
IEEE Network • May/June 200160

e present an enhancement to the IP best
effort service, alternative best effort (ABE),
which relies on the idea of providing low
delay at the expense of maybe less through-

put. The motivation for such a service is twofold. First, there
now exist interactive multimedia applications that perform
well across a wide range of loss and throughput conditions [1,
2], but for which delay often remains the major impediment
[3]. Second, unlike differentiated services, we would like to
design a service where it is not required to police how much
traffic uses the low delay capability, in order to retain the
operational simplicity of a single-class network.

The article is organized as follows. We define the ABE ser-
vice and analyze its implications. In particular, we identify and
discuss the central issue, called green does not hurt blue. We
also discuss migration issues from the traditional IP service
(flat best effort) to ABE. As a proof of concept, a router
implementation is described; it is based on the combination of
a scheduler called duplicate scheduling with deadlines (DSD)
and a traditional control loop. Implementations were done in
the Linux kernel, in the Dummynet network emulator, and in
the ns-2 simulator [4]. Simulation results of the ns-2 imple-
mentation are shown. We review related work and position
ABE with respect to other proposals in differentiated services.

The ABE Service
Definition of the Service

ABE is defined as follows:
• ABE packets are marked either green or blue.1
• Green packets receive a low bounded delay at every hop.

Realistic values of the per-hop delay bound are discussed
later in this section.

• Green does not hurt blue: If some source decides to mark
some of its packets green rather than blue, the quality of
the service(delay and throughput) received by sources that
mark all their packets blue remains the same or becomes
better. This definition is made more specific later.

• All ABE packets belong to one single best effort class. If
the total load is high, every source may receive little
throughput. However, entirely blue sources experience
more throughput than entirely green sources sharing the
same network resources.

0890-8044/01/$10.00 © 2001 IEEE

ABE: Providing a
Low-Delay Service within Best Effort

Paul Hurley and Jean-Yves Le Boudec, EPFL
Patrick Thiran, Sprint ATL/EPFL

Mourad Kara, University of Leeds

Abstract
We propose alternative best effort (ABE), a novel service for IP networks, which
relies on the idea of providing low delay at the expense of maybe less throughput.
The objective is to retain the simplicity of the original Internet single-class best-effort
service while providing low delay to interactive adaptive applications. With ABE,
every best effort packet is marked as either green or blue. Green packets are guar-
anteed a low bounded delay in every router. In exchange, green packets are more
likely to be dropped (or marked using congestion notification) during periods of con-
gestion than blue packets. For every packet, the choice of color is made by the
application based on the nature of its traffic and on global traffic conditions. Typical-
ly, an interactive application with real-time deadlines, such as audio, will mark most
of its packets as green, as long as the network conditions offer large enough
throughput. In contrast, an application that transfers binary data such as bulk data
transfer will seek to minimize overall transfer time and send blue traffic. We propose
router requirements that aim at enforcing benefits for all types of traffic, namely that
green traffic achieves low delay and blue traffic receives at least as much throughput
as it would in a flat (legacy) best effort network. ABE is different from differentiated
or integrated services in that neither packet color can be said to receive better treat-
ment; thus, flat rate pricing may be maintained, and there is no need for reservations
or profiles. In this article we define the ABE service, its requirements, properties, and
usage. We discuss the implications of replacing the existing IP best effort service by
the ABE service. We propose and analyze an implementation based on a new
scheduling method called duplicate scheduling with deadlines. It supports any mix-
ture of TCP, TCP-friendly, and non-TCP-friendly traffic.

WW

1 The choice of the terms blue and green, two neutral colors, is to indicate
that neither of the two has priority over the other, while green, the color of
the traffic light signal for go, indicates low queuing delay.

IEEE Network • May/June 2001 61

A consequence of these requirements
is that green packets are more likely to
be dropped during bouts of congestion
than blue packets, or, if explicit conges-
tion notification (ECN) [5] is used, to
be marked with the congestion bit. ECN
provides congestion feedback to the
source by marking a bit in the packet
header, enabling it to adjust to feedback
without necessarily dropping its packets.
For simplicity, in the rest of the article
we consider only non-ECN-capable sys-
tems.

In essence, ABE can be thought of as
allowing an application to trade delay
for loss or less throughput by marking
some packets green. The third require-
ment, green does not hurt blue, derives
from the objective that the color chosen
by an application need not be policed. Indeed, if the third
requirement is enforced, an application that decides to mark
some packets green must do so because it values the low delay
more than a potential increase in loss (or decrease in through-
put); otherwise, it would mark its packets blue. In all cases,
there is no penalty for other applications, which might choose
to mark all their packets blue. This requirement also plays a
role in interworking and migration (discussed later). Note that
ABE supports traffic that may be only TCP-friendly or non-
TCP-friendly, or a mixture of the two.

In Fig. 1 we illustrate how a TCP-friendly source would
use the ABE service, by showing a simple simulation where
an interactive adaptive audio source competes with n back-
ground sources for one bottleneck. The source has the
choice of marking packets blue or green. Assume the source
has a required minimum rate R0 in order to function proper-
ly, for a given loss pattern in the network. The rate R0 is
shown by the horizontal dashed line. Also assume that the
source is able to forward-correct packet losses, as long as the
minimum rate is achieved (see [1] for such an application
example; note that this would not be needed if ECN was
used). The choice between green or blue is left to the audio
application. It depends on its utility function u(R,D), for a
given throughput R and end-to-end network delay D. On this
simplified example, we assume that the utility function for
our source satisfies 1) u(R,D) = 0 for R < R0, and 2) u(R,D)
is a decreasing function of D only for R > R0. In other
words, once a minimum rate R0 is achieved which provides
enough intelligibility, delay becomes the major impediment.
For this source, the optimal strategy is to be green in the low
load region, blue in the moderate load region, and to discon-
nect when the load is too high. Note that this example is
oversimplified. In general we expect more complex utility
functions to be used; see [6] for an actual audio source using
such a utility function.

An ABE-aware source would probably use a color mixing
strategy, where they would send some green packets and some
blue. This would be used, for example, by a color adaptation
algorithm that sends probe packets of either color in order to
determine which region the source is currently operating in.
This is perfectly permissible and considered normal practice.
In fact, apart from possibly policing TCP friendliness if so
required [7, 8], a network supporting ABE does not need to
analyze individual flows. Unlike the multimedia source above,
a source using TCP is probably more interested in its through-
put and should thus mark all its packets blue. Intuitively, it is
because automatic repeat request (ARQ) protocols such as
TCP are more sensitive to packet loss than queuing delay,

although queuing delay does have an impact (see a later sec-
tion for an illustration).

