( jx )}) >
0.

4.3 Analysis of Update Processes

We have constructed a framework that extends Peer Consistency mechanisms to arbitrary

distributions, but the crux of this extension is the strengthened update condition PE. We will

examine what types of update processes satisfy this condition, but we must first address a

practical concern which will restrict our update processes, namely whether or not an update

process is consistent with convergence of the posterior to the true distribution.
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4.3.1 Update Convergence

When an Agent makes on observation and computes a posterior according to some update

process, that process should generally bring the Agent’s estimate closer to the true distribution.

With finite observations, it is always possible that an Agent can observe a very unlikely se-

quence, leading to a bias in the posterior. But in the limit of infinite observations, the posterior

should converge to the true distribution. We then wish to describe update processes which

can be performed iteratively to converge to the true distribution.

Definition 4.3.1 (Convergent Update Process Sequence). Consider a sequence of update

processes Ui for all i ∈Z+. The sequence is convergent if, when the sequence {Ui } is applied

iteratively to a sequence of i.i.d. observations {oi } sampled from the true distribution, the

sequence of posteriors converges in distribution to the true distribution.

In order to get a better grasp on such update processes, we will restrict ourselves to a particular

type of update process, which we call additive:

Definition 4.3.2 (Additive Update). An update process πo = U (π,o) is additive if πo = (1−α)∗
π+α∗Ko where Ko is a probability measure which we call the update kernel, and α ∈ (0,1).

Often we will refer to an update process of this form simply by referring to the update kernel.

The Agent picks (1−α) to represent the Agent’s confidence in the accuracy of its prior.

Suppose an Agent were to observe a sequence of samples from the true distribution, and

update after observing each sample. Assuming the samples are i.i.d. from the true distribution,

it would be unreasonable for the Agent to treat the sequence differently than if they had seen

the observations in any other order, so all the update kernels should be given equal weight.

Given some additive update with α1, the next update must then have α2 = α1
1+α1

. A simple

choice for α1 would be 1
k for some positive integer k, so α2 = 1

k+1 . This process of decreasing α

like 1
n can be applied iteratively, and we refer to this as a linear additive update process:

Definition 4.3.3 (Linear Additive Update). An update process πo = Uk (π,o) is linear additive

if πo = k
k+1π+ 1

k+1 Ko . The linear additive update sequence is defined for a sequence of n

observations {oi }: π{oi } = Uk+n−1(Uk+n−2(. . .Uk (π,o1) . . . ,on−1),on) = k
k+nπ+ 1

k+n

∑n
i =1 Koi .

First we show that the convergence of this update process sequence depends only on the

structure of the update kernels. We say this update process sequence is prior agnostic:

Lemma 4.3.4. The linear additive update process sequence converges in distribution to the

same distribution as the average of the kernels: 1
n

∑n
i =1 Koi

d−→ X ⇐⇒ k
k+nπ+ 1

k+n

∑n
i =1 Koi

d−→ X .
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Proof. Assume 1
n

∑n
i =1 Koi

d−→ X , then ∀x, limn→∞ | 1
n

∑n
i =1 FKoi

(x)−FX (x)| = 0. Then ∀x:

| k

k +n
Fπ(x)+ 1

k +n

n∑
i =1

FKoi
(x)−FX (x)|

≤| k

k +n
Fπ(x)|+ | 1

k +n

n∑
i =1

FKoi
(x)−FX (x)|

≤| k

k +n
Fπ(x)|+ | 1

n

n∑
i =1

FKoi
(x)−FX (x)|

We have that Fπ(x) is bounded in [0,1], so limn→∞ | k
k+n Fπ(x)| + | 1

n

∑n
i =1 FKoi

(x) − FX (x)| =

limn→∞ | k
k+n Fπ(x)| ≤ limn→∞ | k

k+n | = 0. Therefore, k
k+nπ+ 1

k+n

∑n
i =1 Koi

d−→ X .

For the other direction, first we note that 1
n

∑n
i =1 FKoi

(x) = k
n(k+n) FKoi

(x)+ 1
k+n FKoi

(x) ≤ k
n(k+n) +

1
k+n FKoi

(x).

Assume ∀x, limn→∞ | k
k+n Fπ(x)+ 1

k+n

∑n
i =1 FKoi

(x)−FX (x)| = 0. Note that limn→∞ | k
k+n Fπ(x)| ≤

limn→∞ | k
k+n | = 0, so limn→∞ | 1

k+n

∑n
i =1 FKoi

(x)−FX (x)| = 0. Then ∀x:

| 1

n

n∑
i =1

FKoi
(x)−FX (x)|

=| k

n(k +n)
FKoi

(x)+ 1

k +n
FKoi

(x)−FX (x)|

≤| k

n(k +n)
FKoi

(x)|+ | 1

k +n
FKoi

(x)−FX (x)|

The limit of this expression is 0, so 1
n

∑n
i =1 Koi

d−→ X .

We now address the structure of the update kernel K . We will consider two types of kernels,

the first is a simple point mass. We call this the Empirical Update:

Definition 4.3.5 (Empirical Update). The Empirical Update is the additive update where

Ko(A) =1o∈A .

Proposition 4.3.6. The linear additive Empirical Update sequence is convergent.

Proof. Let E{oi } = 1
n

∑n
i =11oi∈A , be the Empirical Measure. The Empirical Measure converges

in distribution to the true distribution, from the Glivenko-Cantelli theorem (Cantelli, 1933;

Glivenko, 1933). It follows directly from Lemma 4.3.4 that the linear additive Empirical Update

process converges in distribution to the true distribution.

The second type of kernel we wish to address is a kernel with a continuous cumulative distri-

bution function (CDF). We call such updates continuous:

Definition 4.3.7 (Continuous Additive Update). An additive update is continuous if the CDF

FK of the update kernel K is continuous.
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We show that a linear additive continuous update process sequence is convergent if the

sequence of kernels satisfies a condition on the partial sums of their concentrations around

the observed samples:

Theorem 4.3.8. Let On = {oi }i∈[1,n] be a sequence of i.i.d random variables distributed with

CDF F (x). Let Koi be a continuous update kernel. Define Hn(x) = 1
n

∑n
i =1 FKoi

(x). Consider the

random variables Yi = |Xi −oi | where Xi is distributed according to Koi . Define Ci (ϵ) = P (Yi ≥ ϵ).

If ∀ϵ> 0 : limn→∞ 1
n

∑n
i =1 Ci (ϵ) = 0, then Hn

d−→ F .

Proof. Let EOn be the Empirical Measure. Assuming that ∀ϵ> 0, limn→∞ 1
n

∑n
i =1 Ci (ϵ) = 0, we

calculate upper and lower bounds on the partial sums of the CDFs of the kernels Hn(x):

Hn(x) ≥ 1

n

n∑
i =1
1{oi<x−ϵ}(1−Ci (ϵ))

≥ 1

n

n∑
i =1
1{oi<x−ϵ} − 1

n

n∑
i =1

Ci (ϵ)

= FEOn
(x −ϵ)− 1

n

n∑
i =1

Ci (ϵ)

⇒ liminf
n

Hn(x) ≥ liminf
n

FEOn
(x −ϵ)

⇒ liminf
n

Hn(x) ≥ F (x) at continuity points

Symmetrically:

Hn(x) ≤ 1

n

n∑
i =1
1{oi>x+ϵ}Ci (ϵ)

≤ 1

n

n∑
i =1

Ci (ϵ)

⇒ 1−Hn(x) ≥ 1− 1

n

n∑
i =1

Ci (ϵ)

≥ 1

n

n∑
i =1
1{oi>x+ϵ} − 1

n

n∑
i =1

Ci (ϵ)

= 1−FEOn
(x +ϵ)− 1

n

∞∑
i =1

Ci (ϵ)

⇒ liminf
n

(1−Hn(x)) ≥ liminf
n

(1−FEOn
(x +ϵ))

⇒ limsup
n

Hn(x) ≤ F (x) at continuity points

Therefore Hn(x)
d−→ F (x).
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The convergence of the linear additive continuous update process sequence with kernels

satisfying this condition follows directly from Lemma 4.3.4.

We present a very simply condition on the kernels which will satisfy Theorem 4.3.8. The

kernels merely need to have bounded support, with that bound converging to 0.

Corollary 4.3.9. Let ∆i = 〈δi ,1,δi ,2, . . . ,δi ,d 〉 with δi , j > 0 and limi→∞δi , j = 0. Let Ai = [oi −
∆i ,oi +∆i ] Suppose Koi (A) = 1. Then a linear additive continuous update process sequence

with these kernels is convergent.

Proof. Define Xi as the random variables distributed according to Koi and Yi = |Xi −oi |. Given

any ϵ > 0, from the convergence of ∆i , we have that ∃N such that ∀n > N , δn, j < ϵ. So

∀i > N , Ci (ϵ) = 0. Therefore limn→∞
∑n

i =1 Ci (ϵ) =
∑N

i =1 Ci (ϵ) ⇒ limn→∞ 1
n

∑n
i =1 Ci (ϵ) = 0. From

Theorem 4.3.8, the sequence of averages of the CDFs of the kernels Hn(x)
d−→ F (x). It then

follows directly from Lemma 4.3.4 that the update process is convergent.

4.3.2 Satisfying the Update Conditions

We now analyze update processes which satisfy our extended update conditions PI and PE.

Whether or not these conditions are satisfied depends heavily on the choice of scoring function

s. We choose to focus our attention to the Peer Neighborhood extension of the PTS, commonly

considered the canonical example of a Peer Consistency mechanism. We will then refer to the

extension as the Peer Truth Neighborhood Extension mechanism.

Definition 4.3.10 (Peer Truth Neighborhood Extension). The Peer Truth Neighborhood Ex-

tension (PTNE) mechanism is the Peer Neighborhood extension of the Peer Consistency

mechanism with scoring function sR (r ) = c
R(r ) where c is a positive constant, known as the

Peer Truth Serum.

The natural update condition for the PTS is ∀x ̸= o : πo (o)
π(o) > πo (x)

π(x) , known as the self-predicting

update condition.

We first prove that the Empirical Update satisfies PI for the PTNE, and therefore also PE:

Theorem 4.3.11. Given a partition space (T,Ψ) that is point-isolating and bin-supported over

R, the Empirical Update process satisfies S(T,Ψ)
PI for the PTNE mechanism.

Proof. The Empirical Update process yields πo = (1−α)∗R +α∗Ko . Let i =Xθ(o). Then ∀θ :

πθo = (1−α)∗Rθ+α∗K θ
o where K θ

o ( j ) =1 j =i . Then
πθo ( j )
Rθ( j )

= (1−α)+αK θ
o ( j )

Rθ( j )
=

(1−α)+ α
Rθ( j )

j = i

(1−α) j ̸= i
.

The assumption that (T,Ψ) is bin-supported over R ensures that Rθ( j ) > 0. Therefore, ∀θ :

∀ j ̸= i :
πθo (i )
Rθ(i )

> πθo ( j )
Rθ( j )

.
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The Empirical Update is perfectly reasonable and is used quite frequently in modeling, but an

Agent may want to make a continuous update as they may be unsure that their measurement

of the true distribution is precise. But with additive continuous updates, whether or not they

satisfy our update conditions depends on the structure of the partition space. We choose to

focus on partition spaces with a high degree of symmetry, which we call regular rectangular:

Definition 4.3.12 (Regular Rectangular Partition Space). A regular rectangular partition

space (T,Ψ) over a fundamental set Ω =Rd is one in which each bin is a rectangular prism with

side lengths {li }i∈[1,d ], i.e. ∀θ ∈Θ, T (θ) = {
⊗d

i =1[li ∗ (ni − 1
2 )+θi , li ∗ (ni + 1

2 )+θi )∀ni ∈Z} and

Θ =
⊗d

i =1[0, li ), with Ψ uniform over Θ.

This partition space is clearly point-isolating over any R as it is point isolating for all ω ∈Ω. We

will assume that R is such that this partition space is bin-supported over R.

4.3.3 Bin Edge Conditions

Let us consider some regular rectangular partition space. Let each bin have dimensions

L = 〈l1, l2, . . . , ld 〉. To simplify the notation, we will say the set [−L,L) =
⊗d

i =1[−li , li ) We define

the Bin Function B :Rd → {0,1} to be:

B(ω) =

1 ω ∈ [−L
2 , L

2 )

0 otherwise

so the Bin Function is just an indicator for a bin centered at 0.

