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Abstract

We perform an error analysis of a fully discretised Streamline Upwind Petrov Galerkin
Dynamical Low Rank (SUPG-DLR) method for random time-dependent advection-dominated
problems. The time integration scheme has a splitting-like nature, allowing for potentially
efficient computations of the factors characterising the discretised random field. The method
allows to efficiently compute a low-rank approximation of the true solution, while naturally
“inbuilding” the SUPG stabilisation. Standard error rates in the ∥ · ∥L2 and ∥ · ∥SUPG-norms
are recovered. Numerical experiments validate the predicted rates.

1 Introduction
The simulation of random time-dependent advection-dominated problems

∂tu− ε∆u+ b · ∇u+ cu = f, inD ⊂ Rd, (1)

with coefficients ε, b, c and data f depending on some random parameter ω ∈ Ω, with prob-
ability measure µ on Ω, remains a challenge for multiple reasons. These processes often have
poorly decaying Kolmogorov n-widths in the time-space domain, even if at each point in time
the solution profile is well-approximated by a small subspace. Furthermore, it is well-known
that applying the standard Finite Element Method to such problems causes the numerical
solution to display unphysical spurious oscillations, in particular when the solution has sharp
gradients and/or boundary layers. For practical purposes, it becomes necessary to remove or
alleviate these oscillations by using some stabilisation strategy.

The purpose of [11] was to introduce the generalised Petrov-Galerkin Dynamical Low Rank
(PG-DLR) framework and its particularisation to the Streamline Upwind/Petrov-Galerkin
(SUPG-DLR), which allows to simultaneously tackle both issues. The Dynamical Low Rank
(DLR) [8] framework, in this work written in its Dynamically Orthogonal (DO) [13] formalism,
consists in seeking an approximation of the form uDLR =

∑R
i=1 Ui(t, x)Yi(t, ω) of the solution

utrue(t, x, ω) of (1). The peculiar feature of this framework is that the physical {Ui(t, x)}Ri=1

and the stochastic modes {Yi(t, ω)}Ri=1 evolve in time to follow a (quasi-)optimal low-rank ap-
proximation of utrue, making it suited for the type of transport-dominated problems described
above. As an extension of that framework, the PG-DLR framework allows to seamlessly import
many stabilisation techniques that can be framed as generalised Petrov-Galerkin problems.
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The focus of this paper is an error analysis of the SUPG-DLR framework. This work
inscribes itself within a growing body of literature addressing the stabilisation of Reduced
Order Models, including e.g. [15, 3] for SUPG-stabilised POD methods for advection-dominated
problems. An error analysis for the SUPG-stabilised POD method was carried out in [4]
for time-dependent advection-diffusion-reaction problems. In the DO setting, a noteworthy
alternative to our method is the stabilisation based on Shapiro filters in [2], applied after each
time step to smooth out the oscillations.

2 Problem setting & SUPG-DLR approximations
Solutions to random PDEs are function-valued random variables. In this work, we consider
the advection-diffusion-reaction problem 1 with homogeneous Dirichlet boundary conditions
u = 0 on ∂D and initial condition u|t=0 = u0 ∈ L2

µ̂(H
1
0 (D)). The coefficients verify the

following the Coefficient Assumptions (CoefA): ε > 0, c ∈ L∞
µ̂ (L∞(D)) and c(x, ω) ≥ c0 > 0

for a.e. x ∈ D,∀ω ∈ Ω̂, f ∈ L2
µ̂(L

2(D)), b ∈ (L∞(D))d, div b(x) = 0. Therefore the
solution utrue(t, ·, ω) belongs to H1

0 (D) for (almost) every t > 0 and ω ∈ Ω. The probability
space is discretised via a collocation method (e.g., the Monte Carlo method), yielding the
collocation points Ω̂ := {ωi}NC

i=1 ⊂ Ω and a discrete measure µ̂. L2
µ̂(Ω̂) denotes the space of

random variables, with scalar product Eµ̂[Y Z] =
∑NC

i=1 miYiZi, where {mi}NC
i=1 are positive

weights summing up to 1, and Yi = Y (ωi), Zi = Z(ωi). The random solution utrue(t, ·, ·)
satisfies for almost every t, u ∈ L2

µ̂(Ω̂, X) := L2
µ̂(X), where X = H1

0 (D) (with standard
H1

0 -scalar product) or L2(D). These Bochner spaces admit the scalar product (u, v)L2
µ̂
(X) =∑NC

i=1 mi⟨u(ωi), v(ωi)⟩X . Hereafter, we use the shorthand notation (·, ·) and ∥ · ∥ to denote the
L2

µ̂(L
2(D)) inner product and norm.

