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1 Introduction

We would first like to thank the authors, Yuexuan Wu, Chao Huang and Anuj Srivas-
tava, for an interesting article, as well as for the relevant work, in particular on the
square-root-velocity (SRV) framework, that it summarizes, and which we have found
very useful in our own work. We consider the SRV framework a milestone in object
data analysis.

While many aspects in the article are worthy of attention, we focus our discussion
in the following on several aspects and challenges we have encountered in our work
in this field. In particular, we will discuss the univariate versus the multivariate case in
Sect. 2, the problem of sparsely sampled curves in Sect. 3, and regression respecting
invariances in Sect. 4, before concluding with a discussion in Sect. 5.

2 The uni- and themultivariate case

2.1 Howmuch invariance?

For an introduction to the SRV framework, it is understandable that Wu, Huang and
Srivastava restrict their discussion to the univariate case, considering functions that
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Fig. 1 Different representatives of the same equivalence class [ f ] under warping: for a univariate function
f (left) and for a bivariate function f , depicted are x-coordinate (middle) and x- versus y-coordinate (right,
identical functions overlaid)

map from an interval I to the R1. Nevertheless, in our experience it is useful to keep
the multivariate case also in mind, where functions map into the Rd for some d > 1.
The reason is that the uni- and multivariate cases may differ in the kinds and amounts
of invariances that are of interest. In the multivariate case, the equivalence class [ f ] of
a function f : I → R

d with respect to reparametrization describes the image of that
function (cf. Fig. 1, right), which is often of interest. For example, when considering
the outline of an object, such as that of a structure in the brain on a scan (e.g., the
hippocampus, Steyer et al. 2023a), parametrization of this outline as a parametrized
curve is typically arbitrary and not of interest and the image of the curve, [ f ], is the
natural object of analysis. Similarly, if for amovement path, such as a human or animal
movement, or handwritten letters or symbols (Steyer et al. 2023b), only the image is
recorded or the exact timing not of interest, [ f ] is considered for the analysis. Note
that in the multivariate case, often additional invariances are of interest, in particular,
the shape invariances discussed below in Sect. 2.2.

For the univariate case, on the other hand, considering the equivalence class [ f ]
leaves only information on the minima and maxima of f , as also pointed out by
the authors of the paper. That is, each such equivalence class can be chosen to be
represented by a series of triangles with straight lines joining the extrema (piece-
wise linear function) (Lahiri et al. 2015) or by a merge tree (Pegoraro and Secchi
2021). Or in other words, almost all information is considered to be phase variation
and removed, leaving little in terms of amplitude information, only the sequence and
values of minima and maxima. See Fig. 1 for an example of different functions that
are considered equivalent in this framework, contrasted with a bivariate example. We
believe that in the univariate case it needs to be carefully considered whether removing
all phase information is what is wanted. Often despite potential misalignment, some
information about timing is still of interest. For instance, in the example of COVID
waves in different countries used as a running example by Wu, Huang and Srivastava,
how are countries to be compared that had 2, 3 and 4 waves of different heights
during the same time span? For instance, if country A skipped the second wave in
contrast to country B, but the third wave was of similar height to the second wave in
country B, should that wave be matched to the second wave of country B or to the
third wave in country B that took place roughly simultaneously? Also, is the length of
waves not relevant in terms of, e.g., number of deaths? In such cases timing may not
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be completely irrelevant and a decomposition of variation into phase and amplitude
variation and subsequent separate or joint analysis (e.g., Hadjipantelis et al. 2015;
Happ et al. 2019) may be more natural than completely removing phase variation. For
this, of course, the SRV functional data framework is still very useful, even though
no alignment method is a panacea in settings with different characteristics such as the
different numbers of waves in the COVID data. Also note that while consideration
of [ f ] removes all phase variation, in practice aligned representatives (such as of all
functions aligned to an overall mean) are typically chosen such that warping functions
are the identity on average, still keeping some average phase information in the data.

