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Abstract 
Glacier-fed streams are the cold, ultra-oligotrophic, and unstable streams that are 

fed by glacial meltwater. Despite these extreme conditions, they harbour a diverse and 
abundant microbial diversity that develops into biofilms, covering the boulders and 
sediments that form the streambed. These biofilms play key roles in ecosystem 
processes and exert a direct influence on downstream biogeochemistry. Here we aim 
to define the genomic potential of glacier-fed stream microbial communities using 
metagenomic analyses. As a reference point, we first present a global inventory of 
cryospheric microbiomes, and find shared taxonomic, functional and phylogenetic 
features that shape the bacterial communities globally. However, we also denote how 
these ecosystems remain understudied, and thus further work is required to 
characterise fully the microbiome of cryospheric ecosystems. Using the dataset of 
metagenomes generated by the Vanishing glaciers project, we then unravel strategies 
that microbes developed to thrive in the harsh environmental conditions of glacier-fed 
streams, including the importance of biofilm formation and cross-domain interactions. 
Moreover, using metagenome-assembled genomes, we find a unique phylogenomic 
diversity that harbours distinct genomic features. 

Limited knowledge exists on how glacier influence shapes bacterial communities in 
glacier-fed streams. However, improving our understanding is crucial to better forecast 
how climate change will affect this extreme, yet endangered ecosystem. Using the 
global dataset of metagenomes and environmental parameters collected by the 
Vanishing glaciers project, we shed new light on the future of the glacier-fed stream 
microbiome. We first project environmental parameters onto future scenarios of 
climate change using predicted changes in glaciology and climate. These predictions 
corroborate conceptual models that forecast the “greening” of glacier-fed streams, 
and we further link this process with glacier size. Moreover, using a modelling approach 
and environmental, glaciological, and climatic variables as covariates, we forecast the 
changes in abundance of 2333 strains at a global scale. These models predict 
ecological shifts associated with the phylogenetic structure of the microbiome. 
Additionally, we find an association between these forecasted changes and the 
functional potential of these genomes, but also their genomic bulk features. This 
altered microbiome is expected to play a more important role in future glacier-fed 
streams, particularly in carbon cycling.  

To better understand how glacier-fed stream microbial genomes are shaped by 
glacier influence, we create a new method that identifies phylogenetic clades that drive 
this relationship. This approach allows us to identify genomic optimisation patterns 
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along the gradient of glacier influence, highlighting the importance of 
Gammaproteobacteria in shaping the genomic landscape of glacier-fed streams. 
Overall, this work serves as a reference resource for climate change microbiology, by 
providing a global dataset of cryospheric microbiomes, a modelling framework that 
allows to forecast the abundance of bacterial strains, and other methods to analyse 
microbiomes in a changing environment. Owing to human-induced climate change, the 
cryosphere is rapidly shrinking. Thus, targeted efforts are still required to unravel the 
threatened biodiversity of cryospheric ecosystems, and anticipate potential changes in 
ecosystem functioning. 

Keywords: cryosphere, glacier-fed streams, microbial ecology, metagenomics, 
phylogenetics, modelling, climate change 
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Résumé 
Les ruisseaux glaciaires sont les cours d'eau froids, ultra-oligotrophes et instables 

qui sont alimentés par les eaux de fonte des glaciers. Malgré ces conditions extrêmes, 
ils abritent une diversité microbienne abondante qui se développe en biofilms, 
recouvrant les blocs rocheux et les sédiments qui forment le lit du cours d'eau. Ces 
biofilms participent à d'importants processus écosystémiques qui exercent une 
influence directe sur la biogéochimie en aval. Nous visons ici à caractériser le 
répertoire génétique des communautés microbiennes des ruisseaux glaciaires à l'aide 
d'analyses métagénomiques. Comme point de référence, nous présentons d'abord un 
inventaire global des microbiomes cryosphériques, et nous trouvons des 
caractéristiques taxonomiques, fonctionnelles et phylogénétiques communes qui 
façonnent ces communautés bactériennes. Cependant, nous dénotons également 
que ces écosystèmes restent peu étudiés et que des travaux supplémentaires sont 
nécessaires pour caractériser pleinement le microbiome des écosystèmes 
cryosphériques. Ensuite, utilisant les métagénomes séquencés par le « Vanishing 
glaciers project », nous dévoilons les stratégies développées par les microbes pour 
prospérer dans les conditions environnementales difficiles des ruisseaux glaciaires, y 
compris l'importance de la formation de biofilms et des interactions entre les différents 
représentants des domaines du vivant. De plus, en utilisant les génomes assemblés 
par métagénome, nous trouvons une diversité phylogénomique unique qui révèle des 
caractéristiques génomiques particulières. 

L'influence des glaciers sur les communautés bactériennes dans les ruisseaux 
glaciaires reste méconnue. Or, il est essentiel d'améliorer notre compréhension afin de 
mieux prévoir comment les changements climatiques affecteront cet écosystème. En 
utilisant des métagénomes collectés à l’échelle globale, et à l’aide de paramètres 
environnementaux mesurés par le «Vanishing glaciers project » , nous explorons 
l'avenir du microbiome des ruisseaux glaciaires. Tout d’abord, nous réalisons des 
projections des paramètres environnementaux sur des scénarios de changement 
climatiques, en réalisant des modèles basés sur des projections de futurs 
changements glaciologiques et climatiques. Ces prévisions corroborent les modèles 
conceptuels qui prédisent le "verdissement" des ruisseaux glaciaires, et nous 
établissons un lien entre ce processus et la taille des glaciers notamment. De plus, en 
combinant modélisation et les projections de variables environnementales, 
glaciologiques et climatiques, nous prévoyons les changements en abondance de 2333 
souches bactériennes à l'échelle globale. Ces modèles prédisent des changements 
écologiques associés à la structure phylogénétique du microbiome, avec un effet sur 
le potentiel fonctionnel de ces génomes, mais aussi leurs caractéristiques 
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génomiques. Ce microbiome altéré devrait jouer un rôle plus important dans les futurs 
cours d'eau alimentés par les glaciers, en particulier dans le cycle du carbone 

Pour mieux comprendre comment les communautés bactériennes de ruisseaux 
glaciaires sont associées à l'influence des glaciers, nous créons une nouvelle méthode 
qui identifie les clades phylogénétiques à l'origine de cette relation. Cette approche 
nous permet d'identifier l’optimisation de la taille du génome en fonction de l'influence 
des glaciers, et souligne l'importance des Gammaproteobacteria dans cette relation. 
Dans l'ensemble, ce travail sert de ressources pour la microbiologie du changement 
climatique, en assemblant un ensemble de données mondiales sur les microbiomes 
cryosphériques, un cadre de modélisation qui permet de prévoir l'abondance de 
souches bactériennes, et d'autres méthodes pour analyser les microbiomes dans un 
environnement changeant. En raison des changements climatiques induits par 
l'homme, la cryosphère fond rapidement. Des efforts ciblés sont donc nécessaires 
pour découvrir la biodiversité menacée des écosystèmes cryosphériques et anticiper 
les changements potentiels dans leur fonctionnement. 

Mots-clés: cryosphère, ruisseaux glaciaires, écologie microbienne, métagénomique, 
phylogénies, modélisation, changements climatiques 
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Chapter 1. Introduction  
v 1.1 The cryosphere  

The cryosphere, defined as the places on Earth where water is found in its solid state 
(e.g., glaciers, ice sheets, and permafrost) constitutes up to 20% of our planet's surface 
area (Fountain et al., 2012). Characterised by cold temperatures and impacted by the 
physical properties of ice and snow, the cryosphere plays a crucial role in the Earth's 
planetary systems, regulating the climate and sea levels (Barry and Gan, 2011). At a 
molecular scale, the cold alters the mechanisms involving proteins and other 
molecules, and slows down reactions. As ice and snow necessitate cold temperatures 
to form, cryospheric conditions are predominantly met at high altitudes and latitudes, 
concentrating glaciers, ice sheets, and other cryospheric environments in polar and 
high mountain regions.  

Despite shared physical constraints, cryospheric ecosystems are diverse (Barry and 
Gan, 2011). In locations with low temperatures and high precipitation such as high-
mountain areas, ice accumulates to form glaciers. At the scale of a single glacier, 
various habitats are created such as the supraglacial surface where streams and 
cryoconite holes form when the glacier melts, and the subglacial part that 
encompasses streams, frozen soil, and fissures in the ice (Anesio et al., 2017). In polar 
regions, ice accumulates into extensive ice sheets, even at lower elevation, while at the 
intersection of ice and oceans, sea ice is released into marine waters. Even where snow 
accumulation does not lead to permanent ice, snow covers substantial land areas, 
especially during winter. In alpine and high-latitude regions, the soil can be frozen 
perennially and form permafrost (Dobinski, 2011). Indeed, the cryosphere undergoes 
seasonal variations associated with temperature cycles, with the ice accumulated 
during winter melting in summer, releasing significant meltwater. In oceans, the 
freshwater dissolves, whereas on land, melted ice contribute to the formation of 
glacier-fed streams and lakes.  

Cryospheric environments provide important ecosystem services that affect global 
hydrological and climatic processes (Barry and Gan, 2011), but also support an 
abundant and diverse biodiversity (Anesio and Laybourn-Parry, 2012). Foremost, snow 
and ice have high albedo and thus affect air temperature, regulating the climate at a 
global scale (Crook and Forster, 2014). Secondly, the insulating properties of snow and 
ice modulate the physical environments locally, decreasing the variations in 
temperature over large portions of land and sea that are covered (Barry and Gan, 2011). 



Chapter 1. Introduction 

 

2 

 

 

 

 

Thirdly, the cryosphere represents a primary source of global freshwater, vital for 
potable water supplies and hydropower generation (Su et al., 2019), but also exerting a 
notable influence on global sea levels (Pörtner et al., 2019). Additionally, the 
cryosphere assumes cultural and recreational significance locally, exemplified for 
instance in the Swiss cultural context by the role of glaciers in the national identity, 
traditions, and tourism (Kosanic et al., 2023). Last but not least, as this will be the focus 
of this dissertation, cryospheric ecosystems sustain an abundant and diverse microbial 
biodiversity. 

v 1.2 The microbial ecology of the cryosphere 

Often characterised by cold and often oligotrophic conditions, cryospheric 
ecosystems have for long thought to be deprived of life, and polar regions were typically 
not listed in any biome (Anesio and Laybourn-Parry, 2012). Indeed, these extreme 
environmental conditions result in low growth rate for the organisms that manage to 
survive in the cryosphere, and consequently these ecosystems can show relatively low 
biomass. Nevertheless, in the past decades, advances in microbial ecology have 
shown that cryospheric ecosystems support microbial life with representatives of all 
three domains of life (Anesio et al., 2017, 2009; Boetius et al., 2015). Moreover, despite 
the harsh nature of these environments, periods of warmer temperatures, such as the 
melt season of glaciers, represent period where the growth is important for most 
community members (Boetius et al., 2015). During these warmer intervals, 
microorganisms thrive as the availability of organic carbon provided mainly by primary 
producers increases, with an abundance of cells close to freshwater ecosystems. 
Hence, most cryospheric ecosystems harbour a diversity encompassing all three 
domains of life, including bacterial communities that are of high importance for 
ecosystem functioning (Anesio et al., 2009).  

In the diverse habitats constituting the cryosphere, bacterial communities exhibit 
distinct compositions shaped by the unique conditions of each environment. In snow 
and cryoconite holes, Cyanobacteria thrive, capitalising on light availability, while 
Alpha- and Betaproteobacteria (taxa now affiliated to Gammaproteobacteria since 
Burkholderiales was reclassified) collectively dominate the bacterial communities. 
Within sea ice, abundance of Flavobacteriia and Gammaproteobacteria characterises 
the microbial landscape (Anesio et al., 2017; Brown and Jumpponen, 2019; Carey et al., 
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2016). The supraglacial environment witnesses the high abundance of 
Chlamydomonaceae, especially on snow during summer where these algae form large 
blooms, and Cyanobacteria including genera like Oscillatoria, Leptolyngbya, 
Phormidium, and Nostoc, that thrive owing to their photosynthetic capabilities (Anesio 
et al., 2017; Stibal et al., 2012). In contrast, the subglacial habitat is characterised by 
the absence of light and a high abundance of Betaproteobacteria (these taxa are now 
classified as Gammaproteobacteria since the Burkholderiales order has been 
reclassified recently) (Foght et al., 2004). In permafrost, Proteobacteria, Firmicutes, 
Chloroflexi, Acidobacteria, Actinobacteria, and Bacteroidetes dominate the 
communities (Jansson and Taş, 2014). However, four years ago, direct comparisons 
between cryospheric habitats were restricted to high taxonomic levels (i.e., Phyla, 
Classes), and it remained unclear how this apparent diversity would appear at 
increased taxonomic resolution. 

Due to the low temperatures characterising the cryosphere, Psychrophily or 
psychrotolerance, the ability of organisms to survive, adapt and grow at low 
temperatures, caught naturally the interest of microbial ecologists working on cold 
environments (De Maayer et al., 2014). While work on psychrophiles relies on the study 
of cultivated isolates, molecular adaptations in bacteria have been associated with 
cold temperatures (Bowman, 2017; De Maayer et al., 2014). Most psychrophiles 
possess alterations in the lipids composing membranes, providing more flexibility at 
cold temperatures (Konings et al., 2002). Furthermore, both intra- and extracellular 
proteins and enzymes, possess altered amino acid sequences, forming more flexible 
tertiary structures that are able to function at cold temperatures (Feller and Gerday, 
2003). To maintain the cell turgor and enzymatic functions under cold conditions, these 
bacteria also use different solutes compared to their meso- and thermophilic 
counterparts (Feller et al., 1996; Feller and Gerday, 2003). Additional adaptations 
include the expression of specific molecules on the cell surface or their release outside 
of the cell, such as ice-binding or anti-freeze proteins (Tribelli and López, 2018). For 
instance, psychrophiles have been shown to produce a large amount of extracellular 
polymeric substances (EPS), participating to the formation of biofilms that provide 
protection against the harsh environmental conditions (Casillo et al., 2017; Marx et al., 
2009).  

Studies focusing on thermophilic bacteria with streamlined genomes have revealed 
an association between genomic bulk features and growth temperature (Sabath et al., 
2013). Additionally, psychrophiles have been linked to distinctive traits, such as a high 
abundance of tRNAs and relatively large genomes compared to thermophiles (Dutta 
and Chaudhuri, 2010; Sabath et al., 2013; Satapathy et al., 2010). However, most 
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studies on psychrophiles are restricted to cultivable isolates, and thus focus on a minor 
part of natural communities. Additionally, the amount of data recently generated using 
metagenomics could help unravel many other psychrophilic adaptations in uncultured 
bacteria. Thus, unravelling the adaptations of bacteria within cryospheric ecosystems 
using metagenomics can not only shed light on the microbial communities within 
ecosystems and their role in its functioning, but could also contribute significantly to a 
broader comprehension of how bacteria adapt to cryospheric conditions.  

v 1.3 Climate change, microorganisms and the cryosphere 

The cryosphere is undergoing rapid and unprecedented changes as a consequence 
of global climate change, and this has profound implications on its ecosystems. 
Increases in air temperatures and alterations in precipitation patterns at a global scale 
are changing the balance between the accumulation of ice and snow and their melting, 
leading to a large decrease in the extent of all cryospheric ecosystems. In the European 
Alps for example, the decrease in snow cover has been associated with an increase in 
primary production, a phenomenon commonly referred to as "greening" that has 
profound implication for terrestrial ecosystems (Rumpf et al., 2022). As climate change 
continues, understanding how it affects the cryosphere is thus important to forecast 
future changes in the environmental template that consequently alter ecosystem 
functioning. 

Owing to their importance for the Earth’ systems, understanding how 
microorganisms will be affected by climate change is crucial (Cavicchioli et al., 2019; 
Huss et al., 2017). In various ecosystems, they have been shown to affect ecosystem 
processes significantly. For example, the bacterial communities of permafrost have 
been shown to be relevant for global carbon cycling. The impact of global warming on 
this ecosystem results in soil thawing, a process that has been shown to induce 
ecological shifts in the microbial communities (Jansson and Taş, 2014). A direct impact 
on ecosystem functioning of these shifts is that bacterial communities then release 
more greenhouse gases up to levels that are relevant for the global carbon budget 
(Schuur et al., 2015). Hence, understanding how bacterial communities react to 
climate change is also key to forecast changes in ecosystem functioning. Moreover, 
owing to climate change, many ecosystems that potentially harbour unique biodiversity 
are at threat, many of which are still poorly understood (Elser et al., 2020). Currently, 
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we are in the last window of opportunity to sample and study some of these ecosystems 
that will be altered irreversibly (Elser et al., 2020). Thus, more sampling efforts, 
especially at large spatial scales are required to understand their impact on global 
cycles, and catalogue their biodiversity.  

v 1.4 Glacier-fed streams 

Formed by glacial meltwater, glacier-fed streams represent important components 
of the Earth’s hydrological systems. Draining the top of many important river basins, 
they exert a direct influence on downstream ecosystems through flow regimes and 
biogeochemical cycling (Hood et al., 2015; Horgby et al., 2019; Singer et al., 2012). 
These streams are characterised by extreme conditions imposed by glacier influence 
(Milner et al., 2017). The water temperature is ice-cold, and owing to the weathering of 
the bedrock by the glaciers, is loaded in abrasive and abundant mineral particles 
creating high turbidity (Jacobsen and Dangles, 2012). Additionally, due to the lack of 
allochthonous supply of organic matter and the scarcity of nutrients in the streams, 
these ecosystems are highly oligotrophic. Moreover, the high seasonality of melting 
cycles creates highly variable flow regimes that shape the constantly evolving 
streambed formed by boulders and sediments, and subsequently affects most 
environmental parameters in the streams.  

Nevertheless, some organisms survive despite these extreme conditions, and have 
developed specific adaptations to cope with the environment. Biofilms formed mainly 
by bacteria and algae dominate the landscape and develop on boulders and in the 
sediments (Wilhelm et al., 2013). Importantly, these microbes play a crucial role in 
nutrient cycling within the ecosystem, thus impacting downstream ecological 
communities and biogeochemistry (Hotaling et al., 2017). Alongside the biofilms, cold-
adapted macroinvertebrates are also able to survive these conditions (Becquet et al., 
2022; Cauvy-Fraunié and Dangles, 2019; Scotti et al., 2019). Glacier-fed streams are 
highly seasonal: during winter the streams are snow covered, and during peak 
meltwater the flow is too turbulent for biofilms to develop (Ren et al., 2017a; Schütz et 
al., 2001; Scotti et al., 2019). Thus, the conditions are met for organisms to thrive mainly 
in summer before and after this peak, because during these windows of opportunities, 
the melting of the glaciers, the sunlight, and temperature become conducive for 
primary production (Boix Canadell et al., 2021). 

Analogously to other alpine ecosystems, glacier-fed streams are predicted to 
undergo an increase in primary production associated with climate change (Jacobsen 
et al., 2012). While the reduction in snow cover will allow longer periods of exposition 
to sunlight, the decrease in turbidity associated with the reduction in glacier size, and 
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thus weathering, is expected to additionally drive the “greening” of alpine streams (Boix 
Canadell et al., 2021; Milner et al., 2017). This is because light availability at the stream 
bottom represents the main limiting factor to the growth for primary producers (Boix 
Canadell et al., 2021). Additionally, shifts in nutrient supply due to the transition from 
glacier-fed meltwater to other sources is expected to further impact the ecosystem and 
associated ecological communities (Milner et al., 2017). However, currently no 
quantitative predictions exist for these changes to the environmental template. While 
an overall increase in the abundance of bacteria is expected (Cauvy-Fraunié and 
Dangles, 2019), macroinvertebrates are predicted to undergo taxon-specific ecological 
shifts (Wilkes et al., 2023). Nevertheless, the potential effects of climate change on the 
various taxa that form the bacterial communities inhabiting glacier-fed streams are 
unknown. 

v 1.5 Microbial ecology of glacier-fed streams 

Despite the harsh environmental conditions, the bacterial communities of glacier-
fed streams thrive in various habitats. Bacterial communities have been shown to differ 
in community compositions across habitats including the ice, the streamwater, the 
particle-associated communities, and the biofilms that develop in the sediments, 
suggesting they represent various niches (Ezzat et al., 2022; Wilhelm et al., 2013). 
Several drivers have been shown to affect the communities such as light availability, pH 
and conductivity (Wilhelm et al., 2013). While an increased elevation has been 
associated with reduced alpha-diversity, the community composition across high-
altitude communities differs more than across their low-altitude counterparts (Wilhelm 
et al., 2015). Moreover, studies performed on three glacial floodplains in the alps have 
shown that glacier-fed streams have reduced richness and distinct communities 
compared to tributary streams (that have non-glacial water sources) (Brandani et al., 
2022). 

In glacier-fed streams biofilms, key taxa dominate the bacterial communities, and 
exhibit phylogenetic patterns associated with the harsh environmental conditions. 
While the most abundant phyla are Proteobacteria, Cyanobacteria, Bacteroidetes, and 
Actinobacteria, at family level, representatives of the Gammaproteobacteria class 
(e.g., Comamonadaceae, Oxalobacteraceae, etc.) are among the most abundant 
(Brandani et al., 2022; Fodelianakis et al., 2022; Wilhelm et al., 2013). These 
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communities are characterized by homogeneous selection, and patterns of 
microdiversity have been shown in the most prevalent taxa (Brandani et al., 2023; 
Fodelianakis et al., 2022). Moreover, this phylogenetic structure of the microbiome has 
been associated with the amount of chlorophyll-a in the sediments. Nevertheless, 
these findings are restricted to glacier-fed streams in the Caucasus mountains, and the 
European and Southern Alps, and it is remains unclear how they would generalise in 
other mountain ranges.  

While amplicon data (i.e., metabarcoding) of glacier-fed streams existed four years 
ago and allowed to characterise the taxa forming their communities, the functional 
potential of their ecological communities was poorly understood. Current knowledge 
was based on methods that link taxonomic profiles with genomes available in 
databases, and thus not representative of the environment (Ren et al., 2017b). This 
represented a missing link between the bacterial communities, and ecosystem 
processes, and thus investigating the genomic potential was particularly relevant in the 
context of climate change. Moreover, while conceptual models existed as to how the 
greening will affect the glacier-fed stream ecosystem, no quantitative predictions were 
available for the different scenarios of climate change. Furthermore, we did not know 
how these changes might affect the microbes, including the important and diverse 
bacterial communities. 

v 1.6 Thesis objectives and the Vanishing glaciers project 

In this thesis, we aimed to investigate the microbiome of cryospheric ecosystems 
and glacier-fed streams in order to characterise adaptations to these extreme 
environments. We tried to answer this question: given the unique microbial 
communities of glacier-fed streams and their association with environmental 
parameters which are affected by climate change, what else besides water are we 
losing as the cryosphere vanishes? 

To this end, we used metagenomic data including 16s and 18s rRNA amplicon data 
and shotgun metagenomes. This works consists in the processing of sequencing data, 
in the analysis of the microbial communities, and in the creation of models that 
associate the microbiome with environmental parameters. To this end, we combined 
methods rooted in ecology, genomics, and use phylogeny to account for the 
evolutionary history of the community members. While chapter 2 and 3 include work on 
amplicon data, entire metagenomes, and metagenomes assembled genomes (MAGs), 
chapter 4 and 5 included only the latter. These two chapters focus on modelling how 
some properties of the microbiome and its members are associated with the extreme 
environment of glacier-fed streams.  
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We first asked the question: what commonalities do the cryospheric ecosystems 
microbiomes share? And do they harbour unique features? Owing to the shared 
environmental conditions across the cryosphere, we expected similarities in 
community composition and shared unique strains and genomic potential that also 
translate in the genomic content of the metagenomes and genomes. Due to the cold 
temperatures, and the physical it has on cells, we hypothesised that the genomic 
potential of the cryosphere is enriched in cold-shock proteins and other functions that 
have been associated with psychrophily.  

In Chapter 2, we investigated the microbiome of cryospheric ecosystems, collecting 
previously published datasets and performing a meta-analysis at a global scale. While 
highlighting shared taxonomic, functional and phylogenetic properties of cryospheric 
microbiome, we also found a unique and still unknown diversity. Thus, we prompted 
the need to further characterise these ecosystems, especially at large spatial scale, as 
they are rapidly disappearing. In this context, the vanishing glaciers project sampled 
successfully 170 glacier-fed streams distributed across all continents between 2019 
and 2022, with the aim to characterise their microbiome. To this end, 173 biofilm 
metagenomes were sequenced. To link the microbiome with the environmental 
conditions, many physicochemical parameters (e.g., water temperature, nutrients, 
etc.) were measured, along with biomass measurements (bacterial abundance and 
chlorophyll-a content), and glaciological parameters (e.g., glacier surface area, glacial 
coverage, etc.). Data generated by the project will be used in all subsequent chapters.  

We next focused on the microbiome of glacier-fed streams, using the metagenomic 
data generated by the project. Due to the oligotrophy and small-time scale at which the 
windows of opportunities open in these streams, we hypothesised that ecological 
communities possess metabolic adaptations to utilise resources efficiently. Moreover, 
due to the low temperatures, we also expected genomic adaptations to cold conditions 
such as genes involved in cell walls, biofilm formation and membrane biosynthesis. 

In Chapter 3, we investigated the diversity of bacteria, eukaryotes and viruses 
inhabiting glacier-fed stream epilithic biofilms using data sampled in the Caucasus 
mountains and in the Southern Alps. We characterised their genomic potential and 
highlighted some genomic adaptations to the cold conditions that were previously 
associated with psychrophiles. We also found other potential adaptations to glacier-
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fed streams such as chemolithoautotrophy and mixotrophy, and also showed the 
importance of cross-domain interactions using network analysis. Additionally, we 
investigated the phylogenomic diversity of the genus Polaromonas in glacier-fed 
streams, highlighting the novelty of these metagenome assembled genomes (MAGs). 

Due to the tight link between environmental parameters and glacial influence in 
glacier-fed streams, this ecosystem is anticipated to undergo deep changes owing to 
climate change. However, few is known on how these changes in the environmental 
template will affect ecological communities, and thus if biodiversity losses could 
occur. Moreover, currently, no predictions exist to quantify how key environmental 
parameters of the ecosystem will change. 

Thus, in Chapter 4, using globally distributed data, we projected the environmental 
template of glacier-fed streams onto future scenarios of climate using glacier recession 
and future predictions of climate. For this, we took advantage of the time-for-space 
substitution design of the Vanishing glaciers project, that was set up by sampling close 
to the glacier (upstream reach), and further downstream (downstream reach) for all 
glaciers, in order to characterise the gradient of glacier influence. We then used these 
projections of the environmental template to model the abundance of bacterial strains, 
forecasting phylogenetically structured ecological shifts under future scenarios of 
climate change. Moreover, we linked these shifts with the functional potential, 
suggesting links with ecosystem functioning.  

Oligotrophy has been linked with reduced genome and cell size in several 
ecosystems. Due to the pronounced scarcity in organic carbon in glacier-fed streams, 
especially at high glacier influence, we hypothesised bacterial communities to 
optimise the size of their genomes accordingly. We thus investigated the genomic 
landscape of glacier-fed streams, identifying the optimisation of genomic bulk features 
as a potential adaptation to glacier influence. This topic is further developed in Chapter 
5 where we additionally develop a method that allows us to identify 
Gammaproteobacteria as a main driver of community averages of genomic bulk 
features. Finally, we analyse the ecological success of this bacterial class in glacier-
feds streams globally, and link it with functional adaptations associated with the 
evolution of Gammaproteobacteria through a pangenome analysis. 
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v Abstract 

The melting of the cryosphere is among the most conspicuous consequences of 
climate change, with impacts on microbial life and related biogeochemistry. However, 
we are missing a systematic understanding of microbiome structure and function 
across cryospheric ecosystems. Here, we present a global inventory of the microbiome 
from snow, ice, permafrost soils, and both coastal and freshwater ecosystems under 
glacier influence. Combining phylogenetic and taxonomic approaches, we find that 
these cryospheric ecosystems, despite their particularities, share a microbiome with 
representatives across the bacterial tree of life and apparent signatures of early and 
constrained radiation. In addition, we use metagenomic analyses to define the genetic 
repertoire of cryospheric bacteria. Our work provides a reference resource for future 
studies on climate change microbiology. 

v Introduction 

Microorganisms dominate the biosphere, maintain ecosystem processes, and play 
key roles in global biogeochemical cycles. The microbiome of cryospheric ecosystems, 
the nearly 20% of Earth’s surface where water remains frozen for at least one month of 
the year (Fountain et al., 2012), currently figures among the least understood 
microbiomes on Earth (Boetius et al., 2015; Goordial, 2021; Jansson and Taş, 2014; 
Nayfach et al., 2020; Thompson et al., 2017). This is noteworthy given that the 
cryosphere is melting at an unprecedented pace owing to climate change. Motivated by 
the exploration of life in a planetary context (Merino et al., 2019) and the discovery of 
new biomolecules for biotechnology (Feller and Gerday, 2003), classical microbiology 
and (more recently) advances in sequencing technologies have unravelled 
physiological and molecular processes underpinning the adaptation of cold-adapted 
bacteria (i.e., psychrophiles) to the cryospheric environment (Bowman, 2017; D’Amico 
et al., 2006). More specifically, metagenomics has provided new insights into the 
structure and function of complex microbial communities of some cryospheric 
ecosystems, such as permafrost soils (Jansson and Taş, 2014; Tripathi et al., 2018), 
leading to a better understanding of the role of these ecosystems in global 
biogeochemical cycles and their vulnerability to climate change. 
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However, we are still missing an integrative understanding of the microbiome across 
the various and often underexplored cryospheric ecosystems on Earth (Goordial, 2021; 
Nayfach et al., 2020; Thompson et al., 2017). Here we present a global catalogue of 
microorganisms from various cryospheric ecosystems and at a taxonomic resolution 
that allows detection of cryosphere-adapted lineages and associated traits. We 
leverage sequence data from numerous published studies ranging from snow to 
permafrost ecosystems to shed light on the global cryospheric microbiome. While also 
illuminating geographical biases and underexplored habitats in the currently available 
cryospheric data, our study constitutes an important resource for the study of 
cryospheric life in general and its potential future in a warmer world. 

v Results and discussion 

The dataset 

We curated and explored 695 published 16S rRNA gene samples from cryospheric 
ecosystems (Methods section and Supplementary Table 2.7), including polar ice 
sheets, mountain glaciers and their proglacial lakes, permafrost soils and the coastal 
ocean under the influence of glacier runoff, and compared these to 3552 published 16S 
rRNA gene samples from non-cryospheric ecosystems, including temperate and 
tropical lakes and soils (Supplementary Table 2.7). This approach allowed us to identify 
and explore features specific to the cryospheric microbiome and compare it to other 
environmental microbiomes. However, we note a geographical bias towards polar 
regions in current publicly available repositories, and the paucity of alpine samples 
specifically highlights the need to further characterise these habitats given that they are 
among the most endangered cryospheric ecosystems globally. This bias is further 
compounded by the inconsistent methodologies applied across studies (e.g., primer 
pairs and sequencers used). To account for potential primer biases, we analysed two 
16S rRNA primer pairs (Primer Pair 1, PP1: 341f-785r; Primer Pair 2, PP2: 515f-806r) 
(Caporaso et al., 2012; Klindworth et al., 2013) commonly used in amplicon high-
throughput sequencing. In total, this dataset contains 241,502,708 paired sequence 
reads, resulting in 530,254 and 410,931 amplicon sequence variants (ASVs) for PP1 and 
PP2, respectively. Moreover, all taxonomic analyses were performed at the genus level, 
to account for the limitations of 16s rRNA amplicon data. To gain deeper insights into 
the functional space of the cryospheric microbiome, we compared 34 published 
metagenomes from cryospheric ecosystems with 56 metagenomes from similar but 
non-cryospheric ecosystems (Figure 2.1A). Given the difficulty of obtaining high-quality 
metagenomes from cryospheric ecosystems, we restricted our analyses to glacier 
surfaces, ice-covered lakes, and Antarctic soils. Although our analyses were limited to 
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samples where raw sequence data are available (Methods section), the breadth of 
habitats covered are representative of the most abundant cryospheric ecosystems, 
e.g., glacier ice, cryoconites, subglacial lakes and sea ice. On the other hand, several 
niches such as glacier snow, glacier-fed rivers/streams, and the full-breadth of 
permafrost may not entirely be represented due to data unavailability. We reanalysed 
all metagenomes using the same bioinformatic pipeline (IMP3; see Methods section) to 
avoid analytical biases. Overall, the metagenomic analyses from 2,427,818,072 paired 
reads yielded 41,068,842 gene sequences. Thus, we here present a catalogue 
representing a snapshot of the functional diversity in the cryospheric microbiome, 
integrating across diverse habitats. This represents what we believe to be the first global 
overview of the functional repertoire of the Earth’s cryosphere compared to other 
ecosystems. 

A cryospheric microbiome 

Given the communal constraints imposed by the harsh environment of cryospheric 
ecosystems (e.g., low temperature, oligotrophy), we expected them to harbour a 
specific microbiome. Accordingly, machine-learning classification (logistic regression 
models, Methods) based on community composition was able to differentiate between 
cryospheric and non-cryospheric microbiomes with high accuracy (balanced accuracy 
>0.96, Supplementary Table 2.1). Both primer pairs consistently yielded a high 
classification accuracy and especially a high precision. Interestingly, many of the 
discriminating cryospheric ASVs were spread widely across the bacterial tree of life 
(Figure 2.1A and Supplementary Figure 2.1). 

The notion that a part of the microbiome is specific to the cryosphere is also strongly 
supported by phylogenetic analyses of the 16 S rRNA gene amplicon dataset. First, we 
found higher pairwise phylogenetic overlap among cryospheric samples than among 
cryospheric/non-cryospheric or non-cryospheric samples (Sorensen’s index, 
Figure 2.1C; Wilcoxon test, Holm adj. p < 0.001). This points towards a phylogenetic 
diversity that is specific to the cryosphere. Second, when we examined cross-sample 
nearest taxon distances (β-NTDs), we found that taxa in cryospheric samples have 
lower β-NTDs in other cryospheric samples than in non-cryospheric samples 
(Figure 2.1D; Wilcoxon test, Holm adj. p < 0.001). This was less evident for non-
cryospheric samples (Supplementary Table 2). Because phylogeny and functional 
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similarity usually correlate at short phylogenetic distances (Dini-Andreote et al., 2015), 
this finding suggests higher niche similarity for cryospheric bacteria compared to their 
non-cryospheric equivalents. This evokes specific selective constraints of cryospheric 
environments acting on taxa across the entire bacterial tree of life. Interestingly, when 
we further examined radiation patterns, we found that taxa in a given cryospheric 
microbial community had on average larger phylogenetic distances (α-MPD) than their 
counterparts in a non-cryospheric community (linear model, p < 0.001). This could 
suggest early radiation events with subsequent “pruning” of phylogenetic diversity, 
which would explain the observed patterns (Mazel et al. 2015). However, we cannot 
exclude nor disentangle the action of contemporary evolutionary and assembly 
processes that can jointly shape community phylogenies. For example, transduction 
and genome plasticity have repeatedly been linked with cold adaptation in cryospheric 
bacteria. Moreover, horizontal gene transfer has also been shown to promote the 
diffusion of cold-adaptation genes (Dorrell et al., 2021). Nevertheless, given the large 
number and breadth of included cryospheric ecosystems, we posit that the topologies 
of the inferred phylogenies are less prone to assembly processes. We rather interpret 
that the observed patterns are signs of early and constrained radiation in the 
cryospheric microbiome. Collectively, these results point to similar evolutionary 
trajectories in cryospheric microbiomes, probably owing to similar environmental 
conditions across various cryospheric ecosystems, over timescales, relevant for 
bacterial macroevolution. 

The abundance of a given species in an ecosystem generally reflects its fitness and 
adaptive capacity to the respective environmental conditions. Therefore, we explored 
patterns of differential abundance (Methods section) and found 589 bacterial genera 
with higher abundances in cryospheric compared to non-cryospheric samples (Ancom, 
W statistic > 0.7, CLR mean difference > 0) that hereafter will be referred to as 
cryospheric genera. These genera were distributed widely across the bacterial tree of 
life and encompassed 46 different phyla. Despite this wide distribution, we found that 
34.8% and 13.4% of the cryospheric genera were affiliated Proteobacteria and 
Bacteroidota, respectively (Figure 2.2A). The relevance of Proteobacteria is in line with 
the high prevalence of Alpha- and Gammaproteobacteria typically reported in the 
cryospheric literature (Anesio and Laybourn-Parry, 2012; Boetius et al., 2015). Genera 
belonging to the Alpha- and Gammaproteobacteria classes displayed the highest 
differential abundance and included Sphingomonas, Polaromonas, Rhodoferax, 
Brevundimonas, and Acidiphilum (Figure 2.2B) — some of them with taxa typically 
reported to be psychrophiles (Comte et al., 2018; D’Amico et al., 2006; Fodelianakis et 
al., 2022; Sajjad et al., 2021). Bacteroidota was the second most important phylum of 
the cryospheric microbiome with Hymenobacter, Ferruginibacter, and Polaribacter (for 
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instance) as dominant genera, all of which are known from permafrost soils and ice 
ecosystems (Collins et al., 2010; Kim et al., 2013). Furthermore, as previously reported 
(Christner et al., 2003; Kohler et al., 2020b), the cryospheric genera included members 
of the Actinobacteria, Chloroflexi and Cyanobacteria phyla, alongside some 
Firmicutes. The former two are particularly common in supraglacial environments 
(Boetius et al., 2015), and Cyanobacteria are important components of cryoconite 
microbiomes (Anesio et al., 2017). Our global analyses thus corroborate and extend 
previous reports on microbiome composition in distinct cryospheric ecosystems. 
Furthermore, our differential abundance analysis unveiled genera (e.g., Oryzihumus or 
Pseudolabrys) that have not been previously associated with the cryosphere 
(Figure 2.2B). More importantly, many of the detected cryospheric genera only have 
placeholder names due to the lack of cultivated representatives (e.g., CL_500-
29_marine_group, hgcl_clade, TRA3-20), underlining unique bacterial groups that are 
yet to be described. Collectively, these findings unveil an unexpectedly diverse and 
likely well-adapted microbiome specific to the cryosphere, and supports the notion of 
the cryosphere as a biome with its distinct association of microorganisms, alongside 
plants and animals (Anesio and Laybourn-Parry, 2012). 

Compositional patterns across cryospheric ecosystems 

We next explored how microbial community composition varies across cryospheric 
ecosystems. Using similarity analyses, we found that the microbiome composition 
differed significantly between cryospheric ecosystem types (PERMANOVA, r2 = 0.183, 
p < 0.001; pairwise.adonis, p < 0.001 for all pairwise comparisons) (Figure 2.3A and 
Supplementary Table 4). Most conspicuous was the segregation of snow/ice and 
marine communities, bracketing freshwater and terrestrial cryospheric communities. 
We also found a significant but relatively small effect of the primer pair (PERMANOVA, 
r2 = 0.019, p < 0.001) that could be attributable to primer bias, or inherent differences 
related to sampling. To further assess these distributions, we explored prevalence 
patterns to identify a core microbiome across cryospheric ecosystems (Figure 2.3B). 
We found 37 bacterial genera, including Pseudomonas, Acinetobacter, and 
Flavobacterium, for instance, to constitute the core microbiome. The disproportionate 
representation of these core genera in the above-identified cryospheric genera (Fisher’s 
exact test, p < 0.001, odds ratio = 6.93) underlines their high abundance in cryospheric 
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ecosystems (Supplementary Figure 2.2). It also shows the prevalence and abundance 
of some cryospheric genera, indicating their potential relevance for ecosystem 
processes. 

Additionally, analysing the relative abundance of the core cryospheric genera for 
each primer pair and cryospheric ecosystem types, we found that ice and snow 
microbiomes were associated with the highest proportions of core genera (23.05% and 
24.8% for PP1 and PP2, respectively) (Figure 2.3D). In contrast, the marine cryospheric 
microbiome is only marginally composed of these genera (16.9% and 13.3% for PP1 and 
PP2, respectively). This pattern is in line with our unconstrained ordination analysis 
(Figure 2.3B) and suggests that snow and ice represent endmember cryospheric 
systems, while the cryospheric component of the microbiome dissipates in 
downstream freshwaters, soils and the coastal ocean. Furthermore, the alpha-diversity 
was higher in terrestrial (Shannon H = 3.67), marine (H = 3.25) and freshwater (H = 2.99) 
ecosystems than in snow and ice (H = 2.86), corresponding to increasing contributions 
of ancillary taxa to their microbiomes (Supplementary Table 5). These differences in 
diversity are likely attributable to environmental gradients characterised by more 
diverse energy sources and niches, such as when moving from snow and ice to aquatic 
and soil ecosystems. Our analyses revealed compositional patterns of the cryospheric 
microbiome suggesting that snow and ice ecosystems including supraglacial habitats 
(e.g., mountain glaciers, ice sheets, snow and cryoconites) may serve as a source of 
cold-adapted bacterial diversity, upon losing which the downstream diversity may 
become threatened as well. 

Functional potential of the cryospheric microbiome 

The adaptive and survival strategies of microorganisms to the extreme 
environmental conditions of the cryosphere have received substantial attention over 
the last years (Frey et al., 2016; Margesin and Collins, 2019; Tribelli and López, 2018). 
For example, genomic insights from bacterial cultures have revealed mechanisms of 
thermal adaptation linked to bulk genomic features, such as GC content and genome 
size (Wu et al., 2012). Moreover, genome streamlining has been shown to be a relevant 
evolutionary force in the cryosphere (Margesin and Collins, 2019). Therefore, we 
analysed the GC content and genome size of 13,414 reference genome sequences from 
the NCBI Refseq genomes database (Pruitt et al., 2007) to investigate shared properties 
of cryospheric genera, and to provide a framework to contrast future cryospheric 
metagenomic results. By comparing these reference genomes representing 660 
bacterial genera present in our taxonomic analyses (29.8% of which are cryospheric 
genera according to our differential abundance analysis), we found that the cryospheric 
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genera had a significantly higher GC content (Supplementary Figure 2.3B; Wilcoxon 
test, Holm adj. p = 0.0011, median difference = 8.8%) compared to the other genera; a 
pattern also supported by an enrichment in sequences that encode GC-rich amino 
acids (e.g., Alanine, Arginine, Glycine) (Supplementary Figure 2.3A and Supplementary 
Table 2.6). Therefore, our findings suggest that cryospheric genera indeed share an 
elevated GC content (Almpanis et al., 2018), in line with reports on cold-adapted 
Synechococcus (SynAce01) (Tang et al., 2019) and Actinobacteria (Goordial et al., 
2015). We also report that the average genome size of cryospheric genera is closely 
bracketed by published values for psychrophilic bacteria (Sabath et al., 2013). 

Next, using a gene-centric approach, we explored the functional space of the 
cryospheric metagenomes dataset. Out of 17,191 KEGG orthologues (KO), 980 KO were 
significantly enriched in cryospheric samples. Cryospheric genera and particularly 
cryospheric core members (e.g., Pseudomonas, Sphingomonas and 
Novosphingobium) disproportionately accounted for these gene families (Figure 2.4A). 
Our analysis highlighted the relevance of chemolithotrophic pathways (e.g., 
manganese and iron uptake, sulfur, nitrogen and hydrogen metabolism), 
complementing earlier reports on these particular functional attributes of cryospheric 
ecosystems (Figure 2.4B) (Boyd et al., 2011, 2010; Christner et al., 2003). The apparent 
relevance of chemolithotrophic pathways is likely attributable to a relative scarcity of 
organic carbon in cryospheric ecosystems. Interestingly, we consistently identified 
chitinase genes, which are involved in permafrost carbon cycling, but may also be an 
adaptation to freezing (Liu et al., 2016). Finally, genes involved in adhesion, motility and 
various secretion systems collectively point to biofilm formation as an important 
strategy for life in cryospheric ecosystems (Smith et al., 2016), which are often 
characterised by extended periods of oligotrophy and elevated UV-radiation. 

Our cross-ecosystem metagenomic analyses not only shed light on potential 
functions of the cryospheric microbiome across ecosystems, but also unveiled a large 
uncharacterised functional space with 43.4% of the protein coding genes in 
cryospheric samples unannotated to a KEGG orthologous group. While this does not 
seem unusual for environmental metagenomes in general (Nayfach et al., 2020), it is 
notable that we may lose this functional potential as the cryosphere vanishes. In order 
to shed light on this uncharacterised functional space, we clustered 41,068,842 gene 
sequences based on a 30% sequence similarity and 80% sequence coverage 
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threshold, subsequently mapping representative sequences of the largest clusters (>29 
sequences in at least 2 samples, n = 12,125) to the UniProt TrEMBL database 
(Figure 2.4C). While the KEGG assigned clusters overall had a high percentage of 
sequences that matched genes in the UniProt database (Table 2.1), we found that 
cryosphere specific sequences show a large decrease in the clusters assigned to 
multiple KEGG (i.e., ambiguous) and even more in the ones containing exclusively 
unassigned sequences, compared to non-cryospheric environmental metagenomes. In 
addition to the low percentage of gene sequences matching UniProt sequences, we 
found that the cryosphere specific clusters that align to the database show a largely 
decreased identity with the matching sequence (Supplementary Figure 2.4). These 
findings underline the lack of representation of cryospheric sequences in current gene 
sequences databases, potentially linked to the specificity of certain taxa to the 
cryosphere, and/or functions. Finally, the large nucleotide similarity within these 
clusters (Supplementary Figure 2.4) suggests that these are conserved functions of 
particular importance to microbial life under cryospheric constraints, and corroborates 
the notion of specific lineages of closely related taxa to dominate microbial life in the 
cryosphere. Aside from being uncharacterised, 170 of the unassigned gene clusters 
were only detected in cryospheric metagenomes and could thus represent unknown 
gene families of importance to understanding the adaptation of bacteria to these 
extreme ecosystems. 

Collectively, our insights both at the taxonomic and functional level reveal key 
microbiome features that are exclusive to cryospheric ecosystems. Although entire 
taxonomic lineages are not unique to cryospheric ecosystems, it is evident that specific 
species and potentially strains are novel and adapted to these environments. Similarly, 
the emergent functional properties clearly demonstrate the exclusivity of functions, 
especially those that are yet to be characterised or that can be classified based on 
existing databases, within the cryosphere. On the contrary, we find that in both the 
taxonomic and functional complements, several taxa and functions are shared with 
non-cryospheric ecosystems. This is expected since the underlying genomic content 
supporting the taxonomic and functional annotations are shared between the 
cryospheric and non-cryospheric ecosystems. This is evident based on the >50% 
identity among the shared gene clusters that had matching identities in the KEGG 
database (Table 2.1). 

Here we present what we believe is the first global data-driven approach to unravel 
specific features of the cryospheric microbiome. Our meta-analysis revealed diverse, 
distinct and functionally specific bacterial communities that appear to have been 
shaped by sustained evolutionary forces, suggesting an ancient origin of this 
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biodiversity. While our study highlights key taxonomic groups such as Proteobacteria 
and Bacteroidota, our findings also disclose the importance of yet-uncultured bacteria 
and an uncharacterised genetic repertoire. In light of the threatened nature of the 
cryosphere, targeted efforts to unravel the phylogenetic and genomic underpinnings of 
bacterial adaptation to cryospheric ecosystems, including prospecting for cold-
adapted biomolecules as well as the cultivation of cryospheric bacteria, are urgently 
required. 

v Methods 

16S rRNA datasets 

Two primer pairs typically used in microbial ecology targeting the prokaryotic 16S 
rRNA were assessed: 341f-785r and 515f-806r. They will be referred to as Primer Pair 1 
(PP1) (Klindworth et al., 2013) and Primer Pair 2 (PP2) (Caporaso et al., 2012), 
respectively. All articles citing the PP1 and PP2 reference articles were retrieved using 
Web of Science (All databases, searched on the 7 December 2019, 1727 articles). The 
first selection based on title and abstract was performed as described herein. Only 
studies having sequenced environmental samples were kept. Simultaneously, studies 
assessing pollution or contamination and involving major climatic or ecological events, 
e.g., storms or blooms, were removed. Thereafter, a second selection was performed 
based on the whole article, assessing technical criterions. Only studies using the 
aforementioned primer pairs, Illumina paired-end sequencing and having available 
data were kept; and the corresponding NCBI bioproject accessions were extracted. At 
a later stage, a few studies meeting the filtering criteria but not included in the Web of 
Science search were added. 

The raw sequencing (fastq) data were downloaded using the ENA browser (European 
Nucleotide Archive; www.ebi.ac.uk/ena/browser/). At this stage, only the control 
samples were downloaded for experimental studies. The read files were filtered as 
follows: First, Trimmomatic was used to remove low quality reads, truncating the reads 
at the first instance of a sliding-window (5 bp) having a mean quality below 15 (Bolger et 
al., 2014). At this stage, the raw data from each BioProject was imported into qiime2 
(Bolyen et al., 2019). Denoising was performed with the dada2 plugin using the primers 
sequences length for the ‘–p-trim-left-r’ and ‘–p-trim-left-f’ parameters (Bokulich et al., 
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2018). This step removed integrally two studies in the PP1 dataset (“negative values in 
quality” and “all samples discarded” errors). Only sequences assigned to bacterial taxa 
were kept, and chloroplast and mitochondrial sequences were also removed. Finally, 
all samples with less than 5000 reads after this initial filtering were removed. 

Taxonomy classification for PP1 and PP2 ASVs was performed using the qiime2 
‘feature-classifier’ plugin and the Silva 138 nr99 database (Bokulich et al., 2018; Quast 
et al., 2013). First, reads were extracted from the reference sequences using the 
extract-reads method. For this, the primer sequences were used for the ‘–p-r-primer’ 
and ‘–p-f-primer’ arguments. The length of the extracted reads was set to min. 250 and 
max. 450 for the PP1 dataset and min. 200 and max. 400 for the PP2 dataset. A classifier 
was then created using the fit-classifier-naïve-bayes method with the extracted reads 
and the reference taxonomy. Finally, this classifier was run on the dataset’s sequences 
using the ‘classify-sklearn’ method to get the sequences taxonomy (Bokulich et al., 
2018). To keep only high-quality samples, all samples having <75% of their ASVs 
assigned to the phylum level, and 50% assigned to the genus level were removed. This 
filtering resulted in 2508 samples and 530,254 ASVs for PP1 and 1739 samples and 
410,931ASVs for PP2. The ASV tables and metadata tables for these datasets can be 
found on Zenodo, under the file names: ‘Data/PP1_table.tsv’, ‘Data/PP2_table.tsv’ and 
‘Metadata/PP1_metadata.tsv’ and ‘Metadata/PP2_metadata.tsv’, respectively. 

