
Mechanized HOL Reasoning in Set Theory
Simon Guilloud Ñ

EPFL, Laboratory for Automated Reasoning and Analysis, Switzerland

Sankalp Gambhir Ñ

EPFL, Laboratory for Automated Reasoning and Analysis, Switzerland

Andrea Gilot Ñ

EPFL, Laboratory for Automated Reasoning and Analysis, Switzerland

Viktor Kunčak Ñ

EPFL, Laboratory for Automated Reasoning and Analysis, Switzerland

Abstract
We present a mechanized embedding of higher-order logic (HOL) and algebraic data types (ADT)
into first-order logic with ZFC axioms. We implement this in the Lisa proof assistant for schematic
first-order logic and its library based on axiomatic set theory. HOL proof steps are implemented as
proof producing tactics in Lisa, and the types are interpreted as sets, with function (or arrow) types
coinciding with set-theoretic function spaces. The embedded HOL proofs, as opposed to being a
layer over the existing proofs, are interoperable with the existing library. This yields a form of soft
type system supporting top-level polymorphism and ADTs over set theory, and offer tools to reason
about functions in set theory.
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1 Introduction

The interactions and combinations of higher-order logic (HOL) with set theory in the context
of proof systems have been a long-standing topic of study (e.g. [7, 10, 17, 6, 2]). Set theory (in
particular ZF and ZFC) is the prototypical and oldest formalized foundation of mathematics,
but it does not naturally admit a concept of “typed” expressions, which are widely used in
informal mathematics, for guiding automated proof search, and in programming languages.
HOL on the other hand naturally supports typed expressions, type checking and reasoning
for simply typed lambda calculus with top level polymorphism.

The first goal of the present work is to study a syntactic embedding of HOL into first-order
set theory. It is well known that the Zermelo-Franekel axioms (ZF) imply the existence of a
set that is a model of higher-order logic, where types are interpreted as sets, type judgement
as set membership and λ-terms as set-theoretic functions [10]. However, the mere fact that
models of set theory contain a model of HOL (that is, a semantic embedding) is of little use
by itself in practice. To be able to write the syntax and simulate the features of HOL, we
need a syntactic embedding that transforms expressions in HOL into terms and formulas of
first order set theory.

Some proof assistants have explored mixing features of set theory and HOL in various ways
in their foundations, such as Egal [5], Isabelle/HOLZF [24] or ProofPeer [25]. A translation of
statements and proofs from HOL to set theory has been done for some systems, for example
between Isabelle/HOL and Isabelle/ZF [17], between Isabelle/HOL and Isabelle/Mizar [16, 7]
or between HOL Light and Metamath [8]. However, both Isabelle/ZF and Metamath, as
well as other systems using higher-order Tarski-Grothendieck [7], the Hilbert ϵ operator
(as suggested in [10]) or built-in notations for replacement and comprehension allow, in
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some form, writing terms containing bound variables. This is impossible in syntactically
strict first-order logic as described in mathematical text books and in first-order automated
theorem provers and proof assistants, where only the universal and existential quantifiers, ∀
and ∃, can bind variables. This makes it impossible to naturally express arbitrary λ-terms of
the form λx.t as standalone first-order terms.

Nonetheless, we show that it is possible to embed higher-order logic and λ-terms in
first-order set theory without these constructs using a notion of contexts, i.e. formulas
that gives local assumptions about terms. We study how this embedding impacts decision
procedures for type checking and simulating the proof steps of HOL and implement the
embedding in the Lisa proof assistant [12], whose foundations are built on first-order set
theory. We obtain from this a form of soft type system over set theory, and support for
reasoning about functions with HOL-like proofs steps in Lisa. Specifically, we implement the
proof steps of HOL Light [13], for the simplicity of its foundations. Incidentally, we hoped
this implementation would allow automatic import of theorems from the HOL Light library.
However, while this embedding this works well in practice for human-written proofs, which
typically don’t contain a many high towers of nested λ-abstractions, our initial tests suggest
that the embedding has too much overhead in the size of the proofs for the translation of
large proofs whose basic building blocks are such λ-abstractions to be of practical use.

In the second part of this paper, with the same motivation of simulating features from type
systems into set theory, we describe how Algebraic Data Types (ADTs) can be encoded into set
theory. ADTs are types defined inductively by their constructors, one of the simplest examples
is that of singly-linked lists of integers, given by List = Nil | Cons(head : Z, tail : List). ADTs
and their generalizations are essential constructs in type theory based proof assistants (such
as Coq [28] and Lean [21]) and in functional programming languages. Given the description
of an ADT in terms of the type signature of its constructors, we show how to define the set
corresponding to the type and functions representing the constructors, deriving the desired
theorems about induction and injectivity. We show that expressions using ADTs and their
constructors can be type checked by the same procedure as expressions from higher-order
logic embedded in Lisa. Finally, we extend these results to polymorphic ADTs.

1.1 Contributions
The contribution of this paper is to present a practical embedding of simply typed lambda
calculus with polymorphism, of the proof steps of HOL Light and of ADTs into classical ZFC
within first-order logic, and its implementation in the Lisa proof assistant.

We describe how to embed simply typed lambda calculus (and in particular lambda
abstractions, which cannot be syntactically expressed in first-order logic) into set theory.
Our approach is based on maintaining a context of local definitions, expressing the desired
properties about the subterms of λ-terms of the form λx.t. If t contains variables other
than x, i.e. free variables, we need to encode the closure of λx.t instead, similar to the
compilation of programs containing nested function declaration.
We explain how this encoding allows simulating proof steps and type checking from HOL
by producing the corresponding proofs in set theory.
We implement this embedding and the proof-producing tactics in the Lisa proof assistant1,
allowing reasoning about set-theoretic functions using HOL proof steps.

1 Disclaimer: as of March 2024, the library of results from Lisa is still under development. As such, some
intermediate results regarding set-theoretic function space and the recursion theorem are still “assumed”.
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We try to use this embedding to import (parts of) the library of HOL Light, but obtain a
negative result because the simulation is too complex and indirect.
We describe how ADTs can be automatically defined in ZF set theory and how to obtain
their key recursive properties derived from the recursion theorem in ZF set theory. We
mechanize this system in Lisa, making ADTs and their constructors fully compatible with
implemented HOL tactics.

In the present work we picked HOL Light as our reference system for HOL, but with some
additional work, the results can be translated to other proof assistants in the HOL-family of
proof assistants, such as HOL4 [27], Isabelle/HOL [23], or Candle [1].

