
ARTICLE OPEN

Exploration-based model learning with self-attention for risk-
sensitive robot control
DongWook Kim1,2,3, Sudong Lee4, Tae Hwa Hong1,2,3 and Yong-Lae Park1,2,3✉

Model-based reinforcement learning for robot control offers the advantages of overcoming concerns on data collection and
iterative processes for policy improvement in model-free methods. However, both methods use exploration strategy relying on
heuristics that involve inherent randomness, which may cause instability or malfunction of the target system and render the system
susceptible to external perturbations. In this paper, we propose an online model update algorithm that can be directly operated in
real-world robot systems. The algorithm leverages a self-attention mechanism embedded in neural networks for the kinematics and
the dynamics models of the target system. The approximated model involves redundant self-attention paths to the time-
independent kinematics and dynamics models, allowing us to detect abnormalities by calculating the trace values of the self-
attention matrices. This approach reduces the randomness during the exploration process and enables the detection and rejection
of detected perturbations while updating the model. We validate the proposed method in simulation and with real-world robot
systems in three application scenarios: path tracking of a soft robotic manipulator, kinesthetic teaching and behavior cloning of an
industrial robotic arm, and gait generation of a legged robot. All of these demonstrations are achieved without the aid of simulation
or prior knowledge of the models, which supports the proposed method’s universality for various robotics applications.

npj Robotics (2023) 1:7 ; https://doi.org/10.1038/s44182-023-00006-5

INTRODUCTION
The kinematics and the dynamics of robots are essential elements
for precision control that guarantee robust and stable task
completion1–3. Most robot control schemes rely on models for
different tasks, including motion optimization, task scheduling,
prioritized control, and the construction of accurate models has
thus been one of the top priorities in conventional control. The
models for rigid-bodied robots typically rely on the geometries
and the energy method, which estimate their shapes and
positions1,4–7. However, calculating the dynamic features of every
component is often tedious and always involves errors in the
model8–15. Alternatively, the techniques of black-box model
identification using machine intelligence have been proposed
for obtaining models without considering mechanical character-
istics. Moreover, its control strategy can also be trained by
employing reinforcement learning (RL). Meanwhile, model-based
RL methods are frequently studied in robotics applications due to
the efficiency of data usage and avoiding computational burdens
induced by iterative policy evaluation and improvement16–24.
Despite the advantages, the control policy generated using

model-based methods still gives rise to unexpected motions or
undesired output behaviors during policy learning. Thus, it is risky
to apply RL directly to real-world robots without preprocessing in
a simulated environment15,25–29. This has led to the enhancement
of RL methods that can be implemented in real-world applica-
tions, including simulation-to-real (sim2real) methods13,30,
uncertainty-based modeling31, exploration techniques32–34, and
robust optimal control35,36. For instance, adding Kullback–Leibler
divergence to the optimization objective limits sudden changes in
the desired trajectory18. Employing a Gaussian process-based
model provides the degrees of uncertainties during model
learning for determining the exploration level or the robustness

of the controller37,38. Domain randomization39,40 or adversarial
training41 also provides robustness by learning from various
situations or incorporating worst-case scenarios40–42.
In this paper, we demonstrate how the self-attention mechan-

ism can be employed in model learning for real-world robotics
applications without simulation. Two types of models, namely the
kinematics and the dynamics models, depict the behavior of robot
motion. Our method utilizes a self-attention layer in both models
to overcome the issues that can arise from the direct application
of RL methods in a real-world environment. Specifically, the self-
attention layer in the kinematics model determines the explora-
tion region by adjusting the cost function for the robot’s
movement range. On the other hand, the self-attention in the
dynamics model detects possible perturbations during the
learning process and manages the quality of the dataset.
Assuming trajectory tracking control using model-based RL, the

cost function can be defined as the sum of errors between the
reference and the executed trajectory. During the initial optimiza-
tion phase, the resulting control policy could be inaccurate due to a
poorly learned model. Using the control policy directly on the robot
may be inadequate since the output behavior of the control is
uncertain. To address this limitation, we propose the incorporation
of a self-attention layer into the kinematics model, aiming to
enhance the control performance and provide more predictable
behaviors43,44. Although the kinematics model is not explicitly
dependent on time, constructing a self-attention chain based on
time allows us to look closer on the data with low self-referential
rates, which are considered as abnormal data or regions that are
insufficiently learned. The scaling of the desired trajectory can be
determined from the self-attention matrix of the kinematics model.
Additionally, by constructing a self-attention chain for

dynamics, we can detect perturbations in the robot caused by

1Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea. 2Institute of Advanced Machines and Design (IAMD), Seoul National University, Seoul
08826, Korea. 3Institute of Engineering Research, Seoul National University, Seoul 08826, Korea. 4CREATE Lab, Institute of Mechanical Engineering, Swiss Federal Institute of
Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland. ✉email: ylpark@snu.ac.kr

www.nature.com/npjrobot

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00006-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00006-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00006-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00006-5&domain=pdf
https://doi.org/10.1038/s44182-023-00006-5
mailto:ylpark@snu.ac.kr
www.nature.com/npjrobot

unintended external forces. The dynamics model learned in our
proposed method considers the relationship between the control
inputs and the robot’s configuration states while excluding the
effects of external forces45–47. Consequently, the addition of
external forces leads to a decrease in self-referential rates within
the self-attention matrix of the dynamics model.
To implement the proposed self-attention mechanism, the time

series of the input is connected to the encoder network, which is
connected to the decoder in series, using feedforward neural
networks (FNNs). The self-attention layer exists between the
encoder and the decoder networks, as shown in Fig. 1b. If a single
FNN connecting the input and the output at a single timestep (Fig.
1a) is cloned and arranged in parallel over time, and the self-
attention layer is connected between the outputs of the networks
(Fig. 1b), then the self-attention matrix will eventually be a
diagonal matrix when the model is fully trained (Fig. 1c). In other
words, each input component primarily refers to itself. Now,
imagine the procedure mentioned earlier, i.e., the first-time
exploration and confronting perturbations. The corresponding
input-output pair will never be shown to the network models. In
this case, referring to itself will not be beneficial since the
abnormal input data are not sufficiently learned to represent the
hidden features. Instead, the self-attention mechanism will refer to
the other inputs to extract meaningful features; in other words, a
macroscopic change will occur in the self-attention matrix (Fig.
1d). Thus, by analyzing the trace values of the self-attention matrix
for the kinematics and dynamics models, we can adjust the
exploration task space or detect disturbances. That is, a sudden
change in the kinematics attention matrix results in freezing the
searching space and commanding the robot to move in its
proximity. On the other hand, a change in the dynamics attention
matrix prevents the current dataset from being learned, since it
may have been contaminated by disturbances.
We evaluated the performance for each network structure and

learning method through an ablation study in a robot simulation
environment. In addition, we applied the proposed algorithm to

actual robot systems, showing that they were able to learn the local
models in real time and complete target tasks. More specifically, our
algorithm was used to teach an industrial robot arm to play the
piano, control the motion of a soft robotic manipulator and generate
a waking gait of a quadrupedal robot. Each robot was able to
perform its desired task within 5min in real time without any
assistance from the simulated environment or prior knowledge of
the robot. The results indicate that the proposed algorithm can be
used universally in various robotic applications.

RESULTS
Algorithm overview
The overall architecture of the robust online model identification
algorithm consists of various types of neural networks and their
derivative operations with detection modules. Figure 2 schema-
tically summarizes the flow of the algorithm, indicating that it
consists of a clockwise outer loop and multiple branch lines.
When dealing with the limited knowledge of a robot’s

kinematics and dynamics, the algorithm aims to effectively control
the robot to achieve a predefined task. However, there are three
essential pieces of information that must be accessible either
through sensors or computations. First, information regarding the
energy used for robot actuation, such as the magnitude of the
applied force, the input current to the motor, or the input pressure
to the pneumatic or hydraulic system should be available. Second,
the robot’s joint state resulting from actuation, commonly referred
to as the configuration-space state, needs to be measured using
encoders or similar sensors. Lastly, the task-space state should
correspond directly to the ongoing task being performed. The
goal of the algorithm is to ensure that the robot’s task state is in
line with the desired trajectory, using these three types of
information, typically obtained through path planning. Through-
out the rest of this paper, we will specifically refer to these three
components as the control input, the configuration state, and the
task state, respectively.

Fig. 1 Overall scheme of the kinematics network and its self-attention model for adjusting the exploration region. a The kinematics
model consists of a fully connected layer with a radial basis activation function. b When we expand this model over the past k timesteps, we
can correlate their encoded features using a self-attention mechanism. c If the model is normally working, the self-attention matrix will exhibit
a large value in the diagonal position. The brighter color indicates the larger value. d If abnormal data are detected, the self-attention matrix
will show a blurred image.

D. Kim et al.

2

npj Robotics (2023) 7

1
2
3
4
5
6
7
8
9
0
()
:,;

The aforementioned three types of information are used as
variables of the kinematics and the dynamics models. Specifically,
the kinematics encompasses the correlation between the config-
uration state and the task state, whereas the dynamics model
captures the interplay between the control input and the
configuration state. Both of these models adopt a neural network
architecture, as shown in Fig. 1a. At each timestep, new input and
state information is acquired, which is then stored in a replay
buffer to further train the neural network approximations of the
kinematics and the dynamics models.
Detailed computation process of outer loop of Fig. 2 is

explained from now. First, the robot receives control inputs and
executes them for a single timestep (Fig. 2a). Then, the agent
observes the robot’s states, namely the configuration and task
states (Fig. 2b). Using the observed states and given inputs, the
kinematics and dynamics equation components (matrices J, M, C,
and g) are computed (Fig. 2c). The agent then prepares the next
target task state that was predefined from path planning (Fig. 2d).
Finally, the control inputs for the next timestep are determined
from the model-based feedback control law, reflecting the desired
task state, the kinematics model and the dynamics model (Fig. 2e).
The next target task states should be prepared in advance from
planning algorithms, such as tree-based searching or demonstra-
tion by kinesthetic teaching48,49.
When constructing a control law in the outer loop (Fig. 2e), we

employ the approximated kinematics and dynamics models. A two-
step control process is used; first, from the desired task state xt+1,des,
a desired configuration state qt+1,des is derived from the kinematics
model, and then the actual control input τt+1,des is obtained from
the dynamics model. However, the approximated model remains
uncertain due to insufficient learning, particularly due to their black-
box nature. This may yield peculiar output values in regions that are
insufficiently trained, or with the existence of perturbation.
Two branch lines indicating internal operations, colored green

and blue, is the realization of incorporating safe-aware control
design. The blue line updates the kinematics and dynamics models.