Assume that an agent with prior and posterior π and πo respectively has PDFs fπ and fπo . It’s

not necessary that such PDFs exist, but we make this assumption for ease of presentation. Let

us define the overhead ∼ to be the operator such that for a function f , f̃ (x) = ( f ⊛B)(x), where

⊛ is the convolution operator. Then f̃π(x) is just the prior probability of a sample landing

in a bin centered at x, and same for the posterior f̃πo (x). We see that these functions can be

computed only using the CDFs, but it is useful to define them this way. The quantities we are

concerned with regarding the PI and PE conditions for the PTNE mechanism are the ratios

Q(x) =
f̃πo (x)

f̃π(x)
and the expected payment for reporting x is simply Q̃(x). If the update process

is additive continuous, then Q and Q̃ are continuous.

The PI condition gives us the following constraint. Let N = 〈n1,n2, . . . ,nd 〉 where ni ∈Z and

N ̸= 0. Then ∀x ∈ (o− L
2 ,o+ L

2 ] : Q(x) >Q(x+N ∗L) where ∗ is element-wise multiplication. Let

Qo(x) = Q(o +x). From the continuity of Q, it follows that for all i ∈ [1,d ] and all δi ∈ [− li
2 , li

2 ]:

Qo(δ1, . . . ,− li

2
, . . . ,δd ) = Qo(δ1, . . . ,

li

2
, . . . ,δd ) (4.3)

We see that these are equalities on every pair of opposing points on the boundary of the bin

centered at o.
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The PE condition simply constrains o to be the global maximum of Q̃. As long as the continu-

ous update kernel has mass at o and has sufficiently bounded support, if o is a local maximum

of Q̃, then it will be the global maximum. We’ll discuss what sufficiently bounded means later.

We write the PE constraint:

∇xQ̃|x=o = 0, ∇2
xQ̃|x=o < 0.

From the continuity of Q̃ we obtain conditions that are much less restrictive than for PI. Let

L−i be the vector L with entry li removed, and ∆i be the vector of δ j s with entry δi removed.

Then ∀i ∈ [1,d ]:

∫ Li
2

− L−i
2

Qo(δ1, . . . ,− li

2
, . . . ,δd )∂∆i

=
∫ Li

2

− L−i
2

Qo(δ1, . . . ,
li

2
, . . . ,δd )∂∆i (4.4)

We see that rather than having an equality for every pair of opposing points on the boundary

of the bin centered at o, we have a single equality for each opposing boundary surface of the

bin. This is equivalent to the constraints for PI in one dimension, since the opposing boundary

surfaces are just a single pair of points, but in higher dimensions it is much less constraining.

We also see that a continuous update kernel has "sufficiently bounded support" if it has

support within (o −L,o +L]. From now on we will refer to such an update kernel as bin-

bounded.

Failing the Partition-Invariant Update Condition

We will first show that it is impossible in general for a bin-bounded continuous update kernel to

satisfy both PI and for the associated linear additive update process sequence to be convergent

in dimensions higher than one. We will show the proof for two dimensions, but the same

argument applies to higher dimensions.

Lemma 4.3.13. Given a regular rectangular partition space on R2, let each bin have dimensions

L = 〈l1, l2〉. Let ∆ = 〈 l1
2 , l2

2 〉, and A = [z −∆, z +∆]. There is a prior π such that a continuous

update kernel must have bounded probability on A: Ko(A) < x < 1 in order to satisfy PI for the

PTNE mechanism.

Proof. We first note that if two or more bins β1 and β2 must have equal ratios of posterior to
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prior, it must have equal ratios of kernel to prior:

πo(β1)

π(β1)
=
πo(β2)

π(β2)

⇒ (1−α)+αKo(β1)

π(β1)
= (1−α)+αKo(β2)

π(β2)

⇒ Ko(β1)

π(β1)
=

Ko(β2)

π(β2)

If we place the corner of four bins on the observation point z, let the prior probabilities of

the four bins be Ar,u , Ar,b , Al ,u , Al ,b corresponding to the upper-right, bottom-right, upper-

left, and bottom-left corners. Consider also a bin boundary on o such that the left bin is

βl = [(o1−l1,o2− l2
2 ), (o1,o2+ l2

2 )) and the right bin isβr = [(o1,o2− l2
2 ), (o1+l1,o2+ l2

2 )). Consider

a prior such that π(βl ) = Al ,u + Al ,b and π(βr ) = r (Ar,u + Ar,b) where we can construct the prior

so r takes on any value in [0,1].

Now consider the probabilities of the kernel in the four corners of A: A∗
r,u , A∗

r,b , A∗
l ,u , A∗

l ,b . PI

requires that (A∗
r,u , A∗

r,b , A∗
l ,u , A∗

l ,b) =λ1(Ar,u , Ar,b , Al ,u , Al ,b). We apply the same PI constraint

to the centered left and right bins: Ko(βl ∩A) =λ2(Al ,u +Al ,b) and Ko(βr ∩A) =λ2r (Ar,u +Ar,b)

with λ2 <λ1. Suppose that at most 1−x fraction of the kernel probability is outside A. Then

we have the following inequalities:

(1−x)λ1(Al ,u + Al ,b) ≥ (λ1 −λ2)(Al ,u + Al ,b) ≥ 0

(1−x)λ1(Ar,u + Ar,b) ≥ (λ1 −λ2r )(Ar,u + Ar,b) ≥ 0

⇒ (1−x) ≥ 1− λ2

λ1
r > 0

⇒ x ≤ λ2

λ1
r < 1

With this we can prove that a continuous update kernel cannot allow for a linear additive

update process sequence that is convergent:

Theorem 4.3.14. Given a regular rectangular partition space on R2, there is a prior π and true

distribution Φ such that a continuous update kernel cannot satisfy PI for the PTNE mechanism

and admit a linear additive update process sequence that is convergent.

Proof. From Lemma 4.3.13, there is a prior π such that, in order to satisfy PI, there exists a

∆ such that if A = [z −∆, z +∆], the kernel value Ko(A) is uniformly bounded above. This

uniform bound is itself bounded above by r < 1, defined in Lemma 4.3.13 as the ratio of the

prior probabilities in the two bins to the right of o to the prior probabilities in the two bins

to the left of o. In order for the additive update with Ko to satisfy PI, this ratio r must be

invariant with respect to the linear update process sequence. Therefore, if the Agent wishes
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to update over a sequence of observations On with a sequence of kernels {Koi } such that

πi = k+i−1
k+i πi−1 + 1

k+i Koi , then all the kernels have the value Koi (A) uniformly bounded above

by r . Then limn→∞πn(A) ≤ limsupi Koi (A) ≤ r < 1. If the true distribution Φ is more heavily

concentrated inside A, such that Φ(A) = rΦ > r . Then limn→∞ |Fπn (x)−FΦ(x)| is uniformly

bounded below by rΦ− r > 0. Therefore, this update process sequence cannot satisfy the

condition in Theorem 4.3.8, and therefore cannot be convergent.

Satisfying the Partition-Expected Update Condition

We will now show that it is always possible to construct a sequence of continuous update

kernels that satisfy both PE and are convergent. We will construct these explicitly. First we will

restrict our construction so that all the probability of the kernel is within a bounded region

A = [x−∆, x+∆] which contains the observation point o, and where ∆ can be arbitrarily small.

From Corollary 4.3.9, we find that by allowing the sequence ∆i to converge to 0, this update

process sequence will be convergent. Thus it is sufficient to show that our kernel construction

satisfies PE.

Theorem 4.3.15. Given a regular rectangular partition space on Rd , for any prior π, there exists

a continuous update kernel that satisfies PE for the PTNE mechanism and is arbitrarily bounded

around a point o.

Proof. We are given the following bin boundary conditions for satisfying PE:

∫ Li
2

− L−i
2

Qo(δ1, . . . ,− li

2
, . . . ,δd )∂∆i =

∫ Li
2

− L−i
2

Qo(δ1, . . . ,
li

2
, . . . ,δd )∂∆i (4.5)

We will construct the kernel K x
o as having a PDF that is a pyramid with the peak at o and the

base at [x −∆, x +∆] with ∆ < L the dimensions of the bins. We prove that there exists an

x ∈ [o−∆,o+∆] such that the kernel satisfies PI for the PTNE mechanism. We will demonstrate

the construction on R2, but the argument is applicable to all dimensions.

Define Qx (ω) =
f̃K x

o
(ω)

f̃R (ω)
. We define S(x) as the integrals of Qx (ω) over the four edges of the

rectangle [o − L
2 ,o + L

2 ], with x being the location of the center of the base of the pyramid:

Sl (x) =
∫ l2

2

− l2
2

Qx (o +〈− l1

2
, y2〉)∂y2 Sr (x) =

∫ l2
2

− l2
2

Qx (o +〈 l1

2
, y2〉)∂y2

Sb(x) =
∫ l1

2

− l1
2

Qx (o +〈y1,− l2

2
〉)∂y1 Su(x) =

∫ l1
2

− l1
2

Qx (o +〈y1,
l2

2
〉)∂y1

To satisfy PE, according to the bin boundary conditions, we must find an x such that Sl (x) =

Sr (x) and Sb(x) = Su(x). Define Fh(x) = Sr (x)−Sl (x) and Fv (x) = Su(x)−Sb(x) as the horizontal

and vertical residuals. We observe that when x1 = o1 −δ1, Fh < 0, and when x1 = o1 +δ1,
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Fh > 0. Similarly, when x2 = o2 −δ2, Fv < 0, and when x2 = o2 +δ2, Fv > 0. The two functions

Fh(x) and Fv (x) satisfy the assumptions laid out in the Poincaré-Miranda Theorem on the box

[o −∆,o +∆] Miranda, 1940. Therefore, there exists an x in the box such that Fh(x) = 0 and

Fv (x) = 0, thus satisfying the PE condition.

In higher dimensions, the four S functions simply correspond to integrals of Q over the faces

of the rectangular hyper-prism. We can define functions Fi corresponding to the residuals in

S on opposing faces in the coordinate direction i , and the Poincaré-Miranda Theorem applies

as before.

The proof further suggest a method for constructing update kernels that satisfy PE. The kernels

have PDFs which are hyper-pyramids with a peak at z and a base at [x −∆, x +∆] for some

arbitrary positive ∆< L where L are the dimensions of the bins. Because Fi (x) is monotonic in

xi and ranges from negative to positive values, the function G(x) =
∑d

i =1 F 2
i (x) is convex and the

minimizer is at an x which satisfies
∑d

i =1 Fi (x) = 0. We know such an x exists, therefore applying

gradient descent to G(x) is guaranteed to converge to a solution. We write the definition for

these update kernels in two dimensions, as they are used in simulations.

Definition 4.3.16 (Pyramid Update Kernels in Two Dimensions). Given a regular rectangular

partition space in two dimensions with bin dimensions L and given some ∆ = 〈δ1,δ2〉 with

0 < ∆ < L, define the pyramid function Px,o,∆(z) as the height at z ∈ [x −∆, x +∆] ⊂ R2

of a pyramid with maximum height h = 3
4δ1δ2

at a location o ∈ [x −∆, x +∆] and a base on

[x −∆, x +∆]. Px,o,∆(z) = 0 for all other z ∈ R2. Note that the pyramid has volume 1, so∫
R2 Px,∆(z)d z = 1. Given some prior measure R and an observation o, compute x such that it

minimizes G(x) = F 2
h(x)+F 2

v (x) with Fh and Fv as defined in the proof of Theorem 4.3.15. From

this theorem, a kernel measure Ko,∆ satisfies the PE update condition if its PDF is Px,o,∆(z).

4.4 Simulations

We conduct simulations using the PTNE mechanism to demonstrate the accuracy and stability

of the incentives in settings with finite data for constructing models and finite peer reports.

We use artificially generated data to form the true and public distributions, which can then

be used to analyze expected payments and actual payments from samples. We present

two data models: 1) an Empirical distribution constructed by taking finite samples with

randomized frequencies, and 2) a continuous distribution constructed as a weighted sum of

Gaussian distributions, or a Gaussian Mixture Model (GMM). For the first model, Agents use

the Empirical Update, while for the second they update using Pyramid kernels as described in

Definition 4.3.16. In all cases, the partition space is regular rectangular.
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Figure 4.2: Expected payments for reports perturbed from the observation, computed over an
Agent’s posterior. Error bars are one standard deviation. In the 2D figures, red lines show the
location of the maximum expected payment.

