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ABSTRACT

Point clouds allow for the representation of 3D multimedia
content as a set of disconnected points in space. Their inher-
ent irregular geometric nature poses a challenge to efficient
compression, a critical operation for both storage and trans-
mission. This paper proposes a VAE-inspired codec tailored
for dynamic point cloud geometry compression, taking ad-
vantage of a temporal autoregressive hyperprior to enhance
compression performance. Specifically, features derived from
adjacent point cloud frames help build a hyperprior for con-
ditional entropy coding. Sparse convolutions are leveraged
to reach higher computational efficiency when compared to
3D dense convolutions. Remarkably, the proposed approach
achieves an average 60.2% BD-rate gain against the contem-
porary V-PCC compression standard from MPEG.

Index Terms— Point cloud compression, variational au-
toencoder, inter-frame coding

1. INTRODUCTION

As imaging modalities advance towards immersive represen-
tations, the creation of 3D multimedia content has been grow-
ing exponentially. Among the representation methods, point
clouds have emerged as a significant modality to portray 3D
multimedia signals in different key applications such as aug-
mented/virtual reality and autonomous driving. Given the po-
tentially vast amount of points within point clouds, the asso-
ciated large data volumes present considerable obstacles for
both storage and transmission. Different from 2D images and
video, where pixels are distributed on uniform grids, point
clouds contain points that can be irregularly sampled from an
underlying surface. Moreover, the accuracy of attribute cod-
ing, such as colors, is tied to the performance of geometry
compression. Thus, efficient point cloud geometry compres-
sion (PCGC) techniques are imperative.

Both handcrafted and learning-based approaches have
been proposed for PCGC, although the majority are designed
to code static point clouds. For 2D video coding, inter-frame
prediction has been demonstrated to be effective. However,
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its transposition to dynamic PCGC is non-trivial. The mis-
alignment of coordinates in successive frames, combined
with the inefficiencies in motion vector estimation and trans-
mission in 3D space, make the task of directly adapting video
coding techniques for point clouds particularly challenging.
To address these limitations, this paper proposes a variational
autoencoder (VAE)-inspired coding framework that leverages
the temporal relationship between frames as hyperpriors for
the entropy model. The architecture is built using sparse
convolutional layers, which are computationally more effi-
cient than their dense counterparts. Conducted evaluations
on the 8i dataset reveal that the proposed approach achieves
a 60.2% BD-rate gain based on the point-to-point PSNR (D1
PSNR) metric over the handcrafted V-PCC in inter mode and
surpasses learning-based PCGC methods restricted to static
scenarios.

2. RELATED WORK

Several approaches have been proposed for PCGC. Two dis-
tinct alternatives have been selected for the MPEG compres-
sion standards in Geometry-based Point Cloud Compression
(G-PCC) and in Video-based Point Cloud Compression (V-
PCC), being useful in different scenarios [1]. In V-PCC, point
clouds are mapped and structured into 2D frames which are
encoded using conventional video codecs. G-PCC employs
an octree to systematically partition the 3D space, denoting
the occupancy of the sub-cubes through binary codes. While
both standards have consistently been used for benchmarking
the performance of the compression methods in the literature,
their performance is limited by their manually crafted rules.

Drawing inspiration from the remarkable achievements
of learning-based methods in image and video compression,
similar architectures have been adopted for PCGC. For static
PCGC, early works employed dense 3D convolutions in au-
toencoder architectures for lossy PCGC [2, 3, 4] and block
prediction [5]. Alternatively, voxel occupancy values were
directly estimated [6] for lossless coding approaches. Sparse
convolutions have been later leveraged both for lossy [7, 8]
and lossless [9] coding of point clouds, achieving better per-
formance and reduced complexity. Other methods use point
coordinates directly as input [10, 11], and octree is also used
for the compression of point clouds with lower density such
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Fig. 1: Overview of the proposed method. The feature extractors for xt and x̂t−1 share the same weights, and the extracted
features yt, ỹt−1 are used to estimate the hyperprior zt in the Hyperprior Analysis Transform (HAT). To get the conditional
entropy coding parameters µt and σt, zt is decoded by the Hyperprior Synthesis Transform (HST) and fused with ỹt−1 in the
Context Model (CM). At the decoder side, the same HST and CM are applied to the decoded zt and ỹt−1 to generate µt, σt for
entropy decoding, and the decoded features are then reconstructed into x̂t.

