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Abstract. On average every 2 years, the stratospheric po-
lar vortex exhibits extreme perturbations known as sudden
stratospheric warmings (SSWs). The impact of these events
is not limited to the stratosphere: but they can also influence
the weather at the surface of the Earth for up to 3 months after
their occurrence. This downward effect is observed in par-
ticular for SSW events with extended recovery timescales.
This long-lasting stratospheric impact on surface weather
can be leveraged to significantly improve the performance
of weather forecasts on timescales of weeks to months. In
this paper, we present a fully data-driven procedure to im-
prove the performance of long-range forecasts of the strato-
sphere around SSW events with an extended recovery. We
first use unsupervised machine learning algorithms to cap-
ture the spatio-temporal dynamics of SSWs and to create a
continuous scale index measuring both the frequency and the
strength of persistent stratospheric perturbations. We then
uncover three-dimensional spatial patterns maximizing the
correlation with positive index values, allowing us to assess
when and where statistically significant early signals of SSW
occurrence can be found. Finally, we propose two machine
learning (ML) forecasting models as competitors for the
state-of-the-art sub-seasonal European Centre for Medium-
Range Weather Forecasts (ECMWF) numerical prediction
model S2S (sub-seasonal to seasonal): while the numeri-
cal model performs better for lead times of up to 25 d, the
ML models offer better predictive performance for greater
lead times. We leverage our best-performing ML forecasting
model to successfully post-process numerical ensemble fore-
casts and increase their performance by up to 20%.

1 Introduction

In both hemispheres and during winter, the atmosphere above
the polar regions is characterized by eastward winds cen-
tered around the poles with a mid-winter peak in wind in-
tensity, the so-called “polar vortex”. On average once ev-
ery 2 years, in the Northern Hemisphere, upwardly propa-
gating Rossby waves can disturb the polar vortex and in-
duce a sudden warming of the polar stratosphere. Known
as sudden stratospheric warmings (SSWs; Baldwin et al.,
2021), these events not only impact the stratosphere but also
strongly influence the weather at the Earth’s surface for up
to 3 months after their occurrence (Baldwin and Dunkerton,
2001). Therefore, SSW events are considered an important
source of predictability of surface weather on sub-seasonal
timescales ranging from 2 weeks to 2 months. Improving
the prediction of SSW events may therefore help enhance
the forecast performance of surface weather (Sigmond et al.,
2013; Domeisen et al., 2020a).

The dynamics behind SSWs are not yet fully understood
(Baldwin et al., 2021), and hundreds of contributions have
been made on the topic, including for instance a classifica-
tion of stratospheric perturbations based on their influence
on the troposphere to uncover common dynamical precur-
sors (Runde et al., 2016) or the quantification of predic-
tive skill increase after SSW occurrences (Karpechko et al.,
2017a; Karpechko, 2018; Domeisen et al., 2020b; Wu et al.,
2022). The predictive skill for the onset of SSWs of state-
of-the-art numerical prediction models remains limited to
about 1–2 weeks (Domeisen et al., 2020a). Improving the
predictability of SSWs would significantly contribute to bet-
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ter sub-seasonal to seasonal weather forecasts on timescales
of several weeks to months.

SSWs with a stronger and more persistent impact on the
stratosphere are generally associated with slowly descend-
ing zonal wind anomalies (Kodera et al., 2000) within the
stratosphere, phenomena also known as polar-night jet os-
cillation (PJO) events (Kuroda and Kodera, 2001, 2004). In
these cases, not only is the vortex subject to larger-scale per-
turbations, but also the recovery of the vortex takes a longer
amount of time, up to 2 to 3 months, to retrieve its quasi-
circular shape above the pole, and the disturbances tend to
reach further down, all the way to the lower stratosphere,
where they have a higher potential for affecting the underly-
ing troposphere. Hence, SSWs with slow recovery are likely
to influence the weather at the Earth’s surface for a prolonged
period of time, thereby offering an opportunity to increase
weather predictability; this work is thus focused on this par-
ticular kind of persistent event.