Similarly, our target system was Lisa, but none of the results are specific to Lisa,
and they transfer to any system using axiomatic set theory over first-order logic, though
those are not quite as common, such as Mizar [22]. Our implementation can be found in
https://github.com/epfl-lara/lisa/tree/itp2024-archive.

2 Preliminaries

There exist several different variations of higher-order logic (HOL). We consider it as it
is defined in HOL Light. Its language is the simply typed lambda calculus with top-level
polymorphism (or, the Hindley-Milner type system). Each variable in an HOL term is
associated with a type, which may contain type variables. The deduction rules of HOL Light
are described in Figure 12. We denote by B the type of Booleans containing two elements,
by i the infinite type of individuals, and by =λ the built-in function representing equality.

REFL⊢ t =A t
Γ ⊢ s =A t ∆ ⊢ t =A u

TRANSΓ,∆ ⊢ s =A u

Γ ⊢ s =A t ∆ ⊢ u =A v MK_COMB
Γ,∆ ⊢ s(u) =A t(v)

Γ ⊢ s =B t
ABSΓ ⊢ (λx : A.s) =A→B λ(x : A.t)

BETA⊢ λ(x : A.t)x =B t
ASSUME

p ⊢ p

Γ ⊢ p =B q ∆ ⊢ p
EQ_MP

Γ,∆ ⊢ q

Γ, q ⊢ p ∆, p ⊢ q
DEDUCT_ANTISYM_RULE

Γ,∆ ⊢ p =B q

Γ ⊢ p
INST

Γ[x⃗ := t⃗] ⊢ p[x⃗ := t⃗]
Γ ⊢ p

INSTTYPE
Γ[X⃗ := A⃗] ⊢ p[X⃗ := A⃗]

ETA⊢ (λx.tx) =A t

Figure 1 Deduction rules for higher-order logic as implemented in HOL Light.

Note that the Infinity axiom asserts that i is infinite. It requires definition of logical
connectives in HOL, which we do not explain in the present work.

We also assume familiarity with the syntax and deduction rules of first-order logic (see,
for example, [20]). We assume Sequent Calculus [9] as our proof system, which is used by our

2 HOL Light also admits a choice function and an infinity axiom later in the library development, which
are justified in ZFC by the choice axiom and infinity axiom. These two additional axioms are largely
tangential to the concerns of the present work and hence outside the scope. While ETA is also formally
an axiom in HOL Light, we consider it because set-theoretic functions are naturally extensional, and to
handle alpha-equivalence in Definition 3.1.

https://github.com/epfl-lara/lisa/tree/itp2024-archive


:4 Mechanized HOL Reasoning in Set Theory

proof assistant Lisa, but the results transfer to other proof systems for first-order logic (FOL).
We call first-order set theory (FOST) the axiomatic system of ZFC [14, 18] in first order
logic. This is also the foundation of the list Lisa proof system [12] in which we implement
our result.

In both HOL (see [3]) and FOL, the language can be extended conservatively using the
concept of extension by definition, as described (for example) in [18, Section 2.10] and [11].

▶ Theorem 2.1 (Extension by Definition for First Order Logic). Let K be a first order
theory (for example, FOST), and ϕ a formula with free variables y, x1, ..., xn. Suppose
⊢K ∀x1, ..., xn∃!y.ϕ and let the theory K ′ be K with the addition of a function symbol f of
arity n and the axiom ∀y, y = f(x1, ..., xn) ⇐⇒ ϕ. Then K ′ is fully conservative over K ′

2.1 Set-Theoretic Semantics of HOL
To motivate our translation from HOL to set theory, we review classical set-theoretic semantics
of HOL. This allows us to focus first on the semantics of functions and types, without having
to worry about if a certain set is expressible, efficiently or at all, as a term in FOST. We
interpret types as sets and HOL functions as total set theoretic functions.

As is usual in set theoretic foundations, we identify a function f : A → B with its graph,
that is, as a subset of A × B such that for every element x of A, there exists exactly one
element y ∈ B where (x, y) ∈ f . We write isFunction(f, A, B) to denote that the set f is a
total and functional relation (or simply, a function) from A to B.

We define an operator app such that, for all f such that isFunction(f, A, B) and for all
x ∈ A, app(f, x) = y iff (x, y) ∈ f .

▶ Definition 2.2 (Set theoretic universe). We use the following concepts to give a classical
semantics to HOL.

Fix U to be a set that is a universe of Zermelo set theory, i.e., a containing an infinite set,
and closed under powersets, unions, and subsets defined by set comprehension (separation
axiom). Consequently, U is closed under Cartesian products. For example, we can take
U to be the set Vω+ω of the cummulative (von Neumann) hierarchy [14, Chapter 6].
Let app and isFunction be as above.
For A, B ∈ U , let A ⇒ B denote {r ∈ P(A × B) | isFunctional(r, A, B)}
Let N be the set of natural numbers.
Let ⊥ = ∅, ⊤ = {∅} and B = {⊥, ⊤}
For A ∈ U , let E(A) =

{(x, f) ∈ (A × (A ⇒ B)) | f = {(y, b) ∈ (A × B) | (x = y → b = ⊤) ∧ (x ̸= y → b = ⊥)}}

Note that for all A, E(A) ∈ (A ⇒ (A ⇒ B))

▶ Definition 2.3 (Semantics of HOL). An assignment α : (V λ ∪ T λ) → U is a function such
that for all x : A ∈ vλ, α(x : A) ∈ α(A). We define an interpretation of HOL terms with
respect to an assignment:

JXKα = α(X)q
T λ

1 → T λ
2
y

α
=

q
T λ

1
y

α
⇒

q
T λ

1
y

α

JBKα = B
JiKα = N
Jx : AKα = α(x)q
=λ: A → A → B

y
= E(JAKα)

J(f : A → B)(t : A) : BKα = app(Jf : A → BKα , Jt : AKα)
J(λx : A. t : B) : A → BKα = {(y, z) ∈ (JAKα × JBKα) | z = JtKα[x 7→y]}



S. Guilloud, S. Gambhir, A. Gilot and V. Kunčak :5

▶ Definition 2.4 (Syntactic and Semantic truth).
For any FOST sequent s = (l1, ..., ln) ⊢ (r1, ..., rn), we write:

⊢ s if s is provable in FOST
U |= s if U satisfies (l1 = ⊤ ∧ .. ∧ ln = ⊤) =⇒ (r1 = ⊤ ∨ .. ∨ rn = ⊤) in the usual sense
of first order models.