as those derived from LiDAR scans [12, 13].
In the field of dynamic PCGC, Akhtar et al. [14] intro-

duced a predictor based on sparse convolutions. This predic-
tor exploits multi-scale features from the preceding frame to
yield a prediction for the current frame, subsequently trans-
mitting the residual for bitrate reduction. Notably, the ab-
sence of explicit motion estimation and motion compensa-
tion (MEMC) in Akhtar’s architecture led Fan et al. [15] to
conceive D-DPCC, which integrated an end-to-end feature-
domain MEMC component with explicit motion vectors. This
module was later augmented with multi-head attention mech-
anisms and multi-resolution MEMC in their successive work
[16]. Nonetheless, since the entropy of the residual signal is
greater than or equal to the conditional entropy between adja-
cent frames [17], effectively modeling the conditional proba-
bility distribution can theoretically allow for a different solu-
tion from explicit MEMC for dynamic PCGC.

3. METHODOLOGY

3.1. Rate-distortion autoencoder

The architecture of the proposed dynamic PCGC network is
inspired by the VAE framework based on sparse convolutional
layers, with a temporal autoregressive hyperprior and a con-
text coding model being added to remove temporal redundan-
cies during entropy coding. Within the VAE framework, the
encoder condensates input information into latent variables,
while the decoder reconstructs a faithful representation of the
point cloud from the transmitted latent variables. Given an
input point cloud x, the optimization target of the network
can be represented as a rate-distortion optimization problem
given by Equation 1, where λ is the Lagrange multiplier that
determines the rate-distortion trade-off, f(·) and g(·) are the
encoder and decoder respectively, and quantization is sym-

bolized by ⌊·⌉.

Ex∼px
[− log py(⌊f(x)⌉)] + λ · Ex∼px

[d(x, g(⌊f(x)⌉)] (1)

In the proposed framework, the static PCGC method
PCGCv2 [7] is employed for individual point cloud frames.
The analysis transform is designed with three sequentially
linked Downsampling Blocks, downsampling the input point
cloud frame by a factor of 8, and hierarchically aggregating
spatial features. In tandem, the feature synthesis transform is
composed of three sequentially linked Upsampling Blocks,
each capable of estimating the occupancy likelihood for vox-
els. Similarly to PCGCv2, adaptive pruning is applied at each
upsampling stage, retaining only the Nk voxels with the high-
est occupancy probability at each stage k, with Nk provided
by the analysis transform.

3.2. Temporal autoregressive hyperprior and context
model

For each point cloud frame, the extracted latent features are
modeled as Gaussian random variables convolved with a unit
uniform distribution. For the latent variables yt generated
from a point cloud frame xt at a time t, its mean µt and scale
σt are predicted conditioned on both the temporal autoregres-
sive hyperprior zt and the latent features ỹt−1 generated from
the previous decoded frame x̂t−1, as depicted in Fig. 2. To
leverage the temporal redundancy, zt is inferred from both
the present and the previous frame through the hyperanalysis
transform, improving the entropy coding efficiency by em-
bedding temporal dependencies directly in the hyperprior.

To enhance the fidelity of the estimated parameters µt, σt,
latent variables ỹt−1 obtained from the previous decoded
frame are also combined with the decoded hyperprior ẑt
in the context model, as shown in Fig. 2. These concate-
nated tensors undergo downsampling to facilitate integration
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Fig. 2: The detailed architecture of the temporal autoregres-
sive hyperprior estimation module combined with CM. Each
convolution layer is represented by Conv(n, m, s), with n be-
ing the number of filters, m the kernel size and s the stride.
Similarly, Deconv(n, m, s) layers are used for upsampling.
Each layer is followed by a ReLU layer for non-linear activa-
tion and the Inception-Residual Block Net (IRN)[18] is used
for local feature analysis and aggregation. Within the context
of each target convolution layer, the output tensor shares the
same coordinates as yt.

with the decoded hyperprior across various scales and target
convolution[14] is used at different points of the network
to align the coordinates of the tensors to those of the latent
features yt. Subsequently, the Gaussian parameters µt, σt

are generated as the output of the context model for entropy
coding of the latent variables yt.