We use the Finite Elements Method on a quasi-uniform mesh Th with characteristic mesh
size h, and consider the space of continuous piece-wise polynomials of degree k, Vh := PC

k (Th) ⊂
H1

0 (D) where k denotes the polynomial degree and Nh := |Vh|. In this work, we will consider
the advection-dominated regime with the condition ∥b∥L∞h > 2ε assumed true hereafter.

The numerical approximation ũh,µ̂ is sought in Vh ⊗ L2
µ̂. The inverse inequality from stan-

dard Finite Element theory can be extended to elements in Vh ⊗ L2
µ̂, yielding ∥∇ũh,µ̂∥ ≤

CIh
−1∥ũh,µ̂∥ for some CI > 0 and every ũh,µ̂ ∈ Vh⊗L2

µ̂, as the inequality holds pointwise in ω.
For the same reasons, the standard Poincaré inequality can be extended to Vh ⊗ L2

µ̂, yielding
∥ũh,µ̂∥ ≤ CP ∥∇ũh,µ̂∥, where CP is the Poincaré constant. Hereafter, to lighten the notation,
ũ ≡ ũh,µ̂ ∈ Vh ⊗ L2

µ̂.
The DLR approximation belongs to the differential manifold of R-rank functions, defined

as

MR = {ũ ∈ Vh ⊗ L2
µ̂(Ω̂) : ũ =

R∑
i=1

UiYi, s.t. Eµ̂[YiYj ] = δij ,

{Ui}Ri=1 lin. ind. and {Ui}Ri=1 ∈ Vh, {Yi}Ri=1 ∈ L2
µ̂(Ω̂)}. (2)

Each point u ∈ MR can be equipped with a tangent space, spanned by tangent vectors δu =∑R
i=1 δuiYi + Uiδyi, uniquely identified by imposing the Dual Dynamically Orthogonal (Dual

DO) condition [10], E[Yiδyj ] = 0 for i, j = 1, . . . , R. This leads to the following characterisation

TuMR = {δu =

R∑
i=1

δuiYi + Uiδyi, such that {δui}Ri=1 ∈ Vh,

{δyi}Ri=1 ∈ L2
µ̂(Ω̂),Eµ̂[δyiYj ] = 0, ∀1 ≤ i, j ≤ R}. (3)
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Given U = (U1, . . . , UR) and Y = (Y1, . . . , YR) s.t. u = UY ⊤, the tangent space at u is
denoted by TUY ⊤MR. Furthermore, for an L2

µ̂-orthonormal set Y , let Y := span(Y1, . . . , YR),
and PY [v] =

∑R
i=1 E[vYi]Yi and P⊥

Y [v] = v − PY [v].
To recover dynamic equations for the physical and stochastic modes, the idea is to project

Equation (1) onto the tangent space TUY ⊤MR at each time instant. The SUPG-DLR frame-
work proposes to solve the problem

(u̇DLR, ṽ + δb · ∇ṽ) + aSUPG(uDLR, ṽ) = (f, ṽ + δb · ∇ṽ).

∀ṽ ∈ TuDLRMR, a.e. t ∈ (0, T ], (4)

with

aSUPG(ũ, ṽ) = (ε∇ũ,∇ṽ) + (b · ∇ũ, ṽ) + (cũ, ṽ)

+
∑

K∈Th

δK(−ε∆ũ+ b · ∇ũ+ cũ,b · ∇ṽ)K,L2
µ̂
,

where (·, ·)K,L2
µ̂
:= (·, ·)L2

µ̂
(L2(K)). Hereafter, we use a uniform stabilisation parameter δ ≡ δK

for each K ∈ Th.
Particularising the conditions in [11] to our setting, if (CoefA) and

δ ≤ min
K∈Th

{
1

2∥c∥L∞
µ̂

(L∞)

,
h2
K

2εC2
I

,
hK

∥b∥L∞CI

}
(5)

hold true, then

aSUPG(ũ, ũ) ≥
1

2
∥ũ∥2SUPG, (6)

where ∥ũ∥2SUPG = ε∥∇ũ∥2 + δ
∑

K∈Th
∥b · ∇ũ∥2K,L2

µ̂
+ ∥c1/2ũ∥2. This norm is suitable for

advection-dominated problems, as it offers a better control of the stream-line diffusion. As an
immediate consequence of (5), ∥ṽ + δb · ∇ṽ∥ ≤ 2∥ṽ∥. Two additional properties of the SUPG
setting are summarised below :

Lemma 2.1. Assuming (CoefA), it holds

aSUPG(ũ, ṽ) ≤ C1∥∇ũ∥∥ṽ∥, ∥ũ∥ ≤ c−1
0 ∥ũ∥SUPG, (7)

where C1 = (CI + 2)∥b∥L∞ + 2CP ∥c∥L∞
µ̂

(L∞).

