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Abstract: Phase contrast imaging (PCI) is an established and powerful technique for measuring
density fluctuations in plasmas and has been successfully applied to several fusion devices. Rooted
in a concept first developed for microscopy, PCI belongs to the category of internal-reference inter-
ferometers and has been shown to possess superior qualities among such techniques, particularly in
terms of spatial linearity. In essence, it produces a true image of fluctuations in the plane perpendic-
ular to the propagation direction of the probing laser beam, provided their characteristic spatial scale
is smaller than the beam width. The measurement in itself is line-integrated and thus not spatially
resolved longitudinally to the beam. However, the properties of the turbulence itself can be exploited
to achieve longitudinal resolution, particularly when the beam propagates nearly tangentially to the
magnetic field. This assertion has been recently rigorously tested through numerical modeling,
which has revealed significant additional complexity while confirming the general principle. Tan-
gential PCI has been employed extensively in the TCV tokamak and has resulted in a rich body of
work on broadband microturbulence in the ion-temperature-gradient/trapped-electron-mode range
and on geodesic acoustic modes. A similar diagnostic arrangement is also at an advanced planning
stage for the new superconducting tokamak JT-60SA.
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1 Introduction

In a nuclear-fusion reactor, the fusion power must exceed the power supplied to the plasma, which,
in steady-state conditions, must balance the power lost through radiation and energy transport.
Consequently, one of the basic goals of tokamak research has been the containment of such losses
to their minimum irreducible values. The inescapable rate of energy transport caused by Coulomb
collisions is known in toroidal geometry as neoclassical transport. In general, transport is found to
be well in excess of this rate. This excess anomalous transport is widely attributed, with increasing
experimental backing, to microturbulence, i.e., microinstabilities that develop into a nonlinear,
turbulent state.

A complete understanding of turbulence remains elusive even in the case of incompressible
fluids, described by the Navier-Stokes equation. In a plasma, the addition of electromagnetic
forces between charged particles to the pressure-gradient and viscous forces clearly complicates the
problem even further. New degrees of freedom are introduced by the collective plasma motion:
the nonlinear interaction between eddies in fluids is then augmented by the interaction between the
fundamental plasma oscillation modes, and between these and the eddies. In spite of this complexity,
increasingly sophisticated high-fidelity models, such as those that are applied in gyrokinetic codes,
are nevertheless shedding more light on the nature of this turbulent behavior.

Detailed measurements of the fluctuating components of various plasma quantities are also
necessary, and the connection between microinstabilities and transport has been a strong motivation
for the development of diagnostics to measure fluctuations in tokamaks. Advances in diagnostic
techniques are constantly occurring. Fluctuation imaging is a relative newcomer to experimental
plasma physics but is rapidly gaining acceptance and constantly finding new applications, partic-
ularly for structures at the edge of fusion plasmas [1, 2] but also in the core as an extension of
traditional techniques such as reflectometry [3] and electron-cyclotron emission [4]. Just as flow
visualization is revolutionizing the field of experimental fluid dynamics, so are imaging techniques
responding to the need for increased sophistication in the study of thermonuclear plasmas. The
conditions encountered in modern-day tokamaks are especially conducive to the utilization of imag-
ing diagnostics. The gradient scale lengths of the macroscopic plasma parameters in a tokamak,
particularly at the edge, are often of the same order as the fluctuation wavelengths – close in turn
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to the ion gyroradius, typically a few cm – effectively blurring the distinction between average and
fluctuating quantities. A similar situation is encountered to some extent in the time domain, with
very fast large-scale transients, such as the L–H transition and Edge Localized Modes (ELMs),
occurring over magnetohydrodynamic time scales (typically less than 0.1 ms) comparable to the
period of the fluctuations. A direct spatial mapping with good temporal resolution is clearly the
most natural representation of such a plasma.