Input–output tuples for training are sampled from the replay buffer
to avoid temporal correlations and for regularization (Fig. 2f). The
two branch lines are shown in green, considering both the
kinematics and the dynamics self-attention models, as shown in
Fig. 1b. The self-attention matrix of the kinematics model constrains
the task space by adjusting the damping factor of the kinematic
Jacobian matrix (Fig. 2g). This process changes the possible range of
qt,des even if the range of desired xt,des is intact. On the other hand,
the self-attention matrix of the dynamics model detects any external
perturbations and passes the result to the blue line, determining
whether the current input-output tuple is valid or not (Fig. 2h). If an
anomaly is detected, then the current input-output tuple is rejected
and not included in the replay buffer.
In summary, a total of four neural networks are used in this

algorithm. There is one network for modeling the kinematics and
another for modeling the dynamics. Additionally, there are self-
attention networks of the kinematics and the dynamics that have
been expanded to be used for determination of the task space
determination and robust masking, respectively. In the following
sections, we will provide a detailed explanation of these networks.

Network structures and objectives
Kinematics model. The kinematics model in the algorithm (Fig. 1)
were fitted with a function approximator based an FNN. To explain
the model, we note that three measurable variables are used: the
input τ 2 Rm, the configuration state q 2 Rm, and the task state
x 2 Rm.
The rigid-body kinematics make a connection between the

configuration state and the task state. Their forward kinematics
can be expressed as x = f(q), where f : Rm ! Rn maps from the
configuration state to the task state. Its differential form in
continuous-time domain is generally given as

_x ¼ J qð Þ _q; (1)

where an overdot means the derivative with respect to time, and
J 2 Rn ´m is the kinematic Jacobian matrix. We use a discretized

Fig. 2 The overall schematic of the algorithm that consists of the main loop for execution of the robot (yellow line) and the calculation
through the agent (red line). The kinematics and the dynamics network are trained using a radial basis neural network sampled from the
replay buffer (blue line). The self-attention network for both models is utilized for the robust masking and constraining of the task space.
a Control input is applied to the real-world robot. b Input, state, and output are collected and then sent to the replay buffer. c Forward model
prediction is done for calculating self-attention matrix. d Next desired task-space trajectory is given. e Control law is generated, reflecting the
updated model from f. From self-attention matrices, g task-space determination and h rejection of perturbed dataset are possible.

D. Kim et al.

3

npj Robotics (2023) 7

time-domain kinematics as
xtþ1 � xt

T
¼ J qtð Þ

qtþ1 � qt
T

; (2)

where T 2 Rþ is a sampling interval for discretization that does
not raise aliasing. Rearranging the discretized form in terms of xt+1

yields

xtþ1 ¼ f qtð Þ � J qtð Þqt½ � þ J qtð Þqtþ1 ¼: J0 qtð Þ þ J qtð Þqtþ1 (3)

where we replace first terms as J0 for the final result.
Results of the discretized form of Kinematics is approximated by

employing a radial basis neural network (RBNN) that contains a
single hidden layer with a radial-basis activation function in its
structure. The proposed structure can be interpreted as a
concatenation of a local linear model. We analytically define the
hidden features as

Φ qtð Þ ¼

Φ1 qtð Þ
Φ2 qtð Þ
¼

ΦN qtð Þ

2
6664

3
7775 2 RN;

Φi qtð Þ ¼ expð� qt � cið Þ>S�1 qt � cið ÞÞ 2 R;i ¼ 1; 2; ¼ ;N;

(4)

where S 2 Rm ´m is the positive-definite covariance matrix, ci 2
Rm is the center of basis, and a total of N features are given so
that Φ 2 RN where its components are given with a subscript i.
The center ci is a trainable variable which is first initialized by
sampling from the uniform distribution, where the covariance
matrix is defined as a constant matrix S ¼ 2I (see Supplementary
Document 1, Appendix A for analysis). The output layer of the
RBNN is the weighted sum of the hidden features. Now, the
Jacobian is expressed as

JΦJ qtð Þ ¼ ϕJ;1Φ qtð Þ ϕJ;2Φ qtð Þ ¼ ϕJ;mΦðqtÞ
� �

;

J0ΦJ qtð Þ ¼ ϕJ;0Φ qtð Þ;
(5)

where ϕJ;k 2 Rn ´N for k ¼ k2Zf j0 � k � mg is trainable weights
for the functions J and J0. The usage of the radial basis activation
function also prevents unexpected peaks during the initial phase
of online learning. The in-depth analysis will be discussed in a later
section. We use the subscript expression JΦJ and J0ΦJ so the
Jacobian model is approximated using the trainable weights.
A replay buffer is used to store the data τ; q; x and train the

model for every timestep. Using the stored variables qt and qt+1

and the kinematics model Eq. (3), prediction x̂tþ1 can be derived.
The objective for kinematics model is a mean-squared-error (MSE)
between x̂tþ1 and xt+1, as

Lkin ¼ jjx̂tþ1 � xtþ1jj2 ¼ jjJ0ΦJ qtð Þ þ JΦJ ðqtÞðqtþ1 � qtÞ � xtþ1jj2:
(6)

Dynamics model. Similar to the kinematics model, dynamics
model shows the evolution of the configuration state from the
input. The vector equation of dynamics model is given as

M qð Þ€qþ C q; _qð Þ _qþ g qð Þ ¼ τ; (7)

where an overdot means the derivative with respect to time, M 2
Rm ´m is the inertia matrix, C 2 Rm ´m is the Coriolis matrix, and
g 2 Rm is the vector term for compensating gravity, in which M; C,
and g are unknown and need to be identified using an FNN.
Acceleration and velocity terms are also transformed into discrete-
time format. In particular, the following model is used for learning:

MϕM
qtð Þ

qtþ1 � 2qt þ qt�1
T2

þ CϕC
qt; qt�1ð Þ qt � qt�1

T
þ gϕg

qtð Þ ¼ τ̂tþ1 (8)

where we do not make the equation into affine format like
kinematics model. Since the Coriolis term uses both qt and qt−1 for
the input, the feature vector Φ used in the kinematics model is

expanded to handle both terms as

ΦC qtð Þ ¼

Φ1C qt; qt�1ð Þ
Φ2C qt; qt�1ð Þ

¼
ΦNC qt; qt�1ð Þ

2
6664

3
7775 2 RN; (9)

ΦiC qt; qt�1ð Þ ¼ exp � ½qt; q;t�1� � c0i
� �>

S0�1 ½qt; qt�1� � c0i
� �� �

2R; i

¼ 1; 2; ¼ ;N;

where S0 2 R 2mð Þ ´ ð2mÞ is the positive-definite covariance matrix,
and c0i 2 R2m is the center of basis. Finally, the approximation for
M; C and g is given as

MϕM
qtð Þ ¼ ϕM;1Φ qtð Þ ϕM;2Φ qtð Þ ¼ ϕM;mΦ qtð Þ

� �
;

CϕC
qt; qt�1ð Þ ¼ ϕC;1ΦC qt; qt�1ð Þ ϕC;2ΦC qt; qt�1ð Þ ¼ ϕC;mΦC qt; qt�1ð Þ� �

;

gϕg
qtð Þ ¼ ϕgΦ qtð Þ; (10)

where ϕM;k 2 Rm ´N;ϕC;k 2 Rm ´N for k = 1,2,…,m and ϕg 2
Rm ´N are trainable weights for matrices M, C, and g, respectively.
The optimization objective for the dynamics model is given as

Ldyn ¼ jjτ̂tþ1 � τtþ1jj2; (11)

where τ̂tþ1 is defined in Eq. (8), and τt+1,qt,qt−1,qt+1 are restored
from the replay buffer.