Metagenomic dataset 

To address the functional aspect of identified taxa, accession numbers of studies 
comprising of the following keywords: metagenomics, whole genome shotgun, and 
environmental, were queried using NCBi’s EDirect (Winter, 2017). The results were 
manually curated to select studies from a broad Geographic distribution, yielding a 
total of 382 datasets. The selection of metagenomic samples was further restricted to 
raw fastq data, thus precluding the use of samples from MG-RAST since only the 
metagenome assembly files were provided. Additionally, all samples still under 
embargo in accordance with the Joint Genome Institute (JGI; USA) policy, were 
excluded. From this collection, samples with fewer than 1 million reads or with a quality 
of reads less than Q25 were removed for a final collection of 91 samples (Figure 2.1A). 
Paired reads were processed using the Integrated Meta-omic Pipeline (IMP) 
(Narayanasamy et al., 2016). The workflow includes pre-processing such as 
primer/adaptor removal and trimming followed by an iterative assembly. Additionally, 
functional annotation of genes based on custom databases was performed (described 
below). The entire workflow is setup in a reproducible Snakemake format (Köster and 
Rahmann, 2012). Briefly, after preprocessing the reads, de novo assembly using 



Chapter 2. The microbiome of cryospheric ecosystems 

 

22 

 

 

 

 

MEGAHIT (v1.2) assembler was performed (Li et al., 2015). All the methods and 
parameters used are listed on the Github repository, in the 
‘Preprocessing/IMP_config.yaml’ file. The metagenomic dataset KEGG Orthologs (KO) 
table, taxonomy table, and metadata are available on Zenodo under the 
‘Data/MTG_KEGG_counts.tsv’, ‘Data/MTG_table.tsv’, and 
‘Metadata/MTG_metadata.tsv’. 

Metagenomic taxonomic classification and functional analyses 

Functional potential analyses from contigs were determined by predicting open-
reading frames using a modified version of Prokka (Seemann, 2014) including Prodigal 
(Hyatt et al., 2010) gene predictions for complete and incomplete open reading frames. 
Genes identified subsequently were annotated with Hidden Markov Models (HMM) 
(Eddy, 2011), trained using an in-house database (Heintz-Buschart et al., 2016). The 
annotations were further annotated with KO (Kanehisa and Goto, 2000) groups using 
‘hmmsearch’ from HMMER 3.1 (Eddy, 2011). Upon multiple functional group 
assignments, the best hits based on bit scores were selected. FeatureCounts (Liao et 
al., 2014) with the ‘-p’ and ‘-O’ arguments were then used to extract the number of reads 
per functional category. 

Logistic regression classification of cryospheric bacterial communities 

The Logistic regression implemented in scikit-learn python module (version 0.23.2) 
was trained on presence-absence ASV tables to classify cryospheric samples 
(Pedregosa et al., 2011). To reduce the amount of ASVs considered, the table was 
filtered based on relative abundance: presence was defined at a 0.005 relative 
abundance threshold. A stratified 5-fold cross-validation (CV) was ran and the scores 
were averaged across the CVs. This process was repeated 40 times and the mean and 
standard deviations are reported for each metric. To ensure reproducibility, the seed 
was set as 23 for the classifier, and as the iteration number for the stratified cross 
validation iterator (from 0 to 39). The C parameter controlling L2 penalisation was 
turned off using the ‘none’ argument and the lbfgs solver was used. ROC curves were 
plotted using the ‘plot_roc_curve’ function of the scikit-learn python module. Balanced 
accuracy, precision and recall were computed using the ‘accuracy_score’, 
‘precision_score’ and ‘recall_score’ methods, respectively, with sample weights 
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correcting for the sample size of the cryospheric and non-cryospheric datasets 
(Supplementary Table 1). The means and standard deviations of scoring metrics for the 
classifiers can be found in table S1. Odds ratios were calculated using the exponent of 
the logistics models coefficients. The tables containing the ASVs logistic regressions 
odds ratios can be found in the Data folder available on Zenodo under the name 
‘PP1_Logistic_coefs.csv’ and ‘PP2_Logistic_coefs.csv’ for PP1 and PP2, respectively. 

Phylogenetic analyses 

Phylogenetic trees were built using the set of ASVs found in the dataset used for the 
logistic regression classification. Due to the different 16 S regions targeted, phylogenies 
for both PP1 and PP2 datasets were constructed separately. The ASVs sequences were 
aligned using the FFT-NS-2 algorithm implemented in the Mafft aligner with default 
parameters (Katoh and Standley, 2013). The alignments were subsequently trimmed 
using TrimAl with the ‘-gt 0.95’ parameter, and the trees built using IQ-TREE with the 
GTR model of nucleotide substitution and the ‘-fast’ option (Capella-Gutiérrez et al., 
2009; Nguyen et al., 2015). Phylogenetic tree visualisations were created using the 
ggtree and ggtreeExtra R packages (Xu et al., 2021; Yu et al., 2018). Only positive 
coefficients showing enriched presence in cryospheric environments are shown in the 
phylogenetic barplots (Figure 2.1). The number of ASVs with an odds ratio above 1 was 
shown for taxonomic summaries (Supplementary Figure 2.1B, C). 

ß-diversity phylogenetic metrics (Sorensen’s Index and ß-MNTD) were computed 
using the ‘phylosor’ and ‘comdistnt’ functions of the Picante R package (Kembel et al., 
2010), using custom functions to compute pairwise comparisons. For each metric, 50 
iterations were performed where we calculated the pairwise distances between and 
within 50 cryospheric, and 50 non-cryospheric samples. This random sub-sampling 
approach was chosen to reduce computing time. Kruskal–Wallis tests were used to 
determine whether the distribution was different across groups, and Wilcoxon tests 
were used to calculate pairwise post-hoc comparisons. Wilcoxon tests implemented 
in the compare_means function of the ggpubr R package were used, effects sizes (r) 
were calculated with the wilcox_effsize function implemented in the statix R package. 
Sample specific calculations of α-PD (and species richness), α-MPD and α-MNTD were 
computed using the ‘pd’, ‘mpd’ and ‘mntd’ functions of the Picante R package (Kembel 
et al., 2010). Linear models were used to compare the values of α-PD, α-MPD, and α-
MNTD across samples, taking the logarithm of the species richness and the dataset 
(PP1 and PP2) as a fixed effect. 
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Differential abundance analysis 

Using the Silva Taxonomic information (Quast et al., 2013), ASV raw counts were 
aggregated to the genus-level using a custom R script, removing the ASVs not assigned 
taxonomically to the genus-level. Ancom v2.1 was used on the count data for the 
differential abundance analysis, using the default W statistic threshold of 0.7 (Lin, 
2019). The ‘zero-cut’ parameter was set to 0.995 to consider all bacterial genera 
present in at least 21 samples (n = 4247), and the primer pair (PP1 and PP2) variable 
was taken as a random effect with the rand_formula parameter (“~1|Dataset”). We 
considered significantly enriched genera (i.e. cryospheric genera), the ones with a W 
statistic above the threshold (0.7) and a positive value of CLR mean difference. GGplot2 
was used to modify the Ancom v2.1 figure showing the results of the differential 
abundance analysis. The ‘heat_tree’ function of the metacoder R package (version 
0.3.4) was used to show the number of cryospheric bacterial genera, at various 
taxonomic level, using taxonomic trees (Foster et al., 2017). The results of this analysis 
can be found in the Data/ folder available on Zenodo under the name 
‘Ancom_amplicon_res.csv’ file. 

NCBI Refseq genomes properties 

To assess the genome size and GC content of publicly available prokaryote genomes, 
a non-redundant list encompassing all the genera in our datasets was compiled. 
Thereafter, the list of prokaryote genomes (prokaryotes.txt) available on NCBI (Pruitt et 
al., 2007) was downloaded on March 15th, 2021 from 
https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS. The prokaryote list was 
filtered based on the list of genera found in our dataset, simultaneously retrieving the 
accession IDs. The accession IDs were used to download the complete bacterial 
genome sequences using the ncbi-genome-download python package 
(https://github.com/kblin/ncbi-genome-download). The genome sizes for the 
downloaded genomes were additionally retrieved from the prokaryotes.txt metadata 
file. Subsequently, Prodigal (Hyatt et al., 2010) was used to annotate the open-reading 
frames per genome obtaining both the general feature format (gff) files and aminoacid 
fasta (faa). These were used thereafter as input used to estimate the predicted growth 
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time (in hours) and their codon usage analyses (CUB) using gRodon and coRdon 
(https://github.com/BioinfoHR/coRdon) R package respectively (Elek et al., 2019; 
Weissman et al., 2021). The amino acid enrichment analysis was performed on by 
converting the codon counts to amino acids using the R-package Biostrings using 
DEseq2 with default parameters (log-median ratio normalisation across genera). 
Wilcoxon tests implemented in the compare_means function of the ggpubr R package 
were used, effects sizes (r) were calculated with the wilcox_effsize function 
implemented in the statix R package. The relevant scripts and information for these 
analyses are openly available and included in the code availability section. The 
corresponding files used for this analysis can be found in the Data/ folder available on 
Zenodo under the names ‘prokaryotes.txt’, ‘merged_all_codon_counts.txt’ and 
‘merged_all_growth_prediction.txt’. 

Structure of the cryospheric microbiome 

Non-metric multidimensional scaling was used to visualise the composition of 
cryospheric bacterial communities according to the ecosystem types and primer pairs. 
For this, the ‘metaMDS’ function implemented in the package vegan was used with 
Bray-Curtis distances (Oksanen et al., 2013). The stress for the chosen value of k = 2 
was 0.206. The ‘adonis2’ function was used to perform a PERMANOVA analysis to test 
the effect of the ecosystem type and the primer pairs on the composition of bacterial 
communities (Supplementary Table 4). Pairwise comparisons between ecosystem 
types were tested using the function ‘pairwise.adonis2’ (Martinez Arbizu, P., 2020). P-
values were adjusted using the default Bonferroni method, to account for multiple 
comparisons. 

The prevalence of each genus was modelled as the probability of presence using a 
logistic binomial regression (with the R stats ‘glm’ method), using the ecosystem type 
(snow/Ice, terrestrial, marine and freshwater) and the primer pair as fixed effect. To 
calculate the probability of occurrence in the cryosphere for each genus, the prediction 
was calculated for all ecosystem types and primer pair combinations, and averaged. 
The core microbiome was defined at 0.1% abundance, and 20% prevalence across the 
cryosphere, for genera present in at least one sample in all four ecosystem types 
(Supplementary Figure 2.2B). The core microbiome presence in the different ecosystem 
types was shown using an upset-plot using the complex-upset R package (Conway et 
al., 2017). The taxonomic tree available in Supplementary Figure 2.2A was created 
using the Metacoder R package (Foster et al., 2017). The α-diversity was calculated 
using Shannon’s index with a custom R functions (Shannon and Weaver, 1949). To test 
the difference across ecosystems and datasets, the Wald-Type statistics implemented 
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in the ‘GFD’ function of the R GFD package was used (Supplementary Table 5). This test 
was performed instead of an ANOVA, as the data was not normally distributed. The 
mean values given by the function were used for the ecosystem comparison. 

KEGG enrichment 

The standard DESeq2 pipeline with default parameters was used on raw KEGG 
counts for the enrichment analysis, using the default Wald tests (Kanehisa and Goto, 
2000; Love et al., 2014). We considered significantly enriched Kegg Orthologs (KOs) with 
an FDR adjusted p < 0.01 and a log2 fold-change >1. To unravel the contribution of these 
gene families to functional pathways, we ran KEGGdecoder (Graham et al., 2018) on 
the KOs enriched in cryospheric samples, to identify environmental-associated 
pathways in all samples. 

To understand and unravel the origins of the gene families specific to the cryospheric 
metagenomes, contigs were taxonomically classified following which the specific gene 
families were mapped to the contigs. We used Kraken2 to taxonomically assign all the 
contigs present in the metagenomes followed by custom python scripts (provided) to 
link the genes belonging to enriched KEGG orthologs (KO and the corresponding NCBI 
taxon ID (Federhen, 2012; Wood et al., 2019, p. 2). An R script using the NCBI entrez 
package was used to retrieve the taxonomy based on the taxon ID, and to get the genus-
level taxonomy (Winter, 2017). To link the Silva genus taxonomies with their NCBI 
counterparts, the grep function included in R allowing partial matches was used to find 
Silva genera name matching the NCBI genus name. The DEseq2 results, KEGG-decoder 
output and taxonomy matches can be found in the Data/ folder of the Zenodo under the 
names ‘KEGG_deseq_results.csv’, ‘KEGG_decoder_output’, and 
‘KEGG_sign_tax_genera.csv’, respectively. 

Gene clusters and unassigned protein coding sequences 

Predicted gene sequences annotated to the KEGG database and those unassigned 
were gathered into individual groups based on KEGG ID or Unassigned using a custom 
python script. ‘annotation2gene.py’. The fasta files were subsequently concatenated 
and clustered to identify functional homologues within the dataset. We used mmseq2 
‘linclust’ (Steinegger and Söding, 2017) to cluster the 41,068,842 gene sequences 
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found in the entire metagenomic dataset. Subsequently, fasta sequences associated 
with each cluster were retrieved into separated clusters (n = 12,125) and linked to the 
coverages to estimate abundances. MAFFT (Katoh and Standley, 2013) was then used 
to create a multiple sequence alignment of the sequences per cluster, while the ‘cons’ 
method from EMBOSS was used to generate a consensus sequence. The generated 
consensus sequences from each cluster were subsequently annotated and their 
identity verified against the UniProt TrEMBL (Bairoch et al., 2005) database. The 
pairwise identity of sequences within each cluster was measured using CLUSTAL 
(Larkin et al., 2007) ‘distmat’ option with the ‘–percent-id’. Wilcoxon tests implemented 
in the compare_means function of the ggpubr R package were used, effects sizes (r) 
were calculated with the wilcox_effsize function implemented in the statix R package. 
The unassigned clusters summary statistics and Uniprot matches can be retrieved on 
Zenodo, in the Data/ folder under the names ‘Unassigned_clusters_stats.tsv’, and 
‘unassigned_uniprot_matches.txt’. 
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v Data availability 

The data generated in this study have been deposited in Zenodo, under 
https://doi.org/10.5281/zenodo.6541278. Source data used for figures are provided 
with this paper. 

v Code availability 

All scripts used for analyses, along with the conda environments, and additional 
information is provided in a Github repository archived on Zenodo: 
https://doi.org/10.5281/zenodo.6587400. 
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v Figures & Tables 

A Geographic distribution of the 16 S rRNA gene samples for the two primer pairs (PP) and 
metagenomes for both cryospheric and non-cryospheric ecosystems, where GPS coordinates were 
available on NCBI. Symbol size denotes the number of samples per site (see Supplementary Table 7). 
B Phylogenetic tree based on abundant ASVs (>0.5% relative abundance in at least one sample) in the 
PP1 dataset. The heatmap (inner rings) shows the presence (at a > 0.5% relative abundance threshold) 
of ASVs in the four ecosystem types of the cryosphere (ice and snow, terrestrial, coastal ocean and 
freshwater). The barplot (outer ring) represents the coefficient for the SVM classifier analysis, 
highlighting discriminating ASVs. C Sorensen’s phylogenetic index of β-diversity (n1 = n2 = 84,461 for 
PP1, and n1 = n2 = 99,000 for PP2) and D β-MNTD calculated across pairs of samples in the cryospheric 
samples (Cryo-Cryo), pairs of cryospheric and non-cryospheric samples (Cryo-Others) and pairs of 
non-cryospheric (Others-Others) samples (sample sizes are listed in Supplementary Table 2). The top 
panel (shades of blue) is for PP1, the bottom one (shades of red) for PP2; two-sided Wilcoxon tests were 
performed to assess significance in panels C and D; the Holm method was used to correct for multiple 
testing (****: 0–0.0001). Boxplots depict the median and the 25th and 75th quartiles, whiskers extend 
to values within 1.5 times the interquartile range, and the remaining points are outliers. Effect sizes and 
exact p-values are available in Supplementary Table 2. Source data are provided as a Source Data file. 

Figure 2. 1 A unique cryospheric microbiome. 

https://www.nature.com/articles/s41467-022-30816-4#MOESM1
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A Taxonomic tree representing the number of cryospheric genera per taxon with colours. Only taxa 
containing at least two cryospheric genera are shown (down to the class level). B Bar plot showing the 
bacterial genera significantly enriched in the cryosphere with the highest centered log-ratio (CLR) mean 
difference (based on ANCOM analysis). The colours represent the phylum level taxonomic 
classification. Source data are provided as a Source Data file. 

Figure 2. 2 Cryospheric genera and shared genomic properties. 
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A The probability of presence of members of the core microbiome is shown across cryospheric 
environments. Colours and facets separate phylum-level taxonomic affiliation. B Unconstrained 
ordination showing differences (Bray-Curtis dissimilarity) of bacterial communities among different 
cryospheric ecosystems (k = 2, stress = 0.206). Hulls demark 95% confidence intervals for a 
multivariate t distribution for the respective ecosystem types. C Mean relative abundance (in 
percentage) of core/ancillary and cryospheric/others bacterial genera across the four ecosystem types 
and the two primer pairs. Source data are provided as a Source Data file. 
  

Figure 2. 3 Microbiome structure across various cryospheric ecosystems. 
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A Prevalence represented against the number of enriched KOs in cryospheric samples across bacterial 

genera. The shading represents the cryospheric and others bacterial genera whereas symbol size 
represents the number of contigs taxonomically assigned to the respective genus within cryospheric 
metagenomes. The insert represents the distribution of the number of contigs harbouring cryospheric 
enriched KOs across the cryospheric and others genera. B Heatmap representing the completion of 

Figure 2. 4 Functional enrichment analysis and taxonomy of enriched functions. 
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pathways across cryospheric samples based only on the KOs enriched in the cryosphere. Source data 
are provided as a Source Data file. 
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Table 2. 1 Description of the gene sequences clustering approach. 

Annotation Category Number of clusters Uniprot match (%) 

KEGG Cryosphere 47 61.70 

Shared 1663 54.18 

Non-cryosphere 2325 55.14 

Ambiguous Cryosphere 113 40.71 

Shared 1056 52.65 

Non-cryosphere 3105 54.17 

Unassigned Cryosphere 170 17.65 

Shared 1524 5.18 

Non-cryosphere 2122 46.94 

Table summarising the 12’125 largest gene sequence clusters present in at least two samples. The 
annotation refers to the assignment of the genes to one KEGG Orthologous group (KO), multiple KOs or 
unassigned (Ambiguous) and only unassigned (Unassigned). Distribution of assigned (KEGG), 
ambiguous and unassigned functional gene clusters highlighting the bias against cryospheric gene 
clusters. Shared refers to the representatives of both categories of samples contained gene sequences 
in the cluster. The number of clusters is shown, along with the proportion of clusters having a 
consensus sequence matching the UniProt database.  
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v Abstract 

In glacier-fed streams, ecological windows of opportunity allow complex microbial 
biofilms to develop and transiently form the basis of the food web, thereby controlling 
key ecosystem processes. Using metagenome-assembled genomes, we unravel 
strategies that allow biofilms to seize this opportunity in an ecosystem otherwise 
characterized by harsh environmental conditions. We observe a diverse microbiome 
spanning the entire tree of life including a rich virome. Various co-existing energy 
acquisition pathways point to diverse niches and the exploitation of available 
resources, likely fostering the establishment of complex biofilms during windows of 
opportunity. The wide occurrence of rhodopsins, besides chlorophyll, highlights the 
role of solar energy capture in these biofilms while internal carbon and nutrient cycling 
between photoautotrophs and heterotrophs may help overcome constraints imposed 
by oligotrophy in these habitats. Mechanisms potentially protecting bacteria against 
low temperatures and high UV-radiation are also revealed and the selective pressure of 
this environment is further highlighted by a phylogenomic analysis differentiating 
important components of the glacier-fed stream microbiome from other ecosystems. 
Our findings reveal key genomic underpinnings of adaptive traits contributing to the 
success of complex biofilms to exploit environmental opportunities in glacier-fed 
streams, which are now rapidly changing owing to global warming. 

v Introduction 

Ecosystems and their constituent biota are finely tuned to the seasonal variations of 
their environment. This phenology is particularly pronounced in glacier-fed streams 
(hereafter GFSs), which are commonly enveloped by snow cover and darkness in 
winter, and subject to high flow and sediment mobilization in summer. Yet, ecological 
‘windows of opportunity’ arise in spring and autumn (Battin et al., 2004; Uehlinger et al., 
2010) when nutrient (N, P) and light availability is elevated and streamflow is moderate 
(Battin et al., 2004; Kuhn, 2001; Uehlinger et al., 2010). During the onset of spring 
snowmelt, inorganic N that has accumulated from atmospheric deposition and 
concentrated at the snowpack surface is washed into GFSs (Kuhn, 2001; Milner et al., 
2017), whereas hydrologic connectivity with various glacial sources (e.g., subglacial) 
can increase concentrations of phosphorus as the melt season progresses (Milner et 
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al., 2017; Tockner et al., 2002). Following the height of the melt season in summer, 
discharge and turbidity decline in autumn, again elevating nutrient concentrations and 
light availability. These favorable conditions allow algae and cyanobacteria to rapidly 
develop into ‘green oases’ of phototrophic biofilms. Partially due to the absence of 
major terrestrial organic matter subsidies from the catchment, this punctuated 
exploitation of solar energy in an otherwise energy-limited ecosystem transiently forms 
the base of the GFS food web and ecosystem energetics (Boix Canadell et al., 2021; 
Uehlinger et al., 2010). Such windows of opportunity may therefore function as 
‘ecosystem control points’ (Bernhardt et al., 2017) with disproportionately high 
ecological processing rates affecting ecosystem dynamics relative to longer intervening 
time periods. These ecosystem control points are widely distributed across 
ecosystems and vary across spatial and temporal scales (Bernhardt et al., 2017). 
However, our understanding on the microbiology of the communities that facilitate 
ecosystem control points remains limited to date. 

Owing to climate change, the mass balance and melting dynamics of mountain 
glaciers are rapidly changing worldwide, altering the annual distribution of runoff in 
GFSs (Huss and Hock, 2018). Invigorated glacial melt increases discharge and 
sediment delivery, but after glaciers shrink past a certain point (i.e., ‘peak water’), GFSs 
are likely to become warmer, less turbid, and less hydrologically dynamic (Milner et al., 
2017). These changes are almost certain to have substantial impacts on GFS 
ecosystem structure and function by either contracting or extending the duration of 
these windows of opportunity. It is therefore critical to understand how benthic biofilms 
operate during these times in order to predict how these ecosystems are likely to 
change in the future (Milner et al., 2017). 

In streams, biofilms closely interact with the sedimentary environment (Battin et al., 
2016). For example, extracellular polymeric substances (EPS) produced by biofilms 
bind fine sediment grains together, which can locally stabilize substrata, reducing 
scour and vertical permeability (Roncoroni et al., 2019). Similarly, boulders resist flow-
induced disturbance to promote biofilm growth (Hoyle et al., 2017), and if protruding 
through the water column, may also increase light availability to further facilitate 
photosynthesis. Therefore, it seems advantageous for phototrophic biofilms to 
colonize boulders, which can be regarded as islands of stability in otherwise highly 
unstable GFS channels. These islands may allow biofilm growth to locally persist 
beyond the typical windows of opportunity (at least until snow cover), drive ecosystem 
energetics (i.e., gross primary production) (Boix Canadell et al., 2021), and to sustain 
the GFS food web and related benthic biodiversity (Fell et al., 2017; Milner et al., 2017). 
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The relationships between photoautotrophs (such as algae and cyanobacteria), 
prokaryotes and fungi regulate nutrient and carbon cycling, and therefore represent a 
fundamental ecological interface in aquatic ecosystems. This interface (i.e., the 
phycosphere) has received substantial attention in pelagic ecosystems over the last 
decades (Amin et al., 2015; Christie-Oleza et al., 2017; Cole, 1982; Seymour et al., 
2017), but less so in stream ecosystems. While early work on phototrophic biofilms 
colonizing the benthic zone in streams has highlighted the role of algal–bacterial 
interactions for carbon and nutrient fluxes (Center, 1989; Haack and McFeters, 1982), 
we do not currently understand the fine-scale mechanisms of such interactions. For 
example, cyanobacteria produce pigments that protect the biofilm as a whole against 
harmful UV-radiation (Vincent et al., 1993), while mucilage-rich algal colonies (e.g., 
Hydrurus spp.) provide labile organic matter to heterotrophic microorganisms and 
facilitate their attachment. Such interactions may foster facultative interactions 
between photoautotrophs and other microorganisms, which, similarly to the 
phycosphere, may be particularly beneficial to microbial life in oligotrophic and harsh 
ecosystems such as GFSs. Unraveling the genomic and metabolic underpinnings of 
algal–bacterial relationships in biofilms helps to better understand the success of the 
biofilm mode of life in an extreme ecosystem. 

Here we dissect the microbiome of GFSs and describe the genomic underpinnings of 
the adaptive mechanisms that potentially contribute to the success of complex 
biofilms. Using 16S rRNA and 18S rRNA gene amplicon sequencing, we assess the 
microbiome structure of biofilms associated with two sedimentary habitats that are 
common in GFSs, namely sandy sediments (i.e., epipsammic biofilms) and boulders 
(i.e., epilithic biofilms). We sampled geographically distant streams, transcending 
hemispheres (Southern Alps in New Zealand, NZ, and the Caucasus, CC), to draw more 
generalisable conclusions about microbiome structure and assembly. Furthermore, 
using genome-resolved metagenomics, we screen twenty-one epilithic biofilm 
microbiomes for energy pathways and cross-domain metabolic interactions. Our 
findings suggest the diversification of energy-acquiring pathways and metabolic 
interactions are relevant for epilithic biofilms to thrive during the ecological windows of 
opportunity, and beyond, within low-disturbance patches in GFSs. Moreover, our 
findings shed light on what the future biofilm mode of life in GFSs may look like as 
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glaciers shrink and GFS ecosystems are predicted to become more autotrophic (Milner 
et al., 2017). 

v Results and discussion 

Sedimentary habitats affect microbiome structure and assembly 

We used 16S rRNA and 18S rRNA gene amplicon sequencing to compare the 
microbiome structure of 48 epipsammic and epilithic biofilm samples from GFSs in NZ 
and CC collected during spring and autumn, respectively (Methods) (Figure 3.1a; 
Supplementary Figure 3.1a, b). These seasons broadly align with the windows of 
opportunity in these GFSs; however, we recognize that epilithic biofilms, in particular, 
may extend beyond these windows well into summer or until snow coverage. We found 
that both prokaryotic and eukaryotic communities differed between the two habitat 
types in terms of community structure and alpha diversity (Figure 3.1b, c). Overall, 
taxonomic differences were even apparent at the phylum level, despite high inter-
sample variability within the categories (Supplementary Figure 3.1c, d). Geography (i.e., 
NZ versus CC) explained 11.5% and 12.9% of the variability in the prokaryotic and 
eukaryotic datasets (db-RDA, p < 0.05 for both datasets), while sedimentary habitats 
explained an additional 10% and 8.3% of the variability (db-RDA, p < 0.05 for 
prokaryotes and eukaryotes). 

The estimated α-diversity (i.e., richness of amplicon sequence variants; ASVs) was 
higher for both prokaryotes and eukaryotes in epipsammic biofilms when compared to 
epilithic biofilms (2–3 fold differences, non-parametric t-tests, p < 0.001) (Figure 3.1d, 
e). These observations are in accordance with findings by Tolotti and colleagues (Tolotti 
et al., 2020) where α-diversity of the epipsammic habitats were higher than the epilithic 
biofilms in rock glacier- and groundwater/precipitation-fed waters (Tolotti et al., 2020). 
It is plausible that continuous dispersal and mixing facilitated by the transport of fine 
sediments from various upstream sources (e.g., the subglacial environment and 
adjacent soils) leads to the greater diversity of the epipsammic biofilms. Overall, our 
results unravel distinct microbiome structures for both sediment habitats within the 
same GFS reaches. This agrees with previous studies (Tolotti et al., 2020), and more 
generally with the relationship between streambed physical variation and spatial 
biodiversity dynamics (Besemer et al., 2009; Risse-Buhl et al., 2020). Streambeds, 
including their biofilms, are understood as landscapes where dispersal among patches 
can shape biodiversity and resilience (Battin et al., 2007; Dzubakova et al., 2018; 
Palmer et al., 2000). Therefore, we hypothesized that epilithic communities are partially 
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structured by dispersal from epipsammic communities that typically dominate the GFS 
streambeds by area. Using Sloan’s neutral community model (Sloan et al., 2006), we 
instead found that the composition of the epilithic biofilms is not dictated by a source-
sink relationship with the epipsammic communities (Supplementary Note). In other 
words, the epilithic biofilm communities are not determined by epipsammic 
communities that typically surround the boulders within the complex landscape of the 
GFS streambed. 

Metagenomics unveils the complexity of epilithic biofilms 

To unveil the full complexity of the epilithic biofilms, we performed whole genome 
shotgun metagenomics on 21 epilithic samples from four GFSs each in NZ and CC 
(Supplementary Figure 3.1a, b); low biomass associated with sandy sediments 
precluded epipsammic biofilms from metagenomic analysis. Metagenomic 
sequencing, after quality filtering, yielded on average 1.2 × 108 (±1.4 × 107 s.d.) reads 
per sample which were assembled to obtain an average of 8.7 × 105 contigs per sample 
that were subsequently binned. Bacteria and eukaryotes dominated the biofilm 
communities across all samples (Supplementary Figure 3.2a). Seventy-three (70 
bacteria and three archaea) medium-to-high quality (>70% completion, < 5% 
contamination) metagenome-assembled genomes (MAGs) from a total of 662 MAGs 
formed the pool of the prokaryotes. As seen from the phylogenomic analysis, the high-
quality MAGs (n = 49, >90% completion and <5% contamination) span the bacterial tree 
of life. Based on the phylogenomic analyses along with the taxonomic information 
(Figure 3.2), we sought to further characterize these MAGs that could represent novel 
species or species that have not previously been reported (Figure 3.2a). We found that 
only 30% of these high-quality MAGS were annotated up to the family level, whereas the 
remaining MAGs could be taxonomically labelled at the genus level. Only high-quality 
MAGs were used for the phylogenetic analyses to mitigate disparities arising from 
incomplete MAGs. Aggregated at the genus level, Polaromonas was both abundant and 
prevalent in the biofilms along with representatives of Flavobacterium, Cyanobacteria, 
and unclassified MAGs from the Bacteroidota and Candidate Phyla Radiation (CPR; 
Patescibacteria) (Figure 3.2b). These taxa were found in over half of the samples, 
irrespective of geographic origin. The CPR bacteria have only recently been identified 



Chapter 3. Genomic and metabolic adaptations of biofilms to ecological windows of 
opportunity in glacier-fed streams 

 41 

based on genomic data (Hug et al., 2016), and Patescibacteria specifically have been 
reported from oligotrophic ecosystems, including groundwater (Chaudhari et al., 2021) 
and thermokarst lakes (Vigneron et al., 2020). Their apparently minimal biosynthetic 
and metabolic pathways may help them dwell in these ecosystems, which is of equal 
relevance in GFSs. 

Alongside these bacteria, archaea contributed less than 1% to the microbiome of 
epilithic biofilms, with representatives of Asgardarchaeota, Crenarchaeota and 
Nanoarchaeota. Intriguingly, the recently discovered lineages of Asgardarchaeota (Cai 
et al., 2021; Y. Liu et al., 2021) have been reported from freshwater sediments, yet not 
from cryospheric environments. Algae, mostly diatoms and Hydrurus (Ochrophyta 
phylum), as well as dinoflagellata, were the most important photoautotrophs of the 
eukaryotic domain (Figure 3.2c). The prevalence of Hydrurus (~87% relative abundance) 
underscores the function of these filamentous algae as a resource to higher trophic 
levels in GFS (Niedrist and Füreder, 2018). Our metagenomic insights further support 
the notion that phototrophic biofilms are highly diverse with representatives from all 
three domains of life (Hug et al., 2016). 

In addition to the archaeal, bacterial and eukaryotic community members, we also 
found a diverse viral community associated with epilithic biofilms (Supplementary 
Figure 3.2b). Most of the viruses were bacteriophages targeting abundant MAGs such 
as Flavobacterium, Pseudomonas, and Bacillus genera, but we also identified 
eukaryotic phages (i.e., Paramecium bursaria Chlorella virus). Few have studied viruses 
in stream biofilms to date (Payne et al., 2020), potentially because it was common 
wisdom that the biofilm mode of life protects bacteria from viral infection. While viruses 
have previously been shown to be abundant in glaciers (Anesio et al., 2007; Bellas et 
al., 2020), our findings provide evidence for a diverse and likely active viral community 
in GFS biofilms where they may influence bacterial growth and both carbon and nutrient 
cycling as on the glacier surface (Anesio et al., 2007). 

Epilithic biofilms form the basis for a ‘green’ food web in glacier-fed 
streams 

Cyanobacteria and eukaryotic algae dominated the photoautotrophs in the epilithic 
biofilms and hence form the basis of the ‘green’ food web during the windows of 
opportunity. While these photoautotrophs are well known to use chlorophyll to capture 
solar energy, little is known on retinal-based phototrophy using rhodopsins in GFSs. 
Intriguingly, we found that MAGs from sixteen out of twenty phyla in the epilithic 
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biofilms, including the abundant groups, such as Proteobacteria (Polaromonas) and 
Bacteroidota (Flavobacterium), encoded for (bacterio-) rhodopsins (Figure 3.3a). These 
also included genes encoding for light-harvesting complex 1 (LH1), reaction centre (RC) 
subunits (pufBALM), and transcriptional regulators (ppsR) required for aerobic 
anoxygenic phototrophs along with rhodopsins as a signature of energy-limitation 
adaptations (Figure 3.3a). Recently, rhodopsins were also reported to serve as a 
photoprotectant in Flavobacterium from glaciers (Q. Liu et al., 2021). Collectively, our 
findings unveil multiple strategies of photoautotrophy, which may help cyanobacteria 
and algae to maximize their utilization of solar energy and to thrive on boulders in GFSs. 

In order to exploit the favorable habitat provided by boulders during and beyond the 
windows of opportunity in GFS, rapid growth may be advantageous for primary 
producers such as cyanobacteria. Moreover, functional independence from other 
microorganisms could allow them to seize environmental opportunities. To test this 
hypothesis, we assessed the relationship between projected times of growth (doubling 
time in hours) with the median KEGG pathway completion within each MAG. Given the 
partial completeness of the MAGs, including possibly missing metabolic modules, we 
performed a linear regression between median KEGG pathway completion and 
projected time of growth, accounting for MAG completion as a fixed effect. Strikingly, 
86% of the cyanobacterial MAGs (n = 38 out of 44) exhibited decreased projected times 
of growth with an increase in median KEGG module completion per MAG (rs = −0.47, 
Two-way ANOVA, adj. p < 0.05). These observations suggest that when encoding all 
genes to form a complete KEGG pathway, phototrophic taxa within these epilithic 
biofilms may indeed grow rapidly and be self-sufficient, putatively autonomously from 
other microorganisms from other (micro)organisms and fostering growth. 

Given the energetic constraints in GFSs, it would be beneficial for bacterial 
heterotrophs to interact with these photoautotrophic (micro)organisms for meeting 
their energy and nutrient demands. To investigate such cross-domain relationships, we 
used network analyses and identified key interacting taxa based on positively co-
occurring nodes using all prokaryotic and eukaryotic MAGs (see Methods). Based on a 
null model assessment (see Methods), our interaction networks showed preferential 
attachment within the nodes, along with increased centralities (i.e., degree and edge-
betweenness, Supplementary Figure 3.3a, b), suggesting that the interactions within 
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these networks were not random. More importantly, the largest connected component 
(based on degree and betweenness centralities) of the interaction network contained 
taxa spanning archaea, bacteria and eukaryotic domains (Figure 3.3b and 
Supplementary Figure 3.3b). Though Acidobacteria had a high degree of centrality, both 
Polaromonas and Methylotenera demonstrated strong interactions (>0.6 betweenness 
centrality) with primary producers (including eukaryotic algae) and fungi. Specifically, 
Polaromonas had a strong interaction with algae, while Methylotenera co-occurred 
with Chytridiomycetes (Figure 3.3b). Interestingly, we found similarly connected nodes 
demonstrating cross-domain interactions within the largest component of the 
individual regions, i.e., NZ (Supplementary Figure 3.3c, d) and CC (Supplementary 
Figure 3.3e, f), albeit the two regions had varying numbers of edges (NZ = 205 and 
CC = 30). This suggests that inherent interactions within these GFS epilithic biofilms are 
conserved irrespective of geographic origins. These results also support our hypothesis 
of heterotrophic bacteria co-occurring with eukaryotes, primarily algae, for metabolic 
cross-feeding, similar to those occurring in the phycosphere (Seymour et al., 2017). 

Furthermore, our results hint at the existence of a more cryptic interaction in epilithic 
biofilms between the parasitic fungi Chytridiomycetes and algae (mostly Ochrophyta). 
Fungal parasitism on pelagic algae has been recently reported to be more important 
than expected, even with consequences for carbon and nutrient cycling as mediated by 
the fungal shunt (Klawonn et al., 2021; Sánchez Barranco et al., 2020). The possibility 
of fungal parasitism on algae in epilithic biofilms further supports the notion of 
photoautotrophs forming the foundation of a complex food web in GFS ecosystems. 

Genomic underpinnings of algae–bacteria metabolic interactions 

As photoautotrophs grow and senesce, they increasingly exude intracellular material 
into their ambient environment, where it can be metabolized by heterotrophic bacteria 
through extracellular enzymes (Chróst, 1991). To explore this metabolic cross-feeding 
between bacterial heterotrophs and algae, we assessed the MAGs for genes encoding 
five common extracellular enzymes required for cleaving complex polysaccharides, 
phosphomonoesters and proteins (Sinsabaugh et al., 2009). Not unexpectedly, these 
genes were associated with bacterial heterotrophs rather than with the 
photoautotrophs (Supplementary Figure 3.4), which suggests adapted genomic traits 
to meet specific metabolic needs of the heterotrophs. However, based on the presence 
of extracellular enzyme genes among Cyanobacteria, we cannot discount the 
possibility of mixotrophy in the epilithic biofilms (Supplementary Figure 3.4b). 
Additionally, genes associated with mixotrophy, such as those encoding for auto- and 
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heterotrophic pathways, were also found in other abundant members of the epilithic 
microbiome (e.g., Proteobacteria). The widespread occurrence of mixotrophy in 
planktonic communities (Stoecker and Lavrentyev, 2018), including members of the 
Cyanobacteria, and the ensuing food web dichotomy is considered as an adaptive 
strategy to oligotrophic and cold ecosystems (e.g., the polar sea (Stoecker and 
Lavrentyev, 2018) and alpine lakes (Waibel et al., 2019)). Therefore, we argue that 
mixotrophy may also be an important trait of Cyanobacteria within GFS biofilms. 

Carbohydrate-active enzymes (CAZymes) are the primary tools used by 
heterotrophic bacteria to initiate the degradation of polysaccharides, largely algae-
derived in the GFS epilithic biofilms. To shed light on this potential trophic interaction 
identified through specific extracellular enzyme activities (EEAs), we tested if all the 
CAZymes in the metagenomes covaried with the abundance of eukaryotes. Overall, we 
found positive correlations between eukaryote abundances and CAZymes, particularly 
carbohydrate-binding modules (CBM) and glycoside hydrolases (GH) (Supplementary 
Figure 3.4d). More specifically, these correlations were particularly pronounced for GH 
and some of the algal groups (e.g., Ochrophyta, Haptophyta, Cryptophyta) that we 
found at relatively high abundances in the epilithic biofilms (Figure 3.3c and 
Supplementary Figure 3.4d). As some of these algae are known to copiously produce 
sulfated carbohydrates (Avcı et al., 2020), we suggest a similar involvement of CAZymes 
(Supplementary Data 1) in relation to polysaccharide degradation in GFS epilithic 
biofilms as recently reported from Verrucomicrobia isolates44. Given that sulfated 
carbohydrates are more resistant to bacterial degradation than other carbohydrates 
(Sichert et al., 2020), our findings suggest that they are still relevant to carbon turnover 
in an ecosystem that is inherently carbon limited. 

In order to understand whether functions potentially geared towards cross-domain 
interactions were enriched in epilithic biofilms in GFSs, we compared the KEGG 
orthology (KO) annotations from our metagenomes to 105 metagenomes from a wide 
range of ecosystems (Supplementary Data 2). Strikingly, we found that whole 
metagenome comparisons revealed that KOs associated with quorum sensing, vitamin 
B12 (cobalamin) transporters and thiamine biosynthesis were enriched in epilithic GFS 
biofilms compared to other ecosystems (Supplementary Data 3). The associated 
pathways and their completion levels were evaluated using KEGGDecoder (Figure 3.3d; 

https://www.nature.com/articles/s41467-022-29914-0#MOESM4
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Supplementary Figure 3.5) indicating a high completion of pathways associated with 
cross-domain interactions. These findings are in line with previous genomic insights 
into algal–bacterial interactions (Croft et al., 2005; Zhou et al., 2016), specifically with 
the observed upregulation of vitamin biosynthesis in bacteria (Halomonas) growing in 
the presence of algal extracts. 

Furthermore, several MAGs were found to encode genes (e.g., quorum sensing, 
cobalamin metabolism, tryptophan synthesis) potentially facilitating algal–bacterial 
interactions (Figure 3.3a). Particularly, cobalamin metabolism may be relevant for 
nutrient acquisition in algal–bacterial relationships (Grossman, 2016), whereas 
tryptophan was reported as a key signalling molecule involved in interactions between 
bacteria and associated phytoplankton (Amin et al., 2015; Segev et al., 2016). 
Collectively these genomic insights stress cross-domain interactions as an adaptive 
potential that the epilithic microorganisms have developed to exploit the window of 
opportunity in GFSs. 

Energy acquisition and biogeochemical pathways in epilithic biofilm MAGs 

The dominance (~88%) of MAGs encoding for organic carbon metabolism suggests a 
‘baseline’ heterotrophy in GFSs likely supported by organic carbon subsidies from 
melting glaciers (Boix Canadell et al., 2021; Fellman et al., 2015; Hood et al., 2015) 
‘green food web’ during the windows of opportunity, potentially sustaining metabolic 
interactions between primary producers and heterotrophs. Given the notoriously low 
concentrations of dissolved organic carbon in GFSs (Boix Canadell et al., 2019; Hood 
et al., 2015; Singer et al., 2012), including our study sites in NZ (96.18 ± 21.35 µg C L−1) 
and CC (221.36 ± 31.01 µg C L−1), we suggest that the ‘green food web’ dominates over 
allochthonous subsidies. 

Exploring the gene repertoire of the epilithic biofilms, we found that Cyanobacteria 
were one of the largest bacterial contributors to carbon fixation along with Bacteroidota 
and few Gammaproteobacteria (Figure 3.4a). An in-depth analysis across the 662 
MAGs revealed that 583 MAGs encoded genes involved in organic carbon oxidation, 
while 120 MAGs encoded genes involved in CO2 fixation. In line with the above findings, 
the majority of these MAGs was identified as Cyanobacteria along with few other phyla 
such as Proteobacteria, Asgardarchaeota, Crenarchaeota and Huberarchaeota. We 
also note that 351 MAGs encoded genes for fermentation (Figure 3.4b) spanning several 
phyla, including Actinobacteriota, Bacteroidota, Patescibacteria, Planctomycetota and 
Verrucomicrobiota. 
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For biofilms to thrive in GFSs, particularly during the windows of opportunity, it 
appears opportune to diversify the exploitation of energy sources. Therefore, we 
performed an in-depth characterisation of chemolithotrophic pathways to explore the 
potential role of minerals derived from the glacial comminution of bedrock as an energy 
source for microorganisms (Anesio et al., 2017). The prevalence of the sox gene cluster 
in representatives of the Bacteriodota (UBA7662) and Bdellovibrionota reveals the 
potential importance of inorganic sulfur oxidation in epilithic biofilms. This notion is 
supported by the broad occurrence of sulfur dioxygenases (SDOs) across the various 
phyla that facilitate sulfur oxidation (Figure 3.4c). Interestingly, Tranter and Raiswell 
suggested that sulfates derived from sulfide oxidation in comminuted bedrock (Tranter 
et al., 1989) potentially increase sulfur availability and acquisition in glacial meltwaters 
(Tranter et al., 1993). Sulfide oxidation can stimulate carbonate weathering with the 
resulting CO2 potentially being fixed by algae and cyanobacteria in the epilithic 
biofilms—a link that appears relevant given that GFSs are often undersaturated in CO2 
(St. Pierre et al., 2019). Furthermore, we found that almost all MAGs encoded for group 
IV hydrogen dehydrogenases (NiFe_Gp4; Figure 3.4c), which potentially serve as an 
alternate energy acquisition pathway. Hydrogen dehydrogenases have recently been 
reported to support primary production in various glacial and other extreme 
environments (Dunham et al., 2021; Hernández et al., 2020). This suggests that 
lithogenic hydrogen may also contribute energy to bacteria within the epilithic biofilms. 

Genomic insights into the nitrogen cycle revealed the Dissimilatory Nitrate 
Reduction to Ammonium (DNRA, or nitrite ammonification) and, to a lesser extent, 
denitrification, as major pathways (Figure 3.4d). Relatively little is known regarding 
these two competing pathways in stream biofilms or sediments (Quick et al., 2019), 
particularly in GFSs. This is in line with other ecosystems where DNRA is favoured over 
denitrification when alternate electron donors prevail over nitrate (Kuypers et al., 2018). 
For instance, predicting metagenomes from 16S rRNA sequences, Ren et al. (Ren et al., 
2017b) found DNRA to be an important pathway in GFSs, suggesting that bacteria use 
inorganic nitrogen more as an energy source than a source for biosynthesis. Our 
analyses revealed Burkholderiales (Gammaproteobacteria) as the largest contributor 
to nitrate assimilation and ammonia-oxidation genes (Figure 3.4a, c). DNRA, if not 
conducive to N2O production, would enhance nitrogen recycling within epilithic 
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biofilms through ammonia assimilation by algae and cyanobacteria, for instance. Our 
genomic evidence for nitrogen recycling that potentially overwhelms nitrogen losses 
through denitrification is corroborated by flux measurements from microbial mats in 
Antarctic GFSs (Gooseff et al., 2004), and highlights recycling as a strategy to cope with 
nutrient limitation in glacier ecosystems (Gooseff et al., 2004; Kohler et al., 2020a; Varin 
et al., 2010). 

Strikingly, we found only few MAGs, mostly belonging to Deinococcota, 
Gammaproteobacteria, Beijerinckiaceae and Crenarchaeota, involved in the oxidation 
of ammonia and nitrite, potentially leading to the accumulation of nitrate. The 
involvement of archaea would be in line with recent studies showing ammonia 
oxidation by archaea in Arctic soils (Alves et al., 2019) and with the observation that 
archaea couple ammonia oxidation with biomass formation (i.e., via CO2 fixation) 
(Könneke et al., 2014). Our finding that archaeal MAGs encode for carbon fixation genes 
(Figure 3.4b) further highlight their role in ammonia oxidation and biomass accrual in 
epilithic biofilms. Overall, the overlap of metabolic capacities within the MAGs 
suggests that the epilithic biofilms efficiently recycle carbon and nutrients. Internal 
recycling in stream biofilms is thought to be facilitated by increased residence times of 
water and contained solutes within the biofilms compared to the overlying water (Battin 
et al., 2003), which is certainly an advantage in a losing ecosystem such as GFSs. 

Genomic underpinnings of adaptation to the extreme GFS environment 

The GFS environment is extreme as illustrated by near-freezing temperatures, high 
UV-radiation, and high flow velocities. To assess potential adaptive traits of bacteria 
dwelling in epilithic biofilms, we first performed a phylogenomic analysis of 
Polaromonas spp., one of the most abundant and prevalent genera in the studied GFSs. 
Our analysis revealed that a few of the GFS Polaromonas formed clades that are 
distinct from Polaromonas identified in other environments (Methods), thus potentially 
comprising novel ‘species’ (Figure 3.5a). This phylogenomic pattern indicates that 
Polaromonas has evolved traits that facilitates its success in GFS, both in NZ and CC. 
To identify such traits, we created a pangenome and performed an enrichment analysis 
for clusters of orthologous genes. We found three categories that were significantly 
enriched in GFS Polaromonas compared to those from other environments 
(Supplementary Data 4). Two categories are related to defense mechanisms, both 
general and transcription, and one to energy production (Figure 3.5b). It is plausible that 
these mechanisms are related to high UV-radiation (Cockell et al., 2002; Sommaruga, 
2001) and oxidative stress (Margesin and Collins, 2019), as well as to cold stress 
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responses as previously reported from other bacteria (De Maayer et al., 2014; Tribelli 
and López, 2018; Varin et al., 2012). Furthermore, the presence of CRISPR-Cas proteins 
in the enriched clusters of orthologous genes (COGs) hint at defense mechanisms 
against phages (Supplementary Data 4), which we showed to be present in the epilithic 
biofilms. This is in accordance with reports demonstrating that cryospheric bacteria 
(such as Janthinobacterium spp.) develop defense strategies, including biofilm 
formation (Alonso-Sáez et al., 2014) and extracellular vesicle formation (Hornung et al., 
2013) to escape viruses. On the other hand, the transcription of ‘defense mechanism’ 
genes have been linked to cold adaptation in psychrophiles (De Maayer et al., 2014). 
Cold-shock proteins regulate transcription at low temperature, while genes involved in 
membrane biogenesis (Maillot et al., 2019) and membrane transport proteins (Konings 
et al., 2002), several of which are also enriched in the GFS Polaromonas genomes, are 
up-regulated. For example, in the psychrophilic Colwellia psychrerythraea 34H, 
adaptation to cold includes the maintenance of the cell membrane in a liquid-
crystalline state via the expression of genes involved in polyunsaturated fatty acid 
synthesis (Methé et al., 2005). Similarly, ATP-driven or proton motive secondary 
transport systems have been associated with solute transfers across membranes in 
bacteria and archaea as an adaptation to the cold (Ayala-del-Río et al., 2010). 

