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We introduce a Lamb-wave medium with tunable propagation velocities, which
are controlled by a two-dimensional heating pattern produced by a laser beam.
We utilized it to demonstrate that waves in an appropriately designed medium
can propagate in the form of concentric squares, in contrast to the circular
patterns typically emitted by a point source in a homogeneous two-dimensional
medium. In order to avoid the concentration of wave energy in the middle of the
sides of the squares, we propose two alternatives: a square wave that either
rotates or exponentially decelerates as it expands. Additionally, we present how
circular waves can be transformed into spiral waves utilizing the same tunable
medium. The described experimental platform offers a new tool to generate
shaped pulses for ultrasonic applications, which has the potential to improve the
efficiency of energy and information transport.
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1 Introduction

There has been a persistent pursuit to control waves with the aim of increasing the
efficiency of energy, momentum, and information that propagating waves can transfer.
This is not limited solely to wave manipulation at the emitting and receiving
points—the overall performance of wave-based devices can also be enhanced by
interventions along the entire wave propagation path. The properties of the wave
propagation medium can be designed in a way that better serves a wide variety of
intended purposes. For example, it can facilitate the distribution of relevant
information from the emitter to the receiver or concentrate distributed energy at a
specific point where it can be harvested.

Wavefront shaping is frequently used in various optical applications, such as focusing
light through scattering media like biological tissues, and enhancing the resolution and
contrast of imaging (Booth, 2007; Tay et al., 2014; Fayyaz et al., 2019; Feng et al., 2019;
Hampson et al., 2021). It is frequently used in astronomical imaging to correct for
atmospheric turbulences (Beckers, 1993). Typically, in optics, a spatial light modulator
or a digital micromirror device is used as the reconfigurable element to achieve wavefront
shaping (Vellekoop and Mosk, 2007; Vellekoop and Mosk, 2008; Katz et al., 2011; Mosk
et al., 2012; Liu et al., 2021; Yu et al., 2022).

Wavefront shaping is also applicable to microwaves for creating beams with specific
directivity and pattern shapes. The reconfigurable element in this context is a spatial
microwave modulator or binary programmable metasurface (Kaina et al., 2014; Dupré et al.,
2015; Li et al., 2016; Chen et al., 2020; Frazier et al., 2020; Lin et al., 2021).
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Taking inspiration from the fields of optics and microwaves,
spatial sound modulators have been employed to shape sound fields
in the audible frequency range. To achieve significant control over
the sound field with minimal parameter variations, the active
elements of these reconfigurable devices can consist of membrane
or hollow cavity resonators. They have been demonstrated based on
electromagnetic actuators (Ma et al., 2018), slider displacements
(Chen et al., 2019; Wang et al., 2019; Prat-Camps et al., 2020; Zhang
et al., 2021), or liquid level height control (Tian et al., 2020) for the
purpose of sound focusing or redirecting. However, in the ultrasonic
frequency range, wavefront shaping is typically limited to the use of
expensive phased arrays or actuators. The reason for this is the
increased attenuation levels in the higher ultrasound frequency
range, leading to shorter propagation paths.

In this work, we achieve wavefront shaping for Lambwave pulses by
exploiting optothermal effects controlled by a laser, demonstrating pulses
that propagate as squares and spirals instead of the standard circular
phase fronts. Our experimental setup allows for on-demand control of
the propagation velocity in two spatial dimensions within a non-periodic
structure. This opens up possibilities for integral control of wave shapes
throughout the entire medium and the study of wave propagation in
various mathematical spaces. Furthermore, our method is not reliant on
resonant behavior and is therefore not limited to a narrow frequency
range, which was a limitation in previous implementations (Kaina et al.,
2014; Dupré et al., 2015; Chen et al., 2019; Frazier et al., 2020; Prat-
Camps et al., 2020; Tian et al., 2020).

2 Materials and methods

The specimen consisted of a 0.4-mm thick foil made from a shape
memory polymer (SMP) (manufacturer: SMPTechnologies Inc., Tokyo),
which exhibits a glass transition temperature in the range from 25°C to
90°C (Firouzeh et al., 2017). As a consequence, its Young’s modulus
decreases by a factor of 20 when the temperature is raised by just a few
tens of degrees above room temperature. The advantage exploited in this

work was the ease of reconfiguring wave propagation properties by
altering the temperature field of the SMP foil in two dimensions.
Achieving similar performance using an electric field to control
propagation properties would be technically complicated, making it a
challenging alternative (White et al., 2008; Iqbal and Samiullah, 2013;
Apffel and Fort, 2022).