Compared to methods relying on MEMC, the proposed
temporal autoregressive hyperprior and context model exploit
temporal dependencies without the computation of motion
vectors and residuals, circumventing the need to encode this
information within the bitstream.

3.3. Loss function and coding procedure

As described in Eq. 1, the loss function can be modeled as
a joint optimization problem of rate and distortion R + λ ·
D. Since zt serves as side information, it must be counted
in the bitstream as well. Therefore, the rate can be estimated
according to Equation 2, while the distortion is calculated by
the binary cross entropy (BCE) loss following PCGCv2, as
given by Equation 3.

R = Ex∼px
[
∑
t

(log p(yt|yt−1, zt) + log p(zt))] (2)

D =
1

K

∑
k

(
1

Nk

∑
v

−(Ov log pv + (1−Ov) log(1− pv)))

(3)
In Equation 3, Ov is the ground truth occupancy value for

the voxel v, and Nk is the number of points of the upsam-
pling stage k. To minimize the distortion, the BCEs sourced

from all K stages within the synthesis transform are aggre-
gated through the average operation, yielding the final distor-
tion measure.

The overall architecture of the framework is illustrated in
Fig. 1. For encoding a point cloud frame xt, the coding frame
and its reconstructed predecessor x̂t−1 undergo the analysis
transform. Subsequently, the latent features from the pre-
vious frame ỹt−1 are fed to a convolution layer targeted at
the coordinates of yt. The resulting variables are then con-
catenated, forming the basis for the estimation of the hyper-
prior zt, which is encoded using a factorized entropy coder
and added to the bitstream as side information. This side bit-
stream is then decoded back to zt and combined with ỹt−1 in
the context model to generate the parameters for the Gaussian
coding model. The synthesis transform finally takes as input
these decoded features to produce the final output x̂t. Since
the entropy coding module is able to only encode the features
of the sparse tensor yt, the coordinates of the latent variables
are encoded and decoded by G-PCC, contributing only to a
small fraction of the total bitrate.

The input sequence of point cloud frames is partitioned
into frame groups of constant size. While the majority of the
frames are encoded following the process illustrated in Fig.
1, previous frames are not available for the estimation of the
mean and scale of the latent features relative to the first frame
of the group. In that case, a modified version of PCGCv2 is
used for intra-coding, where the hyperprior is derived solely
from yt, being denominated PCGCv2-hyper, which is sepa-
rately trained with the same strategy.

4. EXPERIMENTS

4.1. Experimental settings

The training dataset is derived from the UVG-VPC dataset
[19]. Specifically, this dataset encompasses 12 sequences
with 3000 frames. Each point cloud frame is previously
downsampled to have a spatial resolution confined to 9 bits.
For performance assessment, the 8iVFB dataset [20] is used.
Adhering to the MPEG common test condition (CTC), only
the initial 100 frames from each sequence are used. The bi-
trate is represented in terms of bits per point (bpp), while the
quality of reconstruction is quantified using the point-to-point
geometry (D1) PSNR.

The proposed network is trained with λ = 1, 2, 3, 5, 7 for
50 epochs with a batch size equal to 4. The Adam optimizer
with β = (0.9, 0.999), an initial learning rate of 0.008, and
a scheduler with a decay rate of 0.7 for every 15 epochs are
used. To accelerate the convergence, the λ is set to 20 for
the first 10 epochs and set to its original value for the rest 40
epochs. All the experiments are conducted on a GeForce RTX
3090 GPU with 24GB memory. The proposed method is com-
pared with the state-of-the-art rule-based point cloud com-
pression method V-PCC and static PCGC method PCGCv2.
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Fig. 3: D1 Rate-Distortion curves on 8iVFB test sequences. For the proposed approach, the frame group size is determined by
the sequence’s length. In contrast, V-PCC adopts a frame group size of 32.