For any HOL sequent s = (l1, ..., ln) ⊢ r, we write:
⊢ s if s is provable in HOL
U |= s if, for every assignment α, (Jl1Kα = ⊤ ∧ .. ∧ JlnKα = ⊤) =⇒ JrKα = ⊤ holds in U

▶ Theorem 2.5. For any term s : A ∈ tλ and assignment α, Js : AKα ∈ JAKα

Proof. By induction on the structure of t. ◀

We can show that all rules of HOL from Figure 1 hold in ZFC, giving the following theorem:

▶ Theorem 2.6. For any assignment α and HOL terms s1 : B, ...sn : B and t : B ∈ tλ,

if (s1, ..., sn ⊢ t and ∀i. Jsi : BKα = ⊤) then Jt : BKα = ⊤

While the above argument shows that HOL has an interpretation into first order set
theory, it does not immediately give us a mechanical translation from an HOL proof system
to proofs in mechanized set theory. In particular, note that in Definition 2.3, the right-hand
side of the lambda case cannot be expressed in the syntax of first order logic. It does not
either tell us if and how we can automate the translation of an HOL proof into a FOST proof,
or the production of proofs of a statement t ∈ A that would correspond to type checking.
However, note also that the embedding is shallow, in the sense that HOL functions are
interpreted as usual set theoretic functions and types of functions as sets of set theoretic
functions.

3 From HOL Formulas to First-Order Set Theory Formulas

We wish to define a translation L·M from HOL sequents to FOL sequents such that if an
HOL sequent s is provable in HOL then LsM is provable in FOST. Technically, a trivial such
embedding would map all sequents to the trivially true sequent. We cannot require that
the embedding maps unprovable sequents of HOL to unprovable sequents of FOST, because
FOST is strictly more powerful and can prove additional statements. But, we can require
that the embedding does not map semantically false statements to provable sequents. This
means, for every sequent s of HOL:
1. ⊢ s =⇒ ⊢ LsM
2. ⊢ LsM =⇒ U |= s

Moreover, for the embedding to be of practical use in theorem proving and for import of
proofs, we would like the embedding to be as natural as possible, so that we ideally have
an embedding L·M : tλ → t, i.e. from terms of HOL to terms of FOST, such that, for every
assignment α, we have JLs : AMKα = Js : AKα. Unfortunately, the syntax of FOST terms does
not support λ-abstractions. Of course, the set we denote by

{(y, z) ∈ (JAKα × JBKα) | z = JtKα[x 7→y]}

is guaranteed to exist by the Comprehension axiom, but the above expression is not a term
in first-order logic. In particular, any variable that appears in a term has to be free, but
here, we would want y and z to be bound. While the symbol E was defined similarly with a
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comprehension, we need to show the existence and uniqueness of E only once to introduce it
with a definitional extension once and for all, as in Theorem 2.1.

We represent λ-abstractions using a variable which is only valid under some context, a
set of formulas. For example, we can represent the term λx : B.x using:

a variable λ1, along with the corresponding
context, the formula λ1 ∈ (B ⇒ B) ∧ ∀x ∈ B. λ1(x) = x

Formally, using the mechanism of extension by definition, we first extend FOST with constant
and functional symbols for ⇒,B,N, E, and app, according to Definition 2.2. We then define
L·M as follows:

▶ Definition 3.1 (Embedding of HOL into FOST). Reserve a special set of variables Λ =
{λ1, λ2, ...} that are used to represent lambda expressions and associate to every HOL term
t a single i. In practice, we use a global counter. We use the standard application notation
for FOST Terms, so that, for example, λ2 y y really means app(app(λ2, y), y).

LXM = X

LT λ
1 → T λ

2 M = LT λ
1 M ⇒ LT λ

1 M
LBM = B
LiM = N
Lx : AM = x

L=λ: A → A → BM = E(LAM)
L(f : A → B)(t : A) : BM = Lf : A → BM Lt : BM
L(λx : A. t : B) : A → BM = λi y1 ... yn

Where y1,...,yn are the free variables of λx.t,
and λi is a variable symbol associated with the term λx.t

In the last line, λi is a representation of the closure of the lambda term λx.t, and is intended
to only be valid under the appropriate defining assumption.

There is another issue with this encoding, which is that we are losing type information
associated to variables, as well as the HOL assumption that type variables cannot represent
empty types. Fortunately, this can also be solved with contexts.

3.1 HOL in FOST Using Contexts

To translate propositions of HOL into FOST, we need to compute contexts of HOL terms.
We will need a non-emptiness context, to handle type variables, a typing context, to carry
over information regarding types of variables, a definition context to handle abstractions.

The following definition defines ctxN (non-emptiness), ctxT (variable typing) and ctxD

(definitions). Assume for simplicity and without loss of generality that variables typed
differently have different identifiers, so that, for example x, x : A and x : B do not appear
together in the same proof.

▶ Definition 3.2 (Non-Emptiness Context). The typing context of an HOL term is the set of
assumptions A ̸= ∅ for every type variable in the term. This also includes type variables in
the type signature of polymorphic constant symbols.

▶ Definition 3.3 (Typing Context). The typing context of an HOL term is a set of FOST
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formulas of the form x ∈ T and is computed recursively as follows:

ctxT (x : T ) = {x ∈ T}
ctxT (c) = ∅ for c a constant symbol
ctxT (f t) = ctxT (f) ∪ ctxT (t)
ctxT (λx : T. t) = ctxT (t) − {x ∈ T}

▶ Definition 3.4 (Definitional Context). The definition context of an HOL term is a set of
FOST formulas whose free variables are from Λ and from the set of type variables. It is
computed as follows:

ctxD(x : T ) = ∅
ctxD(c) = ∅
ctxD(f t) = ctxD(t) ∪ ctxD(t)
ctxD(λx : T.t) = ctxD(t) ∪

{(λi ∈ (LT1M⇒...⇒LTnM⇒LT M⇒Ltype (t)M)∧
∀y1 ∈ T1, ..., ∀yn ∈ Tn.λi yi ... yn x = LtM}

where y1 : T1, ..., yn : Tn are the free variables of t (without x).

λi represents the closure of the λ-expression, as in the supercombinator compilation of
functional programming languages [15, Chapter 13]. Having λi represent the closure of the
lambda abstraction rather than the abstraction itself is necessary because otherwise the yi’s
would be free in the definition. But this should not be the case if they are supposed to be
bound in an outer term. This is illustrated in the third formulas in the following Example 3.5.