4.4.1 Report Perturbation

We simulate the expected payments for an Agent reporting a point that is a perturbation

of the observation, meaning the payment for the observation itself is at 0. To generate the

distributions, we sample 5 values uniformly in [0,1) for 1D and [0,1)×[0,1) for 2D. For both the

True and Public Distributions, each value is weighted with an independent random variable
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Figure 4.3: Expected payments for reports perturbed from the observation, computed over
truthful Peer reports. Error bars are one standard deviation. In the 2D figures, red lines show
the location of the maximum expected payment.

in [0,1), and the weight vector is normalized. The kernel is given a weight of 0.5 in the update.

The bin size is 0.2 for 1D and
p

0.2×p
0.2 for 2D. The Partition Selection is just a translation by

a random variable sampled uniformly from a bin volume.
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Figure 4.2 shows the expected payments computed from the perspective of the Agent over the

posterior. The error bars show the standard deviation with respect to the Partition Selection

distribution. We observe that the Agent believes their payment will be maximized by truthfully

reporting the observation, as expected from the theory. Figure 4.3 shows the same expected

payments, but this time computed over a set of truthful Peer reports collected by the Center.

The expected payment from the Center’s side is not necessarily maximized at the observation

point. Since the public distribution is different from the true distribution, the observation

made by the Agent might be an over-represented point in the public distribution. If this is

the case, the Agent will be underpaid when compared against Peers reporting samples from

the true distribution, and some perturbation of the observation might pay better. One can

visually inspect the true, public, and kernel distribution figures in Section 4.4.3 to see how

the relationships between them produce the skewed figures. This does not matter for the

incentives in the ex-ante game that the Agents play, however, as it is an ex-post calculation.

4.4.2 Payment Stability
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Means and Variances of Payments over Bin Size

Figure 4.4: Smaller bins produce a larger variance in payments. Error bars are one standard
deviation squared.

We simulate the expectation and variance of payments with respect to bin size for the partition.

The distributions are all generated the same way as in the previous section, but with the
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bin size varying from 1
30 to 1 in intervals of 1

30 . The distribution figures can be found in

Section 4.4.3.

The bin size can affect the expected payment of the Agent in complicated ways when you take

into account that bin-bounded kernels must account for the bin size. From the perspective

of the Center, however, the bin size should not affect the expected payment. A smaller bin

means a lower probability of matching, but a proportionately higher payment when matching.

Intuitively, a smaller bin size will lead to higher variance in the payments. We demonstrate this

relationship in Figure 4.4. The stability of the payments could be a consideration for designing

the mechanism to take into account either Centers or Agents who aren’t risk-neutral.
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4.4.3 Distributions

Empirical Distribution, Empirical Update Figures 4.5 and 4.6 for Section 4.4.1: Values and

weights are treated as weighted delta functions. Expectations are taken over 200 Peer reports,

500 Partition Selection samples for 1D and 400 samples for 2D. Perturbations go from −1 to 1

in intervals of 1
30 for 1D, and from (−1,−1) to (1,1) in intervals of 1

10 × 1
10 for 2D.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
CDF

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

PDF

True Distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
CDF

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3
PDF

Public Distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
CDF

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
PDF

Kernel Distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
CDF

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

PDF

Posterior Distribution

Figure 4.5: True, Public, Kernel, and Posterior distributions for 1D Empirical distribution,
Empirical update perturbation simulations.
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Figure 4.6: True, Public, Kernel, and Posterior distributions for 2D Empirical distribution,
Empirical update perturbation simulations.

GMM Distribution, Pyramid Update Figures 4.7 and 4.8 for Section 4.4.1: Values are treated

as means of Gaussian distributions. The variance in 1D is taken as 2∗mini ̸= j (|Vi −V j |) where

Vi and V j are from the value list. The covariance in 2D is taken as a diagonal matrix with

2∗mini ̸= j (|Vi −V j |) for each coordinate. The size of the Pyramid kernel base is the one tenth

the bin size. Expectations are taken over 200 Peer reports, 200 Partition Selection samples for

1D and 64 samples for 2D. Perturbations go from −1 to 1 in intervals of 1
30 for 1D, and from

(−1,−1) to (1,1) in intervals of 1
8 × 1

8 for 2D.

83



Chapter 4 Peer Neighborhoods

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.25

0.50

0.75

1.00
CDF

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4
PDF

True Distribution

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.25

0.50

0.75

1.00
CDF

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

PDF

Public Distribution

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.25

0.50

0.75

1.00
CDF

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

10

20

30

PDF

Kernel Distribution

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.25

0.50

0.75

1.00
CDF

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

PDF

Posterior Distribution

Figure 4.7: True, Public, Kernel, and Posterior distributions for 1D GMM distribution, Pyramid
update perturbation simulations.
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Figure 4.8: True, Public, Kernel, and Posterior distributions for 2D GMM distribution, Pyramid
update perturbation simulations.
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Empirical Distribution, Empirical Update Figure 4.9 for Section 4.4.2.
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Figure 4.9: True, Public, Kernel, and Posterior distributions for Empirical distribution, Empir-
ical update bin size simulations. The Kernel and Posterior distributions are taken with the
largest bin size.
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GMM Distribution, Pyramid Update Figure 4.10 for Section 4.4.2.
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Figure 4.10: True, Public, Kernel, and Posterior distributions for GMM distribution, Pyramid
update bin size simulations. The Kernel and Posterior distributions are taken with the largest
bin size.

86



5 Continuous Truth Serum

5.1 Introduction

5.1.1 Improving Peer Neighborhoods

Peer Neighborhoods are a powerful framework for extending Peer Consistency mechanisms.

We show how the choice of partition space determines a locality structure around each possible

report, and the update condition which induces incentive-compatibility is required to follow

this update structure. Paradoxically, this suggests that the framework of Peer Neighborhoods

may be too powerful: the fact that the locality structures are mostly unconstrained means

that Agents must be able to adapt their updates. Even when the partition space is regular

rectangular and one-dimensional, we see from the bin edge conditions for the PE update

condition in Equation 4.5 that the update kernel must contain the same ratio of probability

mass between the left and right sides of the observation as the ratio between the left and

right sides in the prior. In essence, the regular rectangular partition space assumes that the

fundamental distance unit is the Lebesgue measure in the underlying space of reports, and

that the prior introduces some bias with respect to this measure that must be replicated in the

update. There is no a priori reason that the Lebesgue measure should be considered the most

fundamental measure to consider in the space of reports. Indeed, the Center can construct

the partition space to assert exceeding complicated measures on the space of reports. There

is no fundamental restriction in the theory demanding that the bins in a partition even be

connected. In this way, the Center can effectively introduce additional dimensionality to

the space by connecting distant regions. It’s easy to see that this can result in unreasonably

complex update conditions, where Agents must construct update kernels that add mass in

regions of the space at arbitrary distances from the observed sample, determined solely by the

Center and not be any a priori notion of reasonableness. But an a priori reasonable choice

does in fact exist: the shared public prior. The prior automatically suggests a locality structure

in terms of the probability measure. We will see following this concept leads to significant

conceptual improvements in the mechanism.

Another fault of the Peer Neighborhood framework is the problem of unobserved regions. In
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classical Peer Consistency, there is an inherent problem of unobserved categories. Suppose

there is a Peer Consistency mechanism operating on a categorical distribution. One of the

categories has a very small positive probability, but has never been observed, so is unknown to

the Center. There is still a positive probability that an Agent observes and reports this category,

but the Center has no baseline with which to evaluate this report. Let us consider the example

of the Peer Truth Serum, with payment function τPTS(r,r r,R) = f (r r )+ c1r =r r
R(r ) . Consider a

regime in which the True Distribution Φ is categorical with points {xi }, all with non-zero

probability, but the Center has never observed a category xa , so it is given 0 probability in R.

In such a regime, the PTS breaks down. If an Agent reports xa and the Peers are truthful, there

is a Φ(xa) > 0 probability that an Agent observes and reports xa and successfully matches with

a Peer report. The Agent is then paid 1
R(xa ) = 1

0 = ∞, so the expected payment from the Center

is infinite.

The same essential problem arises in Peer Neighborhoods. Suppose Φ has a continuous

random variable, but the Center constructs its prior with bounded update kernels, for example

the empirical update, so that there is an interval [0,b′) such that R([0,b′)) = 0 but Φ([0,b′)) > 0.

Now suppose the Center uses a regular rectangular partition space with bin length b < b′. This

partition space would violate the bin-supported condition, but this condition is only imposed

in the previous chapter to artificially prevent this problem. It is not a theoretical necessity.

Since Φ is absolutely continuous with respect to the Lebesgue measure, there exists an interval

(x, x +ϵ] ⊂ [0,b′) with x > 0 and ϵ< min(b,b′−x) such that Φ((x, x +ϵ]) = p > 0. The partition

selection distribution Ψ is Uniform on [0,b), so Ψ({θ : ∃i : (x, x+ϵ] ⊂βθ(i ) and βθ(i ) ⊂ [0,b′)}) ≥
min(b−ϵ,x,b′−x−ϵ)

b > 0. So there is a positive probability of an Agent observing a sample inside a

bin with prior probability 0, yielding an infinite expected payment.

5.1.2 Approach

As suggested, we consider using the prior to determine the locality structure. The natural

approach would be to construct a partition with each bin containing the same probability

mass in the prior. Let us consider an absolutely-continuous prior R over the real numbers with

strictly positive density, say the Normal distribution, with bins containing equal probability 1
n

for some n ≥ 2. Because the distribution has continuous CDF FR (x) = 1
2 (1+erf( xp

2
)), ∃x0 such

that FR (x1) = 1
n . Because the PDF fR (x) = 1p

2π
e−

x2

2 is positive everywhere, x0 is unique. So the

bin covering (−∞, x1) corresponds to the bin of probability 1
n in the left tail of the distribution.

Fixing the left end point −∞ and reducing x0 reduces the probability of the bin. Increasing x0

would increase the probability of the bin, so the left end point would need to be moved as well.

This would leave a gap in the tail (−∞, x0) with x0 < x1 such that R((−∞, x0)) < 1
n . Therefore the

only partition of this type with connected bins is {(−∞, x1), [x1, x2), . . . , [xn−2, xn−1), [xn−1,∞)}.

We find that it is impossible to construct a partition space with connected bins of probability
1
n that is point-isolating.

If the distribution is on a circle, on the other hand, it is possible to construct such a partition
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Figure 5.1: Blue and light-blue represent bins with fixed probability measure 1
n in R, with the

Gaussian density function fR (x) shown in orange. As the blue bins rotate around the circle
according to the parameter θ transforming into the light-blue bins, they deform to maintain
the 1

n probabilities.

space. Consider the circle to be the real line segment [0,1) with 1 identified with 0 so arithmetic

is taken modulo 1. Let R be the Uniform distribution on [0,1). If this were trapped on the

real line, the only possible bin of probability 1
n on the left tail of the distribution would be

[0, 1
n ), but now both the left and right end points of the bin can be shifted by a constant: [θ

mod 1,(θ+ 1
n ) mod 1). Such bins are unconnected on the real line but connected on the circle.

We can then construct a point-isolating partition space:

T (θ) = {[(θ+ i −1

n
) mod 1,(θ+ i

n
) mod 1) : i ∈ [1,n]}

Ψ = U ([0,
1

n
)])

If the distribution is not Uniform, the bin sizes will change as they rotate around the circle.

Figure 5.1 shows an example of rotating bins around a circle with a prior probability R with

Gaussian density fR (x).

Let us now compute the payment according to the Peer Neighborhood extension of PTS for a
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report r and a Peer report r r :

τΨR (r,r r ) = Eθ∼Ψ[τθR (r,r r )]

= Eθ∼Ψ[n1Xθ(r )=Xθ(r r )]

= nΨ({θ :Xθ(r ) =Xθ(r r )})

If the probability mass between r and r r is greater than 1
n on either side, then they will never

be in the same bin, so the expected payment is 0. Suppose the probability mass between r

and r r is p = |FR (r )−FR (r r )| or 1−|FR (r )−FR (r r )| < 1
n , then the probability in Ψ of r and r r

being in the same bin is 1−pn, so the expected payment is:

max(0,n(1−n ∗min(|FR (r )−FR (r r )|,1−|FR (r )−FR (r r )|)))

Let us rewrite this expression in terms of the probability mass contained by the bins b = 1
n :

max(0,
b −min(|FR (r )−FR (r r )|,1−|FR (r )−FR (r r )|)

b2 )

We see something curious in this reward function. The choice of b does not appear to have any

inherent constraints other than b ∈ (0, 1
2 ]. The strict structure imposed by the requirements

on the Peer Neighborhood extension has melted away. We also notice that the distance

measurement min(|FR (r )−FR (r r )|,1−|FR (r )−FR (r r )|) is specific to the case of a distribution

on a circle because the bins can wrap around. If we were to try to apply this reward function

to a distribution over the real numbers, this reward function would simply be:

max(0,
b −|FR (r )−FR (r r )|

b2 )

There does not appear to be an inherent reason why this reward function can’t be applied to a

distribution over the real numbers. How is this possible? It turns out the Center does not have

to partition the entire space prior to receiving reports. When the Center receives a report r

and randomly selects a Peer report r r , it only checks for two possibilities: 1) r and r r are in

the same bin, or 2) r and r r are not in the same bin. In effect, there are only two relevant bins

in this partition, the bin which contains r and the rest of the space.