Our insights into the adaptive potential of Polaromonas to the GFS environment 
prompted us to expand our search for adaptive traits across all MAGs from the epilithic 
biofilms. Querying for 76 genetic traits spanning nine categories related to cold 
adaptation (Tribelli and López, 2018), we indeed found distinct patterns of genomic 
adaptation across MAGs (Figure 3.5c). Several MAGs encoded for genes associated 
with membrane and peptidoglycan alterations, cold and heat shock proteins, oxidative 
stress, and transcription/translation factors alongside DNA replication and repair. 
While all major phyla encoded for adaptive traits related to the outer membrane and 
cell wall, Proteobacteria were the predominant group with an overall higher copy 
number of genes (~5 copies/genome), albeit insignificant compared to other phyla, 
involved in counteracting osmotic and oxidative stress. This was followed by 
Bacteroidota, Cyanobacteria and Actinobacteriota with three, two and two copies per 
genome respectively. Interestingly, we found that Patescibacteria MAGs had 
significantly lower copies of cold adaptation genes, whilst both Actinobacteria and 



Chapter 3. Genomic and metabolic adaptations of biofilms to ecological windows of 
opportunity in glacier-fed streams 

 49 

Asgardarchaeota demonstrated a significantly higher number of osmotic stress genes 
(Supplementary Data 7). This is in line with metagenomic studies reporting an 
enrichment of sigma B genes in Antarctic mats, allowing for surviving severe osmotic 
stress during freezing (Varin et al., 2012). Similarly, Psychrobacter arcticus (Ayala-del-
Río et al., 2010) and Planococcus halocryophilus Or1 (Mykytczuk et al., 2013, p. 15) 
were shown to have specific genomic modifications, particularly with genes involved in 
putrescine and spermidine accumulation, both of which are associated with alleviating 
oxidative stress. Furthermore, MAGs from Proteobacteria were characterized by a high 
prevalence of genes potentially expressed in response to stressors, such as UV and 
reactive oxygen species (Figure 3.5c). 

Our genomic insights into possible adaptive traits of epilithic microorganisms may 
also contribute to our understanding of their adaptation beyond the windows of 
opportunity when the GFS environment is even harsher. In fact, with the onset of winter 
and during winter, GFSs partially freeze and become snow-covered thereby inhibiting 
primary production. Mixotrophy as observed within the Cyanobacteria (Supplementary 
Figure 3.4b) would be advantageous during these periods. 

Furthermore, it is recognized that cell membrane alterations and lipid composition 
allow for withstanding cold conditions (Tribelli and López, 2018). Our observations 
regarding several MAGs encoding genes associated with membrane and peptidoglycan 
alterations are concordant with previous reports of increased membrane fluidity in 
Psychrobacter arcticus 273–4 (Ayala-del-Río et al., 2010), Sphingopyxis alaskensis 
(Ting et al., 2010), and Pseudomonas extremaustralis (Tribelli et al., 2015). 
Simultaneously, at low temperatures oxygen solubility increases, potentially 
generating reactive oxygen species and subsequently leading to oxidative stress 
(Blagojevic et al., 2011). As reported above, we observed several MAGs encoding genes 
to counteract this phenomenon which may be even more critical as temperatures may 
decrease outside of the ‘warmer’ windows of opportunity. Overall, the diversity of the 
cold adaptation genes and their potential mechanisms within MAGs support the notion 
that these taxa are potentially equipped to deal with the even harsher GFS environment 
outside the windows of opportunity. 

In conclusion, our genome-resolved metagenomic analyses have set the stage for a 
mechanistic understanding of how the diversification of energy and matter acquisition 
pathways, metabolic interactions, and genomic adaptations to harsh environmental 
conditions allow GFS biofilms to persist and thrive during windows of opportunity and 
beyond. We acknowledge that a metagenomic time series outside and throughout 
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windows of opportunity would be required to substantiate some of our observations. 
Nevertheless, our findings shed light on boulders as important habitats that confer 
stability to biofilms even outside the typical windows of opportunity. GFSs count among 
the ecosystems that are most vulnerable to climate change. Therefore, our findings 
open a window into the future of how microbial life, with a strong photoautotrophic 
component, may look like in GFSs when the environmental conditions become more 
favorable for primary producers as glaciers shrink. 

v Methods 

Sample collection 

We sampled a total of eight GFSs from the Southern Alps in New Zealand Southern 
Alps and the Caucasus in Russia in early- and mid-2019, respectively, for a total of 27 
epipsammic samples taken from sandy sediments and 21 epilithic biofilm samples 
from boulders adjacent to the epipsammic samples (Supplementary Data 5). In order 
to have comparable samples, the collection was largely constrained to the vernal and 
autumnal windows of opportunity, respectively. Epipsammic samples were collected 
from each GFS by first identifying three patches within a reach of ~5–10 m. From each 
patch, epipsammic samples were taken from the <5 cm surface of the streambed with 
a flame-sterilized metal scoop and sieved to retain the 250 μm to 3.15 mm size fraction. 
While three epipsammic samples were taken from each stream, epilithic samples were 
taken opportunistically from up to three boulders per reach (Supplementary Data 5) 
due to their heterogeneity within and among the streams due to the unequal presence 
of boulders in each GFS. Epilithic biofilms were sampled using a sterilized metal 
spatula. All samples were immediately flash-frozen in liquid nitrogen in the field and 
transported and stored frozen pending DNA extraction. Streamwater turbidity, 
conductivity, temperature, and pH were measured in situ during the sampling 
(Supplementary Data 5). Samples for the determination of streamwater dissolved 
organic carbon and inorganic nutrient concentrations were filtered through pre-
combusted (450 °C) glass microfiber filters (GF/F, Whatman), frozen, and analyzed in 
the laboratory. DOC concentration was measured with a TOC carbon analyzer (Sievers 
M9 TOC Analyser, GE). Phosphate, ammonium, nitrite and nitrate were measured with 
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a continuous flow injection analyzer (Lachat QuikChem 8500, methods 10-115-01-1-M 
(PO4), 10-107-04-1-B (NO3/NO2) and 10-107-06-3-D (NH3)) (Supplementary Data 5). 

DNA extraction and purification 

A previously established protocol (Busi et al., 2020) was used to extract DNA from all 
samples. Briefly, 5 g of epipsammic and 0.05–0.1 g of epilithic biofilm were subjected 
to a phenol:chloroform-based extraction and purification method. The differential input 
volume for the DNA extractions were established to account for the differences in 
biomass between the epipsammic and epilithic biofilms. The samples were treated 
with a lysis buffer containing SDS along with 0.1 M Tris-HCl pH 7.5, 0.05 M EDTA pH 8, 
1.25% SDS and RNase A (10 µl: 100 mg/ml). The samples were vortexed and incubated 
at 37 °C for 1 h. Proteinase K (100 µl; 20 mg/ml) was subsequently added and further 
incubated at 70 °C for 10 min. Samples were purified once with 
phenol/chloroform/isoamyl alcohol (ratio 25:24:1, pH 8) and the supernatant was 
subsequently extracted with a 24:1 ratio chloroform/isoamyl alcohol. Linear 
polyacrylamide (LPA) was used along with sodium acetate and ice-cold isopropanol for 
precipitating that DNA overnight at −20 °C. For epilithic biofilms, the entire protocol was 
adapted to a smaller scale due to the availability of higher DNA concentrations 
compared to sediment. The former was treated with 0.75 ml of lysis buffer (instead of 
5 ml for sediment) and all subsequent volumes of reagents were adapted accordingly 
(see supplementary material). Furthermore, a mechanical lysis step of bead-beating 
was necessary along with a lysis buffer to facilitate DNA release from the more 
developed epilithic biofilms. Due to the higher DNA yields, the addition of LPA was 
omitted from the DNA precipitation step. DNA quantification was performed for all 
samples with the Qubit dsDNA HS kit (Invitrogen). 

Metabarcoding library preparation and sequencing 

The prokaryotic 16S rRNA gene metabarcoding library preparation was performed as 
described in Fodelianakis et al. (Fodelianakis et al., 2022), targeting the V3-V4 
hypervariable region of the 16S rRNA gene with the 341 F (5ʹ-
CCTACGGGNGGCWGCAG-3ʹ) and 785R (5ʹ-GACTACHVGGGTATCTAATCC-3ʹ) primers 
and following Illumina guidelines for 16S metagenomic library preparation for the MiSeq 
system. The eukaryotic 18 S rRNA gene metabarcoding library preparation was 
performed likewise but using the TAReuk454F (5ʹ-CCAGCASCYGCGGTAATTCC-3ʹ) and 
TAReukREV3 (5ʹ- CTTTCGTTCTTGATYRA-3ʹ) primers to target the 18 S rRNA gene V4 loop 
(Stoeck et al., 2010). Samples were sequenced using a 300-bp paired-end protocol 
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partly in the Genomic Technologies Facility of the University of Lausanne (27 
epipsammic samples) and partly at the Biological Core Lab of the King Abdullah 
University of Science and Technology (21 epilithic samples). 

Metabarcoding analyses 

The 16S rRNA gene metabarcoding data were analysed using a combination of 
Trimmomatic (Bolger et al., 2014) and QIIME2 (Bolyen et al., 2019) as described in 
Fodelianakis et al. (Fodelianakis et al., 2022), with the exception that here the latest 
SILVA database (Quast et al., 2013) v138.1 was used for taxonomic classification of 16S 
rRNA and 18S rRNA gene amplicons. Non-bacterial ASVs including those affiliated to 
archaea, chloroplasts and mitochondria were discarded from the 16S rRNA amplicon 
dataset in all downstream analyses. ASVs observed only once were removed from both 
16S rRNA and 18 S rRNA amplicon datasets. Diversity analyses were performed in R 
using the vegan (Dixon, 2003) and metacoder (Foster et al., 2017) packages. For non-
metric multidimensional scaling (nMDS) and distance-based redundancy (db-RDA) 
analyses data were log(x + 1) transformed and the capscale and ordiR2step (backwards 
direction, 200 permutations) functions from vegan were used. To test for a source-sink 
hypothesis from epipsammic to epilithic, the Sloan’s Neutral Community Model (Sloan 
et al., 2006) was used based on the R implementation developed by Burns et al. (Burns 
et al., 2016). 

Whole-genome shotgun libraries and sequencing 

All epilithic biofilm DNA samples underwent random shotgun sequencing following 
library preparation using the NEBNext Ultra II FS library kit (Biolabs, 2020). Briefly, 50 ng 
of DNA was used for constructing metagenomic libraries under 6 PCR amplification 
cycles, following enzymatic fragmentation of the input DNA for 12.5 min. The average 
insert size of the libraries was 450 bp. Qubit (Invitrogen) was used to quantify the 
libraries followed by quality assessment using the Bioanalyzer from Agilent. 
Sequencing was performed at the Functional Genomics Centre Zurich on a NovaSeq 
(Illumina) using a S4 flowcell. 
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Metagenomic preprocessing, assembly, binning, and analyses 

For processing metagenomic sequence data, we used the Integrated Meta-omic 
Pipeline (IMP) (Narayanasamy et al., 2016) workflow to process paired forward and 
reverse reads using version 3.0 (commit# 9672c874; available at https://git-
r3lab.uni.lu/IMP/imp3) (Heintz-Buschart et al., 2016). IMP’s workflow includes 
preprocessing, assembly, genome reconstructions and additional functional analysis 
of genes based on custom databases in a reproducible manner. Briefly, adapter 
trimming is followed by an iterative assembly using MEGAHIT v1.2.9 (Li et al., 2015). 
Concurrently, MetaBAT2 v2.12.1 (Kang et al., 2019) and MaxBin2 v2.2.7 (Wu et al., 2016) 
are used for binning in addition to an in-house method, binny (Hickl et al., 2022), for 
reconstructing metagenome-assembled genomes (MAGs). Binning was completed by 
selecting a non-redundant set of MAGs using DASTool (Sieber et al., 2018) based on a 
score threshold of 0.7. The quality of the MAGs was assessed using CheckM v1.1.3 
(Parks et al., 2015), while taxonomy was assigned using the GTDB-toolkit v1.4.1 
(Chaumeil et al., 2020). 

For the downstream analyses including identification of viruses, VIBRANT v1.2.1 
(Kieft et al., 2020) was used on the metagenomic assemblies. The output from this was 
used to identify the viral taxa using vConTACT2 v0.9.22 (Zablocki et al., 2019, p. 2). 
Independently, the viral contigs were also validated using CheckV v0.7.0 (Nayfach et 
al., 2021). To estimate the overall abundances of eukaryotes along with prokaryotes 
including archaea, we used EUKulele v1.0.5 (Krinos et al., 2020) with both the MMETSP 
and the PhyloDB databases, run separately, to confirm the detected eukaryotic 
profiles. To understand the overall metabolic and functional potential of the 
metagenome and reconstructed MAGs we used MANTIS (Queirós et al., 2021). 
Additionally, we used METABOLIC v4.0 (Zhou et al., 2022), metabolisHMM v2.21 
(McDaniel et al., 2019), and Lithogenie from MagicLamp v1.0 
(https://github.com/Arkadiy-Garber/MagicLamp) to identify metabolic and 
biogeochemical pathways relevant for determining nutritional phenotypes of all MAGs 
along with the ‘anvi-estimate-metabolism’ function from anvi’o (Eren et al., 2015). This 
information was manually validated based on the different tools to identify which MAGs 
encode for the respective pathways. Subsequently, to determine the growth rates of 
prokaryotes, we used codon usage statistics for detecting optimization of genes that 
are highly expressed, as an indicator of maximal growth rates with gRodon v1.0 
(Weissman et al., 2021). All the parameters, databases, and relevant code for the 
analyses described above are openly available at https://git-
r3lab.uni.lu/susheel.busi/nomis_pipeline and included in the Code availability section. 
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Eukaryote assembly and binning 

To obtain eukaryotic MAGs, an alternate, custom pipeline 
(https://github.com/Mass23/NOMIS_ENSEMBLE/tree/coassembly) was established 
for coassembling the twenty-one epilithic biofilm sequence data with subsequent 
binning. Individual samples were first preprocessed similar to the workflow used in IMP, 
i.e., using FastP v0.20.0 (Chen et al., 2018). Subsequently, the reads were deduplicated 
to avoid overlap and enhance computation efficiency using clumpify.sh from the 
BBmap suite v38.79 (“BBMap: A Fast, Accurate, Splice-Aware Aligner (Conference) | 
OSTI.GOV”). Thereafter, any reads mapping to bacteria or viruses were removed by 
filtering the reads against a Kraken2 v2.0.9beta (Wood et al., 2019) maxikraken 
database available at 
https://lomanlab.github.io/mockcommunity/mc_databases.html. Only reads that 
were unknown or mapping to eukaryotes were retained and concatenated. This was 
followed by another round of deduplication using clumpify.sh. The concatenated reads 
were assembled using MEGAHIT v1.2.7 with the following options: -kmin-1pass -m 0.9 
-k-list 27,37,47,57,67,77,87 -min-contig-len 1000. Following assembly, EukRep v0.6.7 
(West et al., 2018) was used for retrieving eukaryotic contigs with a minimum length of 
2000 bp and the ‘-m strict’ flag. These contigs were used for binning into MAGs as 
described herein. 

Eukaryotic MAGs were binned using CONCOCT v1.1.0 (Alneberg et al., 2013). To do 
this, coverages were estimated for the contigs by mapping the reads of all samples 
against the contigs using the coverm v0.6.1 (https://github.com/wwood/CoverM) to 
generate bam files. These files were then used to generate a table with coverage depth 
information per sample. The protein coding genes of the MAGs was predicted with 
MetaEuk v4.a0f584d (Levy Karin et al., 2020) with their in-house database made with 
MERC, MMETSP and Uniclust50 (http://wwwuser.gwdg.de/~compbiol/metaeuk/). The 
annotation was then subsequently done with eggNOG-mapper v2.1.0 (Huerta-Cepas et 
al., 2019). The completeness and contamination of the MAGs were assessed with 
Busco v5.0.0 (Simão et al., 2015) and the eukaryotic lineage (255 genes). We 
determined their taxonomy by comparing the results of the EUKulele v1.0.3 (Krinos et 
al., 2020) and EukCC v0.3 (Saary et al., 2020) along with homology comparisons with 
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publicly available genomes not included in the previous tools by protein BLAST v2.10.0 
(Altschul et al., 1990). 

Co-occurrence interaction networks 

Co-occurrence networks between the pro- and eukaryotic MAGs were constructed 
using an average of the distance matrices created from SparCC (Friedman and Alm, 
2012), Spearman’s correlation and SpiecEasi (Kurtz et al., 2015), where the networks 
were constructed using the ‘Meinshausen and Bühlmann (mb)’ method. Nodes with 
fewer than two degrees were discarded to identify cliques with three or more 
interactions, while negative edges were removed to visualize only mutualistic 
relationships. The matrix was visualised using the igraph (Csardi and Nepusz) R 
package. The largest component from the overall co-occurrence network was 
determined using the components module of the igraph package. Null model 
hypothesis was tested by assessing the distribution of the node degree and the 
respective probabilities of the occurrence network against those simulating the Erdos-
Renyi, Barabasi-Albert, Stochastic-block null models (Dormann et al., 2009). The igraph 
package was also used for plotting the networks. 

Phylogenomics and pangenomes 

For the pangenome analyses, we collected all the bins taxonomically identified as 
Polaromonas spp. and used the pangenome workflow described by Meren et al. 
(http://merenlab.org/2016/11/08/pangenomics-v2) using anvi’o (Eren et al., 2015), 
along with NCBI (Pruitt et al., 2007) refseq genomes for comparison and an outgroup 
from the closely related Rhodoferax genus. The choice of Polaromonas spp. was based 
on its high abundance and prevalence within the epilithic biofilms. The accession IDs 
from the reference genomes obtained from NCBI are provided in the supplementary 
material. The pangenome was run using the -min-bit 0.5, -mcl-inflation 10 and -min-
occurence 2 parameters, excluding the partial gene calls. A phylogenomic tree was 
built using MUSCLE v3.8.1551 (Edgar, 2004) and FastTree2 v2.1.10 (Price et al., 2010) 
on all single-copy gene clusters in the pangenome that were present in at least 30 
genomes and had a functional homogeneity index below 0.9, and geometric 
homogeneity index above 0.9. The phylogenomic tree was used to order the genomes, 
the frequency of gene clusters (GC) to order the GC dendrogram. A phylogenomic 
bacterial tree of life containing the 47 high-quality MAGs along with 264 NCBI bacterial 
genomes was built based on a set of 74 single-copy genes using the GToTree v1.5.51 
(Lee, 2019) pipeline with the -D parameter, allowing to retrieve taxonomic information 
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for the NCBI accessions. Briefly, HMMER3 v3.3.2 (Eddy, 2011) was used to retrieve the 
single-copy genes after gene-calling with Prodigal v2.6.3 (Hyatt et al., 2010) and aligned 
using TrimAl v1.4.rev15 (Capella-Gutiérrez et al., 2009). The entire workflow is based on 
GNU Parallel v20210222 (Tange, 2018). 

Data analyses and figures 

Figures for the study including visualizations derived from the taxonomic and 
functional components, were created using version 3.6 of the R statistical software 
package (R Core Team, 2023). The maps indicating the collection sites were generated 
using the ggmap (Kahle and Wickham, 2013) package in R. KEGGDecoder (Graham et 
al., 2018) was used to assess enriched KEGG orthology (KO) IDs in comparison to 105 
publicly available metagenome sampled in various ecosystems at a global scale 
(Supplementary Data 3 and 6), which were processed using the IMP workflow. DESeq2 
(Love et al., 2014) with FDR-adjustments for multiple testing were used to assess KOs 
significantly enriched in the GFS metagenomes compared to this comparison dataset. 
The volcano plot highlighting the significant KOs was generated using the 
EnhancedVolcano (Blighe, 2023) R package. Figures from metabarcoding data were 
also generated in Rv3.6 using the ggplot2 (Kahle and Wickham, 2013) package and were 
further annotated graphically using Inkscape (“Inkscape”) while the network plots were 
generated using the igraph v1.2.2 package. 
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v Data availability 

Raw sequencing data samples and the MAGs are available at NCBI’s sequence read 
archive under BioProject accession PRJNA733707. The Biosample accession IDs and 
the metadata associated with each sample are listed under Supplementary Data 6. A 
snippet of the results and source data generated and used in this study have been 
deposited in Zenodo at https://doi.org/10.5281/zenodo.5545722. Data used to 
generate the figures are also provided as a ‘Source Data’ file. Source data are provided 
with this paper. 

v Code availability 

The detailed code used for the downstream functional and growth analyses is 
available at https://git-r3lab.uni.lu/susheel.busi/nomis_pipeline and 
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v Figures & Tables 

a Representative images of sample collection indicating GFS and adjacent epilithic biofilm (left) with 
images of epilithic biofilms (right). Photo credits: Martina Schön and Matteo Tolosano. Ordination 
analyses of the epipsammic (n = 27 biologically independent samples) and epilithic (n = 21 biologically 
independent samples) biofilm based on prokaryote (b) and eukaryote (c) metabarcoding profiles from 

Figure 3. 1 Sedimentary habitats affect microbiome 
structure and assembly. 
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Southern Alps and Caucasus. Microbial richness across geographic locations and sample types in (d) 
prokaryotes and (e) eukaryotes. The statistical analyses was performed on 27 epipsammic and 21 
epilithic samples using a two-sided non-parametric t test. Bonferroni-corrected p values are indicated 
by *, i.e., *** represents p < 0.001. Boxplots represent the median richness with the 25th and 75th 
quartiles observed within the samples. 
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a Bacterial phylogenetic tree constructed using high-quality (n = 49, >90% completion and <2% 
contamination) MAGs reconstructed from the epilithic biofilms. The numbers beside the phylum names 
indicate the number of high-quality MAGs assigned to the respective phylum. Only high-quality MAGs 
were used to mitigate phylogenetic disparities from incomplete MAGs. b Normalized abundance of 

Figure 3. 2 Metagenomics unveils the complexity of 
epilithic biofilms. 
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reconstructed prokaryotic genomes, i.e., MAGs, from the epilithic biofilms. Taxonomy at phylum and 
genus levels is depicted. NA: unclassified genus. Samples from the Southern Alps are indicated in red, 
while those from Caucasus are shown in blue. Medium-to-high quality MAGs (n = 73) are depicted. c 
Eukaryotic relative abundance profile obtained from metagenomic sequencing across all epilithic 
biofilms samples. 
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a Abundance of genes involved in energy production (light-harvesting complex, transcriptional 
regulator for phototrophy, and rhodopsin) and photo-heterotrophic interactions (cobalamin 
metabolism and tryptophan synthesis), across all prokaryotic phyla are represented in the heatmap. 
Values indicate the log10 abundance per gene within the phyla. b Largest component of the co-
occurrence network between pro- and eukaryotic MAGs. Each node corresponds to a MAG (pro- or 

Figure 3. 3 Epilithic biofilms are the basis for a ‘green food 
chain’. 



Chapter 3. Genomic and metabolic adaptations of biofilms to ecological windows of 
opportunity in glacier-fed streams 

 63 

eukaryote). Size of the node corresponds to degree centrality and the edges represent the positive 
coefficients of correlation between each node. Colour of each node represents the phylum annotation. 
NA: unclassified genus. c Spearman’s correlation analyses of relative abundances of eukaryotic 
primary producers with the CAZyme abundances. CAZymes include AA auxilliary activities, CBM 
carbohydrate-binding module, CE carbohydrate esterases, GH glycoside hydrolases, GT 
glycosyltransferases, PL polysaccharide lyases. FDR-adjusted p values were estimated using the 
‘cor.mtest’ function from the corrplot R package and are indicated by *, i.e., *<0.05, **<0.01, ***<0.001. 
d KEGG orthology (KO) pathways enriched in epilithic biofilms compared to publicly available 
cryospheric metagenomes were further assessed via KEGGDecoder for pathway completion and are 
displayed. The completeness of the pathways is indicated in the heatmap, per sample. 
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a The alluvial plot represents the metabolic pathways identified within all prokaryotic MAGs, with the 
respective taxonomic classification and category of nutrients. b Total number of MAGs encoding genes 
for and involved in the Carbon cycle (Methods) are depicted in the flow gram created using a modified 

script from METABOLIC109. Each sub-pathway is indicated as a step with the corresponding number of 

genomes encoding the respective genes. c Phylum and order-level distributions of chemolithotrophic 
(hydrogen, nitrogen and sulfur) pathways with the respective gene copies per pathway are depicted in 
the heatmap. d Flow diagram indicating the MAGs encoding for pathways in the nitrogen cycle 
(Methods). Each sub-pathway is indicated as a step with the corresponding number of genomes 
encoding the respective genes. 

Figure 3. 4 Functional redundancies across MAGs 
enable diverse energy acquisition and 
biogeochemical pathways. 
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a Phylogenomic tree based on Polaromonas genomes recovered from Southern Alps (red) and 
Caucasus (blue) along with publicly available genomes (grey) and an outgroup (Rhodoferax, dark grey). 
b Clusters of orthologous (COG20) group pathways enriched in epilithic biofilms MAGs compared to 
the reference genomes are depicted in the barplot. c Heatmap representing the abundance of genes 
involved in cold adaptation. Taxonomy at phylum and order levels is depicted. Columns indicate 
clusters of orthologous groups associated with adaptive genes. 

  

Figure 3. 5 Genomic underpinnings of adaptation to 
the extreme GFS environment. 
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v Abstract  

Forecasting climate change impacts on complex microbiomes is non-trivial but 
critical to understand future ecosystem functioning. The worldwide shrinkage of 
glaciers and vanishing glacier-fed streams are emblematic of climate change, but 
consequences for the glacier-fed stream microbiome remain poorly understood. 
Similar environmental constraints across the world’s glacier-fed streams make them 
ideal systems for predictive climate change microbiology. Here, leveraging 
environmental and metagenomic data sampled by the Vanishing Glaciers project from 
more than 150 glacier-fed streams draining Earth’s major mountain ranges, we model 
responses of the glacier-fed streams environment and microbiome to future climate-
induced glacier shrinkage. Using statistical learning approaches and Shared 
Socioeconomic Pathways projections, we show how key environmental constraints will 
diminish, thereby promoting the growth of benthic primary producers and bacteria. 
Furthermore, investigating 2,333 genome-level bacterial strains assembled from 
metagenomes, we project that the biodiversity of the glacier-fed stream microbiome 
will change and that entire clades rather than single strains may be at threat under 
future environmental conditions. We also show that microbiome function will 
experience shifts related to energy and carbohydrate metabolism, while genome size 
may increase. Altogether, our results indicate that glacier shrinkage renders the glacier-
fed stream environment less extreme, thereby shifting the phylogenetic structure and 
function of the microbiome. This altered microbiome may play a more important role 
for carbon cycling in the future glacier-fed streams. 

v Main text 

High mountains play crucial roles in global systems, harbor a unique biodiversity and 
provide water resources for large human populations (Clason et al., 2023; Immerzeel et 
al., 2020). At the same time, they are particularly vulnerable to climate change (Barnett 
et al., 2005; Pörtner et al., 2019). Changing precipitation and temperature regimes, 
diminishing snow pack and shrinking glaciers altogether alter the ecology of high-
mountain ecosystems (Gottfried et al., 2012; Rumpf et al., 2022). The rapid shrinkage 
of glaciers and the vanishing of their streams (glacier-fed streams; GFS) worldwide 
count among the most emblematic consequences of climate change. Significant 
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advances have recently been made regarding the impacts of glacier shrinkage on 
invertebrate ecology in GFSs. For instance, species adapted to the harsh environmental 
conditions in GFSs become increasingly imperiled as glaciers shrink, and their 
distribution ranges reduced to cold-water refugia under the influence of residual ice 
(Cauvy-Fraunié and Dangles, 2019; Giersch et al., 2017; Jacobsen et al., 2012; Wilkes 
et al., 2023). However, how glacier shrinkage may affect microbial life in GFSs under 
various climate change scenarios until the end of this century remains unknown to 
date. Biofilms dominate microbial life in streams, particularly in GFSs, where they 
regulate nutrient cycling and ecosystem metabolism, and form the basis of the food 
web (Battin et al., 2016). They host a microbiome that is distinct from the assemblage 
in the streamwater and locked in the glacier ice, and that spans all domains of life (Ezzat 
et al., 2022; Wilhelm et al., 2013). The genomic potential of the GFS microbiome allows 
microorganisms to withstand the harsh environmental conditions (e.g., near-freezing 
water temperatures, high sediment loads and ultra-oligotrophy) and seize 
opportunities of more favorable environmental conditions determined by glacier runoff 
dynamics on an annually recurring basis (Busi et al., 2022; Michoud et al., 2023). 

As the distribution of microorganisms integrates past and present environmental 
conditions, and as microbial metabolism underlies elemental cycling, microbiomes 
may be used to forecast the future of ecosystem functioning under climate change 
(Correa-Garcia et al., 2023). However, forecasting how entire microbiomes may change 
under such scenarios is challenging. Efforts largely remain restricted to soil and marine 
microbiomes and use amplicon sequencing rather than genomic information (Frémont 
et al., 2022; Mod et al., 2021). The GFS microbiome is well suited for predictive modeling 
under climate change scenarios because it is under strong selection by a harsh 
environment, which deterministically shapes its assembly (Fodelianakis et al., 2022). 
Moreover, key environmental constraints are similar across the world’s GFSs, which are 
now rapidly changing. Interfacing the cryosphere, GFSs are thus ideal systems for 
modeling future climate impacts. While modeling glacier shrinkage under future 
climate scenarios has become increasingly sophisticated (Rounce et al., 2023), no 
quantitative forecasts currently exist for downstream ecosystems and their microbial 
life.  

In this article, we developed a hierarchically structured modeling framework to 
forecast changes of the environment and both microbiome structure and function of 
the world’s GFSs until the end of the century in the context of three greenhouse gas 
emissions scenarios (Shared Socioeconomic Pathways; SSP) and using Global Glacier 
Evolution Model (GloGEM) (Huss and Hock, 2018) projections and climatologies for 
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Earth’s land surface areas (CHELSA)28 at high resolution (Figure 4.1A). We report 
prediction averages for the 2070-2100 period under SSP3, representing an intermediate 
scenario of climate change; predictions for the more extreme SSP1 and SSP5 are 
reported in supplementary information only. For our forecasts, we leverage 
environmental data and 2,333 bacterial genomes spanning the entire bacterial tree of 
life that were assembled from metagenomes (strain-level resolution, 99% average 
nucleotide identity) from GFSs sampled by the Vanishing Glaciers project in the 
Caucasus Mountains, Chilean and Ecuadorian Andes, Himalayas, Pamir and Tien Shan, 
Rwenzori Mountains, Scandinavian Mountains, New Zealand Southern Alps, and 
Southwest Greenland (Figure 4.1B). In each GFS, we captured the recent deglaciation 
history along a chronosequence (Figure 4.1C), which we used in a machine learning 
approach to predict how the GFS environmental template (i.e., the physicochemical 
niches affecting ecological communities) will change by the end of the century and how 
these shifts affect microbial biomass and diversity. We leveraged these predictions of 
the GFS’s environment to model the abundance of all bacterial strains, and assess 
shifts in the composition, phylogenetic structure and functional potential of the GFS 
microbiome under future climate scenarios. Finally, we inferred the putative 
consequence of an altered GFS environment and microbiome for ecosystem 
functioning under future projected climate change. 

Climate-induced changes of the environmental template of glacier-fed 
streams 

The environmental template and its niches determine the composition of ecological 
communities in stream ecosystems (Southwood, 1977). In GFSs, the environmental 
template, defined by flow regime, streamwater turbidity, temperature, pH and 
nutrients, for instance, is under the influence of the glaciers (Milner et al., 2017; Milner 
and Petts, 1994). The overall magnitude and temporal dynamics (e.g., seasonal and diel 
fluctuations) of streamflow, as well as sediment production through subglacial 
weathering and erosion are influenced by glacier area (Huss and Hock, 2018; Zhang et 
al., 2022). Streamflow and sediment load drive turbidity and hence light availability in 
GFSs, thereby affecting primary production (Boix Canadell et al., 2021). Glacier 
coverage, the fraction (%) of the catchment that is glacierized, serves as proxy for 
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streamflow contributions from glacial meltwaters and affects streamwater 
physicochemistry (e.g., nutrients, pH) (Milner et al., 2017). Furthermore, as glacier 
influence diminishes with downstream distance, streamwater temperature increases 
and channels consolidate (Jacobsen and Dangles, 2012). Given the entanglement of 
these processes with glacier dynamics and their fundamental role for life in GFSs, it is 
of utmost relevance to understand and predict climate-change impacts on the GFS 
environmental template. 

To forecast potential changes of the global GFS environmental template under future 
climate change scenarios, we first obtained climatological and glaciological 
parameters and their projections for the mountain ranges from where we sampled GFSs 
(Figure 4.1B). We sourced climatic parameters (e.g., mean daily temperature, annual 
snow-covered days, monthly precipitation) from the CHELSA database28, which 
contains climatologies downscaled to a 1 km resolution for historical data, as well as 
future projections under future climate change scenarios. To assess how glacier 
influence may change in the future, we retrieved glaciological parameters from 
GloGEM, which we complemented with data from satellite imagery and field survey 
(Methods). Both allowed us to collect data for the 2019-2022 period when GFSs were 
sampled, (Supplementary table 4.1) and the 2070-2100 period. Values of climatic 
parameters (e.g., temperature, precipitation and annual snow cover) that were 
extrapolated for the 2019-2022 period did not exhibit extreme values compared to the 
distribution of the 1981-2010 values (Supplementary figure 4.1). 

CHELSA projections predict that median air temperature will increase by 4.4°C (IQR: 
3.6-5.3°C) (Wilcoxon test, p < 0.001), whereas annual snow-covered days will decrease 
with a median reduction by 66.4 days (IQR: 55 - 99.4 days) (Wilcoxon test, p < 0.001). 
Monthly precipitation is projected to shift regionally and therefore does not show a clear 
trend (Supplementary figure 4.1). Consequently, future projections predict size 
reductions of the glaciers that feed our GFSs. Glacier area is expected to shrink by 
78.3% (IQR: 64.4% - 96.0% km2), reducing coverage by 41.3% (IQR: 29 - 60 %) and 
reflected in a median glacier snout recession of 1.84 km (IQR: 1.33 - 2.78 km) on average 
by the 2070-2100 time period (Figure 4.1C). These datasets, encompassing present 
conditions and future projections according to climate change scenarios, were then 
used to forecast changes in the GFS environmental template.  

To this end, we trained generalized additive models (GAMs) using current climatic, 
as well as glaciological data and sediment mineralogy (Methods) to predict how GFS 
physicochemical parameters may change under different climate change scenarios. 
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Our projections reveal that median streamwater temperature in the upstream reaches 
will increase by 3.0 °C (IQR: 2.2 - 4.0°C) by the end of the century (Figure 4.2A, 
Supplementary figure 4.2). Future increases of streamwater temperature will be 
comparatively higher in GFSs with currently low temperatures, such as in the Pamir, 
Tien Shan and the Himalayas (Figure 4.2B). Median streamwater turbidity will decrease 
by 44.4% (IQR: 31.6 - 71.7 NTU), while median electrical conductivity will increase by 
88.2% (IQR: 51.6% - 130.7% μS cm-1) (Figure 4.2C). Projections also indicate that 
median streamwater pH, soluble reactive phosphorus and dissolved inorganic nitrogen 
will significantly decrease by 2.8% (IQR: 1.6 - 4.2 %), 14.1% (9.6 - 27.3 %) and 11.5% 
(IQR: 5.2 - 16.3 %), respectively, by the end of the century (Figure 4.2, Supplementary 
table 4.2). The analysis of response curves reveals that streamwater temperature will 
increase with glacier length recession, while streamwater turbidity and pH will 
decrease with diminishing glacier area (Supplementary figure 4.3). Shifts in 
streamwater nutrient concentrations appear more related to geography and streambed 
sediment mineralogy, hence yielding smaller relative changes associated with climate 
change and the associated glacier shrinkage overall (Supplementary figure 4.3). 
Nonetheless, our results suggest that, globally, streamwater soluble reactive 
phosphorus and dissolved inorganic nitrogen are associated with glacier area. These 
quantitative forecasts of the GFS environment underpin conceptual model 
considerations on the impacts of glacier shrinkage on nutrient availability and 
biogeochemistry in GFSs (Milner et al., 2017; Ren et al., 2019). 

Greening of glacier-fed streams and shifting biodiversity 

Microbial benthic biomass is a key stream ecosystem attribute as it fuels the food 
web and regulates ecosystem metabolism and nutrient cycling (Battin et al., 2016). Our 
projections (Methods, Supplementary table 4.2) reveal significant increases for median 
values of benthic chlorophyll-a (339.7%; IQR: 183 - 852.2 %), a proxy for algal biomass, 
and bacterial abundance (88.5%; IQR: 60.4 - 150.2 %) (Figure 4.3A, B). Interestingly, the 
projected benthic biomass in the future GFSs is still low compared to other stream 
ecosystems (Brandani et al., 2022), which points to the persistence of other 
environmental constraints (e.g., high turbulence) that are not directly linked to climate 
change. Nonetheless, we suggest that GFS primary production will increase beyond the 
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sediment peak, when streamwater turbidity decreases because of the fading capacity 
of glaciers to generate fine sediments (Zhang et al., 2022), hence decreasing light 
attenuation and physical abrasion of benthic algae. This notion is indeed supported by 
the negative correlation between projected values of streamwater turbidity and benthic 
chlorophyll-a (rho = -0.96, p < 0.001), which also underlies the relationship between 
glacier area and GFS benthic chlorophyll-a (Supplementary figure 4.3). Changes in 
resource availability, associated with elevated biomass of primary producers in future 
GFSs, may have impacts on the diversity, structure and function of the GFS 
microbiome. 

Despite the harsh environment of GFSs, their benthic biofilms host a diverse 
microbiome (Busi et al., 2022; Wilhelm et al., 2013). Our projection shows that this 
diversity (alpha-diversity expressed as Shannon H; see Methods) will increase by 6.2% 
(IQR: 4.7 - 8.9 %) under SSP3 (Figure 4.3C). Positive correlations of projected bacterial 
Shannon diversity (rho = 0.69, p < 0.01) and abundance (rho = 0.98, p < 0.001) with 
chlorophyll-a corroborate the notion that increased primary production will sustain 
higher microbial biodiversity. Our projections of increasing local microbial diversity in 
future GFSs is in line with reports showing that invertebrate alpha-diversity increases in 
GFSs as glacier influence diminishes (Brown et al., 2018; Cauvy-Fraunié and Dangles, 
2019, 2019).    

Strong environmental selection imprints a distinct phylogenetic signature on the GFS 
microbiome, characterized by microdiverse bacteria that are phylogenetically 
clustered and putatively well adapted to the GFS environment (Fodelianakis et al., 
2022). To test how phylogenetic structuring may change under future climate change, 
we project mean nearest taxon distance and mean phylogenetic distance, indicating 
relatedness at shallow and deeper phylogenetic branching, respectively. We find that 
median values of the mean nearest taxon distance and mean phylogenetic distance will 
significantly (p < 0.001) increase by 3.5% (IQR: 2.2 - 5.8 %) and 3.2% (IQR: 1.7 - 6.3 %), 
respectively (Figure 4.3D), suggesting that phylogenetic clustering will diminish in the 
future GFS microbiome. In combination with the predicted increase in diversity, this 
implies that phylogenetically distant taxa compared to those currently present in GFSs 
may augment microbiome diversity. The correlation (rho = 0.97, p < 0.001) between 
future mean nearest taxon distance and chlorophyll-a further suggests that increased 
resource availability through algal exudates may alleviate current selective constraints, 
ultimately leading to the creation of new niches. In fact, autochthonous organic 
compounds derived from algae are readily available to the metabolism of microbial 
heterotrophs in stream biofilms (Wagner et al., 2017).  
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Climate change shifts strain-level distribution 

Species distribution models are commonly used to forecast climate change impacts 
on the structure and diversity of ecological communities. To predict the impacts of a 
changing climate and integrating glaciological and environmental controls on key 
components of the GFS microbiome, we built separate models for each of the 2,333 
strains from our GFSs (except the Alaska Range) in a strain distribution model 
framework (Methods). For this, we used a combination of climatic, glaciological, and 
mineralogical data, along with the predictions from the previous section. Overall, our 
models predicted strain abundance with satisfactory accuracy (median r2

prediction = 0.25; 
IQR = 0.13-0.36) (Supplementary figure 4.4). 

First, a feature selection procedure was performed to select the best set of 
covariates (Methods), as well as to assess the predictive power of these covariates to 
model strain-specific abundance distributions (Supplementary figure 4.5). Across all 
strains, we found latitude, streamwater electrical conductivity, pH, and temperature 
were the most powerful predictors of relative abundance. Bioclimatic variables 
reduced by principal component analysis (Methods; Supplementary figure 4.6), as well 
as distance to the glacier and annual snow cover, were also identified as important 
predictors (Figure 4.5A). Next, using forecasts of these predictors, we assessed future 
abundance distributions for each strain. The majority of the 2,333 strains (i.e., 64.7%) 
is expected to increase in abundance, while 30.0% will decrease in abundance and 
5.3% are predicted to not significantly change in abundance (Supplementary table 4.3). 
This overall gain in abundance aligns with our independent forecast of increasing 
bacterial biomass. 

The classes Gammaproteobacteria and Alphaproteobacteria, which dominate the 
present-day GFS microbiome, are projected to experience the most pronounced 
absolute increases, a result that can be attributed to their high abundance and the high 
number of strains affiliated to these classes (Figure 4.4C). Moreover, classes predicted 
to increase the most in abundance compared to their present-day abundance (e.g., 
Paceibacteria, Gemmatimonadetes) are known for their parasitic or symbiotic lifestyles 
(Mujakić et al., 2022; Nelson and Stegen, 2015), potentially promoted by higher biofilm 
biomass in future GFSs. We also identified groups of strains (e.g., Bdellovibriona, 
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Polyangia, Actinomycetia) whose representatives will decrease in abundance the most 
(Figure 4.4B, C). Strikingly, strains that currently occur at low abundance (i.e., lower half 
of the abundance distribution) are projected to increase more in abundance compared 
to strains that are currently abundant in GFS microbiomes (i.e., upper half of the 
abundance distribution). This points to an internal reorganization of GFS microbial 
communities, and implies that the future GFS microbiome will be characterized by 
higher evenness, consistent with our projection of Shannon H and Pielou evenness 
(Supplementary figure 4.7). Annual snow cover, distance to the glacier, bioclimatic 
variables, and streamwater temperature best predict those strains that will decrease in 
abundance (Figure 4.5B). Our results thus suggest that ecological niches, putatively 
linked to streamwater temperature and resource stoichiometry in GFSs (Elser et al., 
2020), and to which bacterial strains have adapted over evolutionary times, will 
undergo major transformations owing to climate-induced glacier shrinkage.  

We found a strong correlation between the predicted changes in abundance of the 
strains and the phylogeny (phylogenetic signal measured as the correlation with the log2 
fold-change: lambda = 0.88, p < 0.001), as well as predictability (lambda = 0.77, p < 
0.001) (Figure 4.4A, Supplementary table 4.4). The latter reflects how well strain 
abundance was captured by the models, and was obtained via cross-validation (i.e., 
building a model on 9 folds, and computing r2 on the left-out one). Under the 
assumption of response trait conservatism (i.e., closely related strains share traits that 
allow them to respond similarly to environmental shifts), these phylogenetic patterns 
validate our modeling approach. Indeed, we observed more similar environmental 
predictors being selected for phylogenetically closely related strains (Spearman 
correlation, rho = -0.15, p < 0.0001, Supplementary figures 4.8, 4.9). Taken together, 
these results reflect how well strain abundance was captured by our modeling 
approach (Methods), as we consider that phylogenetic patterns are directly linked to 
response trait conservatism (i.e., that closely related strains share traits that allow 
them to respond similarly to environmental shifts). 

However, the finding of phylogenetically clustered increases and decreases in 
abundances also raises concern, as it suggests that climate change could imperil entire 
clades in GFSs rather than individual strains. In fact, we identify 186 strains – 
representing 8.0 % of all strains and 26.6 % of those projected to decrease in 
abundance – as belonging to monophyletic clades of at least three representatives, all 
projected to significantly decrease under SSP3 (Supplementary table 4.5). Notably, 
among the largest clades, some belong to taxa (e.g., Ferruginibacter, 
Lacisediminihabitans, Acetobacteraceae) that are hallmarks of cryospheric 
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ecosystems and known for their cold adaptation genes (Bourquin et al., 2022; Carey et 
al., 2016; Liang et al., 2021), for instance. These clades exhibit deep branching, with a 
median relative phylogenetic depth of 0.25 (IQR: 0.20 - 0.35). Taken together, these 
findings suggest that the microbiome of the world’s GFSs will experience profound 
phylogenetic restructuring under future climate change scenarios with potential 
implications for ecosystem functioning.  

Changing microbiome functions 

Owing to the possible loss of entire phylogenetic clades, it is important to also assess 
how the functional potential of the GFS microbiome may change under future climate 
change scenarios. To do so, we constructed random forest classifiers to identify KEGG 
(Kyoto Encyclopaedia of Genes and Genomes) ortholog groups (KOs) that are important 
at segregating strains that decrease in abundance from others (Methods). Taking 
phylogenetic structure into account by clustering strains into ten phylogenetic clusters, 
then building a model on nine and testing the importance of KOs in the left-one out, we 
identified 408 KOs that significantly characterize strains predicted to decrease in 
abundance (p < 0.05, feature importance quantile > 0.95). Notably, these KOs were 
found in taxa across the entire phylogeny, indicating that the response of the GFS 
microbiome to climate change is associated with potentially adaptive functions found 
throughout the bacterial tree of life. While some of these functions are associated with 
biofilm formation, many are involved with cold adaptation (Supplementary table 4.6). 
Further, we found evidence for increased metabolic diversity and reduced genome size 
in strains that are predicted to decrease in abundance, which may be related to the 
optimisation of genome content. Specifically, compared to strains that are predicted to 
increase in abundance or remain invariant, genomes of strains predicted to diminish in 
the future are smaller (GAM, fixed effect estimate = -0.2 mbp, p < 0.01) yet contain an 
elevated number of KOs (GAM, mean difference = 4.02, p < 0.001). This is explained by 
reduced KO redundancy (GAM, mean difference = 3.44, p < 0.001), and suggests that 
despite a broad metabolic repertoire, smaller genomes are favored under current GFS 
conditions but that these lifestyle adaptations may not be favored under future 
conditions. Using enrichment analysis, we found that KEGG categories related to 
carbohydrate metabolism (Fisher test, OR = 2.20, p < 0.001) and energy metabolism 
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(Fisher test, OR = 1.80, p < 0.001) exhibited a large number of significant KOs in strains 
predicted to decrease in abundance (Supplementary table 4.7). Interestingly, these 
categories were overrepresented in the genome of the putatively losing strains (Figure 
4.6A). Taken together, reduced genomes with maximized metabolic diversity suggest 
adaptations to the ultra-oligotrophic, yet temporally highly dynamic, GFS environment. 
This may be intrinsically linked to the carbon sources and availability, currently varying 
in response to glacier shrinkage (Hood et al., 2020; Robison et al., 2023). In the future, 
this may shift towards the more predictable availability of algal-derived organic carbon. 
Our results thus provide further evidence for the alleviation of selective constraints in 
future GFS microbiomes, trailed by a reduction in the diversity of the metabolic 
repertoire at the microbiome level. In combination with increased genome redundancy, 
this finding further suggests that metabolic specialization becomes promoted by the 
use of algal exudates as primary energy source in the future GFSs.  

In conclusion, our global-scale forecasting provides hitherto missed insights into the 
future of a rapidly vanishing ecosystem and its microbiome, thereby filling an important 
knowledge gap in the climate change microbiology of cryospheric ecosystems. We 
acknowledge potential caveats related to species distribution models, including 
potentially missing variables and overfitting, for instance. However, we argue that a 
priori knowledge of the GFS environment and microbiome, as well as cross-validation 
and ensemble modeling make our projection architecture robust. Our findings show 
how the GFS microbiome, characterized by phylogenetic clustering and lifestyle 
adaptations (e.g., optimisation of genome size, metabolic flexibility), will restructure in 
the future as the GFS environment becomes less extreme. We predict that as climate 
change erodes glacier influence, the world’s GFSs will become ‘greener’ and their 
microbiome more diverse. “Greening” has the potential to alter carbon and energy 
supplies in GFSs, which may favor taxa with a metabolic repertoire tailored to life in 
phototrophic biofilms. Our forecasts suggest major restructuring of the GFS 
microbiome with entire bacterial clades likely decreasing in abundance and 
implications for its functional potential. Future research should focus on deciphering 
the genetic potential of the bacterial clades that are most likely to be lost from the 
world’s GFS microbiome.  
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v Methods                                   

Study sites and sample collection 

GFSs were sampled by the Vanishing Glaciers project between January 2019 and July 
2022 (see Supplementary table 4.1). Our global sampling included the European Alps, 
Scandinavian Mountains, Himalayas, Pamirs and Tian Shan, Ecuadorian and Chilean 
Andes, Southwest Greenland, Alaska Range, Caucasus, Rwenzori Mountains, and the 
New Zealand Southern Alps. For the sake of comparability, GFSs were predominantly 
sampled in spring or autumn during ‘windows of opportunities’17 as this facilitates 
comparability between GFSs. For each GFS, two reaches were sampled: one as close 
as possible to the glacier (median = 76 m, IQR = 29-301) and one downstream (median 
= 706 m, IQR =336-1280). This approach allowed us to capture changes in glacier 
influence over the two stream reaches, creating a time-for-space substitution design 
with the idea that sites currently located further downstream from the glacier 
correspond to future conditions at the current position of the glacier snout. From each 
reach, we sampled three separate sediment patches with flame-sterilized devices. At 
each patch, we collected sandy (250 μm to 3.15 mm; Retsch©) sediments from the 
benthic zone. Sediment samples were transferred into sterile cryovials, immediately 
flash-frozen in liquid nitrogen and subsequently stored at –80°C prior to and following 
shipping to Switzerland for DNA extraction and biomass analyses. 

