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Optimal blade pitch control for enhanced
vertical-axis wind turbine performance

Sébastien Le Fouest1 & Karen Mulleners 1

Vertical-axis wind turbines are great candidates to enable wind power
extraction in urban and off-shore applications. Currently, concerns around
turbine efficiency and structural integrity limit their industrial deployment.
Flow control can mitigate these concerns. Here, we experimentally demon-
strate the potential of individual blade pitching as a control strategy and
explain the flow physics that yields the performance enhancement. We per-
form automated experiments using a scaled-down turbinemodel coupled to a
genetic algorithm optimiser to identify optimal pitching kinematics at on- and
off-design operating conditions. We obtain two sets of optimal pitch profiles
that achieve a three-fold increase in power coefficient at both operating con-
ditions compared to the non-actuated turbine and a 77% reduction in
structure-threatening load fluctuations at off-design conditions. Based on flow
field measurements, we uncover how blade pitching manipulates the flow
structures to enhance performance. Our results can aid vertical-axis wind
turbines increase their much-needed contribution to our energy needs.

According to the International Energy Agency, the installed wind
power capacity should increase 11 times between 2020 and 2050 to
meet the global net-zero emissions by 2050 objective1. Wind power is
expected to cover up to 31% of the electricity supply by 2050, which is
logistically challenging as the overall capacity is limited by the avail-
ability of exploitable land2,3. The installation of new wind farms alters
wind conditions and decreases the performance of existing downwind
farms4,5. An increase in diversity of wind turbine technology can help
mitigate concerns around land use and wake interference6,7.

Vertical-axis wind turbines provide an attractive design that
complements their more ubiquitous horizontal-axis counterparts. By
adding vertical-axis turbines to densify existing hortizontal-axis wind
turbine farms, the farm’s power output is increased by up to an order
of magnitude8–10. Vertical-axis, or cross-flow, turbines rotate about an
axis orthogonal to the incoming flow, whichmakes them insensitive to
wind direction and allows them to prosper in vortex-dominated urban
flows9,10. They typically operate at lower rotational frequencies, which
significantly reduces noise and the risk of collision with avian
species11,12. Crucial mechanical parts in the drive train can be placed
close to the ground. This greatly facilitates maintenance, reduces
structural loads, and lowers the centre ofmass, which benefits floating
off-shore applications13,14.

The aerodynamic complexity of vertical-axis wind turbines has
hampered their industrial development and deployment. The turbine
blades encounter varying flow conditions throughout a single turbine
rotation, even in a steady wind. When the turbine operates at a low tip-
speed ratio λ, which is the ratio between the blade velocityΩR, and the
wind velocity U∞, the blades perceive significant amplitude changes in
the angle of attack and relative wind velocity (Fig. 1). These varying
flow conditions can give rise to unsteady flow separation or dynamic
stall15–18.

In general, dynamic stall refers to the succession of aerodynamic
events that occur when an airfoil’s angle of attack exceeds its critical
static stall angle following a dynamic motion19. Early observations of
dynamic stall were made by Kramer20. Later, it became a topic of
interest in helicopter rotor aerodynamics, which motivated a series of
investigations using pitching and surging airfoils that revealed the
sequence of events that lead to full stall on unsteady airfoils. This
sequence consists of the spread of flow reversal over the chord, the
formation of a large-scale leading edge stall vortex and associated lift
overshoot, followed by the increase of the nose-down pitching
moment and vortex shedding21–24.

More recently, dynamic stall is studied in the context of vertical-
axis and cross-flow turbines using computational modelling25–27, and
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experiments using particle image velocimetry (PIV)17,18,28,29. These
investigations show that the power coefficient of vertical axis tur-
bines drops significantly at low tip-speed ratios (λ < 2.5), where the
effective angle of attack increases well above the blade’s critical stall
angle for extended periods of time (Fig. 1c), leading to the occur-
rence of deep dynamic stall. High power coefficient are achieved at
intermediate tip-speed ratios, around λ ≈ 311,27,30. For high tip-speed
ratios (λ > 4), the effective angle of attack experienced by the turbine
blade remains low throughout the turbine’s rotation, resulting in low
aerodynamic forces and power coefficients. For these reasons,
vertical-axis wind turbines typically operate at intermediate tip-
speed ratios.

Forwind turbine applications, the large-scale vortex shedding and
load fluctuations associated with dynamic stall are considered unde-
sirable because they lead to a significant loss in efficiency and load
transients that jeopardise the turbine’s structural integrity31–33. Control
strategies at the blade scale include surface actuators, such as plasma
actuators34,35 or blowing and suction slots36,37. The goal of these stra-
tegies is to locally energise the boundary layer near the surface and
delay or prevent separation. High installation and maintenance cost
have hampered the commercial deployment of suchblade surfaceflow
actuators.

Alternative strategies at the turbine level to control the perfor-
mance of vertical-axis turbines are intracycle control of the turbine’s
rotational velocity12,38 or blade pitching11,25,39. These two strategies
modify the unsteady blade kinematics within one turbine rotation
with the goal to control the overall turbine power. Both methods
modify the blade’s effective angle of attack to manipulate the
severity of the flow separation and the timing of the stall onset and
vortex shedding. The stall delay and vortex shedding timescales are
largely independent of the rotor frequency and on the order of a few

convective times40,41. The duration of the turbine rotation in con-
vective times based on the blade velocity equals π(c/D)−1 with c/D the
chord-to-diameter ratio42. Most vertical-axis turbines have a chord-
to-diameter ratio below 0.2 and a turbine rotation duration above 15
convective times. The actuation frequency required to control the
blade kinematics should be of the same order of magnitude as the
turbine’s rotational frequency. Surface actuators target the fast
evolution of the blade’s boundary layer when stall onset is reached
and need to operate at frequencies that are orders of magnitude
larger than the turbine rotational frequency and the large-scale
vortex shedding frequency.