The Internet Engineering Task Force (IETF) mandates
that non-TCP sources be TCP-friendly [10]; namely, the
source should not receive more throughput than a TCP flow
would. This is for reasons of fairness and to avoid congestion
collapses. However, it is still the case that many multimedia
flows are not TCP-friendly. Thus, the requirement that green
does not hurt blue applies even if green traffic originates from
non-TCP-friendly sources. Note that non-TCP-friendly
sources may, in some cases, severely hurt other TCP-friendly
sources, and this is true with or without ABE. The require-
ment simply means that giving low delay to such sources does
not make things worse. A later section illustrates by simula-
tion how an implementation based on DSD supports non-
TCP-friendly sources.

At very high bit rates, queuing delays are in general expect-
ed to be low, and high-speed backbones probably will not
need any delay differentiation. Hence, we currently expect
ABE routers to be implemented at network peripherals,
where bit rates are on the order of a few megabits per second
(or even less for cellular radio systems). The value of the
delay bound offered to the green service depends on how
many hops are used by one flow. A multimedia flow probably
uses a small number (2–6) of low-speed hops. An interactive
audio application has a delay budget of 100–150 ms, out of
which 50 ms may be allocated to network delay. As a result,
we expect the green per-hop delay bound to be set to a value
in the range of 5–20 ms.

Green Does Not Hurt Blue
In this section we define more accurately the service require-
ment that green does not hurt blue, introduced earlier. We
subdivide the requirement into two parts. The first part
addresses the case of non-TCP-friendly sources:

Definition 1 — Local transparency to blue — Consider the sce-
nario of flat best effort, in which a node would forget the color
and thus treat all ABE packets as one single best effort class. The
node satisfies local transparency to blue if, for each packet that is
blue in the original (ABE) scenario:
• The delay is not larger in the real, ABE scenario than in the

flat best effort scenario.
• If the blue packet is not dropped (or marked with a congestion

notification) in the flat best effort scenario, it is not dropped in
the real ABE scenario.
Later we describe DSD, which provides local transparency

to blue.

■ Figure 1. A possible strategy for a multimedia source using the ABE service.

Choose
green

Choose
blue

Choose
text!

Th
ro

ug
hp

ut
 f

or
 o

ne
 s

ou
rc

e
(lo

g)

Load (number of blue sources on bottleneck)

Blue

Green

–2

–1.5

–1

–0.5

0

–2.5

61 11 16 21 26 31 36 41 46 51
Desired

minimum
throughput

IEEE Network • May/June 200162

Now if some sources sending green traffic are TCP-friendly
and greedy, local transparency to blue may not be sufficient.
Indeed, a common interpretation of TCP friendliness is that
the source data rate should not exceed q given by

(1)

where R is the round-trip time, p the rate of loss events, t1 the
TCP retransmit time (roughly speaking, proportional to the
round-trip time), and s is the packet size [10]. Thus, it is quite
possible that, by becoming green, a TCP-friendly source
would be allowed a higher data rate, due to the reduction in
round trip time. Such a source would generate more packets
than if it was blue, and there is the risk that, in some cases, it
would hurt blue packets. This leads to the second part of the
requirement.

Definition 2 — Throughput transparency to blue — Assume that
sources employ a rate adaptation algorithm which conforms to a
loss-throughput formula such as Eq. 1. To provide blue with
throughput transparency, the ABE node should ensure that an entire-
ly green flow gets a lesser or equal throughput than if it were blue.

Unlike local transparency, throughput transparency seems
impossible to implement exactly: On the one hand, it requires
knowing the round trip time for every flow, which is not feasi-
ble in practice. On the other hand, the rate adaptation algo-
rithm implemented by a source may significantly deviate from
a straight application of Eq. 1. Indeed, the dependence of rate
on round-trip time in Eq. 1 is not necessarily a desirable fea-
ture of a rate adaptation algorithm. It should not be confused
with the fact that a source using many hops should receive
less throughput. This latter fact is desirable, but is implement-
ed by having a higher loss ratio. Further discussion on this is
provided in [11]. Fixes have been suggested to rate adaptation
algorithms that would remove the dependence of rate on
round-trip time [12]. If such fixes were to become widespread,
throughput transparency to blue would be an automatic con-
sequence of local transparency to blue (which can be exactly
implemented, e.g., with DSD). Thus, we consider the require-
ment for throughput transparency to be loose.

Our approach to providing throughput transparency to blue
uses a controller that acts on a parameter g of the DSD
scheduler, which controls the service received by green pack-
ets. g is a factor that determines, in case of a tie between
green and blue, the probability of forwarding a green packet.
The delay and loss ratio are monitored, and using Eq. 1, the
controller adjusts g to make sure throughput transparency is
maintained. The controller solves the issue of evaluating the
round-trip time by observing that an underevaluation of green
round-trip times is conservative for blues. Thus, the controller
assumes that all flows are greedy and have a total round-trip
time equal to the queuing time at this node plus a fixed virtu-
al base value (20 ms in the implementation). This value is
kept small to make it unlikely that the real value could be
below it. A potential problem could be that the drop probabil-
ity becomes higher than necessary for either green flows with
higher round-trip times, nongreedy green flows, or nonadap-
tive green flows. However, our simulations indicate that the
combination of the DSD scheduler and controller does not
seem to produce that problem.

An alternative coarse implementation may consist of avoid-
ing any single green flow from getting too large a fraction of
throughput by examining the drop history for greens, as pro-
posed in [8]. Researching such an alternative is a subject of
future work.

Router Requirements

Following from the discussion in the previous section, a router
implementing ABE must:
• Provide low bounded delay to green packets; the delay

bound is fixed by network management, probably in the
5–20 ms range.

• Provide local transparency to blue (definition 1).
• Provide throughput transparency to blue (definition 2).
• Preserve packet sequence within blue and within green.
• Keep green packet loss as low as possible while adhering to

the above requirements.
The first three requirements directly derive from the previ-

ous discussion. The fourth requirement is because an imple-
mentation should try to make the use of green in the service
as attractive as possible.