One difficulty in uncovering relevant precursors to SSW
events is the need to analyze large quantities of three-
dimensional spatio-temporal data of different physical vari-
ables with complex interactions. For this reason, existing
studies have relied on domain expertise to focus on regions of
the atmosphere and mechanisms assumed relevant for SSWs.
From a data analysis point of view, conducting a system-
atic search of the atmospheric dynamics to localize and un-
cover statistically significant signals with predictive potential
for SSWs with long-lasting impacts would help in getting
a deeper understanding of their dynamics. Machine learn-
ing (ML) and, more generally, data science techniques of-
fer fully data-driven alternatives for a systematic search of
new insights about relevant atmospheric dynamics that can
be applied to large quantities of data. ML approaches can
also represent competitive alternatives to numerical forecasts
that can be leveraged to improve weather prediction perfor-
mance.

Indeed, data-driven techniques have already been success-
fully applied to improve understanding of SSW dynamics.
For instance, an application of empirical orthogonal func-
tions (EOFs) to potential vorticity data during SSW events
revealed unknown drivers as well as early signals of SSW
onset (Rongcai and Cai, 2006; Lu and Ding, 2015; Lu et al.,
2016). The vortex geometry, as well as its evolution, has been
analyzed in detail through a combination of moment analysis
and extreme value theory (Mitchell et al., 2011) and through
methodologies from computer vision (Lawrence and Man-
ney, 2018); the latter allows for a detection and representa-
tion of the vortex evolution in three dimensions, providing a
tool to visualize the vortex pre-conditioning. The relation-
ship between SSWs and planetary wave activity has been
explored using composite methods (Bancalá et al., 2012),
while the influence of different states of the stratosphere on
SSW occurrence has been assessed through the computation
of conditional probabilities (Jucker and Reichler, 2018). Fur-
thermore, a wide range of studies have focused on classify-

ing SSW events into multiple categories, such as different
patterns of planetary wave activity (Bancalá et al., 2012; Wu
et al., 2021); event intensity (Blume et al., 2012); data-driven
categories (Coughlin and Gray, 2009; Lawrence and Man-
ney, 2020); or the geometry of the vortex perturbation, i.e.,
split or displacement (Hannachi et al., 2011).

Following the suggestion of Cohen et al. (2019), we go be-
yond exploration and classification and propose a fully data-
driven ML procedure that can be leveraged to improve long-
range numerical surface weather forecasts. Our methodology
can be divided into three steps: first, we apply a classical
dynamics-driven unsupervised ML algorithm to define a con-
tinuous scale index quantifying the strength and occurrence
of SSWs with slow recovery. Secondly, the index is used as
a predictive target to find spatio-temporal atmospheric pat-
terns with statistically significant predictive power. Finally,
supervised learning is used to predict the index from the at-
mospheric regions and forecast lead time found in the pre-
vious step. In other words, we first answer the question of
what quantity to forecast and then of where and when we can
find relevant predictors, and we finally determine the lead
time at which we can produce a skillful forecast. The best-
performing ML algorithm found in the last step of the proce-
dure is used to post-process numerical forecasts and to obtain
an increase of up to 20% in performance. Our methodology
is similar to the work of Kretschmer et al. (2017), where a
causal discovery algorithm is used to find relevant predic-
tors; however it differs in two main ways. First, we devise a
procedure allowing us to analyze a much larger quantity of
data, since causal methods usually suffer from computational
limitations. Secondly, while Kretschmer et al. (2017) only
investigate the skill horizon of ML-based forecasts, we addi-
tionally integrate our findings to improve the performance of
standard numerical forecasts. ML algorithms have also been
applied in similar contexts (Blume and Matthes, 2012; Mi-
nokhin et al., 2017); however in these works relevant predic-
tors had to be carefully designed ahead of time using knowl-
edge of the physical process, while in our approach relevant
three-dimensional patterns are directly learned from the orig-
inal data.