This contribution focuses on developments in the phase-contrast imaging technique. This was
an invention [5] with long-lasting impact in the field of microscopy, with wide-ranging applications
to biology and medicine. It was applied to plasmas for the first time to study gas jets and high-
density plasma shock waves in air and argon [6]. Since then, applications to plasmas have been
almost exclusively in the context of high-temperature plasmas and nuclear-fusion research. While
the technique can be described as well-established and mature at this point, it is still not widespread.
The first use of PCI in fusion devices was on the TCA tokamak [7], after which applications to
several other devices followed: DIII–D [8], CDX–U [9], Alcator C–Mod [10], TEXT–U [11],
LHD [12], TCV [13], Wendelstein 7–X [14], HL–2A [15], KT–5C [16].

In practical implementations on fusion devices, the probing light beam is a Gaussian-shaped
laser beam, most typically a CO2 laser of 10.6 𝜇m wavelength. A particular focus of this paper is the
achievement of spatial localization with this technique, when used in conjunction with tangential
launching of the associated light beam - i.e., providing the beam direction vector with a large
toroidal component.

The remainder of this paper is organized as follows: section 2 will describe the principles of the
phase-contrast technique and compare its properties with other, related techniques; section 3 will
discuss the basis for localizing the measurement and the practical implementation of the associated
method, using in particular the PCI diagnostic installed on the TCV tokamak as a concrete example.
Brief conclusions are offered in section 4.

2 The phase-contrast imaging technique

We consider a light wave of wave number k0 and angular frequency 𝜔0 propagating through a
plasma and encountering, and being scattered by, a monochromatic density perturbation of wave
number k and angular frequency 𝜔. We restrict our analysis to the coherent, or collective scattering
limit, in which the perturbation’s wavelength 2𝜋/𝑘 is much longer than the Debye length. We
also confine our remarks to the limit 𝑘/𝑘0 ≪ 1. Under these conditions, it is well known that the
scattered power is peaked about the scattering angles 𝜙𝐵 given by the Bragg relation [17]

𝜙𝐵 = ± 𝑘

𝑘0
. (2.1)

The wave-wave coupling rules impose constraints both on the scattering directions and on the
direction of propagation of the scattering perturbation. No scattering occurs at angles other than
the Bragg angles, and no scattering occurs if the density wave is not nearly perpendicular to the
electromagnetic wave (Fig. 1(a)). Also, the two Bragg angles ±𝑘/𝑘0 correspond to two different
density waves, propagating in the different, albeit very close, directions specified by Eq. (2.1) and
shown in Fig. 1(b). Thus a single sinusoidal density perturbation generates at most one scattered

– 2 –



wave. These conditions are, however, simplified and idealized. In reality the interaction volume,
and specifically the interaction length along 𝑧, 𝐿𝑧 , is not infinite; as a result, 𝑘𝑧 , the longitudinal
component of the density fluctuation wave vector, can only be defined to within an uncertainty 𝜋/𝐿𝑧 ,
and the selection rules for the density waves are relaxed to a finite angular spread, 𝛿𝜃 ≈ 𝛿𝑘𝑧/𝑘 . If
there is substantial overlap between the positive and negative scattering cones, both scattered waves
exist simultaneously. This condition can be written as

𝐿𝑧 <
𝜋𝑘0

𝑘2 . (2.2)

The regime in which this condition is satisfied is known as the Raman-Nath regime [18]. The
opposite limit, in which only one scattering angle is allowed, is called the Bragg regime. It can be
shown that the Raman-Nath regime, combined with near-field detection, coincides with the region
of validity of geometrical optics [19].