Blade pitching provides the most direct way to modify blade
kinematics, but requiresmoremechanical components than intracycle
rotational velocity control. Static and synchronous blade pitching are
mechanically simpler than individual blade pitching, but the latter is
desirable for its versatility. Here, we demonstrate the potential of
individual dynamic blade pitching to enhance the efficiency and
maintain the structural integrity of vertical-axis wind turbines across
tip-speed ratios using our unique set-up that consist of a scaled-down
one bladed instrumented turbine model with dynamic blade pitching
capabilities28. The turbine’s efficiency is conventionally expressed by
its power coefficient, which is defined as the ratio of the net mean
power generated by the turbine Pnet and the power carried by the flow
crossing the blade’s swept area Aswept:

CP =
Pnet

1
2ρU

3
1Aswept

: ð1Þ

The net power Pnet accounts for the power cost of actuating the tur-
bine blade.Moredetails on the calculationof the power coefficient can
be found in the Methods.

Fig. 1 | Aerodynamics of a vertical-axis wind turbine blade. a Schematic repre-
sentation of an H-type vertical axis turbine with radius R viewed from above. The
force direction convention used in this study is represented by the positive direc-
tion of the radial force FR, azimuthal force Fθ, and pitching moment around the
quarter-chordMz. b Zoomed-in view of the velocity triangle at the blade level
showing the blade velocity ΩR, the wind velocity U∞, and the resulting effective
velocity Ueff as well as the effective angle of attack αeff and pitch angle αpitch.

c Variation of the effective angle of attack αeff as a function of the blade’s azimuthal
positionθ fordifferent tip-speed ratios.dVariationof the effectiveflowvelocityUeff

seen by the turbine blade as a function of the blade’s azimuthal position θ for
different tip-speed ratios. The amplitude and asymmetry of the variations in
effective angle of attack and effective velocity increase with decreasing tip-speed
ratio λ. For tip-speed ratios below λ ≈ 3, the magnitude of the effective angle of
attack exceeds the static stall angle of attack αss, indicated with a dashed line in (c).
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Results
Optimisation objectives and wind scenarios
Our two optimisation objectives are maximising the power coefficient
while minimising the aerodynamic load fluctuations. These objectives
are expected to compete in the search for optimal blade kinematics.
Optimising an unsteady aerodynamic system in a vast and non-linear
design space with competing objectives is challenging for conven-
tional gradient-based methods43–45. This challenge motivated the use
of alternative optimisation techniques such as evolutionary or genetic
algorithms. Genetic algorithms mimic natural evolution by iteratively
generating and testing populations, promoting the reproduction of
the fittest members through combinations and mutations based on
user-selected objectives. Selecting multiple competing objectives will
typically give rise to a set of optimal trade-off or Pareto-optimal
solutions46. Genetic algorithms have repeatedly proved a strong apti-
tude to identify Pareto-optimal sets in complex multi-objective opti-
misations of unsteady aerodynamic systems over the past three
decades43,47–50. This aptitude stems from their inherent resilience to
getting stuck in local minima, their ability to identify multiple optimal
solution per generation, and their relative simplicity and
interpretability46.

We couple the turbine model to a genetic algorithm-based opti-
miser and perform series of automated experiments to determine
optimal pitching kinematics for two wind scenarios that are typically
encountered by industrial wind turbines. For a given wind turbine
geometry, there is an optimal tip-speed ratio at which the turbine
reaches its maximum power coefficient51. An industrial wind turbine
will tune its rotational frequency to operate at the optimal tip-speed
ratio for a given wind speed. Structural constraints limit themaximum
rotational frequency. Once the turbine reaches itsmaximumrotational
frequency, a further increase in wind speed will decrease the tip-
speed ratio.

The first scenario we consider relates to this off-design condi-
tion where excessively high wind speeds caused the turbine to
operate at a tip-speed ratio below its optimal value. Low tip-speed
ratios lead to prohibitively high and unsteady loads acting on the
turbine blades52. This high wind scenario threatens the turbine’s
structural integrity and is associated with a loss of efficiency. We
performed a tip-speed ratio sweep and determined that λ = 1.5 is
representative of a low tip-speed ratio for our turbine geometry
(Supplementary Fig. 1).

The second scenario deals with on-design conditions where the
non-actuated wind turbine is operating at its optimal tip-speed ratio,
which occurs at λ = 3.2 for our turbine geometry (Supplemen-
tary Fig. 1).

We assess the potential of dynamic blade pitching to ensure safe
and efficient turbine operation for both scenarios. The optimisation
objectives are increasing the turbine’s mean power coefficient and
reducing the blade pitching moment’s standard deviation. The latter
objective is used to quantify the intensity of undesirable load fluc-
tuations related to flow separation from wind turbine blades28.

The proposed pitching kinematics are a sum of sine waves with
three harmonics of the turbine rotational frequency Ω:

αpitchðtÞ=A0 +
X3
n= 1

An sinðnΩt +θnÞ , ð2Þ

where A0 is a fixed angle offset, An is the amplitude and θn the phase
shift of the nth harmonic. This leads to a total of seven optimisation
parameters. We use harmonics of the turbine frequency to enforce
periodicity and use only the first three harmonics, similar to what is
done in12. The first three harmonics allow for sufficiently large local
pitching gradients andphase shifts to change the extremevalues of the
effective angle of attack and when it exceeds its critical limits without
introducing higher frequency vibrations.

The experimental set-up and the optimisation routine are sum-
marised in Fig. 2 and discussed in detail in the Methods. A compre-
hensive description of the selected parameters, constraints, and
settings of the genetic algorithm is also given in the Methods.

Optimisation of pitching kinematics for off-design operation
The results of the bi-objective blade pitching optimisation for the
turbine operating at an off-design tip-speed ratio of λ = 1.5 are sum-
marised in Fig. 3. Theperformanceof all 1800 tested individuals during
the optimisation are presented in Fig. 3a in terms of their mean power
coefficient, normalised by the mean power coefficient of the non-
actuated turbine, and the standard deviation of the pitching moment,
also normalised by the standard deviation of the non-actuated turbine.
The best-fit individuals that form a Pareto front are coloured corre-
sponding to their relative mean power coefficient. An individual is
considered part of the Pareto front or Pareto-optimal when no other
individual scored better for both objectives. We further analyse the
Pareto-optimal kinematics to highlight their common features and
traits.

The optimal individuals improve their power coefficient by a
factor 2.5 to 3.2 and reduce thepitchingmoment standarddeviationby
60% to 77% (Fig. 3a). Overall, both objectives can be achieved hand in
hand and the remaining trade-off between increasing performance
and reducing fluctuations is tied to subtle changes in the pitching
kinematics.