The paper is structured as follows: Sect. 2 summarizes the
different data sources and their characteristics. In Sect. 3, we
propose a continuous scale index based on the vertical vari-
ation in the stratospheric temperature anomalies characteriz-
ing SSW with a slow recovery, i.e., with a long-lasting im-
pact. Section 4 leverages supervised learning to detect spatio-
temporal stratospheric patterns with statistically significant
predictive power. In Sect. 5, we propose several ML mod-
els to forecast the index proposed in Sect. 3 and assess their
performance. We then use the best model to post-process the
forecasts from a numerical model and quantify the perfor-
mance improvement. Finally, Sect. 6 briefly summarizes our
contribution and gives potential directions for improvements.

Weather Clim. Dynam., 4, 287–307, 2023 https://doi.org/10.5194/wcd-4-287-2023



R. de Fondeville et al.: Improved stratospheric forecasts using machine learning 289

2 Data

The analysis presented in this paper relies on the ERA-
Interim reanalysis data produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Dee et al.,
2011), i.e., climate model output with assimilated observa-
tional data every 6 h from 1 January 1979 to 31 August 2019,
simulated on a grid with a resolution of 0.75◦ and 60 pres-
sure levels. Multiple atmospheric parameters are available,
but to monitor sudden stratospheric warmings, we focus on
temperature and potential vorticity.

To characterize stratospheric perturbations and identify
their precursors, we need to analyze a large quantity of re-
analysis data: for each physical quantity, ERA-Interim pro-
vides N ≈ 59000 temporal data points at every grid cell
and pressure level. To reduce the quantity of the data to be
analyzed, except when stated otherwise, we focus on the
Northern Hemisphere extended winter, i.e., October to April,
reducing the number of data points to N = 33960. Even
though SSWs are also found in the Southern Hemisphere,
the Northern Hemisphere events are much more frequent; we
therefore limit the analysis to this region of the globe. With
15 pressure levels in the troposphere, from 800 to 225 hPa,
and 14 pressure levels from 200 to 1 hPa, including only data
for the Northern Hemisphere at a 0.75◦ resolution yields a
grid with 1.6 million cells per physical quantity at each time
step. We thus need to further reduce the dimensionality of the
data to enable tractable and efficient data analysis.

For temperature, we proceed as in Blume et al. (2012) and
Hitchcock et al. (2013a) by computing the polar-cap average
of temperature anomalies using every grid cell poleward of
60◦ N. As the goal is to analyze temperature variations in-
side the vortex, we focus on 12 stratospheric pressure levels,
i.e., 150, 125, 100, 70, 50, 30, 20, 10, 7, 5, 2, and 1 hPa, with
lower and higher levels corresponding to the “top” and “bot-
tom” of the vortex, respectively.

Alternatively, to directly study the perturbations of the vor-
tex and not only the vertical structure of temperature anoma-
lies, we analyze potential vorticity (PV), a quantity used in
atmospheric dynamics and meteorology to characterize ro-
tational fluids with a vertical stratification, where it is con-
served for adiabatic frictionless motion. Because the vortex
can be displaced to fairly low latitudes, we analyze a slightly
larger region for PV as compared to temperature, i.e., all grid
points poleward of 30◦ N. Additionally, since we are inter-
ested not only in the structure of the vortex in the strato-
sphere but also in potential tropospheric precursors, we focus
on 29 pressure levels, from 800 to 1 hPa, with 0.75◦ spac-
ing, i.e., d = 480× 81= 38880 grid cells, yielding a vector
of size 1.1 million per temporal snapshot. While such a di-
mensionality could reasonably be handled by ML algorithms
when trying to analyze the dynamics of the stratosphere, see
Sect. 4, by studying simultaneously multiple dates and times
over periods of weeks to months, the dimensionality of the
data needs to be further reduced. We follow the approach de-

scribed in DelSole and Tippett (2015) to obtain an orthog-
onal functional basis over the spherical cap, i.e., a counter-
part of the Fourier basis over a sub-region of a sphere captur-
ing the characteristics of the data at different spatial scales,
while taking into account the rotational invariance of the cap.
Then, for each individual time step, the gridded data are pro-
jected onto the basis, yielding one coefficient per basis el-
ement. The new data representation is then obtained from
the vector of basis coefficients, which we choose to have a
lower dimension than the original grid size while preserving
the field structure as accurately as possible. Figure 1 gives
an example of the PV field reconstructed using only the first
150, 300, and 600 lower-spatial-frequency components of the
functional basis. Using a few hundred coefficients, as illus-
trated in Fig. 1, already yields an accurate representation of
the large-scale features in the reconstructed fields. In Sect. 4,
we will therefore use a limited number of basis coefficients
to represent the gridded set on each pressure level, which en-
ables us to simultaneously analyze data at multiple levels and
time steps.