The context, ctx(t), of an HOL term t, is ctxN (t) ∪ ctxT (t) ∪ ctxD(t).

▶ Example 3.5. Let x : X, y : Y , f : Y → X, g : X → Y . We omit type annotations from
lambda terms.

Lλx.xM = λ1
ctx(λx.x) = {X ̸= ∅, λ1 ∈ X⇒X ∧ ∀x ∈ X.(λ1 x) = x}

L(λx.y) (f y)M = λ2 y (f y)
ctx((λx.y) (f y)) = {X ̸= ∅, Y ̸= ∅, y ∈ Y, g ∈ X ⇒ Y

(λ2 ∈ Y ⇒X⇒Y ) ∧ ∀y ∈ Y.∀x ∈ X.(λ2 y x) = y}

L(λy.(λx.y) =λ g)M = λ4 g

ctx((λy.(λx.y) =λ g) y) = {X ̸= ∅, Y ̸= ∅, f ∈ Y ⇒ X,

(λ2 ∈ Y ⇒X⇒Y ) ∧ ∀y ∈ Y.∀x ∈ X.(λ2 y x) = y,

(λ4 ∈ (X⇒Y )⇒Y ⇒B) ∧
∀g ∈ X ⇒ Y.∀y ∈ Y.(λ4 g y = E(A) (λ2 y) g)}

Note that in the last example, the definition of λ4 refers to λ2, and binds the variable y

which is free in the λ-abstraction represented by λ2. Without the closure, y would be free in
the definition of λ2 and could not be bound in the definition of λ4. Recall that E(A) denotes
the meaning of a (curried) equality relation on A.

We can now define the embedding of sequents:

▶ Definition 3.6. Let s = t1, ..., tn ⊢ t be an HOL sequent. Define the embedding LsM as

ctx (t1), ..., ctx (tn), ctx (t), Lt1M = ⊤, ..., LtnM = ⊤ ⊢ LtM = ⊤.
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3.2 Proof of Type Checking
To produce proofs corresponding to type checking, we define a Lisa proof tactic
ProofType(t: Term) which for any term t of type T outputs a proof of

ctx(t) ⊢ LtM ∈ LT M

As abstractions are represented by typed variables applied to some other free variables in
our encoding, the tactic only has to type applicative terms. For example, consider the term
(λx : A. y : A)(z : A). The corresponding theorem of first-order set theory is:

(λ1 ∈ A ⇒ A ⇒ A) ∧ (∀y ∈ A.∀x ∈ A.λ1 x y = y), y ∈ A, z ∈ A ⊢ (λ1 y) z ∈ A

for which our approach generates a proof by recursing on the structure of t and T , using the
definition of function spaces.

Polymorphism

More interesting is the typing of polymorphic constants such as HOL equality =λ. Its HOL
type is A → A → B and its interpretation according to Definition 3.1 is E(A). Hence, the
corresponding typing judgement proven by ProofType should be E(A) ∈ A → A → B. In
simply typed lambda calculus with explicit polymorphism (like System F, see for example
[4]), =λ would be given the type ΛA.A → A → B to E. The corresponding property for E in
FOST is ∀A.E(A) ∈ A ⇒ A ⇒ B. This is easy to represent in our translation using free set
variables in sequents. We added support for such top-level polymorphism to the ProofType
tactic, so that it can automatically type polymorphic constants embedded this way.

3.3 Simulating HOL Proofs
The goal of the section is to demonstrate that HOL Light proof steps can be simulated by
proofs in our encoding.

▶ Theorem 3.7 (Simulating HOL Proofs in FOST). Let
s1 ... sn

s

be an instance of a deduction rule of HOL from Figure 1. Then

Ls1M ... LsnM
LsM

is admissible in FOST (rules of sequent calculus and axioms of set theory).

We state three auxiliary theorems of FOST which will be necessary for the simulation:

▶ Lemma 3.8. The following statements are theorems of FOST:

x ∈ A, y ∈ A ⊢ (E(A) x y = ⊤) ⇔(x = y) (Correctness of E)
f ∈ A ⇒ B, g ∈ A ⇒ B, ∀x ∈ A.f x = g x ⊢ f = g (Functional Extensionality)

p ∈ B, q ∈ B, (p = ⊤) ⇔(q = ⊤) ⊢ p = q (Propositional Extensionality)

The simulation of a proof step can in general be split in two parts: first produce a proof under
arbitrary typing and context assumptions, and then handle the modifications in context. For
example, let x : B, f : B → B, g : B → B and consider a TRANS step deducing
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Γ ⊢ x =λ f x Γ ⊢ f x =λ g x

Γ ⊢ x =λ g x

and let cΓ = ctx(Γ). We wish to obtain a proof of

x ∈ B, f ∈ B⇒B, cΓ, LΓM ⊢ (x =λ f x) = ⊤ x ∈ B, f ∈ B⇒B, g ∈ B⇒B, cΓ, LΓM ⊢ (f x =λ g x) = ⊤
x ∈ B, g ∈ B⇒B, cΓ, LΓM ⊢ (x =λ g x) = ⊤

This should follow from applying Correctness of E (Lemma 3.8) to each premise, using
transitivity of first order equality, and applying back Correctness of E (Lemma 3.8) to the
result. However, to apply this lemma, we need the facts f x ∈ B and g x ∈ B. Moreover, the
f ∈ B⇒B assumption from the premise will stay in the conclusion, yielding:

x ∈ B, f ∈ B⇒B, g ∈ B⇒B, f x ∈ B, g x ∈ B, cΓ, LΓM ⊢ (x =λ g x) = ⊤

which is a correct conclusion but contains too many assumptions. Fortunately, these
assumptions can be eliminated.

Eliminating lingering assumptions

Pursuing the example above, let L = {x ∈ B, g ∈ B⇒B, cΓ, LΓM} and R = (x =λ g x) = ⊤.
We want to simulate the following proof step:

f ∈ B⇒B, f x ∈ B, g x ∈ B, L ⊢ R

L ⊢ R

First, we prove (automatically) the non-elementary typing assumptions (x ∈ B, f ∈ B⇒B) ⊢
f x ∈ B by induction over the structure of f x (as in Subsection 3.2) and similarly for g.
Then, note that f is free everywhere but in its typing assumption: we can quantify it to
∃f.f ∈ B⇒B using the LeftExists rule from first order logic. Now this statement is provable:
It can be deduced from the non-emptiness of B. Formally, we obtain the following proof:

f ∈ B⇒B, f x ∈ B, g x ∈ B, L ⊢ R
...

x ∈ B, f ∈ B⇒B ⊢ f x ∈ B
Cut

f ∈ B⇒B, g x ∈ B, L ⊢ R

...
f ∈ B⇒B, L ⊢ R

LeftExists∃f.f ∈ B⇒B, L ⊢ R
...