Kinematics self-attention model. We define the self-attention
network for the kinematics, which considers the original kinematics
model but expand its network structure to utilize time correlation
using self-attention structure. After then, the self-attention score of
the kinematics model is used for determining the task space,
constraining the robot’s reachable area as shown in Fig. 2g.
The self-attention network for the kinematics uses the config-

uration state q as an input that passes through the encoder layer, as
shown in Fig. 1a. Then, a total of k duplicates of the encoder layer
are constructed, in which the input of each encoder layer becomes
an input q from time t to time t − k, as shown in Fig. 1b. The
duplicated encoder layers share the hidden weights and the
gradients. In the matrix form, a total of k + 1 recent configuration
states are concatenated to be expressed as a matrix
qt�k:t 2 Rm ´ ðkþ1Þ. The matrix passes through a fully connected
encoder layer (θE,kin) and a position-wise encoding layer (θPE),
indicating that each input originates from a different timestep. The
weight parameters for the fully connected encoder layer and the
position-wise encoding layer are given as

WθE;kin 2 Rh ´m; bθE;kin 2 Rh ´ 1;

θPE 2 Rh ´ kþ1ð Þ; θPE x; yð Þ ¼ sinðx=10000y=hÞ : y even;
cosðx=ð10000y�1=hÞ : y odd;

(
(12)

where θPE is not trainable but originates from the transformer
structure, indicating the relative position of each vector compo-
nent39. The results of encoding are then given as

qenc;Q ¼ tanh WθE;kinqt�k:t þ Catkþ1 bθE;kin
� �� �þ θPE 2 Rh ´ kþ1ð Þ;

qenc;K ¼ tanh WθE;kinqt�k:t þ Catkþ1 bθE;kin
� �� �þ θPE 2 Rh ´ kþ1ð Þ;

qenc;V ¼ tanh WθE;kinqt�k:t þ Catkþ1 bθE;kin
� �� � 2 Rh ´ kþ1ð Þ;

Catkþ1 bθE;kin
� �

:¼ bθE;kin ; bθE;kin ; ¼ ; bθE;kin
� � 2 Rh ´ kþ1ð Þ;

(13)

in which the encodings are for query, key, and value, respectively,
for the self-attention layer, and the operator Catk+1 means that the
input column vector is concatenated k + 1 times so that
Catkþ1 bθE;kin

� �
becomes a matrix. In a typical transformer structure,

different weight matrices are multiplied to the encoding of query,

D. Kim et al.

4

npj Robotics (2023) 7

key, and value to prevent an excessive self-attention score, given
to itself. In contrast, our approach aims to give an excessive self-
attention score to itself since the kinematics model can accurately
infer the output from its own input without time-correlation.
The encoding matrix now passes through a self-attention

structure. The self-attention matrix and the output of the self-
attention layer are given as

AttnScore;kin qenc;Q; qenc;K
� � ¼ softmax

q>enc;Qqenc;Kffiffi
d
p

� �
2 R kþ1ð Þ ´ kþ1ð Þ;

AttnOut;kin qencð Þ ¼ qenc;VAttnScore;kin qenc;Q; qenc;K
� � 2 Rh ´ kþ1ð Þ;

(14)

which is a dot-product attention with a scalable parameter d50.
Finally, the self-attention output passes through the decoder layer
which consists of two fully connected layers, predicting the task
state given as

WθD1;kin 2 Rl ´ h; bθD1;kin 2 Rl ´ 1;

WθD2;kin 2 Rn ´ l ; bθD2;kin 2 Rn ´ 1;

x̂t�k:t ¼ WθD2;kin ReLU WθD1;kinAttnOut;kin qencð Þ þ Catkþ1 bθD1;kin
� �� �� �

þCatkþ1 bθD2;kin
� � 2 Rn ´ kþ1ð Þ;

(15)

where ReLU refers to the rectified linear unit activation function51.
Similar to the encoder layer, the duplicated decoder layers share
the weights and the gradients.
Optimization objective for the kinematics self-attention network

is composed of two terms. First, an MSE is used to calculate
difference between the predicted x̂t�k:t and the ground truth xt
−k:t. Next, discrepancy between the self-attention score matrix and
the identity matrix is added, written as

Lðx̂t�k:t; xt�k:tÞ :¼ jjvecðx̂t�k:t � xt�k:tÞjj2

þtr ðAttnScore;kinðqenc;Q; qenc;KÞ � IÞðAttnScore;kinðqenc;Q; qenc;KÞ � IÞ>
h i

;

(16)

where the operator vec(⋅) is a vectorization of the given matrix.
Minimizing only the MSE for output prediction ultimately means
learning the kinematics model without considering self-attention
connection. When using only the former term as the learning
criterion, the inclusion of a self-attention layer becomes redundant.
Consequently, the learning outcome of the self-attention network
solely based on MSE minimization can yield multiple local optima. Our
objective is to converge towards a scenario where all self-attention
results become self-referential, representing one of the local optimal
solutions. As previously discussed, this is accomplished by ensuring
that the encoding weights for query, key, and value are uniformly
applied, prioritizing higher self-attention scores when referring to the
same time step rather than other time steps. Furthermore, if the self-
attention score decreases, i.e., if the input that depends on the
information from other time steps rather than one’s own encoding
information is entered, we treat it as an abnormal situation.

Dynamics self-attention model. The aforementioned self-
attention structure can be applied to the dynamics model as
well. In the dynamics model, we map from the input τ to the
configuration state q. In particular, Eqs. (12)–(16) can be
reorganized for the dynamics self-attention network as

WθE;dyn 2 Rh ´m; bθE;dyn 2 Rh ´ 1; (17)

τenc;Q ¼ tanh WθE;dynτt�k:t þ Catkþ1 bθE;dyn
� �� �þ θPE 2 Rh ´ kþ1ð Þ;

τenc;K ¼ tanh WθE;dynτt�k:t þ Catkþ1 bθE;dyn
� �� �þ θPE 2 Rh ´ kþ1ð Þ;

τenc;V ¼ tanh WθE;dynτt�k:t þ Catkþ1 bθE;dyn
� �� � 2 Rh ´ kþ1ð Þ;

Catkþ1 bθE;dyn
� �

:¼ bθE;dyn ; bθE;dyn ; ¼ ; bθE;dyn
� � 2 Rh ´ kþ1ð Þ;

(18)

in which the input of the encoding layer is now changed into τ.
Then, the attention score and the attention output can be written
as

AttnScore;dyn τenc;Q; τenc;K
� � ¼ softmax

τ>enc;Qτenc;Kffiffi
d
p

� �
2 R kþ1ð Þ ´ kþ1ð Þ;

AttnOut;dyn τencð Þ ¼ τenc;V AttnScore;dyn τenc;Q; τenc;K
� � 2 Rh ´ kþ1ð Þ;

(19)

and the prediction layer as

WθD1;dyn 2 Rl ´ h; bθD1;dyn 2 Rl ´ 1;

WθD2;dyn 2 Rm ´ l ; bθD2;dyn 2 Rm ´ 1;

q̂t�k:t ¼ WθD2;dyn ReLU WθD1;dynAttnOut;dyn τencð Þ þ Catkþ1 bθD1;dyn
� �� �� �

þCatkþ1 bθD2;dyn
� � 2 Rm ´ kþ1ð Þ;

(20)

where we predict q for the output of the dynamics self-attention
network. Finally, the optimization objective of the dynamics self-
attention network is given as

L q̂t�k:t; qt�k:tð Þ :¼ jjvec q̂t�k:t � qt�k:tð Þjj2

þtr ðAttnScore;dynðτenc;Q; τenc;KÞ � IÞðAttnScore;dynðτenc;Q; τenc;KÞ � IÞ>
h i

:

(21)

Utilizing self-attention structure for control and learning
Task space determination by a self-attention kinematics network.
We aim to utilize the changes in values of the self-attention matrix
over time to monitor the learning status of the kinematics network
and to detect abnormal situations, such as incomplete learning or
perturbations. This will help us expand or narrow the task space of
the robot accordingly. The kinematics of the robot is given as xt+1 =
J0(qt) + J(qt)qt+1 under an assumption of discretization, the current
state xt is only dependent on the variables xt−1, qt, and qt−1.
Returning to the self-attention network, if the model is sufficiently
learned minimizing the objective Eq. (16), then the self-attention
matrix is similar to the diagonal matrix (see Fig. 1c). In other words, a
query of the specific time does not need information far from itself.
However, if the robot moves slightly out of the area where it was
previously moving, the new data that have not been seen in the
training dataset become part of the input of the neural network. As
a result, the encoded feature for the new input may produce a
random output value since the new input has not been trained
before, and the self-attention matrix will then no longer be diagonal.
This outcome now serves as an indicator of the new region in the
task space that has not been frequently visited.
Utilizing the property of the self-attention matrix, we design a way

of constraining the task space region to ensure safe exploration and
avoid unexpected movements of the robot. Let our desired task
trajectory be given as x1:T ;des 2 Rn ´ T Our optimization objective is
to make the robot follow the desired trajectory, but depending on
the learning process, we restrict the robot’s range of motion using
the following setting:

min
qtþ1;des

jjxtþ1;des � J0ϕJ
qtð Þ � JϕJ

qtð Þqtþ1;desjj2 þ λtjjqtþ1;desjj2; (22)

where we define λt 2 Rþ as a safety factor. Setting λt → 0 yields
the desired configuration state to recover the desired task state.
On the other hand, leveraging λt gives penalty when the desired
configuration state becomes larger (i.e., the robot moves in a
larger region). A solution for the optimization is then given as

qtþ1;des ¼ JϕJ
qtð Þ> JϕJ

qtð ÞJϕJ
qtð Þ> þ λt I

� ��1
xtþ1;des � J0ϕJ

qtð Þ
� �

;

(23)

D. Kim et al.

5

npj Robotics (2023) 7

which is a linear-quadratic optimization solution2. We notice that
the larger λt makes the task space the smaller, and the smaller λt
makes the robot the more easily move to the other space.
Thus, simply setting λt inversely proportional to the trace value of

the self-attention matrix can be a solution. However, this does not
handle a long-term effect, where the safety factor should finally
decrease to zero to complete the task, but the trace value of the self-
attention matrix has an upper limit of k+ 1 (i.e., the softmax operator
makes the sum of the column be equal to 1). In other words, the
trace value walks sideways but is still capable of detecting the
outliers. To address this issue, we suggest the following update rule:

αt :¼ tr AttnScore;kin qenc;Q; qenc;K
� �� �

;

λt ¼ λt�1 1þ γ ´ αt�αt�1
αt�1

� �
;

(24)

where a constant γ ¼ fγ2Rjγ<� 1g is called a leveraging factor.
For example, if αt increases by 1%, then λt decreases by |γ|%,
following the inverse relationship.
The proposed update rule expresses a long-term decay of λt by

the volatility drag effect. Since modeling the behavior of αt is
nontrivial, making it difficult to predict the behavior, but will be
related to the current value, let αt follow the geometric Brownian
motion with a stochastic differential equation (SDE) as

dαt ¼ μαtdt þ σαtdWt (25)

with μ; σ2R, and Wt is Wiener noise. Then, the N-step solution of
the λt, considering the SDE and Eq. (24), is given as

λN ¼ λ0
αN
α0

	
γ

exp � γ2 � γð Þσ2NT
2

	

; (26)

where T 2 Rþ is the real-time interval between timesteps. The
solution indicates that even if the index value αt goes sideways
with a rectangular pattern, the long-term value of λt will decrease
and asymptotically converge to zero. The safety factor still
captures the local behavior of αt that observes the abnormal data
in the task space.