Finally, we would like to point out that an analysis of [ f ] in the univariate case is
very hard to generalize to functions that are only sparsely observed and possibly with
error, as discussed in more detail in Sects. 3 and 5. In this setting, alignment is already
difficult, but considering only minima and maxima of a function is especially hard
both due to the error, which leads to noisy estimates of extrema, as well as due to the
sparsity, which can lead to extrema not being observed at all.

2.2 Reparametrization and shape invariances

As the authors explain in their paper, it might be of interest to consider curves (in par-
ticular in 2D or 3D) not only invariant under reparametrization, but also under other
invariances: In elastic shape analysis (Srivastava and Klassen 2016) reparametrization
invariant, so-called elastic analysis is combined with ideas of statistical shape analy-
sis (Dryden and Mardia 2016) where the shape of a geometric object is traditionally
defined as its equivalence class under rotation, translation and scale. For instance, if
a curve in 2D describes the outline of an object such as the hippocampus (e.g., Steyer
et al. 2023a), the parametrization along the outline is arbitrary and an elastic analysis
is in order. In addition, (parts of) the coordinate system (e.g., based on the orientation
of the scanner) may also be arbitrary and invariances with respect to translation, rota-
tion and potentially scale should then be taken into account as well. Depending on the
data problem at hand, also different subsets of these invariances might be relevant. For
instance, for movement trajectories in 2D or 3D (e.g., Steyer et al. 2023b) the temporal
information may actually be relevant, or for an outline a natural parametrization may
be given (e.g., Stöcker et al. 2023) and thus only the shape invariances rotation, trans-
lation and possibly scale should be taken into account. Depending on the invariances,
different metrics and structures arise on the resulting quotient spaces. Invariance mod-
ulo scaling will yield a Riemannian manifold, which is also the case for rotation in
2D, while invariance with respect to 3D rotation produces singularities. For invariance
under reparametrization no manifold structure is available either.

Accordingly, reparametrization invariance and/or other invariances may need to be
considered and the corresponding choice carefully discussed. While the authors of
the paper refer to the equivalence class [ f ] under warping as ‘shape’ of f , we thus
think it useful to distinguish the terminology ‘elastic’ and ‘warping/reparametrization
invariances’ on the one hand from ‘shape invariances’ (scale, rotation, translation) on
the other hand to avoid confusion, in particular in the multivariate setting. Otherwise,
we believe it helpful to make very explicit which invariances are meant in case of any
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doubt, such as done by Huckemann et al. (2010), distinguishing ‘similarity shapes’,
‘affine shapes’ and ‘projective shapes’.

3 Elastic analysis of sparsely sampled curves

In practice, a function f : [0, 1] → R
d is usually not directly observed but only

evaluated on a (potentially curve-specific) grid t0 < · · · < tm as f j = f (t j ), j =
0, . . . ,m. In some scenarios, functions are sampled densely enough that one might,
nonetheless, approximately think of f as fully observed. Other scenarios, by contrast,
demand for explicit consideration of sparsely sampled functions. This issue, well
known in functional data analysis, is similarly relevant in elastic analysis of curves
but particularly challenging.

In the context of elastic analysis of sparsely observed curves, there are two bad
news and two good news. The bad news are: A−) SRV representation crucially relies
on derivatives ḟ (t j ), which are not observed and for sparse data not approximated well
by finite differences � j = (f j − f j−1)/(t j − t j−1), say. B−) even given the ḟ (t j ), an
optimal warping function γ between f and another function g : [0, 1] → R