⊢ ∃f.f ∈ B⇒B
Cut

L ⊢ R

This example covers statements corresponding to type judgement and typing context. In
general, there are three kinds of context formulas we need to eliminate: lambda definitions,
variable type assignment, type variables non-emptiness. We implement a proof tactic, called
CLEAN which eliminates context formulas iteratively:
1. Find in the context a definition def (λi) such that λi does not appear anywhere else. Then,

using LeftExists, generalize the left handside to ∃λi.def (λi). Prove ∃λi.def (λi). This is
always possible using the adequate type-nonemptiness assumption. Eliminate ∃λi.def (λi)
using the Cut rule. Iterate on the next definition.

2. Find a variable type assignment x ∈ T . Using LeftExists, generalize to ∃x.x ∈ T . Using
the type variables non-Emptiness assumptions, prove that ∃x.x ∈ T (i.e. T is non-empty).
Eliminate ∃x.x ∈ T . Iterate on next unused variable.

3. Find a non-Emptiness assumption A ̸= ∅ for a type variable that does not appear
anywhere else. Using LeftExists, generalize to ∃A.A ̸= ∅, which is of course provable
without assumption, and eliminate it. Iterate on the next unused type variable.
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We make every tactic that possibly eliminates subterms (that is, TRANS , ABS , EQ_MP , INST
and INSTTYPE ) call CLEAN to eliminate lingering assumptions.

Simulating HOL steps

We briefly hint at how steps of HOL can be simulated in FOST, leaving implicit concerns
regarding proofs of type checking and context elimination, which were addressed above.

REFL is simulated with Correctness of E and reflexivity of first-order equality
TRANS is similarly simulated with Correctness of E and reflexivity of first order equality.
Note that in HOL Light, TRANS requires only alpha-equivalence of the shared terms
of the two premises. We explain how this can be handled without assuming that all
alpha-equivalent expressions are represented by the same λi in the next paragraph.
MK_COMB is simulated with from Correctness of E and substitution of equals for equals of
first-order logic.
ABS and ETA follow from the definition of the λi and from Functional Extensionality
(Lemma 3.8).
BETA steps are proven directly from the definition of the λi.
ASSUME is simply a Hypothesis step in Sequent calculus
EQ_MP is simulated with Correctness of E and substitution of equals. Similar TRANS , it
is subsequently made to support alpha-equivalence.
DEDUCT_ANTISYM_RULE steps are proven with Propositional Extensionality
INST follows from instantiation of free variables in first order logic, except that doing so
changes the shape of embeddings of abstractions to a non-canonical representation, which
need to be transformed back into a canonical representation. We explain this mechanism
in detail in the following paragraph.
INSTTYPE is simply instantiation of free variables.

Alpha Equivalence

The steps TRANS and EQ_MP each take 2 premises with the added requirement that they share
some subterm. For concreteness, consider the TRANS step:

Γ ⊢ s =A t ∆ ⊢ t =A u
TRANSΓ, ∆ ⊢ s =A u

In HOL Light the two terms t1 and t2 in the premises are required to be identical up to
alpha equivalence. However, alpha equivalence does not naturally hold in our encoding: two
alpha-equivalent abstractions may be represented by different variables wi from Definition 3.1.
(In fact, in the absence of memoization, even two occurrences of the same lambda can be
represented by different variables. In practice, for our import from HOL Light we perform
memoization in the constructor of abstractions λ(x:Var, body: Term) using de Brujin
indices so that alpha equivalent terms HOL terms are mapped to the exact same FOST
expression FOST for efficiency. That said, we still wish to show how to support alpha
equivalence as a rule.)

For example, consider symbols λ1 and λ2, representing abstractions, with the definitions:

(λ1 ∈ A ⇒ A) ∧ (∀x ∈ A.λ1 x = x)

(λ2 ∈ A ⇒ A) ∧ (∀y ∈ A.λ2 y = y)

Here, we can use the fact that our local definitions of lambda terms ensure not only existence,
but also uniqueness. In particular, under those two assumptions, λ1 = λ2 is a consequence
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of the extensionality of set-theoretic functions. In fact, using the Eta axiom from HOL
(implemented instead as a deduction step ETA ), alpha equivalence is provable and does not
need to be assumed.

▶ Definition 3.9 (Tactic for Alpha-Conversion). Let _TRANS and _EQ_MP be restrictions of
TRANS and EQ_MP not supporting alpha-equivalence. We implement a tactic

ALPHA_CONV
⊢ λx.t = λy.t[x := y]

where

ALPHA_CONV x y t = _TRANS (ETA y (λx. t)) (ABS (INST (BETA x t) x y) y)

Note that the first argument of _TRANS proves λx.t = λy.(λx.t)y and the second proves
λy.(λx.t)y = λy.t[x := y]

We can then define a tactic proving the following:

ALPHA_EQUIVALENCE (if t and u are alpha-equivalent)⊢ t = u

which proves the equality by applying ALPHA_CONV recursively on t and u. Finally, we can
define the complete versions TRANS and EQ_MP , which apply ALPHA_EQUIVALENCE if the
shared terms in the input are not strictly equal.

INST Proof Step and Normalization

It may seem at first glance that INST is a very easily simulated step: first-order logic admits
instantiation of free variables across a sequent (in fact, LISA offers this as a built-in proof
step). This however fails to preserve the structure of the embedding. For concreteness again,
let x : A, y : A, p : B and consider the following simple provable HOL statement and its
embedding in FOST:

S = ⊢ (λx.p = p)y
LSM = p ∈ B, y ∈ A, def λ1 ⊢ (λ1 p y) = ⊤

where def λ1 = (λ1 ∈ B ⇒ A ⇒ B) ∧ (∀p ∈ B.∀x ∈ A.λ1 p x = (p =λ p)). Now, suppose
f :: B ⇒ B is also a variable and consider the effect of the instantiation p := (fp)

S[p:=(fp)] = ⊢ (λx.(fp) = (fp))y
LSM[p:=(fp)] = p ∈ B, y ∈ A, def λ1 ⊢ (λ1 (fp) y) = ⊤

But on the other hand, we have

LS[p:=(fp)]M = p ∈ B, y ∈ A, def λ2 ⊢ (λ1 f p y) = ⊤ , where

def λ2 = (λ2 ∈ (B⇒B)⇒B⇒A⇒B) ∧ (∀f ∈ (B⇒B).∀p ∈ B.∀x ∈ A.λ2 f p x = (p =λ p)).
So, instantiation and embedding do not commute. Moreover, the shape of S[p:=(fp)] does
not correspond to the canonical specification of the embedding of HOL terms described in
Definition 3.1.