The SMP foil was mounted on a metal frame (Figure 1A) with an
opening of 3 cm× 3 cm. The Lambwaves were excited at the position (x,
y) = (0, 0) using a laser pulse with a wavelength of 532 nm, energy of
10 mJ, duration of 5 ns (full width at half-maximum), and a repetition
rate of 20 Hz, employing a Surelite SL I-20 pump laser (Figure 1B). Lamb
waves were excited 10 times for each pixel of the two-dimensional scans
in Figures 2B, C, D to Figures 6B, C, D to achieve sufficient averaging. A
laser vibrometer PSV-F-500-HV (manufacturer: Polytec) with two
integrated galvanometric mirrors was utilized to direct the probe
laser beam to the desired scanning position (Figure 1C). The
synchronization of the setup components and high repeatability of
the ultrasound excitation, propagation, and detection enabled us to
render the scans from individual punctual measurements.

A third laser (FL-1064-CW, manufacturer: Changchun New
Industries Optoelectronics Technology) illuminated the specimen
from the side opposite to the wave excitation and was a continuous
laser with a wavelength of 1064 nm (Figure 1D). Its power varied for
different measurements: 7 W for Figure 2, 12 W for Figure 3, 5.4 W
for Figure 4, and 2.2 W for Figure 6. The positioning of the heating
laser on the side opposite to the laser vibrometer was crucial to avoid
disturbances caused by hot air, which could potentially alter the
optical path of the laser vibrometer beam.

AXG210 2-axis galvanometer scan head (manufacturer:Mecco)was
utilized to project the heating pattern onto the specimen surface
(Figure 1E). The temperature field was controlled by the density of
the projected lines of the third laser rather than the variation in power
intensity. The temperature field was measured using an infrared camera
Gobi 640 (manufacturer: Xenics) (Figure 1F). The exposure time was
25 µs. Temperature calibration of the camera for the specific material
properties of the SMP foil was not necessary since the relative

FIGURE 1
The reconfigurable medium consisted of a shape memory polymer (SMP) foil mounted in a metallic frame (A). Lamb waves were excited using a
pulsed laser (B). For each scanning position, Lamb waves were separately excited and detected by a laser vibrometer with integrated scanning
galvanometric mirrors (C). A heating laser (D)was projected onto the specimen surface by another external galvanometer scan head (E) to perform two-
dimensional manipulation ofmechanical properties. The temperature field of the specimenwas captured by an infrared camera (F). The SMP foil was
cooled by room-temperature airflow (G).
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temperature distribution is of importance, rather than the absolute
values. The maximum temperature increase was approximately 40°C.
The shape of the projected pattern is described in the following section
for each of the measurements individually. The scan repetition rate was
approximately 2 Hz.

The heated area of the SMP foil was cooled by room-temperature
airflow, which was directed to the specimen surface on the side of the
wave excitation using a nozzle (Figure 1G). This approach allowed us to
achieve increased spatial temperature gradients.

3 Results

To demonstrate the capability of the reconfigurable medium, we
tuned the wave velocity in two-dimensional space to compel the

wave fronts of the zero-order antisymmetric Lamb mode to
propagate in the forms of squares (two approaches), rotating
squares, and spirals. To the best of our knowledge, there is no
prior art reporting waves shaped as squares. On the other hand,
there are several physical phenomena, typically associated with
rotating objects, that can excite spiral-shaped waves capable of
propagating in a homogeneous medium (Bordyugov and Engel,
2007; Hermann and Gottwald, 2010; Li et al., 2017). A famous
example is the gravitational waves emitted by orbiting binaries
(Pretorius, 2005; Kyutoku et al., 2021). Spiral waves have also
been observed on a water surface (Islam et al., 2023) and in a
cardiac muscle (Davidenko et al., 1992).