The Pareto-optimal pitching kinematics all execute an outward
pitching manoeuvre during the upwind phase, followed by inward
pitching manoeuvre during the downwind phase (Fig. 3b). The initial
outward pitching manoeuvre serves to reduce the blade’s effective
angle of attack, delay the moment the critical static stall angle is
exceeded, and reduce the maximum effective angle of attack (Fig. 3c,
d). The blade pitching kinematics that yield the highest power coeffi-
cients have a higher amplitude of the mean offset angle (Fig. 3e) and
have a higher contribution of the thirdorder terms from the sine-series
described by equation (2) (Fig. 3f). The highest power coefficient
kinematics with a large amplitude of A3 also yield the lowest reduction
in the pitchingmoment fluctuations. The variations for the amplitudes
of all sine terms are presented in Supplementary Fig. 2. These more
complicated kinematics perform well in our controlled laboratory
environment, but for general applications, we would recommend
using the simpler kinematics that are likely to be more robust and
further reduce the pitching moment standard deviation.

The inward pitching manoeuvre during the downwind phase
serves to decrease the magnitude of the blade’s effective angle of
attack below the critical stall angle between t/T =0.70 and t/T = 0.78
for all Pareto-optimal solutions (Fig. 3c). The magnitude of the effec-
tive angle of attack of the non-actuated turbine blade remains above
the critical limit during most of the downwind (∣αeff∣ > αss from
t/T =0.52 to t/T =0.90) which prevents the turbine from creating sig-
nificant power during the downwind phase (Fig. 4). The earlier
recovery in the Pareto-optimal blade pitching cases allows for a second
region of substantial power production in the second half of the
downwind phase (Fig. 4).

To uncover the impact of the blade kinematics on the power
coefficient, we analyse the combined results of the time-resolved
power coefficient andflowfieldmeasurements in Fig. 4a, b for the non-
actuated and an exemplary Pareto-optimal pitching blade (indicated
by the coloured pentagon symbol in Fig. 3a). The non-actuated case is
characterised by the occurrence of deep dynamic stall (Fig. 4a). As the
blade climbs upwind, a leading-edge vortex forms, increases the
leading edge suction, and allows for a peak in power production
around θ = 80°. When the vortex separates from the blade before the
end of the upwind phase, the blade forces and the power coefficient
collapse. In the downwind half of the cycle, the outward side of the
airfoil becomes the suction side, and the flow remains mostly
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separated due to the high magnitude of the effective angle of attack.
This leads to limited power extraction during the downwind phase.

The Pareto-optimal pitching kinematics begin the upwind phase
by pitching the blade outwards, reducing the blade’s effective angle of
attack. This manoeuvre delays flow separation and redirects the
aerodynamic force towards the direction tangential to the blade’s path
(Fig. 4b). A coherent stall vortex is not observed until the end of the
upwind phase, and the vortex is significantly smaller than in the non-
actuated case. The effective delay of the upwind dynamic stall vortex
formation allows the blade to obtain a positive power coefficient
during the entire upwind phase. When the blade enters the downwind
phase, the blade executes a rapid inward pitchmanoeuvre, forcing the
stall vortex to shed (Fig. 4b, 180° < θ < 225°). By controlling and
delaying the timing of the vortex shedding, the stall vortex is now shed
towards the side of the rotor to avoid blade-vortex interactions and
associated load fluctuations. The absence of blade-vortex interactions
combined with the early drop in the magnitude of the effective angle
of attack promotes flow reattachment and the occurrence of a pro-
minent second region of power extraction during the downwind
phase. The potential to promote flow reattachment by a fast pitching
manoeuvre has been demonstrated previously by Prangemeier53 for
plunging airfoils.

All Pareto-optimal kinematics show the same key features that
explain their improved performance at off-design operation. An initial
outward pitching manoeuvre delays the onset of the upwind dynamic
stall and redirects the aerodynamic force forwards during the upwind
phase. The timing of stall onset θ*, identified as the moment when the

power coefficient dropsbelowzero after theupwindpower generation
phase, is delayed from θ* = 125° (t/T =0.35) in the non-actuated case to
180° < θ* < 190° (0.50< t/T <0.53) for the Pareto-optimal solutions
(Fig. 4c). The subsequent inward pitching motion controls the timing
and the direction of the shedding of the stall vortex to avoid blade-
vortex interactions and allows for early flow reattachment. These
combined effects substantially increase the power generated during
the downwind phase (Fig. 4d). All Pareto-optimal solutions reach
approximately the same average power coefficient of 0.37 over the
upwind phase, which is an improvement by a factor of 2.8 with respect
to the non-actuated case. The differences between the Pareto-optimal
kinematics mainly affect the downwind phase. Overall, blade pitching
is a highly effective solution to keep wind turbines safe while boosting
their performance during off-design operation.

Optimisation of pitching kinematics for on-design operation
Ideally, vertical-axis wind turbines operate most of the time at on-
design tip-speed ratios. To confirm that individual bladepitching is still
worth the investment under ideal operating condition, we also con-
ducted the optimisation experiments at the tip-speed ratio of λ = 3.2,
where our non-actuated experimental turbine model reaches its
highest power coefficient. The results are summarised in Fig. 5.

The Pareto-front has two branches, a lower branch where
σ(Mz) ≤ σ(Mz,na), and a higher branch where σ(Mz) > σ(Mz,na) (Fig. 5a).
The Pareto-optimal individuals in the higher branch improve their
power coefficient by a factor of 2.4 to 2.9 at the expense of increasing
their load fluctuations up to 186%. The level of loadfluctuations for the

Fig. 2 | Experimental apparatus and methods. Cross-section view of the experi-
mental set-up including the wind turbinemodel, the light sheet, the rotatingmirror
system, and high-speed camera for particle image velocimetry (PIV). The optimi-
sation of the blade kinematics fully relies on the blade force measurements. The

routine followed by the genetic algorithm for each individual is outlined in the top
right. An idea of the camera’s field of view is shown in the bottom right by the
maximum intensity image over a time series of 50 images taken during the for-
mation of a large dynamic stall vortex.
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non-actuated turbine at this optimal tip-speed ratio is low and is not a
concern for the safe operation of the turbine. If we do not want to risk
increasing the level of loadfluctuations,we canopt for solutions on the
lower branch of the Pareto front, which can still improve their power
coefficient up to a factor of 2.3 while maintaining the same load fluc-
tuations as the non-actuated case.