Proof. We detail the proof for some terms, the bounds for the others being direct. Firstly,
ε|(∇ũ,∇ṽ)| ≤ ∥∇ũ∥∥ε∇ṽ∥ ≤ CI∥b∥L∞

2
∥∇ũ∥∥ṽ∥, having used ε < 1

2
∥b∥L∞h and the inverse

inequality. Additionally, letting C2 = CI
2
∥b∥L∞ ,

|δ
∑

K∈Th

(ε∆ũ,b · ∇ṽ)K,L2
µ̂
| ≤ C2

∑
K∈Th

∥∇ũ∥K,L2
µ̂
∥ṽ∥K,L2

µ̂
≤ C2∥∇ũ∥∥ṽ∥.

In [11], we use Algorithm 1 reproduced below to sequentially update the physical and
stochastic modes in a (potentially) cheap fashion, resulting in a non-linear update on MR. The
algorithm was originally proposed and analysed in [6] for random uniform coercive problems,
and is very similar to the Projector-Splitting algorithm [9]. In this work, we focus on the implicit
version of the scheme; however, semi-implicit and fully explicit versions are also possible.

Algorithm 1. Given the solution un
h,µ̂ =

∑R
i=1 U

n
i Y

n
i :

3



1. Find Ũn+1
j , j = 1, . . . , R, such that

△t−1(Ũn+1
j − Un

j , vh + δb · ∇vh)L2(D) + aSUPG(u
n+1
h,µ̂ , vhY

n
j )

= (fn+1, vhY
n
j + b · ∇vhY

n
j ), ∀vh ∈ Vh. (8)

2. Find Ỹ n+1
j , j = 1, . . . , R such that (Ỹ n+1

j − Y n
j ) ∈ Y⊥ = P⊥

Y (L2
µ̂) and

△t−1
R∑

i=1

E[(Ỹ n+1
i − Y n

i )z]W̃n+1
ij + aSUPG(u

n+1
h,µ̂ , Ũn+1

j P⊥
Y z)

= (fn+1, Ũn+1
j P⊥

Y z + δb∇Ũn+1
j P⊥

Y z), ∀z ∈ L2
µ̂. (9)

where W̃n+1
ij = (Ũn+1

i , Ũn+1
j + δb∇Ũn+1

j )L2(D).

3. Reorthonormalise Ỹ n+1 such that E[Y n+1
i Y n+1

j ] = δij and modify {Ũn+1
i }Ri=1 such that∑R

i=1 Ũ
n+1
i Ỹ n+1

i =
∑R

i=1 U
n+1
i Y n+1

i .

4. The new solution is given by un+1
h,µ̂ =

∑R
i=1 U

n+1
i Y n+1

i .

When applying Algorithm 1, the update verifies a variational formulation (Proposition 2.1)
which allows to analyse the scheme using variational methods and, among others, prove norm-
stability of the scheme (Proposition 2.2).

Proposition 2.1. (from [11]) The numerical solution by Algorithm 1 satisfies

1

△t
(un+1

h,µ̂ − un
h,µ̂, vh,µ̂ + δb · ∇vh,µ̂) + aSUPG(u

n+1
h,µ̂ , vh,µ̂) = (fn+1, vh,µ̂ + δb · ∇vh,µ̂),

∀vh,µ̂ ∈ TŨn+1(Y n)⊤MR. (10)

Proposition 2.2. (from [11]) Assuming δ verifies (5) and δ ≤ △t/4, then it holds for the
numerical solution computed by Algorithm 1

∥uN
h,µ̂∥2 +

N∑
n=1

△t∥un
h,µ̂∥2SUPG ≤ ∥u0

h,µ̂∥2 +△t

(
4

c0
+ 4δ

) N∑
j=1

∥f j∥2. (11)

3 Error estimate
The idea of the SUPG method is to skew the test space by H = (I + δb ·∇). Its ajoint is given
by H∗ = I − δb · ∇ thanks to the zero-divergence of b. Denote PH∗ : Vh ⊗ L2