We say that such a construction chooses a partition space tailored to a specific report r .

Consider such a partition space that covers all intervals which contain r and have fixed

probability b in R. We simplify the analysis by making a change of variables from r in the

real domain to q = FR (r ) in the quantile domain. Figure 5.2 shows how the bins in the real

domain correspond to fixed-width bins in the quantile domain. Finally, the Center can choose

the partition selection distribution as transformations according to FR in the real domain,

which correspond to uniformly random offsets of the bins in the quantile domain. We call the

subsequent reward function the tent function:

Tb,q (qq) = max(0,
b −|q −qq |

b2 ) (5.1)
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Figure 5.2: Blue and light-blue represent bins with fixed probability measure in R. In the
real domain, these categories transform into each other according to FR , but in the quantile
domain they transform with offsets. Taking the expectation over a uniform distribution of
these offsets, which is equivalent to taking the expectation over R in the real domain, produces
a payment taking the form of this tent function as in Equation 5.1.

The tent function determines payments for reports according to the mechanism in this paper,

which we call the Continuous Truth Serum. We first improve on the definition of the tent

function to accommodate delta functions, and we show how this form both replicates the Peer

Truth Serum for categorical distributions and addresses the unobserved-category problem. To
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show incentive-compatibility we present the expected payment from the perspective of an

Agent with a particular posterior belief. We then present an alternative form of this expected

payment with a change of variables into the quantile domain. The expected payment takes the

form of an integral over a new measure which we call the ratio measure, as it is closely related

to a Radon-Nikodym derivative. We prove the validity of this measure and the equivalence

of the expressions for the expected payment. By analyzing this form of the payment we

can more easily establish sufficient update conditions, without being much stricter than

necessary, for which the mechanism is provably BNIC. We justify the reasonableness of these

update conditions by comparing them to the update conditions for Peer Neighborhoods, and

by argument about the necessity of locality constraints for continuous distributions. The

conditions admit a broad class of updates, one of which is the same as the pyramid update

presented for Peer Neighborhoods, but with slightly different symmetry constraints. We

provide simulations using these updates to demonstrate the accuracy and stability of the

incentives over deviations from truthfulness and changes in mechanism hyper-parameters.

5.1.3 Model

Consider a setting in which there is some real world phenomenon represented by a true

distribution which a set of independent, rational, self-interested Agents {Ai } can sample. There

is a Center that wishes to learn this distribution with the Agents acting as data providers. There

is a single data collection period, at the start of which the Center publicizes its current estimate

of the distribution, known as the public prior R which is a probability measure on a shared

measurable space with the true distribution. Let the measurable space be (R,B(R)), and B(R)

are the Borel sets of R. We will also consider the quantile measurable space ([0,1],B([0,1])).

Agents have individualized distributions {πi } on the measurable space (R,B(R)), known as

prior beliefs. Agents choose whether or not to make a single observation o, sampling the true

distribution. They then update their prior beliefs to posterior beliefs {πi ,o}. Each Agent can

then report a value from R of their choice, or make no report, opting out. The Center then

pays each Agent for their report according to the incentive mechanism. The Agent believes

revealing their observation maximizes their expected payment due to the way the Agent

updates their prior to form their posterior. We call this incentive-compatibility. For proving

incentive-compatibility, we will assume that Agents are knowledge-less at the start of the data

collection period, so all Agent prior beliefs are set to R.

Notation and Definitions

In order to present the mechanism, we must first present some notation and definitions that

will be used throughout the paper.

Let FR (x) = R((−∞, x]) be the CDF of R . We write F−1
R (y) = inf{x ∈R : y ≤ FR (x)} as the standard

quantile function. Let F (x−) = limz↑x F (z) and FR (x+) = limz↓x F (z) be the left and right limits

of any monotonic function F (x) respectively.
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Definition 5.1.1 (Set Inverse Functional CDF). Given a measure R, the set inverse functional

CDF F−1
R : B([0,1]) →B(R) is given by:

F−1
R (A) =

⋃
y∈A

[F−1
R (y−),F−1

R (y+)] (5.2)

We briefly prove that F−1
R is Borel-measurable, in other words it maps Borel sets in [0,1] to

Borel sets in R:

Lemma 5.1.2. There are at most countable y ∈ [0,1] such that F−1(y+) > F−1(y−).

Proof. Since F−1
R (y) is monotonic, y1 ̸= y2 ⇒ (F−1

R (y1−),F−1
R (y1+))∩ (F−1

R (y2−),F−1
R (y2+)) =

;.

Proposition 5.1.3. A ∈B([0,1]) ⇒ F−1
R (A) ∈B(R)

Proof. From Lemma 5.1.2, there are at most countable y ∈ A such that F−1
R (y) ̸= {F−1

R (y)}. Let

us denote Y to be the set of such y . Then F−1
R (A) = F−1

R (A)∪ (
⋃

y∈Y [F−1
R (y−),F−1

R (y+)]). From

the monotonicity of F−1
R , A ∈B([0,1]) ⇒ F−1

R (A) ∈B(R). The second term is a countable union

of closed intervals, which is clearly in B(R).

Consider uniform distributions U ([a1, a2)) over intervals [a1, a2) ⊆ [0,1), a1 ≤ a2 defined by

the CDF:

FU ([a1,a2))(x) =


0 x < a1

x−a1
a2−a1

a1 ≤ x < a2

1 x ≥ a2

Let Û be the set of all random variables with such distributions. We define the randomized

inverse quantile map Q−1
R :Ω→ Û:

Definition 5.1.4 (Randomized Inverse Quantile Map). The randomized inverse quantile map

of x over R is given by Q−1
R (x) = y ∼U ([FR (x−),FR (x+))).

If FR is continuous at x, Q−1
R maps it to a random variable that is deterministic, i.e. distributed

according to a point mass. If FR has a step at x, corresponding to a point mass in R , Q−1
R maps

x to a uniform random variable over the interval of the step.

The theory in the paper uses distances between values in the quantile space. In the most

general theory, distributions can be defined on circles, which can be considered a subset of

R modulo 1 over addition, and the distribution is invariant to translations. On a circle, the

distance between 2 points q1 and q2 in the quantile space would be min(|q1−q2|,1−|q1−q2|)
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rather than simply |q1 − q2| to capture the cyclic nature of the CDF. We do not present the

theory for the case of distributions on circles, but we note when small modifications can be

made to produce such a theory.

5.2 A Continuous Truth Serum

5.2.1 The Mechanism

The Continuous Truth Serum is a novel incentive mechanism that operates directly on arbitrary

real distributions of one variable. The theory is extendable to joint distributions, but we focus

on one dimension to demonstrate the principle. The core of the mechanism is the tent

function:

Definition 5.2.1 (Tent Function). Choose b > 0 and consider q1 ∈ [0,1]. Then the tent function

with width b centered at q1, Tb,q1 : [0,1] → [0, 1
b ], is

Tb,q1 (q2) = max(0,
b −|q1 −q2|

b2 )

where |q1 −q2| is specific to a non-cyclic distribution.

If the report r is within b probability of ±∞, then q1 = FR (r ) is within b of 0 or 1, so some

potential payments will be cut off. An Agent may then be incentivized to move their report

away from the boundary. Consider a Peer report r r as a random variable distributed according

to R. Then by mapping this random variable according to Q−1
R , we obtain a random variable

qq that is distributed uniformly in [0,1). If the public prior R is the true distribution, Agents

should receive a fixed expected payment for all reports. This is a related to a property known

as arbitrage-free which we elaborate on in Section 5.3.4. In order for the expected payments to

be fixed, one must effectively simulate a uniform distribution of qq across the domain of the

tent function. This amounts to integrating the tent function outside the boundaries, which

can be equivalently achieved by integrating the tent function over [0,1]:

1−
∫ 1

0
Tb,q1 (y)d y

If we consider mapping a report r to a probability q and a peer report r r to a probability

qq , then the tent function represents a point-wise peer distance score. In order to obtain

a single score from the tent function while using Q−1
R , we take the expectation over the

random variables produced by Q−1
R . There is a choice whether to take the inner expectation,

obtaining the mid-point of a step-discontinuity, or to take the outer expectation over the tent

function. We present the formulae for all four options S∗,∗
b,r , where the ∗s indicate inner or

94



Continuous Truth Serum Chapter 5

outer expectations for the report and peer report respectively. Let:

q1 = Ey1∼Q−1
R (x1)[y1] =

FR (x1−)+FR (x1+)

2

q2 = Ey2∼Q−1
R (x2)[y2] =

FR (x2−)+FR (x2+)

2

Then S∗,∗
b,x1

:Ω→ [0, 1
b ] is given by:

Si ,i
b,x1

(x2) = Tb,q1 (q2)−
∫ 1

0
Tb,q1 (y)d y +1

Si ,o
b,x1

(x2) = E
Q−1

R (x2)
[Tb,q1 (y2)]−

∫ 1

0
Tb,q1 (y)d y +1

So,i
b,x1

(x2) = E
Q−1

R (x1)
[Tb,y1 (q2)−

∫ 1

0
Tb,y1 (y)d y]+1

So,o
b,x1

(x2) = E
Q−1

R (x1)
[ E
Q−1

R (x2)
[Tb,y1 (y2)]−

∫ 1

0
Tb,y1 (y)d y]+1

We now introduce the Continuous Truth Serum:

Definition 5.2.2 (Continuous Truth Serum). Consider a particularized Agent report r and

a set of Peer reports {r r } submitted to a Center. Let R be the public prior. The Continuous

Truth Serum is a category of payment functions for which the Center picks a Peer report r r

uniformly at random from {r r }, then pays the following to the Agent:

τb(r,r r,R) = f (r r )+ c ∗S∗,∗
b,r (r r ) (5.3)

where f (r r ) can depend only on r r and c > 0.

In most calculations we will set f (r r ) = 0 and c = 1 without loss of generality, and simply refer

to the payment function by S∗,∗
b,r (r r ).

The mechanism can be understood very simply for a distribution R in which FR is continu-

ous. The Center simply evaluates the distance between the report r and the peer report r r ,

but the distance metric is given by R rather than the Euclidean metric on R. Suppose R is

the standard normal distribution with CDF FR (x) = 1
2 (1+erf( xp

2
)), so the distance metric is

d(r,r r ) = |erf( rp
2

)− erf( r rp
2

)|. But rather than paying inversely proportional to the distance

metric, the payment linearly decreases with the distance up to a resolution according to b, but

we will see how this resolution is not the same as the resolution for a discretization, because

an infinitely small b is not a requirement for strictly truthful incentives.

5.2.2 Replicating the Peer Truth Serum

We examine the regime of the Peer Truth Serum to show that the Continuous Truth Serum is a

valid extension. We assume the true distribution is categorical, and the Center has identified
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Figure 5.3: For a categorical distribution, mapping the report to q in the middle of the left and
right limits allows the tent function to be contained entirely inside the step interval with small
enough b. The tent function integrates to 1, so integrating over Q−1

R (r ) lets the mechanism
pick up the length of the step interval, reproducing the Peer Truth Serum.

all the categories in the support. We restrict the embedding of the fundamental set to within

R, but we will see that higher dimensional embeddings can be useful. Suppose there are n

categories with points {xi }i∈[1,n] in increasing order in the embedding, and R(xi ) > 0 for all i .

