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Abstract— This paper presents a novel method for data-
driven robust control of nonlinear systems using the Koopman
operator and Integral Quadratic Constraints (IQCs). Koopman
operator theory enables a linear representation of nonlinear
dynamics in a higher-dimensional space. Data-driven Koopman-
based models inherently offer only approximate representations
due to various factors. We focus on characterizing model-
ing errors effectively to ensure closed-loop guarantees. Non-
parametric IQC multipliers are identified to characterize mod-
eling errors in a data-driven manner through frequency domain
(FD) linear matrix inequalities (LMIs), treating them as additive
uncertainty for robust control design. These multipliers provide
a convex set representation of stabilizing robust controllers.
The optimal controller within this set is obtained by solving
a different set of FD LMIs. Finally, we propose an iterative
approach alternating between IQC multiplier identification and
robust controller synthesis, ensuring monotonic convergence of
a robust performance index.

I. INTRODUCTION

Koopman operator [1] has gained popularity for offering a
global linear representation of nonlinear systems [2], [3]. It
focuses on the evolution of observable functions, expressing
nonlinear system dynamics linearly in a higher-dimensional
space. Achieving global linearization often requires lifting
the system to an infinite-dimensional space. Therefore, in
practice, a finite-dimensional truncation of the operator is
considered, providing a linear but approximate representation
of the dynamics. The Extended Dynamic Mode Decom-
position (EDMD) algorithm [4] facilitates the computation
of such approximations from data. For non-autonomous
systems, linearity in observables does not extend to linearity
in inputs. Some works, like [5], impose linearity in inputs by
additional constraints on observable functions, while others
consider bilinear models, balancing accuracy and control
design ease [6]. However, practical lifted models are never
exact due to finite-dimensional truncation and data-driven
approximation. Thus, characterizing modeling error for data-
driven lifted models is crucial for closed-loop guarantees.

Probabilistic error bounds for EDMD-based bilinear ap-
proximate models of input-affine systems are derived in
[7]. In a complementary effort, [8] reformulates these error
bounds and designs state feedback controller in the lifted
space with closed-loop guarantees. These works focus on
continuous-time systems, which necessitates state derivative
measurements. To alter this, the discrete-time counterpart of
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the error bounds, along with robust controller synthesis, is
worked out in [9]. Considering general nonlinear systems, a
data-driven characterization of the model error in terms of the
worst-case ℓ2-gain is proposed in [10], where probabilistic
guarantees are given by the scenario approach [11]. Utilizing
these error bounds, [10] further presents robust controller
synthesis tailored for LTI and open-loop stable LPV mod-
els. However, these works consider disc-shaped static error
bounds, which are likely to yield conservative control design.

Introduced by [12], IQC approach provides an effective
tool for analysis and control of uncertain dynamical systems
by its flexibility of representing general nonlinearities. While
most of the existing literature on IQCs focuses on the analy-
sis of uncertain systems, an iterative algorithm alternating
between nominal H∞ controller synthesis and robustness
analysis was presented in [13]. More recently, IQC synthesis
methods based on non-smooth optimization for H∞ and
H2 performance are developed, respectively, in [14] and
[15], yielding local certificates of optimality. Despite that, all
these works can only handle IQC multipliers with a specific
parametrization. Such a parametrization constraints the set
of feasible IQC multipliers which results in conservative
control design. Recently, a controller synthesis method robust
against uncertainties characterized by non-parametric IQCs is
proposed in [16]. This method performs controller synthesis
by solving FD LMIs and enables less conservative designs
through compatibility with non-parametric IQC multipliers.

In this work, we propose a novel robust controller synthe-
sis approach for nonlinear systems using Koopman operator
and IQCs. We focus on LTI lifted models of nonlinear
systems obtained via EDMD solely from system data. To
address inherent modeling errors, we propose characterizing
model error using IQCs. Through FD LMIs, we identify non-
parametric IQC multipliers for modeling error. Employing
the control design method of [16], we design controllers with
robust performance guarantees. Since the set of robustly sta-
bilizing controllers depend on the identified IQC multipliers,
we propose an iterative algorithm alternating between IQC
multiplier identification and controller synthesis, ensuring
monotonic convergence of a chosen performance index.