In today’s Internet, it is considered desirable to preserve
packet ordering, although this is not always enforced. Similar-
ly, an ABE node is expected to preserve packet order as much
as possible; however, the delay preference given to green may
result in a green packet overtaking a blue one. It is desirable
that any ABE implementation is also work-conserving,
although this is not a strict requirement.

Interworking and Migration
ABE may be used by an operator in two distinct ways: either
as a separate service, or as a replacement of the flat (existing)
best effort IP service. In this article we focus on the latter.
Replacing flat best effort with ABE requires a rule for assign-
ing a color to packets that do not have one (such packets
come from a non-ABE source or network). The default is to
assign blue to packets. Indeed, because of the characteristic
that green does not hurt blue, ABE-unaware sources receive
the same service as they would if the network were flat best
effort. An operator might thus introduce ABE and let cus-
tomers and other carriers gradually move to ABE, without
any specific change to charging or control policies.

Conversely, consider an ABE-aware source that uses a con-
catenation of networks, some ABE, some flat best effort. We
have mentioned earlier that an ABE-aware source probably
has to implement a color adaptation algorithm. Now, depend-
ing on traffic conditions, the ABE source might see small or
large delays, even for green traffic. This implies that the color
adaptation algorithm should not make any quantitative
assumption about the value of end-to-end delay guaranteed
for green traffic. Reference [13] discusses how the ABE color
can be encoded in the IP packet header.

Implementation
In this section we present a router implementation model to
support the ABE service. This implementation assumes that
the router has only output port queuing. It is based on a new
scheduling concept, DSD. We have also undertaken other
implementations based on different scheduling concepts,
which include a differential-dropper-based implementation in
the ns2 simulator [14] (first outlined in [15]) and in the Linux
kernel [16], and a dummy-packet-based implementation in the
Dummynet emulator [16]. We describe DSD, discuss its com-
pliance with the ABE router requirements as seen earlier, and
show some experiment results from simulations.

Before delving into the details of the scheme’s description,
its motivation is first explained. One of the first schemes to
implement ABE that might spring to mind is a first come first
served (FCFS) scheduling discipline with a threshold drop
policy to filter green packets. In such a scheme, blue packets
would be accepted when the buffer is not full, while green

q =

+ +

s

R
p

t
p

p p
2
3

3
3
8

1 321
2()

,

IEEE Network • May/June 2001 63

packets would only be accepted if they can be served
with a delay no greater than some maximum d.

Most of the time, though, there would be little or no
incentive to be green. What is desired is to provide
green with the best service possible while still ensuring
that green does not hurt blue. Any significant extra gain
by blue packets is at the expense of green ones. The gain
blue packets would enjoy under ABE should be kept to
a minimum such that there is still an incentive to use
green packets whenever appropriate. This can be formal-
ized by the following optimization problem: minimize
the number of green losses subject to the following con-
straints:
• Green packets receive a queuing delay no larger than d.
• Local transparency to blue (definition 1) holds.
• The scheduling is work-conserving.
• No reordering: blue (respectively green) packets are

served in the order of arrival.
A solution to this problem is the DSD, a new schedul-

ing algorithm based on the concept of duplicates. Dead-
lines are assigned to packets as they arrive, green and
blue packets are queued separately, and the deadlines of
the packets at the head of blue and green queues are
used to determine which is to be served next.

As previously discussed, throughput transparency as
well as local transparency is required for ABE to
ensure rate-adaptive green flows do not hurt blue. This
is facilitated by the use of a parameter g, which is used
in deciding which queue should be served in the event
that the deadlines of the packets at the head of each queue
can both be met if the other queue was served beforehand.
The value of g used at any given time is determined by a con-
trol loop as described later. We can now describe DSD in
detail.

Duplicate Scheduling with Deadlines (DSD)
Duplicates of all incoming packets are sent to a virtual queue
with buffer size Buff. A duplicate is admitted if the virtual
buffer is not full. Packets in the virtual queue are served
according to FCFS at rate c, as they would be in flat best
effort. The times at which duplicates will be served are used
to assign blue packets deadlines at which they would have
(approximately) been served in flat best effort. The original
arriving packets are fed according to their color into a green
and a blue queue. Blue packets are always served at the latest
their deadline permits subject to work conservation. Green
packets are served in the meantime if they have been in the
queue for less than d s, and dropped otherwise.

A blue packet is dropped if its duplicate was not accepted
in the virtual queue. Otherwise, it is tagged with a deadline,
given by the time at which its duplicate will be served in the
virtual queue, and placed at the back of the blue queue.

A green packet is accepted if it passes what is called the
green acceptance test and dropped otherwise. A green packet
arriving at time t fails the test if the sum of the length of the
green queue at time t (including this packet), and of the
length of the first part of the blue queue that contains packets
tagged with a deadline less than or equal to t + d + pgnew,
where pgnew is the transmission delay for the incoming green
packet, is more than c (d + pgnew), and passes otherwise. The
use of the test ensures the total buffer occupancy, namely the
sum of the green and blue queue lengths, does not exceed
Buff, which is discussed later.

An example of how DSD works is given in Fig. 2. For this
example, all packets are the same size, and “packet” time is
used. To facilitate understanding, we consider first the case
where green packets do not undergo the green acceptance test

and where g = 1. The maximal buffer size is Buff = 7 packets.
The maximum green queue wait is d = 3 packets. B and G
denote blue and green packets, respectively. In the first snap-
shot, B1 is served at time t = 0 in order to meet its deadline,
then G1, B2, B3, and B4. G2 has to be dropped from the green
queue because it has to wait for more than d3, whereas B6 had
to be dropped because the virtual queue length was Buff when
it arrived. At time t = 5, we reach the situation of the second
snapshot. Since no blue packet has reached its deadline yet,
G3 can be served, followed by B5, B7, G4, B8, and B9.

Consider again the example in Fig. 2, except green packets
are now enqueued only if they pass the green acceptance test.
This amounts here to accepting a green packet at time t if the
number of green packets in the queue at time t, augmented by
the number of blue packets in the queue with a deadline
between [t, t + 4], is no more than 4. The only difference from
Fig. 2 is that G2 is no longer enqueued. Indeed, when it arrived,
the green queue already contained packet G1, and the blue
queue contained packets B1, B2, and B3. The total queue length
at time t was 5 packets (including G2), so G2 fails the test.