This yields a CDF FR (x) which is a sum of step functions. We calculate the payments according

to the CTS for all options of S∗,∗
b,r , first only for reports not on the boundary, meaning r = xi for

i ∈ (1,n):

Si ,i
b,r (r r ) =

 1
b r = r r

0 otherwise

Si ,o
b,r (r r ) =

 1
R(r ) r = r r

0 otherwise

So,i
b,r (r r ) =

 1
R(r ) r = r r

0 otherwise

So,o
b,r (r r ) =


1

R(r r ) − b
3R(r r )2 r = r r

b
6R(r )R(r r ) r = xi ,r r = xi±1

0 otherwise
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We note that these calculations depend on the choice of b. For Si ,i and Si ,o , the tent function

is placed in the center of the step. In order for the tent function to isolate each category, it is

necessary that b ≤ mini R(xi )
2 . But for Si ,i , as long as the category is isolated, the information

contained in FR is destroyed; the length of the step is lost. This choice cannot function as a

valid extension.

When the outer expectation is taken with respect to the mapping of the report r , the support

of the tent function can extend outside the boundaries on the first and last categories in the

embedding. We write the equations for So,i
b,r (r r ) and So,o

b,r (r r ) when r = x1, with the case of

r = xn being symmetric:

So,i
b,r (r r ) =

 1
R(r ) + b

6R(r ) r = r r
b

6R(r ) otherwise

So,o
b,r (r r ) =


1

R(r r ) − b
3R(r r )2 + b

6R(r ) r = r r
b

6R(r )R(r r ) + b
6R(r ) r = x1,r r = x2

b
6R(r ) otherwise

We see that taking the outer expectation over the report results in error terms from the bound-

aries and from neighboring categories. While these error terms vanish as b goes to 0, cor-

rectly reproducing the PTS, Si ,o
b,r (r r ) reproduces the PTS exactly with only the upper bound

b ≤ mini R(xi )
2 . Consider an Agent report r = xi and Peer report r r = x j . Figure 5.3 shows how

Si ,o
b,r (r r = r ) produces a payment by placing the peak of the tent function in the center of the

step, and with b small enough, the support of tent function is contained in that interval. Since

Q−1
R (r ) is uniform over the length of the step, it is weighted by 1

R(r ) , which exactly reproduces

the payment function for the Peer Truth Serum Radanovic et al., 2016.

Addressing Unobserved Categories

We have already seen how both the Peer Truth Serum and the Peer Neighborhood exten-

sion generally do not address the problem of unobserved categories or regions, leading to

degenerate expected payments. We now show how the Continuous Truth Serum addresses

this problem. We examine how the CTS handles this in the case of a categorical distribution,

but the principle applies generally to any component of R that is orthogonal to Φ. Let Φ

be a categorical distribution embedded in R with n categories {xi } in increasing order, all

with positive probability. Suppose R has positive probability on all categories except x1 and

xa for some a ∈ (2,n). The Center chooses b ≤ min{xi :R(xi )>0} R(xi )
2 . Then Q−1

R (xa) is a random

variable distributed according to a point mass at qa = FR (xa−1) = FR (xa−1+) = FR (xa+1−), and

Q−1
R (x1) is a random variable distributed according to a point mass at 0. So the payment for a

match would simply be evaluating the tent function at its peak in both cases, or 1
b . If Agents

report truthfully, matching is probability Φ(xa) and Φ(x1) respectively, so the contributions

towards the expected payment are Φ(xa )
b and Φ(xa )

b respectively. For the case of xa , if the
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peer is xa−1 or xa+1, then Q−1
R (xa−1) ∼ U ((FR (xa−1−),FR (xa−1+)]) = U ((FR (xa−1−), qa]) and

Q−1
R (xa+1) ∼U ((FR (xa+1−),FR (xa+1+)]) = U ((qa ,FR (xa+1+)]) respectively. The tent function

placed at qa overlaps with both these intervals in [qa −b, qa] and (qa , qa +b], yielding pay-

ments 1
2R(xa−1) and 1

2R(xa+1) respectively. Once again, to contribute to the expected payment we

must multiply by the probability of observing such a peer, so the overall expected payment is
Φ(xa−1)
2R(xa−1) + Φ(xa )

b + Φ(xa+1)
2R(xa+1) . For the case of x1, the same argument applies for the contribution

from x2, but there is no neighbor x0. Instead, we obtain the contribution from integrating the

tent function outside [0,1]. Since the peek of the tent function is at 0, and the tent function

is symmetric, that contribution is 1
2 , so the overall expected payment is 1

2 + Φ(x1)
b + Φ(x2)

2R(x2) .

We see that the Continuous Truth Serum avoids infinite expected payments when there are

unobserved categories by allowing partial matches with neighboring reports. Embedding the

categories in higher dimensions allows for arbitrary neighborhood structures.

5.3 Incentive-Compatibility

To show incentive-compatibility, we analyze the expected payments from the perspective of

an Agent. An Agent will receive a payment given some Peer report based on the public prior R ,

but it believes that the Peers will be distributed according to its posterior distribution P =πo

for some observation o and a prior π = R. We write the expected payment for the Agent as:

Ab(r ) = Ex∼P [Si ,o
b,r (x)] (5.4)

5.3.1 The Ratio Measure

We wish to change variables of integration from the real domain to the quantile domain. We

start by proving that changing variables between the real domain and the quantile domain

keeps the mapped points inside the boundaries set by the left and right limits of the CDF and

the inverse CDF. It may not be apparent, but this will be extremely useful for proofs throughout

this section.

Proposition 5.3.1. y ∈ [FR (x−),FR (x+)] ⇐⇒ x ∈ [F−1
R (y−),F−1

R (y+)]

Proof. We first prove the forward implication:

y ∈ [FR (x−),FR (x+)]

⇒y ≤ FR (x+) = FR (x)

⇒x ≥ F−1
R (y) = F−1

R (y−)

∀y ′ > y, x ′ < x : FR (x ′) ≤ FR (x−) < y ′ ⇒ F−1
R (y ′) ≥ x ′. Since this is true for all x ′ < x, then

F−1
R (y ′) ≥ x. Since this is true for all y ′ > y , it is true for the limit as y ′ → y, so F−1

R (y+) ≥ x.

Therefore F−1
R (y−) ≤ x ≤ F−1

R (y+).
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We now prove the backwards implication similarly:

x ∈ [F−1
R (y−),F−1

R (y+)]

⇒x ≥ F−1
R (y−) = F−1

R (y)

⇒y ≤ FR (x) = FR (x+)

∀y ′ > y, x ′ < x : F−1
R (y ′) > x ′ ⇒ FR (x ′) ≤ y ′.

Since this is true for all y ′ > y , FR (x ′) ≤ y .

Since this is true for all x ′ < x, it is true for the limit as x ′ → x, so FR (x−) ≤ y.

Therefore FR (x−) ≤ y ≤ FR (x+).

We now present the ratio measure, which represents the measure which the tent function is

integrated against to produce the expected payment according to an Agent’s posterior. Let

JR = {x ∈ R : R({x}) > 0} be the set of point masses in R, or step discontinuities in FR . Let

IR (x) = {y ∈ [0,1] : x ∈ F−1
R ({y})} such that it is {FR (x)} everywhere except at step discontinuities,

where it is the set of points in the half-open interval (FR (x−),FR (x+)]. Then we define the ratio

measure µ P
R

: B([0,1]) → [0,1] as follows:

Definition 5.3.2 (Ratio Measure). Consider two probability measures P and R, then the

probability measure µ P
R

, which we call the ratio measure with respect to P and R, is given by:

µ P
R

(A) = P (F−1
R (A) \ JR )+ ∑

x∈JR

P ({x})

R({x})
L (A∩ IR (x))

where L is the Lebesgue measure.

This is well defined because A ∈B([0,1]) ⇒ F−1
R (A) ∈B(R), and JR is at most a countable set,

so F−1
R (A) \ JR ∈B(R). We prove that this measure is a probability measure over the quantile

measurable space.

Lemma 5.3.3. µ P
R

is a probability measure over the measurable space ([0,1],B([0,1])).

Proof. µ P
R

is clearly non-negative, since R, P , and L are all non-negative measures. To

show that µ P
R

satisfies countable additivity, since P is a measure, it is sufficient to show that

A∩ A′ = ;⇒ F−1
R (A) \ JR ∩F−1

R (A′) \ JR = ;.

Let x ∈ F−1
R (A) \ JR . Then from Proposition 5.3.1, ∃y ∈ A : x ∈ [F−1

R (y−),F−1
R (y+)] and y ∈

[FR (x−),FR (x+)]. Since x ∉ JR , y = FR (x), so FR (x) ∈ A. Finally, µ P
Q

([0,1]) = P ((−∞,∞)) = 1.

While the ratio measure is similar to a Radon–Nikodym derivative, step discontinuities in FR

need to be handled separately because the tent function may cover only a portion of a step

discontinuity, and the relative weight of that portion must be included.

We can get a cleaner representation of Ab(r ) by considering an extension ofµ P
R

. After reporting

r and computing q = Ey∼Q−1
R (r )[y], the Agent takes an expectation over peers drawn according
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to P mapped into the quantile domain with Q−1
R , then computes the average score under the

tent function in the interval [0,1]. Outside the boundaries, the Agent takes the expectation over

an extended distribution. If the distribution of P is on R, the extension would be Lebesgue. If

the distribution of P is on a circle, the extension would be a periodic repetition of the inverse

CDF of P . We only show the analysis for the case of the distribution of P on a R, but the same

analysis applies to the case of the circle with minor adjustments:

Definition 5.3.4 (Extended Ratio Measure). For all A ∈ B(R), the extended ratio measure

µ̂ P
R

: B(R) → [0,1] is given by µ̂ P
R

(A) = µ P
R

(A ∩ [0,1])+L (A \ [0,1]) where L is the Lebesgue

measure.

Note that the extended ratio measure is not a probability measure, but it is still sigma-finite

and non-negative.

By using the extended ratio measure, we no longer need to include the extra terms in Si ,o
b,r (x),

so our final simplified expression for the expected payment becomes:

A ∗
b (q) =

∫
R

Tb,q (y)d µ̂ P
R

(y) (5.5)

This is a finite integral because Tb,q (y) is bounded and supported on finite interval, and µ̂ P
R

of

this interval is finite.

Theorem 5.3.5. A ∗
b (q) = Ab(r ) where q = Ey∗∼Q−1

R (r )[y∗].

Proof. It is clear that these are identical with respect to the extra terms, since they are just

integrating the tent function outside the boundaries. Then we are only concerned with the

interval [0,1] and the probability measure µ P
R

.

Consider some function f : [0,1] →R. Define f̃ :R→R such that f̃ (x) = E
y∼Q−1

R (x)
[ f (y)]. We will

show the conditions by which E
x∼P

[ f̃ (x)] = E
y∼µ P

R

[ f (y)]. This is true by the construction of µ P
R

if f =1{y<d} or f =1{y≤d} for some d ∈ [0,1]. Then, by linearity of expectation, this is true for

weighted sums of interval functions f =
∑

i ai 1αi where αi = (a,b) with a,b ∈ [0,1], b > a, and

the interval can be closed on either side or both.

Consider two functions f1 and f2. Then f̃1(x)− f̃2(x) = E
y∼Q−1

R (x)
[ f1(y)− f2(y)]. If f1 − f2 is

uniformly bounded, f̃1 − f̃2 has the same uniform bound: ∀y ∈ [0,1] | f1(y)− f2(y)| < ϵ ⇒
| f̃1(y)− f̃2(y)| < ϵ.

Given a continuous f1, it can be approximated with an arbitrary uniform bound by f2 as a sum

of interval functions. By shrinking the lengths of the intervals and applying the appropriate

weights, one can achieve an arbitrarily low uniform error bound, so f2 converges to f1 point-

wise. Therefore, the corresponding functions f̃2 converges to f̃1 point-wise. Both expectations
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are continuous in this limit, and if we let f1 be the tent function Tb,q (y), which is continuous,

then:

E
x∼P

[ E
y∼Q−1

R (x)
[Tb,s(y)]]

= E
y∼µ P

R

[Tb,q (y)]

=
∫ 1

0
Tb,q (y)dµ P

R
(y)

5.3.2 Report Optimization

The Agent wishes to know for which q the expression A∗
b (q) is maximized in order to choose a

report which will map to q and achieve the highest expected payment. We start by searching

for critical points of A∗
b . Only the left and right derivatives exist in general. Let Iq (y) =−1 y < q

1 y ≥ q
. Then Tb,q (y) = max(0,

b−(y−q)Iq (y)
b2 ). We evaluate the left and right derivatives of

Tb,q (y) with respect to q and obtain the following:

d

d q−Tb,q (y) =


− 1

b2 q −b ≤ y < q
1

b2 q ≤ y < q +b

0 otherwise

d

d q+Tb,q (y) =


− 1

b2 q −b < y ≤ q
1

b2 q < y ≤ q +b

0 otherwise

The left and right derivatives of A∗
b (q) are given by:

d

d q− A∗
b (q) =µ̂ P

R
((q, q +b))− µ̂ P

R
((q −b, q))+ µ̂ P

R
({q})− µ̂ P

R
({q −b})

d

d q+ A∗
b (q) =µ̂ P

R
((q, q +b))− µ̂ P

R
((q −b, q))+ µ̂ P

R
({q +b})− µ̂ P

R
({q})

In order for q to be at a local maximum, it is necessary that d
d q− A∗

b (q) ≥ 0 and d
d q+ A∗

b (q) ≤ 0.