Achieving wave propagation in the shape of squares required the
wave velocity to be

�
2

√
times faster at the corners than in the middle

of the sides of the square. In our experiment, we could only decrease

FIGURE 2
The inhomogeneity of themedium (SMP foil) required for squarewave propagationwas achieved through the temperature field, created by selective
laser heating, as visible on the image of the infrared camera (A). Three time instances of themeasured Lambwaves generated by a laser pulse propagating
in a square shape are presented (B–D). The faster zero-order symmetrical mode is visible only in the numerical simulation (E–G). Focusing on the four
areas with slower wave propagation in the middle of the sides of the squares is present (Supplementary Material).
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the wave velocity by increasing the temperature of the SMP foil.
Therefore, the two-dimensional field of temperature increase,
denoted as ΔT, has to follow the following equation in polar
coordinates:

ΔT r,φ( ) � ΔT0 cos φ( ) − cos
π

4
( )( ), (1)

where the angle φ ranged from −π/4 to π/4 for each of the sides of the
square, with φ � 0 at the midpoint of the sides. The wave velocity
remained unchanged in the square corners (φ � ± π/4). ΔT0 defined
the maximal temperature increase. The wave velocity remained
approximately constant with respect to the radius r from the
wave source in the area of the heat pattern.

The temperature field, following Eq. 1, was created by projecting
5 concentric circles using a heating laser. Each circle was composed
of 80 short lines, with line length determining the illumination
intensity and, consequently, the temperature level. The line lengths
were longest in the middle of the sides of the square, and there were
no lines in the corners of the square. Due to the heat conductivity of
the SMP foil, there was a 1 mm width (full width at half maximum)
affected by the heating around the illuminated line under the current
cooling system configuration. The resulting temperature field,
captured by an infrared camera, is displayed in Figure 2A.

Lamb waves propagating in the form of squares are shown at
times of 19 µs, 72 µs, and 125 µs after the laser pulse excitation
(Figures 2B–D) and compared to the numerical simulation (Figures

2E–G). It’s important to note that the measured zero-order
symmetrical Lamb wave mode had a significantly lower
amplitude in comparison to the zero-order antisymmetrical
Lamb wave mode. As a result, it is almost invisible within the
color range of Figures 2B–D.

The small discrepancies from a perfect square shape are related
to the limited spatial resolution of the temperature profile, which is
linked to the thermal conductivity of the SMP foil. We expect that
the corners of the squares would be sharper at an increased
cooling efficiency.

There is a fundamental physical limit of the method displayed in
Figure 2 for achieving square wave propagation, namely the focusing
effect observed in both experimental measurements and numerical
simulations. The wave propagation velocity gradient leads to wave
lensing and energy focusing toward areas with decreased wave
velocity (in the middle of the sides of the squares).

In the following, we propose two solutions that allow for square
wave propagation while maintaining constant energy along the sides
of the square. The first option is rotating the square as it expands.
The second option, avoiding the square rotation, is to decrease the
wave velocity exponentially in the radial direction away from the
source point for all the sides of the square. Both options were
implemented using the reconfigurable medium and are
described below.

The temperature field required to achieve wave propagation in
the form of a rotating square is displayed in Figure 3A. The heating

FIGURE 3
One way to reduce the focusing effect is to have the square rotate as it propagates. This rotation is achieved through the temperature field, which
can be observed using an infrared camera (A). Three time instances of the squarewave as it expands and rotates nearly 45° in the direction indicated by the
pink arrow are displayed in (B–D) (Supplementary Material).
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pattern is identical to that of Figure 2, except that it rotates around
the source point as r increases. The rotation within the pattern
amounts to 45°. This offers the advantage of maintaining a relatively
consistent average wave velocity in different radial directions. In
specific φ directions, where the wave velocity is higher closer to the
source, the wave travels slower at larger distances, and vice versa.
This provides us the wave propagation shapes shown in Figures
3B–D. As time progresses, and the wave propagates in the form of a
square, it rotates in the direction indicated by the pink arrow. This
rotation reduces the focusing effect compared to Figure 2D.