The pitching kinematics of the individuals on the lower branch of
the Pareto front resemble simple low amplitude sinusoidal motions at
the rotor frequency (Fig. 5b). This leads to a reduction in the gradient
of the effective angle of attack during extended parts of the cycle
(Fig. 5c) and a maximum effective angle of attack around 5°, which is
well below the critical static stall limit (Fig. 5d). All Pareto-optimal
kinematics have higher offset angle magnitudes ∣A0∣ compared to the
optimal pitching solutions at off-design operation (Fig. 5e). The high-
est power-extracting pitching kinematics have a higher contribution of
the higher harmonics (Fig. 5f).

The development of the power coefficient and the vorticity
fields for the non-actuated blade and an exemplary Pareto-optimal
pitching blade at λ = 3.2 (indicated by the coloured pentagon symbol
in Fig. 5a) are presented in Fig. 6. The non-actuated blade is char-
acterised by the occurrence of light dynamic stall (Fig. 6a). Com-
pared to the situation at lower tip-speed ratio, the upwind separation
region does not evolve into a coherent vortex. The moderate effec-
tive angle of attack and absence of deep dynamic stall allow the
turbine at λ = 3.2 to generate a positive power coefficient during
most of the upwind phase. During the downwind phase, the flow
reattaches. The fluid dynamic force acting on the non-actuated blade

is significantly lower during the downwind than during the
upwind phase.

The main benefit of blade pitching during off-design operation is
the efficient delay and mitigation of deep stall and a substantial
increase in the power production during the upwind phase. For on-
design operation, deep stall is absent and the effect of blade pitching is
most prominent during the downwind phase (Fig. 6b, d). The optimal
pitching kinematics on the lower branch of the Pareto front achieve a
reduction in the load fluctuations during the downwind phase by
reducing the effective angle of attack magnitude. The magnitude of
the effective angle of attack minimum for these individuals barely
exceeds the critical static stall angle (indicated by the colour of the
triangles in Fig. 65c). Theminimum effective angle of attack is reached
within the first third of the downwind phase (triangles in Fig.6 5c) and
the magnitude of the effective angle of attack has dropped below the
static stall limit in the first half of the downwind phase (circles in
Fig. 65c). This strategy reduces the load fluctuations, but it limits the
improvement in power production during the downwind phase. The
kinematics that yield the strongest reduction in the load fluctuations
even have negative power production during the downwind
phase (Fig. 6d).

The optimal pitching kinematics on the upper branch of the Par-
eto front reach a magnitude of the minimum effective angle of attack
up to 9° above the static stall value (indicated by the colour of the
triangles in Fig.6 5c). The time at which they reach the minimum
effective angle converges to a constant value around θ = 240°, and the
time at which their angle of attack returns below the static stall angle

Fig. 3 | Optimal pitching kinematics for off-design operation. a Normalised
mean standard deviation of the pitching moment versus normalised mean power
coefficient for all tested individuals. The individuals that form a Pareto front are
coloured corresponding to their normalised mean power coefficient. b Temporal
evolution of the blade pitch angle for all individuals (light grey) and Pareto-optimal
individuals (coloured). A negative pitch angle corresponds to an outward rotation
of the blade’s leading edge and vice versa. The line colours refer to the normalised
mean power coefficient. c Temporal evolution of the effective angle of attack for

the non-actuated individual (black), all tested individuals (light grey) and Pareto-
optimal individuals (coloured). d Maximum value of the effective angle of attack
reached during the upwind phase, for the different Pareto-optimal solutions sorted
according to their relative fluctuation level. e Mean offset angle (A0) and (f)
amplitude of the third harmonic (A3) of the Pareto-optimal pitching kinematics.
(Source data are publicly available on Zenodo https://doi.org/10.5281/zenodo.
10776724).
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converges to θ = 270° (circles in Fig.6 5c). The non-actuated blades
operate at effective angles of attack beyond the static stall angle for a
longer duration. The magnitude of the effective angle of attack of the
non-actuated blades only reaches safe values at θ = 304°, which is after
two thirds of the downwind phase. Optimal pitching kinematics pro-
mote early flow reattachment by accelerating when their effective
angle of attack crosses the static stall angle limit. The reattached flow
allows for the formation of a downwind leading edge vortex, yielding
an additional power production region in the second part of the
downwind phase for the kinematics on the upper branch of the
Pareto front.

The positive effect of flow reattachment early in the downwind
phase is clearly visible when comparing the downwind snapshots for
the non-actuated and actuated case in Fig. 6a, b. The boundary layer in
the non-actuated case is not yet fully reattached at θ = 270° which is
evidenced by the positive vorticity in the wake and little to no force is
generated under these circumstances. In the actuated case, shown in
Fig. 6b, no signs of flow separation on the outer side are visible and
little to no positive vorticity is present in the wake for 180° < θ < 270°.
The absence of flow separation combined with high magnitude
effective angles of attack close to the stall limit lead to the accumula-
tion of positive vorticity near the leading edge of the actuated airfoil at
θ = 315° and a substantially larger force vector than in the non-actuated
case even though the instantaneous geometric conditions are similar
at θ = 315°. The unsteady force response is strongly affectedby the past
evolution of the flow and not solely governed by the instantaneous
angles of attack and effective flow velocities. The accurate prediction
of these unsteady history effects is still a major challenge for

theoretical modelling but our data-driven approach is able to find
dynamic pitch angle solutions that exploit them.

All Pareto-optimal kinematics yield a similar improvement of the
average power coefficient during the upwind phase and most of the
variations are observed during the downwind phase (Fig. 6d). The
increase in the downwind power coefficient goes together with an
increase in thefluctuation levels. The kinematics that lead to the lowest
fluctuations do not extract power during the downwind phase. The
higher power extracting kinematics achieve an even higher power
coefficient during the downwind than during the upwind phase. These
results demonstrate that even at on-design tip-speed ratios, blade
pitching offers the opportunity to further improve the power extrac-
tion without compromising the structural resilience of the wind
turbines.