From this we obtain the necessary condition:

µ̂ P
R

({q −b})− µ̂ P
R

({q}) ≤ µ̂ P
R

((q, q +b))− µ̂ P
R

((q −b, q)) ≤ µ̂ P
R

({q})− µ̂ P
R

({q +b})
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For this to be satisfied, it is further necessary that:

µ̂ P
R

({q −b})+ µ̂ P
R

({q +b}) ≤ 2µ̂ P
R

({q})

We will trivially satisfy this condition by requiring that an update only add mass in the region

(q −b, q +b) in the quantile domain, so µ̂ P
R

({q −b}) = µ̂ P
R

({q +b}) = 0. We then obtain the

simplified necessary condition:

|µ̂ P
R

((q, q +b))− µ̂ P
R

((q −b, q))| ≤ µ̂ P
R

({q})

We call this the balancing condition:

Definition 5.3.6 (b-Probability Balanced Update). An update from a prior R to a posterior P

is b-probability balanced around q if |µ̂ P
R

((q, q +b))− µ̂ P
R

((q −b, q))| ≤ µ̂ P
R

({q}). We say that it is

strictly b-probability balanced if |µ̂ P
R

((q, q +b))− µ̂ P
R

((q −b, q))| < µ̂ P
R

({q}) for µ̂ P
R

({q}) > 0.

In the case where |µ̂ P
R

((q, q +b))− µ̂ P
R

((q −b, q))| = µ̂ P
R

({q}), it is undetermined if q is a local

maximum, so we have to check that the second handed derivatives are ≤ 0. For these we

choose to require strict inequalities. Without this requirement, one can continue this analysis

indefinitely and still fail to acquire necessary and sufficient conditions, since there is no

guarantee that A∗
b (q) is analytic. We compute the handed second derivatives as the left

derivative of the left derivative and the right derivative of the right derivative:

d

d q− (Fµ P
R

((q −b)−)+Fµ P
R

((q +b)−)−2Fµ P
R

(q−))

d

d q+ (Fµ P
R

((q −b)+)+Fµ P
R

((q +b)+)−2Fµ P
R

(q+))

Proposition 5.3.7. If an update is strictly b-probability balanced update around q, and the

right and left second derivatives at q exist and are negative, q is the location of a local maximum

in A∗
b .

We omit a proof for this proposition, as it is trivial from its construction.

We will add an additional condition to simplify the requirements for global maximization:

Definition 5.3.8 (b-Probability Bounded Update). An update from a prior R to a posterior

P is b-probability bounded around q if the following is true. Let P =αR + (1−α)K for some

α ∈ (0,1) and some probability measure K , which we call the update kernel, then ∃q ′ where

q ∈ (q ′− b
2 , q ′+ b

2 ), such that ∀x in the support of K, Ey∼Q−1
R (x)[y] ∈ (q ′− b

2 , q ′+ b
2 ).

Proposition 5.3.9. If an update is b-probability bounded, then for any point x such that

Ey∼Q−1
R (x)[y] ∈ (q ′− b

2 , q ′+ b
2 ), if x is a local maximum then x is a global maximum, and the set

of all such x forms an interval.

In order to prove this, we first prove the following Lemma:
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Lemma 5.3.10. A∗
b (q) is absolutely continuous.

Proof.

|A∗
b (q1)− A∗

b (q2)| =
∫
R
|Tb,q1 (y)−Tb,q2 (y)|d µ̂ P

R
(y)

≤
∫ q2+b

q1−b

1

b2 |q1 −q2|d µ̂ P
R

(y)

≤ 2

b2 |q1 −q2|

for q1 < q2 w.l.g.

We now prove Proposition 5.3.9:

Proof. Outside (q ′− b
2 , q ′+ b

2 ), µ P
Q

=α∗L , and µ P
Q

((q ′− b
2 , q ′+ b

2 )) >α∗b. So d
d q+ A∗

b (q) ≥ 0

for q ≤ q ′− b
2 and d

d q+ A∗
b (q) ≤ 0 for q ≥ q ′− b

2 . A∗
b (q) is monotonically non-decreasing inside

(q ′− b
2 , q ′+ b

2 ). From Lemma 5.3.10, A∗
b (q) =

∫ q
∞

d
d y+ A∗

b (y)d y . So there exists some interval

inside (q ′− b
2 , q ′+ b

2 ) where A∗
b (q) is both locally and globally maximized. From monotonicity

of FR , this corresponds to some interval in the real domain.

We present the following corollary:

Corollary 5.3.11. At all continuity points of FR and with b < minx:R({x})>0
R({x})

2 , d
d q Fµ P

R
(q−b) =

d
d q Fµ P

R
(q +b) = 0.

Then the only requirement on the second derivative for continuity points is that d
d q−Fµ P

R
(q−) >

0 and d
d q+Fµ P

R
(q+) > 0. If strict b-probability balance is observed, this case is only relevant

when µ̂ P
R

({q}) = 0, so as long as µ P
Q

is "well-behaved" at that point, then a probability density

fµ P
R

(q) exists. We write this as a condition:

Definition 5.3.12 (Concentrated Update). An update from a prior R to a posterior P is concen-

trated around r if the following is true. Let q = Ey∼Q−1
R (r )[y]. Then either fµ P

R
(q) exists and is

positive, or µ P
R

({q}) > 0.

We will see that these three conditions ensure truthfulness.

Optimizing in the Real Domain

We’ve identified how to optimize the payment in the quantile domain, but the Agent is not

necessarily able to pick any point q in the quantile domain, it can only pick a report r in the
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real domain, which then gets mapped to a point in the quantile domain. At any point mass in

R, the report gets mapped to the mid-point of the step in FR . We wish to identify when such a

mid-point is a local maximum in the real domain. In this case, it is sufficient to show that the

midpoint achieves a higher expected payment than the endpoints.

Lemma 5.3.13. Let q = Ey∼Q−1
R (r )[y], q+ = FR (r+), and q− = FR (r−). If b ≤ q+−q−

2 and the update

from R to P is b-probability bounded around q, then A∗
b (q) > A∗

b (q+) and A∗
b (q) > A∗

b (q−).

Proof. In the interval [q−, q+], µ̂ P
R

(A) = d ∗L (A) where d is some positive constant. Then the

expected payment at those endpoints is:

A ∗
b (q−) =

∫ q−

q−−b
Tb,q (y)d µ̂ P

R
(y)+ d

2

A ∗
b (q+) =

∫ q++b

q+
Tb,q (y)d µ̂ P

R
(y)+ d

2

and the expected payment at the midpoint is simply d . The midpoint achieves a higher

expected payment if, when updating from R to P, additional probability mass is only placed in

a region which maps inside (q−, q+). This is trivially satisfied by the b-probability bounded

condition if b ≤ q+−q−
2 .

5.3.3 Sufficient Maximizing Conditions

We have constructed a set of sufficient conditions that guarantee that an observation point r

is the unique global maximizer of Ab(r ).

Theorem 5.3.14. Suppose R contains finite point masses and b < minx:R({x})>0
R({x})

2 . Then r is

at a unique global maximum of Ab if the update from R to P is concentrated around r , and for

q = Ey∼Q−1
R (r )[y], the update is b-probability balanced and bounded around q.

Proof. First suppose r is at a point mass in R . Then with the restriction on b, the b-probability

bounded condition ensures that the update kernel K is a point mass at r . The update simply

adds weight to the interval (q −b, q +b] in the quantile domain, so this is naturally consistent

with the b-probability balanced condition. There may be an interval inside (q −b, q +b] where

A∗
b is locally maximized, but Lemma 5.3.13 ensures that r is a unique local maximum in Ab .

Proposition 5.3.9 then ensures that the locally maximizing qs are global maximizers of A∗
b , so

r is a unique global maximizer of Ab .

Now suppose r is at a point of continuity in FR . Proposition 5.3.7 guarantees that q is a local

maximum. Then Proposition 5.3.9 guarantees that q is a global maximum, but there may be

an interval around q that is equally globally maximizing. But this implies that the K measure

of this interval, excluding end points, is 0. Since this interval contains q , this violates the

concentration condition unless q is the only value in the interval. Because the update is
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concentrated and r is a point of continuity in FR , Corollary 5.3.11 implies that q is a unique

global maximizer of A∗
b . Therefore, r is a unique global maximizer of Ab .

In practical terms, the b-probability bounded condition enforces a notion of locality in the

update, but the locality is determined according to the R measure rather than the Euclidean

metric on the report space. It is difficult to envision an incentive mechanism for arbitrary dis-

tributions that does not introduce a similar locality requirement on updates. The b-probability

balanced condition requires that the update be unbiased in the sense that the update kernel

should place equal mass on either side of the observed point. Finally, the concentration

condition requires that the kernel not place 0 probability mass around the observed point.

It would be unreasonable for an Agent to not follow this condition, as it would suggest that

the neighborhood of the observed point is relevant, but not the observed point itself. The

class of update kernels permitted by these conditions is extremely broad. Any update kernel

with support in the bound that places mass around the observation and balances the mass

on either side is permitted. These are also merely sufficient conditions, so the overall class of

incentive-compatible updates is larger.

Admitted Updates

We cannot present an exhaustive list of admitted updates, but we can compare the conditions

to those found in the previous chapter. Let us consider the case of one dimension. The first

observation is that for additive update kernels, the conditions from both the previous chapter

and this one require boundedness of the update kernel around the observed point, with the

bounds related to the sizes of the bins which contain the point. We also find that both have a

sort of balancing condition for the amount of probability the kernel can have on either side

of the point. In the previous chapter we found that, for a regular rectangular partition space,

the Partition-Expected update conditions can be described by conditions on the edges of the

bins which surround the observed point as shown in Equation 4.5. These bin edge conditions

in one dimension simply state that the ratio of the left kernel probability to the right kernel

probability must be the same as the ratio of those regions in the prior. In other words, the

fixed bin shape forces the Agent to maintain any probabilistic bias it has in the prior. If the

left and right bins had equal probability instead of equal width, this ratio would be 1, and the

symmetry condition would be that the kernel must place equal probability on either side of

the observation point. This is identical to the symmetry condition we just derived.

The Continuous Truth Serum mechanism admits a similar class of updates as the Peer Neigh-

borhood extension of the Peer Truth Serum. We discovered that it is always possible to

construct a valid update using pyramid kernels, or triangular in one dimension. The base of

the triangle is arranged so it satisfies the symmetry condition given by Equation 4.5. Now, the

triangle must simply be Isosceles with the peak at the observed point:

Proposition 5.3.15. Given a prior R with at most finite point masses, tent function width

b < minx:R({x})>0
R({x})

2 , and observation o, consider δl : FR (δl ) > FR (o)− b
2 and δr : FR (δr ) <
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FR (o)+ b
2 . Let δ = min(δl ,δr ) > 0. An update to posterior P =αR+(1−α)Ko , such that kernel Ko

has probability density function supported in [o−δ,o+δ] : fKo (x) = min( x−o+δ
δ2 , o−x+δ

δ2 ), satisfies

the conditions in Equation 5.3.14 so that o is a global maximizer of Ab .

Proof. By the definition of δ, the kernel Ko is b-probability bounded. Since Ko has positive

probability density at o, either fµ P
R

(FR (o)) exists and is positive because R has positive density

at o, or µ P
R

({q}) > 0 because R has density 0 or the density does not exist at o. Therefore, P

is concentrated around o. Finally, the density of Ko is symmetric about o, so the update is

b-probability balanced.

5.3.4 Additional Properties

We briefly address other important properties of the mechanism for practical viability.

Arbitrage-Free

Definition 5.3.16 (Arbitrage-Free). A mechanism is Arbitrage-Free if an Agent with posterior

equal to R believes that, if the peer reports are truthful, they will receive the same expected

reward for any report.