µ̂ → TuMR the
oblique projection on the tangent space:

(PH∗ ũ,H∗w) = (ũ,H∗w) ∀w ∈ TuMR. (12)

Its well-posedness is ensured by the coercivity of (u,H∗u) = ∥u∥2 on Vh ⊗ L2
µ̂. Hereafter, we

use the shorthand notation ṽ⊥ := P⊥
H∗ ṽ = ṽ − PH∗ ṽ for any ṽ ∈ Vh ⊗ L2

µ̂(Ω̂). By definition of
the projection,

(P⊥
H∗ ṽ,H∗w) = 0 ∀w ∈ TuMR. (13)

A useful property of the oblique projection is the following :

Lemma 3.1.
∥I − PH∗∥ = ∥PH∗∥ ≤ 3. (14)
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Proof. The first equality is a standard result of projectors [14]. Consider the orthogonal pro-
jector Π : Vh ⊗ L2

µ̂ → TuMR verifying (Πũ, w) = (ũ, w) for w ∈ TuMR, we have

∥(PH∗ −Π)ũ∥2 = ((PH∗ −Π)ũ, (I − δb∇)(PH∗ −Π)ũ)

= (ũ−Πũ, (I − δb∇)(PH∗ −Π)ũ) ≤ 2∥Π⊥ũ∥∥(PH∗ −Π)ũ∥ (15)

From there, we conclude ∥PH∗ ũ∥ ≤ ∥(PH∗ −Π)ũ∥+ ∥Πũ∥ ≤ 3∥ũ∥.

We will make use of the following assumptions to analyse the convergence of the SUPG-
DLR method. The first is the standard Model Error Assumption, particularised to the SUPG-
context. It asks that the dynamics neglected by the DLR approximation is negligible. This is
a standard assumption made to analyse the convergence of DLR approximations [1, 7, 8].

Assumption 3.1. (Model Error Assumption) For n = 0, . . . , N − 1, let ûn = Ũn+1Y n be the
“intermediate” point obtained by Algorithm 1. For ν ≪ 1, it holds

|aSUPG(û
n, v⊥h,µ̂)− (f,Hv⊥h,µ̂)| ≤ ν∥ṽ∥, ∀ṽ ∈ Vh ⊗ L2

µ̂, for ν ≪ 1. (16)

The second is an assumption on the H1-stability of the physical basis.

Assumption 3.2. (Local basis inverse inequality) Given the DLR iterates {un
h,µ̂ = ŨnỸ n}Nn=1

obtained via Algorithm 1, and denoting (Sn)ij = (∇Ũn+1
i ,∇Ũn+1

j )L2(D) and (Mn)ij = (Ũn+1
i , Ũn+1

j )L2(D)

the stiffness and mass matrices associated to the physical basis {Ũn
i }Ri=1, there exists a constant

Clbi < ∞ such that

max
n=0,...,N

(
sup
x∈RR

x⊤Snx

x⊤Mnx

)
≤ Clbi. (17)

The functions (Un
1 , . . . , U

n
R) are typically globally supported and display regularity, justifying

a moderate value for Clbi. Assumption 3.2 implies that, for any n ≥ 0,

∥∇ŨnZ⊤∥ ≤ Clbi∥ŨnZ⊤∥ for Z ∈ [L2
µ̂]

R. (18)

The elliptic projection operator π : L2
µ̂(Ω̂, H

1
0 (D)) → Vh ⊗ L2

µ̂ is defined by

(∇(u− π u),∇vh,µ̂) = 0, ∀vh,µ ∈ Vh ⊗ L2
µ̂. (19)

For brevity, denote πnu = πu(tn). We split un
h,µ̂ − u(tn) = (un

h,µ̂ − πnu) + (πnu − u(tn)) =
ẽn + ηn. The interpolation error ηn is bounded using standard estimates which, assuming
u(tn) ∈ L2

µ̂(H
k+1) for any n, yields (see e.g. [12])

EN (η) := ∥ηN∥2 + △t

4

N∑
j=1

∥ηj∥2SUPG ≲ h2k+1. (20)

For the other error term, Proposition 2.1 allows to derive

△t−1 (ẽn+1 − ẽn, ṽ
)
+ aSUPG(ẽ

n+1, ṽ) = aSUPG(u(tn+1)− πn+1u, ṽ)