Streamwater and sediment physicochemical parameters 

In the field, we measured streamwater temperature, pH, specific conductivity and 
turbidity (Turb® 430 IR, WTW) expressed as nephelometric turbidity units (NTU). We 
filtered streamwater (pre-combusted GF/F filters, Whatman©, UK) into Nalgene HDPE 
bottles and froze the samples within 48 h pending nutrient analyses. Nutrient analyses 
were conducted using a LaChat QuikChem 8500 flow injection analyser for ammonium 
(N-NH4

+; QuikChem method 10-107-06-3-D), nitrate (N-NO3
-, QuikChem method 10-

107-05-1-C), and soluble reactive phosphorus (P-SRP; Method 10-115-01-1-M). We 
combined inorganic forms of nitrogen into dissolved inorganic nitrogen (DIN). Sterile-
filtered (0.2 μm, Millipore) samples for major cations and anions were stored in the dark 
(4°C) and analyzed using a Metrohm 930 Compact IC flex system. Benthic sediment 
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mineralogy was determined using a X-TRA ThermoARL Diffractometer. Errors varied 
between 5% and 10% for the phyllosilicates and 5% for grain minerals. Raw data files 
were generated and transformed into calculated files by WinXRD 2.0-6 
(ThermoFischer). Relative abundances of the main mineral groups (clays, quartz, 
feldspar and calcite) were computed from the raw counts of mica, chlorite, amphibole, 
feldspars, calcite and quartz divided by the sum of counts. 

Climatic dataset 

Climatology data at high spatial resolution were collected from the CHELSA 
database (version 2.1, https://www.nature.com/articles/sdata2017122) (“Envidat” ; 
Karger et al., 2017). CHELSA provides both climatic and bioclimatic data typically used 
in species distribution modeling approaches (and has been shown to improve their 
accuracy), at high spatial resolution (~1 km) based on a global downscaling approach. 
The database based on an ERA-Interim climatic reanalysis additionally contains future 
projections of climate changes for Shared Socioeconomic Pathways (SSP, 
https://link.springer.com/article/10.1007/s10584-013-0905-2). The data was extracted 
in the python programming language using the database API and processed with the 
rasterio and gdal python libraries (v1.3.8; v3.7.0) (GDAL Development Team; Gillies and 
others, 2013). GPS coordinates of all sampling locations were used to identify the 
corresponding grid cells of the (bio-)climatic data set. The specific sampling months 
were used for monthly parameters. For future projections, five different insitutions 
models were downloaded and combined by averaging (gfdl-esm4, ukesm1-0-ll, mpi-
esm1-2-hr, ipsl-cm6a-lr, mri-esm2-0). As the historical values in the database were 
available only up to 2010, linear extrapolation based on historical values (average for 
1981-2010) and projections for the years 2020-2040 was performed to create the 2019-
2022 dataset, and the value for the sampling year and month was extracted. In addition 
to these values, climatic data for the time period 2070-2100 were collected to create 
projections onto future scenarios of climate change. For this, three SSPs scenarios 
corresponding to different greenhouse gas emission trajectories were considered. 
These scenarios included SSP1, SSP3, and SSP5, encompassing a range of potential 
future climate outcomes. We report median change and interquartile ranges for the 
site-specific changes for all parameters. To test for a significant shift, we conducted 
Wilcoxon tests (wilcox.test function) of the future projections minus the present 
predictions. All statistical analyses were performed using the R programming language 
and figures were prepared using the ggplot2 R package (v3.4.2) (Wickham, 2016). Data 
processing was performed with the help of the tidyverse R packages suite (Wickham et 
al., 2019). 
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Glaciological dataset 

The future evolution of all glaciers was assessed based on the Global Glacier 
Evolution Model (GloGEM) (Huss and Hock, 2018). The model is initialized with present-
day glacier extent and computes changes in snow accumulation and melt, as well as 
changes in glacier length based on an ensemble of Global Circulation Models using 
different greenhouse-gas emission scenarios. The model has been calibrated to match 
observed mass change at the scale of every individual glacier globally (Hugonnet et al., 
2021). For this study, we extracted data on distance of sampling locations to the glacier 
terminus over the time period 2000 to 2100, as well as the area of the glacierized 
surface. We report median change and interquartile ranges for the site-specific 
changes for all parameters. To test for a significant shift, we conducted Wilcoxon tests 
(wilcox.test function) of the future projections minus the present predictions. All 
statistical analyses were performed using the R programming language (v4.3.1, 
https://intro2r.com/citing-r.html) and figures were prepared using the ggplot2 R 
package (v3.4.2) (Wickham, 2016). Data processing was performed with the help of the 
tidyverse R packages suite (v2.0.0) (Wickham et al., 2019). 

Metagenomics 

Metagenomes were sequenced for 155 sediment samples covering all mountain 
ranges except the Alaska Range. DNA extraction, purification, library preparation, 
sequencing and metagenome assembly steps were performed as described in Busi et 
al. (2022) (Busi et al., 2022). Briefly, 5 g of GFS sediments were treated using a 
phenol:chloroform-based extraction method subsequently followed by an ethanol 
precipitation step (Busi et al., 2020). This protocol yielded on average 50 ng of DNA per 
sample which was used for library preparation using the NEBNext Ultra II FS library kit, 
which also included 6 PCR cycles (Busi et al., 2022). The metagenomic sequence data 
was processed using the Integrated Meta-omic Pipeline workflow (version 3.0; commit# 
9672c874) (Narayanasamy et al., 2016). Briefly, adapter trimming from reads is 
followed by an iterative assembly using MEGAHIT (Li et al., 2015) and Flye (Kolmogorov 
et al., 2020). Reads assembled into contigs were subjected to binning. For each 
individual assembly, we mapped the reads of the 5 closest samples (euclidean 
distances of gps coordinates) using BWA-mem (v0.7.17) (Li, 2013). To reduce 
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computation time, we removed sequences in the assembly of < 1.5 kbp. Subsequently, 
10 % of the preprocessed reads were randomly selected before mapping with seqtk 
(v1.3) (Shen et al., 2016). We then used metabat2 (v2.15)70, concoct (v1.1.0) (Alneberg 
et al., 2014) and metabinner (v1.4.3) (Wang et al., 2023) using default parameters to 
obtain bins. DAS Tool (v1.1.4) (Sieber et al., 2018) was then employed to generate a non-
redundant set of bins using a score threshold of 0.3. The quality of the redundant bins 
was assessed with CheckM2 (v1.0.1) (Chklovski et al., 2023).  

Bins from all samples (including the ones generated by IMP3) with a completeness 
of more than 50% were then selected for further analyses which accounted for 12,599 
bins. We then used MDMCleaner (v0.8.3) (Vollmers et al., 2022) to reduce 
contamination of the bins. Finally, after rerunning CheckM2 on the bins to get final 
estimates of completeness and contamination, we used dRep (v3.2.2) (Olm et al., 2017) 
to dereplicate bins using a minimum completeness of 70 % and maximum 
contamination of 10 % and an ANI of 99 % that arise to 2868 MAGs (strain-level 
dereplication). Functional annotation of the MAGs was performed with EggNog-Mapper 
(v2.1.9) (Huerta-Cepas et al., 2017) after obtaining coding regions (CDS) with prodigal 
(v2.6.3) (Hyatt et al., 2010). The coverage of the MAGs was estimated by mapping the 
reads of the samples to the genomic contigs using CoverM (v0.6.1, available at 
https://github.com/wwood/CoverM) using the trimmed_mean parameter. We 
normalized the coverage by similarly mapping the reads on the recA gene (K03553). 
After filtering out low-abundance strains (prevalence lower than 20% at a 10x recA 
coverage abundance threshold), 2,333 were selected for the strain distribution 
modeling.  

Modeling environmental parameters and microbial biomass 

Models of streamwater temperature, turbidity, conductivity, pH, soluble reactive 
phosphorus (SRP), and dissolved inorganic nitrogen (DIN) were built using climatic, 
bioclimatic, glaciological and geological parameters as covariates, chosen by feature 
selection (Supplementary figure 4.3). Additionally, biomass and diversity metrics for the 
bacterial communities were modelled analogously. Response variables and covariates 
were log-transformed where necessary to improve the normality of residuals, adding a 
constant equal to the half of the smallest non-zero value. Before model fitting, all 
variables were scaled by subtracting the mean and dividing by the standard deviation. 
All models were created using the gaussian() family function. Generalized additive 
models (GAMs) were used to model stream parameters and biomass in order to 
account for spatial autocorrelation at the regional scale using a spatial spline (formula: 
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s(latitude, longitude, bs='sos', m=1, k=-1)), and the models were validated using 10-fold 
cross validation. GAMs have been successfully used to model and predict future 
changes in environmental sciences and ecology especially for spatially structured data 
(Colón-González et al., 2013; Grüss et al., 2016; Mod et al., 2021; Ravindra et al., 2019), 
and have also been applied to stream ecosystems, including GFSs (Coleman et al., 
2021; Jowett et al., 2008; Paillex et al., 2020; Selle et al., 2019). GAMs were created 
using the bam function of the mgcv package (v1.9_0) (Wood, 2023). The choice of 
parameters used, and of performing ensemble modeling, was made to control potential 
overfitting. Moreover, we selected only three variables for each strain distribution 
model to further avoid overfitting. The shape of the smoothed splines were then 
inspected and all had reasonable smoothing (Supplementary figure 4.3). 

To further improve the robustness of our approach, we performed ensemble models 
by creating nine GAMs (each time omitting the data for one of the training cross-
validation folds), and then averaging predictions using an elastic net linear regressor. 
Different alpha values of 0, 0.5 and 1 were tested and the best one retained based on 
the error reported by the cv.glmnet function of the glmnet R package (v4.1_7) (Tay et al., 
2023). Using 5-fold cross-validation, the function automatically computes the best 
lambda value. We additionally avoided autocorrelation at the GFS level (as two samples 
were collected from within each GFS) by randomly sampling one of the two samples 
before creating each of the submodels. By fitting nine separate models to predict each 
cross-validation fold, we allowed a fraction to represent local variations in the data, and 
stacking multiple models allowed for all samples to be included in the final model 
(since only one sample per GFS is included in each model). Given the number of 
samples, models and predictions were first computed for all folds, and performance 
metrics were calculated on the result of all cross-validation folds afterwards (Collart 
and Guisan, 2023). 

Feature selection was performed by building individual generalized additive mixed 
models with a spline for each covariate (k=3, bs='ts') along with the spatial spline, and 
were then ranked by -log(p-value) of the covariate spline. The top three variables were 
then kept to build a final model. This procedure was repeated on each of the nine 
models for each cross-validation fold. A final model was then built with the spatial 
spline and a spline for the three top variables with the following parameters: k=3, 
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bs=’ts’. These parameters allowed a non-linear relationship while the low number of 
knots and the penalisation on the spline were added to control for the smoothness, in 
order to avoid overfitting. 

Response curves were created using predictions for all sampling points and 
averaging values. The consistency of the stream parameter models created for each 
SSP scenario was assessed by comparing the selected features and their 
corresponding response curves. We observed reasonably shaped response curves for 
all models (Supplementary figure 4.3), and measured model performance as the cross-
validation r2 value computed comparing predicted and observed data for the held-out 
folds (Supplementary figure 4.2). The statistics comparing present and future 
conditions were extracted as for the climatic dataset statistics. The correlations 
between stream parameters’ changes were computed by comparing the predicted 
changes in parameter A with the predicted changes in parameter B across all sites with 
a Spearman correlation. Plots containing ridges were created using the ggridges R 
package (v0.5.4) (“wilkelab/ggridges: Ridgeline plots in ggplot2”). 

Strain distribution modeling 

Models of the abundance (normalized using the recA gene coverage) of each strain 
were built using climatic, glaciological, mineralogical data as well as environment 
stream parameters forecasts as covariate, chosen by feature selection (one set of 
features for each strain). The tested covariates are listed in Supplementary figure 4.3. 
Bioclimatic variables that describe annual seasonal processes and are potentially 
limiting factors for the survival and growth of species were included (Busby, 1991). To 
decrease the number of variables (in an effort to reduce potential overfit and collinearity 
issues), we created a PCA based on bioclimatic variables using the prcomp function of 
the R stats package part or the r-base (v4.3.1), and kept the first six axes as they 
represented more than 95% of the variation (Supplementary figure 4.6). Strain 
abundances and some covariates were log-transformed where necessary to improve 
the normality of residuals, adding a constant equal to the half of the smallest non-zero 
value. Before model fitting, all variables were scaled by subtracting the mean and 
dividing by the standard deviation. The strain distribution models were created similarly 
to the stream parameters and biomass models. Generalized additive models (GAMs) 
were used and stacked using an elastic net as for the stream parameters and biomass 
models. Differences are that the spatial spline approach was not used, but latitude, 
absolute latitude, and longitude, along with elevation and the slope of the stream, were 
added in the tested covariates. Thus, four variables were selected in the feature 
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selection procedure instead of three. Model performance was assessed using the 
r2

prediction since our goal was to assess the predictive power of our models (Araújo et al., 
2019).  

Strain abundance statistical analyses 

The phylogenetic signal analysis was conducted by using the “lambda” method of 
the phytools R package (v1.5_1) that allows the correlation of parameters with the 
phylogeny. As response variables, we used log2 fold-change for the future changes and 
the r2

prediction as a measure of predictability. We report median change and interquartile 
ranges for the site-specific changes for all parameters. To test for a significant shift, we 
conducted Wilcoxon tests (wilcox.test function) of the future projections minus the 
present predictions. The evenness was assessed by comparing present and future 
median predictions of abundance for all strains, and showing that the relationship had 
a slope smaller than one (Supplementary figure 4.6). The decreasing clades were 
defined as the largest monophyletic sub-trees composed of only representatives that 
are predicted to decrease under the SSP3 scenario. The manipulation of the trees 
including the computation of sub-trees and branch lengths was performed using 
phytools and ape R packages (v1.5_1; v5.7_1) (Paradis and Schliep, 2019; Revell, 2012). 
The phylogenetic tree was plotted using the ggtree and ggtreeExtra R packages (v3.8.0; 
v1.10.0) (Xu et al., 2021; Yu et al., 2018). 

To identify drivers based on the feature selection procedure results, only strain 
models with an r2

prediction > 0.05 were considered. The bacterial strains were classified as 
“decreasing” in the future if the Wilcoxon test for future change was significant and the 
change negative. For these analyses, we considered only the SSP3 scenario, since the 
models did not differ significantly across scenarios (Pearson correlation coefficients 
with SSP3 = 0.98 and 1.0, for SSP1 and SSP5 respectively, p < 0.001). The relative ranks 
of the drivers in the strain distribution models were created using the number of times 
each of the covariates were selected during the feature selection procedures. To 
compare the importance of variables with the phylogenetic structure, we compared the 
number of shared top five variables as assessed by the feature selection procedure to 
the phylogenetic distance between pairs of strains. A Spearman correlation was 
computed to highlight the significance, ggplot2 was used to create a scatter plot and fit 
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a ‘loess’ moving average curve. To compare classes, we separated taxonomies 
according to the GTDB-tk taxonomy, and ran Kruskal-Wallis test to test whether 
variables had a similar importance in all classes, or whether the variables had varying 
importance across taxa. This was computed within R with the kruskal.test function, and 
plots were created to show the distribution of median relative ranks across taxa with 
the ggridges R package (v0.5.4). 

Functional analyses 

A random forest analysis was performed to identify KOs that are associated with the 
strains that decrease in abundance. To this end, we took into account the phylogenetic 
structure by separating the data into 10 phylogenetic clusters and training models on 
nine of them while testing the KOs importance on the left-out one. The models were 
created using the ranger function of the ranger R package (v0.15.1) , allowing to easily 
test hyperparameters settings (random grid search, n=50, hyperparameters values 
tested are available in Supplementary table 4.8), compute feature importance, and also 
test the significance of the KOs with the method developed by Altmann et al. (2010) 
(Altmann et al., 2010). We considered as significant KOs with a p-value < 0.05, and in 
the 95% percentile of the importance values in at least one of the phylogenetic clusters. 
We considered “top” KOs that were significant in at least eight out of the 10 
phylogenetic clusters (n=21), and for these, descriptions were gathered on the KEGG 
website (https://www.genome.jp/kegg/), and additional information was collected in 
literature for these genes (Supplementary table 4.6). 

An enrichment analysis was carried out at the level of KEGG categories to identify 
categories overrepresented in the set of significant KOs. This was done with the 
fisher.test in R and p-values were corrected using the Bonferroni method. We only 
considered positively significant categories with the thresholds: p-value < 0.05, and 
odds ratio > 1. To compare the number of KOs per categories in the ‘Decrease’ and 
‘Others’ bacterial genomes, we used GAMs to create models taking into account the 
completeness, the contamination and the N50 of these genomes and their interactions 
with a tensor (k=3, bs=’cs’). Models were created for the counts of KOs in the genomes 
corresponding to the category (gaussian() family model). Weights were added by 
multiplying the inverse of the number of genomes for each phylogenetic cluster (so that 
all phylogenetic clusters weigh equally), the completeness of the genomes (to give less 
weight to the absences owed to incomplete genomes), and the mean relative 
abundance in present conditions. These models were fit using the bam function of the 
mgcv R package. Using the same approach, we tested for a difference between the two 
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groups of bacterial genomes in the total number of KOs, the genome length, the genome 
redundancy (unique KOs / total KOs), and also regressed the number of KOs of the 
genomes fitting a linear effect of the genome length (taking into account completeness, 
contamination and N50 with a tensor; function te with parameters k=3 and bs=’cs’). For 
these models, we tested the difference between the decreasing strains and the others 
by fitting fixed effects (and an interaction for the KO number ~ genome length model) 
with ANOVAs as implemented in the stats package of the R programming language, and 
reported the estimated means and standard errors. 
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v Code and data availability 

The data generated in this study have been deposited in Zenodo, under the DOI 
https://doi.org/10.5281/zenodo.10409762 (https://zenodo.org/records/10409762), 
and the code in a Github repository: https://github.com/Mass23/CrystalBall. 
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v Figures  

(A) Framework of our hierarchically structured model to predict the abundance of 2,333 bacterial 
genomes assembled from metagenomes (Methods). We combined upstream and downstream 
streamwater physicochemistry and sediment mineralogy data with present-day climatological and 
glaciological data to train models that relate environmental shifts to deglaciation. Projections of 
climate and glaciology were available from the CHELSA database v2.1 and in the output of GloGEM 
models for SSP1, SSP3 and SSP5. This allowed us to forecast the environmental template under SSP-
scenarios for 2070-2100, accounting for the spatial structure of our data. In a second step, we 

Figure 4. 1 Worldwide distribution of glacier-fed streams sampled, 
sampling design and modeling framework. 
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combined climatic, glaciological, mineralogical and projected environmental data, with abundance 
data of the bacterial strains in a modeling framework similar to species distribution models. Feature 
selection was used for each bacterial strain to individually constrain the environmental niche, and we 
predicted strain-level abundances under future climate change. (B) Mountain ranges and number (in 
circles) of glacier-fed streams sampled per mountain range. (C) Conceptual depiction of sampling 
designed as a time-for-space substitution based on an upstream and downstream reach (median 
distance between reaches: 515 m; interquartile range, IQR: 236 - 933 m) and simulating the glacier 
retreat. The models are trained on environmental and metagenomic data from upstream and 
downstream reaches; predictions of present-day and future conditions in upstream reaches take into 
account glacier shrinkage.  
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(A) Distance between the upstream sampling point and the glacier snout, and (B) the area of the glacier 
according to the GloGEM models comparing values for the sampling year, and the averages for the 
2070-2100 predictions. The dots correspond to the SSP3 scenario, and the error bar displays values for 
the SSP1 and SSP5 scenarios. 
  

Figure 4. 2 Sampling extent and glacier shrinkage 
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Scatter plots comparing predictions of stream parameters for current conditions and future projections 

for the 2070-2100 period. These parameters are streamwater temperature (A), turbidity (B), 
conductivity (C), pH (D), dissolved inorganic nitrogen concentration (DIN, E), and soluble reactive 
phosphorus (SRP, F). A quantile regression (median) is shown with the solid line, and the one-to-one 
line is displayed with a dashed line. The colors represent the different mountain ranges with a palette 
matching the world map in Figure 4.1A. 

  

Figure 4. 3 Environmental template predictions 
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(A) Scatter plots highlighting the relationship between algal biomass (chlorophyll-a) with streamwater 
turbidity, (B) algal biomass with bacterial cell abundance, (C) algal biomass with the Shannon index of 
bacterial communities, and (D) algal biomass with the within community mean nearest taxon distance 
(a-MNTD) of the bacterial communities. Predicted values for the sampling year, and future projections 
for the 2070-2100 time period are compared, and the current and future conditions for each site are 
linked with grey lines. The correlations between predicted changes were all highly significant (p < 0.001, 
Spearman Rho = -0.96, 0.98, 0.69, 0.97 for panels A, B,C and D, respectively). 

Figure 4. 4 The ‘greening’ of the world’s glacier-fed streams. 
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(A) Phylogenetic tree showing the log2 fold-change between current and future projections of strains’ 

abundances. The color of the dots matches the log2 fold-change, and the size of the dots represents 
current relative abundances. In the phylogenetic tree, we highlight tips and clades that are predicted to 
decrease in abundance significantly by coloring their edges in red, highlighting the high phylogenetic 
signal in the predicted changes. Additionally, the 11 most abundant bacterial taxonomic classes are 
highlighted in the inner ring. (B) Distributions of the relative, measured as log2 fold-change) and (C) 
summed absolute median changes in abundance for the 11 most abundant classes (highlighted in the 
tree). 

  

Figure 4. 5 Shift in bacterial communities under climate change 
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(A) Proportion of KEGG orthologous groups (KOs) from these categories (Carbohydrate metabolism and 

Energy metabolism) in the genome of the strains that are predicted to decrease in abundance 
(Decrease, blue), and the others (Others, red). The difference in mean was statistically significant for 
both categories with a fixed effect (ANOVA, p < 0.001) in the GAM model approach taking into account 
completeness, contamination and the N50 of these MAGs. On average (with standard errors), the 
decreasing strains had 4.02 more KOs in the “Carbohydrate metabolism” category (meanothers = 
43.5±0.5) and 3.44 more in the “Energy metabolism” category (meanothers = 31.2±0.4). (B) GAM model 
with a linear effect of ln genome size on the total number of KOs for both groups, taking into account 
the completeness, contamination and N50 of the genomes into account with a tensor. The slopes were 
significantly different for both groups (ANOVA, p < 0.001, slopeDecrease=127.3±1.1, 
slopeOthers=118.6±0.7). 

Figure 4. 6 Genomic properties of the strains that are predicted to decrease 
in abundance 
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v Abstract 

The eco-evolutionary interactions that shape microbial genomic landscapes 
determine the success of microbes and have therefore have fascinated microbial 
ecologists since long. Here, leveraging 2,855 metagenome-assembled genomes 
sampled by the Vanishing Glacier Project from glacier-fed streams (GFSs), we shed light 
on the genomic landscape of the benthic microbiome in these harsh ecosystems — 
now vanishing because of climate change. Owing to the glacier influence, the GFS water 
is notoriously cold and ultra-oligotrophic, and within highly unstable sediment beds. 
Along gradients of glacier influence and concomitant variation in benthic algal biomass 
across 149 GFSs draining Earth’s major mountain ranges, we show that GFS bacteria 
optimise their genomes in terms of size, coding density, redundancy, and translational 
machinery. We develop a novel, phylogeny-rooted analytical framework that allows 
pinpointing the phylogenetic depth at which genomic optimization occurs. These 
analyses reveal deep-branching patterns of genomic optimizations and highlight 
Gammaproteobacteria in shaping community-level genomic landscapes along 
gradients of glacier influence in GFSs. Using comparative pangenome analyses, we 
further reveal metabolic gains and losses of the GFS Gammaproteobacteria. Our work 
shows how genomic optimization, beyond genome size reduction, is shaped by 
selective environmental constraints in an extreme environment. These insights are 
important as they reveal putatively important eco-evolutionary processes that are now 
changing at rapid pace due to climate change.  

v Introduction 

How microorganisms optimise genomic features, primarily genome size, has been a 
mainstay of microbial ecology due to the eco-evolutionary consequences that arise 
from these adaptive strategies  (Giovannoni et al., 2014). Genome size variation and 
particularly genome streamlining, driven by imbalances between insertions and 
deletions, have been attributed to environmental constraints such as oligotrophy, to 
genetic drift in small and isolated populations, or to interactions among symbiotic 
microbes that allow for adaptive gene loss  (Coleman and Chisholm, 2010; Giovannoni 
et al., 2014). For example, thermophilic microbes thriving in hot springs were found to 
have small genomes  (Sabath et al., 2013), whereas psychrophilic microbes in 
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cryospheric environments tend to have relatively large genomes  (Bourquin et al., 2022), 
and gene expansion was shown for several cold-adapted species  (Dieser et al., 2019; 
Liu et al., 2020). Increased genome size has been attributed to gene expansion as an 
adaptive strategy to cope with fluctuating environmental conditions, even under 
nutrient depletion  (Bentkowski et al., 2015; Konstantinidis and Tiedje, 2004; Props et 
al., 2019). Besides habitat characteristics (e.g. oligotrophy and temperature), microbial 
lifestyles such as free-living pelagic versus attached microbial forms of life, have been 
associated with genome size variation  (Chuckran et al., 2021; Rodríguez-Gijón et al., 
2022; Salcher et al., 2019).  

Glaciers exert direct influences on the physicochemical characteristics of proglacial 
streams  (Milner et al., 2017). Glacier-fed streams (GFSs) are ultra-oligotrophic, cold 
and unstable environments, yet they harbour diverse microbial communities  (Ezzat et 
al., 2022; Wilhelm et al., 2013). In GFSs, bacteria forming biofilms attached to 
sedimentary surfaces dominate microbial life, where they orchestrate important 
ecosystem functions  (Busi et al., 2022; Kohler et al., 2022). These bacterial 
communities are shaped by selective environmental conditions, which is reflected by 
deterministic community assembly and microdiversity  (Brandani et al., 2023; 
Fodelianakis et al., 2022). Recent work has shown how climate change may relieve 
these selective constraints that are associated with glacier influence  (Kohler et al., 
2022). Glacier meltwaters are generally cold, but GFS water temperature rises with 
increasing distance to the glacier snout  (Brown et al., 2007; Milner et al., 2017). GFS 
streamwater is often turbid because of high loads of fine suspended sediments eroded 
and mobilised by glacier activity  (Brown et al., 2007; Milner et al., 2017), which reduce 
light available for primary producers (i.e., benthic algae). Moreover, pronounced 
oligotrophy of GFSs, linked to the scarcity of vegetation and soils within the catchments 
they drain, induces energy and nutrient limitation of the microbial communities  (Kohler 
et al., 2024). 

Benthic biofilm communities in GFSs represent an ideal model to study eco-
evolutionary causes and consequences of genome optimization. The pronounced 
oligotrophy may favour smaller genomes in GFSs. On the other hand, sessile bacteria 
in biofilms tend to have large genomes in freshwater  (Chiriac et al., 2023). Glacier 
influence, such as rapid variation in flow and sediment loads and low streamwater 
temperatures may also promote larger genomes  (Sabath et al., 2013). The latter notion 
is supported by smaller average genome sizes reported from GFSs compared to the 
genome sizes from tributary streams that are not under glacier influence albeit draining 
the same proglacial floodplains  (Michoud et al., 2023).  
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Here we analyse metagenomic and environmental data from GFSs sampled by the 
Vanishing Glacier Project from Earth’s major mountain ranges to investigate 
relationships between glacier influence and genomic features of the benthic 
microbiome. Focusing on the variation of genomic traits along gradients of glacier 
influence across all GFS, we aim to identify signatures of adaptation to the GFS 
environment. We consider genomic traits prevalent at stream reaches under high 
glacial influence to be “optimized” for life in GFS. Moreover, given the tight link between 
genome size and evolutionary history, it is important to take phylogeny into account 
when assessing variation in genomic features  (Martinez-Gutierrez and Aylward, 2022). 
To this end, using 2,855 strain-level resolved (i.e., 99% average nucleotide identity, ANI) 
metagenome-assembled genomes (MAGs), we establish a novel analytical framework 
to resolve the phylogenetic signatures of genomic features in GFSs. To achieve this, we 
first identified the main environmental gradients common to the world’s GFSs and 
contributing to selective constraints. Next, we determined the depth at which 
phylogenetic signal in genomic features arise. These analyses suggest that genomic 
optimization within Gammaproteobacteria, which are widespread, abundant and 
microdiverse in GFSs  (Brandani et al., 2023; Fodelianakis et al., 2022; Michoud et al., 
2023), accounts for much of the variation in community averages of genomic features 
along the main gradients of glacier influence. Finally, we use a pangenome approach to 
identify specific genomic adaptations (i.e., gene gains and losses) associated with the 
ecological success of Gammaproteobacteria in GFSs. Our work sheds new light on how 
environmental constraints shape genomic features and contribute to the success of 
specific clades. These insights are relevant as glacier influence on downstream 
ecosystems diminishes because of climate change, ultimately reducing selective 
constraints and potentially threatening microorganisms that are well adapted to the 
GFS environment. Moreover, our work disentangles the contribution of specific clades 
to community-level features, thereby providing a phylogeny-rooted framework that 
provides a lineage-specific understanding of genome variation. 
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v Material and methods 

Glacier-fed stream sampling and environmental parameters 

We sampled benthic biofilms (upper 5 cm of the streambed) from 149 GFSs in the 
European Alps, Scandinavian Mountains, Himalayas, Pamir and Tian Shan, Ecuadorian 
Andes, Southwest Greenland, Russian Caucasus, Rwenzori in Africa, and Southern 
Alps in New Zealand between January 2019 and July 2022. GFSs were sampled in spring 
or autumn during ‘windows of opportunity’ when streamflow and streamwater turbidity 
are relatively low; this sampling strategy facilitates comparability between GFSs. We 
did not sample GFSs from heavily debris-covered and rock glaciers, and we avoided 
GFSs downstream of proglacial lakes, with debris flows, or tributaries in the reaches 
above the sampling sites. At each GFS, we sampled an upstream reach, as close as 
possible to the glacier snout, and a downstream reach. Within each reach, sandy 
sediments (250 μm to 3.15 mm size fraction) were collected from three independent 
patches (approximately 10 m apart). All sampling devices were flame-sterilised in the 
field. Sediment samples were transferred into sterile cryovials, immediately flash-
frozen in liquid nitrogen in the field and subsequently stored at -80°C before and 
following shipping to Switzerland for DNA extraction and biomass analyses.  

For each GFS, the distance to the glacier snout was calculated based on 
georeferencing (GPSMAPR 66s, GARMIN) of the sampling reach, as well as glacier 
surface area and glacierized percentage catchment based on satellite imagery 
(Sentinel-2; Level 2a, March 2019 - July 2022 from scihub.copernicus.eu) and a 
catchment definition derived from the ASTER Global Digital Elevation Model (GDEM) v3. 
(NASA/Meti/Aist/Japan Spacesystems and US/Japan Aster Science Team, 2019). The 

glacier index (GI) was calculated as √"#$%&'(	$('$
√"#$%&'(	$('$	*	+&,-$.%'	-/	-0'	1#$%&'( according to 

Jacobsen & Dangles (2011) (Jacobsen and Dangles, 2012). Benthic chlorophyll-a, a 
proxy for algal biomass, was extracted from the sediment (90% EtOH) in a hot (78°C) 
water bath for 10 min and further incubated (24 h, 4°C). After vortexing and 
centrifugation, chlorophyll-a concentration in the supernatant was quantified using a 
plate reader (BioTek Synergy H1; EX/EM: 436/680) and a spinach chlorophyll-a standard 
(Sigma Aldrich) and normalised to dry mass (DM) of sediment. 

Metagenomics 

Metagenomes were sequenced for 149 sediment samples. DNA extraction, 
purification, library preparation, sequencing and metagenome assembly steps were 
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performed as described in Busi et al. (2022) (Busi et al., 2022). Briefly, 5 g of GFS 
sediments were treated using a phenol:chloroform-based extraction method 
subsequently followed by an ethanol precipitation step. This protocol yielded on 
average 50 ng of DNA per sample which was used for library preparation using the 
NEBNext Ultra II FS library kit, which also included 6 PCR cycles. Sequencing was 
performed at the Functional Genomics Centre Zurich using a S4 flowcell on a NovaSeq 
(Illumina). 

The metagenomic sequence data was processed using the Integrated Meta-omic 
Pipeline (IMP) workflow (version 3.0; commit# 9672c874) (Narayanasamy et al., 2016). 
Briefly, adapter trimming from reads using trimmomatic  (Bolger et al., 2014) is followed 
by an iterative assembly using MEGAHIT  (Li et al., 2015) and Flye  (Kolmogorov et al., 
2020). To reduce computation time for binning, we removed sequences in the assembly 
< 1.5 kbp and randomly selected 10% of the pre-processed reads using seqtk (v1.3) (Li, 
2023). For each individual assembly, we then mapped the selected reads of the 5 
spatially closest samples (Euclidean distances of gps coordinates) using BWA-mem 
(v0.7.17). We then used MetaBAT2 (v2.15) (Kang et al., 2019), CONCOCT (v1.1.0) 
(Alneberg et al., 2013) and MetaBinner (v1.4.3) (Wang et al., 2023) using default 
parameters to obtain bins {see Code availability}. The quality of bins was assessed with 
CheckM2 (v1.0.1) (Chklovski et al., 2023), and finally DASTool (v1.1.4) (Sieber et al., 
2018) was employed to generate a non-redundant set of bins using a score threshold of 
0.3. 

Bins from all samples (including the ones generated by IMP3) with a completeness 
of more than 50% were then selected for further analyses which accounted for 12,599 
bins. We then used MDMCleaner (v0.8.3) (Vollmers et al., 2022) to reduce 
contamination of the bins. Finally, after rerunning CheckM2 on the bins to get final 
estimates of completeness and contamination, we used dRep (v3.2.2) (Olm et al., 2017) 
to dereplicate bins using a minimum completeness of 70% and maximum 
contamination of 10% and an ANI of 99% to obtain 2855 strain-level MAGs. GTDB-Tk (v 
2.1) (Chaumeil et al., 2020; Chklovski et al., 2023) was used to assign taxonomy to 
MAGs. We further used the concatenated alignment of 120 ubiquitous single-copy 
proteins created by GTDB-Tk to de novo generate a phylogenetic tree using FastTree2 
(v2.1.11) (Price et al., 2010) under the WAG model of protein evolution with gamma-
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distributed rate heterogeneity. Functional annotation of the MAGs was performed with 
EggNog-Mapper (v2.1.9) (Huerta-Cepas et al., 2017) after obtaining coding regions 
(CDS) with prodigal (v2.6.3) (Hyatt et al., 2010). The coverage of MAGs was estimated 
by mapping reads of samples to the genomic contigs using CoverM (v0.6.1, available at 
https://github.com/wwood/CoverM) using the trimmed_mean parameter. We 
normalised the coverage by similarly mapping reads on the recA gene (K03553). For 
prevalence, presences were defined as abundance above a 10x recA coverage 
abundance threshold.  

Dimensions of glacier influence and community-weighted mean genomic 
properties 

To identify the main environmental gradients across all GFS samples, Principal 
Component Analysis (PCA) was performed with the prcomp function in R (version 
4.3.0), and using a non-redundant set of key physico-chemical as well as glacier-
associated measures (glacier area, glacier coverage, glacier index, streamwater 
temperature, distance to the glacier, benthic chlorophyll-a). Community-weighted 
means (CWM) of genomic features (genome size, gene number, tRNA number, GC 
content, coding density and redundancy index) were tested with linear effects against 
the first two principal components using generalised additive models (GAMs) created 
with the bam function of the mgcv R package (v1.9.0) (Wood, 2023). For this, genomic 
features were first normalised using completeness and contamination as follows: 
!"#$%./(2$#&,'3 = !"#$% ∗ 	(1/,-./#%0%1%22) 	∗ (1 − ,-10".51"05-1).	 CWM were 
then obtained by weighing normalised genomic features by MAG relative abundances 
and averaging across MAGs present in any given sample. To account for large-scale 
spatial patterns, we used a smoothed spline (bs = ‘sos’, k = -1) based on latitude and 
longitude in the GAMs. Detailed results of these GAMs are available in Supplementary 
Table 1. Significant linear effects (p<0.01) were visualised using mean and standard 
errors of predictions across all GFS in the dataset. All figures were created using the 
ggplot2 (version 3.4.3) and ggpubr (version 0.6.0) R packages (R version 4.3.0) (R Core 
Team, 2023; Wickham, 2016). 

Abundance-based phylogenetic permutation  

To understand how the phylogenetic structure affects CWM genomic features, we 
developed a null-model approach that randomly permutes abundances in a 
phylogenetic-bin based framework. For 40 values of relative phylogenetic height (h) 
uniformly distributed between zero and one (i.e. scanning the phylogenetic tree from 
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the root to the tips), we performed phylogenetic agglomeration using the “average” 
method of the hclust R function on the cophenetic distances obtained with the 
cophenetic.phylo function of the ape R package (v5.7-1) (Paradis and Schliep, 2019). 
Subsequently, for each value of h, abundances were randomly permuted within 
phylogenetic bins (20 iterations). Finally, GAM models accounting for spatial structure 
(i.e., including a smoothed spline (bs = ‘sos’, k = -1) on latitude and longitude as 
covariate) were created, testing for a linear effect of glacier influence on genomic 
features. Hence, this approach tests for associations between CWM genomic features 
and environmental parameter compared to null-model expectations across 
phylogenetic depth. This approach further allows identifying the relative depth at which 
phylogenetic signal in CWM genomic features appear along the gradients of glacier 
influence. Significant coefficients were assessed by combining p-values of the linear 
coefficients over the 20 iterations using Stouffer’s method in the poolr R package (v1.1-
1), the mean and the standard deviation of the coefficients were computed to 
summarise the null-model permutations  (Cinar and Viechtbauer, 2022). 

Additionally, this approach allowed us to pinpoint phylogenetic clades contributing 
to the community-level signal at a specific phylogenetic height. To this end, we used a 
leave-one-cluster-out approach, computing coefficients with and without a given 
phylogenetic cluster, and comparing the resulting coefficients’ distributions. Wilcoxon 
tests were used to test for difference in coefficient distributions, a median relative 
effect was computed comparing the median values with and without the target 
phylogenetic cluster ((value with – value without) / (value with)).  

Taxonomic summary and models 

CWM genomic features of Gammaproteobacteria were compared to all other MAGs. 
The taxonomic summary comparing genomic features of strains affiliated to 
Gammaproteobacteria to other taxonomic classes was created using the dplyr R 
package (v1.1.3). Wilcoxon sign rank tests were used to compare the distributions. 
Relative abundance and prevalence (i.e., the number of occurrences across GFSs) 
were combined to estimate the ‘ecological success’ of MAGs. Abundant and wide-
spread (i.e., prevalent) MAGs were thus defined as being ‘ecologically successful’ in 
GFSs worldwide. GAM models were built using a spline (k=5, bs=’ts’) for these 
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‘ecological success’ covariates, and genome size and coding density were used as 
response variables. We compared one model with a spline for all MAGs, and one with a 
different spline for Gammaproteobacteria and all other MAGs (using the ‘by’ argument 
in the spline). A Bayes factor analysis was used to compare both models, using the 
test_performance function of the performance R package (v0.10.5) (Lüdecke      
(@strengejacke) et al., 2023), and a Bayes factor above 3 was considered significant. 

Pangenome analysis 

We used mOTUpan  (Buck et al., 2022) to create pangenomes of high-quality MAGs 
defined as a completeness higher than 90% (median: 95.06%; IQR: 92.22 - 98.05%), and 
a contamination threshold of <10% (median: 1.91%; IQR: 0.99 - 3.42%). The first 
pangenome was created with all MAGs from the phylogenetic cluster (n=127, identified 
with the phylogenetic permutation) corresponding exactly to all representatives of the 
Gammaproteobacteria class. A second pangenome (n=223) was created with these 
Gammaproteobacteria MAGs and MAGs classified as Alphaproteobacteria. Default 
parameters were used on the .faa files, and the CheckM2 output was used to initiate 
completeness values, the --seed parameter was set to 90. KO and CAZyme annotations 
were used to assign functions to each gene cluster. We then summarised the KOs and 
CAZymes present in the core genome of both pangenomes. KOs gained by 
Gammaproteobacteria were defined as those that were part of the core genome of the 
Gammaproteobacteria pangenome, but not in the pangenome created including 
Alphaproteobacteria MAGs. Similarly, gene losses were defined as genes that were part 
of the core genome in the pangenomes of both Proteobacteria classes, but not in the 
pangenome of only Gammaproteobacteria. KEGG pathways and categories were then 
used to summarise gene losses and gains. The description of KOs (available at: 
https://www.genome.jp/kegg/) was used to identify words that occurred often in the set 
of KOs gained and lost, the number of descriptions matching queries of interest was 
computed using regular expression (regex) subsetting with the grepl function of R  (R 
Core Team, 2023). 

v Results and discussion 

Bulk genomic properties of the GFS microbiome under glacier influence 

The GFS environment (e.g., discharge, temperature) is directly influenced glaciers, 
primarily through magnitude and variation of meltwater runoff  (Brown et al., 2007; 
Milner et al., 2017). Runoff determines hydraulic stress, channel stability and sediment 
loads, whereas streamwater temperature affects metabolic processes  (Kohler et al., 
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2024; Zhang et al., 2022). These physical processes are largely driven by glacier size, 
which translates into runoff magnitude and variability  (Zhang et al., 2022). Employing 
PCA on the complete set of measured environmental parameters, the first principal 
component (PC1; 44.6% explained variance) revealed a gradient of benthic chlorophyll-
a inversely related to glacier area across all studied GFSs (Figure 5.1A). This is striking 
given the overall low chlorophyll-a content (median: 0.0056 µg g-1 dry mass; IQR: 
0.0007-0.0272) in the GFSs, which underscores the responsiveness of benthic primary 
producers to environmental conditions. High runoff and loads of suspended sediments 
produced by large glaciers abrade benthic algae and attenuate light, thereby inhibiting 
primary production in GFSs and keeping chlorophyll-a concentrations low  (Boix 
Canadell et al., 2021; Uehlinger et al., 2010). PC2 (21.7% explained variance) depicts a 
gradient of streamwater temperature related to both distance to the glacier snout and 
glacier area (as encapsulated by the glacier index) across all GFSs. In fact, streamwater 
warms up with downstream distance from the glacier and depending on the magnitude 
of runoff from ice melt. Taken together, the PCA reveals two main dimensions 
quantifying downstream glacial influence at a global scale, and we will explore them as 
potential underpinning processes of the genomic landscape of the GFS microbiome. 

Weighted by relative abundance of MAGs, bacterial genomes across all GFSs were 
relatively large in terms of size, had a high number of genes, and showed high GC 
content (Figure 5.1B). These values are bracketed by those reported from other GFSs  
(Michoud et al., 2023), various cryospheric ecosystems (e.g., permafrost, glacier ice)  
(Bourquin et al., 2022), and psychrophiles  (Sabath et al., 2013). Bacterial genomes 
contain only little non-coding DNA (on average 87%)  (Land et al., 2015), hence variation 
in gene number and genome size are generally tightly linked  (Lynch, 2006), a 
relationship attributed to the importance of effective population size  (Bobay and 
Ochman, 2017). Additionally, GC content, coding density and genome size have been 
shown to positively correlate in bacteria  (Almpanis et al., 2018; Bentley and Parkhill, 
2004; Sabath et al., 2013). However, we find a low number of tRNAs compared to 
published psychrophilic, mesophilic, and thermophilic cultured isolates  (Dutta and 
Chaudhuri, 2010), which we mainly attribute to the known discrepancy between MAGs 
and isolates  (Meziti et al., 2021). Because translation is energetically expensive, tRNA 
abundance has been linked to shorter minimal generation time and adaptability to 
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different environmental conditions  (Arella et al., 2021). The redundancy index (i.e., the 
ratio between the total number of KOs to the number of unique KOs, median RI ~ 1.4) 
was lower than previously reported in cryoconites biofilms  (Zhang et al., 2023), which 
seems intuitive as the dynamic and unpredictable GFS environment may select for 
functional plasticity rather than redundancy. 

To further explore glacier influence on these genomic properties of the GFS 
microbiome, we implemented GAMs accounting for large-scale spatial variation and 
isolating linear effects of environmental parameters on genomic properties. GAMs 
revealed positive associations between benthic chlorophyll-a content (correlated with 
PC1) with average genome size, gene number, and tRNA number, whereas covariates 
correlating with PC2 (i.e., glacier distance, water temperature and glacier index) were 
associated with the redundancy index (Figure 5.1C). This further highlights the 
importance of functional plasticity in the dynamic environment of streams with high 
glacier influence. This finding suggests that benthic algae, through the exudation of 
energy-rich macromolecules, relieve GFS bacteria from energy and carbon limitation, 
ultimately promoting bacteria with larger genomes as glaciers shrink. Indeed, 
metabolic interactions between microbial heterotrophs and algae have been 
repeatedly reported from stream biofilms  (Battin et al., 2016; Haack and McFeters, 
1982), which may be particularly important in GFSs largely devoid of allochthonous 
sources of organic carbon  (Busi et al., 2022; Kohler et al., 2024). Furthermore, these 
analyses revealed increasing numbers of tRNAs with diminishing glacier influence, 
which essentially follows the observed trends of genome size (Figure 5.1C). While 
tRNAs have been associated with cold adaptation and associated post-translational 
modifications in bacteria  (Dalluge et al., 1997; Lorenz et al., 2017), work on cultured 
isolates showed that psychrophile genomes have elevated numbers of tRNAs  (Dutta 
and Chaudhuri, 2010). Nevertheless, translational efficiency has been shown to be low 
in organisms that are able to thrive in multiple habitats, and this could potentially 
explain the low number of tRNAs that we observed  (Arella et al., 2021). Importantly, our 
analyses have not revealed any major variation in coding density along any of the 
glaciological variables tested, confirming that in reduced genomes, genome size, 
number of genes and proportion of non-coding DNA decrease at similar rates.  

Gammaproteobacteria contribute to genome optimization in GFS at the 
microbiome level 

Variations in genomic properties of bacterial communities along environmental 
gradients can either be explained by changes in abundance or the replacement of taxa 



Chapter 5. Glacier influence shapes the genomic landscape of the downstream 
aquatic microbiome 

 

106 

 

 

 

 

with different genomic characteristics. Moreover, shared evolutionary histories among 
members of the microbiome can bias estimates of relationships between genomic 
properties and environmental constraints (Martinez-Gutierrez and Aylward, 2022). For 
example, accounting for phylogenetic dependencies, a previous study on bacterial and 
archaeal genome size identified deep phylogenetic signatures in genome size variation 
(Martinez-Gutierrez and Aylward, 2022). Therefore, to assess phylogenetic signatures 
in genome size, we developed a novel null model-based phylogenetic approach to first 
identify the phylogenetic depth at which differences in genomic properties arise along 
environmental gradients. Using a leave-one-out approach of individual clades at this 
threshold phylogenetic distance, we identify clades that contribute most to this signal. 
Finally, we investigated whether changes in abundance or replacement of MAGs within 
clades explain the variation in genomic properties along gradients of glacier influence 
in GFSs. 

We found a significant phylogenetic signature at low depth (i.e., among closely 
related members, relative phylogenetic tree height between 0 and 0.1) for all tested 
genomic properties and environmental constraints (Figure 5.2A). This suggests that 
genomic optimization occurs among closely related taxa (below the median genus-
level phylogenetic depth). Relationships between genome redundancy and glacier 
index, the distance to the glacier and streamwater temperature were exclusively 
shaped by variation at low phylogenetic distances (i.e., approximately 0.25 relative 
phylogenetic tree height corresponding to genus-level distance). Relationships 
between genomic properties and benthic chlorophyll-a arise at greater phylogenetic 
depth (i.e., approximately 0.6 relative phylogenetic tree height, corresponding to class-
level distance) (Figure 5.2B). 

Strikingly, the leave-one-cluster-out analysis highlighted the importance of one 
cluster, comprising all MAGs classified as Gammaproteobacteria and shaping genomic 
features at the microbiome level across the gradient of chlorophyll-a. We also report 
the importance of various taxa (i.e., Cyanobacteria, a clade comprising members of 
Bacteroidota and Fibrobacterota, and one comprising representatives of 
Acidobacteriota, Desulfobacterota, Myxococcota and Nitrospirota, Supplementary 
Table 2) in shaping community averages along the benthic chlorophyll-a gradient, and 
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the relationship between water temperature, glacier index and the distance to the 
glacier with the redundancy index (Supplementary Table 3).  

Our analyses unveil the pivotal role of Gammaproteobacteria in driving variation in 
microbiome-average genomic features, further emphasising the importance of 
Gammaproteobacteria for the global GFS microbiome. Given their role, we next 
compared genomic features of Gammaproteobacteria MAGs to all other MAGs (Figure 
5.3). Indeed, we found a strong negative relationship between relative abundance of 
Gammaproteobacteria and benthic chlorophyll-a (Figure 5.3A). Given that benthic 
chlorophyll-a diminishes with increasing glacier influence, this finding indicates that 
Gammaproteobacteria thrive and numerically dominate in the GFSs under high glacier 
influence. This suggests that members of the Gammaproteobacteria are particularly 
well adapted to GFS reaches close to glacier snouts, fed by large glaciers and devoid of 
major autochthonous energy sources. Additionally, we found that 
Gammaproteobacteria MAGs had significantly increased coding density (median 
difference: 2%), but fewer tRNAs (median difference: 3.05), and a lower redundancy 
index (median difference: 0.025) compared to all other MAGs (Fig 3B). Interestingly, 
however, genome size and gene numbers of Gammaproteobacteria were not 
significantly different from the other MAGs. This contrasts our findings on community-
weighted average genomic features and suggests that abundance differences of 
Gammaproteobacteria across gradients of glacier influence contribute to the 
microbiome-weighted averages.  