An accepted green packet is then assigned a deadline which
is the sum of its arrival time plus its maximum waiting time d,
and placed at the back of the green queue. At each service
time, a decision is made as to which queue to serve. The serv-
ing mechanism’s primary function is to ensure that blue packets
are always served no later than their deadlines. The best perfor-
mance green could receive would be to then serve the green
queue as much as possible, subject to this restriction. However,
as previously discussed, in addition to local transparency,
throughput transparency is needed to ensure that green adap-
tive applications do not benefit too much from lower delay.

It can happen at service time that both blue and green
packets at the head of their respective queues are able to
wait, since letting the other packet go first would still allow it
to be served within its deadline. For the purpose of support-
ing throughput transparency, when this situation arises the
packet serving algorithm uses the current value of the green
bias g, a value in the range [0,1], to determine the extent to

■ Figure 2. Two snapshots as an example of DSD, at time t = 0 (top)
and t = 5 (bottom).

c

B1

0

B2

2

B3

3

B4

4

B5Blue queue

Green queue

6

G1

2

G2

3

Virtual queue

B1G1B2B3B4G2B5B6

Deadlines:

Deadlines:

At time t = 0:

c

c

B5

6

B7

7

B8

9

B9

10

Blue queue

Green queue G3

7

G4

8

Virtual queue

G2B5B7G3B8B9G4

At time t = 5:

c

IEEE Network • May/June 200164

which green is favored over blue. More precisely, when both
blue and green packets can wait, g is the probability that the
green packet is served first. The value g = 1 corresponds to
the case where green is always favored. Conversely, the value
g = 0 corresponds to the systematic favoring of blue packets.
In Fig. 2, the packets served would have thus been, successive-
ly, B1, B2, G1, B3, B4, B5, B7, G3, G4, B8, and B9.

A value of g less than 1 causes the delay for green traffic
to be increased. This increase in delay for green TCP-friend-
ly traffic reduces their throughput, thereby enabling blue
traffic to increase its throughput. Increasing the delay of
non-TCP-friendly traffic may not reduce their throughput,
but blue flows are, in the worst case, equally as protected
from this type of traffic as in a flat best effort service. The
value of g choice is made according to a control loop,
described later.

All green packets who miss their deadline by waiting for
more than d seconds (these packets are said to have become
stale) are removed from the green queue. At service time, the
possible events that arise and packets served by DSD are
shown in Table 1.

Pseudocode for DSD is given below. Let now be the cur-
rent time, p.deadline denote the latest time a packet p can
remain in the queue (whose value is tagged onto packet p),
and p.transmissionDelay denote its transmission delay.

Packet Enqueuing Algorithm

packet p arrives at the output port
dup = p
Add dup to the virtual queue

if p is blue
if dup was dropped from virtual queue

drop p
else

vd = queuing delay received by dup
in virtual queue

p.deadline = now + vd
add p to blue queue

else // p is green
if p fails “green acceptance test”

drop p
else

p.deadline now + d
add p to green queue

Packet Serving Algorithm

drop stale green packets, those packets from
green queue who cannot be served within their
deadline

headGreen = packet at head of green queue
headBlue = packet at head of blue queue

if headGreen 0 // no green to serve
if headBlue !0

serve headBlue
else if headBlue 0 // no blue to serve

serve headGreen
else // both queues contain packets

pg headGreen.transmissionDelay
deadg headGreen.deadline
pb headBlue.transmissionDelay
deadb headBlue.deadline

if now > deadb – pg
serve headBlue // because it cannot wait

else if now > deadg – pb

serve headGreen // because it cannot wait
else with probability g

serve headGreen
else

serve headBlue

“green acceptance test”
pgnew transmission delay for p
lg length of green queue
lb length of packets in blue queue with

deadlines < now + d + pgnew

if lg + lb > c * d + pgnew)
return “p fails test”

else
return “p passes test”

It is not mandated that the virtual queue employ drop-tail
queuing, although in the simulation results shown it is. An
active queue management scheme such as random early
detection (RED) [17] can be supported for blue traffic by
applying it to the virtual queue, and using those results in
assigning losses and deadlines.

Removing stale green packets, those packets from the
green queue whose deadline cannot be met, involves a search
of this queue up to the first alive green packet. In practice,
these stale green packets can be cleaned up between service
times, as was done in our dummynet implementation, and it
has proven sufficiently fast. However, for really high-speed
networks this search may prove expensive. As such, further
optimizations of this algorithm may be needed, and are the
subject of ongoing work.

Some of the building blocks in DSD are similar to those in
other scheduling techniques. The calculation and tagging of
deadlines to each arriving packet is also performed by earliest
deadline first (EDF)[18] schedulers and variants. However,
EDF sorts packets according to deadlines, whereas DSD
remains first in first out (FIFO) within each of its two queues,
and the deadlines are used at service to determine whether
the head of the green or blue queue should be served. The
use of a virtual queue has been used many times, for example,
in an admission control context [19].

Properties of DSD
Let us list some of the most important properties of DSD:
• Buffer space constraint: The total buffer occupancy for real

packets (green and blue counted together) is always less
than Buff, the size of the virtual queue used for duplicates.

• All accepted blue packets will be served by their deadlines.
Accepted blues are thus served at the same time as, or ear-
lier than, they would have been in flat best effort.

• All green packets are served before d, or otherwise dropped.
Low bounded (per hop) delay for the green packets is
enforced by dropping a green packet that waits or would
have to wait d seconds in the queue.

• The green acceptance test does not unnecessarily drop
green packets, in the following sense. If all enqueued green
packets are to be served, then it is impossible to serve, with-
in d seconds, an incoming green packet that arrived at time
t and would violate the green admission test. In addition, if
g = 1, the green admission test is optimal in the sense that
it accepts exactly the green packets that will be served with-
in d s; otherwise not. Note that if g < 1, some green pack-
ets may become stale and be dropped by the packet serving
algorithm.
Points 2 and 3 follow immediately from an earlier section

and the pseudo-code. Points 1 and 3 are proven in [20].

IEEE Network • May/June 2001 65

Control Loop for DSD
For the reasons described earlier, unlike local
transparency, maintaining throughput trans-
parency is by its nature approximate. g is used as
a control parameter to balance the throughputs
of green and blue. These are estimated from Eq.
1, using a fixed value to represent the nonqueu-
ing delay portion of the round-trip time of a
flow. This value is chosen to be small, since this
favors blue traffic. For purposes of control, flows
are assumed to be greedy, since this also increas-
es the protection to blue flows.