Perturbation detection by a self-attention dynamics network. We
considered the dynamics self-attention network to filter out the
perturbed training data. Note that this method captures input-
output outliers and is used to train the kinematics and the
dynamics networks but not related to robust control. The filtering
method uses a simple threshold. If the trace value of the dynamics
attention score matrix exceeds a certain threshold, the dataset of
that time is included in the replay buffer as

βt :¼ tr AttnScore;dyn τenc;Q; τenc;K
� �� �

;

ReplayBuffer Append
τt; qt; xtf g if βi � ϵ; 8i ¼ i 2N; j; t � δ � i � tf g;

None; else;

�

(27)

where δ is the perturbation buffer time and ϵ is the threshold to
determine the outlier. If it does not exceed the threshold, it is
considered to have been affected by external disturbances, such
as external forces, which correspond to the term in the dynamics
equation that cannot be observed, as likely given fext in

M qð Þ€qþ C q; _qð Þ _qþ g qð Þ ¼ τ þ J qð Þ>f ext: (28)

If a perturbation is detected, then δ samples after the
perturbation are neglected since the robot needs time to recover
to the stable point. In addition, since the kinematics attention
score αt is also affected by the perturbation, we do not update
the safety factor using Eq. (26) while the perturbation is detected.
New data is stored in the replay buffer, which has a
predetermined fixed size. Once the stored data exceeds the
predetermined size, the oldest data is replaced with the new
incoming data in a sequential manner. If a threshold is set and
only the datasets that meet the condition are added to the

replay buffer, many data may not be stored in the replay buffer
in the very early stages of training. However, since the same
encoding feature is used for query, key, and value, even in the
early stages where the learning is not well-established, the trace
value is expected to reach a certain level. As a result, the
threshold value ϵ in Eq. (27) is determined to be at the average
level of the initial short period.

Control strategy. From the planned desired task state xt,des, we
find the desired configuration state qt,des from Eq. (23) (Fig. 2e).
Then, we define the state error et ≔ qt − qt,des and the augmented
velocity error rt :¼ _et þ Λet with a positive-definite gain matrix
Λ 2 Rm ´m. Then, we can define a passivity-based control as

τt ¼ MϕM
qtð Þ €qt;des � Λ _et
� �þ CϕC

qt; _qtð Þ _qt;des � Λet
� �þ gϕg

qtð Þ � K _et � KΛet

(29)

with a positive-definite gain matrix K, to make the closed-loop
dynamics as

MϕM
qtð Þ_rt þ CϕC

qt; _qtð Þrt þ Krt ¼ Γ ϕM;ϕC ;ϕg

� �
: (30)

where Γ is the residual term induced by the modeling error of the
neural network approximation2. If Γ = 0, then the error
exponentially converges to zero. However, the existence of the
model error guarantees the boundedness of the error, given the
boundedness of Γ. Hence, feedback control will be heavily
dependent on the feedback terms in Eq. (29). To avoid
unexpected movements induced by the feedforward terms, we
initialize ϕM,ϕC, and ϕg to zero. Finally, the algorithm described in
Fig. 2 can be summarized by Algorithm 1.

Algorithm 1. Robust Online Model Identification
Zero-Initialize ϕM,ϕC, ϕg, and Random Initialize ϕJ; ci; c

0
i

Initialize extended model parameters θE,kin, θD,kin, θE,dyn, and
θD,dyn
for each timestep t do
Ready for the next desired task state xt+1,des

qtþ1;des ¼ JϕJ
qtð Þ> JϕJ

qtð ÞJϕJ
qtð Þ> þ λt I

� ��1
xtþ1;des � J0ϕJ

qtð Þ
� �

;

τtþ1 ¼ MϕM
qtð Þ €qtþ1;des � Λ _et
� �þ CϕC

qt; _qtð Þ _qtþ1;des � Λet
� �

þgϕg
qtð Þ � K _et � KΛet

Obtain self-attention matrices.

αt ¼ tr AttnScore;kin qenc;Q; qenc;K
� �� �

;

λt ¼ λt�1 1þ γ ´
αt � αt�1

αt�1

	

;

βt ¼ tr AttnScore;dyn τenc;Q; τenc;K
� �� �

;

Save the result into the replay buffer using Eq. (27)
for i samples {x,q,τ} from the replay buffer do
Lkin ¼ jjx̂tþ1 � xtþ1jj2

Ldyn ¼ jjτ̂tþ1 � τtþ1jj2

Lkin;attn ¼ jjvecðx̂t�k:t � xt�k:tÞjj2
þtr½ðAttnScore;kinðqenc;Q; qenc;KÞ � IÞðAttnScore;kinðqenc;Q; qenc;KÞ � IÞ>�

Ldyn;attn ¼ jjvecðq̂t�k:t � qt�k:tÞjj2
þtr½ðAttnScore;dynðτenc;Q; τenc;KÞ � IÞðAttnScore;dynðτenc;Q; τenc;K Þ � IÞ>�

Optimize Lkin, Ldyn, Lkin,attn, Ldyn,attn and update parameters.
end

end

D. Kim et al.

6

npj Robotics (2023) 7

Validation in the simulation
A virtual robot control environment (PyBullet) was used to show
the effectiveness of our approach in the simulation52. The robot
was asked to make two different motions. One is to travel back
and forth between two points (Task 1, Fig. 3a), and the other is to
follow a predefined circular trajectory (Task 2, Supplementary Fig.
1a). The overall evolutionary trajectories over time for both cases
are displayed in three-dimensional plots (50 s in simulation time),
as shown in Fig. 3b and Supplementary Fig. 1b, where the darker
curves indicate the more recent activities. The result of path
tracking control with simultaneous model learning is shown in Fig.
3c–e, displaying the three-axis positions of the end-effector, also
with the mean-squared tracking error in Fig. 3f. Figure 3g shows
the values of λt and αt over time. λt decays and converges near
zero over time and αt shows gradual increase with fluctuations.
From the auxiliary indicators (e.g., λt and αt), the desired
configuration state qt,des is determined to move more widely after
time passes, as shown in Fig. 3h. Figure 3i, j shows the learning
curve of four kinds of neural networks. Zero-regulation results of
orientation (i.e., roll, pitch, and yaw angles) is given in
Supplementary Fig. 2.
The effect of the outlier detection algorithm is shown in Fig. 4.

In this task, we applied the same task as Task 1 to the robot, in
which the tracking results with errors are shown in Fig. 3a–d.
However, impact perturbations are applied at a certain timestep,
as shown with the shaded areas in the curve. Factors λt and αt are
also influenced by the perturbation, as shown in Fig. 4e, in which
λt increases when a perturbation is applied to the robot. Figure 4f
shows the value of βt, indicating that the value decreases almost
to the initial value. Nevertheless, the learning curve of the self-
attention networks are not interrupted since the outliers are
eliminated from the replay buffer (Fig. 4g). Finally, to verify the
feasibility of learning the kinematics, Fig. 4h shows the difference
between the approximated Jacobian JϕJ

and the robot’s real
Jacobian J provided from the simulated environment by calculat-
ing the Frobenius norm. As the kinematics network converges
relatively fast, as shown in Fig. 3j, learning the Jacobian matrix can

approximate the real Jacobian matrix when passing through the
desired trajectory.

Application 1: trajectory tracking of a soft robotic manipulator
A custom-built soft robotic manipulator was used to test the
proposed algorithm as an application. The soft manipulator is
composed of three actuator modules, and each module is made of
a pneumatic origami muscle actuator (POMA) encapsulated by a
flexible 3D-printed mesh structure, as shown in Fig. 5a53,54. A laser
pointer was attached to the tip of the manipulator so that the tip
position was projected on a two-dimensional surface distant from
the tip. A red-green-blue (RGB) camera was used to read the
position of the laser projection on the screen. The target task was
to track an ‘S’-shaped curve on the screen in this application.
The robot was able to follow the reference trajectory, as shown

in Fig. 5b. In the first trial, the robot barely made a movement.
When the kinematics and the dynamics models were sufficiently
trained, the robot was able to follow the full trajectory in real-time.
Figure 5c–e show the secondary indicators: the kinematics
manipulability (i.e., det(JJ⊤)), the tracking error, and the safety
factor λt for determining the exploration region, respectively. The
safety factor λt decreases over time, resulting in an increase in the
kinematic manipulability. The results of real-time trajectory
tracking with model learning and its input-output data logs are
provided in Supplementary Materials (Supplementary Video 2 and
Supplementary Data 1, respectively).
A comparison study was conducted to determine the effect of

the proposed algorithm. Soft actor-critic (SAC), a widely used RL
method, was employed as a comparison algorithm55. A reward
function for the RL setting was given as

rt ¼ 2 exp � xt � xt;des
� �2� �

� 0:05max qt � qt�1; 10ð Þ2; (31)

where the first term is related to the tracking error, the second
term penalizes rapid volatility of the configuration state, and the
numbers 2, 0.05, and 10 are determined by the best-performance
combination. We compare three use cases: our method, SAC with
no prior, and SAC with a previously initialized network using our

Fig. 3 Validation results in simulated environment of Task 1. a Round-trip task between two points (The model of the robot is from ref. 63).
b Overall positions of the end-effector over time for the trajectory tracking, where the darker color indicates the more recent time. c–e Three-
dimensional position of the end-effector in x, y, and z axes, respectively. f Mean-squared error between the reference and the actual
trajectories. g Auxiliary indicators λt and αt. h One of the desired configuration states qt,des, showing that the desired state expands over time.
i, j Learning curve of four neural networks, self-attention kinematics and dynamics for determining αt and βt, and kinematics and dynamics
network for determining qt,des and τt.