Discussion
In this study, we demonstrate that individual blade pitching is an
effective control strategy to improve the performance of vertical-axis
wind turbines across tip-speed ratios. A family of optimal blade
pitching kinematics are derived with an in-situ experimental optimi-
sation using a reduced-scale turbine model coupled to a genetic
algorithm. In the controlled laboratory environment, optimal dynamic
blade pitching can achieve a threefold increase in turbine power
coefficient at both on- and off-design tip-speed ratios.

The two blade pitchingmanoeuvres that are key to success are an
outward pitch manoeuvre during the upwind phase and an inward
pitch manoeuvre during the downwind phase. The outward pitch
manoeuvre limits the overshoot of the effective angle of attack past

Fig. 4 | Physical insights intoperformance enhancement fromoptimalpitching
kinematics at off-design operation. Polar plot comparison of the phase-averaged
power coefficient at tip-speed ratio λ = 1.5 for both a the non-actuated case and
b exemplary optimal kinematics indicated by the coloured pentagon marker in
Fig. 3a. Phase-averaged normalised vorticity (ω!=∇× u!) fields are shown at eight
equally spaced azimuthal positions (θ = [0°: 45°: 360°]) to illustrate the develop-
ment of flow structures for both cases. The arrows indicate the size and directionof
the force acting on the blade. The dashed arrows inb indicate the size anddirection

of theblade force in the non-actuatedcase for comparison. cTimingof thedynamic
stall onset θ* for the different Pareto-optimal solutions sorted according to their
relative fluctuation level. d Comparison of the power extracted during the upwind
and downwind parts of the cycle for the Pareto-optimal solutions sorted according
to their relative fluctuation level. The shading in the background indicates the
values for the non-actuated case. (Source data are publicly available on Zenodo
https://doi.org/10.5281/zenodo.10776724).
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the critical stall angle and reorients the blade force towards the tan-
gential direction to increase power extraction during the upwind
phase. At off-design tip-speed ratios, this manoeuvre also delays
massive flow separation and perfectly times the dynamic stall vortex
shedding. By shedding the vortex toward the side at the beginning of
the downwind phase, we avoid undesirable vortex-blade interactions
during the rest of the downwind phase, which further aids to increase
the downwind efficiency and reduce load fluctuations. The downwind
inwardpitchmanoeuvre causes themagnitudeof the effective angle of
attack to quickly drop and remain near the value of the critical stall
angle to optimise the power extraction during the downwind phase.
This manoeuvre promotes flow reattachment and enables the forma-
tion of a second leading edge vortex, yielding a second power pro-
duction region in the downwind phase. Vertical-axis wind turbines
generally extract little to nopowerduring the downwindphaseand the
improvements achieved here are transformative gains in efficiency.
Deeper analysis on the influence of optimal individual blade pitching
on the aerodynamic properties of flow structures forming on the tur-
bine blade, and a comparison of these properties with sub-optimal
blade pitching kinematics, are further work.

A necessary and desirable next step is to test this control
mechanism at larger scale. Our experiments are conducted with a
motor-controlled, single-bladed reduced-scale turbine model, oper-
ated at a blade Reynolds number of Rec = (ρΩRc)/μ = 50000, where ρ
is the density and μ the dynamic viscosity of water. The turbine blade
is lightweight and has a small aspect ratio such that the required
moment to pitch the blade was two orders of magnitude smaller than

the torque experienced by the turbine’s central shaft for Pareto-
optimal individuals. An industrial wind turbine blade would have
greater actuation costs, potentially giving an edge to low amplitude
pitching kinematics. The motor-controlled turbine is deemed sui-
table to demonstrate the working principle of dynamic blade pitch-
ing and estimate its potential54. The primary mechanisms responsible
for the success of dynamic blade pitching demonstrated here are
linked to the blade-level physics and are likely to be robust to the
presence of a generator and the extension to a multi-blade turbine.
Generally, the power curves of single-blade and multiple-blade units
of conventional cross-flow turbines show reasonable overlap, as the
majority of the power is extracted during the upwind phase, where
the effect of additional blades is minor12. Our optimal pitching
kinematics substantially increase the power contribution during the
downwind phase and future validation is necessary to quantify the
improvement for multi-blade turbines operating at full-scale Rey-
nolds numbers and with increased levels of turbulence intensity. The
dynamic stall delay for pitching airfoils in clean inflow conditions is
largely independent of the Reynolds number55, and appears to be
more strongly affected by the free-stream turbulence56. Increased
levels of turbulence intensity can improve the performance of small-
scale vertical-axis wind turbines that operate at lower Reynolds
numbers by up to 20%, but the effect becomes negligible at larger
operational Reynolds numbers57,58. More detailed studies on the
effect of inflow turbulence on the performance of the wind turbines
and the robustness of the individual blade pitch control are
desirable.

Fig. 5 |Optimalpitchingkinematics foron-designoperation. aNormalisedmean
standard deviation of the pitching moment versus normalised mean power coef-
ficient for all tested individuals. The individuals that form a Pareto front are
coloured corresponding to their normalised mean power coefficient. b Temporal
evolution of the blade pitch angle for all individuals (light grey) and Pareto-optimal
individuals (coloured). A negative pitch angle corresponds to an outward rotation
of the blade’s leading edge and vice versa. The line colours refer to the normalised
mean power coefficient. c Temporal evolution of the effective angle of attack for

the non-actuated individual (black), all tested individuals (light grey) and Pareto-
optimal individuals (coloured). d Maximum value of the effective angle of attack
reached during the upwind phase, for the different Pareto-optimal solutions
sorted according to their relative fluctuation level. e Mean offset angle (A0) and
f amplitude of the third harmonic (A3) of the Pareto-optimal pitching kinematics.
(Source data are publicly available on Zenodo https://doi.org/10.5281/zenodo.
10776724).
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Future studies could also invest in developing closed-loop control
algorithms to increase the flexibility and adaptability of the individual
blade pitch control for unsteady and turbulent inflow conditions and
for perturbations caused by the wakes of additional blades in a multi-
bladed turbine. Closed-loop control attempts could also explore
alternative control objectives for more diverse application scenarios.
Insteadof striving for themaximumpower coefficient, an optimisation
that minimises the streamwise force experienced by the turbine as a
whole could be desirable, as high streamwise forces lead to heavy
stress on the turbine tower and are associated with large momentum
deficits in the wake. Blade pitching could also aim for optimal wake
recovery or wake steering in wind farm configurations. Com-
plementary efforts are desirable to improve ourmodelling capabilities
of the unsteady blade-level loads and the turbine-level performance to
better predict the impact of blade pitching and guide future turbine
andwind farm designs. Full-scale vertical-axis wind turbines with a 750
kWratedpower andbladepitching capabilities are already available on
the market. Dynamic blade pitching is a realistic and affordable
mechanism to achieve transformative gains in efficiency and robust-
ness of vertical-axis wind turbines.