The sole option to achieve wave propagation in the form of squares
without rotation is to slow it down exponentially as it propagates, where
isothermal lines with the same wave velocity take the shape of
concentric squares. In our reconfigurable medium (SMP foil), this
pattern of wave propagation was achieved by projecting lines along
which the heating laser was guided. The positions and lengths of these
lines were optimized to closely approximate the exponential decrease in

wave propagation velocity. To optimize the line parameters, we
considered the known width of the area affected by the thermal
conductivity of the SMP foil and assumed a Gaussian heat
distribution around each line.

The resulting temperature field of the SMP foil is visible in the
infrared image (Figure 4A). To prevent overheating where the heater
lines are perpendicular to neighboring ones, the lines did not extend
all the way to the square corners.

Figures 4B–D display the wave propagation in the resulting
exponentially inhomogeneous medium. The rounded corners of the
wave are due to the circular shape of the wave source, with a
diameter of 5 mm. Similar square waves are visible in the
numerical simulation (Figures 4E, F), with the difference that
both symmetrical and antisymmetrical Lamb wave modes are
observable.

To quantify the advantage of the exponential solution (Figure 4)
in mitigating the effect of wave energy focusing in the middle of the

FIGURE 4
The second option to avoid the focusing effect, and the only one to achieve square wave propagation without rotation, is to have the wave slow
down exponentially. As seen in the infrared camera image, isothermal areas (indicating the same wave propagation speed) take the forms of squares (A).
The zero-order antisymmetric Lambwavemode is visible in themeasurement (B–D), while both symmetrical and antisymmetrical modes are observable
in the numerical simulation (E–G) (Supplementary Material).
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sides of the squares (Figure 2D), we determined the ratio between
the maximum amplitude in the middle of the sides of the square and
the maximum amplitude in the corners of the square (Figure 5). The
maximum wave amplitudes along the radial direction line were
determined for each time instance after the wave excitation until
distinguishable from the signal noise. The mean value and standard
deviation range were calculated from 20 values—5 values for each of
the 4 corners (or square sides). 5 values were obtained from 5 radial
lines: the first line traveling directly through the middle of the corner
(or the square side), two lines located one or two pixels higher, and
two lines located one or two pixels lower than the first line.

The ratio between the maximum amplitude in the middle of the
sides of the square and the maximum amplitude in the corners of the
square increased almost linearly over time during the square wave
expansion in the medium with the field of the temperature increase
defined by Eq. 1 (cosine solution, Figure 2). It surpassed a value of
2 in the time interval between 100 µs and 120 µs after the wave
excitation. In contrast, when the wave propagation velocity
decreased exponentially in the radial direction (Figure 4), the
ratio remained approximately constant at a value of 1. During
the greater expansion of the square wave (110 µs and beyond
after the excitation), the ratio even dropped below the value of 1.
In other words, the mean value of maximal amplitudes in the
corners was in this case higher than the mean value of maximal
amplitudes in the middle of the sides of the square.

In addition to the focusing effect (wave divergence towards areas
with lower wave velocity), the increase in amplitude in the middle of
the sides of the squares in Figure 2 is also related to the fact that at
the corresponding time instance square corners are further from the
excitation point than the sides of the corners. Therefore, it is
important to consider wave attenuation along the radial
dimension. Attenuation in the directions of the four square
corners in Figure 2 (cosine solution defined by Eq. 1) amounted
to −421/mm, −421/mm, −414/mm, and −422/mm (up-left, down-

left, down-right, and up-right). This was 1.66 times more compared
to the attenuations in the direction of the four square sides: −255/
mm, −255/mm, −276/mm, and −225/mm (up, left, down, and right).
In contrast, spatial attenuation in the radial direction was
approximately constant for all directions in the case of the
exponential solution (Figure 4) for the square wave propagation.
In the middle of the four square corners it was −210/mm, −208/
mm, −219/mm, and −380/mm (up-left, down-left, down-right, and
up-right), while in the middle of the four square sides it amounted
to −265/mm, −240/mm, −218/mm, and −263/mm (up, left, down,
and right). This yielded a mean difference by the mean factor of 1.02.
This analysis confirmed our observation, that the propagation of a
wave in the form of a square with a constant wave amplitude along
its sides and corners is possible if the wave propagation velocity
decreases exponentially in the radial direction as indicated in
Figure 4A. Please refer to the Supplementary Material for more
details about the dependency of the amplitude values on the radial
position for each of the corners and square sides separately.