The paper is organized as follows: preliminaries are pro-
vided in Section II. In Section III, the proposed method is
presented, composed of IQC-based characterization of model
error and synthesis of robust controllers. Frequency sampling
approach for implementation of the optimization problems is
discussed, followed by the iterative algorithm. Application of
the proposed algorithm on a simulation example is presented
in Section IV. A brief conclusion is offered in Section V.



II. PRELIMINARIES

Notations: R and C are used to denote the sets of real
and complex numbers respectively. ℓp2 denotes the space of p
dimensional square integrable signals while RH∞ represents
the set of real rational stable transfer functions with bounded
∞-norm. Identity matrix of an appropriate size is represented
by I . S ≻ (⪰)0 and S ≺ (⪯)0 indicate that the matrix
S is positive (-semi) definite and negative (-semi) definite
respectively. The conjugate transpose of a complex matrix S
is denoted by S∗ and the pseudo-inverse of S is denoted by
S†. If S ∈ C is full row rank, the right inverse is denoted
as SR = S∗(SS∗)−1. If S ∈ C is full column rank, the
left inverse is denoted as SL = (S∗S)−1S∗. The frequency
response of a discrete-time system G is denoted by G(ejω).

A. Koopman operator

Consider the discrete-time nonlinear system,

H :
{
xk+1 = f(xk, uk), (1)

where x ∈ X ⊆ Rnx is the state variable, u ∈ U ⊆ Rnu is the
input and f : X×U → X is the nonlinear state transition map.
The Koopman operator K : F → F is a linear operator that
advances an observable function ξ(xk, uk) one-step ahead in
time,

ξ(xk+1, uk+1) = Kξ(xk, uk) = ξ(f(xk, uk), uk+1), (2)

where F is a Banach space of observable functions that is in-
variant under the action of the Koopman operator. Therefore,
Koopman operator K globally maps the nonlinear dynamics
in the state space to linear dynamics in the lifted space of
observables. In general, the Koopman operator is defined on
an infinite-dimensional space. In practice, however, a finite-
dimensional approximation of the Koopman operator denoted
by K, is used where a finite set of observable functions
D = {ξj}dj=1 called a dictionary is considered.

Due to the availability of well established tools for LTI
systems, identifying such a model is often desirable. To
obtain a lifted LTI representation we consider a dictio-
nary structured as D =

[
ξ(xk) uk

]T
with ξ(xk) =[

ξ1(xk) ξ2(xk) . . . ξd−1(xk)
]T

yielding,[
ξ(xk+1)
uk+1

]
≈

[
K11 K12

K21 K22

] [
ξ(xk)
uk

]
. (3)

Since predicting the future values of the input is not of
interest we discard the last nu rows of K resulting in,

ξ(xk+1) = Aξ(xk) +Buk + εk, (4)

where A = K11, B = K12 and εk denotes the one step ahead
prediction error. The prediction error εk is introduced by the
restriction of the Koopman operator to a finite dimensional
space as well as the structure imposed on the dictionary.

EDMD [4] enables the computation of the matrices A
and B in (4) by solving a least-squares problem as fol-
lows. Based on a set of data trajectories with N samples
{xk, uk}N−1

k=0 and a selected dictionary of observable func-
tions ξ, the matrices Z :=

[
ξ(x0) . . . ξ(xN−2)

]
, Z+ :=

[
ξ(x1) . . . ξ(xN−1)

]
and U :=

[
u0 . . . uN−2

]
, are

constructed. Then, A and B in (4) are obtained by solving,

min
A,B

∥∥∥∥Z+ −
[
A B

] [Z
U

]∥∥∥∥ . (5)

B. Problem Formulation

Consider data {{xm
k , um

k }N−1
k=0 }Mm=1 collected from a gen-

eral discrete-time nonlinear system (1) with sampling time
Ts, as M trajectories of N samples. The data is collected
from bounded sets such that x ∈ X, u ∈ U. Using the data
and a predetermined set of observable functions ξ(xk), the
discrete-time nonlinear dynamics can be approximated in the
lifted space as H0, defined by:

ξ̂k+1 = Aξ̂k +Buk, (6)

where ξ̂k ≈ ξ(xk) and the matrices A, B are calculated
by EDMD. Due to the prediction error term in (4), the LTI
system H0 is only an approximation of the true system H
such that H = H0+∆, where ∆ represents the error system
to be treated as additive uncertainty for controller design.
Thus, the interconnection of the nonlinear system H with a
controller K can be represented as in Fig. 1. To proceed we
need the following assumption:

Assumption 1. The nonlinear system H can be represented
as the sum of H0 and a bounded causal operator ∆ in the
lifted space.