Variation in genomic properties of the GFS microbiome along gradients of glacier 
influence was also explained by within-clade variation. For instance, at higher levels of 
benthic chlorophyll-a, genomes were larger in size, had higher gene and tRNA numbers, 
both among Gammaproteobacteria MAGs and all other MAGs (Figure 5.3C). 
Interestingly, the number of tRNAs was negatively associated with benthic chlorophyll-
a in Gammaproteobacteria, but positively in other clades, putatively because of the role 
of tRNAs in adaptation to fluctuating environmental conditions, which is characteristic 
of GFSs (Arella et al., 2021).  

Furthermore, to assess the importance of genome optimization of the GFS 
microbiome, we aligned genomic properties with the ecological success of MAGs, 
defined as high prevalence and/or mean relative abundance. We found positive 
relationships between genome size and MAG prevalence and relative abundance 
(Figure 5.4 C & D, whereas coding density was negatively related to these indicators of 
ecological success (Figure 5.4 E and F). Using GAMs and a Bayes factor analysis, we 
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tested whether these relationships differed between Gammaproteobacteria and the 
other classes. A GAM model with separate splines for Gammaproteobacteria and other 
MAGs was better supported by the data (Bayes factor > 1000 for all comparisons) than 
a GAM model with one spline for all MAGs (Figure 5.4). This finding indicates that 
ecologically successful Gammaproteobacteria combine increased coding density with 
reduced genome size compared to classes that are similarly successful. While this 
relationship could be in part attributed to the low prevalence of symbiotic 
Patescibacteria that have particularly small and thus streamlined genomes (Tian et al., 
2020), the difference between Gammaproteobacteria MAGs and the others is clear at 
higher abundance and prevalence (Figure 5.4). 

Collectively, our findings suggest that the selective constraints in GFSs alongside the 
scarcity of autochthonous organic carbon sources (from primary producers), leads to 
microbiome-level signatures of genome optimization along gradients of glacier 
influence. The GFS microbiome shifts genomic features in response to this 
environmental gradient by changes in the abundance of Gammaproteobacteria 
compared to other clades. This process is augmented by changes in abundance and 
replacement of members within Gammaproteobacteria as selective constraints 
change. We deem these findings critical because the deep phylogenetic rooting of 
these signatures reflects the long-term and putatively consistent nature of this extreme 
environment, which is now changing at a rapid pace owing to climate change. 

Pangenome analysis reveals specific adaptations of Gammaproteobacteria 
in GFSs 

Given the high coding density of Gammaproteobacteria compared to other GFS 
community members, and their ecological success under high glacier influence in 
GFSs, we next aimed at identifying genes that may underpin this difference. To this end, 
we conducted a pangenome analysis of Gammaproteobacteria in GFS to identify a set 
of core genes. Subsequently, we compared this core pangenome to the core genes of 
both Gamma- and Alphaproteobacteria as the latter represents the closest sister group 
in the GFS microbiome, and used as an outgroup could help us understand the early 
evolution of Gammaproteobacteria in GFSs. This approach allowed us to identify genes 
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consistently preserved or lost in the GFS Gammaproteobacteria compared to the 
common ancestors of both Alpha- and Gammaproteobacteria in GFS.  

Our analysis uncovered a core pangenome of 830 gene clusters for 
Gammaproteobacteria, and 548 gene clusters when Alphaproteobacteria MAGs were 
also included. Analysing KEGG orthologous groups functions (KOs) of gene gains and 
losses, we identified 309 KOs gained and 273 KOs lost in the GFS 
Gammaproteobacteria. Both gains and losses were predominantly concentrated in 
transporters, enzymes, and the two-component system (Figure 5.5). Additionally, gains 
were observed in secretion systems, lipopolysaccharide biosynthesis, and bacterial 
motility, while losses were most common in butanoate metabolism, glyoxylate and 
dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, and 
fructose and mannose metabolism. In the context of GFSs, the losses observed in 
several metabolism pathways could be associated with the scarcity in organic carbon.  

By applying a text-mining approach, we identified higher-level functions associated 
with these gains and losses. Notably, we observed the gain of 20 ATP-binding 
transporters related to twitching motility and type IV pili, while one KO associated with 
flagella was lost. While bacteria in biofilms are typically less motile than their free-living 
counterparts (Guttenplan and Kearns, 2013), twitching motility through type IV pili is 
well known for its implications in biofilm formation and movement of prokaryotes on 
surfaces (Burrows, 2012). Moreover, five KOs related to chemotaxis were gained while 
one was lost, which further suggests a change in motility during the early evolution of 
Gammaproteobacteria in GFS. We also noted the loss of nine KOs linked to 
fermentation, particularly in the butanoate metabolism category, and the gain of seven 
KOs associated with lipids. While the losses in fermentation and especially butanoate 
metabolism could be attributed to the high oxygenation of the GFS environment, lipids 
(e.g., lipopolysaccharides) have been associated with the adaptation of membranes 
and cell walls to cold conditions (De Maayer et al., 2014). While we find KO gains 
associated with cold adaptation and a biofilm lifestyle, we observe losses that could be 
adaptive given the association we observed between genome size and glacier 
influence. Taken together, comparing the pangenome of Gammaproteobacteria to the 
closest sister clade in GFSs (i.e., Alphaproteobacteria), we infer that early in the 
evolution of Gammaproteobacteria in GFSs, adaptations related to motility, the 
biosynthesis of lipids, and to aerobic metabolism arose. 
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 Conclusion 

Eco-evolutionary dynamics shape the genomic landscapes of communities and here 
we unravel, using a phylogeny-rooted analytical framework, signatures of genome 
optimization in the world’s GFSs. Our results indicate several lines of genome 
optimization in the GFS microbiome, including genome size reduction, modulation of 
genomic redundancy and optimization of translation along a gradient of glacier 
influence. Additionally, we show the importance of Gammaproteobacteria at shaping 
community-level genomic features, especially at high glacier influence. Moreover, we 
highlight particular genomic features that represent potential adaptations to the 
environmental conditions and biofilms. As glacier influence diminishes owing to 
climate change, our findings suggest that the genomic landscape of GFSs may change, 
thereby altering an ancient and well-adapted microbial biodiversity.  
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v Figures 

(A) The first two dimensions of a principal component analysis (PCA) depict associations among key 
glacier-associated constraints. Symbols represent mountain ranges; arrows depict scores of 
environmental variables. (B) Boxplot showing the distribution of community weighted mean genomic 
features (i.e., weighted with the relative abundance of MAGs) among GFSs. (C) Regression coefficients 
of the genomic features that correlated significantly with glacial covariates in the generalised additive 
model (GAM) analysis. GAM models considering spatial variations were fitted adding a linear effect for 
each pair of genomic features and glaciological variables. Significant relationships after adjusting p-
values for multiple testing (Holm’s method, p < 0.05) are displayed.  

Figure 5. 1 Dimensions of glacier influence and variation in genomic features. 
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Figure 5. 2 The signal between community-weighted means of genomic bulk 
features and glacier influence is structured phylogenetically. 

Line plots displaying the signal in the relationships between redundancy index as response variable and 
the distance to the glacier, the glacier index and the water temperature as covariates (A) and between 
gene number, genome size and tRNA number and chlorophyll-a as covariate (B). The signal was 
assessed using linear coefficients in the generalised additive models taking spatial variation into 
account when permuting abundances at various relative phylogenetic heights. Coefficients were 
normalized by the maximal value for any given glacial covariate-genomic feature pair over the various 
phylogenetic height values. Shaded areas represent the standard error obtained through 20 null model 
iterations. Vertical lines indicate median phylogenetic heights for different taxonomic levels and are for 
visual guidance only.  
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Figure 5. 3 Gammaproteobacteria drive the variation in genomic features along 
the gradient of chlorophyll-a 

(A) Scatterplot showing the variation in the relative abundance of Gammaproteobacteria and all other 
MAGs along the gradient of benthic chlorophyll-a in the world’s glacier-fed streams. Lines show linear 
GAM model fits accounting for large-scale spatial patterns; shaded areas show prediction intervals. (B) 
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Distributions of genomic features for Gammaproteobacteria and other MAGs are displayed. Stars 
denote significance (p<0.01) of Wilcoxon signed rank tests comparing the two groups. (C) Linear 
coefficients representing the variation of genomic feature averages within the Gammaproteobacteria 
(purple) and others (orange), as obtained through the GAM analysis accounting for spatial variation. 
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Figure 5. 4 Gammaproteobacteria MAGs are ecologically successful in GFS and 
have optimised genomes. 

Comparison of ecological success, measured as relative abundance (A) and prevalence (B) of MAGs 
affiliated to Gammaproteobacteria (purple) and other classes (orange). Smoothed splines representing 
the GAM models comparing mean abundance (C & E) and prevalence (D & F) with normalised genome 
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size (C & D) and coding density (E & F). Models with separate splines for Gammaproteobacteria (purple) 
and others (orange) MAGs were better supported (Bayes factor > 1,000) than a combined model. While 
the difference is driven by high abundance and prevalence of large genomes among other classes (or 
conversely the absence of small genomes at low abundance and prevalence in 
Gammaproteobacteria), for coding density, Gammaproteobacteria exhibit increased values across the 
entire gradient of ecological success. 
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Figure 5. 5 KO gains and losses of Gammaproteobacteria compared to the 
closest sister clade (Alphaproteobacteria) in GFS. 

Shown are functional categories that contain the highest number of gene gains and losses in the GFS 
Gammaproteobacteria pangenome analysis. Gains were defined as KOs present in the core genome of 
Gammaproteobacteria, but not in the core genome when Alphaproteobacteria MAGs were included. 
Losses were defined as KOs that were present in the combined core pangenome, but not in the core 
genome of Gammaproteobacteria.  
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Chapter 6. Discussion 
v 6.1 Towards a global picture of the microbiome of glacier-fed 
streams and cryospheric ecosystems 

In chapter 2, we presented a global overview of the microbiome of the cryosphere, 
encompassing data from ice, snow, terrestrial, freshwater and marine samples. We 
found that cryospheric ecosystems differ in composition compared to other biomes. 
Foremost, many bacterial genera affiliated to Gammaproteobacteria, 
Alphaproteobacteria, Bacteroidia, and Cyanobacteria were more abundant in the 
cryosphere compared to other biomes. Some of the most differentially abundant 
genera were Sphingomonas, Hymenobacter, Polaromonas, and Ferruginibacter. These 
taxa are also highly abundant in glacier-fed streams, according to previous work (Ren 
et al., 2017a; Wilhelm et al., 2014, 2013), and the global sampling of the Vanishing 
Glaciers Project as seen in chapters 3, 4 and 5. These shared properties of cryospheric 
ecosystems associated with taxonomy (and thus phylogeny), indeed point towards an 
association between adaptations to cryospheric conditions and evolutionary history in 
the bacterial tree of life.  

Owing to the large diversity of taxa observed in both cryospheric ecosystems and 
glacier-fed streams, and given that these taxa are also present in other biomes, the 
adaptations allowing to thrive in cryospheric conditions seem to be pervasively 
distributed across the bacterial tree of life, potentially helped by horizontal gene 
transfers (Dorrell et al., 2021). Thus, to better understand these adaptations, there is 
the need to account for the evolutionary history by combining phylogenetic data with 
comparative genomic approaches. In this context, the use of pangenomes has been 
suggested and successfully applied in microbial ecology (Buck et al., 2022; Eren et al., 
2021; Golicz et al., 2020). In chapter 3 we performed a pangenome of the genus 
Polaromonas, comparing the glacier-fed streams MAGs to reference genomes from the 
RefSeq database, allowing to identify functions that are specific to the strains found in 
glacier-fed streams. In chapter 5, we performed a pangenome analysis of the glacier-
fed streams’ Gammaproteobacteria, highlighting gene gains and losses that arose early 
in the evolution of the bacterial class.  

In concordance with these shared main community members, we found that the 
microbiome of cryospheric ecosystems indeed shared functional potential with 
glacier-fed streams communities. Foremost, genes involved in cell adhesion, quorum 
sensing, secretion systems and motility all pointed towards the importance of biofilms 
in both cryospheric ecosystems and glacier-fed streams epilithic biofilms (Chapter 2, 
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Chapter 3), which is in line with previous reports. This is further developed in glacier-fed 
streams with the pangenome of Gammaproteobacteria, the most abundant bacterial 
class in glacier-fed streams, that suggested an early change to the type IV pili twitching 
motility in its evolutionary history in glacier-fed streams; a type of motility that has been 
associated with biofilms (Burrows, 2012). The network analysis performed on epilithic 
biofilms in Chapter III suggested cross-domain interactions between bacteria and algae 
that further highlights the importance of these biofilms. Concordantly, genes involved 
in the biosynthesis of cobalamin, a compound that has been linked with algal-bacterial 
relationships, were recovered in the glacier-fed streams metagenomes in Chapter 3 
(Amin et al., 2015; Grossman, 2016; Segev et al., 2016).  

We also highlighted the importance of chemolithoautotrophy associated genes (e.g, 
sox gene cluster, hydrogen dehydrogenases, etc.) in both cryospheric and glacier-fed 
stream bacterial communities in chapter 2 and 3. Additionally, we found mixotrophy to 
be a potentially important adaptation in glacier-fed stream MAGs affiliated to 
Cyanobacteria, potentially to cope with varying environmental conditions (Stoecker 
and Lavrentyev, 2018). In these ecosystems with few allochthonous carbon sources, 
these may indeed represent important adaptations. Nevertheless, these findings are 
based on metagenomics and thus only consider genomic potential. Moreover, the 
dataset of 35 cryospheric metagenomes (101 in total) that was compiled for chapter 2, 
while being global, is limited geographically and contains only a few different habitats. 
Thus, these findings are potentially not representative of the cryosphere in general. 

We also found phylogenetic patterns associated with cryospheric conditions. 
Analysing phylogenetic metrics of beta diversity, we found that the bacteria composing 
the microbiome of cryospheric ecosystems are more closely related when compared 
with other biomes, suggesting niche similarity under the assumption that closely 
related species share similar functions (Martiny et al., 2013). This indeed suggests 
potentially shared selective constraints, which is in line with the importance of shared 
environmental characteristics e.g., low temperatures and oligotrophy. In recent years, 
the importance of homogeneous selection as been shown to shape the microdiverse 
microbiome of glacier-fed streams, and has been associated with the extreme 
conditions of the ecosystem (Fodelianakis et al., 2022). Given the shared 
environmental conditions across the cryosphere (i.e., low temperature and 
oligotrophy), the broad overlap in abundant taxa, and the shared functional potential, it 
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is thus possible that other cryospheric microbiomes could be characterised by similar 
patterns.  

Nevertheless, we also showed how distinct bacterial communities are found 
throughout different habitats and ecosystems. In chapter 2, we showed that the four 
mains cryospheric ecosystems types (i.e., ice and snow, terrestrial, freshwater and 
marine) indeed differ in community composition. In chapter 3, we found that 
community composition differed between epilithic and epipsammic biofilm 
communities in glacier-fed streams. Additionally, in chapters 4 and 5, we associated 
variations in environmental conditions to the abundance of community members. In 
the context of global climate change, the diversity and the degree of novelty found 
throughout the cryosphere, including glacier-fed streams, prompts the need to 
characterise more ecosystems and habitats, as they may harbour analogously unique 
and diverse communities. 

v 6.2 Future directions for the microbial ecology of the 
cryosphere 

The metagenomes sequenced for the Vanishing Glacier Project have indeed 
improved our understanding of glacier-fed streams microbial ecology. Nevertheless, 
other cryospheric ecosystems and habitats still lack attention. In chapter II, while we 
compiled globally distributed data, we emphasised the need to urgently characterise 
more cryospheric ecosystems and their microbial communities. First, the compiled 
studies were often concentrated in a few locations (e.g., Greenland, Svalbard, etc.). 
Additionally, we denoted a geographical bias toward polar regions, urging the need to 
characterise alpine ecosystems. Moreover, the lack of consistency in the sampling 
methodology made the comparison of environmental parameters impossible.  

However, in the meanwhile, some large-scale studies have investigated several 
cryospheric ecosystems such as the polar arctic ocean (Royo-Llonch et al., 2021), 
cryoconite holes (Millar et al., 2021), and glaciers for instance (Y. Liu et al., 2022). This 
recent data could indeed pave the way for new meta-analyses containing more 
samples, encompassing a wider range of ecosystems, habitats, and geographical 
locations. Moreover, several of these studies generated metagenome assembled 
genomes (MAGs) that could be used to characterise more precisely the functional 
potential of specific taxa (e.g., using a pangenome approach), as opposed to comparing 
entire metagenomes as in chapter 2 and 3. 

While the vanishing glacier project exemplifies how such a global sampling with a 
consistent methodology can foster our understanding of an ecosystem and its 
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microbiome, it indeed has some limitations. First, the sampling was performed over the 
short windows of opportunities in summer, and thus only give a snapshot of the 
microbiome when the ecosystem is highly productive. Time series data could help 
understand how the communities change over time in the highly seasonal glacier-fed 
streams (Boix Canadell et al., 2021; Scotti et al., 2019). This statement is indeed 
applicable more generally to cryospheric ecosystems in general due to the seasonality 
of ice and snow accumulation-melt cycles and their importance (Winkel et al., 2022). 
Additionally, the sampling focused on non-debris covered glaciers while rock glaciers 
(i.e., glaciers that are covered by rocks) are numerous and harbour distinct stream 
communities (Tolotti et al., 2020). Furthermore, while metagenomic data unravels the 
genomic potential of communities, metatranscriptomes could be sequenced to 
confirm that the genes that we highlight are indeed expressed under natural conditions 
(Shakya et al., 2019). However, extracting RNA from low-biomass samples is 
challenging. Moreover, the approach would require a higher number of replicates to 
obtain meaningful statistical comparisons compared to metagenomes.  

The metagenomic approach has additional shortcomings. Foremost, only highly 
abundant community members are captured by the binning, and are thus included in 
the analysis of MAGs. In contrast, methods relying on reads and contigs are less precise 
taxonomically, as only a very small fraction of the genomes is considered. Moreover, 
MAGs typically are incomplete and contaminated, even more than what the methods 
used to quantify their quality estimate (Meziti et al., 2021). However, these 
shortcomings could be partially addressed by the culture of isolates, in combination 
with whole genome sequencing and phenotyping, used in synergy with metagenomic 
data (S. Liu et al., 2022; Saheb Kashaf et al., 2022). Nevertheless, metagenomic data 
represented an important first step, and wss indeed highly informative as MAGs capture 
the functional potential of communities better than isolates (Albright and Louca, 2023). 

v 6.3 Functional adaptations to the extreme cryospheric 
conditions and psychrophiles 

Exploring the functional potential of glacier-fed streams and cryospheric 
ecosystems, we identified genes that have previously been linked with cold-adaptation. 
In chapter II, we found that cryospheric metagenomes were enriched in chitinase genes 
that were previously associated with freezing in plants (Ahmed et al., 2012; Gupta and 



Chapter 6. Discussion 

 123 

Deswal, 2014) and upregulated in the cold-adapted Chlamydomonas algae under 
freezing treatment (Liu et al., 2016). Moreover, we highlighted the importance of biofilm 
formation in the cryospheric metagenomes as an adaptive strategy that has previously 
been linked with low temperature environments (Smith et al., 2016). In chapter III, we 
also reported the abundance of several psychrophilic adaptation genes such as cold-
shock proteins in glacier-fed streams metagenomes, and highlighted some of these 
functions in the pangenome of Polaromonas MAGs.  

Nevertheless, we identified many other KOs and gene cluster that were abundant in 
cryospheric ecosystems, and/or glacier-fed streams and that had unknown function, or 
functions that had not yet been associated with cryospheric conditions. While, some of 
these genes could represent cold-adaptations, they may as well be linked to other 
environmental conditions. Low temperature is not the only shared environmental 
constraint of cryospheric ecosystems, and in natural communities disentangling the 
effect of various parameters that in addition correlated (e.g., temperature and 
oligotrophy) is challenging. Thus, further investigations are required to characterise 
these genes and functions. Combined with the culture of isolates and single-cell 
technologies, the characterisation of this genomic potential could lead to the discovery 
of new compounds and enzymes. For example, such an approach has been applied to 
the biosynthetic potential of the global ocean microbiome: combining genomic 
potential data with cultivated isolates, unusual bioactive compounds were unravelled 
(Paoli et al., 2022). Given the large and still understudied biodiversity of cryospheric 
ecosystems (as shown in chapter 2), using such an approach could foster 
biotechnology allowing to identify useful molecules whose properties function at cold 
temperatures (Feller and Gerday, 2003). 

v 6.4 Genomic bulk features are associated with glacier 
influence in the cryosphere and glacier-fed streams 

Since the discovery of DNA and the beginning of the study of genomes, variations in 
genome size and other genomic bulk features (e.g., GC content, tRNAs, etc.) have 
fascinated biologists. In microbial ecology, the optimisation of genomic bulk features 
as an adaptive trait has thus naturally been investigated, especially in high-temperature 
environments as these particular conditions influence molecular mechanisms. In this 
context, psychrophiles’ genomes were also investigated as cold temperatures are 
indeed expected to affect the flexibility of molecules. Moreover, more recently and 
thanks to the advent of metagenomics, oligotrophy has been associated with reduced 
genome size in several ecosystems (Giovannoni et al., 2014). Given the combination of 
oligotrophy and low temperatures in cryospheric ecosystems, we thus investigated 
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these patterns in chapter 2. Moreover, as glacier-fed streams represent a longitudinal 
gradient of glacier influence (that is also associated with oligotrophy and water 
temperature), we investigated for patterns in genomic bulk features in chapter 4 and 5. 

In chapter 2, 4 and 5, we identified several associations between genomic bulk 
features and cryospheric conditions. First, we found that the genera that are more 
abundant in the cryosphere compared to other biomes showed an increased GC 
content based on their representatives in the RefSeq database (Pruitt et al., 2007). 
However, this database was primarily constituted of cultivated isolates at the time. 
Given the importance of habitats and the environment at shaping genomes, the 
analysis of MAGs data from these ecosystems should be carried away to confirm these 
patterns, and the gradient of glacier influence in glacier-fed streams allowed us to test 
the variation in bulk features in the Vanishing Glaciers Project dataset.  

In chapter 4, we found that the strains that are forecasted to decrease in abundance 
under future scenarios of climate change showed distinct values in terms of genomic 
bulk features with smaller genomes that are functionally less redundant. These findings 
would be in line with the hypothesis that at higher glacier influence (i.e., under current 
environmental conditions), the pronounced oligotrophy selects for smaller genomes, 
while the fluctuating conditions driven by biofilms being less developed due to the 
harsh conditions drives metabolic flexibility. This is further supported by the analyses 
performed in chapter 5, linking the functional redundancy with water temperature, and 
the optimisation of genome size and other genomic bulk features with the gradient of 
chlorophyll-a. If indeed these patterns represent adaptations to oligotrophic and cold 
conditions, they could thus be present in other cryospheric ecosystems. 

However, taking into account phylogenetic signal when investigating genomic bulk 
features is crucial (Martinez-Gutierrez and Aylward, 2022). To this end, we created an 
approach that allows to identify clades that shape the genomic landscape across a 
gradient of environmental parameter in chapter 5. This approach could indeed be used 
in other ecosystems to identify the forces driving variations in genomic bulk features. In 
our analysis, the method revealed the deep-branching importance of the class 
Gammaproteobacteria at shaping community averages of genome size, gene number 
and tRNA number. This prompted us to analyses the MAGs of the class in a comparative 
genomic approach, and allowed to identify adaptations that arose early in the 
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evolutionary history of the clade. Gammaproteobacteria is also highly successful in 
many other cryospheric ecosystems (Keuschnig et al., 2023; Li et al., 2019; Royo-Llonch 
et al., 2021), thus the adaptations that we find potentially apply to other representatives 
from other ecosystems. Further work could compare glacier-fed stream MAGs with 
genomes coming from other cryospheric ecosystems or even biomes, with the aim to 
better understand these adaptations and their link with the environment. 

This is especially relevant in the context of climate change, as the diversity of the 
class is potentially at threat. Gammaproteobacteria is predicted to reduce in relative 
abundance as shown in Chapter 5 with the positive relationship between the clade 
relative abundance and glacier influence. Additionally, in Chapter 4, we found that 
Gammaproteobacteria is among the taxa that will increase in absolute abundance the 
least in glacier-fed streams under future scenarios of climate change. Moreover, the 
monophyletic clades highlighted to be at particular threat in this chapter include 
several representatives of the class that were affiliated to bacterial genera such as 
Ferruginibacter, Polaromonas and Methylotenera. 

v 6.5 Predictive approach for climate change microbial ecology 

In Chapter 4, we showed how the use of a predictive approach in a strain distribution 
modelling framework can be applied to bacterial communities, and allows to forecast 
future ecological shifts. As the quality of the model is strain dependent, some strains 
abundance patterns are more predictable than other based on sample size, or for 
biological reasons. Thus, for some strains, the output of our predictions was unreliable 
and they were not considered in further analyses. However, we found that for most of 
them, the signal captured by the model is informative, and taken together allows to 
draw general conclusions (e.g., differences in predicted changes across taxa). Thus, we 
believe such an approach could be applied to other ecosystems in order to better 
understand how bacterial communities will react to climate change.  

Nevertheless, we have to acknowledge that in this regard, glacier-fed streams 
represent a good study system to apply such a modelling framework. First, the 
importance of the harsh environmental conditions at shaping the microbiome maybe 
lessens the importance of biotic interactions, that are notably hard to take into account 
in species distribution models (Wisz et al., 2013). To account for this in chapter 4, the 
chlorophyll-a content of the sediments was used as a possible covariate in the strain 
distribution models. However, to better capture these biotic interactions, and thus 
improve the accuracy of the models, including the abundance of the various eukaryotic 
taxa found in the metagenomes, or the 18s dataset could be used. However, projecting 
the abundance of these taxa onto future scenarios of climate change, which would be 



Chapter 6. Discussion 

 

126 

 

 

 

 

required to use them as covariates for the strain distribution models, could prove 
challenging. 

Another reason explaining the satisfactory ability of our models to predict the 
environmental parameters and the abundance of strains is that previous knowledge on 
the ecosystem was available and allowed to tailor the modelling framework to the 
question. For instance, the set of variables that was selected for chapter 4 
encompasses many environmental parameters that were already shown to be 
important for bacterial community composition (e.g., pH and conductivity). Moreover, 
a previous understanding of the impact of glacier influence on the ecosystem guided 
the modelling framework: first modelling the effect of glacier influence on the 
environmental template, and in a second step investigating how these covariates are 
associated with the bacterial communities. However, while based on cross-validation 
metrics we obtained satisfactory accuracies for our models, these projections rely only 
on this one dataset, and no external validation is available. Additionally, while some 
testing led to the use of stacked generalised additive models for chapter 5, indeed other 
methodologies (e.g., random forests, deep learning) could be tested in the future to 
improve these predictions. 

v  6.6 The greening of glacier-fed streams 

While previous conceptual models based on empirical data forecasted the greening 
of glacier-fed streams, in Chapter IV we created quantitative predictions over future 
scenarios of climate change. While confirming the link between benthic chlorophyll-a 
and turbidity through the importance of glacier surface area (and thus glacial 
weathering), we additionally linked these changes to ecological shifts in the bacterial 
communities. The main result was an overall increase in the abundance of most strains 
which was corroborated by our future forecasts of bacterial abundance (i.e., the 
number of bacterial cells in one gram of sediment), and a previous meta-analysis 
(Cauvy-Fraunié and Dangles, 2019). Moreover, relying on the coherence of projected 
changes in abundance over phylogenetic and taxonomic clades, we were able to 
conclude trends for the main taxa that have many representatives. These ecological 
shifts were also supported by the lower relative abundance of Gammaproteobacteria 
found at low glacier influence in chapter 5. Moreover, by modelling a-diversity metrics, 
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we further linked these future projections with changes in the phylogenetic structure of 
the microbiome.  

While under present conditions these communities are characterised by 
microdiverse clades that are prevalent, we predicted less closely related community 
members under future scenarios of climate change. Additionally, we showed that the 
genome of the strains projected to decrease in abundance have different properties 
than the others, including reduced genome sizes. This is further developed in chapter 
5, where differences in genomic bulk features that are consistent with these findings 
are shown along the gradient of chlorophyll-a. While this pattern is mostly drivem by the 
abundance of Gammaproteobacteria, we also find that a significant amount of signal 
arises by variation at high phylogenetic resolution (i.e., involving the turnover of closely 
related strains).  

This is indeed interesting as the bacterial communities of glacier-fed streams are 
characterised by microdiversity. Previous work demonstrated this property using 
patterns of occurrences and abundance with amplicon data. However, we currently 
lack an understanding of how these patterns relate to the functional potential, and thus 
how the various representatives of the microdiverse clades are able to colonise various 
niches. Typically, microdiversity is the occupance of distinct niches by closely related 
representatives of a clade, that undergo functional differentiation. In the variable 
conditions of glacier-fed streams, temporal variation in selection pressure for most 
traits is to be expected, but it remains unclear how does the representatives of the 
microdiverse clades diversify. The reduction in genome size associated with glacier 
influence that we observed at high phylogenetic resolution could hypothetically be 
associated with microdiversity patterns: the strains that lose different genes owing to 
the selection pressure to reduce genomes and the variable conditions would then be 
adapted to distinct niches. 

However, we currently have not investigated these variations in genome size at high 
phylogenetic resolution. Moreover, more MAGs that are closely related would be 
needed to test hypotheses related to microdiversity. Thus, an increased sequencing 
effort at small spatial and temporal scales would be required to obtain enough high-
quality MAGs. Additionally, the presence of many closely related sequences in the 
samples would be challenging for binning, and thus the use of long read sequencing 
technologies might be needed. 
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v 6.7 Bacterial diversity and biodiversity loss 

Owing to fast mutation rates in prokaryotic populations, the unclear distribution of 
taxa, and the lack of taxonomic resolution considered meaningful, the concept of 
climate-induced biodiversity loss for bacteria is still debated (Thaler, 2021). While in the 
past, the idea that “everything is everywhere” was associated with the apparent high 
dispersal capability of bacteria under the neutral theory of ecological selection 
(O’Malley, 2007). In the past decades, the advent of sequencing technologies and 
metagenomics fostered our understanding of bacterial biodiversity, unravelling 
genomic diversity across biomes (Hug et al., 2016; Nayfach et al., 2020). While we still 
haven’t captured the entirety of the Earth’ bacterial diversity, empirical data support the 
idea of discrete taxonomic units. Comparing the similarity of genomes based on 
nucleotide identity for instance, metagenomic data supports the existence of distinct 
species (at a 95% average nucleotide identity) (Caro-Quintero and Konstantinidis, 
2012), and even more recently strains (at ~99.5%) (Rodriguez-R et al., 2023). However, 
due to the plasticity of bacterial genomes, the importance of horizontal genes transfers, 
and the fast rates of evolutionary processes, it remains arguable whether these are 
meaningful metrics to consider, as an apparent high nucleotide identity could be 
observed on only a small fraction of the genome (Retchless and Lawrence, 2010, 2007).  

Indeed, when comparing bacterial genomes, and this is the case in the pangenomes 
generated in chapters 3 and 5, gene content across species was highly variable. Even 
in genomes closely related based on the phylogeny of marker genes, the variation in 
gene content can be high (Golicz et al., 2020; Horesh et al., 2021; Schubert et al., 2009). 
This has been shown within species and has been used as an argument to consider only 
strain-level taxonomy relevant to assess functional potential in the human gut 
microbiome for instance (Zhu et al., 2015). The proportion of shared genes among 
representatives of the same taxonomic unit is indeed highly associated with the 
organisms’ lifestyle and ecological conditions (Golicz et al., 2020). Thus, data based on 
marker genes (such as 16s rRNA amplicon) without pangenome analyses, while 
allowing to capture phylogenetic signal, does not allow to characterise all aspects of 
bacterial biodiversity. 

Thus, even though the taxa that are abundant in the cryosphere are also present in 
other biomes, it is likely that biodiversity defined as unique genomic potential, might be 
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at threat in the microbiome of cryospheric ecosystems. In chapter 2, comparing 
cryospheric metagenomes to other biome, we found unknown genomic potential that 
is unique to the cryosphere. The pangenome of Polaromonas created for chapter 3 
highlighted the phylogenetic and functional novelty of the glacier-fed streams 
representatives, compared to their database counterparts. This uniqueness of cold-
adapted molecules is exemplified by Bowman (2017), that identified proteins unique to 
psychrophilic genomes. Even though the fast mutation rates of prokaryotes might 
replace cryosphere-adapted species as glaciers shrink and the associated ecosystems 
change, unique biodiversity is at threat. This is especially relevant for biotechnology (De 
Maayer et al., 2014), as some of these molecules possess adaptations to function 
under cold conditions, but also the exploration of life in a planetary context (Merino et 
al., 2019). Thus, it is urgent to characterise the microbiome of the cryosphere, and 
large-scale meta-analyses comparing the functional potential to other biomes, as 
performed in chapter 2, could help identify such functions. Subsequently, laboratory 
experiments would be required to characterise these molecules. 

v 6.7 Conclusion 

Owing to human-induced climate change, cryospheric ecosystems are rapidly 
shrinking, and thus there is an urgent need to study the microbiome of these 
endangered ecosystems. Here we analysed global datasets of cryospheric and glacier-
fed stream metagenomes, and unveiled diverse, well-adapted bacterial communities 
that thrive through the diversification of energy pathways, the formation of biofilms, and 
other genomic adaptations to these extreme conditions. We identified taxonomic, 
functional and phylogenetic properties of these microbiomes, highlighting the high 
degree of novelty that they harbour but also the unknowns that remain. Additionally, we 
used modelling to better understand how glacier influence shapes the environmental 
template and the microbiome of glacier-fed streams. These models allowed us to 
forecast future changes in the environment (i.e., “the greening”), and ecological shifts 
that are associated with the phylogenetic structure of the communities. Finally, we 
identified the importance of the ecologically successful bacterial class 
Gammaproteobacteria at shaping the genomic landscape of glacier-fed streams over 
the gradient of glacier influence. This association further highlighted the need to better 
characterise the microbiome of the melting cryosphere in order to identify potential 
biodiversity losses and improve our predictions of changes in the functioning of 
ecosystems. 
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Appendices 
v Supplementary figures 

A) Phylogenetic tree based on the abundant ASVs (relative abundance > 0.5%) found in PP2, 
demonstrating the cryosphere microbiome diversity across the bacterial tree of life. The highlighted 
colors represent the ASVs detected in cryospheric ecosystems, and the barplot represents the 
coefficient for the logistic classification analysis. The number of ASVs at B) the phylum-level, and C) 
genus-level taxonomy with an odds-ratio greater than 1 in the logistic classification is shown for PP1 
and PP2. Only taxa with the highest numbers are shown. 
  

Supplementary figure 2. 1 
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A) Heat-tree showing the taxonomic classification of the 37 bacterial genera representing the core 
microbiome of the cryosphere (out of the 2044 total bacterial genera). They represent all bacterial 
genera with a probability of presence of 20% (calculated in the binomial model analysis, abundance 
threshold of 0.1%) in the cryosphere, and present in all four ecosystem types. B) Line graphs depicting 
the probability of presence of a given bacterial genus in the cryosphere and their respective abundance, 
to identify the 'core' (blue) and 'ancillary' (red) genera. The dashed lines represent the chosen 
thresholds for the core microbiome definition. C) Upset plot showing the overlap across the ecosystem 
types core microbiome, defined at the genus-level, with a prevalence of 20% at an abundance threshold 
of 0.1% relative abundance. (D) Heat plot showing the number of genera per group, highlighting the 
large overlap between the core microbiome and the cryospheric genera. 

 

Supplementary figure 2. 2 
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A) The enriched abundance of aminoacids in the cryosphere (blue; positive fold change) compared to 
those found in the non-cryospheric ecosystems are depicted. The “*” represents stop codons. B) The 
overall GC% of the genomes belonging to the cryospheric, others and underrepresented genera are 
depicted (n = 660 total bacterial genera, 197 of which are cryospheric genera, 198 are underrepresented 
in the cryosphere). C) The GC% of the genes predicted in the genomes belonging to the cryospheric, 
others and underrepresented genera are depicted. The median, 25% and 75% quartiles are represented 
in the boxplots. Two-sided Wilcoxon tests were performed to assess significance in panels B and C; the 
Holm method was used to correct for multiple testing (***: 0-0.001, **: 0.001-0.01). Boxplots depict the 
median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile 
range, and the remaining points are outliers. Exact p-values and medians are listed in Supplementary 
Table 6. 

  

Supplementary figure 2. 3 
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A) Boxplots indicate the overall identity percentage for representative sequences for each of the gene 
clusters that matched with UniProt sequences. The figures demonstrate these values for the 
Cryosphere-only genes, non-cryosphere (Others) and those 'shared' between the two habitats. B) The 
GC content % of all the genes within each cluster is shown. C) The pairwise identity of all sequences 
within each cluster is represented on the boxplots. D) Odds-ratio estimations of the UniProt matches 
with respect to the annotation level, and the presence/or not in the cryospheric metagenomes. Two-
sided Wilcoxon tests were performed to assess significance in panels A, B and C; the Holm method was 
used to correct for multiple testing (****: 0-0.0001, ***: 0.0001-0.001, **: 0.001-0.01, *: 0.01-0.05). 
Boxplots depict the median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times 
the interquartile range, and the remaining points are outliers. Sample sizes are listed in Table 1. The 
exact p-values and test statistics are available in the Supplementary Table 8.  
  

Supplementary figure 2. 4 
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Glacier-fed streams from where epilithic and epipsammic biofilms were sampled. Regions indicating 
the collection sites for the epilithic and epipsammic biofilms from (a) Caucasus and (b) Southern Alps. 
Relative abundance of prokaryotes (c) and eukaryotes (d) at the phylum and subdomain levels based 
on the sequencing of the 16S and 18S rRNA genes, respectively. 

  

Supplementary figures 3. 1 
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Epilithic biofilm metagenomic profiles. (a) Relative abundance profiles across the three domains of life: 
archaea, bacteria and eukaryotes in the epilithic biofilms, obtained from the sample metagenomes. 
Samples from the Southern Alps are indicated in red, while those from Caucasus are shown in blue. (b) 
Virome profile indicating the top 50 viruses. Scaled abundance from low (-2) to high (2) is indicated in 
the heatmap. 

Supplementary figures 3. 2 
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Cross-domain interactions and adaptations of epilithic biofilms. (a) Corrplot based on Spearman’s 
correlation between pro- and eukaryotic MAGs aggregated at the phylum level. (b) Co-occurrence 
network of all MAGs across the Southern Alps in New Zealand and Caucasus in Russia. Each node 

Supplementary figures 3. 3 
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represents a MAG, while the size represents the degree centrality. The edges represent the positive 
coefficient of co-occurrence along with the corresponding betweenness centrality between the MAGs. 
Unconnected nodes represent MAGs with lower betweenness (< 0.5) compared to other MAGs. The 
color of the nodes represents the individual taxa, while the lines represent the edges connecting the 
nodes. The thickness of the lines indicates those edges with a betweenness greater than 0.5. Co-
occurrence network constructed from pro- and eukaryotic MAGs found in (c) the Southern Alps (New 
Zealand) and (d) the Caucasus. The largest connected component of the co-occurrence network from 
(e) the Southern Alps (New Zealand) and (f) Caucasus GFSs are depicted.  
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Extracellular enzyme genes based on lifestyle. The classification at phylum and genus levels of MAGs 
identified as (a) heterotrophs, (b) phototrophs, or (c) those with ‘unknown’ trophic metabolisms are 
depicted, showing the abundance of genes encoding for extracellular enzymes. NA: unclassified genus; 
AG: α-1,4-glucosidase; BG: β-1,4-glucosidase; LAP: leucine aminopeptidase; NAG: β-1,4-N-
acetylglucosaminidase; AP: acid (alkaline) phosphatase. (d) (c) Spearman’s correlation analyses of 
overall eukaryote relative abundances with the CAZyme abundances. CAZymes include AA: auxilliary 
activities, CBM: carbohydrate-binding module , CE: carbohydrate esterases , GH: glycoside hydrolases, 

Supplementary figures 3. 4 
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GT: glycosyltransferases, PL: polysaccharide lyases. FDR-adjusted p-values were estimated using the 
‘cor.mtest’ function from the corrplot R package and are indicated by *, i.e., * < 0.05, ** < 0.01, *** < 
0.001. 
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Comparison to public metagenomes reveals differential gene abundances. Volcano plot indicating the 
total number of KOs (n = 9,335; total = 17,406) enriched in epilithic biofilms compared to 105 publicly 
available metagenomes. KO enrichment was assessed using DEseq2, where the adjusted p-value < 
0.05 was considered to be significant. 

  

Supplementary figures 3. 5 
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Supplementary figure 4. 1 

Climatic changes Comparison of sampling year data (2019-2022) to future projections (2070-100) for 
the yearly snow cover days (A), monthly precipitations (B), average temperature (C), average minimal 
daily temperature (D), and average maximal daily temperature (E). The dots show data for the scenario 
RCP 4.5, the error bars show the RCP 2.6 and 8.5, and the dashed line the one-to-one line. Plots F-J 
show the median (bold line) and interquartile range (dashed lines) for the 2019-2022 dataset on top of 
the probability density functions of the historical averages for the 1981-2010 period for the same 
parameters (scd=yearly snow cover days, pr=monthly precipitations, tas=average temperature, 
tasmin=average minimal daily temperature, tasmax=average maximal daily temperature). These show 
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that the dataset created for the 2019-2022 does not exhibit extreme values compared to historical 
distribution averages. 
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Supplementary figure 4. 2 

Proximal drivers changes for all scenarios Distributions showing the predicted values for proximal 
drivers and biomass models (rows) for the sampling year (red) and future (blue) projections for the 
scenarios RCP 2.6, 4.5 and 8.5 (facets, from left to right). 
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Supplementary figure 4. 3 

Proximal drivers and biomass models response curves Response curves showing the effect of the 
covariates (column) on the proximal drivers and biomass variables (rows) for RCP scenarios 2.6 
(purple), 4.5 (blue), and 8.5 (orange). The alpha of the lines represents the proportion of stacked models 
for which the covariate was selected in the feature selection procedure (more important variables are 
opaquer). Response curves were computed by predicting values for the response variable for each 
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covariate separately through the range of covariate values observed, keeping all other at their median. 
Since spatial splines were used, the median response across sampling sites was computed. The 
abbreviations for the covariates are the following: gl_dist=distance to the glacier, gl_area=area of the 
glacier, gl_coverage=coverage of the catchment by the glacier, clim_tas=average monthly temperature, 
clim_scd=yearly snow cover days, clim_pr=monthly precipitations, min_calcite=calcite content of the 
sediments, min_clays=clay content of the sediments, min_feldspar=feldspar content of the sediments, 
min_quartz=quartz content of the sediments. The abbreviations for the variables are the following: 
bacterial_abundance =abundance of bacterial cells, chla=mass of chlorophyll-a in the sediments, 
nut_din=streamwater concentration in dissolved inorganic nitrogen, nut_srp=streamwater 
concentration in soluble reactive phosphate, pc_conductivity=conductivity of the streamwater, 
pc_ph=pH of the streamwater, pc_turbidity=turbidity of the streamwater, and 
pc_water_temp=streamwater temperature. 
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Supplementary figure 4. 4 

Strains models performances (A) Distribution of the prediction r2 values for the strain abundance 
models, shown for RCP 2.6. (126), RCP 4.5 (370), and RCP 8.5 (585). The colours show different 
categories of prediction r2 based on thresholds (colours). (B) Comparison of the log2 fold-change to the 
mean current relative abundance for RCP 2.6 (126), RCP 4.5 (370), and RCP 8.5 (585). The lines show 
the median and interquartile range of the log2 fold change distributions. The colours show strains that 
significantly increase/decrease in abundance in future scenarios of climate change. 
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Supplementary figure 4. 5 

Evenness analysis Scatter plot with linear regression lines for RCP2.6 (red), 4.5 (green) and 8.5 (blue), 
of the present median predicted abundance (x-axis) and future projected median (y-axis). Linear model 
equations are shown on the top left part of the plot, showing that all slopes are smaller than one, 
meaning that in the future, rare taxa are predicted to be more abundant than in present (i.e., increased 
evenness). present=sampling year (2019-2022); future=mean for the 2070-2100 time period 
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Supplementary figure 4. 6 

Importance of features in the strain distribution models. (A) Ridgeplots displaying the distribution of 
the covariates’ relative rank in the strain distribution models feature selection procedures, (B) and 
comparing the distributions of the strains that are predicted to decrease in abundance compared to 
others. The relative ranks were computed by comparing the covariates selection order after the feature 
selection procedure prior to model creation (Methods). The colors represent the relative rank 
distribution (A, darker shade), and the difference between the overall median for all strains, against the 
ones that are predicted to decrease in abundance (Decrease) and the others (Others) (B, lighter shade). 
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Supplementary figure 4. 7 

Predictability of the most abundant bacterial classes Ridge plot depicting the distribution of the 
predictability (measured as the cross-validated r2

prediction) across the 11 most abundant bacterial 
classes. Predictability was significantly different across these taxa (Kruskal-Wallis test, statistic = 
7570.3, p < 0.001). 
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Supplementary figure 4. 8 

Variable selection and phylogeny Comparison of the number of shared top 5 variables in the feature 
selection procedure with the phylogenetic distance, showing that more closely related strains are 
associated with similar covariates. The blue lines show a loess fit, the red vertical one shows the 
average within-genus phylogenetic distance. The relationship was significant with a Spearman 
correlation test (Rho = -0.14, p < 0.001). 
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Supplementary figure 4. 9 

Bioclimatic PCA Principal components 1 to 6 for the PCA analysis performed on the 19 bioclimatic 
variables (clim_bio1 to 19), accounting for more than 95% of the variance. The colours correspond to 
the mountain ranges, arrows representing the scores of the individual variables were added with the 
variable names as labels. 
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Supplementary table 2. 1 

Cryospheric bacterial communities’ logistic classification models performance summary for each 
primer pair dataset. 

  

Dataset Accuracy [%] Precision [%] Recall [%] AUC [%] 

PP1 96.04±1.93 99.99±0.05 92.08±3.86 99.93±0.02 

PP2 97.95±1.35 99.93±0.14 95.96±2.71 99.93±0.02 
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Supplementary table 2. 2 

ß-diversity phylogenetics (Sorensen’s Index and ß-MNTD) computed for 50 iterations randomly drawing 
50 cryospheric and 50 non-cryospheric samples (sample sizes for each group: NPP1-Sor = 83583, NPP2-Sor = 
98142, NPP1-MNTD = 77893, NPP2-MNTD=91398). For both datasets and primer pairs, the Kruskal-Wallis tests 
were highly significant (p-value < 2.2e-16), post-hoc two-sided Wilcoxon tests results are reported in 
the table, the p-value was corrected using the Holm method. The effect size was computed as r with 
the statix R package. 
  

Dataset Group 1 Group 2 

Sorensen’s index ß-MNTD 

Corrected 
p-value 

r 
Median 
difference 

Corrected 
p-value 

r 
Median 
difference 

PP1 Cryo-Cryo Cryo-Others < 2e-16 0.185 0.038 < 2e-16 0.0821 0.012 

Cryo-Cryo Other-Others < 2e-16 0.140 0.042 < 2e-16 0.0639 0.01 

Cryo-Others Other-Others 7.6e-13 0.0174 0.004 < 2e-16 0.144 0.022 

PP2 Cryo-Cryo Cryo-Others < 2e-16 0.238 0.046 <2e-16 0.183 0.032 

Cryo-Cryo Other-Others < 2e-16 0.263 0.057 <2e-16 0.125 0.028 

Cryo-Others Other-Others < 2e-16 0.0501 0.011 <2e-16 0.0503 0.004 
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Supplementary table 2. 3 

α-diversity phylogenetics (MPD: mean phylogenetic distance, MNTD: mean nearest taxon distance; PD: 
phylogenetic diversity) linear models testing the influence of the cryosphere on the different metrics, 
with the species richness (SR, log-transformed) and the dataset as fixed effects (Intercept = non-
cryospheric, and PP1).  

 α-MPD (model p-value: < 2.2e-16) 

Estimate p-value t-value 

Coefficients Intercept 0.389±0.014 28.667 <2e-16 

Cryosphere 0.077±0.005 13.933 <2e-16 

log(SR) 0.062±0.004 15.973 <2e-16 

DatasetPP2 -0.038±0.004 -9.129 <2e-16 

Model Adj. R2 0.108 

df 4240 

 α-MNTD (model p-value: < 2.2e-16) 

Estimate t-value p-value 

Coefficients Intercept 0.307±0.006 48.933 <2e-16 

Cryosphere 0.015±0.003 5.734 1.05e-08 

log(SR) -0.053±0.002 -29.399 <2e-16 

DatasetPP2 0.020±0.002 10.302 <2e-16 

Model Adj. R2 0.191 

df 4240 

 α-PD (model p-value: < 2.2e-16) 

Estimate t-value p-value 

Coefficients Intercept 0.450±0.047 9.483 <2e-16 

Cryosphere 0.532±0.049 10.955 <2e-16 

SR 0.110±0.001 89.696 <2e-16 

DatasetPP2 0.398±0.037 10.887 <2e-16 

Model Adj. R2 0.664 

df 4240 
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Supplementary table 2. 4 

Model summaries for the PERMANOVA and all pairwise.adonis comparisons of cryospheric ecosystem 
types. 