▶ Definition 3.10. (The embedding of) an abstraction term t is in closure-canonical form if
it is of the form λi x y z... where x, y, z... are the free variables of t and λi is a symbol whose
local context is as defined by Definition 3.4. A term is in closure-canonical form if all its
subterms are in closure-canonical form.
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λ2 f p x is in closure-canonical form, as any term produced by Definition 3.1, but LS[p:=(fp)]M
is not, because the subterm λ1 (fp) y is not in canonical form. Hence, even though it denotes
an equivalent statement, S[p:=(fp)] is not a legal expression whose shape other proof tactics
expect to receive. To solve this, we implemented a tactic that recursively transforms any non-
canonical representation of an HOL term into its closure-canonical form and prove equality
between the two. This then allows the INST tactic to output a statement in canonical form.

This concludes our simulation of the various proof tactics in FOST leading to Theorem 3.7.

▶ Corollary 3.11. Let s be an HOL sequent. Then a proof of s in HOL can be transformed
in a proof of LsM in FOST.

We have implemented the transformation and the above tactics in Lisa.

3.4 Defining new constants
HOL Light allows the introduction of new definitions which serve as shorthand for existing
terms. This is also possible in Lisa, where if we produce a theorem of the form ∃!x.P (x), we
obtain a new constant c and the property ∀x.P (x) ⇐⇒ x = c. However, for this extension
to be sound, the definition of a constant can not contain free variables, as otherwise defining
c := x would allow proving ∀x.c = x. For definitions from HOL, consider for example the
term defining the universal quantifier ! in HOL Light (bool.ml: 243):

λP : A → B.P = λx : A.⊤

It is represented as a certain variable λ2 while the subterm λx : A.⊤ is represented by some
symbol λ1. As in the elimination of contexts, we can prove ∃!λ2. ctx (λ2), which matches
the requirement of extension by definition. The type variable A is reflected as an explicit
parameter of the constant (which means that ! is an applied function symbol !(A)). However,
λ1 will be free in ctx (λ2), so we need to bundle with the definition of λ2 all the context
definitions that it refers to and prove existence and uniqueness

It is easy to prove, that such a symbol exists under the assumption of the usual context:

ctx (λ1), ctx (λ2) ⊢ ∃!c. c = λ2

However when quantifying all assumptions, this will only yield

∀λ1. ctx (λ1) =⇒ ∀λ2. ctx (λ2) =⇒ ∃!c. c = λ2

while the mechanism of extension by definition requires the ∃! quantifier to be first in the
definition. We use an additional FOL theorem that allows us to swap the universal and
unique-existential quantifiers

∃!x.P (x) =⇒ ((∀x. P (x) =⇒ ∃!y. Q(x, y)) ⇐⇒ (∃!y. ∀x.P (x) =⇒ Q(x, y)))

This fact, alongside proofs that the terms λi are uniquely defined by their contexts, we can
swap the quantifiers one-by-one to produce the final justification for the definition:

∃!c. ∀λ1. ctx (λ1) =⇒ ∀λ2. ctx (λ2) =⇒ c = λ2 .

We generate this proof automatically in our implementation. The proof of typing is
generated alongside the symbol by type checking the definition. The theorem corresponding
to the definition under appropriate context ctx (λ1), ctx (λ2) ⊢ !(A) = λ2 is also generated
automaticaly.



S. Guilloud, S. Gambhir, A. Gilot and V. Kunčak :13

4 Formalizing Algebraic Data Types

We want to bring the benefits of types into FOST. In particular, algebraic data types are
useful when reasoning about inductive data structures such as lists or trees. Their encoding
is generally hidden to the user, who only obtains access to their characteristic theorems and
definitional mechanisms. We want Lisa to incorporate such mechanisms. Even though ADTs
can be encoded within HOL [19], we choose instead for Lisa’s implementation to directly
define them in FOST. We therefore avoid going through an intermediate encoding but also
lay the foundations of further generalization. We start by giving a syntactic definition of
algebraic data types.

▶ Definition 4.1 (Algebraic data types). An algebraic data type in set theory is a set A

equipped with a finite set of functions ci : T i
1 ⇒ · · · ⇒ T i

n ⇒ A referred to as constructors.
All elements of A have to be in the image of one of exactly one of its constructors. T i

j can
refer to A itself, giving algebraic data types their recursive behavior.

We want to allow defining and reasoning about ADTs directly in FOST. Specifically,
consider an ADT specification {ci : (Si

1, . . . , Si
n)}i≤m, where Si

j is either a term with no
variables, or a special symbol referring to the ADT itself. We want to output a set A and
functions {ci}i≤m with the following properties:

(Typing) For all i ≤ m, ci ∈ (Si
1 ⇒ · · · ⇒ Si

n ⇒ A)
(Injectivity 1) Every ci is injective.
(Injectivity 2) For x, y ∈ A, if x ∈ Im(ci), y ∈ Im(cj) and i ̸= j then x ̸= y

(Structural induction) A is the smallest set closed under the constructors ci’s. This allows
us to write proofs by induction on the structure of the ADT.

▶ Example 4.2. Consider the type of boolean linked lists, with specification

listbool = {nil : (), cons : (B, listbool)}

We want to generate a set listbool and constructors nil and cons such that nil ∈ listbool and
cons ∈ B ⇒ listbool ⇒ listbool. The above properties should hold; for instance cons ⊤ nil ̸=
cons ⊥ nil.