This assumption can be ensured by appropriately selecting
observable functions ξ(xk) and their dimensions, such that
the space spanned by ξ(xk) yields a bounded ∆.

Based on these, we formulate the problem of designing a
data-driven controller providing closed-loop guarantees for
the nonlinear system H , as the following two subproblems,

1) Characterization of the error system ∆ using non-
parametric dynamic IQC multipliers.

2) Synthesis of a fixed-structure controller K for H0 with
guarantees of robust stability against ∆ and robust
performance with respect to Πp on w → z.

K H0

∆

uy ξ̂

−
ξ(x)

e

Fig. 1: Block diagram of the closed-loop system.

C. Integral Quadratic Constraints

Two discrete-time signals p(k) ∈ ℓ
np

2 [0,∞] and q(k) ∈
ℓ
nq

2 [0,∞] with sampling time Ts are said to satisfy the IQC
defined by Π if,∫

ω∈Ω

[
P (ejω)
Q(ejω)

]∗
Π(ejω)

[
P (ejω)
Q(ejω)

]
dω ≥ 0, (7)

where P (ejω) and Q(ejω) represent the discrete-time
Fourier transforms of p(k) and q(k) respectively and Ω =
(−π/Ts, π/Ts].



Let a performance metric on the channel w → z with
respect to the multiplier Πp(γ) be defined such that, perfor-
mance with index γ is achieved if w and z satisfy the IQC
defined by Πp(γ). By the IQC theorem [17, Corollary 3]:

Theorem 1. The feedback interconnection of a discrete-
time stable LTI system T and a bounded causal operator
∆ as depicted in Fig. 2a, is robustly stable and has robust
performance on the channel w → z with respect to Πp if,

1) interconnection of T and τ∆ is well-posed, i.e. (I−T∆)
has a causal inverse, ∀τ ∈ [0, 1];

2) the IQC defined by Π is satisfied by τ∆, ∀τ ∈ [0, 1];
3) for all ω ∈ Ω,[

T (ejω)
I

]∗
Πrp(e

jω)

[
T (ejω)

I

]
≺ 0; (8)

where,

Πrp =


Π11 0 Π12 0
0 Πp,11 0 Πp,12

Π∗
12 0 Π22 0
0 Π∗

p,12 0 Πp,22

 . (9)

By [17, Remark 3] if Π is partitioned as

Π =

[
Π11 Π12

Π∗
12 Π22

]
,

with Π11 ⪰ 0 and Π22 ⪯ 0, then τ∆ satisfies the IQC defined
by Π for all τ ∈ [0, 1] if and only if ∆ satisfies the IQC.

[
Tqp Tqw

Tzp Tzw

]∆
q(k) p(k)

w(k)z(k)

(a)

 G11 G12

G21 G22


∆

K

u(k)

y(k)

e(k)

u(k)

w(k)z(k)

(b)

Fig. 2: (a) General feedback interconnection. (b) Generalized
plant structure of the feedback interconnection.

III. DATA-DRIVEN ROBUST CONTROL DESIGN

For any arbitrary channel w → z on which the perfor-
mance objective is defined, it is fairly standard to transform
the block diagram in Fig. 1 to a generalized plant structure
as in Fig. 2b where G22 = −H0. Then, by applying a lower
linear fractional transformation to the generalized plant G
and controller K, the closed-loop system can be represented
as in Fig. 2a with T = G11 + G12K(I − G22K)−1G21.
Using A and B obtained by EDMD, the frequency response
function (FRF) of the LTI model H0(e

jω) = (ejωI−A)−1B
can be computed for any ω ∈ Ω. Based on H0(e

jω) and
following the corresponding generalized plant formulation
G, the FRF T (ejω) can be obtained similarly. For the
generalized plant model G we assume that G21(e

jω) has
full rank and G(ejω) is bounded, ∀ω ∈ Ω.

Next, we address robust controller synthesis against un-
certainty ∆ characterized by an IQC multiplier Π. To facil-
itate problem solving, we discuss the error characterization
problem afterward, enabling formulation in terms of decom-
posed elements of Π. Thus, solution of the IQC-based error
characterization problem can be directly used for controller
synthesis. Throughout the paper, we interchangeably use Π
and Π(ejω) for simplicity.