In the geometrical-optics approximation, the interaction of the light wave with the plasma, seen
now simply as a refractive medium, is characterized by a phase shift

ΔΦ = 𝑘0

∫
N𝑑𝑧, (2.3)

where N is the index of refraction. For 𝜔0 ≫ 𝜔𝑝 (𝜔𝑝 being the plasma frequency) the
amplitude is essentially unchanged, and Eq. (2.3) reduces to

ΔΦ = 𝜆0𝑟𝑒

∫
𝑛𝑒𝑑𝑧, (2.4)

where ΔΦ is in radians, 𝑛𝑒 is the electron density, 𝜆0 = 2𝜋/𝑘0, and 𝑟𝑒 ≡ 𝑒2/(𝑚𝑒𝑐
2) is the

classical radius of the electron.
Under the conditions considered thus far, therefore, measuring density fluctuations requires

measuring the phase change they induce on the probing light wave. This phase change due to
fluctuations can be assumed to be much smaller than unity. The effect they have on the electric field
of the wave can then be written as

E𝑠 (y, 𝑡) = E0(y, 𝑡)𝑒𝑖 𝜑̃ (𝑦,𝑡 ) ≃ E0(1 + 𝑖𝜑̃), (2.5)

where 𝐸0 and 𝐸𝑠 are the unperturbed and scattered fields, respectively, 𝜑̃ is the fluctuating
phase shift, and 𝑦 indicates a coordinate perpendicular to the direction of propagation 𝑧 of the light
wave.

If the scattered and unscattered components of the wave could somehow be separated, and a
±90◦ phase shift could be applied to the unscattered component alone, the resulting field could be
written

E′
𝑠 = E0(±𝑖 + 𝑖𝜑̃). (2.6)

Now to first order in 𝜑̃ the intensity can be written

|𝐸 ′
𝑠 |2 = |𝐸0 |2 (1 ± 2𝜑̃). (2.7)

This operation therefore results in an intensity with a fluctuating component that is directly
proportional to the phase of the original beam. Thus on the image plane a square-law detector
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Figure 1: (a) Interaction of an electromagnetic wave with a plasma; (b) selection rules for scattering
vectors and scattered waves.

would register a signal proportional to the line integral of the density. Note that this would be true
even if the phase shift were not exactly 90◦, although the proportionality factor is maximum in that
case.

This is the foundational principle of the phase-contrast technique [19, 20]. The different
directions of propagation of the unscattered and scattered components permit them to be easily
separated in the focal plane of a collecting optic (see Fig. 2). According to the laws of geometrical
optics, a ray impinging on a lens of focal length 𝐹 at a small angle 𝜃 to the optical axis reaches the
focal plane at a distance 𝑦 = 𝐹𝜃 from the optical axis. This implies that the unscattered rays are
focused at the center of the focal plane, while the scattered rays intercept the same plane at varying
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distances from the center, depending on the wave number of the perturbation that generated them.

Phase modulation:

(y,t)

Intensity modulation:

(y,t) (y,t)

Unscattered beam is

phase-shifted by 900

Figure 2: Schematics of phase-contrast technique.

Having thus separated the two components, the necessary phase shift can be introduced by
means of a thin refractive strip (for a one-dimensional bundle) or dot (in the two-dimensional case)
located at the center of the focal plane and designed to increase the path length by a quarter of a
wavelength. This region is called the conjugate area, whereas the remainder of the focal plane is
known as the complementary area. The same effect can be achieved by a reflecting component with
a suitable area depressed by one-eighth of a wavelength. The conjugate area must be comparable
to the size of the focal spot to achieve reasonable results.

A strong attenuation of the unscattered signal, which acts in practice as a local oscillator in
an internal-interference scheme, can be applied to permit an increase in the achievable signal-
to-noise ratio, provided sufficient light power is available. In practice, a sensitivity approaching
1 𝜇rad/

√
MHz can be achieved.

We can now step back and ask whether this truly is a desirable way to measure phase variations
in a light wave. An obvious competitor is interferometry. Both interferometry and phase-contrast
imaging can be combined with an imaging arrangement. Interferometry provides the optimal
response function: it will measure the phase precisely, irrespective of the wavelength of the
perturbation, and produce a perfect image of the phase perturbation. Interferometry relies, however,
on an external phase reference. Combining two light beams that travel along different paths makes
the result vulnerable to mechanical vibrations. In the phase-contrast method, on the other hand,
the reference and probing beams in effect travel together and encounter all the same optics, and
any vibration-induced shifts therefore cancel out. This technique is thus far more sensitive and is
optimal for the detection of small fluctuations. The price to pay is that absolute phase shifts cannot
be detected, since there is no absolute reference; only phase variations across the light beam can be
measured. A different way to state this is that the response function of the phase-contrast technique
must vanish for 𝑘 = 0 (𝑘 being, once again, the wave number of the density perturbation): in
practice, the cutoff wavelength is approximately equal to the width of the beam.