Finally, we aim to illustrate how machine learning tech-
niques can be used to improve the long-range performance
of current numerical forecasts. To do so, we leverage one
data set of forecasts from the sub-seasonal to seasonal (S2S)
prediction database (Vitart et al., 2017): in this project, the
numerical forecasts are produced by running weather models
initialized with the state of the climate at the time of initial-
ization. The ECMWF prediction system, which we analyze
in this work, provides a set of hindcasts, i.e., forecasts pro-
duced a posteriori for validation purposes, initialized every 2
to 3 d, and using the ERA-Interim reanalysis as initialization.
To account for uncertainty in the initial conditions and hence
the subsequent dynamical trajectory, not only one hindcast
but multiple hindcasts are produced from slightly perturbed
initial conditions to form a set of equally likely forecasts
called an ensemble. In particular, the ECMWF model from
the S2S database provides hindcasts consisting of 11 mem-
bers for lead times of up to 47 d after the initialization date.
These forecasts are available for daily mean values at the
pressure levels of 100, 50, and 10 hPa and at a horizontal res-
olution of 2.5◦ latitude and longitude. Processing the lower-
resolution gridded data with a limited number of pressure
levels and with the help of a lower-resolution functional basis
yields low-dimensional data representations similar to those
obtained in Sects. 3 and 4. In this work, the ECMWF hind-
casts will serve as a baseline for performance comparison in
Sect. 5 and will be post-processed using machine learning
forecasts to attempt to improve their performance.

3 Unsupervised characterization of SSW dynamics

Most classical characterizations of sudden stratospheric
warmings are binary indices that usually require a predefined
threshold, e.g., most commonly, the inversion of the zonal-
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Figure 1. Original (left) and reconstructed potential vorticity field using an increasing number (150, 300, and 600) of the functional basis.
The orthogonal functional basis over the spherical cap was computed using the approach in DelSole and Tippett (2015).

mean zonal wind at 60◦ latitude and 10 hPa, combined with
a temporal “separation” rule for consecutive events (Charl-
ton and Polvani, 2007). The choice of SSW definition can
yield results that are not necessarily consistent between stud-
ies (Butler and Gerber, 2018); see Butler et al. (2015, 2017)
and Baldwin et al. (2021) for thorough reviews of existing
definitions. Using data-driven techniques on carefully cho-
sen physical quantities, Coughlin and Gray (2009) conclude
that characterization through a strict classification should be
relaxed in favor of a “continuum” of perturbations to better
reflect the complexity of the underlying atmospheric dynam-
ics.

From a machine learning perspective, the limited number
of events in the database and the uncertainty of the event start
dates make the application of most algorithms using binary
indices difficult and potentially inconsistent. For these rea-
sons, we first define a continuous scale index to quantify the
strength and the occurrence of the vortex perturbations. For
this task, we use simple unsupervised machine learning al-
gorithms, i.e., algorithms that aim at discovering dynamical
patterns in the data without an auxiliary source of informa-
tion, including potentially unknown patterns.