A. Robust Controller Synthesis

The objective of the controller synthesis is to obtain a
controller parametrized as K = XY −1 where X,Y ∈
RH∞ are linear in optimization variables. This controller
guarantees robust stability against ∆ and robust performance
on the channel w → z with respect to Πp(γ) where γ denotes
the achieved robust performance index. For some Π, with
Π11 ⪰ 0 and Π22 ⪯ 0, such that the error system ∆ satisfies
the IQC defined by Π, this objective can be formulated as
an optimization problem,

min
K

γ

s.t.
[
T
I

]∗
Πrp(γ)

[
T
I

]
(ejω) ≺ 0, ∀ω ∈ Ω,

T = G11 +G12K(I −G22K)−1G21 is stable.

(10)

The closed-loop transfer function T can be written as,

T = G11 +G12XΦL = G11(ΦΦ
L +Ψ) +G12XΦL

= (G11Φ+G12X)ΦL +G11Ψ.
(11)

where Φ = GR
21(Y −G22X) and Ψ = I − ΦΦL = GR

21G21.
Since Ψ is a hermitian idempotent matrix such that, ΨΦ =
Φ− ΦΦLΦ = 0 and ΦLΨ = ΦL − ΦLΦΦL = 0, we get,[

T
I

]
=

[
G11Φ+G12X G11Ψ

Φ Ψ

] [
ΦL

Ψ

]
= L

[
ΦL

Ψ

]
, (12)

with an evident definition for L. Then, by [18, Proposi-
tion 8.1.2] the first constraint in (10) can be replaced by
L∗ΠrpL ≺ 0. Using the fact that any square matrix accepts
a factorisation Πrp = Π+

rp+Π−
rp with Π+

rp ≻ 0 and Π−
rp ⪯ 0,

L∗ΠrpL ≺ 0 can be written as L∗Π+
rpL− (−L∗Π−

rpL) ≺ 0.
By the Schur complement lemma, this yields the constraint,[

(Π+
rp)

−1 L
L∗ −L∗Π−

rpL

]
≻ 0. (13)

The quadratic component −L∗Π−
rpL in (13) can be convex-

ified around a known controller Kc = XcY
−1
c such that,

L∗Π−
rpL ⪯ L∗Π−

rpLc + L∗
cΠ

−
rpL− L∗

cΠ
−
rpLc ≺ 0, (14)

where

Lc =

[
G11Φc +G12Xc G11Ψ

Φc Ψ

]
and Φc = GR

21(Yc−G22Xc). Then the optimisation problem
(10) can be converted to the following convex optimisation



problem [16, Theorem 2], if Kc = XcY
−1
c is a stabilising

controller:

min
γ,X,Y

γ (15)

s.t.
[
(Π+

rp(γ))
−1 L

L∗ −L

]
(ejω) ≻ 0, ∀ω ∈ Ω, (16)

(Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc)(e
jw) ⪰ 0, ∀ω ∈ Ω, (17)

where L = L∗Π−
rpLc + L∗

cΠ
−
rpL − L∗

cΠ
−
rpLc. The first

constraint in (15) implies the first constraint in (10) and the
second constraint ensures the stability of T . Thus, solving
(15) for any Π+

rp ≻ 0 and Π−
rp ⪯ 0, we obtain the controller

K = XY −1 guaranteeing robust performance with index γ.
A Πp defining a performance objective can be easily

decomposed in to Π+
p ≻ 0 and Π−

p ⪯ 0 such that Πp = Π+
p +

Π−
p for many conventional IQC multipliers. For examples we

refer to [16]. By applying the structure in (9) to Π+, Π+
p and

Π−, Π−
p respectively decomposition of Πrp in to Π+

rp ≻ 0
and Π−

rp ⪯ 0 can also be obtained. Obtaining Π+ and Π−

from data is addressed in Section III-B.

Remark 1. Both constraints in (10) are convexified around
the initial controller Kc arriving at (15), resulting in convex
inner approximations of convex-concave constraints. The
conservatism due to this inner approximation can be reduced
by an iterative approach [19], replacing the initial controller
at each iteration by the optimal controller obtained in the
previous one. This iterative approach guarantees monotonic
convergence of the objective to a local minimum or saddle
point of the non-convex problem in (10).