Let us now then assume that an internal-reference technique, which must be based on some
form of beam manipulation, i.e., spatial filtering, is chosen for sensitivity purposes. Is phase
contrast the best option? Considering a rather general spatial filter as shown in Fig. 3, which
includes three separate focal-plane zones with different transmission coefficients and phase shifts, it
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has been proven that the phase-contrast case is the only one that provides true phase imaging in the
relevant wave-number range: i.e., it transforms the phase information into a measurable amplitude
point by point, whereas all other sets of parameters results in a convolution [19]. To express this
differently, phase contrast alone yields a linear response in wave-number space, with no phase shift,
except at wave numbers below the cutoff value. Phase contrast also provides the largest absolute
signal, maximizing the signal-to-noise ratio. The response function in the space of fluctuation wave
numbers in standard conditions, such as those encountered on the TCV tokamak, is shown in Fig. 4.

Reflectivity

Phase shift

ρ– ρ

α β0

ρ+

Figure 3: General reflective spatial filter.

Figure 4: Modulus of the response function of phase-contrast imaging in wave-number space.
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3 Localized phase-contrast imaging measurements

The PCI technique described in the previous section provides nearly unlimited spatial resolution
across the width of the beam, but performs a line integration along the beam. It is not, in its basic
form, a localized measurement. However, it has long been recognized that selection rules apply
to these scenarios in the wave-number domain. In particular, the symmetry of fluctuations along
the field lines [21] can also be exploited in conjunction with spatial filtering to achieve spatial
localization along the direction of propagation. This technique is based on the existence of two
separate selection rules for the detectable wave vectors of density fluctuations: the symmetry along
the magnetic-field lines implies that the wave vector must be perpendicular to the field, and the
scattering selection rule forces the vector to be perpendicular to the direction of propagation of the
beam, lest the line integration cancel out the perturbation in question. Therefore, the measured
fluctuation wave vector at each point along the beam must be perpendicular to the plane defined
by the beam axis and by the local magnetic field. The combined effects of toroidal geometry and
magnetic shear cause the direction of the wave vector to be different at different points along the
beam [22]. Spatial filtering can then be used to select a direction, thus localizing the measurement
to the region in which that particular direction satisfies the selection rules (see Fig. 5).

Figure 5: Illustration of the rotation, along the beam path, of the fluctuation wave vector contributing
to the signal, and the corresponding mechanism for selecting the direction of the wave vector and
thus the measurement location.

For this technique to be effective in providing localized measurements, the selected fluctuation
wave-vector direction must rotate rapidly as a function of a linear coordinate along the light beam.
This occurs most prominently in a tokamak in the case of a probing beam with a large toroidal
component, i.e. a tangential launching (reflecting the fact that the beam will be near-tangent to the
magnetic field at some point along its path).

The ability to select a wave-vector angle is limited by diffraction in practice, related to the
finite width of the light beam. The half-width of a Gaussian spot in wave-number space, defined as
the 1/𝑒2 point of the intensity, is given by Δ𝑘 = 2/𝑤0, where 𝑤0 is the half-width of the Gaussian
beam. Thus the resolution in the selection of the angle of the wave-vector with respect to a reference
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direction is
Δ𝜃 = ± arctan

(
2

𝑘𝑤0

)
. (3.1)