D. Kim et al.

7

npj Robotics (2023) 7

method. The reward obtained by each method over time is shown
in Fig. 5f. The result shows that SAC took a long period of time to
receive a high reward, while our method quickly obtained a high
reward. The tracking performance of the RL algorithm over a long
period of time is visualized in Supplementary Materials (Supple-
mentary Fig. 3). Merging the two methods eventually surpassed
the performance of the two individual cases when the SAC
network was sufficiently trained. The result implies that our
algorithm can be used as an accelerator for the RL algorithm to
solve high-level tasks, such as grasping, interaction, or tasks
involved with model-based RL problems.

Application 2: autonomous manipulation of a robotic arm
An industrial robotic arm (UR5e, Universal Robots) was used for
another application, that is, play the piano. In this task, it was
assumed that there was no information on the kinematics of the
robot available. Instead, the kinematics model was learned by the
proposed algorithm and used to perform the task. However, the
dynamics model was not trained, since the robotic arm used in
this experiment did not support real-time force control. The
desired trajectory for playing the piano was obtained by
kinesthetic teaching; a human expert moved the manipulator
and demonstrated how to play the melody, and the orientation of
the end-effector was sequentially saved in the buffer. A single task
episode carried 200 timesteps, and 25 episodes (total 5000
timesteps) were executed.
The overall result is summarized in Fig. 6. Figure 6a shows the

global coordinate and the experimental setting for the kinesthetic
teaching. The human expert’s trajectory is provided in Supple-
mentary Materials (Supplementary Data 2). Figure 6b shows the
contour analysis of the robot movement in timesteps t= 1000,
2000, and 3000. A contour volume of the robot at t= 0 was valued
at V0, and the volume ratio increased over time and reached 1.50
at t= 3000. In other words, the robot initially moved in the vicinity

of its origin but finally broadened the task space. The full data can
be found in Supplementary Materials (Supplementary Data 3).
Figure 6c shows the reference and actual motions of the last
episode. Figure 6d, e show the safety factor and the tracking error,
respectively, both of which decreased over time. The overall
process of kinesthetic teaching, model learning, and performance
testing is visualized in Supplementary Materials (Supplementary
Video 3).
The analysis of the results in detail shows that there exists a

small peak in the actual trajectory, shown in Fig. 6c, i. In addition,
the actual trajectory lagged behind the schedule of the reference,
as shown in Fig. 6c, iii, meaning that the closed-loop feedback
system had a boundedness property. Let the governing kine-
matics equation for the robot be xt+1 = f(xt) + g(xt)qt, which is the
first-order approximation for the kinematic Jacobian. However, we
know the approximated functions f̂ and ĝ where the discrepancy
errors are defined as f̂ :¼ f þ δ and ĝ :¼ gþ ϵ, respectively. Then,
the feedback control becomes qt,des = (g + ϵ)+(xt+1,des − f − δ)
using the approximated neural network model. The expected
execution is given as xt+1,exp = f + gqt,des. The tracking error of the
next state is now given as

etþ1 ¼ xtþ1;des � xtþ1;exp
¼ δþ ϵ gþ ϵð Þþ xtþ1;des � f � δ

� �
¼ δþ ϵĝþ xtþ1;des � f̂

h i
:

(32)

As a result, the tracking error is proportional to the model
inaccuracies, δ and ϵ. If we choose a sufficiently rich neural
network model, then we can minimize the model inaccuracy by
the online model update algorithm. However, there exists a trade-
off between the tracking error and the operating frequency, since
a complex neural network model degrades the performance of
the real-time controller.

Fig. 4 Results of perturbation test.While performing trajectory tracking, an external perturbation was applied to the end-effector. a–c Three-
dimensional position of the end-effector in x, y, and z axes, respectively. d Mean-squared error between the reference and the actual
trajectories. e Auxiliary indicators λt and αt. f Indicator βt determining the perturbation. g Learning curve of the self-attention network. hMean-
squared error between the approximated Jacobian JϕJ

and the real Jacobian of the robot.

D. Kim et al.

8

npj Robotics (2023) 7

In conclusion, the proposed algorithm accomplished the task of
online tracking of a complex trajectory with the assistance of a
human expert. Although a commercial robotic arm was used in
this demonstration, the overall approach can be extended to any
unknown or custom-built robot.

Application 3: gait training of quadruped robot
Controlling legged robots, such as quadrupedal robots or
humanoids, often requires high performance controllers that
consider the stability of the center of mass, the walking balance,
and phase matching17,56. Unfortunately, our approach based on
kinematics and dynamics did not fully utilize those properties.
Instead, we copied the walking behavior of a quadrupedal
creature and implemented it as the reference trajectory. We used
a commercial quadruped robot (Laikago, Unitree) for a validation
experiment. The goal was to make the robot walk straight. The
result is presented in Fig. 7. Figure 7a, b summarize the coordinate
settings and the transmission protocol for the agent. Figure 7c
shows the horizontal and vertical motions of each foot. It is
observed that the motions became larger as time passed,
indicating that the overall trajectory was affected by the safety
factor that decreased over time. This is also observed in Fig. 7d,
where the vertical position gradually increased over time. The real-

time operation of the robot can be found in Supplementary
Materials (Supplementary Video 4), and the Cartesian position of
the robot foot of a single operation can also be found in
Supplementary Materials (Supplementary Data 4).
In this application, the robot was unable to sufficiently explore the

kinematics due to the relatively large weight of the battery attached
to the robot, and we artificially created an exploration term that did
not influence the overall performance of the robot, using the null-
space exploration term. Let the feedback control be
qt;des ¼ ĝþðxtþ1;des � f̂ Þ. Then, we define the null-space of the
Jacobian ĝ as ½I � ĝþĝ�. We applied the desired configuration state as

qt;des ¼ ĝþ xtþ1;des � f̂
� �

þ I � ĝþĝ
� �

ct; (33)

where we leave ct as an exploration constant decaying over time.
By applying this control, the null-space exploration term eventually
generates the internal motion that does not degrade the overall
performance (see Supplementary Document 1, Appendix B).
Last, as shown in Fig. 7a, the actual trajectories did not exactly

follow a cycloid curve, as drawn at the top of Fig. 7a. We observed
that this result came from the high friction between the foot and
the ground. The friction effect shows a highly nonlinear behavior
that is tedious to model, even with the aid of a neural network,
since friction model functions are discontinuous (e.g., Newton’s

Fig. 5 Results of tracking control of a soft robotic manipulator. a Origami-based soft robotic manipulator for bending with pneumatic
pressure inputs50. The manipulator was hung by fixing the base to the structure, and the laser module installed at the tip of the manipulator
projected the light on the screen. A camera detects the trajectory of the projection and sends the positional information on the trajectory to
the computer. b Reference and executed trajectories of the Episodes 1, 3, 5, and 7. c–e Auxiliary indicators, meaning the kinematic
manipulability, the tracking error, and λt, respectively. f The result of the comparison study (SAC).

D. Kim et al.

9

npj Robotics (2023) 7

Fig. 6 Results of autonomous manipulation of a robotic arm. a The robot is first taught how to play the piano, and it records the trajectory
of the end-effector. b While training, the robot moves in the vicinity of its original point at first but gradually broadens its task space. V0 is the
initial volume of the robot body locus, and V is the current volume. c Orientation of the end-effector. d, e Auxiliary indicators: the safety factor
and the tracking error, respectively.

Fig. 7 Results of gait training of quadruped robot. a Overall schematic of the coordinate transformation for the agent. b Commercial
quadrupedal robot communicating with the computer via TCP/IP using ROS. c Comparison between the reference and the actual trajectories.
The darker color indicates the more recent time. d Vertical position of a single foot over time, together with the applied torque to the leg.

D. Kim et al.

10

npj Robotics (2023) 7

block model57). This effect was inevitable in our model setting,
indicating the limitation of the proposed algorithm. Nevertheless,
our approach was able to successfully achieve the desired
locomotion in three minutes from scratch.

DISCUSSION
Ablation study
We performed an ablation study to evaluate the effect of the four
specific methods employed in the algorithm: masking for self-
attention, use of the leveraging factor γ <−1, position-wise
encoding for self-attention, and random initialization. The results
of the study are presented in Table 1 and visualized in Fig. 8.
Statistical tests on the mean and the standard deviation values
were applied to the four ablation cases.
The effect of masking in the self-attention mechanism was first

tested. Masking is a widely-used method to avoid referring to
future inputs while training since a time series has a causality
property. However, the result with masked self-attention showed
no significant difference from that with non-masked self-attention
because the proposed algorithm was used to find the abnormality
in the datasets rather than to predict or generate them.
The next test was on the use of the leveraging factor. Updating

the safety factor λt by following the leveraged ratio of the
kinematics attention score αt was used for gradually downsizing
the factor to accelerate the exploration. The leveraging factor was
fixed to γ = −1, and the performance was compared with that of
the original algorithm. The update rule for λt using the leveraged
ratio showed significant differences in both the mean and the
standard deviation values, implying the acceleration of both the
exploration and convergence of the model with the leveraging
strategy. In addition, leveraging improved the reproducibility of
the experiment as a result of a low standard deviation value.
The effect of position-wise encoding for self-attention was also

tested. In this case, the self-attention layer worked as a time-
recurrency of the system and thus played an essential role in
analyzing both the kinematics and the dynamics models. Therefore,
position-wise encoding also showed a significant improvement in
performance compared to the case without position-wise encoding.
Finally, the effect of initializing the kinematics network by

sampling from the normal distribution was checked, and it was
confirmed that initialization contributed to determining the
starting point of exploration. Two cases of initialization, namely,
random initialization and zero initialization, were compared. The
result indicates that random-initialization of the kinematics
network facilitated the system to reduce the tracking error and
to accelerate the convergence. After all, if the network uses zero
initialization, then the kinematics network is less willing to explore
a new region at the initial operation.