Estimates of the delay and loss ratio for both
green and blue traffic are monitored. Let qb(t)
and qg(t) be these estimates for the blue and green through-
put, respectively, at time t. The value of g is chosen so that
their ratio is close to a desired value g, which is slightly larger
than 1, to provide blues with a small advantage in throughput,
and to offer a safety margin for protection from errors in
throughput estimation.

g is updated every T s according to the control law,

where a Œ (0,1) and K > 0 are two control parameters. T is a
chosen parameter of the system which determines the rate of
update of g. The initial value of g upon commencement of
control can be chosen to be 1, namely, g(0)1.

Let us briefly explain the rationale behind this choice of
control law, which we do not claim to be optimal. In the ideal
case where qb = gqg, there should not (a priori) be any bias
against blue or green, and the value of g should be 1/2. If qb is
larger than gqg, g must be increased, and vice versa if qb is
smaller than gqg. We wish to maintain symmetry in the amount
by which we increase or reduce g: the amount by which g is
increased if qb/gqg is multiplied by some factor A should be
the same amount by which g is decreased if qb/gqg is divided
by the same factor A. Denoting by x = ln (qb/gqg), the target-
ed g should therefore be an increasing function F of x with
central symmetry around 0, and such that F(0) 1/2, F(x) 0 for
x Æ – • and F(x) = 1 for x Æ + •. Such a function is the
sigmoid function

where K is the slope of the function at the origin. The larger
K, the closer the sigmoid function to the step (heavyside)
function

The control law

g(t + T) = g(t) + a(F(x) – g(t)),

where a is the adaptation gain, will therefore bring g to the
targeted value. If 0 £ a £ 1, this control law keeps g(t) between
0 and 1 at all times t. Replacing x by ln (qb/gqg) in this equa-
tion, we get the control loop equation for the green bias as
given in Eq. 2.

The use and control of the green bias g is only one possible
scheme, and its performance can be improved, for example,
by taking into account the deadlines of all the packets in the
queues, not just those at the head. Such extensions are the
subject of further investigation.

Simulation Results
In this section we show simulations, using ns-2, of DSD run
on the topology shown in Fig. 3. There are nb,1 blue sources
and ng,1 green sources with an outgoing link propagation delay
of 20 ms (sources of type 1), and nb,2 blue and ng,2 green
sources with an outgoing 10 Mb/s link of propagation delay 50
ms (sources of type 2). All sources pass the 5 Mb/s link L of
propagation delay 20 ms, and terminate via a 10 Mb/s link of
propagation delay 10 ms. These blue sources are TCP Reno,
and the green sources are the TCP-friendly algorithm
described in [6]. There is also green traffic which sends a con-
stant rate r (CBR) and passes through the link L.

The router buffer size was 60 packets (i.e., Buff = 60), and
the maximum delay green can queue, d, was 0.04 s. For sim-

plicity, the size of all packets is fixed at
1000 bytes. The control loop updates its
value of g every 0.5 s (i.e., T = 0.5), the
gain parameter a was 1.1, and the conser-
vative value of 20 ms was taken to be the
round-trip time used for estimating
throughput. The router distinguishes green
and blue by a bit in the packet header.
Each simulation ran for 300 s of simulated
time.

The first goal of this simulation study
was to show that green does not hurt blue,
under a variety of conditions; namely, when
there are flows of various round-trip times,
where green flows may be either TCP-
friendly or non-TCP-friendly, greedy or not
and where flows may send a mixture of

F() / .x
x
x
x

=

Ï

Ì
Ô

Ó
Ô

1
1 2

0

if >0
if =0
if <0

F
k

()
exp()

x
x

=
+ -

1
1

g t T g t
t tg b

K
() () ()

(() / ())
,+ = - +

+
1

1
a a

gq q

■ Figure 3. Simulation topology.

10 Mb/s,
20 ms

10 Mb/s,
20 ms

10 Mb/s,
20 ms

Flows of type 1:
nb1 blue,
ng1 green

Flows of type 2:
nb2 blue,
ng2 green

Source with
constant bit rate

5 Mb/s, 20 ms

10 Mb/s,
10 ms

10 Mb/s,
10 ms

10 Mb/s,
10ms

10 Mb/s,
10 ms

■ Table 1. Possible events at service time.

Both queues empty Nothing

Green queue empty, blue queue not empty Head of blue queue

Blue queue empty, green queue not empty Head of green queue

Head of blue queue cannot wait Head of blue queue

Head of blue queue can wait, head of Head of green queue
green queue cannot

Heads of green queue and blue queue With probability g, head of green
can wait queue else head of blue queue

Event What is served?

IEEE Network • May/June 200166

green and blue packets. In addition to this, we illustrate that
green flows benefit from low delay (at the expense of less
throughput), and the effect DSD has on the loss rates of each
traffic type. The reference simulation is what happens in the
flat best effort scenario, in the absence of ABE, where all
packets are treated equally at the router.

We first examine some scenarios when there are only TCP
and TCP-friendly flows. For the case where there are 5 blue
TCP and 5 green TCP-friendly flows of each type (nb,1 = nb,2
= ng,1 = ng,2 = 5), Fig. 4 shows the average transfer rate for
each blue and green connection, of both types at each time t.
Figure 5 shows the end-to-end delay distributions received for

green packets under ABE and flat best
effort. Blue flows of each type receive
more throughput with ABE than in flat
best effort, thus benefiting from the
use of ABE. Green flows receive less,
and in exchange the green queuing
delay is small and bounded by d = 0.04
s. The green loss ratio was 4.97 percent
when using ABE, and 3.3 percent in
flat best effort, while the blue loss ratio
decreased from 3.2 to 2.5 percent when
moving to ABE. The extra throughput
blue flows of type 1 receive over type 2
flows follows from the lower round-trip
time they experience.

The same number of blue and green
sources does not occur in general, and
ABE is designed to work independent
of asymmetry in the amount of green
and blue traffic. For the case where
there are 5 blue TCP and 3 green TCP-
friendly flows of type 1 (nb,1 = 5, ng,1
= 3), and 3 blue TCP and 5 green
TCP-friendly flows of type 2 (nb,2 = 3,
ng,2 = 5), Fig. 6 shows that again, green
does not hurt blue.