+ (u̇(tn+1)−△t−1(πn+1u− πnu),Hṽ)− δ△t−1(ẽn+1 − ẽn,b · ∇ṽ) + aSUPG(û
n, ṽ⊥)

− (fn+1,Hṽ⊥)− aSUPG(û
n − un+1

h,µ̂ , ṽ⊥) +△t−1
(
un+1
h,µ̂ − un

h,µ̂,Hṽ⊥
)
, ∀ṽ ∈ Vh ⊗ L2

µ̂. (21)

Note that the last term in (21) vanishes by (13). One last technical lemma is needed before
presenting the main result:
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Lemma 3.2. Let δ̃Y n := Ỹ n+1 − Y n. It holds

△t−1∥Ũn+1δ̃Y n∥2 = aSUPG(u
n+1
h,µ̂ , Ũn+1δ̃Y n) + (fn+1,HŨn+1δ̃Y n).

Proof. Start from (9). Using the definition of W̃n+1
ij , we rewrite it as

△t−1(

R∑
i=1

Ũn+1
i δ̃Y n

j , Ũn+1
j zj + δb · ∇Ũn+1

j zj) = aSUPG(u
n+1
h,µ̂ , Ũn+1

j P⊥
Y zj)

+ (fn+1, Ũn+1
j P⊥

Y zj + δb · ∇Ũn+1
j P⊥

Y zj) for j ∈ 1, . . . , R,∀zj ∈ L2
µ̂.

Set zj = Ỹ n+1
j − Y n

j , the result is obtained by summing over j since Ỹ n+1 − Y n ∈ (Yn)⊥ (the
l.h.s. becomes ∥Ũn+1δ̃Y n∥2 by zero-divergence of b).

Theorem 3.1. Let b ∈ (L∞(D))d such that divb = 0, c ∈ L∞
µ̂ (L∞(D)) and assume the

true solution verifies u, ∂tu ∈ L∞(0, T ;L∞
µ̂ (Hk+1(D))), ∂2

t u ∈ L2(0, T ;L∞
µ̂ (H1)). Under (Co-

efA), (16), (5) as well as δ ≤ △t/4, the DLR iterates {un
h,µ̂}Nn=0 of Algorithm 1 satisfy

∥u(tN )− uN
h,µ̂∥+

(
N∑
i=1

△t∥u(ti)− ui
h,µ̂∥2SUPG

)1/2

≲ hk+1 +△t+ δ
1/2hk + δ−

1/2hk+1 + ∥π0u− u0
h,µ̂∥+ ν. (22)

Proof. The proof largely follows the structure of the proof in [5, pp. 10-12]. Testing against
ẽn+1, the first two terms in the r.h.s of (21) verify

aSUPG(u(tn+1)− πn+1u, ẽn+1) + (u̇(tn+1)−△t−1(πn+1u− πnu),Hẽn+1)

= δ
∑

K∈Th

(T̃n+1
stab,K ,b · ∇ẽn+1)K,L2

µ̂
+ (Tn+1

zero , ẽ
n+1) + (Tn+1

conv , ẽ
n+1),

where

Tn+1
zero = (u̇(tn+1)− πn+1u̇) + c(u(tn+1)− πn+1u) +

(
πn+1u̇− πn+1u− πnu

△t

)
,

Tn+1
conv = b · ∇(u(tn+1)− πn+1u),

T̃n+1
stab,K =

(
Tn+1
zero + Tn+1

conv + ε∆(πn+1u− u(tn+1))
)
|K .

Counter-integrating (Tn+1
conv , ẽ

n+1) and using the zero-divergence of b yields

(Tn+1
conv , ẽ

n+1) = −δ
∑

K∈Th

(
δ−1(πn+1u− u(tn+1)),b · ∇ẽn+1)

K,L2
µ̂
,

which can then be included in Tn+1
stab,K , defining

Tn+1
stab,K = T̃n+1

stab,K − δ−1(πn+1u− u(tn+1)).