As the angular selectivity thus increases with 𝑘 , the achievable localization will also improve with
increasing 𝑘 . In most cases of interest very good localization can be achieved, particularly at the
tangency point, as illustrated by Fig. 6 for TCV, for the beam geometry shown in Fig. 7. At the
tangency point, in addition, the derivative of the radial flux-surface coordinate 𝜌 with respect to
the linear coordinate along the beam vanishes. As seen in Fig. 6(b), this magnifies the localization
effect when expressed in terms of the 𝜌 coordinate.
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Figure 6: (a) Rotation angle of k vector of density fluctuations in the plane perpendicular to the
beam propagation direction (cf Fig. 5), vs linear distance along the beam path, for a standard TCV
shot and 𝑘 = 4 cm−1; the two horizontal bands illustrate the diffraction-limited angular resolution,
and are projected onto vertical bands illustrating the spatial localization at two different locations.
(b) The same but now as a function of the radial flux-surface coordinate (𝜌).

Two types of spatial filters have been employed to implement the wave-vector selection: filters
characterized by a straight slit and filters featuring a wedge-shaped opening (Fig. 8) [22]. In the
former case, the width of the slit corresponds to the width of the Gaussian spot, providing optimum
resolution at all values of the fluctuation wave number 𝑘 . The reasoning behind the wedge-shaped
filter is to endow all values of 𝑘 with the same spatial resolution as the lowest value that can be
resolved by the PCI technique, i.e., 𝑘𝑐 ≃ 3/𝑤0. In this way one sacrifices resolution at high 𝑘 for
the sake of maintaining a linear response and creating a true spatial image of fluctuations over the
same volume.

It should be noted, however, that this spatial selection principle is predicated on the assumption
that fluctuations possessing a finite wave-vector component parallel to the direction of propagation
of the beam would be averaged out and vanish entirely in the final signal. This cannot be an exact
assumption, as residual signal will always remain in a finite system. Numerical calculations in
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Figure 7: (Left) Top view and (right) poloidal projection of the PCI beam path on TCV.

Figure 8: Two types of spatial filters used to select the direction of the measured wave vector: (left)
straight slit; (right) wedge-shaped opening.

realistic geometries are required to test the assumption. This can be done by using the formalism of
a synthetic PCI diagnostic, which has been developed to permit meaningful comparisons of results
from high-fidelity gyrokinetic simulations with experiment. By using this formalism, it has been
shown that using the straight-slit type of filter permits indeed achieving resolutions that are as good
as or better than those estimated using the simple considerations discussed above [23]. However,
this is not generally true of the wedge-shaped filter, and it is therefore concluded that the hope to
achieve a more faithful image representation by using such a filter is probably misplaced.

The TCV PCI diagnostic has been employed for well over a decade and has produced a wealth
of data, in particular on core turbulence in the ion-temperature-gradient/trapped-electron-mode
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microinstability regimes and on geodesic acoustic modes [24–26]. Up to now the system has been
able to access wave numbers up to 13 cm−1 with a bandwidth of under 1 MHz. However, an upgrade
is now underway to extend this to 60 cm−1 and 10 MHz, respectively, with also much increased
spatial resolution. This will open the possibility for the first time to access electron-temperature-
gradient modes.

A tangential PCI diagnostic is also in an advanced stage of development for the JT–60SA
tokamak, where it is expected to provide important new data on turbulence in more reactor-relevant
regimes. The geometry planned for JT–60SA will yield the best spatial resolution near the plasma
boundary and near the magnetic axis; the resolution elsewhere will however also be adequate for
investigating the spatial profile of core turbulence [27].

4 Conclusions

Phase-contrast imaging is a powerful and mature laser-based technique for studying fluctuations,
turbulent or otherwise, in magnetic-confinement fusion devices. It has superior properties in terms
of sensitivity and linearity, providing a direct spatial representation of plasma density fluctuations.
When endowed with a tangential launching geometry in a toroidal device, it can be augmented
with a spatial filtering technique that removes the constraint of chord integration and provides
good spatial localization, especially near the point of tangency of the laser beam with the flux
surfaces. Tangential PCI has been demonstrated extensively on the TCV tokamak and is planned
to be employed in the new JT–60SA device.
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