We denote the strategy outlined in this definition as the arbitrage strategy, which involves the

Agent failing to make an observation. We have occasionally touched on this concept when

discussing how to handle the tent function extending outside the boundaries of [0,1]. We see

that with our construction, the Continuous Truth Serum is Arbitrage-Free. To prove this we

present a number of statements which build towards the final proof:

Lemma 5.3.17. The CDF of the inverse map of a probability y is lower bounded by y: ∀y ∈ [0,1],

FR (F−1
R (y)) ≥ y

Proof.

x > F−1
R (y)

⇒FR (x) ≥ y

⇒FR (F−1
R (y)+) ≥ y

⇒FR (F−1
R (y)) ≥ y

Lemma 5.3.18. If the CDF of the inverse map of a probability y is strictly greater than y, then y

must be within the range of a jump discontinuity of the CDF: FR (F−1
R (y)) > y ⇒ F−1

R (y) ∈ JR
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Proof. Let x = F−1
R (y). From Proposition 5.3.1 we have y ∈ [FR (x−),FR (x+)]. We also have

y < FR (x) = FR (x+), so FR (x−) < FR (x+). Therefore x ∈ JR .

Definition 5.3.19 (CDF Range). Define LR = {0,1}∪FR ((−∞,∞)) to be the range of FR .

Lemma 5.3.20. If the inverse map of a probability y is in the set inverse functional of a set A and

is not at a jump discontinuity, then y must be in A and in LR : F−1
R (y) ∈ F−1

R (A) \ JR ⇒ y ∈ A∩LR

Proof. Choose any y ′ such that x = F−1
R (y ′) ∈ F−1(A) \ JR . From the definition of F−1

R and

Proposition 5.3.1, ∃y ∈ A such that x ∈ [F−1
R (y−),F−1

R (y+)] and y ∈ [FR (x−),FR (x+)].

Since x ∉ JR , y = FR (x), and from Lemma 5.3.17 and Lemma 5.3.18, we have FR (F−1
R (y ′)) = y ′.

Therefore y = y ′ and y ′ ∈ A.

Since y ′ = F (x), y ′ ∈ LR , so y = y ′ ∈ A∩LR .

Definition 5.3.21 (CDF Step Intervals). For x ∈ JR , define I o
R (x) = (FR (x−),FR (x+)) and I c

R (x) =

[FR (x−),FR (x+)].

Lemma 5.3.22. If a probability value y is in a set A with the closed CDF step intervals removed,

then the inverse map of y is in the set inverse functional of A with the jump discontinuities

removed: y ∈ A \
⋃

x∈JR
I c

R (x) ⇒ F−1
R (y) ∈ F−1

R (A) \ JR

Proof. Let x = F−1
R , from Proposition 5.3.1, y ∈ [FR (x−),FR (x+)], so x ∉ JR . Also y ∈ A ⇒ x ∈

F−1
R (A), so x = F−1

R (y) ∈ F−1
R (A) \ JR .

Lemma 5.3.23. The range of FR does not contain the open CDF step intervals: LR ⊂ [0,1] \⋃
x∈JR

I o
R (x)

Proof. y ∈ LR ⇒∃x ∈R : y = FR (x) = FR (x+).

x ′ > x ⇒ FR (x) ≤ FR (x ′−), so if x ′ ∈ JR , FR (x) ∉ I o
R (x).

x ′ < x ⇒ FR (x ′+) ≤ FR (x−) ≤ FR (x), so if x ′ ∈ JR , FR (x) ∉ I o
R (x).

Therefore, y = FR (x) ∉⋃
x∈JR

I o
R (x).

Proposition 5.3.24. The R measure of the set inverse functional of a set A with jump disconti-

nuities removed, is the Lebesgue measure of the set A with the closed CDF step intervals removed:

R(F−1
R (A) \ JR ) = L (A \

⋃
x∈JR

I o
R (x)) = L (A \

⋃
x∈JR

I c
R (x))

Proof. R(F−1
R (A) \ JR ) = L ({y ∈ [0,1] : F−1

R (y) ∈ F−1
R (A) \ JR }).

From Lemma 5.3.20, L ({y ∈ [0,1] : F−1
R (y) ∈ F−1

R (A) \ JR }) ≤L (A∩LR ).

Then from Lemma 5.3.23, L (A∩LR ) ≤L (A \
⋃

x∈JR
I o

R (x)).

From Lemma 5.3.22, L ({y ∈ [0,1] : F−1
R (y) ∈ F−1

R (A) \ JR }) ≥L (A \
⋃

x∈JR
I c

R (x)).⋃
x∈JR

I c
R (x)\

⋃
x∈JR

I o
R (x) is at most a countable number of points in [0,1], so L (A\

⋃
x∈JR

I o
R (x)) =

L (A \
⋃

x∈JR
I c

R (x)) = R(F−1
R (A) \ JR )

We can now prove that µ R
R

is the Lebesgue measure.
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Proposition 5.3.25. The ratio measure of R and R, µ R
R

, is the Lebesgue measure over [0,1].

∀A ∈B([0,1]) :µ R
R

(A) = L (A).

Proof. µ R
R

(A) = R(F−1
R (A)\ JR )+∑

x∈JR

R({x})
R({x})L (A∩ IR (x)) = R(F−1

R (A)\ JR )+L (
⋃

x∈JR
A∩ I c

R (x)).

From Proposition 5.3.24, µ R
R

(A) = L (A \
⋃

x∈JR
I c

R (x))+L (
⋃

x∈JR
A∩ I c

R (x)) = L (A).

The extension µ̂ R
R

simply places the Lebesgue measure outside [0,1], so µ̂ R
R

= L over R. The

expected payment is then computed by simply integrating the tent function over R, which is

always 1. Knowing that the mechanism is Arbitrage-Free, the Center can eliminate this "lazy

strategy" from the set of viable strategies by subtracting 1 from the payment.

Overcoming Cost of Effort

The mechanism being Arbitrage-Free allows it to address cost of effort. In many circumstances,

an Agent might experience some negative utility for playing a truthful strategy. Suppose that

for some Agent Ai , the cost of effort for that Agent is ei . Suppose the payment function takes

the form c ∗ (Si ,o
b,r (r r )−1) so the arbitrage strategy has 0 expected payment. An Agent playing a

truthful strategy and obeying the update conditions will clearly compute Er r∼P [Si ,o
b,r (r r )] > 1,

since there is a net increase in probability under the tent. In other words, the Agent expects

to be paid δi (o) > 0 for observing and truthfully reporting a sample o. A priori, the Agent

can calculate the expected utility for observing a sample and truthfully reporting it as ∆i =

Eo∼R [δi (o)] > 0. We see that the Agent will have a positive incentive to play this truthful strategy

as long as ∆i > ei . The Center can scale the payments with c to overcome some maximum cost

of effort, but this is an implementation decision for the Center based on numerous factors,

such as budget and the distribution of costs of efforts for the Agents.

5.4 Simulations

We conduct simulations to demonstrate the accuracy and stability of the incentives. In all

simulations, the true distribution is generated as follows. We take 5 values {vi } in increasing

order uniformly at random in [0,1), then sample those values uniformly at random 20 times.

Those samples are then used to produce a Gaussian mixture model. Each Gaussian is centered

on each of the samples and given equal weight. They all share the same variance which

is ( v5−v1
2∗(5−1) )2. To produce the public distribution R, this distribution is sampled 10 times;

let {si } be the set of samples in increasing order. The samples are then used to produce a

Gaussian mixture model in the same way as before, but with the variance set to ( s10−s1
2∗(10−1) )2. For

the Fixed Discretization Payments, the public distribution instead uses truncated Gaussian

distributions with the bounds at 4 standard deviations from the mean. Agents update to

their posteriors by taking 0.9∗R +0.1∗K where K is the kernel distribution, which is the

symmetric triangle. Computing K involves taking the CDF inverse map of [q − b
2 , q + b

2 ] where

q = Ey∼Q−1
R (o)[y] for an observation o. Let us call this interval [o − lb ,o + rb]. We define the
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b-radius as db = min(lb ,rb). The Agent update kernel K then has a PDF which is a symmetric

triangle in [o −γ∗db ,o +γ∗db] where γ ∈ (0,1). This update kernel trivially satisfies the

sufficient update conditions. All Figures 5.4-5.6 show expected payments taken over both

the true and posterior distributions for a fixed report, sampled from the true distribution.

A constant 1 is subtracted to eliminate arbitrage. Error bars are 1
5 standard deviations. The

underlying distributions used for each simulation can be viewed in Section 5.4.4.

5.4.1 Report Perturbation
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Figure 5.4: Expected payments over deviation from truthful. Green plot taken over 100 fixed
peer reports.

We simulate the payments for an Agent reporting a point that is a perturbation of the observa-

tion, putting the observation at x = 0. Figure 5.8 shows the distributions which produced the

results. Figure 5.4 shows the expected payments computed over the true distribution and the

Agent’s posterior distribution. The x-axis is scaled by db , so a deviation of 2∗db represents a

point where, for a uniform distribution, the tent function on one side would be completely

disjoint from the tent function centered at o. We observe that the Agent believes their pay-

ment will be maximized by truthfully reporting the observation, as expected from the theory.

There is no incentive to deviate from the truthful report. While the error bars only represent

one-fifth of a standard deviation, we see that the inherent variance is at a similar scale to the
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payments. Since the variance of the payments scales inversely with the number of peers, only

a small number of peers are required to make the variance scale significantly smaller than the

payment scale. While the true payments also appear maximized at the observed point, the

green plot shows this is not the case in general, especially with finite peer reports.

5.4.2 Tent Function Dependence
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Figure 5.5: Expected payments over tent width b. Green plot taken over 100 fixed peer reports.

We simulate the payments with respect to the width of the tent function: b. Figure 5.8 shows

the distributions which produced the results, with the Kernel and Posterior distributions only

being shown for the largest value of b. Figure 5.5 shows the expected payments computed over

the true distribution and the Agent’s posterior distribution. We observe that the payments,

computed over all distributions, decrease in variance as b is increased, which is to be expected

because the payment function becomes flatter. We note that, although the expected payments

over the posterior asymptotically decrease towards 0, the expected payments over the true

distribution start below 0. This will not always be the case, but it illustrates an example when

a region around the report is over-represented in the public distribution. Intuitively this

would result in negative expected payments, since reporting a point in an over-represented

region drives the public distribution even further away from the true distribution. We see

that a tighter tent function results in higher expected payments because the tent function is
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constructed to integrate to 1. For a Center designing a mechanism to overcome cost of effort,

this must be taken into account when scaling the payments.

5.4.3 Fixed Discretization Payments
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Figure 5.6: Expected payments over bin size for a fixed discretization. Plots averaged over 1000
observations from true distribution. This mechanism is only truthful up to the resolution of
the bins.

We compare the payments according to the tent function to payments made using the Peer

Truth Serum on fixed discretizations of the report space. Figure 5.10 shows the distributions

which produced the results. Figure 5.6 shows an analogous plot to Figure 5.5, with expected

payments computed for different widths of each "bin" in the discretization, normalized over

the bounds of the distribution. We see that the tent function payments obtain a similar scale

of variance compared to fixed discretizations, without suffering from the problem that the

reports are only reliably truthful up to a certain resolution. Rather than determining the

resolution of a "truthful" report, the width of the tent function only determines the precision

of the update required for truthfulness. We also observe the payments when the report is a

perturbation from the true report. Figure 5.7 shows an analogous plot to Figure 5.4, with a

fixed bin size of 0.02. We see that the reward from the perspective of the Agent is maximized in

the truthful bin, but there is a range of deviation that still produces this maximal reward.
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Figure 5.7: Expected payments over deviation from truthful with fixed discretization payment.
Green plot taken over 100 fixed peer reports.

5.4.4 Distributions

Report Perturbations Figure 5.8 shows the distributions used for simulations in Section 5.4.1.
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Figure 5.8: True, Public, Kernel, and Posterior distributions for Report Perturbations

Tent Function Dependence Figure 5.9 shows the distributions used for simulations in Sec-

tion 5.4.2.
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Figure 5.9: True, Public, Kernel, and Posterior distributions for Tent Function Dependence.