We then bound the terms via Young’s inequality, suitably balancing the coefficients such that
the ẽn+1-quantities on the r.h.s can be absorbed by 1

2
∥en+1∥2SUPG on the l.h.s. To this end, let

6



0 < γ ≤ 1/16. As (2△t)−1(∥ẽn+1∥2 − ∥ẽn∥2 + ∥ẽn+1 − en∥2) + 1/2∥ẽn+1∥2SUPG lower-bounds the
l.h.s of (21), it holds

(2△t)−1(∥ẽn+1∥2 − ∥ẽn∥2 + ∥ẽn+1 − ẽn∥2) + 1/2∥ẽn+1∥2SUPG

≤ δ
∑

K∈Th

(Tn+1
stab,K −△t−1(ẽn+1 − ẽn),b · ∇ẽn+1)K,L2

µ̂
+ (Tn+1

zero , ẽ
n+1)

+ aSUPG(u
n+1
h,µ̂ − ûn, (ẽn+1)⊥) + aSUPG(û

n, (ẽn+1)⊥)− (fn+1,H(ẽn+1)⊥)

≤ Cδ
∑

K∈Th

∥Tn+1
stab,K∥2K,L2

µ̂
+ δγ∥b · ∇ẽn+1∥2K,L2

µ̂
+ C△t−1∥ẽn+1 − ẽn∥2 + C∥Tn+1

zero ∥2

+ γ∥ẽn+1∥2 + aSUPG(u
n+1
h,µ̂ − ûn, (ẽn+1)⊥) + aSUPG(û

n, (ẽn+1)⊥)− (fn+1,H(ẽn+1)⊥),

having used δ ≲ △t in the last inequality, and where C depends on γ−1. Lemma 3.2 with (18)
and (16) respectively yield

aSUPG(Ũ
n+1δ̃Y, (ẽn+1)⊥) ≲ ∥Ũn+1δ̃Y ∥∥ẽn+1∥ ≤ C△t2(∥un+1

h,µ̂ ∥2 + ∥f∥2) + γ∥ẽn+1∥2,

aSUPG(û
n, (ẽn+1)⊥)− (fn+1,H(ẽn+1)⊥) ≤ ν∥ẽn+1∥ ≤ Cν2 + γ∥ẽn+1∥2.

Note that
∑N−1

j=0 △t2(∥uj
h,µ̂∥

2 + ∥f∥2) ≲ △t by Proposition 2.2. Cancelling, rearranging a few
terms and summing over j = 0, . . . , N − 1, we obtain

∥ẽn+1∥2+
N∑

n=1

∥ẽn∥2SUPG ≲ ∥ẽ0∥2+△t

N∑
n=1

∥Tn
zero∥2+△t

N∑
n=1

∑
K∈Th

δK∥Tn
stab,K∥2K+ν2+△t2.

As in [5], the regularity assumptions on u and its derivatives allow to bound

△t

N∑
n=1

∥Tn
zero∥2 + △t

N∑
n=1

∑
K∈Th

δ∥Tn
stab,K∥2 ≲ h2k+2 + △t2 + δh2k + h2k+2δ−1.

Denoting γn := un
h,µ̂ − u(tn), the claim follows as EN (γ) ≲ EN (ẽ) + EN (η).

4 Numerical experiments
We solve problem (1) on D = [0, 1] with

ε = 10−8, b = 1, c(x, ω) = 1 + ω, ω ∼ U [0, 1]

and choose the right-hand-side such that the true solution is given by

utrue(t, x, ω) = ex sin(2πω(t+1)) sin(2πx). (23)

The stochasticity therefore resides in the initial conditions, reaction term and forcing term.
The sample space Ω = [0, 1] is then approximated with the discrete set Ω̂ = {i/NC}NC

i=1 with
NC = 15 and equal probabilities in all the sample points. The physical space is discretised
using a regular mesh with increasingly fine mesh size hi ∼ 2−i. For the initial conditions, we
compute a (generalised) SVD of (23) at time t = 0.

As in [5], the terms △t, δ1/2hk and hk+1δ−
1/2 in the error estimate need to be balanced to

yield the best possible decay rate for a fixed h. Since Proposition 2.2 requires δ ∼ △t, this
imposes the condition △t ∼ O(h

2(k+1)
3 ).
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Figure 1: SUPG error for k = 1, 2 and small approximation rank R.

For the simulations we do not use the implicit scheme, but a semi-implicit version close to
it that is both more technical and practical (reyling on a slightly different parametrisation of
the approximation manifold with isolated mean, see [11]). With some technical details, the
results carry over for that time-stepping scheme too.

In the first numerical experiment, we choose a rank R = 6 to ensure the error associated
to the rank truncation is negligible. The rates observed in Figure 1a are those predicted by
Theorem 3.1, both for the L2

µ̂(L
2(D)) and the SUPG error. Figures 1b and 1c display the errors

of DLR approximations computed with R = 1, 2, 3. The error is quasi-optimal with respect to
the error obtained when using the optimal rank-R truncation.
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