PERMANOVA DF Sum of squares r2 f-value p-value 

Ecosystem 3 55.774 0.18319 52.702 < 0.001 

Dataset 1 5.633 0.01850 15.969 < 0.001 

Residual 689 243.055 0.79831   

Total 693 304.462 1.00000   

Snow/Ice – Terr. DF Sum of squares r2 f-value p-value 

Ecosystem 1 18.859 0.11779 54.36 < 0.001 

Dataset 1 4.906 0.03064 14.14 < 0.001 

Residual 393 136.340 0.85157   

Total 395 160.105 1.00000   

Snow/Ice – Marine DF Sum of squares r2 f-value p-value 

Ecosystem 1 23.280 0.15758 66.918 < 0.001 

Dataset 1 4.087 0.02767 11.749 < 0.001 

Residual 346 120.370 0.81476   

Total 348 147.737 1.00000   

Snow/Ice – Fresh. DF Sum of squares r2 f-value p-value 

Ecosystem 1 10.991 0.06768 28.6254 < 0.001 

Dataset 1 3.195 0.01967 8.3202 < 0.001 

Residual 386 148.211 0.91265   

Total 388 162.397 1.00000   

Marine – Terr. DF Sum of squares r2 f-value p-value 

Ecosystem 1 25.402 0.20705 85.019 < 0.001 

Dataset 1 7.052 0.05748 23.604 < 0.001 

Residual 302 90.230 0.73547   

Total 304 122.684 1.00000   

Marine – Fresh. DF Sum of squares r2 f-value p-value 

Ecosystem 1 18.464 0.14665 53.295 < 0.001 

Dataset 1 5.240 0.04162 15.125 < 0.001 

Residual 295 102.202 0.81173   

Total 297 125.906 1.00000   

Terrestrial - Fresh. DF Sum of squares r2 f-value p-value 

Ecosystem 1 16.200 0.11536 47.332 < 0.001 

Dataset 1 7.175 0.05109 20.963 < 0.001 

Residual 342 117.056 0.83355   

Total 344 140.431 1.00000   
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Supplementary table 2. 5 

Shannon’s index H α-diversity (calculated at the genus taxonomic level) Wald-Type Statistic (WTS) 
summary. This test was chosen as a non-parametric alternative to ANOVA for non-normally distributed 
data. “Interaction” represents the interaction between the Ecosystem and Dataset parameters, 
“Ecosystem” the fixed effect of the ecosystem type. The computed means weighted by sample sizes 
are 2.987, 2.856, 3.245, and 3.669 for freshwater, snow/ice, marine and terrestrial, respectively. 
  

WTS model Test statistic df p-value WTPS 

Ecosystem 112.0236 3 0 

Interaction 103.1681 4 0 

Ecosystem Datastet N Mean Variance 

Freshwater PP1 29 3.72 0.26 

Freshwater PP2 140 2.84 0.48 

Ice/Snow PP1 92 2.76 0.69 

Ice/Snow PP2 128 2.93 0.68 

Marine PP1 88 3.03 0.18 

Marine PP2 41 3.71 0.41 

Terrestrial PP1 92 3.69 0.80 

Terrestrial PP2 84 3.64 0.28 
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Supplementary table 2. 6 

RefSeq genomic properties summary. Corrected p-values were computed using two-sided Wilcoxon 
tests implemented in the compare_means function of the ggpubr R package, comparing the 
cryospheric and underrepresented genera against the others. 

  

Metric MedianOthers (n=265) MedianCryo (n=197) MedianUnder.(n=198) 

GC content [%] 48.7 57.5 (corr. p = 0.0011) 56.1 (corr. p = 0.0086) 

Genome size [mbp] 3.97 4.19 (corr. p = 0.17) 4.06 (corr. p = 0.28) 

Growth doubling time [d] 4.48 4.12 (corr. p = 0.87) 4.55 (corr. p = 0.51) 

Codon usage bias [CUBHE] 0.627 0.627 (corr. p = 1) 0.623 (corr. p = 1) 

Consistency [HE] 0.527 0.519 (corr. p = 0.84) 0.529 (corr. p = 0.25) 

Codon pair bias [CPB] -0.375 -0.370 (corr. p = 0.92) -0.380 (corr. p = 0.74) 
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Supplementary table 2. 7 

Dataset Study ID Sample n. Ecosystem type Description 

PP1 Bergk2019 12 Ice/Snow Snow samples, Svalbard 

PP1 NOMIS 10 Freshwater Glacier-fed stream sediment samples, Russia 
and New Zealand 

PP1 PRJDB9246 11 Freshwater Microbial mat and water, Antarctica 

PP1 PRJEB12640 41 Terrestrial Soil chronosequence samples, Svalbard 

PP1 PRJEB26163 62 Marine Marine water, Arctic Ocean 

PP1 PRJEB29215 32 Ice/Snow Snow samples, Antarctica 

PP1 PRJEB31938 26 Marine Sea ice, snow, water and sediment, Greenland 
and the Arctic Ocean 

PP1 PRJEB40467 18 Terrestrial Alpine permafrost, Italy 

PP1 PRJNA296475 3 Ice/Snow Cryoconite hole, Svalbard 

PP1 PRJNA320505 1 Ice/Snow Cryoconite hole, Antarctica 

PP1 PRJNA380676 1 Terrestrial Arctic rock, Svalbard 

PP1 PRJNA418054 32 Terrestrial Permafrost, Alaska 

PP1 PRJNA430179 11 Ice/Snow Glacier Ice/snow, Spain 

PP1 PRJNA436954 8 Frehshwater High-arctic microbial mat 

PP1 PRJNA529498 33 Ice/Snow Cryoconite hole, Antarctica 

PP2 PRJEB11496 24 Marine Marine sediment, Antarctica 

PP2 PRJEB23054 59 Terrestrial Permafrost, Alaska 

PP2 PRJNA244335 31 Freshwater Sediment and water from subglacial lake, 
Antarctica 

PP2 PRJNA255432 70 Freshwater Arctic lake, Canada 

PP2 PRJNA278982 4 Marine Ice-shelf water cavity, Antarctica 

PP2 PRJNA321351 9 Freshwater Arctic lake, Greenland 

PP2 PRJNA324626 9 Terrestrial Frozen soil, China 

PP2 PRJNA430887 26 Ice/Snow Glacier ice and weather crust, USA 

PP2 PRJNA431087 1 Terrestrial Microbial mat, Antarctica 

PP2 PRJNA432743 7 Freshwater Subglacial aquifer brine, Antarctica 

PP2 PRJNA471245 51 Ice/Snow Water, ice, soil, sediment and microbial mat, 
Antarctica 

PP2 PRJNA480849 1 Ice/Snow Cryoconite hole, Antarctica 

PP2 PRJNA554442 11 Terrestrial Permafrost, Alaska 
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Summary of the cryospheric samples included in the two 16s rRNA amplicon datasets (primer pair 1 = 
PP1, and primer pair 2 = PP2).  

PP2 PRJNA593264 13 Marine Water, sediments and snow, Antarctica 

PP2 PRJNA629965 6 Freshwater, 
Ice/Snow 

Snow and glacier melt 

PP2 PRJNA744712 72 Ice/Snow Cryoconite hole, Antarctica 
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Supplementary table 2. 8 

 Metric Group Comparison Corr. p-value 

Uniprot identity [%] 

 

KEGG 

Cryo.–Shared 2.9e-2 

Cryo.–Others 5.7e-10 

Shared-Others  1.2e-101 

Ambiguous 

Cryo.–Shared 4.2e-3 

Cryo.–Others 2.6e-12 

Shared-Others  2.7e-87 

Unassigned 

Cryo.–Shared 2.6e-7 

Cryo.–Others 2.1e-13 

Shared-Others  2.6e-3 

Mean GC [%] 

KEGG 

Cryo.–Shared 2.7 e-5 

Cryo.–Others 1.1e-17 

Shared-Others  5.50e-292 

Ambiguous 

Cryo.–Shared 7.8e-9 

Cryo.–Others 1.1e-50 

Shared-Others  4.20e-297 

Unassigned 

Cryo.–Shared 8.6e-1 

Cryo.–Others 1.1e-68 

Shared-Others  0 

Mean Cluster Identity [%] 

KEGG 

Cryo.–Shared 4.3e-19 

Cryo.–Others 2.1e-7 

Shared-Others  3.9e-81 

Ambiguous 

Cryo.–Shared 3e-39 

Cryo.–Others 1.9e-11 

Shared-Others  3.9e-78 

Unassigned 

Cryo.–Shared 8.8e-12 

Cryo.–Others 5.4e-1 

Shared-Others  5.4e-63 
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Unassigned functional clusters exact p-values for the pairwise two-sided Wilcoxon tests. Corrected p-
values were adjusted using the Holm method. Sample sizes are listed in Table 1. 
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Supplementary table 4. 1 

Sample Mountain range date 
[DD.MM.YYYY] 

time 
[HH:MM] 

Glacier name latitude 
[DD] 

longitude 
[DD] 

elevation 
[m] 

rgi_v6 glims_id 

GL1_UP Southern Alps 22.01.19 10:00 Franz Josef -43.45 170.1753 470 RGI60-
18.02397 

G170225E43495S 

GL1_DN Southern Alps 22.01.19 14:26 Franz Josef -43.4274 170.1734 248 RGI60-
18.02397 

G170225E43495S 

GL2_UP Southern Alps 25.01.19 08:37 Victoria -43.4976 170.139 1145 RGI60-
18.02270 

G170174E43508S 

GL2_DN Southern Alps 25.01.19 11:59 Victoria -43.4978 170.1291 1093 RGI60-
18.02270 

G170174E43508S 

GL3_UP Southern Alps 26.01.19 10:30 Fox -43.5006 170.059 338 RGI60-
18.02375 

G170162E43537S 

GL3_DN Southern Alps 26.01.19 14:49 Fox -43.4869 170.0293 226 RGI60-
18.02375 

G170162E43537S 

GL5_UP Southern Alps 29.01.19 11:47 Lancelot -42.9249 171.5141 1325 RGI60-
18.02895 

G171502E42928S 

GL5_DN Southern Alps 29.01.19 16:04 Lancelot -42.9263 171.5149 1255 RGI60-
18.02895 

G171502E42928S 

GL6_UP Southern Alps 30.01.19 13:53 Crow -42.9241 171.5137 1362 RGI60-
18.02896 

G171511E42916S 

GL6_DN Southern Alps 30.01.19 09:48 Crow -42.9307 171.5185 1118 RGI60-
18.02896 

G171511E42916S 

GL7_UP Southern Alps 31.01.19 14:37 White  -42.9984 171.3898 1750 RGI60-
18.02839 

G171385E43000S 

GL7_DN Southern Alps 31.01.19 17:50 White  -42.9963 171.3913 1687 RGI60-
18.02839 

G171385E43000S 

GL8_UP Southern Alps 02.02.19 10:54 Marmaduke Dixon -42.9875 171.3904 1629 RGI60-
18.02823 

G171383E42988S 

GL8_DN Southern Alps 02.02.19 15:15 Marmaduke Dixon -42.9884 171.3923 1584 RGI60-
18.02823 

G171383E42988S 

GL9_UP Southern Alps 03.02.19 10:12 Cahill -42.9824 171.3978 1510 RGI60-
18.02851 

G171391E42978S 

GL9_DN Southern Alps 03.02.19 13:44 Cahill -42.9839 171.4025 1253 RGI60-
18.02851 

G171391E42978S 
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GL10_UP Southern Alps 08.02.19 11:52 Dart -44.4813 168.6059 1090 RGI60-
18.00686 

G168609E44455S 

GL10_DN Southern Alps 08.02.19 15:19 Dart -44.4818 168.5979 1042 RGI60-
18.00686 

G168609E44455S 

GL11_UP Southern Alps 09.02.19 11:56 Reid -44.4673 168.6216 1587 RGI60-
18.00676 

G168623E44461S 

GL11_DN Southern Alps 09.02.19 13:52 Reid -44.4689 168.6193 1486 RGI60-
18.00676 

G168623E44461S 

GL12_UP Southern Alps 10.02.19 12:38 Rob Roy -44.4758 168.7268 749 RGI60-
18.01013 

G168718E44463S 

GL12_DN Southern Alps 10.02.19 16:18 Rob Roy -44.4803 168.7265 717 RGI60-
18.01013 

G168718E44463S 

GL13_UP Southern Alps 13.02.19 13:20 Brewster -44.0819 169.4317 1699 RGI60-
18.01130 

G169437E44072S 

GL13_DN Southern Alps 13.02.19 16:20 Brewster -44.0838 169.4305 1655 RGI60-
18.01130 

G169437E44072S 

GL14_UP Southern Alps 16.02.19 10:12 Mc Pherson -44.7565 167.9857 1096 RGI60-
18.00367 

G167987E44758S 

GL14_DN Southern Alps 16.02.19 13:18 Mc Pherson -44.7571 167.9865 1071 RGI60-
18.00367 

G167987E44758S 

GL15_UP Southern Alps 17.02.19 08:52 Age -44.6121 168.0218 1288 RGI60-
18.00179 

G168020E44606S 

GL15_DN Southern Alps 17.02.19 05:31 Age -44.6121 168.0214 1259 RGI60-
18.00179 

G168020E44606S 

GL16_UP Southern Alps 22.02.19 13:53 Birch Creek -43.794 170.0643 1320 RGI60-
18.01559 

G170055E43788S 

GL16_DN Southern Alps 22.02.19 17:09 Birch Creek -43.7946 170.0674 1206 RGI60-
18.01559 

G170055E43788S 

GL17_UP Southern Alps 23.02.19 11:50 Tewaewae -43.6891 170.0822 1236 RGI60-
18.01881 

G170073E43683S 

GL17_DN Southern Alps 23.02.19 15:38 Tewaewae -43.6936 170.0849 1006 RGI60-
18.01881 

G170073E43683S 

GL18_UP Southern Alps 26.02.19 11:07 Charity -43.8169 169.9252 1208 RGI60-
18.01835 

G169924E43808S 

GL18_DN Southern Alps 26.02.19 14:50 Charity -43.8184 169.9279 1113 RGI60-
18.01835 

G169924E43808S 

GL19_UP Southern Alps 27.02.19 09:37 Richardson -43.8172 169.9336 1146 RGI60-
18.01958 

G169947E43804S 

GL19_DN Southern Alps 27.02.19 16:07 Richardson -43.8239 169.9231 1097 RGI60-
18.01958 

G169947E43804S 
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GL20_UP Southern Alps 01.03.19 12:36 Mawson -43.418 170.5 1448 RGI60-
18.02348 

G170508E43421S 

GL20_DN Southern Alps 01.03.19 16:45 Mawson -43.4074 170.4994 1004 RGI60-
18.02348 

G170508E43421S 

GL21_UP Southern Alps 02.03.19 10:12 Shackleton -43.4043 170.5064 1138 RGI60-
18.02298 

G170521E43401S 

GL21_DN Southern Alps 02.03.19 13:43 Shackleton -43.406 170.501 982 RGI60-
18.02298 

G170521E43401S 

GL22_UP European Alps 25.06.19 09:13 Valsorey 45.9166 7.2669 2441 RGI60-
11.02927 

G007257E45892N 

GL22_DN European Alps 25.06.19 13:36 Valsorey 45.9208 7.257 2387 RGI60-
11.02927 

G007257E45892N 

GL23_UP European Alps 03.06.20 12:46 Furgg 45.979 7.6868 2735 RGI60-
11.02819 

G007696E45965N 

GL23_DN European Alps 03.06.20 15:18 Furgg 45.9845 7.6928 2680 RGI60-
11.02819 

G007696E45965N 

GL24_UP European Alps 04.06.20 09:10 Zmutt 46.0016 7.6511 2317 RGI60-
11.02739 

G007639E45977N 

GL24_DN European Alps 04.06.20 11:50 Zmutt 46.003 7.6573 2247 RGI60-
11.02739 

G007639E45977N 

GL25_UP European Alps 05.06.20 11:00 Findelen 46.0108 7.8263 2557 RGI60-
11.02773 

G007880E45990N 

GL25_DN European Alps 05.06.20 14:30 Findelen 46.0105 7.8199 2508 RGI60-
11.02773 

G007880E45990N 

GL26_UP European Alps 06.06.20 11:30 Längflue-N 46.031 7.8515 2916 RGI60-
11.02742 

G007860E46022N 

GL26_DN European Alps 06.06.20 14:31 Längflue-N 46.0318 7.8495 2876 RGI60-
11.02742 

G007860E46022N 

GL27_UP European Alps 08.06.20 10:12 Arolla (Bas)  45.9901 7.496 2265 RGI60-
11.02787 

G007490E45965N 

GL27_DN European Alps 08.06.20 14:48 Arolla (Bas)  46.0006 7.4921 2112 RGI60-
11.02787 

G007490E45965N 

GL28_UP European Alps 09.06.20 08:16 Tsidjiore Nouve 46.016 7.4692 2277 RGI60-
11.02755 

G007450E45997N 

GL28_DN European Alps 10.06.20 11:05 Tsidjiore Nouve 46.0188 7.4736 2148 RGI60-
11.02755 

G007450E45997N 
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GL29_UP European Alps 11.06.20 10:30 Mont Mine 46.0396 7.5505 2085 RGI60-
11.02709 

G007553E45994N 

GL29_DN European Alps 11.06.20 13:50 Mont Mine 46.0437 7.5535 1977 RGI60-
11.02709 

G007553E45994N 

GL30_UP European Alps 30.06.20 11:11 Hohlaub-N 46.1446 7.9939 3081 RGI60-
11.02526 

G008004E46144N 

GL30_DN European Alps 30.06.20 13:00 Hohlaub-N 46.1449 7.9921 2983 RGI60-
11.02526 

G008004E46144N 

GL31_UP European Alps 01.07.20 11:15 Schwarzberg 46.0265 7.939 2662 RGI60-
11.02746 

G007922E46000N 

GL31_DN European Alps 01.07.20 13:30 Schwarzberg 46.0276 7.9397 2659 RGI60-
11.02746 

G007922E46000N 

GL32_UP Southwest 
Greenland 

15.07.19 20:50 "Nuuk east" 64.1383 -51.1768 613 RGI60-
05.07197 

G308826E64132N 

GL32_DN Southwest 
Greenland 

16.07.19 20:18 "Nuuk east" 64.1395 -51.1732 550 RGI60-
05.07197 

G308826E64132N 

GL33_UP Southwest 
Greenland 

16.07.19 12:00 "Nuuk middle" 64.1406 -51.1926 668 RGI60-
05.07202 

G308801E64139N 

GL33_DN Southwest 
Greenland 

16.07.19 16:00 "Nuuk middle" 64.1418 -51.19 588 RGI60-
05.07202 

G308801E64139N 

GL34_UP Southwest 
Greenland 

17.07.19 14:37 "Nuuk west" 64.1514 -51.2181 557 RGI60-
05.07208 

G308763E64146N 

GL34_DN Southwest 
Greenland 

17.07.19 17:30 "Nuuk west" 64.1479 -51.1958 473 RGI60-
05.07208 

G308763E64146N 

GL35_UP Southwest 
Greenland 

18.07.19 14:00 "Nuuk east"  64.166 -51.0694 757 RGI60-
05.07210 

G308916E64163N 

GL35_DN Southwest 
Greenland 

18.07.19 13:00 "Nuuk east"  64.1626 -51.059 547 RGI60-
05.07210 

G308916E64163N 

GL36_UP Southwest 
Greenland 

21.07.19 12:55 Aajuitsup Sermia 64.1211 -51.4805 523 RGI60-
05.07199 

G308534E64118N 

GL36_DN Southwest 
Greenland 

21.07.19 16:50 Aajuitsup Sermia 64.1262 -51.4901 388 RGI60-
05.07199 

G308534E64118N 

GL37_UP Southwest 
Greenland 

22.07.19 12:31 Teqqiinngallip 
Sermia 

64.1352 -51.4707 439 RGI60-
05.07207 

G308542E64131N 

GL37_DN Southwest 
Greenland 

22.07.19 16:12 Teqqiinngallip 
Sermia 

64.1408 -51.4755 249 RGI60-
05.07207 

G308542E64131N 

GL38_UP Southwest 
Greenland 

29.07.19 11:40 Lyngmarksbrae 69.2904 -53.571 737 RGI60-
05.00625 

G306419E69295N 

GL38_DN Southwest 
Greenland 

29.07.19 15:25 Lyngmarksbrae 69.2815 -53.5372 444 RGI60-
05.00625 

G306419E69295N 
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GL39_UP Southwest 
Greenland 

30.07.19 12:06 Chamberlin 69.3204 -53.5282 468 RGI60-
05.00623 

G306428E69317N 

GL39_DN Southwest 
Greenland 

30.07.19 15:19 Chamberlin 69.321 -53.4954 332 RGI60-
05.00623 

G306428E69317N 

GL40_UP Southwest 
Greenland 

31.07.19 12:25 Petersen 69.3013 -53.5476 576 RGI60-
05.00623 

G306433E69302N 

GL40_DN Southwest 
Greenland 

31.07.19 15:20 Petersen 69.2999 -53.5273 446 RGI60-
05.00623 

G306433E69302N 

GL41_UP Southwest 
Greenland 

01.08.19 11:32 Pjetursson 69.2955 -53.3929 629 RGI60-
05.00602 

G306613E69293N 

GL41_DN Southwest 
Greenland 

01.08.19 16:35 Pjetursson 69.3009 -53.4289 395 RGI60-
05.00602 

G306613E69293N 

GL42_UP Caucasus 
Mountains 

11.09.19 12:09 Midjirgi 43.0936 43.1692 2637 RGI60-
12.01262 

G043172E43060N 

GL42_DN Caucasus 
Mountains 

08.09.19 11:35 Midjirgi 43.1122 43.1494 2121 RGI60-
12.01262 

G043172E43060N 

GL43_UP Caucasus 
Mountains 

09.09.19 10:05 Bezengi 43.1057 43.1318 2190 RGI50-
12.00014 

G043084E43033N 

GL43_DN Caucasus 
Mountains 

08.09.19 04:48 Bezengi 43.1172 43.1493 2037 RGI50-
12.00014 

G043084E43033N 

GL44_UP Caucasus 
Mountains 

10.09.19 13:00 "50"/"442" 43.0924 43.199 3481 RGI60-
12.00595 

G043218E43085N 

GL44_DN Caucasus 
Mountains 

11.09.19 15:33 "50"/"442" 43.0941 43.1733 2660 RGI60-
12.00595 

G043218E43085N 

GL45_UP Caucasus 
Mountains 

12.09.19 12:02 "50"/"4446" 43.0752 43.1743 3027 RGI60-
12.01187 

G043188E43071N 

GL45_DN Caucasus 
Mountains 

12.09.19 14:51 "50"/"4446" 43.0751 43.1714 2924 RGI60-
12.01187 

G043188E43071N 

GL46_UP Caucasus 
Mountains 

13.09.19 11:30 "443" 43.0832 43.1839 3154 RGI60-
12.00396 

G043201E43079N 

GL46_DN Caucasus 
Mountains 

13.09.19 14:30 "443" 43.0858 43.173 2779 RGI60-
12.00396 

G043201E43079N 

GL47_UP Caucasus 
Mountains 

17.09.19 10:23 Kashkatash  43.2116 42.6847 2517 RGI60-
12.00259 

G042693E43189N 

GL47_DN Caucasus 
Mountains 

17.09.19 14:31 Kashkatash  43.2203 42.6839 2177 RGI60-
12.00259 

G042693E43189N 
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GL48_UP Caucasus 
Mountains 

18.09.19 10:59 Djankuat 43.2034 42.7501 2760 RGI50-
12.01132 

G042766E43192N 

GL48_DN Caucasus 
Mountains 

18.09.19 14:36 Djankuat 43.2088 42.7396 2642 RGI50-
12.01132 

G042766E43192N 

GL49_UP Caucasus 
Mountains 

19.09.19 11:38 Djantugan 43.198 42.7382 2799 RGI60-
12.00314 

G042746E43195N 

GL49_DN Caucasus 
Mountains 

19.09.19 14:16 Djantugan 43.1992 42.7342 2741 RGI60-
12.00314 

G042746E43195N 

GL50_UP Caucasus 
Mountains 

20.09.19 12:03 Shkhelda 43.1952 42.6484 2364 RGI60-
12.00426 

G042639E43169N 

GL50_DN Caucasus 
Mountains 

20.09.19 15:20 Shkhelda 43.208 42.6511 2212 RGI60-
12.00426 

G042639E43169N 

GL51_UP Caucasus 
Mountains 

22.09.19 10:13 Bashkara 43.2099 42.7242 2576 RGI60-
12.00849 

G042727E43193N 

GL51_DN Caucasus 
Mountains 

22.09.19 13:30 Bashkara 43.2133 42.7148 2466 RGI60-
12.00849 

G042727E43193N 

GL52_UP Caucasus 
Mountains 

23.09.19 11:33 Terskol 43.291 42.5067 2709 RGI60-
12.00821 

G042482E43317N 

GL52_DN Caucasus 
Mountains 

23.09.19 14:23 Terskol 43.2753 42.5128 2387 RGI60-
12.00821 

G042482E43317N 

GL53_UP Caucasus 
Mountains 

26.09.19 13:30 Garabashi 43.2846 42.4788 3059 RGI50-
12.00161 

G042467E43312N 

GL53_DN Caucasus 
Mountains 

24.09.19 15:57 Garabashi 43.2677 42.4881 2400 RGI50-
12.00161 

G042467E43312N 

GL54_UP Caucasus 
Mountains 

25.09.19 12:19 Bolshoy Azau 43.2721 42.4468 2561 RGI50-
12.00080 

G042422E43310N 

GL54_DN Caucasus 
Mountains 

25.09.19 15:40 Bolshoy Azau 43.2654 42.4668 2394 RGI50-
12.00080 

G042422E43310N 

GL55_UP Caucasus 
Mountains 

29.09.19 12:01 Irik  43.3029 42.5498 2661 RGI50-
12.00730 

G042500E43332N 

GL55_DN Caucasus 
Mountains 

29.09.19 15:37 Irik  43.292 42.5921 2361 RGI50-
12.00730 

G042500E43332N 

GL56_UP Caucasus 
Mountains 

02.10.19 10:42 Sopruju Sevenriy  43.2617 41.6102 2104 RGI60-
12.00474 

G041589E43251N 

GL56_DN Caucasus 
Mountains 

02.10.19 14:18 Sopruju Sevenriy  43.2683 41.6149 1848 RGI60-
12.00474 

G041589E43251N 

GL57_UP Caucasus 
Mountains 

03.10.19 10:30 Amanauz 43.2622 41.6141 1966 RGI60-
12.01112 

G041628E43233N 

GL57_DN Caucasus 
Mountains 

03.10.19 14:27 Amanauz 43.2685 41.6151 1848 RGI60-
12.01112 

G041628E43233N 
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GL58_UP Caucasus 
Mountains 

04.10.19 10:30 Ptish 43.2356 41.6929 2347 RGI60-
12.00063 

G041694E43227N 

GL58_DN Caucasus 
Mountains 

04.10.19 13:54 Ptish 43.2512 41.6916 2113 RGI60-
12.00063 

G041694E43227N 

GL59_UP Caucasus 
Mountains 

05.10.19 12:36 "789" 43.2668 41.6772 1994 RGI60-
12.00053 

G041670E43254N 

GL59_DN Caucasus 
Mountains 

05.10.19 15:19 "789" 43.2682 41.6782 1927 RGI60-
12.00053 

G041670E43254N 

GL60_UP Caucasus 
Mountains 

08.10.19 10:40 Dvuyazichniy 43.2983 41.5478 2109 RGI60-
12.00842 

G041519E43297N 

GL60_DN Caucasus 
Mountains 

08.10.19 14:23 Dvuyazichniy 43.2989 41.5569 1920 RGI60-
12.00842 

G041519E43297N 

GL61_UP Ecuadorian 
Andes 

08.02.20 11:20 "San Marco's" 0.0402 -77.9969 4698 RGI60-
16.01343 

G282003E00032N 

GL61_DN Ecuadorian 
Andes 

08.02.20 14:52 "San Marco's" 0.043 -77.9998 4620 RGI60-
16.01343 

G282003E00032N 

GL62_UP Ecuadorian 
Andes 

09.02.20 11:21 "Laguna Verde 
West" 

0.0167 -78.0065 4861 RGI60-
16.01345 

G282007E00013N 

GL62_DN Ecuadorian 
Andes 

09.02.20 14:07 "Laguna Verde 
West" 

0.0157 -78.0079 4780 RGI60-
16.01345 

G282007E00013N 

GL63_UP Ecuadorian 
Andes 

10.02.20 12:13 Hermoso 0.0107 -78.0068 4661 RGI60-
16.01345 

G282007E00013N 

GL63_DN Ecuadorian 
Andes 

10.02.20 15:17 Hermoso 0.0104 -78.0068 4647 RGI60-
16.01345 

G282007E00013N 

GL64_UP Ecuadorian 
Andes 

11.02.20 11:28 "Laguna Verde 
East" 

0.0161 -78.0055 4894 RGI60-
16.01345 

G282007E00013N 

GL64_DN Ecuadorian 
Andes 

11.02.20 14:44 "Laguna Verde 
East" 

0.0148 -78.0072 4801 RGI60-
16.01345 

G282007E00013N 

GL65_UP Ecuadorian 
Andes 

13.02.20 12:00 Antisana 12/ Los 
Crespos 

-0.4941 -78.1587 4746 RGI60-
16.01339 

G281855E00490S 

GL65_DN Ecuadorian 
Andes 

13.02.20 14:30 Antisana 12/ Los 
Crespos 

-0.4942 -78.1588 4739 RGI60-
16.01339 

G281855E00490S 

GL66_UP Ecuadorian 
Andes 

14.02.20 12:05 Antisana 15 beta -0.4724 -78.1511 4872 RGI60-
16.01339 

G281855E00490S 

GL66_DN Ecuadorian 
Andes 

14.02.20 15:05 Antisana 15 beta -0.4716 -78.1549 4783 RGI60-
16.01339 

G281855E00490S 
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GL67_UP Ecuadorian 
Andes 

15.02.20 11:44 Antisana 15 alpha -0.4739 -78.1543 4832 RGI60-
16.01339 

G281855E00490S 

GL67_DN Ecuadorian 
Andes 

15.02.20 14:15 Antisana 15 alpha -0.4718 -78.1555 4782 RGI60-
16.01339 

G281855E00490S 

GL68_UP Ecuadorian 
Andes 

16.02.20 10:30 Antisana 14 -0.4778 -78.1582 4791 RGI60-
16.01339 

G281855E00490S 

GL68_DN Ecuadorian 
Andes 

16.02.20 14:09 Antisana 14 -0.4773 -78.1592 4778 RGI60-
16.01339 

G281855E00490S 

GL69_UP Ecuadorian 
Andes 

20.02.20 12:10 "Cotopaxi 1. east 
of refuge" 

-0.6672 -78.4341 4913 RGI60-
16.02944 

G281572E00688S 

GL69_DN Ecuadorian 
Andes 

20.02.20 14:47 "Cotopaxi 1. east 
of refuge" 

-0.6656 -78.4332 4827 RGI60-
16.02944 

G281572E00688S 

GL70_UP Ecuadorian 
Andes 

21.02.20 10:50 Cotopaxi Glaciar 
Baja 

-0.6681 -78.4405 5048 RGI60-
16.02943 

G281559E00671S 

GL70_DN Ecuadorian 
Andes 

21.02.20 14:03 Cotopaxi Glaciar 
Baja 

-0.6674 -78.4408 4987 RGI60-
16.02943 

G281559E00671S 

GL71_UP Ecuadorian 
Andes 

22.02.20 10:35 "Cotopaxi 2. east 
of refuge" 

-0.6673 -78.4316 4867 RGI60-
16.02944 

G281572E00688S 

GL71_DN Ecuadorian 
Andes 

22.02.20 13:31 "Cotopaxi 2. east 
of refuge" 

-0.666 -78.4306 4803 RGI60-
16.02944 

G281572E00688S 

GL72_UP Ecuadorian 
Andes 

23.02.20 10:31 "Cotopaxi 3. east 
of refuge" 

-0.6663 -78.4263 4757 RGI60-
16.02944 

G281572E00688S 

GL72_DN Ecuadorian 
Andes 

23.02.20 13:48 "Cotopaxi 3. east 
of refuge" 

-0.6658 -78.4262 4746 RGI60-
16.02944 

G281572E00688S 

GL73_UP Ecuadorian 
Andes 

27.02.20 11:25 "Chimborazo Rock 
Glacier" 

-1.4612 -78.7769 4541 RGI60-
16.01311 

G281198E01465S 

GL73_DN Ecuadorian 
Andes 

27.02.20 14:05 "Chimborazo Rock 
Glacier" 

-1.4605 -78.773 4471 RGI60-
16.01311 

G281198E01465S 

GL74_UP Ecuadorian 
Andes 

29.02.20 11:00 "Carihuarazo" -1.4051 -78.7559 4764 RGI60-
16.01319 

G281243E01403S 

GL74_DN Ecuadorian 
Andes 

29.02.20 13:54 "Carihuarazo" -1.4062 -78.7566 4725 RGI60-
16.01319 

G281243E01403S 

GL75_UP Ecuadorian 
Andes 

01.03.20 11:34 "Chimborazo 
North" 

-1.4462 -78.804 4936 RGI60-
16.01308 

G281194E01453S 

GL75_DN Ecuadorian 
Andes 

01.03.20 14:07 "Chimborazo 
North" 

-1.4456 -78.8039 4935 RGI60-
16.01308 

G281194E01453S 

GL76_UP European Alps 02.07.20 10:19 Trift VS 46.1358 7.9866 2868 RGI60-
11.02540 

G008002E46138N 

GL76_DN European Alps 02.07.20 13:13 Trift VS 46.1361 7.9823 2788 RGI60-
11.02540 

G008002E46138N 
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GL77_UP European Alps 04.07.20 11:37 Forno 46.3352 9.7018 2254 RGI60-
11.02245 

G009697E46305N 

GL77_DN European Alps 04.07.20 14:31 Forno 46.3431 9.7006 2223 RGI60-
11.02245 

G009697E46305N 

GL78_UP European Alps 05.07.20 10:40 Albigna 46.3131 9.6464 2176 RGI60-
11.02285 

G009641E46297N 

GL78_DN European Alps 05.07.20 13:20 Albigna 46.3151 9.6468 2165 RGI60-
11.02285 

G009641E46297N 

GL79_UP European Alps 06.07.20 09:49 Morteratsch 46.4197 9.9338 2176 RGI60-
11.01946 

G009641E46297N 

GL79_DN European Alps 06.07.20 13:15 Morteratsch 46.4227 9.9335 2063 RGI60-
11.01946 

G009641E46297N 

GL80_UP European Alps 07.07.20 10:53 Roseg 46.385 9.8419 2276 RGI60-
11.02119 

G009860E46370N 

GL80_DN European Alps 07.07.20 13:48 Roseg 46.3909 9.8443 2161 RGI60-
11.02119 

G009860E46370N 

GL81_UP European Alps 08.07.20 11:30 Tschierva 46.4035 9.8695 2326 RGI60-
11.02051 

G009886E46384N 

GL81_DN European Alps 08.07.20 15:20 Tschierva 46.4122 9.8576 2098 RGI60-
11.02051 

G009886E46384N 

GL82_UP European Alps 10.07.20 09:45 Silvretta 46.8559 10.0569 2474 RGI60-
11.00804 

G010084E46850N 

GL82_DN European Alps 10.07.20 12:28 Silvretta 46.8545 10.0542 2430 RGI60-
11.00804 

G010084E46850N 

GL83_UP European Alps 12.07.20 10:50 Hintereis F. 46.8169 10.7994 2489 RGI60-
11.00897 

G010758E46800N 

GL83_DN European Alps 12.07.20 14:00 Hintereis F. 46.8199 10.8056 2410 RGI60-
11.00897 

G010758E46800N 

GL84_UP European Alps 13.07.20 11:32 Niederjoch F. 46.7752 10.8593 2930 RGI60-
11.00992 

G010867E46769N 

GL84_DN European Alps 13.07.20 14:44 Niederjoch F. 46.7792 10.8603 2829 RGI60-
11.00992 

G010867E46769N 

GL85_UP European Alps 14.07.20 10:10 Tiefenbach F. 46.9147 10.9339 2929 RGI60-
11.00674 

G010927E46919N 

GL85_DN European Alps 14.07.20 12:24 Tiefenbach F. 46.9149 10.9356 2870 RGI60-
11.00674 

G010927E46919N 
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GL86_UP Scandinavian 
Mountains 

07.08.20 12:07 Westbreen 69.4734 20.0001 393 RGI60-
08.00335 

G019954E69491N 

GL86_DN Scandinavian 
Mountains 

07.08.20 14:48 Westbreen 69.4723 20.0078 351 RGI60-
08.00335 

G019954E69491N 

GL87_UP Scandinavian 
Mountains 

08.08.20 11:30 Midbreen 69.4603 19.9521 517 RGI60-
08.03209 

G019923E69469N 

GL87_DN Scandinavian 
Mountains 

08.08.20 15:06 Midbreen 69.4584 19.9596 400 RGI60-
08.03209 

G019923E69469N 

GL88_UP Scandinavian 
Mountains 

09.08.20 12:00 "Southeast of 
Fugldalsvatnet" 

69.4854 19.8359 446 RGI60-
08.03199 

G019849E69478N 

GL88_DN Scandinavian 
Mountains 

09.08.20 14:00 "Southeast of 
Fugldalsvatnet" 

69.4869 19.8298 385 RGI60-
08.03199 

G019849E69478N 

GL89_UP Scandinavian 
Mountains 

12.08.20 11:30 "Northwest of 
Blaaisen" 

69.4748 19.7763 946 RGI60-
08.03193 

G019786E69474N 

GL89_DN Scandinavian 
Mountains 

12.08.20 14:30 "Northwest of 
Blaaisen" 

69.4749 19.7736 939 RGI60-
08.03193 

G019786E69474N 

GL90_UP Scandinavian 
Mountains 

20.08.20 09:55 Tuftebreen 61.6586 7.1539 859 RGI60-
08.01125 

G007087E61677N 

GL90_DN Scandinavian 
Mountains 

20.08.20 12:40 Tuftebreen 61.6565 7.1551 792 RGI60-
08.01125 

G007087E61677N 

GL91_UP Scandinavian 
Mountains 

21.08.20 09:46 Fabergstolbreen 61.7124 7.2921 779 RGI60-
08.01133 

G007202E61739N 

GL91_DN Scandinavian 
Mountains 

21.08.20 12:32 Fabergstolbreen 61.7132 7.2963 716 RGI60-
08.01133 

G007202E61739N 

GL92_UP Scandinavian 
Mountains 

22.08.20 09:50 Nigardsbreen 61.6774 7.2073 363 RGI60-
08.01126 

G007099E61715N 

GL92_DN Scandinavian 
Mountains 

22.08.20 12:11 Nigardsbreen 61.676 7.2118 275 RGI60-
08.01126 

G007099E61715N 

GL93_UP Scandinavian 
Mountains 

23.08.20 10:02 Boverbreen 61.5564 8.0515 1447 RGI60-
08.02144 

G008095E61549N 

GL93_DN Scandinavian 
Mountains 

23.08.20 12:38 Boverbreen 61.5571 8.0435 1368 RGI60-
08.02144 

G008095E61549N 

GL94_UP Scandinavian 
Mountains 

24.08.20 09:57 Storbreen 61.5818 8.1625 1441 RGI60-
08.00312 

G008132E61573N 

GL94_DN Scandinavian 
Mountains 

24.08.20 12:22 Storbreen 61.5841 8.1654 1365 RGI60-
08.00312 

G008132E61573N 

GL95_UP Scandinavian 
Mountains 

25.08.20 10:46 Storjuvbreen 61.6653 8.2987 1396 RGI60-
08.00860 

G008289E61636N 

GL95_DN Scandinavian 
Mountains 

25.08.20 12:50 Storjuvbreen 61.6679 8.2997 1357 RGI60-
08.00860 

G008289E61636N 
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GL96_UP European Alps 15.09.20 11:00 Miage 45.7883 6.8885 1812 RGI60-
11.03005 

G006846E45813N 

GL96_DN European Alps 15.09.20 14:00 Miage 45.7894 6.891 1766 RGI60-
11.03005 

G006846E45813N 

GL97_UP European Alps 16.09.20 12:36 Très la tête 45.7888 6.7484 2037 RGI60-
11.03651 

G006784E45784N 

GL97_DN European Alps 16.09.20 15:00 Très la tête 45.7892 6.747 2014 RGI60-
11.03651 

G006784E45784N 

GL98_UP European Alps 17.09.20 10:44 Mer de glace 45.9357 6.9223 1591 RGI60-
11.03643 

G006934E45883N 

GL98_DN European Alps 17.09.20 13:29 Mer de glace 45.9375 6.9224 1525 RGI60-
11.03643 

G006934E45883N 

GL99_UP European Alps 18.09.20 09:40 Pélerins 45.8973 6.8842 2244 RGI60-
11.03389 

G006889E45892N 

GL99_DN European Alps 18.09.20 12:18 Pélerins 45.8982 6.8827 2205 RGI60-
11.03389 

G006889E45892N 

GL100_UP European Alps 29.09.20 12:17 Chardon 44.8843 6.2934 2301 RGI60-
11.03817 

G006302E44881N 

GL100_DN European Alps 29.09.20 15:00 Chardon 44.8863 6.2941 2234 RGI60-
11.03817 

G006302E44881N 

GL101_UP European Alps 30.09.20 11:59 Des étages 44.8985 6.2624 2440 RGI60-
11.03694 

G006263E44892N 

GL101_DN European Alps 30.09.20 15:30 Des étages 44.9148 6.2582 2008 RGI60-
11.03694 

G006263E44892N 

GL102_UP European Alps 01.10.20 11:50 Bonne Pierre 44.9358 6.3183 2436 RGI60-
11.03810 

G006341E44929N 

GL102_DN European Alps 01.10.20 15:36 Bonne Pierre 44.9387 6.2986 1880 RGI60-
11.03810 

G006341E44929N 

GL103_UP Himalayas 17.03.21 11:16 Lirung 28.2298 85.56236 4062 RGI60-
15.04045 

G085556E28239N 

GL103_DN Himalayas 17.03.21 13:50 Lirung 28.22356 85.56226 3989 RGI60-
15.04045 

G085556E28239N 

GL104_UP Himalayas 18.03.21 10:20 Kyimoshung 28.23401 85.57678 4369 RGI60-
15.04075 

G085573E28258N 

GL104_DN Himalayas 18.03.21 13:15 Kyimoshung 28.23195 85.57248 4197 RGI60-
15.04075 

G085573E28258N 
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GL105_UP Himalayas 21.03.21 11:07 Langtang 28.23321 85.69581 4488 RGI60-
15.04121 

G085670E28312N 

GL105_DN Himalayas 21.03.21 13:44 Langtang 28.23187 85.69202 4442 RGI60-
15.04121 

G085670E28312N 

GL106_UP Himalayas 22.03.21 09:35 Langshisha 28.19602 85.69055 4426 RGI60-
15.04176 

G085747E28200N 

GL106_DN Himalayas 22.03.21 13:00 Langshisha 28.20647 85.67937 4234 RGI60-
15.04176 

G085747E28200N 

GL107_UP Himalayas 23.03.21 09:00 Shalbachum 28.21388 85.66135 4255 RGI60-
15.04119 

G085645E28262N 

GL107_DN Himalayas 23.03.21 11:39 Shalbachum 28.20881 85.66161 4179 RGI60-
15.04119 

G085645E28262N 

GL108_UP Himalayas 04.04.21 09:45 Gangapurna 28.65324 84.00706 3630 RGI60-
15.04768 

G083997E28607N 

GL108_DN Himalayas 04.04.21 12:24 Gangapurna 28.6595 84.01666 3508 RGI60-
15.04768 

G083997E28607N 

GL109_UP Himalayas 05.04.21 09:03 Bhakra 28.64621 84.04721 3543 RGI60-
15.04770 

G084033E28623N 

GL109_DN Himalayas 05.04.21 12:00 Bhakra 28.64778 84.04729 3496 RGI60-
15.04770 

G084033E28623N 

GL110_UP Himalayas 07.04.21 11:00 Chulu West 28.74877 83.98823 4829 RGI60-
15.04495 

G084014E28747N 

GL110_DN Himalayas 07.04.21 13:03 Chulu West 28.74698 83.9882 4762 RGI60-
15.04495 

G084014E28747N 

GL111_UP Himalayas 09.04.21 13:00 "above TP high 
camp" 

28.77912 83.95431 5093 RGI60-
15.04449 

G083940E28774N 

GL111_DN Himalayas 09.04.21 10:30 "above TP high 
camp" 

28.78457 83.96045 5003 RGI60-
15.04449 

G083940E28774N 

GL112_UP Himalayas 10.04.21 10:50 Purpung Himal 28.78145 83.99191 4931 RGI60-
15.04748 

G084004E28793N 

GL112_DN Himalayas 10.04.21 13:30 Purpung Himal 28.78178 83.98731 4856 RGI60-
15.04748 

G084004E28793N 

GL113_UP Himalayas 11.04.21 10:17 "Icefall Glacier" 28.78933 83.97688 4893 RGI60-
15.04731 

G083992E28799N 

GL113_DN Himalayas 11.04.21 13:05 "Icefall Glacier" 28.78656 83.97519 4758 RGI60-
15.04731 

G083992E28799N 

GL114_UP Himalayas 12.04.21 09:46 Chulu Northwest 28.77362 83.99507 4884 RGI60-
15.04760 

G084014E28763N 

GL114_DN Himalayas 12.04.21 12:05 Chulu Northwest 28.77479 83.99102 4864 RGI60-
15.04760 

G084014E28763N 
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GL115_UP Himalayas 26.04.21 10:30 Nare 27.8352 86.82957 4528 RGI60-
15.03572 

G086868E27821N 

GL115_DN Himalayas 26.04.21 14:15 Nare 27.84686 86.82095 4425 RGI60-
15.03572 

G086868E27821N 

GL116_UP Himalayas 28.04.21 09:45 Lhotse 27.90124 86.87882 4815 RGI60-
15.03742 

G086915E27927N 

GL116_DN Himalayas 28.04.21 12:14 Lhotse 27.90361 86.8726 4732 RGI60-
15.03742 

G086915E27927N 

GL117_UP Himalayas 29.04.21 09:30 Nuptse 27.9115 86.86557 4973 RGI60-
15.03735 

G086868E27946N 

GL117_DN Himalayas 29.04.21 12:41 Nuptse 27.91094 86.86544 4966 RGI60-
15.03735 

G086868E27946N 

GL118_UP Himalayas 30.04.21 10:00 Lhotse Nup 27.91156 86.88319 4960 RGI60-
15.03731 

G086891E27940N 

GL118_DN Himalayas 30.04.21 13:08 Lhotse Nup 27.90567 86.87194 4735 RGI60-
15.03731 

G086891E27940N 

GL119_UP Himalayas 02.05.21 09:50 Cholo 27.91355 86.80015 4391 RGI60-
15.03739 

G086786E27909N 

GL119_DN Himalayas 02.05.21 11:57 Cholo 27.9122 86.80112 4367 RGI60-
15.03739 

G086786E27909N 

GL120_UP Pamir & Tien 
Shan 

19.07.21 08:00 Aksai 42.5326 74.5273 3323 RGI60-
13.11414 

G074544E42510N 

GL120_DN Pamir & Tien 
Shan 

19.07.21 09:00 Aksai 42.5328 74.527 3319 RGI60-
13.11414 

G074544E42510N 

GL121_UP Pamir & Tien 
Shan 

20.07.21 12:49 Top Karagay 42.5056 74.5048 3334 RGI60-
13.11604 

G074547E42486N 

GL121_DN Pamir & Tien 
Shan 

20.07.21 14:15 Top Karagay 42.5095 74.5014 3267 RGI60-
13.11604 

G074547E42486N 

GL122_UP Pamir & Tien 
Shan 

21.07.21 12:20 Golubin 42.4755 74.4829 3371 RGI60-
13.11609 

G074498E42454N 

GL122_DN Pamir & Tien 
Shan 

21.07.21 13:30 Golubin 42.4778 74.4816 3288 RGI60-
13.11609 

G074498E42454N 

GL123_UP Pamir & Tien 
Shan 

22.07.21 10:30 Tuyuk 42.473 74.512 3409 RGI60-
13.11606 

G074530E42461N 

GL123_DN Pamir & Tien 
Shan 

22.07.21 12:17 Tuyuk 42.4806 74.4998 3241 RGI60-
13.11606 

G074530E42461N 
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GL124_UP Pamir & Tien 
Shan 

23.07.21 13:42 Tokragula 42.4383 74.4595 3514 RGI60-
13.11419 

G074466E42432N 

GL124_DN Pamir & Tien 
Shan 

23.07.21 16:33 Tokragula 42.4439 74.4549 3401 RGI60-
13.11419 

G074466E42432N 

GL125_UP Pamir & Tien 
Shan 

24.07.21 11:30 Tokragula 
northeast 

42.4399 74.4641 3593 RGI60-
13.11643 

G074478E42443N 

GL125_DN Pamir & Tien 
Shan 

24.07.21 14:30 Tokragula 
northeast 

42.4444 74.4555 3394 RGI60-
13.11643 

G074478E42443N 

GL126_UP Pamir & Tien 
Shan 

31.07.21 11:25 Petrovski 39.4713 72.8967 4020 RGI60-
13.13094 

G072890E39466N 

GL126_DN Pamir & Tien 
Shan 

31.07.21 15:00 Petrovski 39.4818 72.8957 3824 RGI60-
13.13094 

G072890E39466N 

GL127_UP Pamir & Tien 
Shan 

01.08.21 11:45 North of Lenin 39.4419 72.8983 3970 RGI60-
13.13098 

G072884E39433N 

GL127_DN Pamir & Tien 
Shan 

01.08.21 14:15 North of Lenin 39.4461 72.9048 3901 RGI60-
13.13098 

G072884E39433N 

GL128_UP Pamir & Tien 
Shan 

02.08.21 11:30 No. 197a 39.4424 72.9367 3878 RGI60-
13.13252 

G072967E39424N 

GL128_DN Pamir & Tien 
Shan 

02.08.21 14:00 No. 197a 39.4459 72.9292 3777 RGI60-
13.13252 

G072967E39424N 

GL129_UP Pamir & Tien 
Shan 

04.08.21 09:30 "No. 199a Lenin" 39.4441 72.9168 3764 RGI60-
13.13251 

G072928E39397N 

GL129_DN Pamir & Tien 
Shan 

04.08.21 11:50 "No. 199a Lenin" 39.4498 72.9135 3733 RGI60-
13.13251 

G072928E39397N 

GL130_UP Pamir & Tien 
Shan 

11.08.21 11:05 Bordu 41.8245 78.1545 3838 RGI60-
13.08054 

G078175E41813N 

GL130_DN Pamir & Tien 
Shan 

11.08.21 14:23 Bordu 41.8313 78.1378 3721 RGI60-
13.08054 

G078175E41813N 

GL131_UP Pamir & Tien 
Shan 

12.08.21 11:15 No. 354 41.8091 78.1402 3813 RGI60-
13.07064 

G078164E41793N 

GL131_DN Pamir & Tien 
Shan 

12.08.21 14:15 No. 354 41.811 78.1244 3686 RGI60-
13.07064 

G078164E41793N 

GL132_UP Pamir & Tien 
Shan 

13.08.21 11:31 "Southwest of 354" 41.8009 78.1335 3869 RGI60-
13.07137 

G078141E41787N 

GL132_DN Pamir & Tien 
Shan 

13.08.21 14:15 "Southwest of 354" 41.8034 78.1293 3822 RGI60-
13.07137 

G078141E41787N 

GL133_UP Pamir & Tien 
Shan 

14.08.21 11:00 "Road 1" 41.8879 77.6879 3899 RGI60-
13.06829 

G077684E41883N 

GL133_DN Pamir & Tien 
Shan 

14.08.21 14:00 "Road 1" 41.8901 77.6894 3796 RGI60-
13.06829 

G077684E41883N 
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GL134_UP Pamir & Tien 
Shan 