The situation where blue traffic is
TCP, and green traffic is no longer
TCP-friendly, but a constant bit rate
(CBR) source, is now examined. Here

there are 5 blue TCP flows of each type (nb,1 = nb,2 = 5) and
CBR green traffic which sends at 1 Mb/s. The number of
packets received for each blue traffic type and for the CBR
source is shown as a function of time in Fig. 7. What we see is
that the blue traffic receives slightly more throughput with
DSD than with flat best effort, due to the local transparency
property, and the non-TCP-friendly CBR traffic receives less.

We now look at the scenario where there is blue TCP traf-
fic (nb,1 = nb,2 = 5), and green traffic is composed both of
TCP-friendly sources (ng,1 = ng,2 = 5) and CBR traffic of rate
1 Mb/s. The average packet transfer rate for the blue and
green of type 1, and the CBR source as a function of time is
shown in Fig. 8. The results for type 2 traffic are omitted for
ease of reading.

Finally, we look at the case where TCP-friendly flows mix
their traffic. In this instance, the flows do not logically decide,
based on network conditions, how much traffic to send as blue
and how much as green, and this is the subject of further work.
Rather, a simple method is used here where, by randomization,
the TCP-friendly sources of type 1 send approximately 20 per-
cent blue packets and 80 percent green. Again nb,1 = nb,2 = ng,1
= ng,2 = 5, and there is CBR green traffic of 1 Mb/s. Figure 9
shows that again, green does not hurt blue. The mixed color
sources get a throughput that lies between what they would
have gotten were they 100 percent green and what they would
have gotten if they were 100 percent blue.

Related Work
As the Internet evolves toward a global communication infra-
structure, a number of proposals exist for providing QoS
architectures. These aim to support more sophisticated ser-
vices than those provided by flat best effort services. Currently
there are two broad families for QoS provision; both are
based on some form of priority and service differentiation.

The first family of solutions, integrated services (IntServ),
uses reservations (admission control) and requires routers to

■ Figure 4. Average packet transfer rate for green and blue connections, as a function of
time t, when the router implemented DSD and when it implemented flat best effort. The
results are obtained by simulating the network shown in Fig. 3, with 5 blue flows and 5
green flows of each type, namely nb,1= nb,2 = ng,1 = ng,25, and no CBR traffic.

500

Tr
an

sf
er

 r
at

e
(p

ac
ke

ts
/s

)

Time (s)

35

30

40

45

50

55

60

65

100 150 200 250 300

Blue type 1, flat BE
Blue type 1, ABE
Green type 1, flat BE
Green type 1, ABE

500

Tr
an

sf
er

 r
at

e
(p

ac
ke

ts
/s

)

Time (s)

14

12

16

18

20

22

24

100 150 200 250 300

Blue type 2, flat BE
Blue type 2, ABE
Green type 2, flat BE
Green type 2, ABE

■ Figure 5. Density plot of queuing delay received by green packet
under ABE/DSD and flat best effort. 5 blue TCP and 5 green
TCP-friendly flows of each type (nb,1 = nb,2 = ng,1 = ng,2 = 5).

0.02

N
um

be
r

of
 p

ac
ke

ts

Queuing delay experienced

Density plots for green traffic queuing delay with and without ABE

Without ABE

With ABE

20

40

60

0
0.04 0.06 0.08 0.100.00

IEEE Network • May/June 2001 67

manage per-flow states and perform per-flow operations. It
also requires per-flow accounting and charging. The second
family of solutions, differentiated services (DiffServ), is
based on a coarser notion of QoS, focusing on aggregates of
flows in the core routers and intending to differentiate
between service classes rather than provide absolute per-flow
QoS measures.

IntServ has been shown to exhibit much higher flexibility and
assurance than those provided by DiffServ. However, the main
disadvantages of these services are that they are less scalable
and robust than DiffServ. Hence, these latter services have
been the focus of attention lately
mainly because they move the com-
plexity of QoS provision from the
core to the edges of the network,
where it may be feasible to maintain
a restricted amount of per-flow state.
Often IntServ are identified as being
supported by stateful network archi-
tectures (because of the per-flow
management), while DiffServ is
underpinned by stateless network
architectures.

An example of such an architec-
ture is Scalable Core (SCORE) pro-
posed by Stoica and Zhang [21] with
the aim of providing guaranteed ser-
vices without per-flow state manage-
ment. They proposed the dynamic
packet state (DPS) technique to esti-
mate the aggregate reservation rate
and use that estimate to perform
admission control. To achieve this,
they perform core-stateless fair
queueing (CSFQ) using DPS to
encode dynamic per-flow state in the
context of approximating the fair

queuing algorithm. Nandagopal et al.
[22] also proposed a core stateless
QoS architecture (called Corelite)
which offers per-hop per-class relative
average delay differentiation and end-
to-end delay adaptation.

There are several proposals for sup-
porting QoS through DiffServ.
Crowcroft [23] proposed a low delay
service, analyzed by May et al. [24],
coded with a single bit. Turning on
this bit ensures that the packet
receives serving priority while con-
strained to a smaller buffer size.
Depending on the input traffic and
the buffer sizes of both types of traf-
fic, this typically would result in the
low delay traffic also having more
throughput. Similarly, expedited for-
warding (EF) [25] aims to provide
extremely low loss and low queuing
delay guarantees. SIMA [26] offers
applications the choice of a level (0–7)
of how “real-time” its traffic is, with
each level having relatively lower delay
and loss ratio than the previous one.

Dovrolis et al. [27] described a pro-
portional differentiation model where
the quality between classes of traffic is
proportional and thus can be per-

formed independent of the load within each class. Central to
their work was the utilization of two packet schedulers, back-
log proportional rate (BPR) and waiting-time priority (WTP),
to approximate the behavior of the proportional differentia-
tion model. Moret and Fdida [28] also described a two-class
proportional differentiation model called the proportional
queue control mechanism (PQCM). Both studies propose
controlling the relative queuing delays between classes.

All of these proposals couple low delay with improved
throughput, and use some form of priority. They can be used
to support adaptive and nonadaptive interactive applications,

■ Figure 6. Average packet transfer rate per green and blue connection, as a function of
time t, when the router implemented ABE/DSD and when it implemented flat best effort.
The results are obtained by simulating the network shown in Fig. 3, with nb,1 = 5, ng,1 =
3, nb,2 = 3, ng,2 = 5.