B. Error characterization via non-parametric IQCs

The main goal in error characterization is to identify a
dynamic IQC multiplier Π(ejω) in a data-driven fashion,
such that ∆ satisfies the IQC defined by the resulting Π(ejω).
Since the control design method explained in Section III-
A can handle non-parametric IQC multipliers, we aim for
identifying non-parametric dynamic multipliers that can be
treated as complex Hermitian matrices defined ∀ω ∈ Ω.

We first compute the frequency spectrum of the signals u
and e using the available data. In order to do so, we simulate
H0 with the inputs used for data collection {{um

k }N−1
k=0 }Mm=1

starting from the initial conditions ξ̂m0 = ξ(xm
0 ) for all

m ∈ [1,M ]. We obtain the corresponding trajectories of e
as, {{emk }N−1

k=0 }Mm=1 = {{ξ(xm
k )− ξ̂mk }N−1

k=0 }Mm=1. Then, the
frequency content of e for each trajectory can be computed,

Em(ejω) =

N−1∑
k=0

emk e−jωTsk, ∀ω ∈ Ω, ∀m ∈ [1,M ]. (18)

Similarly, the frequency spectrum of the plant input u can
also be computed ∀ω ∈ Ω and ∀m ∈ [1,M ] as in (18).

Assumption 2. The data {{emk , um
k }N−1

k=0 }Mm=1 is informative
for IQC multiplier identification such that if the data satisfies
the IQC defined by Π, it would also be satisfied for any other
input-output trajectory of ∆ with u ∈ ℓ2.

This assumption can be met in practice by collecting more
rich data. Based on this assumption, ∆ can be characterized
using the available data by finding a Π(ejω) satisfying,∫

ω∈Ω

[
Um

Em

]∗
Π

[
Um

Em

]
(ejω)dω ≥ 0, ∀m ∈ [1,M ]. (19)

This constraint is convex with respect to Π and defines the set
of all Πs that can characterize ∆. Since our objectives also
include providing robust stability and robust performance
guarantees, we seek for the optimal Π that is within the
set defined by (19), providing the best robust performance
guarantee. Consider Πrp(e

jω, γ) composed as in (9), where
Π(ejω) satisfies (19) and Πp(e

jω, γ) defines a robust perfor-
mance objective. For a known robustly stabilising controller
Kc, the robust performance condition (8) should be satisfied
by Πrp(e

jω, γ) for some γ. Thus, our goal is to find the IQC
multiplier Π that satisfies (19) such that the resulting Πrp

fulfills (8) with the smallest possible γ, thereby providing
the tightest robust performance guarantee. Since T is known
for K = Kc, (8) becomes an FD LMI condition to be
satisfied by Π(ejω). By combining (19) and (8), for a known
robustly stabilising initial controller Kc, an IQC multiplier
characterizing the error system as well as the achieved robust
performance index can be obtained by solving the following
FD convex optimization problem:

min
γ,Π+,Π−

γ

s.t.
∫
ω∈Ω

[
Um

Em

]∗
Π

[
Um

Em

]
(ejω)dω ≥ 0, ∀m ∈ [1,M ],[

T
I

]∗
Πrp(γ)

[
T
I

]
(ejω) ≺ 0, ∀ω ∈ Ω,

Π(ejω) = Π+(ejω) + Π−(ejω), ∀ω ∈ Ω,

Π11(e
jω) ⪰ 0, Π22(e

jω) ⪯ 0, ∀ω ∈ Ω,

Π+(ejω) ≻ 0, Π−(ejω) ⪯ 0, ∀ω ∈ Ω,
(20)

where the additional constraints on Π(ejω) are imposed such
that the controller synthesis method explained in Section III-
A can be employed directly without computing an appropri-
ate factorization of the multiplier.

Synthesis of a Robustly Stabilising Initial Controller:
Note that robust stability of the closed-loop is imposed in
(20), while the robust performance index is being optimized.
Thus, (20) is not feasible if the initial controller Kc is not
robustly stabilising. In that case, one should first obtain
a robustly stabilising controller before optimizing for the
robust performance index. To do so, the second constraint
in (20) should be relaxed to obtain:[

T
I

]∗
Πrp(γ)

[
T
I

]
(ejω) ≺ γs1I, ∀ω ∈ Ω, (21)

and γs1 should be minimized instead of the robust perfor-
mance index γ. For a Kc that is not robustly stabilising this
problem becomes feasible for some γs1 > 0. Next, to obtain



a robustly stabilising K, first constraint of (15) should be
relaxed similarly resulting in:[

(Π+
rp(γ))

−1 L
L∗ −L

]
(ejω) + γs2I ≻ 0, ∀ω ∈ Ω, (22)

where this time γs2 should be minimized instead. If this
yields some γs2 ≤ 0 the resulting K is robustly stabilising.
Otherwise, the relaxed versions of (15) and (20) should be
solved iteratively until γs1 ≤ 0 or γs2 ≤ 0 is achieved.
A similar iterative procedure to be followed to optimize
the robust performance index γ once a robustly stabilising
controller is found is presented in Algorithm 1.