Methods
Flow conditions
Experiments were conducted in a recirculating water channel with a
test section of 0.6m×0.6m× 3m and a maximum flow velocity of
1ms−1. The flow velocity, U∞, was set using a propeller-based anem-
ometer, to U∞ =0.56ms−1 for the tip-speed ratio λ = 1.5 case and to
U∞ =0.26ms−1 for λ = 3.2. The test section had transparent acrylic walls

that were bound by a metallic frame, providing optimal optical access
for velocity field measurements.

The variation of the effective angle of attack, defined as the angle
between the blade’s chord and the effective velocity vector, as a
function of the blade’s azimuthal position and the tip-speed ratio λ is
derived from trigonometry:

αeff ðθÞ= tan�1 sinθ
λ+ cosθ

� �
� αpitchðθÞ: ð3Þ

By convention, the effective angle of attack is positive when the
effective flow velocity hits the blade on the surface facing outward and
vice versa. The blade’s pitch angleαpitch is defined as the angle between
the blade’s chord and the tangent line to the blade’s path. By con-
vention, the pitch angle is positive when the leading edge of the blade
is rotated inward and vice versa.

The effective flow velocity Ueff seen by the turbine blade can also
be expressed relative to the incoming wind speed with respect to the
blade’s azimuthal position:

Ueff ðθÞ=U1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2λ cosθ+ λ2

q
: ð4Þ

Turbine model
We use a scaled-down model of a single-blade H-type Darrieus wind
turbine, mounted in the centre of the water channel’s test section. The
turbine diameter D was at 30 cm. The turbine blade had a NACA0018

Fig. 6 | Physical insights intoperformance enhancement fromoptimalpitching
kinematics at on-design operation. Polar plot comparison of the phase-averaged
power coefficient at tip-speed ratio λ = 3.2 for both (a) the non-actuated case and
(b) exemplary optimal kinematics indicated by the coloured pentagon marker in
Fig. 5a. Phase-averaged normalised vorticity fields are shown at eight equally
spaced azimuthal positions (θ = [0°: 45°: 360°]) to illustrate the development of
flow structures for both individuals. The arrows indicate the size and direction of
the force acting on the blade. The dashed arrows in (b) indicate the size and
direction of the blade force in the non-actuated case for comparison. c Phase angle
at which the minimum effective angle of attack is reach during the downwind part

of the rotation (triangles) and phase angle at which the magnitude of the effective
angle of attack drops below the critical static stall angle (circles) for the non-
actuated and Pareto-optimal cases as a function of the normalised power coeffi-
cient. Themarker colours indicate the effective angleof attack values relative to the
static stall angle at the respective phases. d Comparison of the power extracted
during the upwind and downwind parts of the cycle for the Pareto-optimal solu-
tions sorted according to their relative fluctuation level. The shading in the back-
ground indicates the values for the non-actuated case. (Source data are publicly
available on Zenodo https://doi.org/10.5281/zenodo.10776724).
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profilewith a spanof s = 15 cmand a chordof c = 6 cm, yielding a chord-
to-diameter ratio of c/D =0.2. The turbine blade was 3D printed using
photosensitive polymer resin (Formlabs Form 2 stereolithography),
sanded with fine P180 grit paper and covered with black paint.

The turbine’s compact geometry allowed for a relatively small
blockage ratio of 12.5%, based on the ratio of the blade’s frontal swept
area and the water channel’s cross section. The blade is held by a
cantilevered shaft such that there is no central strut interference with
the flow. Two circular splitter plates were placed on the sides of the
blade to reduce tip effects. At low tip-speed ratio (λ < 2.5), the effective
blockage was closer to 2.5%, which is the blockage ratio calculated
based on the ratio of the blade’s surface area to the water channel
cross-sectional area. A 2.5 chord length distance to the water channel’s
sidewalls was respected at all times. Even though a blockage of 12.5% is
likely to enhance thepower coefficient, theflowphysics and timescales
remain comparable to that of an unconfined turbine as demonstrated
by an investigation on a single-bladedwind turbine and a 32%blockage
ratio59. We mitigate the power coefficient enhancement by focusing
our analysis on the improvement achieved by the actuation relative to
the non-actuated turbine.

The turbinemodel was driven by a NEMA 34 steppermotor with a
0.05° resolution for the angular position. The rotational speed was at
Ω = 5.6 rad s−1, yielding a constant chord-based Reynolds number
based on the blade velocity of Rec = (ρΩRc)/μ = 50000. An alternative
definition of the Reynolds number is used in wind-farm level investi-
gations and is obtained from the free-stream velocity and turbine
diameter: ReD = (ρU∞D)/μ. Here, the turbine model is operating
between ReD = 168000 for λ = 1.5 and ReD = 78750 for λ = 3.2. The blade
was connected to a separate direct-drive stepper motor with a 1: 12
gear reduction yielding a high torque mechanism with a 0.0015°
angular resolution. All motors were individually controlled and syn-
chronized using a three-thread motion controller (GALIL-4080).

Force measurements
We instrumented the blade shaft with twenty strain gauges forming
five full Wheatstone bridge channels to record unsteady aerodynamic
loads. The design, calibration, and error quantification of this in-house
load cell were detailed in28. We recorded shear-forces applied at the
blade’s mid-span in the radial FR and azimuthal Fθ direction, and the
pitchingmoment about the blade’s quarter-chordMZ (Fig. 1a). For each
experiment, the wind turbine model started at rest with the blade
facing the incoming flow.