Effect of random initialization
In this section, we explain why an RBNN was chosen rather than a
multilayer perceptron structure. We describe the behavior of the
output using a vanilla example. Let us consider an artificial neural
network as a network that consists of multidimensional inputs, a
single hidden layer with hidden units NH, and a scalar output. We
can then express the mapping from the input x 2 Rn to the
output y2R as

y ¼ f xð Þ :¼ b2 þ
XNH

i¼1
w2;iσ w>1;ix þ b1;i

� �
; (34)

where b1 2 RNH and b22R are the bias terms, w1 2 Rn ´NH and
w2 2 RNH are the weights, and σ(⋅) is a nonlinear activation
function. We denote all the weights (i.e., [b1;b2;vec(w1); w2]) by w,
initialized by sampling from the prior distribution. If the sampling
distribution is chosen as

b2 � Nð0; σ2b2Þ;w2 � Nð0; σ2w2
Þ; b1 � Nð0; σ20Þ; vecðw1Þ � Nð0; σ20Þ; (35)

then it is straightforward to calculate the following property:58

Ew f xð Þ½ � ¼ 0;

Ew f xð Þf x0ð Þ½ � ¼ σ2b2 þ NHσ
2
w2
� 2π sin�1

2x>diag σ20ð Þx0ffi
1þ2x>diag σ20ð Þx0ð Þ 1þ2x0>diag σ20ð Þxð Þp

 !
;

(36)

when a hyperbolic tangent is used as an activation function. The
result indicates a kernel between x and x' and thus a Gaussian
process when NH !1. However, when we use an RBNN, we can
derive the covariance as,

Ew½f ðxÞf ðx0Þ� ¼ exp � x>x
2σ2

	

exp � jjx � x0jj2

2s2

 !
exp � x0>x0

2σ2

	

(37)

which is an enveloped decaying Gaussian function58. Comparing
Eqs. (36) and (37), we can infer that both networks behave like a
Gaussian process when their weights are randomly initialized,
which is the same situation as when a robot is about to start

Table 1. Results of the ablation study and the results of the statistical
tests.

Cases (n= 8) Statistics Mann–Whitney
test

Two-sample
F-test

Mean Std. p value Asterisks p value Asterisks

Full Algorithm 0.0518 0.0132 – – – –

No Masked
Attention

0.0615 0.0154 0.3282 ns 0.7043 ns

No Leveraging
λt

0.0729 0.0044 0.0003 *** 0.0095 *

No Pos-Wise
Encoding

0.0913 0.0409 0.0002 *** 0.0081 *

Zero-Init. of ϕJ 0.3316 0.0186 0.0002 *** 0.3886 ns

Fig. 8 Results of the ablation study. Result of the ablation study
showing no significance between the complete algorithm and the
unmasked self-attention but showing significance among the other
three ablation cases that are leveraging the safety factor, applying
position-wise encoding, and randomly initializing the kinematics
network.

D. Kim et al.

11

npj Robotics (2023) 7

exploration and model learning. We showed that random
initialization of the kinematics network gradually improved the
tracking performance in the ablation study. However, an FNN
defines the similarity between two inputs x and x′ as an inner
product, where the RBNN defines the similarity as the Euclidean
distance. Therefore, the covariance of the RBNN is consistent
within small input evolution, where the robot should exercise
caution in the initial learning phase since no information is given
to the robot.
Random initialization was not performed for the M, C, and g

matrices, but zero-initialization was used instead. This is because
we employed a two-step control strategy. The desired configura-
tion state qt,des is first obtained using the desired task state xt,des,
and then the control input τt is further derived. When examining
the equation for obtaining the control input using the desired
configuration state, the inertia term and the Coriolis force term are
multiplied by the acceleration and the velocity terms of the
desired configuration state, respectively. During the initial stages
of training, when the value of λt is high, the acceleration and the
velocity components exhibit diminished magnitudes. Conse-
quently, the gradients associated with the matrices M and C are
also small in magnitude. Therefore, the matrix g is trained
relatively quickly in the initial stages. This prevents unexpected
movements resulting from the inertial terms when the learning
has just started.

Network structure and component
As previously mentioned in the results section, the proposed
algorithm used a discretized kinematics model instead of an
original continuous-time Jacobian model. By using this first-order
model and the update rule by gradient descent, the overall model
worked as a piecewise linear model that was able to best express
the local behavior near the bin. Functions f and g are
approximated by the RBNN with a predefined Gaussian activation
function. When operating the robot, the kinematics model is
similar to the locally linearized model near the closest center of
the Gaussian activations. When updating the model, the weight
update ratio considers the distance between the current state and
the center. If the center is far from the current state, then the
weights of the neural network corresponding to the center will
rarely be updated. On the other hand, if the center is close to the
current state, then the weights will be periodically updated,
realizing continual learning of our algorithm. If we need to
perform multiple tasks at once, then all we need is to update the
network sequentially by task rather than reconstructing a
new model.
Both the dynamics model and the dynamics self-attention

model consider only the relationship between the control input
and the configuration state, neglecting the influence of external
forces and the geometric constraints inherent in the actual
dynamics of a robot. While it is feasible to equip the robot with
force sensors, external perturbations may appear on any locations
on the robot, making them undetectable by the sensors. As a
result, these outliers result in reduction in the dynamics self-
attention score and are consequently excluded from the replay
buffer. However, focusing solely on the relationships within the
dynamics model can be influenced if any self-collisions occur
during training. While the dynamics attention model can detect
the onset of the self-collision through the temporal patterns of the
dynamics self-attention matrix, it is difficult to distinguish these
patterns from the pattern from the external perturbations. As a
result, dataset exclusions from replay buffer may also occur if
there are self-collisions. This implies the importance of meticu-
lously designing the desired task to prevent such issues. In this
work, the desired task trajectories are designed as conservatively
as possible to ensure the robot does not enter self-collision state,

and use automatic safety functions embedded in the robot
platform.

Relation to previous methods
We compare our approach with previously developed RL
algorithms that consider model-based methods or control-
oriented methods. Model-based RL methods by using a specific
cost function regarding its trajectory constraints or incorporating
model uncertainties have previously been developed18,59. In
particular, an iterative linear quadratic regulator (iLQR) was used
as a controller to generate guided samples18, and nonlinear lifting
was used to depict highly nonlinear terms with model predictive
control59. Both approaches use iterative optimization based on
local linearization. Our method can be rearranged as an iLQR form
by

xtþ1 ¼ xt þ JϕJ
qtð Þðqtþ1 � qtÞ;

r xtþ1; qtþ1
� � ¼ jjxtþ1;des � xtþ1jj2 þ λtjjqtþ1jj2;

(38)

which yields iLQR recursive relation to calculate Q-function and
value function as

Qxx;t ¼ 1;Qqq;t ¼ λt þ J>Vxx;tþ1J;Qqx;t ¼ 0;

Qx;t ¼ xt � xtþ1;des;Qq;t ¼ J>Vx;tþ1;
Vx;t ¼ xt � xtþ1;des; Vxx;t ¼ 1;

(39)

where subscripts mean Jacobians and Hessians with respect to x
and q. The results finally derive the same solution as Eq. (23) by
defining feedback control qtþ1;des ¼ qt � Q�1qq;tQq;t . As a result, our
method follows the flow of model-based RL, where employing λt
and planning its value over time is the unique property of our
method.

METHODS
This section discusses the environmental settings for the three
validation experiments. All the source codes were written in Python
3, and all the hyperparameters on the experiments were determined
by sweeping the parameters and selecting the best combination.

Learning implementation
For initial setting, we designated an initial position with position
control and then changed it to a force control mode. We clipped the
measured force, velocity, and acceleration values with a hyperbolic
tangent function to prevent any undesired behaviors in the deep
learning model. The learning rate for each neural network models
was 0.005 with an Adam optimizer. The centers ci of the RBNNs were
also updated using the gradient descent. The size of the replay
buffer was set to be 6000 samples, and the model was updated
every 20 timestep with minibatch size of 32. The size of the self-
attention matrix was 20 × 20, in which we refer to 20 past samples
for detecting the anomaly. A leveraging factor γ = −3 was
determined from its best-performance combination, but we clipped
the maximum volatility to be 20% of its previous value to prevent
unexpected motions. Moreover, a lower limit for the safety factor λt
exists to avoid a kinematic singularity, which is often inevitable
during the control manipulator (see Supplementary Document 1,
Appendix C). To calculate the average value of βt for determining ϵ
in Eq. (27), approximately 1500ms are required in the simulated
environment and 10 s in the real-world environment. We performed
a gradient descent of the kinematics and the dynamics models from
scratch for rapid online calculation and simplicity. On the other
hand, we received the assistance of an automated back-propagation
tool while optimizing the self-attention models (Adam optimizer60).
The selected hyperparameters were applied to both the simulated
environment and the actual robot environments, but their values
were slightly adjusted to account for differences in operation
frequency, as summarized in Table 2.