C. Frequency Sampling

Both problems in this paper are framed as FD convex op-
timization problems with infinitely many constraints known
as convex semi-infinite programs (SIPs). A common strategy
for solving SIPs is to sample the infinite constraints in the
FD at a sufficiently large set of finite frequencies Ωg =
{ω1, . . . , ωg} ⊂ Ω. Since all constraints in (15) and (20)
are imposed on Hermitian matrices, it suffices to consider
frequencies only in the range Ωg ∈ [0, π/Ts). As a result,
we obtain the non-parametric IQC multipliers Π(ejω) also
at finite number of frequency points Ωg , such that Π(ejω) is
defined as a set of Hermitian complex matrices ∀ω ∈ Ωg .

While this sampling approach does not guarantee con-
straint satisfaction at all frequencies, probabilistic guarantees
dependent on the number of finite frequency points g can be
obtained by the scenario approach [11]. Consider that the
SIPs are solved for a finite set of independent identically
distributed (i.i.d.) samples Ωg yielding a robust performance
guarantee with index γ̂. By the scenario approach [11], if,

g ≥ 2

ϵ

(
ln

1

β
+ d

)
, (23)

then, with probability no smaller than 1− β, γ̂ satisfies the
constraints for all Ω but at most an ϵ-fraction where d denotes
the number of optimization variables. For example, consider
that (15) is solved for g = 4000 frequency points where K
is defined as a static output feedback controller with nu = 1
output and ny = 3 inputs such that d = 12. Then, having a
violation probability greater than ϵ = 0.01 has a probability
less than 3.36× 10−4 while this upper bound exponentially
goes to 0 with g. Since all optimization problems are convex
and their complexity scales linearly with the number of
frequencies in Ωg , they can be solved for a large set of
frequencies by modern semi-definite programming solvers.
Thus, by choosing a sufficiently large set of frequency points
a robust controller can be synthesized in practice.

D. Iterative Approach

To achieve the best possible performance we propose an
iterative scheme between the two subproblems addressed in
subsections III-A and III-B. Clearly, for the signals u and
e there is not a unique IQC multiplier Π characterizing the
error system. And since a particular multiplier Π determines
a convex set of controllers that we can choose from during

the controller synthesis, without iteratively updating the Π
and K, it is very likely that the achieved performance indexes
will be highly conservative. Thus, we propose Algorithm 1.

Algorithm 1: Iterative algorithm over error system
characterization and robust controller synthesis

Data: measured trajectories: {{xm
k , um

k }N−1
k=0 }Mm=1,

lifting functions: ξ(x),
initial robustly stabilising controller: Kc

Preparation:
obtain A and B in (6) by EDMD.
compute T (ejω) using K = Kc, ∀ω ∈ Ωg.
compute {(Um, Em)(ejω)}Mm=1, ∀ω ∈ Ωg.

Iteration: set i = 0.
while γ, converges and i ≤ imax do

• update IQC multiplier Π:
solve (20) for ω ∈ Ωg , obtain Π+,Π− ∀ω ∈ Ωg .

• update controller K:
solve (15) for ω ∈ Ωg , (iteratively as in [19]),
obtain K = XY −1 and update T (ejω)

• set i = i+ 1.
end
Result: K, γ.

Algorithm 1 solves the joint problem of identification of Π
and design of controller K yielding best performance index
γ using a coordinate descent method. Since the objective
function γ is bounded and the solution from the previous
iteration is always a feasible solution, the algorithm yields
monotonic convergence of the performance objective γ.
However, optimality guarantees of the solution cannot be
claimed [20]. Algorithm 1 yields, under Assumptions 1 and
2, a controller K that guarantees robust stability against ∆
and robust performance on the channel w → z with respect
to Πp(γ), by only using data collected from the system and a
lifting dictionary. It should be noted that while the resulting
controller is linear in the lifted space, thanks to Koopman
lifting, this controller is nonlinear in the actual state space.