16.08.21 10:35 "North of road" 41.9099 77.715 4041 RGI60-
13.07981 

G077719E41916N 

GL134_DN Pamir & Tien 
Shan 

16.08.21 13:00 "North of road" 41.9076 77.7135 3965 RGI60-
13.07981 

G077719E41916N 

GL135_UP Pamir & Tien 
Shan 

17.08.21 13:46 West Suek/ Batysh 
Sook 

41.7985 77.7495 3925 RGI60-
13.06974 

G077749E41787N 

GL135_DN Pamir & Tien 
Shan 

17.08.21 15:45 West Suek/ Batysh 
Sook 

41.7995 77.75 3900 RGI60-
13.06974 

G077749E41787N 

GL136_UP Pamir & Tien 
Shan 

18.08.21 10:07 "2nd west of West 
Suek" 

41.7929 77.7189 3950 RGI60-
13.06972 

G077722E41781N 

GL136_DN Pamir & Tien 
Shan 

18.08.21 12:40 "2nd west of West 
Suek" 

41.7943 77.7181 3926 RGI60-
13.06972 

G077722E41781N 

GL137_UP Pamir & Tien 
Shan 

19.08.21 11:20 "West of West 
Suek" 

41.7925 77.7353 3958 RGI60-
13.06973 

G077735E41783N 

GL137_DN Pamir & Tien 
Shan 

19.08.21 14:43 "West of West 
Suek" 

41.8019 77.7369 3874 RGI60-
13.06973 

G077735E41783N 

GL138_UP Pamir & Tien 
Shan 

20.08.21 10:15 East Suek 41.7878 77.7697 4007 RGI60-
13.06975 

G077771E41782N 

GL138_DN Pamir & Tien 
Shan 

20.08.21 13:05 East Suek 41.7926 77.7672 3909 RGI60-
13.06975 

G077771E41782N 

GL139_UP Pamir & Tien 
Shan 

21.08.21 11:00 "Ski slope" 41.8182 77.7974 4014 RGI60-
13.06980 

G077800E41816N 

GL139_DN Pamir & Tien 
Shan 

21.08.21 13:55 "Ski slope" 41.8245 77.7927 3813 RGI60-
13.06980 

G077800E41816N 

GL140_UP Rwenzori 
Mountains 

03.12.21 11:36 Stanley 003 0.3758 29.8785 4724 RGI50-
16.01631 

G029875E00377N 

GL140_DN Rwenzori 
Mountains 

03.12.21 13:00 Stanley 003 0.3755 29.8788 4722 RGI50-
16.01631 

G029875E00377N 

GL141_UP Chilean Andes 25.01.22 12:27 Ventisquiero 
Yelcho 

-43.2891 -72.4689 378 RGI60-
17.11003 

G287495E43295S 

GL141_DN Chilean Andes 25.01.22 16:06 Ventisquiero 
Yelcho 

-43.2863 -72.4634 312 RGI60-
17.11003 

G287495E43295S 

GL142_UP Chilean Andes 26.01.22 13:00 Amarillo -42.8641 -72.4453 498 RGI60-
17.11392 

G287544E42827S 

GL142_DN Chilean Andes 26.01.22 16:15 Amarillo -42.8825 -72.4498 430 RGI60-
17.11392 

G287544E42827S 
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GL143_UP Chilean Andes 30.01.22 10:23 "Mocho 1 middle" -39.9282 -72.0061 1876 RGI60-
17.12442 

G287988E39929S 

GL143_DN Chilean Andes 30.01.22 13:50 "Mocho 1 middle" -39.9261 -72 1740 RGI60-
17.12442 

G287988E39929S 

GL144_UP Chilean Andes 31.01.22 10:32 "Mocho 2 south" -39.9305 -72.0029 1825 RGI60-
17.12442 

G287988E39929S 

GL144_DN Chilean Andes 31.01.22 12:55 "Mocho 2 south" -39.9288 -71.9997 1738 RGI60-
17.12442 

G287988E39929S 

GL145_UP Chilean Andes 01.02.22 10:30 "Mocho 3 north" -39.9252 -72.0079 1854 RGI60-
17.12442 

G287988E39929S 

GL145_DN Chilean Andes 01.02.22 14:14 "Mocho 3 north" -39.9244 -72.0064 1775 RGI60-
17.12442 

G287988E39929S 

GL146_UP Chilean Andes 04.02.22 12:22 Pichillancahue -39.4407 -71.8884 1817 RGI60-
17.12517 

G288107E39448S 

GL146_DN Chilean Andes 04.02.22 14:45 Pichillancahue -39.4394 -71.879 1740 RGI60-
17.12517 

G288107E39448S 

GL147_UP Chilean Andes 05.02.22 12:00 Turbio -39.4315 -71.8797 1748 RGI60-
17.12535 

G288088E39427S 

GL147_DN Chilean Andes 05.02.22 15:30 Turbio -39.4271 -71.8786 1703 RGI60-
17.12535 

G288088E39427S 

GL148_UP Chilean Andes 08.02.22 11:45 "Nevado Chillan 1 
east" 

-36.8385 -71.4148 2734 RGI60-
17.13045 

G288585E36836S 

GL148_DN Chilean Andes 08.02.22 14:15 "Nevado Chillan 1 
east" 

-36.8405 -71.4166 2610 RGI60-
17.13045 

G288585E36836S 

GL149_UP Chilean Andes 09.02.22 09:30 "Nevado Chillan 2 
west" 

-36.8451 -71.4253 2273 RGI60-
17.13045 

G288585E36836S 

GL149_DN Chilean Andes 09.02.22 12:05 "Nevado Chillan 2 
west" 

-36.8487 -71.4323 2176 RGI60-
17.13045 

G288585E36836S 

GL150_UP Chilean Andes 11.02.22 09:22 Universidad -34.7116 -70.3437 2524 RGI60-
17.01218 

G289664E34607S 

GL150_DN Chilean Andes 11.02.22 12:30 Universidad -34.7204 -70.3592 2417 RGI60-
17.01218 

G289664E34607S 

GL151_UP Chilean Andes 17.02.22 12:45 "El Morado" -33.736 -70.0439 3227 RGI60-
17.13710 

G289967E33714S 

GL151_DN Chilean Andes 17.02.22 16:50 "El Morado" -33.7691 -70.0441 2731 RGI60-
17.13710 

G289967E33714S 

GL152_UP Chilean Andes 18.02.22 12:50 "Colina" -33.8605 -69.9229 2987 RGI60-
17.13633 

G290091E33826S 

GL152_DN Chilean Andes 18.02.22 16:30 "Colina" -33.8793 -69.9378 2716 RGI60-
17.13633 

G290091E33826S 
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GL153_UP Chilean Andes 20.02.22 11:11 "El Morado cliffy" -33.744 -70.055 3343 RGI60-
17.13710 

G289967E33714S 

GL153_DN Chilean Andes 20.02.22 14:17 "El Morado cliffy" -33.744 -70.0527 3293 RGI60-
17.13710 

G289967E33714S 

GL154_UP Chilean Andes 22.02.22 11:30 "Plomo West" -33.5739 -69.9214 3495 RGI60-
17.13750 

G290062E33534S 

GL154_DN Chilean Andes 22.02.22 14:37 "Plomo West" -33.5825 -69.9175 3359 RGI60-
17.13750 

G290062E33534S 

GL155_UP Chilean Andes 23.02.22 10:30 "Plomo rock 
glacier" 

-33.6067 -69.9027 3169 RGI60-
17.13720 

G290109E33559S 

GL155_DN Chilean Andes 23.02.22 13:25 "Plomo rock 
glacier" 

-33.611 -69.9079 3003 RGI60-
17.13720 

G290109E33559S 

GL156_UP Alaska Range 21.06.22 12:43 Raven 61.066 -149.113 957 RGI60-
01.08876 

G210925E61062N 

GL156_DN Alaska Range 21.06.22 15:15 Raven 61.07 -149.12 870 RGI60-
01.08876 

G210925E61062N 

GL157_UP Alaska Range 22.06.22 12:06 Leanard 60.7904 -148.725 233 RGI60-
01.09507 

G211285E60812N 

GL157_DN Alaska Range 22.06.22 15:56 Leanard 60.784 -148.717 0 RGI60-
01.09507 

G211285E60812N 

GL158_UP Alaska Range 23.06.22 10:15 Porcupine 59.9992 -149.281 231 RGI60-
01.08618 

G210738E60001N 

GL158_DN Alaska Range 23.06.22 13:55 Porcupine 59.9999 -149.292 46 RGI60-
01.08618 

G210738E60001N 

GL159_UP Alaska Range 24.06.22 09:58 Byron 60.7588 -148.852 97 RGI60-
01.09245 

G211144E60742N 

GL159_DN Alaska Range 24.06.22 13:20 Byron 60.7677 -148.84 57 RGI60-
01.09245 

G211144E60742N 

GL160_UP Alaska Range 25.06.22 11:50 Milk 61.0454 -149.095 1123 RGI60-
01.08875 

G210925E61049N 

GL160_DN Alaska Range 25.06.22 14:30 Milk 61.0433 -149.096 1062 RGI60-
01.08875 

G210925E61049N 

GL161_UP Alaska Range 26.06.22 10:30 "South of Fourth of 
July Creek" 

60.0866 -149.233 538 RGI60-
01.08662 

G210784E60074N 

GL161_DN Alaska Range 26.06.22 13:15 "South of Fourth of 
July Creek" 

60.088 -149.235 481 RGI60-
01.08662 

G210784E60074N 
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GL162_UP Alaska Range 01.07.22 09:45 "Second west of 
Powell" 

61.6413 -147.268 1520 RGI60-
01.23597 

G212739E61620N 

GL162_DN Alaska Range 01.07.22 12:20 "Second west of 
Powell" 

61.6433 -147.267 1476 RGI60-
01.23597 

G212739E61620N 

GL163_UP Alaska Range 02.07.22 09:15 Powell 61.6704 -147.291 949 RGI60-
01.10655 

G212799E61568N 

GL163_DN Alaska Range 02.07.22 12:15 Powell 61.6736 -147.295 858 RGI60-
01.10655 

G212799E61568N 

GL164_UP Alaska Range 03.07.22 09:15 "Third west of 
Powell" 

61.6701 -147.309 894 RGI60-
01.10621 

G212686E61576N 

GL164_DN Alaska Range 03.07.22 12:00 "Third west of 
Powell" 

61.6733 -147.31 848 RGI60-
01.10621 

G212686E61576N 

GL165_UP Alaska Range 04.07.22 10:00 Nelchina 61.709 -147.074 758 RGI60-
01.10683 

G213074E61558N 

GL165_DN Alaska Range 04.07.22 12:11 Nelchina 61.7156 -147.072 780 RGI60-
01.10683 

G213074E61558N 

GL166_UP Alaska Range 05.07.22 09:45 Sylvester 61.6779 -147.067 882 RGI60-
01.23046 

G212867E61496N 

GL166_DN Alaska Range 05.07.22 12:00 Sylvester 61.683 -147.073 808 RGI60-
01.23046 

G212867E61496N 

GL167_UP Alaska Range 06.07.22 11:19 Matanuska 61.7752 -147.762 472 RGI60-
01.10557 

G212412E61677N 

GL167_DN Alaska Range 06.07.22 14:00 Matanuska 61.7877 -147.796 454 RGI60-
01.10557 

G212412E61677N 

GL168_UP Alaska Range 12.07.22 11:15 Rainbow Cirque 63.3208 -145.611 1496 RGI60-
01.24172 

G214393E63316N 

GL168_DN Alaska Range 12.07.22 13:43 Rainbow Cirque 63.3247 -145.612 1373 RGI60-
01.24172 

G214393E63316N 

GL169_UP Alaska Range 13.07.22 09:55 Castner 63.4044 -145.698 816 RGI60-
01.00561 

G214527E63453N 

GL169_DN Alaska Range 13.07.22 12:30 Castner 63.4024 -145.714 772 RGI60-
01.00561 

G214527E63453N 

GL170_UP Alaska Range 14.07.22 11:00 Gulkana 63.2551 -145.425 1300 RGI60-
01.00570 

G214573E63281N 

GL170_DN Alaska Range 14.07.22 14:22 Gulkana 63.2508 -145.445 1174 RGI60-
01.00570 

G214573E63281N 

Data table for sampling sites 
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Supplementary table 4. 2 

Variable Scenario Training r2 Validation r2prediction N 

pc_water_temp ssp126 0.483694151739488 0.431706502760076 164 

pc_water_temp ssp370 0.483694151739488 0.431706502760076 164 

pc_water_temp ssp585 0.483694151739488 0.431706502760076 164 

pc_turbidity ssp126 0.522411723273106 0.429091161575562 161 

pc_turbidity ssp370 0.522414448424744 0.428957245578879 161 

pc_turbidity ssp585 0.522202567290839 0.428978529364977 161 

pc_conductivity ssp126 0.869520616025708 0.766117596435234 163 

pc_conductivity ssp370 0.869520616025708 0.766117596435234 163 

pc_conductivity ssp585 0.869520616025708 0.766117596435234 163 

pc_ph ssp126 0.700647408099518 0.599720731901965 161 

pc_ph ssp370 0.700513886974243 0.599631224909152 161 

pc_ph ssp585 0.70078533949249 0.600215881508188 161 

nut_din ssp126 0.622775909442637 0.542342181146603 163 

nut_din ssp370 0.623086344263876 0.542454226500516 163 

nut_din ssp585 0.623120952549497 0.542645473717078 163 

nut_srp ssp126 0.588006632675294 0.472814871086123 161 

nut_srp ssp370 0.588021609478706 0.473145106031582 161 

nut_srp ssp585 0.587511702635033 0.47256766896558 161 

chla ssp126 0.583311636837417 0.354547100728673 163 
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chla ssp370 0.583155761657876 0.35413988375086 163 

chla ssp585 0.586000614809754 0.353663066988383 163 

bacterial_abundance ssp126 0.443688767675114 0.229704742810531 161 

bacterial_abundance ssp370 0.444758258561565 0.229889068745514 161 

bacterial_abundance ssp585 0.444131144960131 0.229262301469782 161 

Shannon ssp126 0.411848027182637 0.221587052270616 81 

Shannon ssp370 0.411848027182637 0.221587052270616 81 

Shannon ssp585 0.411848027182637 0.221587052270616 81 

Pielou ssp126 0.411572707116054 0.223077856420605 81 

Pielou ssp370 0.411572707116054 0.223077856420605 81 

Pielou ssp585 0.411572707116054 0.223077856420605 81 

mntd ssp126 0.721446539098174 0.517803977019936 81 

mntd ssp370 0.721329393408036 0.519250882692198 81 

mntd ssp585 0.721505243668122 0.518039745055696 81 

mpd ssp126 0.312694729238186 0.0897716609737202 81 

mpd ssp370 0.315673194807295 0.0832937911325424 81 

mpd ssp585 0.315344035545402 0.0816300231165704 81 

Statistics for the proximal drivers and biomass models 
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Supplementary table 4. 3 

Scenario MeanIncrease MeanDecrease MeanNotSignificant Q25 Median Q75 

SSP1 0.611 0.266 0.123 -0.061 0.158 0.495 

SSP3 0.606 0.265 0.129 -0.124 0.297 0.890 

SSP5 0.603 0.268 0.129 -0.143 0.348 0.999 

Proportion of strains that increase/decrease under future scenarios SSP1, 3 and 5. Median and IQR of 
relative changes for all scenarios across the 2333 strains modelled under future scenarios SSP1, 3 and 
5. 
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Supplementary table 4. 4 

 

 

 

 

Phylogenetic signal of future changes (log2 fold-change) and predictability for SSP3. 

  

Variable p logl logl0 lambda 

log2fold-change 2.18527938781675E-230 -2705.00948543317 -3230.1171965599 0.864908538330015 

r2prediction 9.48870948533819E-108 1283.39493194868 1040.28700843249 0.778645212567146 
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Supplementary table 4. 5 

Phylogenetic 
depth 

N Taxonomy Relative phylogenetic depth 

1.2570467 3 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burk
holderiales;f__Burkholderiaceae;g__Rhodoferax;s__ 

0.225403659 

1.243231715 3 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burk
holderiales;f__Burkholderiaceae;g__Polaromonas;s__ 

0.233916499 

1.317136912 4 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burk
holderiales;f__Burkholderiaceae;g__Aquabacterium_A;s__ 

0.188375872 

1.273767246 8 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burk
holderiales;f__Burkholderiaceae;g__LMDS01;s__ 

0.215100404 

0.986627653 3 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burk
holderiales;f__Burkholderiaceae;g__ 

0.392036772 

1.279421506 3 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burk
holderiales;f__Methylophilaceae;g__Methylotenera_A;s__ 

0.21161623 

1.223037269 3 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burk
holderiales;f__Casimicrobiaceae;g__Casimicrobium;s__ 

0.246360383 

1.195615144 3 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xant
homonadales;f__SZUA-5;g__;s__ 

0.263257988 

1.279635137 5 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xant
homonadales;f__Xanthomonadaceae;g__SCMT01;s__ 

0.21148459 

0.908188277 3 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Nevs
kiales;f__Nevskiaceae;g__ 

0.440371375 

1.194060184 3 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Acetob
acterales;f__Acetobacteraceae;g__;s__ 

0.264216159 

1.232826515 4 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphing
omonadales;f__Sphingomonadaceae;g__Sphingomicrobium;s__ 

0.240328218 

1.250610621 3 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Caulob
acterales;f__Caulobacteraceae;g__Phenylobacterium;s__ 

0.229369593 

1.055489776 7 d__Bacteria;p__Acidobacteriota;c__Blastocatellia;o__Pyrinomonad
ales;f__Pyrinomonadaceae;g__ 

0.349603704 
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1.198249271 3 d__Bacteria;p__Acidobacteriota;c__Acidobacteriae;o__Bryobacter
ales;f__Bryobacteraceae;g__;s__ 

0.26163483 

1.121746336 3 d__Bacteria;p__Bdellovibrionota;c__Bdellovibrionia;o__Bdellovibri
onales;f__Bdellovibrionaceae;g__;s__ 

0.308776192 

1.367694437 5 d__Bacteria;p__Bdellovibrionota;c__Bdellovibrionia;o__Bdellovibri
onales;f__Bdellovibrionaceae;g__Pseudobdellovibrio;s__ 

0.157222157 

1.010345614 3 d__Bacteria;p__Myxococcota;c__Polyangia;o__Polyangiales;f__Po
lyangiaceae;g__ 

0.377421686 

1.218611259 4 d__Bacteria;p__Myxococcota;c__Polyangia;o__Polyangiales;f__Po
lyangiaceae;g__ 

0.249087705 

1.194489325 3 d__Bacteria;p__Myxococcota;c__Polyangia;o__Polyangiales;f__Po
lyangiaceae;g__ 

0.263951721 

1.112980418 3 d__Bacteria;p__Myxococcota;c__Myxococcia;o__Myxococcales;f_
_Myxococcaceae;g__JAEUJT01;s__ 

0.31417778 

1.250220875 4 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Sphingobacteriale
s;f__ 

0.229609755 

1.350284278 4 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f
__Chitinophagaceae;g__ 

0.167950355 

1.369200672 3 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f
__Chitinophagaceae;g__Ferruginibacter;s__ 

0.15629401 

1.398513364 5 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f
__Chitinophagaceae;g__Ferruginibacter;s__ 

0.138231432 

1.408452528 3 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f
__Chitinophagaceae;g__Ferruginibacter;s__ 

0.132106887 

1.401133269 3 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f
__Saprospiraceae;g__M3007;s__ 

0.136617038 

1.122756325 3 d__Bacteria;p__Planctomycetota;c__Planctomycetia;o__Isosphaer
ales;f__Isosphaeraceae;g__;s__ 

0.308153833 

1.216809843 3 d__Bacteria;p__Verrucomicrobiota;c__Verrucomicrobiae;o__Verruc
omicrobiales;f__Verrucomicrobiaceae;g__VFKE01;s__ 

0.250197744 

0.459872106 4 d__Bacteria;p__Chloroflexota;c__Chloroflexia;o__ 0.716625285 

1.293865648 3 d__Bacteria;p__Actinobacteriota;c__Acidimicrobiia;o__Acidimicrob
iales;f__RAAP-2;g__RAAP-2;s__ 

0.202715702 

0.952046238 15 d__Bacteria;p__Actinobacteriota;c__Actinomycetia;o__Mycobacter
iales;f__SCTD01;g__ 

0.413345954 
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1.105178794 8 d__Bacteria;p__Actinobacteriota;c__Actinomycetia;o__Actinomyce
tales;f__Dermatophilaceae;g__UBA4719;s__ 

0.318985166 

1.358744183 13 d__Bacteria;p__Actinobacteriota;c__Actinomycetia;o__Actinomyce
tales;f__Microbacteriaceae;g__Lacisediminihabitans;s__ 

0.162737333 

1.024311732 3 d__Bacteria;p__Cyanobacteria;c__Cyanobacteriia;o__Cyanobacter
iales;f__Microcoleaceae;g__Microcoleus;s__ 

0.368815718 

0.911200145 7 d__Bacteria;p__Armatimonadota;c__Chthonomonadetes;o__Chtho
nomonadales;f__Chthonomonadaceae;g__;s__ 

0.438515452 

0.913730191 4 d__Bacteria;p__Deinococcota;c__Deinococci;o__Deinococcales;f_
_Deinococcaceae;g__Deinococcus;s__ 

0.436956429 

Monophyletic clades with all representatives decreasing in the future under RCP4.5 
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Supplementary table 4. 6 
KEGG_ko n Description 
K03117 10 sec-independent protein translocase protein TatB - Importance for cold-shock in Shewanella oneidensis 

(https://journals.asm.org/doi/full/10.1128/jb.01908-05) 
K03168 10 DNA topoisomerase I topA - cold sensitivity of mutants lacking this gene in E. coli 

(https://www.jbc.org/article/S0021-9258(20)76598-1/fulltext) 
K02860 9 16S rRNA processing protein RimM - expression linked with the cold-adaptation RbfA gene 

(https://www.annualreviews.org/doi/pdf/10.1146/annurev-biochem-062608-160432) 
K03814 9 monofunctional glycosyltransferase mtgA - peptidogylacan maturation 

(https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/0014-5793%2896%2900809-5) 
K13288 9 oligoribonuclease orn, REX2, REXO2 - associated with biofilm formation 

(https://www.pnas.org/doi/full/10.1073/pnas.1507245112) 
K00140 8 malonate-semialdehyde dehydrogenase (acetylating) / methylmalonate-semialdehyde dehydrogenase mmsA, 

iolA, ALDH6A1 - differentially expressed at cold temperatures in Psychrobacter (https://ami-
journals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.13578) 

K00847 8 fructokinase scrK 
K01800 8 maleylacetoacetate isomerase maiA, GSTZ1 
K02339 8 DNA polymerase III subunit chi holC 
K03179 8 4-hydroxybenzoate polyprenyltransferase ubiA 
K03216 8 tRNA (cytidine/uridine-2'-O-)-methyltransferase trmL, cspR - tRNA and cold adaptation 

(https://www.mdpi.com/2218-273X/7/2/35) 
K03558 8 membrane protein required for colicin V production cvpA - bacteriocin 

(https://journals.asm.org/doi/full/10.1128/mmbr.00036-06) 
K03821 8 poly[(R)-3-hydroxyalkanoate] polymerase subunit phaC, phbC - PHAs in the baltic sea, adaptation to cold 

(https://link.springer.com/article/10.1007/s00792-014-0699-9, https://link.springer.com/article/10.1007/s00792-014-
0699-9#ref-CR7) 

K04760 8 transcription elongation factor greB 
K06195 8 ApaG protein apaG 
K07396 8 putative protein-disulfide isomerase, participates in the insertion of lipopolysaccharides in the outer membrane 

(https://www.sciencedirect.com/science/article/pii/S0021925820526628?via%3Dihub) 
K07518 8 hydroxybutyrate-dimer hydrolase 
K09748 8 ribosome maturation factor rimP - associated with the cold-adaptation RbfA gene, important at higher 

temperatures (https://www.sciencedirect.com/science/article/pii/S0022283608016148, 
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0) 

K11443 8 two-component system, cell cycle response regulator DivK 
K14472 8 succinyl-CoA:(S)-malate CoA-transferase subunit B, smtB - carbon metabolism 
K14540 8 ribosome biogenesis GTPase A rbgA 

Top KEGG orthologous groups highlighted in the phylogenetic random forest analysis. 
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Supplementary table 4. 7 

Pathway p-value Odds ratio Adjusted p-value 

09101 Carbohydrate metabolism 5.67364858822658E-12 2.19814468727323 1.02125674588078E-10 

09102 Energy metabolism 0.000157647561013464 1.79852401019023 0.00283765609824235 

09103 Lipid metabolism 1 0.983936076105019 1 

09104 Nucleotide metabolism 0.0263429482376568 1.65424202906632 0.474173068277823 

09105 Amino acid metabolism 0.0684907886634533 1.2970060651012 1 

09106 Metabolism of other amino acids 0.28995021507565 1.32556634065616 1 

09107 Glycan biosynthesis and metabolism 0.147697932724234 0.625876910303831 1 

09108 Metabolism of cofactors and vitamins 0.359915570092523 1.18853793964322 1 

09109 Metabolism of terpenoids and polyketides 0.278403713568717 1.31358379332405 1 

09110 Biosynthesis of other secondary metabolites 0.628511243750385 0.806217749825693 1 

09111 Xenobiotics biodegradation and metabolism 0.442825854647123 1.17259731591119 1 

09121 Transcription 0.227407317237828 2.61145370535302 1 

09182 Protein families: genetic information 
processing 

0.000374756903304388 0.660246685402945 0.00674562425947898 

09183 Protein families: signaling and cellular 
processes 

8.53996481003051E-11 0.419593451114279 1.53719366580549E-09 

09191 Unclassified: metabolism 0.517720020642494 0.871955704845446 1 

09192 Unclassified: genetic information processing 0.310081669412409 0.54589648188649 1 

09193 Unclassified: signaling and cellular processes 0.104096375090835 0.413315645603366 1 

09194 Poorly characterized 0.00169446888027172 0.314728576292485 0.030500439844891 

Enrichment analysis of the KEGG orthologous groups associated with the strains forecasted to 
decrease. 
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Supplementary table 4. 8 

Parameter values 

Regularization.factor 0.2,0.4,0.6,0.8,1 

Num.trees 250,500,750,1000,1500 

Max.depth 5,15,30,50 

Regularization.usedepth 0.0263429482376568 

mtry 20,30,40,50 

splitrule 'hellinger','extratrees','gini' 

Sample.fraction 0.5,0.6,0.7,0.8 

Ranger random forest analysis hyperparameters random grid. 
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Supplementary table 5. 1 
covariate resp_var t coef coef_se p spatial_f spatial_p padj 
water_temp 

mean_norm_size 1.317 0.074 0.056 0.380 1.809 0.000 1.000 

water_temp 
mean_GC -0.763 -0.041 0.054 0.894 2.299 0.000 1.000 

water_temp 
mean_norm_gene_number 1.404 0.083 0.059 0.325 1.354 0.000 1.000 

water_temp 
mean_norm_tRNAs 1.473 0.082 0.056 0.286 2.019 0.000 1.000 

water_temp 
mean_redundancy_index 3.788 0.221 0.058 0.000 0.822 0.000 0.014 

water_temp 
mean_coding_density 0.286 0.014 0.049 1.551 3.382 0.000 1.000 

chla 
mean_norm_size 6.457 0.229 0.036 0.000 1.144 0.000 0.000 

chla 
mean_GC -1.949 -0.077 0.039 0.107 1.980 0.000 1.000 

chla 
mean_norm_gene_number 5.190 0.198 0.038 0.000 0.908 0.000 0.000 

chla 
mean_norm_tRNAs 4.842 0.187 0.039 0.000 1.782 0.000 0.000 

chla 
mean_redundancy_index 0.889 0.038 0.042 0.751 1.044 0.000 1.000 

chla 
mean_coding_density -2.907 -0.103 0.035 0.009 2.979 0.000 0.256 

gl_area 
mean_norm_size -2.250 -0.119 0.053 0.052 1.749 0.000 1.000 

gl_area 
mean_GC -0.468 -0.025 0.053 1.281 1.966 0.000 1.000 

gl_area 
mean_norm_gene_number -2.374 -0.130 0.055 0.038 1.301 0.000 0.950 

gl_area 
mean_norm_tRNAs -1.368 -0.075 0.055 0.347 2.001 0.000 1.000 

gl_area 
mean_redundancy_index 0.357 0.020 0.057 1.443 0.988 0.000 1.000 

gl_area 
mean_coding_density 0.403 0.019 0.048 1.375 3.399 0.000 1.000 

gl_dist 
mean_norm_size 0.612 0.027 0.044 1.083 1.744 0.000 1.000 

gl_dist 
mean_GC -0.338 -0.015 0.043 1.472 2.100 0.000 1.000 

gl_dist 
mean_norm_gene_number 0.912 0.042 0.046 0.727 1.329 0.000 1.000 

gl_dist 
mean_norm_tRNAs 2.438 0.106 0.044 0.032 2.091 0.000 0.837 

gl_dist 
mean_redundancy_index 3.849 0.174 0.045 0.000 1.012 0.000 0.012 

gl_dist 
mean_coding_density 1.374 0.053 0.039 0.344 3.526 0.000 1.000 

gl_cov 
mean_norm_size -1.519 -0.558 0.368 0.262 1.850 0.000 1.000 
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gl_cov 
mean_GC 1.211 0.441 0.364 0.456 2.193 0.000 1.000 

gl_cov 
mean_norm_gene_number -1.388 -0.526 0.379 0.335 1.345 0.000 1.000 

gl_cov 
mean_norm_tRNAs -2.611 -0.969 0.371 0.020 2.005 0.000 0.564 

gl_cov 
mean_redundancy_index -2.510 -0.946 0.377 0.026 0.849 0.000 0.714 

gl_cov 
mean_coding_density 0.237 0.078 0.332 1.626 3.276 0.000 1.000 

gl_index 
mean_norm_size -1.478 -0.065 0.044 0.283 1.865 0.000 1.000 

gl_index 
mean_GC 0.170 0.007 0.043 1.731 2.290 0.000 1.000 

gl_index 
mean_norm_gene_number -1.836 -0.084 0.046 0.137 1.440 0.000 1.000 

gl_index 
mean_norm_tRNAs -2.827 -0.123 0.043 0.011 2.161 0.000 0.315 

gl_index 
mean_redundancy_index -3.442 -0.158 0.046 0.002 0.909 0.000 0.047 

gl_index 
mean_coding_density -1.162 -0.045 0.039 0.495 3.489 0.000 1.000 

GAM models output for the community averages models. resp_var = response variable, t = t-value of 
the linear effect, coef = coefficient of the linear effect, coef_se = standard error of the estimated 
coefficient, p = p-value for the linear effect, spatial_f = f-value of the spatial spline, spatial_p = p-value 
for the spatial spline, padj = adjusted p-value for the linear effect. 
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Supplementary table 5. 2 
cluster p median_effect padj test 
1 0.000 0.493 0.000 norm_size ~ chla 
2 0.192 -0.081 1.000 norm_size ~ chla 
3 0.640 0.028 1.000 norm_size ~ chla 
4 0.925 0.005 1.000 norm_size ~ chla 
5 0.134 -0.104 1.000 norm_size ~ chla 
6 0.620 0.043 1.000 norm_size ~ chla 
7 0.314 0.085 1.000 norm_size ~ chla 
8 0.602 0.045 1.000 norm_size ~ chla 
9 0.183 0.119 1.000 norm_size ~ chla 
10 0.738 -0.019 1.000 norm_size ~ chla 
11 0.862 -0.016 1.000 norm_size ~ chla 
12 0.989 -0.035 1.000 norm_size ~ chla 
13 0.947 0.035 1.000 norm_size ~ chla 
14 0.620 0.009 1.000 norm_size ~ chla 
15 0.718 -0.013 1.000 norm_size ~ chla 
16 0.718 -0.014 1.000 norm_size ~ chla 
17 0.718 -0.076 1.000 norm_size ~ chla 
18 0.779 -0.069 1.000 norm_size ~ chla 
19 0.820 -0.032 1.000 norm_size ~ chla 
20 0.862 -0.059 1.000 norm_size ~ chla 
21 0.989 -0.029 1.000 norm_size ~ chla 
22 0.201 -0.084 1.000 norm_size ~ chla 
23 0.547 0.118 1.000 norm_size ~ chla 
24 0.925 0.018 1.000 norm_size ~ chla 
25 0.862 -0.019 1.000 norm_size ~ chla 
26 0.341 -0.084 1.000 norm_size ~ chla 
27 0.883 0.007 1.000 norm_size ~ chla 
28 0.043 0.150 1.000 norm_size ~ chla 
29 0.758 -0.012 1.000 norm_size ~ chla 
30 0.000 0.288 0.003 norm_size ~ chla 
31 0.841 0.031 1.000 norm_size ~ chla 
32 0.968 -0.012 1.000 norm_size ~ chla 
33 0.841 0.004 1.000 norm_size ~ chla 
1 0.000 0.705 0.000 norm_gene ~ chla 
2 0.369 -0.050 1.000 norm_gene ~ chla 
3 0.659 0.125 1.000 norm_gene ~ chla 
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4 0.758 0.134 1.000 norm_gene ~ chla 
5 0.005 -0.173 0.169 norm_gene ~ chla 
6 0.529 0.098 1.000 norm_gene ~ chla 
7 0.529 0.091 1.000 norm_gene ~ chla 
8 0.495 0.092 1.000 norm_gene ~ chla 
9 0.355 0.147 1.000 norm_gene ~ chla 
10 0.799 0.136 1.000 norm_gene ~ chla 
11 0.862 0.034 1.000 norm_gene ~ chla 
12 0.738 0.092 1.000 norm_gene ~ chla 
13 0.718 0.139 1.000 norm_gene ~ chla 
14 0.583 0.054 1.000 norm_gene ~ chla 
15 0.820 0.139 1.000 norm_gene ~ chla 
16 0.820 0.138 1.000 norm_gene ~ chla 
17 0.904 -0.018 1.000 norm_gene ~ chla 
18 0.841 0.038 1.000 norm_gene ~ chla 
19 0.904 -0.018 1.000 norm_gene ~ chla 
20 0.862 0.026 1.000 norm_gene ~ chla 
21 0.968 0.051 1.000 norm_gene ~ chla 
22 0.265 -0.003 1.000 norm_gene ~ chla 
23 0.602 0.203 1.000 norm_gene ~ chla 
24 0.820 0.092 1.000 norm_gene ~ chla 
25 1.000 0.074 1.000 norm_gene ~ chla 
26 0.640 -0.011 1.000 norm_gene ~ chla 
27 0.738 0.077 1.000 norm_gene ~ chla 
28 0.056 0.217 1.000 norm_gene ~ chla 
29 0.583 0.085 1.000 norm_gene ~ chla 
30 0.000 0.469 0.000 norm_gene ~ chla 
31 0.862 0.107 1.000 norm_gene ~ chla 
32 0.862 0.030 1.000 norm_gene ~ chla 
33 0.758 0.088 1.000 norm_gene ~ chla 
1 0.000 0.707 0.000 norm_trna ~ chla 
2 0.017 -0.202 0.552 norm_trna ~ chla 
3 0.947 -0.061 1.000 norm_trna ~ chla 
4 0.968 -0.083 1.000 norm_trna ~ chla 
5 0.000 -0.424 0.009 norm_trna ~ chla 
6 0.883 -0.076 1.000 norm_trna ~ chla 
7 0.968 -0.107 1.000 norm_trna ~ chla 
8 1.000 -0.139 1.000 norm_trna ~ chla 
9 0.495 -0.043 1.000 norm_trna ~ chla 
10 0.355 -0.033 1.000 norm_trna ~ chla 
11 0.429 0.018 1.000 norm_trna ~ chla 
12 0.369 -0.126 1.000 norm_trna ~ chla 
13 0.678 -0.078 1.000 norm_trna ~ chla 
14 0.149 0.036 1.000 norm_trna ~ chla 
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15 0.355 -0.006 1.000 norm_trna ~ chla 
16 0.355 -0.006 1.000 norm_trna ~ chla 
17 0.738 0.016 1.000 norm_trna ~ chla 
18 0.547 -0.099 1.000 norm_trna ~ chla 
19 0.301 -0.141 1.000 norm_trna ~ chla 
20 0.221 -0.108 1.000 norm_trna ~ chla 
21 0.989 -0.056 1.000 norm_trna ~ chla 
22 0.779 -0.109 1.000 norm_trna ~ chla 
23 0.779 -0.075 1.000 norm_trna ~ chla 
24 0.758 -0.098 1.000 norm_trna ~ chla 
25 0.583 -0.006 1.000 norm_trna ~ chla 
26 0.165 0.048 1.000 norm_trna ~ chla 
27 0.461 -0.112 1.000 norm_trna ~ chla 
28 0.000 0.240 0.001 norm_trna ~ chla 
29 0.301 -0.094 1.000 norm_trna ~ chla 
30 0.495 -0.075 1.000 norm_trna ~ chla 
31 0.989 -0.032 1.000 norm_trna ~ chla 
32 0.698 -0.079 1.000 norm_trna ~ chla 
33 0.989 -0.088 1.000 norm_trna ~ chla 