500

Tr
an

sf
er

 r
at

e
(p

ac
ke

ts
/s

)

Time (s)

30

40

50

60

70

80

100 150 200 250 300

Blue type 1, flat BE
Blue type 1, ABE
Green type 1, flat BE
Green type 1, ABE

500

Tr
an

sf
er

 r
at

e
(p

ac
ke

ts
/s

)

Time (s)

14

12

16

18

20

22

100 150 200 250 300

Blue type 2, flat BE
Blue type 2, ABE
Green type 2, flat BE
Green type 2, ABE

■ Figure 7. Average packet transfer rate per green and blue connection, as a function of time
t, when the router implemented ABE/DSD and when it implemented flat best effort. There
are 5 blue flows of each type and a CBR flow of 1 Mb/s which is green.

500

Tr
an

sf
er

 r
at

e
(p

ac
ke

ts
/s

)

Time (s)

Green CBR, flat BE

Blue type 2, flat BE

20

0

40

60

80

100

120

140

100 150 200 250 300

Blue type 1, ABE
Blue type 1, flat BE
Blue type 2, ABE
Blue type 2, flat BE
Green CBR, ABE
Green CBR, flat BE

Blue type 1, flat BE

Blue type 1, ABE

Green CBR, ABE

Blue type 2, ABE

IEEE Network • May/June 200168

provided that some form of admission control is performed.
They can provide a premium service, at a price that has to be
higher than best effort service (otherwise all traffic would use
the better service). In contrast, ABE green packets cannot be
said to receive better treatment than blue ones, and ABE
may be introduced as a replacement for the existing best
effort service. On the other hand, ABE is not suited to sup-
port multimedia applications which require hard guarantees
and cannot adapt.

Assured forwarding (AF) [29] is also a differentiated service.
It divides AF traffic into classes within each of
which there are distinct levels of drop prece-
dence. It offers an assurance that IP packets are
forwarded with high probability as long as the
aggregate input traffic within a class does not
exceed an agreed profile. The authors also sug-
gest that an AF class could be used to implement
a low delay service where low loss is not an objec-
tive, by allocating an AF class with a low buffer
space (call it the low delay AF class). Such a ser-
vice is in principle different from ABE, which
views all blue and green packets as one class; the
service received by green packets is dependent on
the amount of green and blue traffic. In contrast,
the performance of an AF low delay class is not
expected to be affected by the amount of best
effort traffic. In that sense, the low delay AF class
is a differentiated service which requires differen-
tiated charging, contrary to ABE. Hence, ABE
can be viewed as being positioned between flat
best effort service and AF.

Lastly, destination drop might appear as an
alternative to ABE that would require no sup-
port from the network. This alternative would
consist in having the destination drop all pack-
ets that arrive too late, say, after a transit dead-
line. However, it wastes network resources,
since packets are dropped after being carried by
the network, and the overall performance of
such a scheme can become very poor [14].

Conclusions
We have described ABE, a new service which
enables best effort traffic to experience low
delay, possibly at the expense of more through-
put. ABE is targeted at providing low delay
with no concept of reservation or signaling, and
while retaining the spirit of a flat rate network.
The service choice of green or blue is self-polic-
ing since the user/application will be coaxed
into choosing one or the other, or indeed a
mixture of both, based on its traffic profile
objectives. ABE allows a collection of rate-
adaptive multimedia applications to drive the
network into a region of moderately high load
and low delay. It also allows such an application
to trade reduced throughput for low delay, thus
in some cases increasing its utility. The design
of a multimedia adaptive application that would
exploit the new degree of freedom offered by
ABE can be found in [6]. Note, however, that
ABE also brings benefits if there are nonadap-
tive UDP applications.

It should be stressed that ABE is a new ser-
vice in its own right, not a substitute for reser-
vation or priority services. In contrast, with
ABE both delay-sensitive (green) and through-

put-sensitive (blue) traffic share the same resources, and
high load in either pool affects the other. We proposed to
introduce ABE as a replacement for the existing best effort
Internet service.

We have defined the ABE service, its requirements and
properties. We also addressed deployment issues. In addition,
we have presented a router implementation based on a new
scheduling scheme (DSD), and discussed its compliance. Our
simulation results show the benefits of the new degree of free-
dom offered by ABE in best effort services. We have found

■ Figure 8. Average packet transfer rate per green and blue connection of type 1,
and for the CBR source as a function of time t, when the router implemented
ABE/DSD and when it implemented flat best effort. The CBR source sends at
1 Mb/s, and there are 5 of each other type of source running.

500

Tr
an

sf
er

 r
at

e
(p

ac
ke

ts
/s

)

Time (s)

Green type 1, ABE

Green type 1, flat BE

Blue type 1, flat BE

40

20

60

80

100

120

140

100 150 200 250 300

Blue type 1, flat BE
Blue type 1, ABE
Green type 1, flat BE
Green type 1, ABE
Green CBR, flat BE
Green CBR, ABE

Green CBR, flat BE

Blue type 1, ABE

Green CBR, ABE

■ Figure 9. Average packet transfer rate per green and blue connection, as a func-
tion of time t, when the router implemented ABE/DSD and when it implement-
ed flat best effort. The results are obtained by simulating the network shown in
Fig. 3, with nb,1 = ng,1 = 3 = nb,2 = 3 ng,2 = 5, and the TCP-friendly sources
of type 1 sent 20 percent blue and 80 percent green packets.

500

Tr
an

sf
er

 r
at

e
(p

ac
ke

ts
/s

)

Time (s)

25

20

30

35

40

45

50

55

60

100 150 200 250 300

Green CBR, ABE

Green CBR, flat BE

Green type 1, ABE

Green type 1, flat BE

Blue type 1, flat BE
Blue type 1, ABE

Blue type 1, ABE
Blue type 1, flat BE
Green type 1, ABE
Green type 1, flat BE
Green CBR, ABE
Green CBR, flat BE

IEEE Network • May/June 2001 69

that under ABE, blue packets received more throughput than
under a flat best effort network while giving a low bounded
delay to green packets.

References
[1] J. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive FEC-Based Error Control

for Interactive Audio in the Internet.” Proc. IEEE INFOCOM ’99.
[2] C. Diot, C. Huitema, and T. Turletti, “Multimedia Application Should Be

Adaptive,” HPCS, Aug. 1995.
[3] C. Huitema, “Quality Today in the Internet,” ftp.telecordia.com/pub/huitema/

stats/quality.today.html
[4] ns v2 simulator. http://www.isi.edu/nsnam/ns
[5] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Comp. Commun.