IV. NUMERICAL EXAMPLE

To demonstrate the proposed method on a simulation
example we consider the nonlinear pendulum with dynamics:

ẋ1(t) = x2(t), (24)

ẋ2(t) = −g

l
sinx1(t)−

b

ml2
x2(t) +

1

ml2
u(t), (25)

with m = 1 kg, l = 1 m, b = 0.01, and g = 9.81 m/s2.
We discretize the dynamics using the 4th-order Runge-Kutta
method with sampling time Ts = 0.01 s and consider
the discrete-time model as our true nonlinear system. To
collect data, we simulate the discrete-time system for a
single trajectory of N = 5000 samples with initial condition
x0 =

[
0 0

]T
and uk randomly chosen from U = [−10, 10]

with a uniform distribution for all k ∈ [0, N − 1]. By also
inferring some knowledge of the dynamics we choose the
lifting functions ξ(x) =

[
x1 x2 sin(x1)

]T
.



After applying the EDMD algorithm the lifted state ma-
trices as in (6) are obtained, yielding a 3-dimensional stable
LTI representation of the system. We consider the tracking
problem where the pendulum angle x1 is desired to track
the reference w. The performance channel output is defined
as z =

[
(W1(w − x1))

T (W2u)
T
]T

, where we use a
low-pass filter W1 defined by the Matlab command W1 =
1/makeweight(0.001,1,2,Ts) and we set W2 = 0.1.
We select Πp = diag(γ2I,−I) such that minimizing H∞
norm of Tzw is our objective. Next, applying Algorithm 1
with initial controller Kc = 0, yields the state feedback
controller K =

[
43.45 6.679 −9.608

]
with robust per-

formance index γ∗ = 4.7868. Considering the resulting
controller, the true value of the control design objective is
computed as ∥Tzw∥∞ = 4.7848 verifying that the robust
performance guarantee claimed by the algorithm based on
finite frequency samples is attained ∀ω ∈ Ω.

a) Improvements by Koopman lifting: To observe the
benefits of Koopman lifting, we consider the case where
we did not employ lifting such that ξ(x) =

[
x1 x2

]
,

while the robust performance objective is kept the same.
After identifying the system matrices by solving the EDMD
problem, we use Algorithm 1 for robust controller synthesis.
This approach yields a robust performance guarantee with
index γ∗

1 = 31.89 achieved by the linear state feedback
controller K1 =

[
281.6 22.88

]
.

b) Improvements by the non-parametric IQC: To assess
the advantage of non-parametric IQCs, we compare with the
approach in [13] using parametric IQC multipliers and the
same performance objective. We employ the lifting functions
ξ(x) =

[
x1 x2 sin(x1)

]T
for consistency with the earlier

lifted representation. Considering the single measured trajec-
tory, we find a lower bound on the error systems worst case
ℓ2-gain by finding the minimum value of γe > 0 such that

N−1∑
k=0

∥ek∥2 ≤ γ2
e

N−1∑
k=0

∥uk∥2 ,

is satisfied. This yields the lower bound of γ∗
e = 0.1186

achieved on the worst case ℓ2-gain of the error system. This
allows us to define the error system as a norm bounded
uncertainty which can be handled by the framework pro-
posed in [13]. Next, by applying the iterative approach for
controller synthesis from [13], a robust performance index
of γ∗

2 = 380.4554 is obtained.
While all three approaches yield robust controllers capable

of tracking a reference within the entire operating range x1 ∈
[−π, π], the proposed method achieves significantly superior
performance. Although we only demonstrate state feedback
synthesis for simplicity, the proposed method also facilitates
structured dynamic output feedback controller synthesis.

V. CONCLUSION

The method offers a promising approach to robustly con-
trol nonlinear systems by utilizing Koopman operator theory
and IQCs. The use of non-parametric IQC multipliers for
modeling error yields a tight uncertainty around the lifted

LTI model, reducing conservatism for control design signifi-
cantly. Overall, the algorithm enables data-driven control of
nonlinear systems using linear control methods and solving
convex problems. However, closed-loop guarantees rely on
Assumptions 1 and 2. While Assumption 2 can be met by
collecting sufficient data, quantification of data quality is
a topic for future research to enhance a priori guarantees.
The simulation example demonstrates the benefit of the
proposed non-parametric IQC-based error characterization,
highlighting the main contribution of this work.
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