We start by analyzing stratospheric perturbations as cap-
tured by temperature anomalies using an analysis similar to
those of Blume et al. (2012) and Hitchcock et al. (2013a):
we apply principal component analysis (PCA) to polar-cap-
averaged temperature anomalies at 12 pressure levels be-
tween 150 and 1 hPa. PCA uncovers patterns, also called
principal directions or PC directions, that provide data pro-
jections whose variance is maximized. Thus, the first PC di-
rection provides the temperature profile showing the largest
variation in amplitude, while the second PC direction rep-
resents the largest perturbation pattern once the first PC di-
rection has been removed from the data, and so on. From
a practical point of view, we apply PCA to vectors of size
d = 12, with each component corresponding to the spheri-
cal cap average of temperature anomalies at each pressure
level. We note that such an approach focuses on the variabil-
ity in temperature patterns observed at individual time steps

and does not account for dynamical properties of the phe-
nomenon studied.

Figure 2a shows the vertical distribution of the first two PC
directions: results are similar to in Hitchcock et al. (2013a)
as we observe that none of the patterns has exclusively pos-
itive (or negative) values, suggesting that temperature per-
turbations do not occur simultaneously along the vortex ver-
tical structure. Indeed, the vertical structure of the domi-
nant modes indicates that the stratosphere can be separated
into two layers whose dynamics during sudden stratospheric
warmings are likely to differ. Figure 2b displays the prin-
cipal components (PCs) for winter 2008/09, i.e., the coef-
ficients obtained once projecting the data onto the PC di-
rections. Winter 2008/09 was chosen as an example for its
strong SSW event with wind reversal observed on 24 Jan-
uary 2009. There is a joint sudden increase in both PC1 and
PC2 followed by a quick decrease in PC2 and a slow decrease
with an inversion of anomalies in PC1; i.e., the previously
warm upper stratosphere is cooling much more quickly than
the lower part of the stratosphere, an observation consistent
with the longer radiative relaxation timescales of the lower
stratosphere (Hitchcock et al., 2013b). Similarly to the work
of Hitchcock et al. (2013a), our aim is to design an index
to capture such temporal evolution of the vertical temper-
ature structure: a slow recovery, also known as polar-night
jet oscillation, in the lower part of the stratosphere suggests
that this type of perturbation is likely to have the strongest
and longest-lasting impact on the troposphere (Black and
Mcdaniel, 2004; Maycock and Hitchcock, 2015; Karpechko
et al., 2017b; White et al., 2020; Rao et al., 2020). Thus, bet-
ter predicting SSWs with a slow recovery is expected to im-
prove weather predictability at the Earth’s surface.

We now aim at characterizing not only the vertical struc-
ture of the temperature perturbations at individual time steps
but also their variation over time. Applying PCA to a time-
lagged embedding (Takens, 1981; Sauer et al., 1991), i.e., a
concatenation of successive time steps, a combination also
known as multi-channel singular spectrum analysis (M-SSA;
Allen and Robertson, 1996), enables us to uncover patterns
of maximum variability over fixed temporal windows. The
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Figure 2. (a) First (solid) and second (dashed) principal direction of maximum variance obtained from a PCA on polar-cap-averaged tem-
perature anomalies at pressure levels between 150 and 1 hPa. Each PC explains 56% and 35% of the overall variance, respectively. (b) First
(red) and second (cyan) principal components (PCs) for winter 2008/09 obtained using PCA on polar-cap-averaged temperature anomalies
at levels 150, 125, 100, 70, 50, 30, 20, 10, 7, 5, 2, and 1 hPa. Vertical dashed line: date of first wind reversal at 60◦ and 10 hPa.

underlying principle is straightforward: we apply PCA not
to single time steps but to larger vectors that result from the
concatenation of multiple time steps, also called time-lagged
embeddings or delay-coordinate maps. More precisely, we
suppose that we have a vector X(tn) ∈ RD that is available
for all time steps n= 1, . . .,N . For M-SSA, instead of ap-
plying PCA directly to X, we construct a new data set Y by
concatenating T consecutive time steps; i.e.,

X(t1), . . .,X(tN )

⇒

 Y (t1) = [X(t1), . . .,X(t1+(T−1))],

. . . = . . .,

Y (tN−(T−1)) = [X(tN−(T−1)), . . .,X(tN )].

(1)

The length of the vector Y (tn), n= 1, . . .,N−(T −1), is thus
simply given by the size of X(tn) multiplied by the size of
the embedding window T . The framework developed here
allows us to uncover not only vertical patterns but also their
temporal evolution.