Rev., vol. 24, no. 5, Oct. 1994, pp. 10–23.
[6] C. Boutremans and J. Y. Le Boudec, “Adaptive Delay Aware Error Control

for internet Telephony,” Tech. rep. DSC/2000/031, EPFL-DSC,
http://dscwww.epfl.ch, 2000.

[7] B. Suter et al., “Design Considerations for Supporting TCP with Per-Flow
Queueing,” Proc. IEEE INFOCOM ’98.

[8] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in
the Internet,” IEEE/ACM Trans. Net., Aug. 1999.

[9] TCP Friendly Web site, http://www.psc.edu/networking/tcp friendly.html
[10] J. Padhye et al., “Modeling TCP Throughput: A Simple Model and its Empir-

ical Validation,” Proc. SIGCOMM ’98.
[11] M. Vojnovic, J.-Y. Le Boudec, and C. Boutremans, “Global Fairness of

Additive-Increase and Multiplicative-Decrease with Heterogeneous Round-
Trip Times,” Proc. IEEE INFOCOM ’2000, Tel Aviv, Israel, Mar. 2000.

[12] T. Henderson et al., “Improving Fairness of TCP Congestion Avoidance,”
Proc. IEEE GLOBECOM ’98, Sydney, Australia, Nov. 1998.

[13] “The Alternative Best-Effort Service,” Internet draft, draft-hurley-alternative-
best-effort-01.txt, work in progress.

[14] P. Hurley, J. Y. Le Boudec, and P. Thiran, “The Alternative Best-Effort Ser-
vice,” Tech. rep./res. rep. DSC1999/036, EPFL-DSC, http://dscwww.epfl.ch,
1999.

[15] P. Hurley and J. Y. Le Boudec, “A Proposal for an Asymmetric Best-Effort
Service,” Proc. IEEE/IFIP IWQoS ’99, London, England, May 1999

[16] ABE Project Web page: http://www.abeservice.org
[17] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Conges-

tion Avoidance,” IEEE/ACM Trans. Net., vol. 1, no. 4, Aug. 1993, pp.
397–413.

[18] H. Zhang, “Service Disciplines for Guaranteed Performance Service in Pack-
et-Switching Networks,“ Proc. IEEE, vol. 83, no. 10, Oct. 1995.

[19] T. Ferrari, W. Almesberger, and J. Y. Le Boudec, “SRP: A Scalable Resource
Reservation Protocol for the Internet,” Comp. Commun., Sept. 1998, vol. 21,
no. 14, Special Issue on Multimedia Networking, pp. 1200–11.

[20] P. Hurley et al., “A Novel Scheduler for a Low Delay Service Within Best-
Effort,” Proc. IEEE/IFIP IwQoS 2001, Karsruhe, Germany.

[21] I. Stoica and H. Zhang, “Providing Guaranteed Services without Per Flow
Management, Proc. ACM SIGCOMM ’99, pp. 81–94.

[22] T. Nandagopal et al., “Relative Delay Differentiation and Delay Class Adap-
tation in Core-Stateless Networks,” IEEE INFOCOM 2000, Tel Aviv, Israel.

[23] J. Crowcroft, “All You Need is Just 1 bit,” Keynote Presentation, IFIP Conf.
Protocols for High Speed Networks, Oct. 1996.

[24] M. May et al., “1-bit Schemes for Service Discrimination in the Internet:
Analysis and Evaluation,” Tech. rep. no. 3238, INRIA.

[25] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB,”
RFC 2598.

[26] K. Kilkki, and J. Ruutu, “Simple Integrated Media Access — An Internet Ser-
vice Based on Priorities,” 6th Int’l Conf. Telecommun. Sys., 1998.

[27] C. Dovrolis, D. Stiliadia, and P. Ramanathan, “Proportional Differentiated
Services: Delay Differentiation and Packet Scheduling,” Proc. ACM SIG-
COMM ’99.

[28] Y. Moret and S. Fdida, “A Proportional Queue Control Mechanism to Pro-
vide Differentiated Services,” Int’l. Symp. Comp. Sys., Belek, Turkey, Oct.
1998.

[29] J. Heinanen et al., “Assured Forwarding PHB Group,” RFC 2597.

Biographies
PAUL HURLEY (paul.hurley@epfl.ch) is a research assistant at EPFL, where he will
shortly finish his Ph.D. thesis. He graduated with first class honors in computer
and mathematical science from University College, Galway, Ireland, in 1995. He
then worked as a design engineer both for Videologic, London, and for Digital
(now Compaq) in Galway, Ireland. His main research interest is traffic control in
communication networks.

MOURAD KARA is a lecturer and head of the networking research group in the
School of Computing at the University of Leeds, England. His main research
interests are in performance evaluation and engineering of Internet protocols and
services to support middleware technologies. He is an advocate of industrial
research and has been a research consultant for several companies and industri-
al laboratories.

JEAN-YVES LE BOUDEC is a full professor at EPFL. He graduated from Ecole Nor-
male Superieure de Saint-Cloud, Paris, France, and received his doctorate in
1984 from the University of Rennes, France, and became an assistant professor
at INSA/IRISA, Rennes. In 1987 he joined Bell Northern Research, Ottawa,
Canada, as a member of scientific staff in the Network and Product Traffic
Design Department. In 1988, he joined the IBM Zurich Research Laboratory at
Rueshchlikon, Switzerland, where he was a manager of the Customer Premises
Network Department. In 1994 he formed the Laboratoire de Reseaux de Com-
munication at EPFL, which in autumn 1997 became part of ICA. His interests are
in the architecture and performance of communication systems.

PATRICK THIRAN received his electrical engineering degree from the Université
Catholique de Louvain, Louvain-la-Neuve, Belgium, in 1989, his M.S. degree in
electrical engineering from the University of California at Berkeley in 1990, and
his Ph.D. from the Swiss Federal Institute of Technology at Lausanne (EPFL) in
1996. He is with the Institute for Computer Communications and Their Applica-
tions, where he received the title of professor in 1998. His research interests are
in the fields of traffic control in communication networks and system theory. He
was on leave from EPFL at Sprint Advanced Technology Labs, Burlingame, Cali-
fornia, in 2000–01.