In the final example showing the capabilities of the
reconfigurable medium, we demonstrate a two-dimensional
pattern that transforms a circular wave into a spiral wave. This
transformation is achieved by adjusting the wave velocity on a
circular band located at a constant distance from the wave
source. As observed in the infrared camera image (Figure 6A),
the wave velocity is linearly decreased along this circular band until
it reaches its minimum value at a specific angle. At this angle, which
corresponds to the 12 o’clock direction or the position (x, y) = (0, 5)
in Figure 6A, there is a discontinuous shift in the wave propagation
velocity. This shift induces a 2π phase shift of the waves at a specific
frequency (7.5 kHz in our case).

Figures 6B–D displays three time instances in the full frequency
range as the wave travels through the region that transforms the
circular planar wave into a spiral wave. It is noticeable that after the
zero-order antisymmetric Lamb wave exits this region, it exhibits a
break of the wavefront (phase shift) in the 12 o’clock direction of
propagation. When we consider solely the frequency component
with a wavelength equal to this phase shift (7.5 kHz), the waves
propagate in the form of spirals in the far field outside of the region
where the wave velocity was manipulated Figures 6E, F. An
interesting wave behavior emerges during the transition from a
circular to a spiral wave. At the point where the wave velocity shifts,
the faster wavefront catches up with the slower one (12 o’clock
direction from the origins of Figures 6E, F).

4 Discussion and conclusion

We have demonstrated a method that enables two-dimensional
manipulation of Lambwave propagation velocity. With this method,
we conducted experimental studies to explore the feasibility of wave
propagation in the form of squares and spirals. The experimental
results were compared to numerical simulations.

We demonstrated that there is a fundamental physical limit in
achieving wave propagation in the form of squares: wave lensing
causes energy to concentrate towards the areas with decreased wave
velocity, specifically, the center points of the square’s sides.
Consequently, there is a lack of wave energy in the corners of
the square.

FIGURE 5
Mean ratios between the maximum amplitude in the middle of
the sides of the square and the maximum amplitude in the corners of
the square as a function of time after the moment of ultrasound
excitation. A notable increase in the ratio is observed in the case
of the cosine solution (Figure 2) due to the focusing effect. This effect
is avoided in the case of the exponential solution (Figure 4).
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We propose two alternatives for achieving wave propagation
in the form of squares with constant energy along the sides of the
square. The first solution is to make the wave rotate as it
expands, while the second solution is to exponentially slow
down the expansion of the square wave. The latter is the only
two-dimensional distribution of wave propagation velocity that
enable the propagation of square waves (no rotation) with
approximately equal amplitude along the sides of the square.
In the last example, we show that using the demonstrated
reconfigurable medium, it is possible to transform circular
planar wave into a spiral wave.

An alternative group of materials with reconfigurable
Young’s modulus is based on photo-responsive liquid-crystal
polymers (White et al., 2008; Iqbal and Samiullah, 2013). They

offer the advantage that their energy can be controlled directly
by illuminating light. This would result in shorter transition
times compared to the SMP, where a new thermal equilibrium
needs to be regained after each modification of the
heating pattern.

The introduced method for wavefront shaping of Lamb
waves can find applications for efficient energy transport, for
example, by concentrating the energy of a vibrating structure
(industrial machine, vehicle, or similar) at the point where it can
be efficiently harvested. Furthermore, the tunable medium can
be used for the purpose of imaging mechanical properties of
plates (used as a material for safety-critical structures), where
Lamb waves could be guided in an optimal way to most
efficiently extract the targeted information, for example,

FIGURE 6
The heating pattern surrounding the excitation point transforms the circular wave into a spiral wave (A). The wave is delayed for one wavelength (at
the corresponding frequency) in the 12 o’clock direction. Three time instances at the wave transition over this pattern (full frequency range) are shown in
(B–D). At the chosen frequency, the wave propagates in the form of spirals in the far field (E, F) (Supplementary Material).
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about the production quality. Finally, a similar experimental
platform can be used to generate large datasets of ultrasonic
signals, contributing to the improvement of machine learning
algorithms for product quality classification (Rus and Fleury,
2023). In this application, the presence of a defect is simulated by
changing mechanical properties using a heating laser.
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