D. Kim et al.

12

npj Robotics (2023) 7

The dynamics model requires the learned inertia matrix to
adhere to the constraint of being symmetric positive-definite. To
ensure this constraint, the Cholesky decomposition technique was
employed during the learning process. This involves constructing
a lower triangular matrix with positive diagonal elements, which
can be multiplied by its transpose to yield a symmetric positive-
definite matrix. Consequently, the weight utilized in computing
the inertia matrix is specifically designed to obtain a triangular
matrix to match the Cholesky decomposition requirements.

Simulation environment
In the simulation for validation, we used the open-sourced
PyBullet physics engine compatible with the Python environment.
A six degree-of-freedom (DOF) robotic arm (KUKA) with a default
setting in the PyBullet engine was used in the simulation. The
overall environment was exposed to a gravitational field
(�9:81k̂m=s2). The PyBullet engine used a fixed timestep of
0.001 s in the simulation world.
Trajectory tracking was performed for the validation task. Two

tasks, named Task 1 and Task 2, were executed, as shown in Fig. 3a
and Supplementary Fig. 1a, respectively. In Task 1, a trajectory of
back-and-forth motions composed of a sine wave over time was
given, and in Task 2, a circular trajectory in the x − y plane was
given. A feedback gain for force control was given as 25 in the
diagonal terms of the matrix.
For the statistical test in the ablation study, we used statistics

and visualization tools (Prism 9, GraphPad) for analysis and
plotting. We assumed that each ablation group was independent
of the others, and the dependent variables were the ordinals.
Therefore, we conducted a Mann–Whitney test (i.e., Wilcoxon
rank-sum test) to compare the mean values and a non-parametric
two-sample t-test. In addition, a two-sample F-test was performed
to distinguish the repeatability of each experiment. A total of eight
samples were used for each ablation case (n= 8), the asterisks
indicate *P < 0.05, **P < 0.01, ***P < 0.001 and “ns” indicates non-
significance between two groups.

Soft manipulator environment
A simple soft robotic manipulator, composed of three linear soft
pneumatic actuators was used in this experiment50. Each actuator
was made of an origami air chamber that was able to contract and
expand along its length. The air chamber was fabricated with a
150-polyethylene terephthalate (PET) film and sealed with a
polyamide film. Three independent linear motions allow the entire
structure to bend in three different directions, eventually enabling
the manipulator to span three-dimensional space. Therefore, the
structure can be used for localizing the position of the end

effector in three-dimensional space. For the conciseness of the
system, we selected the task to track the designated path in a two-
dimensional plane. At the tip of the robot structure, a laser module
(λt = 650 nm, P= 5mW, Epxfavjd, Amyta) was attached so that the
manipulator projected the laser point on the test plane. The
projected laser point was then captured by an RGB camera (Q2F-
00014), and the data of the relative pixel positions were collected
by using an open-source computer vision library (cv2) with a scale-
invariant feature transform.
A pneumatic input source for each actuator attached to the

robot was controlled by a pressure regulator (ITV2011-212BS5,
SMC Corp.) connected to a microcontroller (Arduino Mega). A
Python environment in the laptop communicated with the
microcontroller via the transmission control protocol (TCP) in
real-time. The input τ 2 R3 was an applied voltage to the pressure
regulator, the configuration state q 2 R3 was a current pressure
level applied to the actuators, and the task state x 2 R2 was the
two-dimensional projection of the laser module.

Robotic arm environment
We validated the algorithm with a six-DOF industrial robotic arm.
The robot was controlled in real-time by the transmission control
protocol/internet protocol (TCP/IP) communication via the Python
URBasic library61. The desired joint input was applied through the
command for simultaneous position servoing in URBasic, which is
a real-time torque control targeting a smoothed trajectory. The
overall operation frequency of the system was 25 Hz, in which the
computed torque control achieved the desired motion in the look-
ahead time of 0.15 s with a sliding feedback gain of 0.5. The robot
performed only position control, so we neglected the dynamics
model and considered position control with the kinematics model.
The desired trajectory of the task was obtained by collecting the

end-effector trajectory through kinesthetic teaching. To perform
teaching, admittance control (i.e., free-drive mode) was used with
the least target mass and damper setting. The robot was complied
with a safety setting in case of an emergency.
We demonstrated playing the piano. A human operator taught

the robot to play the melody of the music (W. A. Mozart, “Ah, vous
dirai-je, maman K. 265, TEMA) with a piano (Yamaha P-125). The
end-effector for pressing the keyboards of the piano was made
from silicone rubber (EcoFlex-0030). A tempo for teaching was 45
beats-per-minute (bpm), where the actual demonstration was in
the tempo of 60 bpm by downsampling the trajectory. A contour
analysis is shown in Fig. 6b, a postprocessed image using a
contour analysis video processing program (ProAnalyst, Xcitex).

Quadruped robot environment
In the last application, we used a commercial 12-DOF quadruped
robot (Laikago Pro, Unitree) and tried to make it walk. The robot
was controlled by the torque command on each motor torque in
real time. The overall communication was performed by the robot
operating system (ROS) with the Python 2 environment via the
user datagram protocol (UDP) communication. This communica-
tion was implemented by the Unitree libraries with an operation
frequency of 500 Hz62. The states of the robot were also
transmitted to the computer through the UDP communication.
We consider each of the four legs as an individual agent. An input
τ 2 R3, a configuration state q 2 R3, and a task state x 2 R3 are
the motor torque, the joint angle, and the Cartesian position of the
foot, respectively. In order to account for the variation in motor
torque due to the contact between the robot foot and the ground,
we used both the actual torque applied to the motor and the
target motor torque as the input values of the dynamics network.
A cycloid-type curve was used as a reference trajectory, but it was
slightly modified to overcome the relatively high friction between
the foot and the ground. For the overall gait motions of the
quadruped robot, we referred to the previous literature17.

Table 2. List of hyperparameters used in each experiment.

Parameter Simulation Soft
robot

Manipulator Quadruped

Initial safety factor λ0 2.0 2.0 3.5 2.0

Number of center
(Eq. (4))

25 30 30 30

Learning rate 5e−3 5e−3 5e−3 3e−3

Batch size 32 6 32 6

Attention matrix size 20 15 10 20

Leveraging factor γ −3 −3 −3 −3

Average period of ϵ
(Eq. (27))

1500ms 10 s – 10 s

Sliding feedback
gain

0.35 0.5 0.5 0.35

Buffer size 6000 6000 2000 5000

D. Kim et al.

13

npj Robotics (2023) 7

DATA AVAILABILITY
Source codes are available at github.com/mochacoco/npjselfattn.

Received: 6 March 2023; Accepted: 11 October 2023;

REFERENCES
1. Spong, M. W., Hutchinson, S. & Vidyasagar, M. Robot Modeling and Control (Wiley,

2020).
2. Lynch, K. M. & Park, F. C. Modern Robotics (Cambridge University Press, 2017).
3. Polydoros, A. S. & Nalpantidis, L. Survey of model-based reinforcement learning:

applications on robotics. J. Intell. Robot. Syst 86, 153–173 (2017).
4. Kwon, J., Choi, K. & Park, F. C. Kinodynamic model identification: a unified geo-

metric approach. IEEE Trans. Rob. 37, 1100–1114 (2021).
5. Jaquier, N., Rozo, L., Caldwell, D. G. & Calinon, S. Geometry-aware manipulability

learning, tracking, and transfer. Int. J. Robot. Res. 40, 624–650 (2021).
6. Abu-Dakka, F. J., Huang, Y., Silvério, J. & Kyrki, V. A probabilistic framework for

learning geometry-based robot manipulation skills. Rob. Auton. Syst. 141, 103761
(2021).

7. Park, Y.-L. et al. Design and control of a bio-inspired soft wearable robotic device
for ankle-foot rehabilitation. Bioinsp. Biomim. 9, 016007 (2014).

8. George Thuruthel, T., Renda, F. & Iida, F. First-order dynamic modeling and
control of soft robots. Front. Robot. AI 7, 95 (2020).

9. Kim, D. et al. Review of machine learning methods in soft robotics. PLoS ONE 16,
e0246102 (2021).

10. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521,
467–475 (2015).

11. Chin, K., Hellebrekers, T. & Majidi, C. Machine learning for soft robotic sensing and
control. Adv. Intell. Syst. 2, 1900171 (2020).

12. Li, M., Kang, R., Branson, D. T. & Dai, J. S. Model-free control for continuum robots
based on an adaptive kalman filter. IEEE/ASME Trans. Mechatron. 23, 286–297
(2017).

13. Huang, W., Huang, X., Majidi, C. & Jawed, M. K. Dynamic simulation of articulated
soft robots. Nat. Commun. 11, 1–9 (2020).

14. Park, M., Jeong, B. & Park, Y.-L. Hybrid system analysis and control of a soft robotic
gripper with embedded proprioceptive sensing for enhanced gripping perfor-
mance. Adv. Intell. Syst. 3, 2000061 (2021).

15. Kim, D., Kwon, J., Jeon, B. & Park, Y.-L. Adaptive calibration of soft sensors using
optimal transportation transfer learning for mass production and long-term
usage. Adv. Intell. Syst. 2, 1900178 (2020).

16. Abraham, I. & Murphey, T. D. Active learning of dynamics for data-driven control
using koopman operators. IEEE Trans. Robot. 35, 1071–1083 (2019).

17. Hwangbo, J. et al. Learning agile and dynamic motor skills for legged robots. Sci.
Robot. 4, eaau5872 (2019).

18. Levine, S. & Koltun, V. Guided policy search. In Proc. International Conference on
Machine Learning 1–9 (PMLR, 2013).