For the sake of equitable comparison, the PCGCv2 is evalu-
ated utilizing the pre-trained checkpoints provided by the au-
thor. Additionally, a comparison to the same network used for
intra-coding, i.e. PCGCv2-hyper, is also conducted. Finally,
results extracted from the papers [14, 15] were also used for
comparison to the proposed method.

Table 1: BD-Rate (%) gains of the proposed method against
V-PCC, PCGCv2, PCGCv2-hyper, and the proposed network
with different frame group size. GoF-20 and GoF-4 indicate
frame group sizes of 20 and 4 respectively.

Methods Longdress Loot Redandblack Soldier Average
V-PCC -59.72 -52.49 -56.72 -71.44 -60.17

PCGCv2 -16.27 -26.72 -11.09 -44.32 -24.60
PCGCv2-hyper -6.78 -16.17 -10.05 -39.90 -18.22

GoF-20 -0.18 -1.68 -0.22 -2.45 -1.13
GoF-4 -1.66 -4.98 -2.43 -13.34 -5.60

Table 2: BD-Rate (%) gains of other methods against V-PCC.

Methods Redandblack Soldier
Akhtar et al. [14] -55.58 -43.60

Fan et al. [15] -68.97 -85.71

4.2. Performance comparison

The rate-distortion plots for the evaluated methods are de-
picted in Fig. 3, with the corresponding BD-Rate gains
enumerated in Tab. 1. Contrasting the projection-based
methodology V-PCC, the proposed method natively targets
3D space compression with powerful learning-based modules
and culminates in BD-Rate reduction exceeding 60.2% on
average. Furthermore, it achieves an average BD-Rate reduc-
tion relative to PCGCv2 surpassing 24.6%. For sequences
with small motion amplitude such as Soldier and Loot, the
temporal correlation is stronger, and the improvement is even
more pronounced. These results show that the incorpora-
tion of the temporal autoregressive hyperprior combined with
context modeling is capable of leveraging inter-frame corre-
lations to reduce bitrate. It’s worth noting that with only the

spatial hyperprior in PCGCv2-hyper, there are still BD-Rate
gains against the original PCGCv2.

For other learning-based methods for dynamic PCGC
[14, 15], the BD-Rate gains against V-PCC on the two se-
quences of the 8iVFB dataset reported in the original papers
are included in Tab. 2. It can be observed that the pro-
posed method offers a larger rate reduction against V-PCC
when compared to [14]. However, if the performance of
the proposed method is lower than [15], it requires a lower
memory footprint: the number of parameters is 1.327M when
compared to the 3.017M parameters of [15]. Moreover, the
complexity is also reduced, with an average encoding and de-
coding time per frame of 0.45 and 0.38 seconds respectively,
when compared to the values of 1.2 and 1.09 obtained for
[15] in the same platform.

Tab.1 also provides insights into the outcomes derived
from varying frame group sizes. Experimental outcomes sub-
stantiate that as the frame group size increases from 4 and 20
to 100 (spanning the entire sequence), the compression per-
formance is enhanced as an augmented number of frames are
processed in the inter-frame mode.

5. CONCLUSION

This work presented a VAE-based geometric compression
framework for dynamic point clouds, leveraging a temporal
autoregressive hyperprior associated with context modeling
to exploit temporal redundancies for bitrate reduction. Latent
features derived from previous frames are used to produce the
downsampled hyperprior that is encoded in the bitstream as
side information, serving as input to the context model in their
original resolution to improve the accuracy of the generated
parameters for the Gaussian coding model. Empirical as-
sessments underscore the efficacy of the proposed approach,
registering a 60.2% BD-Rate reduction over the handcrafted
V-PCC codec and a 24.6% BD-Rate reduction relative to the
static PCGC methodology PCGCv2. Future work may focus
on improving the compression performance by utilizing novel
network architectures for better feature analysis, as well as
incorporating low-complexity MEMC techniques.
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