d can only
be approximated by some γ̂ ≈ γ based on discrete evaluations, since optimal warping
is not identifiable on t0, . . . , tm . Hence, also the elastic distance ds( f , g) of the curves
modulo warping can only be approximated. For a sample of curves f1, . . . , fn , the
miss-match between fi ◦ γ̂i and fi ◦ γi aligned to some g is specific to each curve
and will not improve or ‘average out’ when the number of samples n increases, in
general. Hence, in any statistical method based on the alignment, such as Fréchet
mean computation, it seems inevitable that some bias is induced by sparsity. This is in
contrast to the case of classic functional data, which allows a point-wise perspective
that is helpful in the case of sparse observations, as it allows borrowing of strength
across curves, such that bias can vanish with increasing sample size. The good news
are that: A+) at least for d = 1 and d = 2 dimensional curves, the two problems can,
in fact, be reduced to the second issueB−. For d = 1 and if f is differentiable between
the t j , there is an f ∗ ∈ [ f ] such that ḟ ∗(t∗j ) = � j , j = 1, . . . ,m, for any chosen
points 0 < t∗1 < · · · < t∗m < 1, and we can simply assume that the � j directly present
observations of the derivative. This directly follows from the mean value theorem,
which yields t j−1 < ξ j < t j such that ḟ (ξ j ) = � j for j = 1, . . . ,m and lets us
choose f ∗ = f ◦γ with awarping function γ satisfying ξ j = γ (t∗j ) and γ̇ (t∗j ) = 1. For
d = 2, Stöcker et al. (2022) show that the same holds under the additional assumption
that all loops and corners of the curve described by f are contained in the sample
points f0, . . . , fm . While similarly intuitive, the proof for d = 2 is more involved. For
d = 3, there is no corresponding result and it is, in fact, easy to find a counterexample
(say, a helix). B+) While a certain bias has to be expected due to imperfect alignment,
it quickly becomes very small if the sample points f j reflect the shape of the curve
reasonably well and points t∗1 , . . . , t∗m in the initial parametrization of the curves are
selected reasonably (e.g., with respect to arc length of the sample polygonwith corners
f j ) (Steyer et al. 2023a, b; Stöcker et al. 2022). In fact, we were repeatedly positively
surprised about the quality of the results even for smallm.While Steyer et al. (2023a, b)
(widely) treat observed curves as polygons, and propose estimators for Fréchet means,
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elastic distances and regression models in this context, Stöcker et al. (2022) also use
the covariance structure for prediction of distances and inner products. However, more
work is required in this direction, and our results indicating fast bias decay and good
practical behavior are purely empirical so far.

4 Regression

The authors address the problem of regression with equivalence classes [ f ] of curves
modulo warping as data objects, an important and interesting topic, which is, how-
ever, particularly challenging when working with [ f ] explicitly instead of fixing
pre-determined representatives f . They consider three cases: the case where [ f ] has
the role of the response in a model with scalar covariates, the case where [ f ] takes
the role of a covariate in a regression model with scalar response, and the case where
both response and covariates might be functional object data. We address the first two
cases here.

4.1 The case of equivalence classes as responses

As presented by the authors, the search for suitable elastic model formulations for
curve responses naturally leads to consider extensions of manifold regression models
already available for other quotient space structures. In the following, we discuss in
how far geodesic regression (Fletcher 2013) as prototype of intrinsic regression on
manifolds can be transferred to the space S of curves modulo warping. Subsequently,
we briefly describe an approach with a somewhat larger model class, which we refer
to as ‘quotient linear regression’ (Steyer et al. 2023a), and which is so far the closest
to a geodesic regression model on S and also the only approach we are aware of
that takes warping invariance intrinsically into account. Intrinsic regression respects
the intrinsic geometry of the space in two aspects: A) the criterion with respect to
which the model is fit to data (or the assumed error model), B) the model for the
mean in dependence on covariates. In a more narrow sense of intrinsic regression, the
criterion in A) is typically chosen to minimize the squared intrinsic distance, i.e., the
distance corresponding to the length of the shortest connecting path, and B) the model
propagates along geodesics, or is at least inspired by them.