Figure 3 shows the first four principal directions of highest
variance when using a temporal embedding of T = 60 d. We
consider multiple values for T and find 2 months to be most
successful in retrieving meaningful and interpretable dynam-
ics for SSWs. As prescribed by the theoretical properties of
singular spectrum analysis (Ghil et al., 2002), we observe
that PC directions come in pairs: the first two, P T

1 and P T
2 ,

characterize long-lasting temperature perturbations, P T
1 be-

ing in approximate phase quadrature with P T
2 . Similarly, the

third and fourth PC directions, P T
3 and P T

4 , characterize a
fast downward progression of the anomalies. We also observe
that the variations in the upper stratosphere always precede
perturbations at lower levels, which is consistent with strato-
spheric dynamics, where temperature anomalies are first in-
duced by wave breaking in the upper part of the stratosphere
and then descend through wave–mean flow interaction. Fig-
ure 4a shows the corresponding principal components ob-
tained by projecting the data from winter 2008/09 onto the
PC directions. This event was selected as an illustrative ex-

ample for both its strength and its very clear slow recovery.
The 2009 SSW event is characterized by large positive val-
ues of the third principal component around mid-February,
followed by a large value of the second PC about 2 weeks
later: this behavior is characteristic of sudden stratospheric
warmings with a slow recovery and can be used to define a
continuous scale index characterizing them (Hitchcock et al.,
2013a).

Figure 4b shows for all winters the evolution of the prin-
cipal components PCT2 and PCT3 obtained with the help of a
PCA on temperature anomalies with a temporal embedding
of T = 2 months: as shown by the dashed black lines, the
large majority of SSW events are characterized by a large
PCT3 followed by a large value of PCT2 , similarly to winter
2008/09. The four exceptions, the SSW events of the winters
1980/81, 1999/2000, 2006/07, and 2007/08 displayed by the
four solid black lines not passing through the upper-right cor-
ner of Fig. 4b, correspond to vortex perturbations with zonal
wind reversal but very quick vortex recovery; these events
cannot be considered SSW events with slow recovery except
for that of winter 1980/81 were the wind reversal takes place
after the vortex perturbation. Figure A1 in Appendix A il-
lustrates the temporal variation of each principal component
for these four winters. Based on this analysis, we propose the
following index to characterize SSW events with slow recov-
ery:

I (t)=

√{
PCT2 (t)

}2
+
{
PCT3 (t)

}2 exp(−|θ23(t)−π/4|) ,

t = 1, . . .,N − (T − 1), (2)

where θ23(t) is the direct angle between the vector
(PCT2 (t),PCT3 (t)) at time t and the axis; the coefficients are
obtained by projecting the data set Y onto the PC directions
P T

2 and P T
3 produced by a PCA with a temporal embed-

ding of T = 2 months. Values of I (t) are displayed by the
bold black line and the color scale in Fig. 4. Equation (2) is
motivated by Fig. 4b, where SSW events with slow recov-
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Figure 3. First four principal directions corresponding to the largest variance obtained from PCA on polar-cap-averaged temperature anoma-
lies at levels 150, 125, 100, 70, 50, 30, 20, 10, 7, 5, 2, and 1 hPa, indicated by the different colors in the legend, with a temporal embedding
of T = 2 months. Each PC explains 33%, 24%, 10%, and 7% of the overall variance, respectively.

ery correspond to values in the upper-right corner where I (t)
reaches a maximum. Also, because machine learning tech-
niques tend to focus on large values of the target variable, we
design the index to be strictly positive with the largest values
for SSW events with slow recovery.

We have thus managed to produce a continuous scale in-
dex using unsupervised machine learning techniques, allow-
ing us to characterize the dynamics of strong temperature
perturbations of the polar vortex that are followed by a slow
recovery. The index I is similar to the PJO event characteri-
zation in Hitchcock et al. (2013a) but has a continuous scale;
thus it does not require selecting any threshold and addition-
ally explicitly characterizes the temporal evolution of the ver-
tical temperature structure. We obtain a continuous measure
of vortex perturbations that can be leveraged to efficiently
apply advanced machine learning techniques.