The turbine blade was accelerated to its prescribed rotational
speed. After reaching the target rotational speed,wewaited forfive full
turbine rotations before starting the load recordings. Aerodynamic
forces acting on the turbine blade were recorded at 1000 Hz for 25
rotations using a data acquisition unit (National Instruments, NI 9205),
then the blade was brought to rest. After 25 rotations, the mean value
of our two objective functions have a normalised root-mean squared
error below 1% (Supplementary Fig. 3).

The centripetal inertial force resulting from the turbine’s rotation
was measured by operating the wind turbine in air. The added drag
from the two splitter plates was measured for all investigated tip-speed
ratios by operating the wind turbine without the blade, where the two
splitter plates were held by a small cylinder. The influence of the cen-
tripetal inertial force and the splitter plate drag force were subtracted
from the raw measurement data and only the remaining aerodynamic
forces acting on the turbine blade were presented. A description of the
measurement and modelling of the non-aerodynamic forces was given
in28. The presented force data was filtered using a second-order low-
pass filter with the cut-off frequency at 30 Hz.

Power calculation
The power generated by the turbine blade is proportional to the
aerodynamic force component that is tangential to the blade. Here, we

wish to compute the instantaneous net power Pnet generated by the
turbine blade by accounting for the power expense related to the
motor actuation:

PnetðθÞ = FθðθÞRΩ|fflfflfflfflffl{zfflfflfflfflffl}
power generated

by theblade

� MZðθÞ _αðθÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
power consumed

by the actuation

ð5Þ

where Fθ and MZ are the tangential force and pitching moment
experienced by the turbine blade, and Ω and _α are the turbine’s rota-
tional frequency and the blade’s pitch rate (Fig. 1). The power coeffi-
cient is calculated using equation (1) based on the mean net power
generated by the turbine blade throughout 25 rotations. This idealised
definition of the power does not account for any mechanical or elec-
tronic losses that would occur on a real wind turbine between the
turbine blade and the generator’s output. Given that were are inter-
ested in the relative improvement of the power performance of the
turbine, we compare idealised power coefficients across experiments,
both actuated and non-actuated.

Genetic algorithm
We implemented an optimisation framework using themulti-objective
genetic algorithm optimiser from the MATLAB global optimization
toolbox60 to obtain a set of optimal blade pitching kinematics. The
multi-objective optimisation problem tackled here can be defined
mathematically as follows:

minimise f
!ð x!Þ : = CPð x!Þ,σðMZð x!ÞÞ

h i
ð6Þ

subject to

g ið x!Þ≤0, i= 1,2, . . . ,m ð7Þ

where x!= A0,A1,A2,A3,θ1,θ2,θ3

� �T is the parameter vector used to
parametrise the blade pitching kinematics (equation (2)). The para-
meter search space is typically bound by constraint functions gið x!Þ.
We are minimising two objective functions in parallel: the power
coefficient CP (equations (1) and (5)) and the pitching moment stan-
dard deviation σ(MZ). The pitching moment standard deviation was
shown to be an excellent proxy for the intensity of undesirable aero-
dynamic load fluctuations related to flow separation in previous work
from the authors28.

The allowed pitching kinematics were described by a sum of sine
waves with three harmonics of the turbine rotational frequency and a
fixed angle offset (equation (2)), yielding a total of seven optimisation
parameters. The seven parameters are bounded by the values listed in
Table 1. The bounds were selected to give the algorithm an extensive
search domain but excluding known sub-optimal regions that may
increase the convergence time. For instance, the A1 term was con-
strained to negative values to prevent pitch profiles that lead to

Table 1 | Lower and upper bounds (LB and UB) that con-
strained the parameter space for the generation of pitching
profile using equation (2)

A0 A1 A2 A3 θ1 θ2 θ3

LBλ = 1.5 − 10° − 31° − 15° −8° −45° −60° −60°

UBλ = 1.5 10° 0° 15° 8° 45° 60° 60°

LBλ = 3.2 − 10° − 25° − 15° −8° −45 −60° −60°

UBλ = 3.2 10° 25° 15° 8° 45° 60° 60°

These bounds were chosen to allow the optimiser to explore as much as possible of the vaste
parameter space within the mechanical limitations of the set-up to ensure safe operation of the
turbine.
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exceptionally high effective angles of attack on the turbine blade. Very
high angles of attack are associated with highly inefficient individuals
and excessive stress on the experimental apparatus. Similarly,
increasing frequency terms in the Fourier series are given smaller
amplitude constraints to avoid searching for power-hungry and high-
torque pitch profiles. A strong indicator that our search space bounds
is not over-constraining the optimisation procedure is that optimal
individuals lie far from the boundaries.

The optimisation framework was fully automated to run unsu-
pervised (Fig. 2). The genetic algorithm iteratively generated genera-
tions of 60 individuals, each of which is specified by a vector
x!= A0,A1,A2,A3,θ1,θ2,θ3

� �T . The population size was selected as a
good compromise between population diversity and convergence
speed. Obtaining the fitness of an individual requires approximately
60 s. For a population size of 60 individuals, we can test a generation in
an hour and achieve convergence in under two days of continuous
operation.

The first generation consisted of randomly selected individuals
assuming uniformdistributions for each parameter constrained by the
lower and upper bounds indicated in Table 1. Each individual was
tested experimentally and their fitness was evaluated by computing
both objectives functions (equation (6)). Once all individuals in the
first generation have been evaluated, they were ranked according to
their combined score across both objective functions. The ranking of
individuals is based on their dominance relative to other individuals.
An individual p! dominates an individual q! for a vector-valued
objective function f

!
if and only if f ið p!Þ ≤ f ið q!Þ for all i and

f ið p!Þ< f jð q!Þ for some j 47. Individuals that are not dominated by any
other individuals are rank 1 and are Pareto-optimal. Rank 2 individuals
are dominated only by rank 1 individuals and rank n individuals are
only dominated by rank n − 1 individuals. All individuals of the same
rank are considered equally good. Ranking is the key mechanism by
which genetic algorithms promote the replication and propagation of
elite individuals. The exact mechanism by which offsprings are gen-
erated fromone generation to the next depends on the specific variant
of genetic algorithm that is deployed.