We focus here on geodesic regression and briefly repeat its definition for a Rieman-
nian manifold M (such as arises, e.g., under shape invariances in 2D): assume the
conditional (Fréchet) mean κ(x) ∈ M follows a geodesic κ in dependence on a scalar
covariate, say x ∈ [−1, 1]. Then we may write κ(x) = expp(βx) for some ‘intercept’
p ∈ M and ‘slope’ β ∈ TpM, a tangent vector in the tangent space at p, where expp is
the Riemannian exponential. Locally, a geodesic κ describes the shortest path between
points κ(x) and κ(x ′) with x, x ′ ∈ [−ε, ε], ε > 0. Here, we assume that this holds for
the entire domain [−1, 1].

Attempting to formulate an analogous model on S, where we have no Riemannian
manifold structure available, wemay still consider ‘shortest-path regression’ assuming
that the conditional mean lies on a shortest path κ̃ : [−1, 1] → S between some
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p− = κ̃(−1) and p+ = κ̃(1) in S. (While in the context of metric spaces, where
in general no exp-map is available, shortest paths are typically directly referred to as
‘geodesics’, we will not do this here to stress the difference.) Using that S is a quotient
metric space over Q = L

2, the space of SRV-transforms of curves, we can further
refine the model formulation: assuming aligned representatives p−, p+ ∈ Q, [p−] =
p−, [p+] = p+, we know that convex combinations of p− and p+ are also aligned,
and that κ̃ corresponds to a line inQ and can be written as κ̃(x) = [μ(x)] = [p+ β̃x]
setting p = (p− + p+)/2 and β̃ = (p+ − p−)/2, as, e.g., implied by Steyer et al.
(2023a) Corollary 2.12, providing us with an intercept and slope.

We have arrived at a model of the desired form, but before proceeding with a
discussion of how tofit it, wemake a short side remark to point out a connection to ‘gen-
eralized geodesics’ discussed by Huckemann et al. (2010) for geodesic PCA in certain
quotient spaces not endowed with a full Riemannian manifold structure but exhibiting
singularities: Determining a shortest path [μ] on S, μ : x �→ p+ β̃x corresponds to a
‘horizontal geodesic’ inQ pointing into a direction orthogonal to the invariance group
action. Unlike the situation in Huckemann et al. (2010), where the ‘horizontal space’
of such directions forms a vector space, we know, however, little about the corre-
sponding setHp = H−

p ∩H+
p , withH±

p = {β̃ | p± εβ̃ aligned to p for some ε > 0}
in our case. We only have that H−

p and H+
p are convex cones (again Steyer et al.

(2023a) Corollary 2.12). Hence, while our shortest-path regression model is similar to
a ‘generalized geodesic model’, which could have presented a next step in mimicking
geodesic regression, we cannot rely on the same useful vector space structure as in
Huckemann et al. (2010) for model fitting.

To fit the model is to minimize the least-squares criterion LS(p−, p+) =∑n
i=1 ds([qi ], κ̃(xi ))2 for data (qi , xi ) ∈ Q × [−1, 1], i = 1, . . . n with respect

to p−, p+ ∈ S. A straightforward iterative algorithm would start with initial repre-
sentatives q[0]

i = qi , and fit, in iteration j , 1. a functional linear model μ̂[ j](x) =
p̂[ j] + β̂[ j]x to covariate tuples (q[ j]

1 , x1), . . . , (q
[ j]
n , xn) before 2. aligning μ̂[ j](1)

to p[ j]
− = μ̂[ j](−1) to obtain p[ j]

+ , yielding an estimator κ̃ [ j] : x �→ [μ[ j](x)] for
κ̃ , where μ[ j] is the line between p[ j]

− and p[ j]
+ as described above. In a 3. step, the

qi are then aligned to the μ[ j](xi ) to obtain q[ j]
i and we return to step 1. It is, how-

ever, not clear if the algorithm converges to a (local) minimum. In particular, step 2,
ensuring κ̃ is a shortest path, is not oriented toward risk reduction. By contrast, e.g.,
in a similar model for forms (size-and-shapes) of curves modulo rotation instead of
modulo warping (both presenting isometric group actions), β̂ can be linearly con-
strained to the horizontal space, such that the optimization in step 1 already yields
a geodesic line without further alignment (Stöcker et al. 2023). In conclusion, the
described model presents a natural generalization of a geodesic model, which lacks,
however, a promising fitting algorithm.