We next present our formalization as implemented in Lisa using set theoretic axiomatiz-
ation. We represent an algebraic data type as a set A of tuples containing the tag of the
constructor and the arguments given to it. This ensures that elements of A are in the image
of exactly one constructor. For the listbool example, cons ⊤ nil is hence represented as
the tuple (tagcons, ⊤, (tagnil)). In this setting, tags are arbitrary terms that differentiate
constructors. They can, for example, be natural numbers or some encoding of the name of
the constructor. We define the set A as the least fixpoint of the function

F (H) =
⋃

i≤m

{
(tagci

, x1, . . . , xn)
∣∣∣∣ xk ∈

{
H if Si

k is a self-reference
Si

k otherwise

}

The existence of F (S) for every set S is guaranteed by the replacement and the union axioms.
In order to characterize the least fixpoint of F , we use the recursion theorem schema of ZF
to obtain a unique function f with domain N (which is also the smallest infinite ordinal ω)
such that

f(0) = ∅

f(n + 1) = F (f(n))
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Intuitively, f(n) corresponds to all instances of A of height smaller or equal than n. For
example, for list of booleans, f(2) is the set

{(tagnil), (tagcons, ⊤, (tagnil)), (tagcons, ⊥, (tagnil))}

▶ Lemma 4.3. The class function F admits a least fixpoint given by A :=
⋃

n∈ω f(n).

Proof. If xk ∈ A then there is a nk ∈ ω such that xk ∈ f(nk). Since F is monotonic xk ∈
f(maxxk∈A nk). Therefore, for every (tagci

, x1, . . . , xn) ∈ F (A), we have (tagci
, x1, . . . , xn) ∈

f(maxxk∈A nk + 1) ⊆ A. ◀

▶ Definition 4.4. We define ci as the function in Si
1 ⇒ · · · ⇒ Si

n ⇒ A such that

ci x1 . . . xn = (tagci
, x1, . . . , xn)

Now that we have a formal definition of A and ci, we prove that they fulfill the above
properties.

▶ Theorem 4.5. Let A and {ci}i≤m constructed as above. The following statements hold in
FOST

x1 ∈ Si
1, . . . , xn ∈ Si

n ⊢ ci x1 . . . xn ∈ A (Typing)

xk ∈ Si
k, yk ∈ Si

k, ci x1 . . . xn = ci y1 . . . yn ⊢
∧

k≤n

xk = yk (Injectivity 1)

xk ∈ Si
k, yk ∈ Sj

k, i ̸= j ⊢ ci x1 . . . xn ̸= cj y1 . . . yn′ (Injectivity 2)

Proof. For typing, we have ci x1 . . . xn = (tagci
, x1, . . . , xn) ∈ F (A) = A.

We know that tuples are injective, that is

⊢ (tagci
, x1, . . . , xn) = (tagcj

, y1, . . . , yn) ⇐⇒
∧

k≤n xk = yk ∧ tagci
= tagcj

Moreover, tuples of different arities are not equal. Injectivity 1 follows from the right
implication while Injectivity 2 from the left one and the fact that tags are uniquely assigned
to constructors. ◀

▶ Theorem 4.6. Structural induction schema holds on A.∧
i≤m

(
∀xi

1 ∈ Si
1. P̂ (xi

1) =⇒ · · · =⇒ ∀xi
n ∈ Si

n. P̂ (xi
n) =⇒ P (ci xi

1 . . . xi
n)

)
⊢ ∀x ∈ A. P (x)

where P̂ (xi
k) =

{
P (xi

k) if Si
k = A

⊤ if Si
k ̸= A

Proof. We first show that for every n ∈ N, the theorem holds when replacing A by f(n).
This follows by induction on n. Since by definition of A, every x ∈ A is in f(n) for some n,
the statement holds for every element of A. ◀

Polymorphic algebraic data types
Algebraic data types can be polymorphic, meaning that the specification of the constructors
contain type parameters. This allows, for example, reasoning over generic lists instead of lists
of a specific type. We extend our mechanization of ADTs to support such polymorphism. To
do so, we generalize A and {ci} to be class functions instead of constant symbols.
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Formally, let {ci : (Si
1, . . . , Si

n)}i≤m be the specification of an algebraic data type that
possibly contains variable symbols X1, . . . , Xl. We define A(X1, . . . , Xl) as the fixpoint of
F (X1, . . . , Xl) where the construction of F carries the same behavior as above. Using this
definition, all the properties about ADT are preserved and the constructions is essentially
the same.

As in Subsection 3.2, we give a top level polymorphic type to the function symbols A

and ci, so that they can similarly be typechecked. This also implies that all the tactics from
the previous section are compatible with terms referring some ADT A and its constructors.
To conclude, we show an example of polymorphic lists in Lisa.

▶ Example 4.7. The user can define polymorphic lists with the following syntax:

1 val define(list: ADT, constructors(nil, cons)) = () | (T, list)

where list, nil, and cons are new function symbols. list is such that list(T) is a set
containing all lists over T nilis a constructor taking one type parameter and no argument
and cons(T) is a constructor taking one type parameter T as well as an element of type
T and an element of list(T) as arguments. This declaration also automatically proves
Theorem 4.5 and Theorem 4.6 Our typing tactics can use these properties to type check any
expressions containing list, nil and cons.

5 Importing Proofs from HOL Light

While the embedding of HOL as described above allows writing HOL proofs directly in Lisa,
we also implement a prototype to attempt the automatic import of theorems and definitions
from HOL Light. We chose HOL Light for our import due to its simple foundations, its large
library and easily accessible proof export. With some additional work in matching proof
steps, the same method can be adapted to other members of the HOL family.

Since the HOL Light kernel does not keep track of proof objects by default, we rely on the
ProofTrace export system packaged in the HOL Light repository [26]. The system provides
a patch to the HOL Light kernel to track every proven statement in the system’s execution.
The stored proofs are finally exported to JSON files. We modified the existing JSON output
syntax slightly to allow its automatic import using standard JSON libraries for Scala. The
terms are exported as strings with a simple and unambiguous grammar, and are parsed back
by Lisa. After reading the JSON files, the proofs (with indexed steps) are transformed into
proof DAGs in an intermediate representation, and finally transformed to Lisa theorems.

Given the Lisa tactics we developed for this purpose, the translation of HOL Light
theorems is straightforward, and proceeds by recursing on the proof DAG obtained from
HOL Light, translating each proof step to the equivalent Lisa tactic call. Although constant
definitions also appear as a single proof step, DEFINITION, they must be dealt with separately,
as in Subsection 3.4.

After defining a polymorphic constant, however, we change its signature compared to
the HOL Light version. For example, the universal quantifier !: (A -> bool) -> bool
becomes a class function ! such that ∀A. !(A) ∈ (A ⇒ B) ⇒ B. On subsequent occurrences
of ! in the import, it occurs with an ascribed type, say !: (T -> bool) -> bool. This
instantiated type is matched against the original, polymorphic type to find the substitution
A 7→ T. The definition is correspondingly instantiated, and the occurrence is replaced by the
Lisa term !(T).