The MATLAB toolbox deploys a controlled elitist genetic algo-
rithm that is a variant of NSGA-II46. An elitist genetic algorithm pro-
motes individuals with higher fitness rankings. Here, 5% of
individuals for each new generation were clones of the previous
generation’s Pareto-optimal individuals. A controlled elitist genetic
algorithm extends its preference to individuals who enhance popu-
lation diversity, even if their fitness rankings are lower43. The pro-
cedure used to execute this selection is a binary tournament on the
current population, whereby high ranked individuals inherently have
a higher probability of being selected. The NSGA-II ensures popula-
tion diversity in crossover individuals, which represent 60% of the
offspring in our study. The crossover process creates children by
taking a weighted average of the parents. The weighting is given by a
random number between 0 and 1. Parents with a high rank and living
in a sparsely populated region of the Pareto front have a higher
likelihood of being selected for crossovers. Lastly, 35% of offspring
are mutated individuals. A mutation is the random modification of
one or several of the input parameters of a highly ranked individual,
keeping the rest of the parameter untouched. The generation and
evaluation of generations was iterated until the optimisation results
converged.

There is no straight forward strategy to evaluate the convergence
of a multi-objective genetic algorithm optimisation. Generally, the
convergence of an optimisation problem is assessed from the statis-
tical evolution of the cost-function. Pareto-based approachesminimise
a vector of objective functions rather than a single cost function. A
common metric to evaluate the convergence of Pareto fronts is the
generational distance (GD), defined by61 as the mean Euclidean dis-
tance between the new Pareto-optimal members S and those from the

previous generation P:

GDðS, PÞ= 1
jSj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
s!2S

min
r!2P

k f
!ð s!Þ� f

!ð r!Þ k
vuut , ð8Þ

where f
!

is the vector-valued objective function. For each Pareto-
optimal member, the Euclidean distance is measured from the closest
member in the previous Pareto Front. The objective functions were
normalised by their mean value across all individuals from the first 20
generations to avoid introducing a bias in the convergence of either
objective. The optimisation is considered converged when the
generational distance and its gradient are ≤10-2 1e for at least two
consecutive generations. The convergence of the generational
distance and its gradient is presented in Supplementary Fig. 4. This
criterion was reached within 17 and 27 generations for tip-speed ratios
λ = 1.5 and λ = 3.2, respectively. Both optimisations were allowed to run
longer to monitor further evolution of the Pareto fronts.

Particle image velocimetry
Time-resolved planar particle image velocimetry (2D2C PIV) was used
to measure the flow field around the wind turbine blade for selected
individuals along the Pareto-front. A dual oscillator diode pumped
ND:YLF laser (wavelength λ = 527 nm) with amaximumpulse energy of
30mJ and a beam splitter were used to create two laser sheets from
opposite sides of the water channel. The light sheets were oriented
horizontally at mid-span of the turbine blade (Fig. 2). A high speed
camera with a sensor size of 1024 px × 1024 px (Photron Fastcam SA-
X2) and a spinning mirror apparatus were installed below the channel
to capture the flow around the blade.

The spinning mirror apparatus consisted of two rotating and one
stationary mirror, all oriented onto a 45° plane with respected to the
horizontal plane. The twomovingmirrors rotated about the same axis
of rotation, at the same frequency as the wind turbine model. The
outer mirror was placed at the same radius as the model blade, such
that the blade was kept in the center of the field of view of the camera
during the entire rotation. The field of view was 2.5 c × 2.5 c centred
around the blade. The acquisition frequency was fPIV = 1000Hz. The
images were processed using the commercial software PIVview (ver-
sion 3.6.23 PIVtec GmbH/ILA_5150 GmbH) following standard proce-
dures using a multi grid algorithm62. The final window size was
48 px × 48 px with an overlap of 75%. This yielded a grid spacing or
physical resolution of 1.7mm=0.029c.

The uncertainty in the instantaneous velocity measurements
using PIV is estimated by ϵvel =

ϵx
Δt M, with ϵx the single displacement

error in pixel,Δt the time interval between the snapshots correlated by
the PIV algorithm, and M the magnification factor62. The single dis-
placement error ϵx is the combination of the random error or mea-
surement uncertainty ϵrms and the bias error ϵbias. The random error is
affected by the particle image diameter, the flow conditions, and the
interrogation window size. For increasing interrogation window size,
the measurement uncertainty decreases, but so also the spatial reso-
lution decreases. The selected final window size of 48 px × 48 px gave
us the best compromise between a high spatial resolution and a low
random error. Based on careful analysis of the results, the random
error was estimated smaller than 0.05 px for observation areas con-
taining uniform flow and 0.1 px for observation areas where strong
velocity gradients are present. The bias error is strongly affected by
peak-locking, a phenomenon describing the tendency of the dis-
placements to be biased towards integer pixel values. Histograms of
subpixel displacement showed that peak locking was successfully
avoided and the remaining bias error was assumed to be significantly
less than the random noise error, i.e. ϵbias < 0.05 px. The time interval
between the snapshots was adapted as a function of the rotational
phase as the effective velocity seen by the blade varies significantly

Article https://doi.org/10.1038/s41467-024-46988-0

Nature Communications |         (2024) 15:2770 10



during the rotation (Fig. 1d). Velocity fields were obtained by corre-
lating image number n and n + dn, where dnwas determined such that
the expected displacement at the instantaneous blade velocity would
be above 12 px to reduce the relative error. The resulting relative PIV
uncertainty is thus estimated to be ϵvel/Ueff < 0.0125.

The maximum recording time on our camera was approximately
22 s, resulting in 21839 image pairs captured over 19 turbine rotations.
The data is phase-averaged for 200 equally spaced bins such that 109
image pairs are averaged at each phase. The number of bins was
selected as a compromise between obtaining satisfactory temporal
discretisation of our phase-averaged results and a well converged
meanflow. Basedon the normalised rootmeansquare error of theflow
velocity magnitude, the phase averages are deemed sufficiently con-
verged for all phases after 15 cycles for λ = 1.5 and after 10 cycles for
λ = 3.2 (Supplementary Fig. 5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analysed during the current
study are publicly available on Zenodo https://doi.org/10.5281/
zenodo.10776724.

Code availability
All the relevant code used to generate the results in this paper are
available from the corresponding author on request.
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