In contrast to the generalization of a geodesic model above, the ‘quotient linear
model’ described in Steyer et al. (2023a) for responses in quotient metric spaces
(focusing on curves modulo warping in R

d with d ≥ 2 rather than d = 1), drops the
shortest path condition and directly considers models of the form κ̂(x) = [μ̂(x)] =
[ p̂ + β̂x] with parameters p̂, β̂ ∈ Q, defined by a, in this case linear, model μ̂ on the
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Fig. 2 Artificial data scenario sketching a situationwhere quotient linear regressionmight be preferable over
shortest path regression:Top-left: observed curve representatives fi , i = 1, . . . , 5,with xi ∈ [−1, 1], (piece-
wise linear for simplicity). Phase variability seems present but limited. Schematics of a quotient linearmodel
(top-right), depicting the back-transform m̂(x) of the SRV-level mean μ̂(x), are likely considered more
natural than corresponding schematics for the shortest-path model κ̃ , depicted with the same representatives
m̂(±1) ∈ p± (bottom-left) and aligned representatives m(±1) ∈ p± (bottom-right)

ambient space. Removing step 2 in the fitting approach described above, we obtain
good fits of the quotient linear model.

Although motivated as feasible simplification of shortest-path regression here, the
additional flexibility of a quotient linear model might in fact be desirable: it can
describe effects where a “valley”, i.e., a minimum of p− at some t0 ∈ [0, 1], tran-
sitions into a peak, i.e., a maximum of p+(t0), with increasing x (or vice versa).
The line between such p− and p+ does not correspond to a shortest path between
p− = [p−] and p+ = [p+], since optimal alignment—not generally aligning minima
with maxima—would yield a warping function γ with γ (t0) �= t0 in this case. A
corresponding model can, however, be natural in certain data scenarios, as illustrated
in Fig. 2. Conversely, if the true model is in fact a shortest path κ̃ , the quotient linear
model still yields consistent estimators using the larger model class (in the sense of
Steyer et al. (2023a) Corollary 2.7), or an approximation of it if β̂ is restricted to, e.g.,
be a spline function.

While we focused our discussion on the case of one scalar covariate x ∈ [−1, 1],
the extension to a multiple model with covariate vector x = (x1, . . . , xJ )� brings
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additional challenges for intrinsic models. While for Riemannian manifolds, these
can take the form κ(x) = expp(

∑J
j=1 β j x j ) as in Cornea et al. (2017); Stöcker

et al. (2023), the generalization to S modulo warping is even more challenging. The
proposedquotient linearmodels, by contrast, have the additional advantage of naturally
generalizing to multiple regression.

4.2 The case of elastic functional covariates

Just as for elastic functions as responses, the reverse case, constructing an intrinsic
functional regression model with elastic functions as covariates, seems very challeng-
ing. A first proposal is given in Ahn et al. (2020), also referred to by the authors,
but we believe that many open problems remain, as discussed in the following. For
better readability, we will here focus on the case of the ’linear’ model, where the index
function g is the identity. Thus, we consider the model

yi = sup
γi∈�

〈β, (qi ◦ γi )
√

γ̇i 〉 + εi , εi
i .i .d.∼ N (0, σ 2),

where qi denotes the SRV transformation of the covariate function fi for all i =
1, . . . , n.