Leave-one-cluster-out tests output for the models with chlorophyll-a as covariate. cluster = identifier 
of the phylogenetic cluster, p = p-value of the Wilcoxon signed rank test, median_effect = relative 
median difference in coefficient, padj = adjusted p-value, test = relationship that was tested. 
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Supplementary table 5. 3 
cluster p median_effect padj test 
1 0.017 0.285 1.000 KO redundancy ~ gl_dist 
2 0.000 0.656 0.047 KO redundancy ~ gl_dist 
3 0.002 0.435 0.853 KO redundancy ~ gl_dist 
4 0.000 0.869 0.031 KO redundancy ~ gl_dist 
5 0.001 0.555 0.410 KO redundancy ~ gl_dist 
6 0.000 0.566 0.186 KO redundancy ~ gl_dist 
7 0.001 0.513 0.263 KO redundancy ~ gl_dist 
8 0.000 0.604 0.147 KO redundancy ~ gl_dist 
9 0.002 0.395 0.943 KO redundancy ~ gl_dist 
10 0.017 0.287 1.000 KO redundancy ~ gl_dist 
11 0.102 0.289 1.000 KO redundancy ~ gl_dist 
12 0.012 0.518 1.000 KO redundancy ~ gl_dist 
13 0.327 0.115 1.000 KO redundancy ~ gl_dist 
14 0.004 0.461 1.000 KO redundancy ~ gl_dist 
15 0.000 0.934 0.047 KO redundancy ~ gl_dist 
16 0.004 0.695 1.000 KO redundancy ~ gl_dist 
17 0.010 0.476 1.000 KO redundancy ~ gl_dist 
18 0.000 0.869 0.004 KO redundancy ~ gl_dist 
19 0.018 0.486 1.000 KO redundancy ~ gl_dist 
20 0.000 0.759 0.036 KO redundancy ~ gl_dist 
21 0.033 0.322 1.000 KO redundancy ~ gl_dist 
22 0.000 0.868 0.031 KO redundancy ~ gl_dist 
23 0.004 0.373 1.000 KO redundancy ~ gl_dist 
24 0.007 0.379 1.000 KO redundancy ~ gl_dist 
25 0.005 0.552 1.000 KO redundancy ~ gl_dist 
26 0.000 0.761 0.054 KO redundancy ~ gl_dist 
27 0.002 0.428 0.696 KO redundancy ~ gl_dist 
28 0.007 0.524 1.000 KO redundancy ~ gl_dist 
29 0.000 0.808 0.079 KO redundancy ~ gl_dist 
30 0.072 0.186 1.000 KO redundancy ~ gl_dist 
31 0.012 0.454 1.000 KO redundancy ~ gl_dist 
32 0.003 0.474 1.000 KO redundancy ~ gl_dist 
33 0.005 0.513 1.000 KO redundancy ~ gl_dist 
34 0.000 0.505 0.186 KO redundancy ~ gl_dist 
35 0.001 0.499 0.457 KO redundancy ~ gl_dist 
36 0.018 0.561 1.000 KO redundancy ~ gl_dist 
37 0.012 0.343 1.000 KO redundancy ~ gl_dist 
38 0.009 0.743 1.000 KO redundancy ~ gl_dist 
39 0.000 0.711 0.090 KO redundancy ~ gl_dist 
40 0.000 0.590 0.090 KO redundancy ~ gl_dist 
41 0.001 0.591 0.209 KO redundancy ~ gl_dist 
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42 0.002 0.627 0.771 KO redundancy ~ gl_dist 
43 0.001 0.557 0.263 KO redundancy ~ gl_dist 
44 0.001 0.557 0.263 KO redundancy ~ gl_dist 
45 0.000 0.768 0.011 KO redundancy ~ gl_dist 
46 0.001 0.563 0.263 KO redundancy ~ gl_dist 
47 0.001 0.678 0.235 KO redundancy ~ gl_dist 
48 0.000 0.565 0.165 KO redundancy ~ gl_dist 
49 0.000 0.668 0.047 KO redundancy ~ gl_dist 
50 0.001 0.587 0.209 KO redundancy ~ gl_dist 
51 0.001 0.566 0.209 KO redundancy ~ gl_dist 
52 0.001 0.562 0.209 KO redundancy ~ gl_dist 
53 0.001 0.567 0.209 KO redundancy ~ gl_dist 
54 0.001 0.567 0.209 KO redundancy ~ gl_dist 
55 0.001 0.552 0.457 KO redundancy ~ gl_dist 
56 0.001 0.567 0.209 KO redundancy ~ gl_dist 
57 0.001 0.567 0.209 KO redundancy ~ gl_dist 
58 0.001 0.567 0.209 KO redundancy ~ gl_dist 
59 0.000 0.642 0.102 KO redundancy ~ gl_dist 
60 0.000 0.771 0.007 KO redundancy ~ gl_dist 
61 0.001 0.561 0.294 KO redundancy ~ gl_dist 
62 0.000 0.666 0.027 KO redundancy ~ gl_dist 
63 0.000 0.465 0.165 KO redundancy ~ gl_dist 
64 0.004 0.420 1.000 KO redundancy ~ gl_dist 
65 0.000 0.492 0.102 KO redundancy ~ gl_dist 
66 0.001 0.662 0.368 KO redundancy ~ gl_dist 
67 0.001 0.468 0.457 KO redundancy ~ gl_dist 
68 0.001 0.560 0.565 KO redundancy ~ gl_dist 
69 0.035 0.212 1.000 KO redundancy ~ gl_dist 
70 0.000 0.521 0.147 KO redundancy ~ gl_dist 
71 0.000 0.527 0.165 KO redundancy ~ gl_dist 
72 0.000 0.469 0.147 KO redundancy ~ gl_dist 
73 0.001 0.436 0.457 KO redundancy ~ gl_dist 
74 0.000 0.437 0.186 KO redundancy ~ gl_dist 
75 0.001 0.544 0.368 KO redundancy ~ gl_dist 
76 0.001 0.519 0.294 KO redundancy ~ gl_dist 
77 0.000 0.599 0.186 KO redundancy ~ gl_dist 
78 0.000 0.573 0.165 KO redundancy ~ gl_dist 
79 0.001 0.575 0.209 KO redundancy ~ gl_dist 
80 0.001 0.562 0.329 KO redundancy ~ gl_dist 
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81 0.001 0.563 0.329 KO redundancy ~ gl_dist 
82 0.002 0.378 0.696 KO redundancy ~ gl_dist 
83 0.000 0.499 0.186 KO redundancy ~ gl_dist 
84 0.000 0.497 0.115 KO redundancy ~ gl_dist 
85 0.001 0.492 0.294 KO redundancy ~ gl_dist 
86 0.001 0.504 0.263 KO redundancy ~ gl_dist 
87 0.002 0.457 0.696 KO redundancy ~ gl_dist 
88 0.000 0.508 0.186 KO redundancy ~ gl_dist 
89 0.001 0.496 0.368 KO redundancy ~ gl_dist 
90 0.002 0.462 0.628 KO redundancy ~ gl_dist 
91 0.003 0.394 1.000 KO redundancy ~ gl_dist 
92 0.002 0.464 0.628 KO redundancy ~ gl_dist 
93 0.002 0.458 0.696 KO redundancy ~ gl_dist 
94 0.002 0.461 0.696 KO redundancy ~ gl_dist 
95 0.002 0.461 0.696 KO redundancy ~ gl_dist 
96 0.001 0.496 0.410 KO redundancy ~ gl_dist 
97 0.002 0.468 0.943 KO redundancy ~ gl_dist 
98 0.002 0.441 0.943 KO redundancy ~ gl_dist 
99 0.003 0.495 1.000 KO redundancy ~ gl_dist 
100 0.003 0.497 1.000 KO redundancy ~ gl_dist 
101 0.017 0.285 1.000 KO redundancy ~ gl_dist 
102 0.017 0.280 1.000 KO redundancy ~ gl_dist 
103 0.003 0.501 1.000 KO redundancy ~ gl_dist 
104 0.017 0.284 1.000 KO redundancy ~ gl_dist 
105 0.002 0.481 0.628 KO redundancy ~ gl_dist 
106 0.001 0.756 0.294 KO redundancy ~ gl_dist 
107 0.014 0.439 1.000 KO redundancy ~ gl_dist 
108 0.000 0.701 0.079 KO redundancy ~ gl_dist 
109 0.015 0.283 1.000 KO redundancy ~ gl_dist 
110 0.012 0.337 1.000 KO redundancy ~ gl_dist 
111 0.001 0.629 0.294 KO redundancy ~ gl_dist 
112 0.002 0.747 0.853 KO redundancy ~ gl_dist 
113 0.000 0.720 0.090 KO redundancy ~ gl_dist 
114 0.000 0.703 0.115 KO redundancy ~ gl_dist 
115 0.001 0.659 0.294 KO redundancy ~ gl_dist 
116 0.142 0.129 1.000 KO redundancy ~ gl_dist 
117 0.001 0.574 0.368 KO redundancy ~ gl_dist 
118 0.000 0.816 0.079 KO redundancy ~ gl_dist 
119 0.000 0.717 0.054 KO redundancy ~ gl_dist 
120 0.026 0.343 1.000 KO redundancy ~ gl_dist 
121 0.026 0.344 1.000 KO redundancy ~ gl_dist 
122 0.002 0.513 0.771 KO redundancy ~ gl_dist 
123 0.000 0.634 0.061 KO redundancy ~ gl_dist 
124 0.020 0.324 1.000 KO redundancy ~ gl_dist 
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125 0.020 0.323 1.000 KO redundancy ~ gl_dist 
126 0.000 0.865 0.006 KO redundancy ~ gl_dist 
127 0.000 0.887 0.130 KO redundancy ~ gl_dist 
128 0.035 0.259 1.000 KO redundancy ~ gl_dist 
129 0.035 0.259 1.000 KO redundancy ~ gl_dist 
130 0.091 0.216 1.000 KO redundancy ~ gl_dist 
131 0.002 0.503 0.943 KO redundancy ~ gl_dist 
132 0.014 0.504 1.000 KO redundancy ~ gl_dist 
133 0.000 0.965 0.001 KO redundancy ~ gl_dist 
134 0.038 0.465 1.000 KO redundancy ~ gl_dist 
135 0.052 0.276 1.000 KO redundancy ~ gl_dist 
136 0.072 0.282 1.000 KO redundancy ~ gl_dist 
137 0.002 0.630 0.696 KO redundancy ~ gl_dist 
138 0.030 0.272 1.000 KO redundancy ~ gl_dist 
139 0.030 0.272 1.000 KO redundancy ~ gl_dist 
140 0.026 0.175 1.000 KO redundancy ~ gl_dist 
141 0.026 0.176 1.000 KO redundancy ~ gl_dist 
142 0.026 0.174 1.000 KO redundancy ~ gl_dist 
143 0.026 0.178 1.000 KO redundancy ~ gl_dist 
144 0.020 0.198 1.000 KO redundancy ~ gl_dist 
145 0.000 0.994 0.024 KO redundancy ~ gl_dist 
146 0.023 0.182 1.000 KO redundancy ~ gl_dist 
147 0.000 1.022 0.021 KO redundancy ~ gl_dist 
148 0.000 0.936 0.070 KO redundancy ~ gl_dist 
149 0.023 0.181 1.000 KO redundancy ~ gl_dist 
150 0.028 0.196 1.000 KO redundancy ~ gl_dist 
151 0.028 0.196 1.000 KO redundancy ~ gl_dist 
152 0.028 0.197 1.000 KO redundancy ~ gl_dist 
153 0.000 0.944 0.041 KO redundancy ~ gl_dist 
154 0.030 0.205 1.000 KO redundancy ~ gl_dist 
155 0.002 0.695 0.628 KO redundancy ~ gl_dist 
156 0.000 0.717 0.006 KO redundancy ~ gl_dist 
157 0.040 0.216 1.000 KO redundancy ~ gl_dist 
158 0.038 0.218 1.000 KO redundancy ~ gl_dist 
159 0.040 0.217 1.000 KO redundancy ~ gl_dist 
160 0.000 0.591 0.186 KO redundancy ~ gl_dist 
161 0.028 0.209 1.000 KO redundancy ~ gl_dist 
162 0.000 0.900 0.130 KO redundancy ~ gl_dist 
163 0.052 0.156 1.000 KO redundancy ~ gl_dist 
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164 0.052 0.155 1.000 KO redundancy ~ gl_dist 
165 0.052 0.156 1.000 KO redundancy ~ gl_dist 
166 0.052 0.155 1.000 KO redundancy ~ gl_dist 
167 0.056 0.147 1.000 KO redundancy ~ gl_dist 
168 0.000 0.852 0.102 KO redundancy ~ gl_dist 
169 0.001 0.546 0.329 KO redundancy ~ gl_dist 
170 0.000 0.808 0.090 KO redundancy ~ gl_dist 
171 0.018 0.283 1.000 KO redundancy ~ gl_dist 
172 0.000 0.545 0.079 KO redundancy ~ gl_dist 
173 0.018 0.283 1.000 KO redundancy ~ gl_dist 
174 0.018 0.283 1.000 KO redundancy ~ gl_dist 
175 0.018 0.283 1.000 KO redundancy ~ gl_dist 
176 0.000 0.544 0.079 KO redundancy ~ gl_dist 
177 0.018 0.283 1.000 KO redundancy ~ gl_dist 
178 0.000 0.544 0.079 KO redundancy ~ gl_dist 
179 0.000 0.793 0.061 KO redundancy ~ gl_dist 
180 0.015 0.294 1.000 KO redundancy ~ gl_dist 
181 0.015 0.294 1.000 KO redundancy ~ gl_dist 
182 0.015 0.292 1.000 KO redundancy ~ gl_dist 
183 0.015 0.294 1.000 KO redundancy ~ gl_dist 
184 0.201 0.090 1.000 KO redundancy ~ gl_dist 
185 0.000 0.589 0.090 KO redundancy ~ gl_dist 
186 0.004 0.528 1.000 KO redundancy ~ gl_dist 
187 0.001 0.595 0.263 KO redundancy ~ gl_dist 
188 0.000 0.587 0.090 KO redundancy ~ gl_dist 
189 0.000 0.769 0.165 KO redundancy ~ gl_dist 
190 0.000 0.808 0.031 KO redundancy ~ gl_dist 
191 0.001 0.530 0.565 KO redundancy ~ gl_dist 
192 0.001 0.536 0.565 KO redundancy ~ gl_dist 
193 0.000 0.424 0.102 KO redundancy ~ gl_dist 
194 0.010 0.362 1.000 KO redundancy ~ gl_dist 
195 0.000 0.661 0.165 KO redundancy ~ gl_dist 
196 0.008 0.422 1.000 KO redundancy ~ gl_dist 
197 0.000 0.550 0.079 KO redundancy ~ gl_dist 
198 0.001 0.563 0.509 KO redundancy ~ gl_dist 
199 0.000 0.589 0.070 KO redundancy ~ gl_dist 
200 0.086 0.324 1.000 KO redundancy ~ gl_dist 
201 0.007 0.718 1.000 KO redundancy ~ gl_dist 
202 0.001 0.508 0.294 KO redundancy ~ gl_dist 
203 0.009 0.613 1.000 KO redundancy ~ gl_dist 
204 0.013 0.498 1.000 KO redundancy ~ gl_dist 
205 0.035 0.194 1.000 KO redundancy ~ gl_dist 
206 0.035 0.164 1.000 KO redundancy ~ gl_dist 
207 0.002 0.712 0.696 KO redundancy ~ gl_dist 
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208 0.134 0.256 1.000 KO redundancy ~ gl_dist 
209 0.012 0.582 1.000 KO redundancy ~ gl_dist 
210 0.021 0.545 1.000 KO redundancy ~ gl_dist 
211 0.002 0.498 0.696 KO redundancy ~ gl_dist 
212 0.002 0.498 0.696 KO redundancy ~ gl_dist 
213 0.021 0.546 1.000 KO redundancy ~ gl_dist 
214 0.021 0.546 1.000 KO redundancy ~ gl_dist 
215 0.000 0.654 0.090 KO redundancy ~ gl_dist 
216 0.023 0.361 1.000 KO redundancy ~ gl_dist 
217 0.000 0.820 0.079 KO redundancy ~ gl_dist 
218 0.020 0.269 1.000 KO redundancy ~ gl_dist 
219 0.002 0.527 0.943 KO redundancy ~ gl_dist 
220 0.002 0.666 0.943 KO redundancy ~ gl_dist 
221 0.001 0.685 0.509 KO redundancy ~ gl_dist 
222 0.002 0.671 0.853 KO redundancy ~ gl_dist 
223 0.002 0.669 0.853 KO redundancy ~ gl_dist 
224 0.002 0.668 0.943 KO redundancy ~ gl_dist 
225 0.108 0.304 1.000 KO redundancy ~ gl_dist 
226 0.004 0.388 1.000 KO redundancy ~ gl_dist 
227 0.000 0.748 0.102 KO redundancy ~ gl_dist 
228 0.001 0.507 0.368 KO redundancy ~ gl_dist 
229 0.000 0.911 0.079 KO redundancy ~ gl_dist 
230 0.004 0.373 1.000 KO redundancy ~ gl_dist 
231 0.004 0.374 1.000 KO redundancy ~ gl_dist 
232 0.000 0.741 0.024 KO redundancy ~ gl_dist 
233 0.030 0.263 1.000 KO redundancy ~ gl_dist 
234 0.000 0.679 0.115 KO redundancy ~ gl_dist 
235 0.021 0.232 1.000 KO redundancy ~ gl_dist 
236 0.021 0.235 1.000 KO redundancy ~ gl_dist 
237 0.001 0.680 0.410 KO redundancy ~ gl_dist 
238 0.001 0.657 0.209 KO redundancy ~ gl_dist 
239 0.040 0.231 1.000 KO redundancy ~ gl_dist 
240 0.038 0.240 1.000 KO redundancy ~ gl_dist 
241 0.038 0.238 1.000 KO redundancy ~ gl_dist 
242 0.038 0.239 1.000 KO redundancy ~ gl_dist 
243 0.038 0.239 1.000 KO redundancy ~ gl_dist 
244 0.001 0.513 0.457 KO redundancy ~ gl_dist 
245 0.000 0.870 0.018 KO redundancy ~ gl_dist 
246 0.005 0.555 1.000 KO redundancy ~ gl_dist 
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247 0.005 0.555 1.000 KO redundancy ~ gl_dist 
248 0.004 0.565 1.000 KO redundancy ~ gl_dist 
249 0.012 0.271 1.000 KO redundancy ~ gl_dist 
250 0.006 0.541 1.000 KO redundancy ~ gl_dist 
251 0.033 0.236 1.000 KO redundancy ~ gl_dist 
252 0.005 0.509 1.000 KO redundancy ~ gl_dist 
253 0.005 0.509 1.000 KO redundancy ~ gl_dist 
254 0.002 0.498 0.853 KO redundancy ~ gl_dist 
255 0.002 0.472 0.628 KO redundancy ~ gl_dist 
256 0.015 0.296 1.000 KO redundancy ~ gl_dist 
257 0.002 0.560 0.771 KO redundancy ~ gl_dist 
258 0.000 0.815 0.015 KO redundancy ~ gl_dist 
259 0.014 0.300 1.000 KO redundancy ~ gl_dist 
260 0.005 0.651 1.000 KO redundancy ~ gl_dist 
261 0.002 0.544 0.628 KO redundancy ~ gl_dist 
262 0.002 0.527 0.853 KO redundancy ~ gl_dist 
263 0.002 0.671 0.943 KO redundancy ~ gl_dist 
264 0.000 0.767 0.013 KO redundancy ~ gl_dist 
265 0.001 0.497 0.209 KO redundancy ~ gl_dist 
266 0.024 0.170 1.000 KO redundancy ~ gl_dist 
267 0.010 0.375 1.000 KO redundancy ~ gl_dist 
268 0.108 0.114 1.000 KO redundancy ~ gl_dist 
269 0.023 0.431 1.000 KO redundancy ~ gl_dist 
270 0.001 0.467 0.329 KO redundancy ~ gl_dist 
271 0.000 0.529 0.061 KO redundancy ~ gl_dist 
272 0.021 0.405 1.000 KO redundancy ~ gl_dist 
273 0.000 0.611 0.102 KO redundancy ~ gl_dist 
274 0.000 0.822 0.090 KO redundancy ~ gl_dist 
275 0.001 0.613 0.294 KO redundancy ~ gl_dist 
276 0.011 0.417 1.000 KO redundancy ~ gl_dist 
277 0.001 0.664 0.209 KO redundancy ~ gl_dist 
278 0.001 0.668 0.209 KO redundancy ~ gl_dist 
279 0.001 0.486 0.294 KO redundancy ~ gl_dist 
280 0.046 0.291 1.000 KO redundancy ~ gl_dist 
281 0.012 0.491 1.000 KO redundancy ~ gl_dist 
282 0.000 0.746 0.001 KO redundancy ~ gl_dist 
283 0.002 0.576 0.771 KO redundancy ~ gl_dist 
284 0.035 0.185 1.000 KO redundancy ~ gl_dist 
285 0.004 0.638 1.000 KO redundancy ~ gl_dist 
286 0.010 0.243 1.000 KO redundancy ~ gl_dist 
287 0.009 0.251 1.000 KO redundancy ~ gl_dist 
288 0.003 0.594 1.000 KO redundancy ~ gl_dist 
289 0.000 0.587 0.027 KO redundancy ~ gl_dist 
290 0.006 0.669 1.000 KO redundancy ~ gl_dist 
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291 0.026 0.339 1.000 KO redundancy ~ gl_dist 
292 0.026 0.340 1.000 KO redundancy ~ gl_dist 
293 0.026 0.339 1.000 KO redundancy ~ gl_dist 
294 0.026 0.338 1.000 KO redundancy ~ gl_dist 
295 0.000 0.545 0.015 KO redundancy ~ gl_dist 
296 0.003 0.585 1.000 KO redundancy ~ gl_dist 
297 0.000 0.731 0.006 KO redundancy ~ gl_dist 
298 0.028 0.263 1.000 KO redundancy ~ gl_dist 
299 0.000 0.626 0.090 KO redundancy ~ gl_dist 
300 0.014 0.499 1.000 KO redundancy ~ gl_dist 
301 0.015 0.509 1.000 KO redundancy ~ gl_dist 
302 0.018 0.505 1.000 KO redundancy ~ gl_dist 
303 0.072 0.231 1.000 KO redundancy ~ gl_dist 
304 0.006 0.463 1.000 KO redundancy ~ gl_dist 
305 0.091 0.311 1.000 KO redundancy ~ gl_dist 
306 0.000 0.895 0.102 KO redundancy ~ gl_dist 
307 0.142 0.136 1.000 KO redundancy ~ gl_dist 
308 0.002 0.629 0.771 KO redundancy ~ gl_dist 
309 0.007 0.637 1.000 KO redundancy ~ gl_dist 
310 0.004 0.514 1.000 KO redundancy ~ gl_dist 
311 0.017 0.415 1.000 KO redundancy ~ gl_dist 
312 0.017 0.420 1.000 KO redundancy ~ gl_dist 
313 0.005 0.593 1.000 KO redundancy ~ gl_dist 
314 0.000 1.666 0.000 KO redundancy ~ gl_dist 
315 0.004 0.481 1.000 KO redundancy ~ gl_dist 
316 0.004 0.481 1.000 KO redundancy ~ gl_dist 
317 0.004 0.543 1.000 KO redundancy ~ gl_dist 
318 0.000 0.909 0.004 KO redundancy ~ gl_dist 
319 0.003 0.471 1.000 KO redundancy ~ gl_dist 
320 0.000 0.915 0.102 KO redundancy ~ gl_dist 
321 0.004 0.429 1.000 KO redundancy ~ gl_dist 
322 0.005 0.416 1.000 KO redundancy ~ gl_dist 
323 0.003 0.476 1.000 KO redundancy ~ gl_dist 
324 0.005 0.416 1.000 KO redundancy ~ gl_dist 
325 0.005 0.415 1.000 KO redundancy ~ gl_dist 
326 0.000 0.893 0.002 KO redundancy ~ gl_dist 
327 0.002 0.482 0.943 KO redundancy ~ gl_dist 
328 0.002 0.481 0.943 KO redundancy ~ gl_dist 
329 0.000 0.639 0.024 KO redundancy ~ gl_dist 
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330 0.005 0.513 1.000 KO redundancy ~ gl_dist 
331 0.000 0.889 0.008 KO redundancy ~ gl_dist 
332 0.000 0.800 0.047 KO redundancy ~ gl_dist 
333 0.020 0.312 1.000 KO redundancy ~ gl_dist 
334 0.017 0.305 1.000 KO redundancy ~ gl_dist 
335 0.001 0.635 0.209 KO redundancy ~ gl_dist 
336 0.004 0.516 1.000 KO redundancy ~ gl_dist 
337 0.010 0.758 1.000 KO redundancy ~ gl_dist 
338 0.003 0.542 1.000 KO redundancy ~ gl_dist 
339 0.000 0.506 0.186 KO redundancy ~ gl_dist 
340 0.000 0.506 0.186 KO redundancy ~ gl_dist 
341 0.000 0.888 0.061 KO redundancy ~ gl_dist 
342 0.001 0.454 0.509 KO redundancy ~ gl_dist 
343 0.001 0.470 0.565 KO redundancy ~ gl_dist 
344 0.000 0.587 0.186 KO redundancy ~ gl_dist 
345 0.002 0.370 0.943 KO redundancy ~ gl_dist 
346 0.002 0.370 0.943 KO redundancy ~ gl_dist 
347 0.002 0.371 0.943 KO redundancy ~ gl_dist 
348 0.000 0.672 0.018 KO redundancy ~ gl_dist 
349 0.002 0.507 0.771 KO redundancy ~ gl_dist 
350 0.001 0.526 0.329 KO redundancy ~ gl_dist 
351 0.011 0.501 1.000 KO redundancy ~ gl_dist 
352 0.001 0.525 0.329 KO redundancy ~ gl_dist 
353 0.010 0.511 1.000 KO redundancy ~ gl_dist 
354 0.000 0.715 0.036 KO redundancy ~ gl_dist 
355 0.289 0.034 1.000 KO redundancy ~ gl_dist 
356 0.002 0.535 0.853 KO redundancy ~ gl_dist 
357 0.000 0.895 0.041 KO redundancy ~ gl_dist 
358 0.017 0.453 1.000 KO redundancy ~ gl_dist 
359 0.000 0.696 0.070 KO redundancy ~ gl_dist 
360 0.000 0.758 0.061 KO redundancy ~ gl_dist 
361 0.018 0.338 1.000 KO redundancy ~ gl_dist 
362 0.001 0.693 0.209 KO redundancy ~ gl_dist 
363 0.004 0.498 1.000 KO redundancy ~ gl_dist 
364 0.000 0.860 0.079 KO redundancy ~ gl_dist 
365 0.011 0.550 1.000 KO redundancy ~ gl_dist 
366 0.001 0.533 0.565 KO redundancy ~ gl_dist 
367 0.012 0.343 1.000 KO redundancy ~ gl_dist 
368 0.001 0.633 0.565 KO redundancy ~ gl_dist 
369 0.000 0.717 0.186 KO redundancy ~ gl_dist 
370 0.000 0.850 0.018 KO redundancy ~ gl_dist 
371 0.012 0.317 1.000 KO redundancy ~ gl_dist 
372 0.000 0.756 0.054 KO redundancy ~ gl_dist 
373 0.001 0.550 0.263 KO redundancy ~ gl_dist 
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374 0.002 0.734 0.853 KO redundancy ~ gl_dist 
375 0.000 0.562 0.186 KO redundancy ~ gl_dist 
376 0.002 0.375 0.853 KO redundancy ~ gl_dist 
377 0.002 0.375 0.853 KO redundancy ~ gl_dist 
378 0.002 0.377 0.853 KO redundancy ~ gl_dist 
379 0.030 0.394 1.000 KO redundancy ~ gl_dist 
380 0.003 0.402 1.000 KO redundancy ~ gl_dist 
381 0.002 0.739 0.628 KO redundancy ~ gl_dist 
382 0.002 0.483 0.696 KO redundancy ~ gl_dist 
383 0.003 0.453 1.000 KO redundancy ~ gl_dist 
384 0.005 0.585 1.000 KO redundancy ~ gl_dist 
385 0.020 0.415 1.000 KO redundancy ~ gl_dist 
386 0.659 -0.003 1.000 KO redundancy ~ gl_dist 
387 0.008 0.589 1.000 KO redundancy ~ gl_dist 
388 0.000 0.488 0.115 KO redundancy ~ gl_dist 
389 0.009 0.672 1.000 KO redundancy ~ gl_dist 
390 0.009 0.392 1.000 KO redundancy ~ gl_dist 
391 0.002 0.663 0.853 KO redundancy ~ gl_dist 
392 0.002 0.713 0.771 KO redundancy ~ gl_dist 
393 0.000 0.760 0.010 KO redundancy ~ gl_dist 
394 0.049 0.324 1.000 KO redundancy ~ gl_dist 
1 0.277 0.128 1.000 KO redundancy ~ watemp 
2 0.033 0.188 1.000 KO redundancy ~ watemp 
3 0.142 0.195 1.000 KO redundancy ~ watemp 
4 0.010 0.276 1.000 KO redundancy ~ watemp 
5 0.052 0.194 1.000 KO redundancy ~ watemp 
6 0.060 0.163 1.000 KO redundancy ~ watemp 
7 0.063 0.136 1.000 KO redundancy ~ watemp 
8 0.004 0.289 1.000 KO redundancy ~ watemp 
9 0.035 0.229 1.000 KO redundancy ~ watemp 
10 0.277 0.129 1.000 KO redundancy ~ watemp 
11 0.142 0.112 1.000 KO redundancy ~ watemp 
12 0.001 0.482 0.368 KO redundancy ~ watemp 
13 0.925 -0.072 1.000 KO redundancy ~ watemp 
14 0.142 0.176 1.000 KO redundancy ~ watemp 
15 0.211 0.178 1.000 KO redundancy ~ watemp 
16 0.091 0.130 1.000 KO redundancy ~ watemp 
17 0.096 0.218 1.000 KO redundancy ~ watemp 
18 0.026 0.172 1.000 KO redundancy ~ watemp 
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19 0.086 0.165 1.000 KO redundancy ~ watemp 
20 0.242 0.165 1.000 KO redundancy ~ watemp 
21 0.355 0.048 1.000 KO redundancy ~ watemp 
22 0.086 0.160 1.000 KO redundancy ~ watemp 
23 0.201 0.168 1.000 KO redundancy ~ watemp 
24 0.121 0.119 1.000 KO redundancy ~ watemp 
25 0.086 0.173 1.000 KO redundancy ~ watemp 
26 0.127 0.103 1.000 KO redundancy ~ watemp 
27 0.461 0.030 1.000 KO redundancy ~ watemp 
28 0.355 0.025 1.000 KO redundancy ~ watemp 
29 0.114 0.265 1.000 KO redundancy ~ watemp 
30 0.314 0.153 1.000 KO redundancy ~ watemp 
31 0.327 0.133 1.000 KO redundancy ~ watemp 
32 0.096 0.241 1.000 KO redundancy ~ watemp 
33 0.183 0.178 1.000 KO redundancy ~ watemp 
34 0.201 0.146 1.000 KO redundancy ~ watemp 
35 0.096 0.201 1.000 KO redundancy ~ watemp 
36 0.068 0.205 1.000 KO redundancy ~ watemp 
37 0.063 0.246 1.000 KO redundancy ~ watemp 
38 0.017 0.259 1.000 KO redundancy ~ watemp 
39 0.063 0.224 1.000 KO redundancy ~ watemp 
40 0.060 0.226 1.000 KO redundancy ~ watemp 
41 0.030 0.174 1.000 KO redundancy ~ watemp 
42 0.026 0.272 1.000 KO redundancy ~ watemp 
43 0.063 0.227 1.000 KO redundancy ~ watemp 
44 0.063 0.226 1.000 KO redundancy ~ watemp 
45 0.007 0.324 1.000 KO redundancy ~ watemp 
46 0.046 0.156 1.000 KO redundancy ~ watemp 
47 0.024 0.264 1.000 KO redundancy ~ watemp 
48 0.038 0.165 1.000 KO redundancy ~ watemp 
49 0.006 0.289 1.000 KO redundancy ~ watemp 
50 0.056 0.161 1.000 KO redundancy ~ watemp 
51 0.060 0.155 1.000 KO redundancy ~ watemp 
52 0.060 0.152 1.000 KO redundancy ~ watemp 
53 0.060 0.154 1.000 KO redundancy ~ watemp 
54 0.060 0.154 1.000 KO redundancy ~ watemp 
55 0.052 0.193 1.000 KO redundancy ~ watemp 
56 0.060 0.154 1.000 KO redundancy ~ watemp 
57 0.060 0.154 1.000 KO redundancy ~ watemp 
58 0.060 0.154 1.000 KO redundancy ~ watemp 
59 0.023 0.299 1.000 KO redundancy ~ watemp 
60 0.007 0.326 1.000 KO redundancy ~ watemp 
61 0.052 0.193 1.000 KO redundancy ~ watemp 
62 0.018 0.199 1.000 KO redundancy ~ watemp 
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63 0.018 0.283 1.000 KO redundancy ~ watemp 
64 0.035 0.211 1.000 KO redundancy ~ watemp 
65 0.014 0.203 1.000 KO redundancy ~ watemp 
66 0.020 0.238 1.000 KO redundancy ~ watemp 
67 0.052 0.181 1.000 KO redundancy ~ watemp 
68 0.028 0.289 1.000 KO redundancy ~ watemp 
69 0.429 -0.022 1.000 KO redundancy ~ watemp 
70 0.013 0.260 1.000 KO redundancy ~ watemp 
71 0.020 0.223 1.000 KO redundancy ~ watemp 
72 0.014 0.279 1.000 KO redundancy ~ watemp 
73 0.033 0.211 1.000 KO redundancy ~ watemp 
74 0.024 0.218 1.000 KO redundancy ~ watemp 
75 0.056 0.140 1.000 KO redundancy ~ watemp 
76 0.023 0.254 1.000 KO redundancy ~ watemp 
77 0.013 0.216 1.000 KO redundancy ~ watemp 
78 0.006 0.278 1.000 KO redundancy ~ watemp 
79 0.035 0.179 1.000 KO redundancy ~ watemp 
80 0.006 0.271 1.000 KO redundancy ~ watemp 
81 0.006 0.272 1.000 KO redundancy ~ watemp 
82 0.014 0.235 1.000 KO redundancy ~ watemp 
83 0.009 0.286 1.000 KO redundancy ~ watemp 
84 0.017 0.221 1.000 KO redundancy ~ watemp 
85 0.021 0.223 1.000 KO redundancy ~ watemp 
86 0.009 0.289 1.000 KO redundancy ~ watemp 
87 0.017 0.291 1.000 KO redundancy ~ watemp 
88 0.010 0.289 1.000 KO redundancy ~ watemp 
89 0.035 0.286 1.000 KO redundancy ~ watemp 
90 0.046 0.289 1.000 KO redundancy ~ watemp 
91 0.043 0.240 1.000 KO redundancy ~ watemp 
92 0.043 0.291 1.000 KO redundancy ~ watemp 
93 0.046 0.288 1.000 KO redundancy ~ watemp 
94 0.043 0.290 1.000 KO redundancy ~ watemp 
95 0.046 0.290 1.000 KO redundancy ~ watemp 
96 0.026 0.324 1.000 KO redundancy ~ watemp 
97 0.035 0.273 1.000 KO redundancy ~ watemp 
98 0.030 0.288 1.000 KO redundancy ~ watemp 
99 0.038 0.289 1.000 KO redundancy ~ watemp 
100 0.398 -0.021 1.000 KO redundancy ~ watemp 
101 0.277 0.128 1.000 KO redundancy ~ watemp 
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102 0.265 0.130 1.000 KO redundancy ~ watemp 
103 0.383 -0.015 1.000 KO redundancy ~ watemp 
104 0.277 0.128 1.000 KO redundancy ~ watemp 
105 0.102 0.129 1.000 KO redundancy ~ watemp 
106 0.221 0.060 1.000 KO redundancy ~ watemp 
107 0.060 0.135 1.000 KO redundancy ~ watemp 
108 0.040 0.145 1.000 KO redundancy ~ watemp 
109 0.565 0.029 1.000 KO redundancy ~ watemp 
110 0.495 0.042 1.000 KO redundancy ~ watemp 
111 0.114 0.110 1.000 KO redundancy ~ watemp 
112 0.002 0.385 0.771 KO redundancy ~ watemp 
113 0.134 0.100 1.000 KO redundancy ~ watemp 
114 0.142 0.095 1.000 KO redundancy ~ watemp 
115 0.398 0.012 1.000 KO redundancy ~ watemp 
116 0.211 0.146 1.000 KO redundancy ~ watemp 
117 0.007 0.366 1.000 KO redundancy ~ watemp 
118 0.006 0.313 1.000 KO redundancy ~ watemp 
119 0.001 0.327 0.509 KO redundancy ~ watemp 
120 0.583 0.100 1.000 KO redundancy ~ watemp 
121 0.583 0.100 1.000 KO redundancy ~ watemp 
122 0.265 0.092 1.000 KO redundancy ~ watemp 
123 0.114 0.266 1.000 KO redundancy ~ watemp 
124 0.529 0.099 1.000 KO redundancy ~ watemp 
125 0.547 0.099 1.000 KO redundancy ~ watemp 
126 0.086 0.258 1.000 KO redundancy ~ watemp 
127 0.004 0.372 1.000 KO redundancy ~ watemp 
128 0.947 0.088 1.000 KO redundancy ~ watemp 
129 0.947 0.088 1.000 KO redundancy ~ watemp 
130 0.841 0.031 1.000 KO redundancy ~ watemp 
131 0.201 0.098 1.000 KO redundancy ~ watemp 
132 0.060 0.271 1.000 KO redundancy ~ watemp 
133 0.086 0.085 1.000 KO redundancy ~ watemp 
134 0.149 0.096 1.000 KO redundancy ~ watemp 
135 0.076 0.151 1.000 KO redundancy ~ watemp 
136 0.461 0.132 1.000 KO redundancy ~ watemp 
137 0.033 0.202 1.000 KO redundancy ~ watemp 
138 0.779 0.025 1.000 KO redundancy ~ watemp 
139 0.779 0.025 1.000 KO redundancy ~ watemp 
140 0.640 -0.022 1.000 KO redundancy ~ watemp 
141 0.640 -0.022 1.000 KO redundancy ~ watemp 
142 0.640 -0.022 1.000 KO redundancy ~ watemp 
143 0.640 -0.022 1.000 KO redundancy ~ watemp 
144 0.620 -0.022 1.000 KO redundancy ~ watemp 
145 0.040 0.177 1.000 KO redundancy ~ watemp 
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146 0.620 -0.012 1.000 KO redundancy ~ watemp 
147 0.013 0.199 1.000 KO redundancy ~ watemp 
148 0.242 0.168 1.000 KO redundancy ~ watemp 
149 0.640 -0.012 1.000 KO redundancy ~ watemp 
150 0.841 -0.049 1.000 KO redundancy ~ watemp 
151 0.841 -0.049 1.000 KO redundancy ~ watemp 
152 0.841 -0.049 1.000 KO redundancy ~ watemp 
153 0.253 0.169 1.000 KO redundancy ~ watemp 
154 0.883 -0.050 1.000 KO redundancy ~ watemp 
155 0.026 0.240 1.000 KO redundancy ~ watemp 
156 0.231 0.064 1.000 KO redundancy ~ watemp 
157 0.718 -0.065 1.000 KO redundancy ~ watemp 
158 0.718 -0.064 1.000 KO redundancy ~ watemp 
159 0.718 -0.064 1.000 KO redundancy ~ watemp 
160 0.081 0.194 1.000 KO redundancy ~ watemp 
161 0.779 -0.030 1.000 KO redundancy ~ watemp 
162 0.221 0.153 1.000 KO redundancy ~ watemp 
163 0.862 -0.076 1.000 KO redundancy ~ watemp 
164 0.862 -0.076 1.000 KO redundancy ~ watemp 
165 0.862 -0.075 1.000 KO redundancy ~ watemp 
166 0.862 -0.075 1.000 KO redundancy ~ watemp 
167 0.904 -0.078 1.000 KO redundancy ~ watemp 
168 0.242 0.162 1.000 KO redundancy ~ watemp 
169 0.102 0.169 1.000 KO redundancy ~ watemp 
170 0.063 0.260 1.000 KO redundancy ~ watemp 
171 0.414 0.114 1.000 KO redundancy ~ watemp 
172 0.149 0.116 1.000 KO redundancy ~ watemp 
173 0.414 0.114 1.000 KO redundancy ~ watemp 
174 0.414 0.115 1.000 KO redundancy ~ watemp 
175 0.414 0.114 1.000 KO redundancy ~ watemp 
176 0.149 0.115 1.000 KO redundancy ~ watemp 
177 0.414 0.114 1.000 KO redundancy ~ watemp 
178 0.149 0.114 1.000 KO redundancy ~ watemp 
179 0.461 0.010 1.000 KO redundancy ~ watemp 
180 0.383 0.127 1.000 KO redundancy ~ watemp 
181 0.383 0.127 1.000 KO redundancy ~ watemp 
182 0.383 0.127 1.000 KO redundancy ~ watemp 
183 0.383 0.127 1.000 KO redundancy ~ watemp 
184 0.429 -0.126 1.000 KO redundancy ~ watemp 
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185 0.142 0.134 1.000 KO redundancy ~ watemp 
186 0.314 0.093 1.000 KO redundancy ~ watemp 
187 0.369 0.168 1.000 KO redundancy ~ watemp 
188 0.149 0.119 1.000 KO redundancy ~ watemp 
189 0.429 0.165 1.000 KO redundancy ~ watemp 
190 0.242 0.266 1.000 KO redundancy ~ watemp 
191 0.174 0.122 1.000 KO redundancy ~ watemp 
192 0.265 0.138 1.000 KO redundancy ~ watemp 
193 0.114 0.086 1.000 KO redundancy ~ watemp 
194 0.277 0.127 1.000 KO redundancy ~ watemp 
195 0.052 0.171 1.000 KO redundancy ~ watemp 
196 0.314 0.138 1.000 KO redundancy ~ watemp 
197 0.165 0.066 1.000 KO redundancy ~ watemp 
198 0.010 0.184 1.000 KO redundancy ~ watemp 
199 0.081 0.117 1.000 KO redundancy ~ watemp 
200 0.221 0.075 1.000 KO redundancy ~ watemp 
201 0.149 0.109 1.000 KO redundancy ~ watemp 
202 0.157 0.127 1.000 KO redundancy ~ watemp 
203 0.221 0.176 1.000 KO redundancy ~ watemp 
204 0.221 0.099 1.000 KO redundancy ~ watemp 
205 0.414 0.044 1.000 KO redundancy ~ watemp 
206 0.495 0.034 1.000 KO redundancy ~ watemp 
207 0.012 0.187 1.000 KO redundancy ~ watemp 
208 0.565 -0.008 1.000 KO redundancy ~ watemp 
209 0.127 0.097 1.000 KO redundancy ~ watemp 
210 0.174 0.125 1.000 KO redundancy ~ watemp 
211 0.211 0.069 1.000 KO redundancy ~ watemp 
212 0.211 0.069 1.000 KO redundancy ~ watemp 
213 0.174 0.125 1.000 KO redundancy ~ watemp 
214 0.174 0.125 1.000 KO redundancy ~ watemp 
215 0.253 0.005 1.000 KO redundancy ~ watemp 
216 0.327 0.067 1.000 KO redundancy ~ watemp 
217 0.121 0.156 1.000 KO redundancy ~ watemp 
218 0.429 0.014 1.000 KO redundancy ~ watemp 
219 0.192 0.154 1.000 KO redundancy ~ watemp 
220 0.231 0.126 1.000 KO redundancy ~ watemp 
221 0.221 0.131 1.000 KO redundancy ~ watemp 
222 0.221 0.130 1.000 KO redundancy ~ watemp 
223 0.221 0.128 1.000 KO redundancy ~ watemp 
224 0.221 0.127 1.000 KO redundancy ~ watemp 
225 0.678 -0.025 1.000 KO redundancy ~ watemp 
226 0.174 0.100 1.000 KO redundancy ~ watemp 
227 0.004 0.312 1.000 KO redundancy ~ watemp 
228 0.127 0.194 1.000 KO redundancy ~ watemp 
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229 0.108 0.199 1.000 KO redundancy ~ watemp 
230 0.183 0.170 1.000 KO redundancy ~ watemp 
231 0.183 0.169 1.000 KO redundancy ~ watemp 
232 0.068 0.170 1.000 KO redundancy ~ watemp 
233 0.398 0.040 1.000 KO redundancy ~ watemp 
234 0.052 0.178 1.000 KO redundancy ~ watemp 
235 0.383 0.028 1.000 KO redundancy ~ watemp 
236 0.369 0.029 1.000 KO redundancy ~ watemp 
237 0.142 0.168 1.000 KO redundancy ~ watemp 
238 0.369 -0.006 1.000 KO redundancy ~ watemp 
239 0.242 0.105 1.000 KO redundancy ~ watemp 
240 0.461 0.040 1.000 KO redundancy ~ watemp 
241 0.478 0.038 1.000 KO redundancy ~ watemp 
242 0.478 0.039 1.000 KO redundancy ~ watemp 
243 0.478 0.039 1.000 KO redundancy ~ watemp 
244 0.165 0.037 1.000 KO redundancy ~ watemp 
245 0.063 0.214 1.000 KO redundancy ~ watemp 
246 0.086 0.175 1.000 KO redundancy ~ watemp 
247 0.086 0.176 1.000 KO redundancy ~ watemp 
248 0.081 0.179 1.000 KO redundancy ~ watemp 
249 0.779 -0.043 1.000 KO redundancy ~ watemp 
250 0.091 0.173 1.000 KO redundancy ~ watemp 
251 0.758 -0.069 1.000 KO redundancy ~ watemp 
252 0.461 0.024 1.000 KO redundancy ~ watemp 
253 0.461 0.024 1.000 KO redundancy ~ watemp 
254 0.174 0.095 1.000 KO redundancy ~ watemp 
255 0.157 0.042 1.000 KO redundancy ~ watemp 
256 0.640 0.000 1.000 KO redundancy ~ watemp 
257 0.102 0.184 1.000 KO redundancy ~ watemp 
258 0.052 0.226 1.000 KO redundancy ~ watemp 
259 0.678 -0.027 1.000 KO redundancy ~ watemp 
260 0.314 0.063 1.000 KO redundancy ~ watemp 
261 0.565 0.072 1.000 KO redundancy ~ watemp 
262 0.231 0.152 1.000 KO redundancy ~ watemp 
263 0.277 0.036 1.000 KO redundancy ~ watemp 
264 0.021 0.233 1.000 KO redundancy ~ watemp 
265 0.060 0.219 1.000 KO redundancy ~ watemp 
266 0.327 0.114 1.000 KO redundancy ~ watemp 
267 0.445 0.008 1.000 KO redundancy ~ watemp 
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268 0.529 0.006 1.000 KO redundancy ~ watemp 
269 0.102 0.180 1.000 KO redundancy ~ watemp 
270 0.341 0.057 1.000 KO redundancy ~ watemp 
271 0.114 0.185 1.000 KO redundancy ~ watemp 
272 0.383 0.126 1.000 KO redundancy ~ watemp 
273 0.026 0.242 1.000 KO redundancy ~ watemp 
274 0.076 0.224 1.000 KO redundancy ~ watemp 
275 0.068 0.154 1.000 KO redundancy ~ watemp 
276 0.461 0.019 1.000 KO redundancy ~ watemp 
277 0.108 0.210 1.000 KO redundancy ~ watemp 
278 0.108 0.212 1.000 KO redundancy ~ watemp 
279 0.231 0.110 1.000 KO redundancy ~ watemp 
280 0.659 -0.022 1.000 KO redundancy ~ watemp 
281 0.063 0.119 1.000 KO redundancy ~ watemp 
282 0.001 0.318 0.209 KO redundancy ~ watemp 
283 0.096 0.107 1.000 KO redundancy ~ watemp 
284 0.547 0.012 1.000 KO redundancy ~ watemp 
285 0.414 0.050 1.000 KO redundancy ~ watemp 
286 0.383 0.061 1.000 KO redundancy ~ watemp 
287 0.383 0.064 1.000 KO redundancy ~ watemp 
288 0.565 0.015 1.000 KO redundancy ~ watemp 
289 0.015 0.239 1.000 KO redundancy ~ watemp 
290 0.221 0.099 1.000 KO redundancy ~ watemp 
291 0.211 0.162 1.000 KO redundancy ~ watemp 
292 0.211 0.162 1.000 KO redundancy ~ watemp 
293 0.211 0.162 1.000 KO redundancy ~ watemp 
294 0.211 0.161 1.000 KO redundancy ~ watemp 
295 0.006 0.215 1.000 KO redundancy ~ watemp 
296 0.174 0.167 1.000 KO redundancy ~ watemp 
297 0.043 0.236 1.000 KO redundancy ~ watemp 
298 0.242 0.135 1.000 KO redundancy ~ watemp 
299 0.015 0.197 1.000 KO redundancy ~ watemp 
300 0.414 0.141 1.000 KO redundancy ~ watemp 
301 0.461 0.109 1.000 KO redundancy ~ watemp 
302 0.355 0.132 1.000 KO redundancy ~ watemp 
303 0.265 0.127 1.000 KO redundancy ~ watemp 
304 0.174 0.255 1.000 KO redundancy ~ watemp 
305 0.369 0.021 1.000 KO redundancy ~ watemp 
306 0.004 0.198 1.000 KO redundancy ~ watemp 
307 0.327 0.246 1.000 KO redundancy ~ watemp 
308 0.011 0.243 1.000 KO redundancy ~ watemp 
309 0.314 0.049 1.000 KO redundancy ~ watemp 
310 0.035 0.249 1.000 KO redundancy ~ watemp 
311 0.253 0.164 1.000 KO redundancy ~ watemp 
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312 0.253 0.164 1.000 KO redundancy ~ watemp 
313 0.174 0.184 1.000 KO redundancy ~ watemp 
314 0.000 0.550 0.001 KO redundancy ~ watemp 
315 0.046 0.257 1.000 KO redundancy ~ watemp 
316 0.046 0.257 1.000 KO redundancy ~ watemp 
317 0.033 0.299 1.000 KO redundancy ~ watemp 
318 0.003 0.354 1.000 KO redundancy ~ watemp 
319 0.096 0.242 1.000 KO redundancy ~ watemp 
320 0.004 0.258 1.000 KO redundancy ~ watemp 
321 0.277 0.171 1.000 KO redundancy ~ watemp 
322 0.277 0.162 1.000 KO redundancy ~ watemp 
323 0.091 0.242 1.000 KO redundancy ~ watemp 
324 0.277 0.163 1.000 KO redundancy ~ watemp 
325 0.277 0.163 1.000 KO redundancy ~ watemp 
326 0.004 0.366 1.000 KO redundancy ~ watemp 
327 0.121 0.202 1.000 KO redundancy ~ watemp 
328 0.121 0.202 1.000 KO redundancy ~ watemp 
329 0.020 0.248 1.000 KO redundancy ~ watemp 
330 0.183 0.178 1.000 KO redundancy ~ watemp 
331 0.006 0.367 1.000 KO redundancy ~ watemp 
332 0.001 0.275 0.329 KO redundancy ~ watemp 
333 0.211 0.091 1.000 KO redundancy ~ watemp 
334 0.231 0.076 1.000 KO redundancy ~ watemp 
335 0.049 0.266 1.000 KO redundancy ~ watemp 
336 0.277 0.161 1.000 KO redundancy ~ watemp 
337 0.001 0.324 0.509 KO redundancy ~ watemp 
338 0.038 0.235 1.000 KO redundancy ~ watemp 
339 0.201 0.146 1.000 KO redundancy ~ watemp 
340 0.201 0.146 1.000 KO redundancy ~ watemp 
341 0.017 0.225 1.000 KO redundancy ~ watemp 
342 0.174 0.222 1.000 KO redundancy ~ watemp 
343 0.142 0.132 1.000 KO redundancy ~ watemp 
344 0.023 0.182 1.000 KO redundancy ~ watemp 
345 0.121 0.133 1.000 KO redundancy ~ watemp 
346 0.121 0.136 1.000 KO redundancy ~ watemp 
347 0.121 0.133 1.000 KO redundancy ~ watemp 
348 0.002 0.278 0.628 KO redundancy ~ watemp 
349 0.242 0.132 1.000 KO redundancy ~ watemp 
350 0.068 0.207 1.000 KO redundancy ~ watemp 
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351 0.369 0.222 1.000 KO redundancy ~ watemp 
352 0.068 0.207 1.000 KO redundancy ~ watemp 
353 0.086 0.277 1.000 KO redundancy ~ watemp 
354 0.002 0.339 0.943 KO redundancy ~ watemp 
355 0.301 0.120 1.000 KO redundancy ~ watemp 
356 0.086 0.259 1.000 KO redundancy ~ watemp 
357 0.015 0.270 1.000 KO redundancy ~ watemp 
358 0.127 0.228 1.000 KO redundancy ~ watemp 
359 0.001 0.342 0.565 KO redundancy ~ watemp 
360 0.001 0.346 0.410 KO redundancy ~ watemp 
361 0.134 0.191 1.000 KO redundancy ~ watemp 
362 0.007 0.288 1.000 KO redundancy ~ watemp 
363 0.020 0.229 1.000 KO redundancy ~ watemp 
364 0.003 0.293 1.000 KO redundancy ~ watemp 
365 0.231 0.141 1.000 KO redundancy ~ watemp 
366 0.052 0.212 1.000 KO redundancy ~ watemp 
367 0.052 0.255 1.000 KO redundancy ~ watemp 
368 0.301 0.140 1.000 KO redundancy ~ watemp 
369 0.108 0.254 1.000 KO redundancy ~ watemp 
370 0.003 0.302 1.000 KO redundancy ~ watemp 
371 0.021 0.212 1.000 KO redundancy ~ watemp 
372 0.003 0.297 1.000 KO redundancy ~ watemp 
373 0.086 0.143 1.000 KO redundancy ~ watemp 
374 0.072 0.326 1.000 KO redundancy ~ watemp 
375 0.076 0.127 1.000 KO redundancy ~ watemp 
376 0.072 0.305 1.000 KO redundancy ~ watemp 
377 0.072 0.306 1.000 KO redundancy ~ watemp 
378 0.072 0.308 1.000 KO redundancy ~ watemp 
379 0.253 0.063 1.000 KO redundancy ~ watemp 
380 0.063 0.327 1.000 KO redundancy ~ watemp 
381 0.017 0.267 1.000 KO redundancy ~ watemp 
382 0.253 0.100 1.000 KO redundancy ~ watemp 
383 0.192 0.122 1.000 KO redundancy ~ watemp 
384 0.010 0.333 1.000 KO redundancy ~ watemp 
385 0.035 0.139 1.000 KO redundancy ~ watemp 
386 0.355 0.084 1.000 KO redundancy ~ watemp 
387 0.006 0.280 1.000 KO redundancy ~ watemp 
388 0.060 0.159 1.000 KO redundancy ~ watemp 
389 0.081 0.193 1.000 KO redundancy ~ watemp 
390 0.081 0.179 1.000 KO redundancy ~ watemp 
391 0.081 0.296 1.000 KO redundancy ~ watemp 
392 0.063 0.167 1.000 KO redundancy ~ watemp 
393 0.005 0.224 1.000 KO redundancy ~ watemp 
394 0.289 -0.220 1.000 KO redundancy ~ watemp 
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Leave-one-cluster-out tests output for the models of genome redundancy index. cluster = identifier of 
the phylogenetic cluster, p = p-value of the Wilcoxon signed rank test, median_effect = relative median 
difference in coefficient, padj = adjusted p-value, test = relationship that was tested. 
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v Supplementary methods 

A) DNA extraction protocol from alpine stream biofilms (rDNA) 

Remark: Every time you open the tubes make sure that there is no liquid on the lids by applying a short 
spin 

1. In a 1.5-ml tube add 10-20% (~300 ul) 0.1 mm Zirconium beads (Cole-Parmer 36270-62) 

per volume and 750 ml of Lysis buffer mixed with 0.5ul of RNase (100 mg/ml, Qiagen 

19101) 

2. Add 0.05 to 0.1 g and bead-beat at 6000 r/min, 2x 15sec-break 15sec (Precellys 24 

homogenizer) 

3. Incubate at 37 °C for 1 h with gentle agitation 

4. Spin samples, add 5 ul Proteinase K (20 mg/ml, Fisher Scientific Cat.No. 25530049) and 

mix a few times 

5. Incubate statically at 70 °C for 10 min 

6. Centrifuge at 12.000 x g for 1 min and transfer all supernatant to a new 1.5 ml microtube 

7. Spin samples and add 1 vol of Phenol:CHCl3:IAA (Fisher Scientific, 15593049) 

8. Mix thoroughly and centrifuge at 13.000 x g for 10 min 

9. Transfer aqueous phase into a new 1.5-ml tube and add 1 vol ml Chloroform – isoamyl 

alcohol mixture (Sigma, 25666) 

10. Mix thoroughly and centrifuge at 13.000 x g for 5 min 

11. Transfer supernatant to a new 2ml tube and then add 1/10th volume of 3M sodium acetate 

(pH 5.2) (Sigma S7899) 

12. Add 0.7 volumes of ice-cold Isopropanol (Sigma I9516) and mix thoroughly 

13. Precipitate DNA at -20 °C overnight 

14. Centrifuge at 12.000 x g at 4 °C for 15 min 

15. Remove supernatant and discard without disturbing the pellet 

16. Wash 2 times with 0.4 ml of 70% EtOH and centrifuge at 13.000 g at 4 °C for 10 min 
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17. Air-dry the pellet, and elute with 100 ul RNase-free, DNase-free water (Qiagen 129112) 

18. Let DNA pellet to dissolve o/n at 4 °C 

19. Use 2 ul sample to quantify DNA using Qubit HS dsDNA (Invitrogen Q32854) 

B) NCBI Accessions for Polaromonas genomes 

Name  AccessionID 

OUT1  GCF_001955735.1_ASM195573v1 

DB1  GCF_000013865.1_ASM1386v1 

DB2  GCF_000015505.1_ASM1550v1 

DB3 GCF_000282655.1_Polaromonas.strCF318_v1.0 

DB4  GCF_000688115.1_ASM68811v1 

DB5  GCF_000709345.1_Polaromonas_sp. 

DB6  GCF_001598235.1_ASM159823v1 

DB7  GCF_002001015.1_ASM200101v1 

DB8  GCF_002002705.1_ASM200270v1 

DB9  GCF_002379085.1_ASM237908v1 

DB10  GCF_002379095.1_ASM237909v1 

DB11  GCF_003711205.1_ASM371120v1 

DB12  GCF_009664225.1_ASM966422v1 

DB13  GCF_012584515.1_ASM1258451v1 

DB14  GCF_014641715.1_ASM1464171v1 

DB15  GCF_015751795.1_ASM1575179v1 

DB16  GCF_015752205.1_ASM1575220v1 

DB17  GCF_015752225.1_ASM1575222v1 

DB18  GCF_900103405.1_IMG-taxon_2636416056_annotated_assembly 
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DB19  GCF_900112285.1_IMG-taxon_2609459740_annotated_assembly 

DB20  GCF_900116715.1_IMG-taxon_2615840640_annotated_ass 
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v Supplementary note 

Sloan model summary: The dispersal rate coefficient (m) and the goodness of fit of the beta distribution 
model (R2) based on the Sloan neutral model analyses are indicated for New Zealand and Caucasus 
with respect to the metabarcoding information per amplicon sequence variant (ASV). 

 16S rRNA gene amplicons 18S rRNA gene amplicons 

 R2 m R2 m 

New Zealand -0.726 3.7E-04±4E-04 -0.204 4.3E-04±3E-04 

Caucasus -1.11 6.4E-04±5E-04 -0.527 0.57±0.31 
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v Supplementary data legends 

Supplementary data tables are available at the following link:  

https://www.nature.com/articles/s41467-022-29914-0 

Supplementary Data 1. CAZyme abundances 

Normalised abundances of the carbohydrate-active enzymes (CAZymes) across all samples. AA: 
auxilliary activities, CBM: non-catalytic carbohydrate-binding modules, CE: carbohydrate esterases, 
GH: glycoside hydrolases, GT: glycosyltransferases, PL: polysaccharide lyases, and SLH: S-layer 
homology domain enzymes. 

Supplementary Data 2. Public metagenomes 

Metadata including ecosystems and location of the publicly-available metagenomes used for 
comparing Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs. 

Supplementary Data 3. Enriched KEGG orthologs in epilithic biofilms. 

KEGG orthology (KO) genes enriched in epilithic biofilms compared to other metagenomic datasets. 
Gene enrichment was assessed using DEseq2, where the adjusted p-value < 0.05 was considered to be 
significant. 

Supplementary Data 4. COG functions enriched in GFS Polaromonas spp.. 

Clustered-orthologous genes (COG20) functions enriched in Polaromonas spp. compared to 
genomes available via RefSeq. Gene enrichment was assessed using DEseq2, where the adjusted p-
value < 0.05 was considered to be significant. 

Supplementary Data 5. Sample metadata. 

Sample metadata including physico-chemical parameters such as pH, turbidity, conductivity, 
dissolved organic carbon, temperature, and CO2 saturation. 

Supplementary Data 6. Accession information. 

NCBI sequence read archive (SRA) accession IDs for all samples used in the study including 
hyperlinks for each sample. 

Supplementary Data 7. Osmotic stress genes 

Gene counts for osmotic stress found in respective Phyla. 
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