19. Cheng, L., Hou, Z.-G. & Tan, M. Adaptive neural network tracking control for
manipulators with uncertain kinematics, dynamics and actuator model. Auto-
matica 45, 2312–2318 (2009).

20. Lyu, S. & Cheah, C. C. Data-driven learning for robot control with unknown
jacobian. Automatica 120, 109120 (2020).

21. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015).

22. Kober, J., Bagnell, J. A. & Peters, J. Reinforcement learning in robotics: a survey.
Int. J. Robot. Res. 32, 1238–1274 (2013).

23. Giusti, A. et al. A machine learning approach to visual perception of forest trails
for mobile robots. IEEE Robot. Autom. Lett 1, 661–667 (2015).

24. George Thuruthel, T., Picardi, G., Iida, F., Laschi, C. & Calisti, M. Learning to stop: a
unifying principle for legged locomotion in varying environments. R. Soc. Open
Sci. 8, 210223 (2021).

25. Kormushev, P., Calinon, S. & Caldwell, D. G. Reinforcement learning in robotics:
applications and real-world challenges. Robotics 2, 122–148 (2013).

26. Lee, T., Lee, B. D. & Park, F. C. Optimal excitation trajectories for mechanical
systems identification. Automatica 131, 109773 (2021).

27. Mitchell, S., Potash, E., Barocas, S., D’Amour, A. & Lum, K. Algorithmic fairness:
choices, assumptions, and definitions. Annu. Rev. Stat. Appl. 8, 141–163 (2021).

28. Molnar, C. Interpretable Machine Learning (Lulu.com, 2020).
29. Covert, I., Lundberg, S. & Lee, S.-I. Explaining by removing: a unified framework

for model explanation. J. Mach. Learn. Res. 22, 9477–9566 (2021).
30. Hofer, S. et al. Sim2Real in robotics and automation: applications and challenges.

IEEE Trans. Autom. Sci. Eng. 18, 398–400 (2021).

31. Osogami, T. Robustness and risk-sensitivity in markov decision processes. Proc.
Adv. Neural Inf. Process. Syst. 25, 233–241 (2012).

32. Guo, Z. D. et al. BYOL-Explore: exploration by bootstrapped prediction. Proc. Adv.
Neural Inf. Process. Syst. 35, 31855–31870 (2022).

33. Pathak, D. et al. Curiosity-driven exploration by self-supervised prediction. In Proc.
Int. Conf. Mach. Learn. 2778–2787 (2017).

34. Moldovan, T. M. & Abbeel, P. Safe exploration in Markov decision processes. In
Proc. Int. Conf. Mach. Learn. 1451–1458 (2012).

35. Brunke, L. et al. Safe learning in robotics: from learning-based control to safe
reinforcement learning. Annu. Rev. Control Robot. Auton. Syst. 5, 411–444 (2022).

36. Omer, M., Ahmed, R., Rosman, B. & Babikir, S. F. Model predictive-actor critic
reinforcement learning for dexterous manipulation. In 2020 International Con-
ference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE) 1–6
(IEEE, 2021).

37. Berkenkamp, F. & Schoellig, A. P. Safe and robust learning control with gaussian
processes. In Proc. European Control Conference (ECC) 2496–2501 (IEEE, 2015).

38. Turchetta, M., Berkenkamp, F. & Krause, A. Safe exploration in finite markov
decision processes with Gaussian processes. Proc. Adv. Neural Inf. Process. Syst. 29,
4312–4320 (2016).

39. Horvath, D., Erdos, G., Istenes, Z., Horvath, T. & Foldi, S. Object detection using
sim2real domain randomization for robotic applications. IEEE Trans. Robot.
https://doi.org/10.1109/TRO.2022.3207619 (2022).

40. Dulac-Arnold, G. et al. Challenges of real-world reinforcement learning: defini-
tions, benchmarks and analysis. Mach. Learn. 1–50 (2021).

41. Chow, Y., Ghavamzadeh, M., Jason, L. & Pavone, M. Risk-constrained reinforce-
ment learning with percentile risk criteria. J. Mach. Learn. Res. 18, 6070–6120
(2017).

42. Park, K. M., Kim, J., Park, J. & Park, F. C. Learning-based real-time detection of
robot collisions without joint torque sensors. IEEE Robot. Autom. Lett. 6, 103–110
(2020).

43. Vaswani, A. et al. Attention is all you need. In Proc. Advances in Neural Information
Processing Systems 5998–6008 (NIPS, 2017).

44. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: pre-training of deep bidir-
ectional transformers for language understanding. In Proc. 2019 Conf. North
American Chap. Assoc. Comp. Ling.: Human Lang. Tech. 4171–4186 (2019).

45. Kim, D., Park, M. & Park, Y.-L. Probabilistic modeling and bayesian filtering for
improved state estimation for soft robots. IEEE Trans. Robot. 37, 1728–1741
(2021).

46. Razmjooei, H. & Shafiei, M. H. A new approach to design a finite-time extended
state observer: uncertain robotic manipulators application. Int. J. Robust Nonlinear
Control. 31, 1288–1302 (2021).

47. Choi, S., Lee, K. & Oh, S. Robust learning from demonstrations with mixed qua-
lities using leveraged gaussian processes. IEEE Trans. Robot. 35, 564–576 (2019).

48. Ravichandar, H., Polydoros, A. S., Chernova, S. & Billard, A. Recent advances in
robot learning from demonstration. Annu. Rev. Control. Robot. Auton. Syst. 3,
297–330 (2020).

49. Steffi, D. D., Mehta, S., Venkatesh, K. & Dasari, S. K. In Data Science and Security
211–219 (Springer, 2021).

50. Luong, M.-T., Pham, H. & Manning, C. D. Effective approaches to attention-based
neural machine translation. In Proc. 2015 Conf. Emp. Meth. Nat. Lang. Proc.
1412–1421 (2015).

51. Agarap, A. F. Deep learning using rectified linear units (RELU). Preprint at https://
arxiv.org/abs/1803.08375 (2018).

52. Coumans, E. & Bai, Y. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org (2016).

53. Hong, T. H., Park, S.-H., Park, J.-H., Paik, N.-J. & Park, Y.-L. Design of pneumatic
origami muscle actuators (pomas) for a soft robotic hand orthosis for grasping
assistance. In Proc. IEEE International Conference on Soft Robotics 627–632 (IEEE,
2020).

54. Kim, T. et al. Heterogeneous sensing in a multifunctional soft sensor for human-
robot interfaces. Sci. Robot. 5, eabc6878 (2020).

55. Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic: off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proc. International
Conference on Machine Learning 1861–1870 (PMLR, 2018).

56. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V. & Hutter, M. Learning quadrupedal
locomotion over challenging terrain. Sci. Robot. 5, eabc5986 (2020).

57. Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials (Cambridge Uni-
versity Press, 2008).

58. Rasmussen, C. E. Gaussian processes in machine learning. In Summer School on
Machine Learning 63–71 (Springer, 2003).

59. Bruder, D., Fu, X., Gillespie, R. B., Remy, C. D. & Vasudevan, R. Data-driven control
of soft robots using Koopman operator theory. IEEE Trans. Robot. 37, 948–961
(2020).

60. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. Int.
Conf. Learn. Rep. (2015).

D. Kim et al.

14

npj Robotics (2023) 7

http://github.com/mochacoco/npjselfattn
https://doi.org/10.1109/TRO.2022.3207619
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
http://pybullet.org

61. UniversalRobots. UR interface. https://bitbucket.org/RopeRobotics/ur-interface/
src/master/ (2021).

62. Unitree. Laikago working with ROS. https://github.com/unitreerobotics/
laikago_ros (2021).

63. RoboDK. RoboDK for web. https://web.robodk.com/web?--OpenTab=t-4268
(2022).

ACKNOWLEDGEMENTS
This work was supported in part by the National Research Foundation Grant (RS-
2023-00208052) and in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) Grant (2021-0-00896) both funded by the
Korean Government (MSIT).

AUTHOR CONTRIBUTIONS
D.W.K. conceived the overall algorithm, designed a deep neural network for both
kinematics and dynamics model, conducted the simulation and the application
experiments, performed an ablation study, and wrote the manuscript. S.L. provided a
virtual environment for the PyBullet and ROS system and assisted in the experiment
of the quadruped robot. T.H.H. provided a hardware environment for soft robot and
assisted in the experiment of the soft robot. Y.-L.P. directed the overall research and
organized and wrote the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s44182-023-00006-5.

Correspondence and requests for materials should be addressed to Yong-Lae Park.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

D. Kim et al.

15

npj Robotics (2023) 7

https://bitbucket.org/RopeRobotics/ur-interface/src/master/
https://bitbucket.org/RopeRobotics/ur-interface/src/master/
https://github.com/unitreerobotics/laikago_ros
https://github.com/unitreerobotics/laikago_ros
https://web.robodk.com/web?-OpenTab=t-4268
https://doi.org/10.1038/s44182-023-00006-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Exploration-based model learning with self-attention for risk-sensitive robot control
	Introduction
	Results
	Algorithm overview
	Network structures and objectives
	Kinematics�model
	Dynamics�model
	Kinematics self-attention�model
	Dynamics self-attention�model

	Utilizing self-attention structure for control and learning
	Task space determination by a self-attention kinematics network
	Perturbation detection by a self-attention dynamics network
	Control strategy

	Validation in the simulation
	Application 1: trajectory tracking of a soft robotic manipulator
	Application 2: autonomous manipulation of a robotic�arm
	Application 3: gait training of quadruped�robot

	Discussion
	Ablation�study
	Effect of random initialization
	Network structure and component
	Relation to previous methods

	Methods
	Learning implementation
	Simulation environment
	Soft manipulator environment
	Robotic arm environment
	Quadruped robot environment

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