A somewhat unexpected and possibly undesirable behavior of this ’linear’ model
is that the expected value of the response is always positive, i.e., E(yi ) ≥ 0 for all
i = 1, . . . , n, since supγi∈�〈β, (qi ◦ γi )

√
γ̇i 〉 ≥ 0 for all i = 1, . . . , n. A proof for

this statement can be constructed similarly to the proof in the case of piecewise linear
functions given in the online supplement of Steyer et al. (2023b). In addition to this
unusual behavior, we see the main difficulty of the proposed model in the estimation
of the model parameter β ∈ L2. Least squares (or equivalently, maximum likelihood)
leads to the optimization problem

argminβ

n∑

i=1

(

yi − sup
γi∈�

〈β, (qi ◦ γi )
√

γ̇i 〉
)2

,

which cannot be solved analytically because of the supremumwithin theminimization
problem. The authors in Ahn et al. (2020) propose to iterate between minimizing with
respect to β and maximizing with respect to the warping functions γi . Although this
procedure shows promising results in simulations, it remains unclear under which
conditions this algorithm will converge and find an optimal β, since in general the
residual sum of squares (RSS) cannot be expected to decrease with each iteration. A
counterexample, where the RSS is larger after the second iteration than after the first
(and continues to non-systematically increase and decrease in the following iterations),
is shown in Fig. 3.

Additionally to these points, issues with non-identifiability in non-elastic models
with functional covariates (Scheipl and Greven 2016) are expected to become even
more challenging in the elastic setting. Thus, we consider the case of elastic functional
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Fig. 3 Example of an attempt to iteratively estimate the effect function (black, thick line) for elastic covariate
functions fi and response yi , i = 1, . . . , 10. The initial estimate is chosen as the true parameter function
β, which is known in this simulated setting

covariates as an interesting area of open research problems where we are looking
forward to further developments in future.

5 Discussion

The SRV framework offers many opportunities for the field of functional data analysis,
whenever the parametrization is irrelevant, or when alignment or a decomposition into
phase and amplitude information is sought. At the same time, a number of interesting
open challenges remain. First, while the SRV framework has shown to be superior
to simpler approaches for the purpose of alignment, optimal alignment in the elastic
distance sense does not always produce the most meaningful or desirable alignment
in practice, as no alignment method can, and in fact the question of what kind of
alignment is considered the most meaningful may be answered differently in different
settings. We discussed some realistic data settings, where elastic alignment may have
limitations, including different numbers of maxima such as in the COVID wave data
(cf. Sect. 2), or transitions from maxima to minima over the course of a covariate (cf.
Fig. 2). Thus, the goal of the alignment should always be considered carefully and
objectives chosen correspondingly. The question of which curve to align to needs to
be similarly carefully considered. Alignment of all curves to the mean, for instance,
does not necessarily yield curves that are aligned to each other, complicating the
interpretation of a sample of ‘aligned’ curves. Also, alignment to an overall mean
may not always be ideal, in particular if curves do not all have the same (number of)
features. For example, we saw that for regression in such settings, alignment to amodel
prediction (Steyer et al. 2023a) performs superior to pre-alignment to an overall mean
due to the closer similarity. The question of which curve to align to is also relevant
for the problem of elastic functional covariates discussed in Sect. 4.2 above. Lastly,
much work remains in particular in the context of sparse and noisy data. We discussed
some extensions to sparse data settings in Sect. 4 above, but while sparse and error-
prone data are commonly addressed together in (nonelastic) functional data analysis,
the case with error has not yet received much attention in the elastic setting and is
in fact much more challenging. Not only can error cause problems with location and
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height of minima and maxima, but error also causes problems with any derivative-
based approach including SRVs. While in (nonelastic) FDA, denser sampling grids
lead to better recovery of the underlying function even in the error-prone case based
on smoothing, denser grids lead to an inflation of any error on the derivative level
approximated by finite differences. Here, in fact, somewhat sparser sampling can be
helpful if error is present. It may be for this reason, that while we see interesting
challenges remaining in this theoretically demanding setting, in practice we see good
and sometimes surprisingly good results using the SRV framework, e.g., recovering
important data structures in an elastic setting even under extreme sparsity (Steyer et al.
2023b; Stöcker et al. 2022).
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