Fixed Discretization Payments Figures 5.10 and 5.11 shows the distributions used for simu-

lations in Section 5.4.3. The Kernel and Posterior distributions are excluded for simulation for

Figure 5.6 because the plots are averaged over many observations.
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Figure 5.10: True and Public distributions for Fixed Discretization Payments.
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Figure 5.11: True, Public, Kernel, and Posterior distributions for Report Perturbations with
Fixed Discretization Payments.
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6 Conclusion

This thesis explores two methods of novel incentive mechanism design, specifically the design

of Peer Prediction mechanisms. Peer Prediction mechanisms operate in the absence of

any baseline metrics a Center can use to evaluate Agent reports, but they often struggle

to accommodate arbitrary signal distributions. Most of the work in this direction has focused

on achieving mechanisms on more general distributions by making stricter assumptions

about prior details, increasing the the number and information embedded in Agent reports,

or increasing the number of independent signal distributions.

6.1 Influence

Chapter two of this work follow along these lines by effectively applying stricter prior details.

The additional restriction is that the Center is not trying to learn the signal distribution, but

to learn a lower dimensional mapping between the variables representing the "inputs" and

"labels" of the distribution, a classic supervised machine learning problem. We propose using

the statistical measure known as Influence as the basis for an incentive mechanism, and we

prove the mechanism’s incentive-compatibility under certain prior detail assumptions about

Agent belief updates. Specifically, we prove that a truthful Dominant Strategy Equilibrium

exists when the validation set is composed of data accurately sampled from the signal distri-

bution. It then follows that a truthful Bayes-Nash Equilibrium exists even in the absence of

this validation set, when the validation samples need to be taken from Agent reports.

In addition to proving incentive-compatibility of the Influence-based mechanism, we cover

a number of practical considerations for the implementation of such a mechanism. First

we show that, in the case of least squares regression models, the truthful Dominant Strategy

Equilibrium is maintained even if a fraction of the validation set is taken from Agent reports,

and we analytically prove a bound on this fraction. Second, we address practical concerns

about the computational expense of the mechanism. The computation of Influence for a

large set of Agent reports can be prohibitively computationally expensive for large models,

since each computation involves retraining the model. We demonstrate a theoretically sound
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approximation method, extending the approximation in Koh and Liang, 2017, using Taylor

expansions of the loss function. Third, we address economic considerations for the Center.

One application for an Influence-based incentive mechanism is federated learning, but the

economics of a federated learning system can be complex (Yu et al., 2020). It is important

that the Center have some budgeting guarantees that are related to the quality of the data

and the subsequent model. We show that the Center is capable of computing, a priori, an

expected budget for building a model, taking into account the utility a Center can receive

from constructing a model with a particular quality. This budgeting takes advantage of some

statistical properties of Influence and model loss with respect to the number of data points in

general. The budget can be computed exactly if Influences are computed sequentially with

each report, but this can introduce unacceptable computational expense. We demonstrate

how the Center can strike a balance between computation and budgeting accuracy with a

batch processing method, and show analytically how the Center can apply an appropriate

correction factor to undo the distortion from the batch processing on the expected budget.

Chapter three takes a brief aside from incentive mechanism design to consider other aspects of

Influence. We consider the problem of data filtering, which is related to incentive mechanism

design but has more stringent requirements. While a problem of incentive mechanism design

can be solved by identifying truthful reports when all Agents report truthfully, thus demon-

strating the existence of a truthful Bayes-Nash Equilibrium, a problem of filtering must be

able to identify truthful reports in the presence of non-truthful, or corrupted, reports. This is

similar to identifying Dominant Strategy Equilibria, but involves a more granular level of detail.

Even if truthful data is not perfectly identifiable in certain contexts, if it can be differentiated

from corrupted data, there is the potential to be able to improve the quality of the training set

through Influence-based filtering.

We mainly attempt to differentiate truthful data from corrupted data by analyzing their ex-

pected Influence scores. We first show that, in the limit of infinite samples, Influence has the

intuitive property that it gives higher expected scores to under-represented data in the training

set when compared to the validation set. If the validation set is cleaner than the training set,

in the sense that it has a higher proportion of truthful data, the expected Influence of truthful

data will be higher than the expected Influence of corrupted data. But the reverse is also true.

Unfortunately, this suggests that one cannot gain any "free lunch" from expected Influence:

filtering according to the expected Influence would cause the quality of the training set to

converge towards the quality of the validation set.

However, using another set of analysis, we show that under certain circumstances, perhaps

a "free snack" can be obtained. The analysis assumes that, given finite training samples,

optimal models form Gaussian distributions at input values. We see the "model posteriors"

are Gaussian. Under this assumption, we show that the expected Influence scores of truthful

or corrupted data depend on higher moments of the posteriors of the models produced by

each distribution. This is important for demonstrating the efficacy of Influence-based filtering

in a setting where Agents might add unbiased noise in an attempt to obfuscate their data for
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privacy reasons. In the limit of infinite samples, this unbiased noise would not allow you to

distinguish between noisy and clean samples, because they produce the same optimal model.

But the finite sample analysis shows that these are distinguishable with the Influence score

based on the fact that noisy samples would produce model posteriors with higher variance.

Another consequence of this analysis is that, if the model posterior produced by the truthful

and corrupted data are similar in variance, which might be the case of the corrupted data is

produced by a set of Agents colluding to disrupt the model with a fake model, the group with

the higher expected Influence score is determined by majority vote. This means that filtering

according to expected Influence can be slightly robust to malicious collusion. In general, the

finite analysis shows that under certain circumstances, the quality of the training set will not

converge exactly to the quality of the validation set, rather, it will converge to a quality that is a

slight perturbation of the validation quality. In this way, filtering the training set according to

expected Influence can sometimes outperform the baseline validation quality.

We conduct simulations of Influence scores with different models and datasets in both the

infinite sample and finite sample regimes, demonstrating that the theory and underlying

assumptions are robust. We use the theory to propose a novel probabilistic filtering scheme

and compare it to more intuitive deterministic filtering schemes, including a greedy but

computationally expensive filtering schemes that can be considered "near-optimal". We find

that the probabilistic filtering scheme obtains similar performance to the near-optimal filter

in a trusted validation set regime, despite having far lower computational complexity. which

obtains similar performance to a near-optimal filter in a trusted validation set regime, despite

having far lower computational complexity. We conduct simulations to empirically verify

the theoretical results for the infinite sample regime, finite sample regime, and the filtering

schemes, which we conclude are robust.

6.1.1 Future Work

Much of the analysis on Influence-based mechanisms is specific to certain models or loss

functions. The analysis on the robustness of the Dominant Strategy Equilibrium to some

Agent data in the validation set is based on the linearity of least squares regression models.

This analysis could be performed on a number of different salient loss functions with closed

form optimizers or optimizers which mix linearly. Optimizers that don’t satisfy the necessary

constraints can be examined empirically. As shown empirically in Koh and Liang, 2017,

sometimes the smooth Influence approximation can even be accurate for models with a high

degree of stochasticity in the optimal model parameters. When assumptions are shown in this

way to not always be critical to the applicability of a theory, this suggests that there might be a

deeper theory.

There are many additional settings to consider for practical application of an Influence-based

mechanism. For example, in federated learning often the data samples are held privately by

the Agents and they only report model updates. Is it possible for a mechanism to compute the
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Influences on the private data without revealing the private data? For limited cases, we have

shown how to compute an Influence approximation privately (Richardson et al., 2020), but

the general question remains open.

For the application of Influence to filtering, we focus our attention on being able to differentiate

accurate data from corrupted data by the expected Influences of points. One could try to

differentiate the data by examining higher moments of the distributions of Influences. It might

even be possible in some cases to analytically solve for the distributions directly in the limit of

infinite samples.

Alternatively, there are some statistical properties of Influence that can be exploited for filtering.

For example, if one has an estimate of the proportions of accurate and corrupted data in the

data set, one might be able to say something about the relative orderings of accurate and

corrupted data based on the Influence score. For example, if there is a large proportion

of accurate data in both training and validation, the small number of corrupted samples

are expected to achieve a very high Influence score measured against the small number of

corrupted samples in validation. It may be possible to identify these points by examining the

Influences of every pair of training and validation points.

6.2 Peer Neighborhoods

In chapter four we present a novel framework, which we call Peer Neighborhoods, for extend-

ing existing Peer Prediction mechanisms so that they may accommodate arbitrary distribu-

tions. The extension involves the Center choosing a set of partitions with specific properties

which can be used to discretize the space of reports. Existing Peer Prediction mechanisms that

can only be applied to discrete distributions can then be utilized over this set of partitions.

Rather than follow the previous paradigm of assuming some additional structure in the prior

details, allowing the mechanism to elicit more information than just the Agents’ types, or

leveraging the power of multiple tasks, we work backwards from the mechanism to discover

the belief structures that satisfy incentive-compatibility. These belief structures are encoded

in a specific form called belief update conditions.

We present a belief update condition, the Partition Expected extension, that satisfies incentive-

compatibility for Peer Neighborhood extensions, and analyze a specific instance of this condi-

tion for the Peer Neighborhood extension of the Peer Truth Serum. We show that the condition

still admits a broad class of update processes, and present an example of such an update using

what we call pyramid kernels. The proof that these pyramid kernels satisfy the condition fur-

ther suggest a method for computing the kernels. Finally, to address practical implementation

concerns, we conduct simulations to demonstrate the strength of the incentives with respect

to perturbations from truthfulness, and the stability of payments with respect to the bin size

of the partitions chosen by the Center. In some examples we use the pyramid kernel update

and demonstrate that it satisfies the condition by showing that the highest expected payment

occurs at the truthful report.
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In chapter five we expand on the theory in the previous chapter. We explain how the Peer

Neighborhoods framework is actually too unconstrained, and that there is a natural choice for

how to specifically construct the set of partitions based on a shared prior belief. Analyzing this

concept, we find that the extended mechanism can be described better in a functional form,

rather than relying on the partition set. With some modifications, we present the functional

form extension of the Peer Truth Serum, which we call the Continuous Truth Serum. We show

how this mechanism solves another theoretical problem not addressed generally by the Peer

Neighborhood framework: the problem of orthogonal components in the prior. In a Peer

Prediction setting with a discrete signal distribution, this would correspond to the problem of

an unobserved, unknown category in the distribution. This results in degenerate payments for

many classical Peer Prediction mechanisms, including the Peer Truth Serum, but is handled

sensibly by the Continuous Truth Serum.

As in the previous chapter, we analyze the conditions under which the Continuous Truth

Serum is Bayesian-Nash Incentive-Compatible. While the most general sufficient and nec-

essary condition is difficult to break down into an easily comprehensible set of rules for an

Agent, we show that there is a reasonable set of sufficient update conditions which merely

enforce notions of locality and symmetry in continuous distributions. Although this analysis

is specific to this extension of the Peer Truth Serum, the concepts involved in producing

this functional form of a Peer Neighborhood framework can be applied to many existing

mechanisms. We conduct simulations along the same lines as in the previous chapter, again

demonstrating the strength and stability of the incentives. The Continuous Truth Serum

presents the broadest theory of discrete Peer Prediction mechanism extension to date, and it

is practically implementable.

6.2.1 Future Work

We present Peer Neighborhoods as a framework for extending Peer Prediction mechanisms

which operate on discrete distributions. The example we work with is the extension of the Peer

Truth Serum, but there are other extensions worth analyzing in detail. One such mechanism

is the Correlated Agreement mechanism, which pays according to a matrix representing

correlations between signals across multiple tasks. The setting and mechanism are far more

complicated than those of the Peer Truth Serum, which is a minimal single-task mechanism,

but the Peer Neighborhoods framework would still apply. The critical analysis comes in

examining the prior details about Agent beliefs that would satisfy incentive-compatibility

for an extension of Correlated Agreement. There is also a detail-free version of Correlated

Agreement. The extension would require some details to be added, and it would be worth

exploring whether or not these details have a valid real world interpretation.

The work in chapter five also shows that there is some incompleteness in chapter four regard-

ing extensions of update conditions. We present the "Partition-Expected" update extension

as the natural extension for the Peer Neighborhoods framework, and demonstrate the exis-
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tence of a broad class of possible updates under this condition. It is intuitive because the

Peer Neighborhood extension is an expectation over a set of discrete mechanisms, so the

update condition should be an expectation over discrete conditions. However, the analysis in

chapter five shows that this natural extension is sufficient, but not necessary. In particular,

the Partition-Expected update extension of the self-predicting condition for the Peer Truth

Serum enforces boundedness of additive update kernels. For the Continuous Truth Serum,

the specific extension of the Peer Truth Serum with equal probability partition bins, we find

boundedness to be a useful element of sufficient conditions to characterize the class of ad-

missible updates, but it is not a necessary condition. It would be worth exploring why the

Partition-Expected update extension appears to be stronger than necessary, and is there a

universal way to extend update conditions in a way that is necessary and sufficient.
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