Our prototype implementation of the embedding described here produces a large overhead
during this import. We process the first 15 named definitions and theorems as defined in the
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HOL Light library, producing 1716 HOL Light kernel steps. These are expanded to just over
300,000 Lisa kernel steps, with the reconstruction and verification taking 93 seconds on a
laptop running Linux with an i7-1165G7 CPU and 16GB RAM.

6 Conclusion

We have demonstrated how to embed HOL into conventional first-order logic axiomatization
of set theory. Our translation maintains local definitions (at the level of the sequent) of the
closure of abstraction terms. We showed that this encoding allows simulating all the core
proof steps of higher-order logic. We mechanized this encoding in Lisa, and obtained an
interface and tactics for reasoning with typed expressions and set-theoretic functions. We
then demonstrated how (possibly polymorphic) ADTs can be mechanized in first-order set
theory, and that their representation is compatible with the tactics and type checking we
developed for HOL functions.

We also considered alternative encodings of lambda terms. Instead of defining lambdas
at the level of the whole sequent, we could place the definition right after the first predicate
symbol. In particular, definitions of lambdas become nested, instead of being independent.
On one hand, this means that we do not have to compute closures. On the other hand, the
defining property of a lambda would often be deep in a formula, and its use would require
deconstructing and reconstructing the formula to use the context. Alternatively, we could use
an embedding of λ-terms based on combinators from combinatory logic [4]. We did not use
fixed combinators such as SKI due to growth in formula size; in the future we may explore
the use of parametric combinator families.

While the results we obtain are of practical use and we expect them to become part of
the standard Lisa release, the encoding is somewhat complicated and even if most of the
machinery can be hidden, it may confuse new users. There is a significant overhead in the
size of formulas and the simulation of proofs. This overhead can in the worst case be linear
in the size of the formulas, and even if those do not tend to grow indefinitely, a large constant
factor may be less than ideal in practice. This also prevented us from importing a larger
number of theorems from the HOL Light library. The syntactic restrictions on terms of
FOL is the main source of complexity in the translation. For Lisa, this suggests considering
extensions of FOL with terms that refer to formulas, such as the definite description operator
ιx.P , denoting an individual that is uniquely characterized by the predicate P .
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A Appendix

A.1 Deduction Rules and axioms for FOL and ZF

Hypothesis
Γ, ϕ ⊢ ϕ,∆

Γ ⊢ ϕ,∆ Σ, ϕ ⊢ Π
CutΓ,Σ ⊢ ∆,Π

Γ ⊢ ∆ LeftWeakening
Γ, ϕ ⊢ ∆

Γ ⊢ ∆ RightWeakening
Γ ⊢ ϕ,∆

Γ, ϕ, ψ ⊢ ∆
LeftAndΓ, ϕ ∧ ψ ⊢ ∆

Γ ⊢ ϕ,∆ Σ ⊢ ψ,Π RightAnd
Γ,Σ ⊢ ϕ ∧ ψ,∆,Π

Γ, ϕ ⊢ ∆ Σ, ψ ⊢ Π
LeftOrΓ,Σ, ϕ ∨ ψ ⊢ ∆,Π

Γ ⊢ ϕ, ψ∆ RightOr
Γ ⊢ ϕ ∨ ψ,∆

Γ ⊢ ϕ,∆
LeftNotΓ,¬ϕ ⊢ ∆

Γ, ϕ ⊢ ∆ RightNot
Γ ⊢ ¬ϕ,∆

Γ, ϕx[t := x] ⊢ ∆
LeftForallΓ,∀x.ϕx ⊢ ∆

Γ ⊢ ϕx,∆ RightForall
Γ ⊢ ∀x.ϕx,∆

Γ, ϕx ⊢ ∆
LeftExistsΓ, ∃x.ϕx ⊢ ∆

Γ ⊢ ϕx[x := t],∆
RightExists

Γ ⊢ ∃x.ϕx,∆

Γ, ϕ[x := t] ⊢ ∆
LeftSubstEq

Γ, t = u, ϕ[x := u] ⊢ ∆
Γ ⊢ ϕ[x := t],∆

RightSubstEq
Γ, t = u ⊢ ϕ[x := u],∆

Refl⊢ t = t
Γ ⊢ ∆ Inst

Γ[x⃗ := t⃗] ⊢ ∆[x⃗ := t⃗]

Figure 2 Deduction rules for first order logic with equality.

EmptySet
∀x.x /∈ ∅

Extensionality
(∀z.z ∈ x ⇐⇒ z ∈ y) ⇐⇒ (x = y)

Subset
x ⊂ y ⇐⇒ ∀z.z ∈ x =⇒ z ∈ y

Pair(z ∈ {x, y}) ⇐⇒ ((x = z) ∨ (y = z))

Union(z ∈ U(x)) ⇐⇒ (∃y.(y ∈ x) ∧ (z ∈ y)) Powerset(x ∈ P(y)) ⇐⇒ (x ⊂ y)

Foundation∀x.(x ̸= ∅) =⇒ (∃y.(y ∈ x) ∧ (∀z.z ∈ x))
Comprehension

∃y.∀x.x ∈ y ⇐⇒ (x ∈ z ∧ ϕ(x))

Infinity
∃x.∅ ∈ x ∧ (∀y.y ∈ x =⇒ U({y, {y, y}}) ∈ x)

Replacement
∀x.(x ∈ a) =⇒ ∀y, z.(ψ(x, y) ∧ ψ(x, y)) =⇒ y = z =⇒ (∃b.∀y.(y ∈ B) =⇒ (∃x.(x ∈ a) ∧ ψ(x, y)))

Figure 3 Axioms for Zermelo-Fraenkel set theory.
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A.2 ZF Transfinite Recursion Schema
▶ Theorem A.1 (Transfinite Recursion). Let F be a class function and α an ordinal. There
exists a unique function f with domain α such that

∀β ∈ α. f(β) = F (f |β)

Proof. See [14, p. 22], [18, p. 25]. ◀

In Lisa this translates into

1 Theorem( ordinal(a) |-
2 existsOne(f, functionalOver(f, a) /\
3 forall(b, in(b, a) ==>
4 (app(f, b) === F(restrictedFunction(f, b)))
5 )
6 )
7 )

,
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