4 Early signs of vortex perturbation

We now aim at uncovering relevant variables, atmospheric
regions, and associated spatio-temporal patterns that are in-
dicative of likely future SSW events with a slow recovery.
We leverage supervised machine learning algorithms to pre-
dict the index I proposed in Sect. 3. The design choice for
the algorithm is determined by the following constraints: we
would like first and foremost for the methodology to be in-
terpretable, meaning that we not only can predict the index
but also can retrieve the atmospheric states yielding large in-
dex values. Second, the methodology should be able to han-
dle large quantities of data, as we want to search for pre-
cursors using multiple physical quantities at multiple lev-
els and over the whole Northern Hemisphere polar cap. We

thus choose to apply supervised principal component analy-
sis (sPCA; Barshan et al., 2011): the algorithm computes the
pattern that yields maximum correlation between the project
data and a given target variable. A more classical alterna-
tive would have been canonical correlation analysis (CCA;
Knapp, 1978), which is tightly linked with classical linear re-
gression. However CCA is computationally more expensive
and requires the dimensionality of the input vector to remain
lower than the number of replicates; sPCA does not suffer
from such restrictions. A similar approach has been followed
by Kretschmer et al. (2017) using linear regression combined
with a causal discovery algorithm: their approach is efficient
and provides convincing results but cannot scale to very large
problems such as ours where we jointly analyze multiple lev-
els, and, being a two-step procedure, their methodology re-
quires controlling for multiple testing, which, if not properly
adjusted, is susceptible to selection bias in high-dimensional
setups. The so-called Lasso regression (Tibshirani, 1996)
could be a valuable alternative to sPCA with the added bene-
fit of providing sparse predictive patterns. We however chose
sPCA for its flexibility as its kernelized version accommo-
dates non-linear relationships, thus opening avenues for fu-
ture developments.

From a practical perspective, we aim at finding atmo-
spheric patterns showing a statistically significant level of
predictability, summarized here by correlation, for our index
I (t) at a lead time τ > 0 in the future. More formally, for
an input vector X(t) ∈ RD , representing any field from the
reanalysis output, and a lead time τ > 0, sPCA provides a
solution to the following.

argmax corr{〈X(t1:(N−τ+1)),P τ 〉,I (tτ :N )},

P ∈ RD (3)
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Figure 4. (a) First four principal components for winter 2008/09 obtained using PCA on polar-cap-averaged temperature anomalies at
pressure levels 150, 125, 100, 70, 50, 30, 20, 10, 7, 5, 2, and 1 hPa with a temporal embedding of T = 2 months. Vertical dashed line: central
date of the 2009 SSW. Solid black line: SSW index I over the same period defined as a function of the second and third principal components
as in Eq. (2). (b) PCT3 against PCT2 for all winters from a PCA on polar-cap-averaged temperature anomalies with a T = 2 months temporal
embedding. Dashed black lines: 2 weeks prior to and after the onset of SSW events, as defined by the zonal wind reversal criterion at 10 hPa
and 60◦ N. Solid black lines: 2 weeks prior to and after the onset of SSW events, as defined by the zonal wind reversal criterion at 10 hPa
and 60◦ N, with fast recovery. The temporal evolution of the SSWs along the black curves is counterclockwise. The value of the SSW index
I (t) is given by the color gradient.

Here ti , i = 1, . . .,N , represents time steps and 〈X(t),P τ 〉

is a dot product, i.e., the projection of the data vector X(t)

onto the sPCA pattern P τ ∈ RD at lead time τ . Equation (3)
can be solved using linear algebra and inverting a (potentially
large) matrix; for technical and implementation details see
Barshan et al. (2011).

As a supervised algorithm, sPCA is likely to suffer from
overfitting, i.e., matching noisy variations in the data instead
of relevant physical dynamics. Indeed, as we explore mul-
tiple levels over a large region of the Northern Hemisphere,
the dimensionD of the input vector X(t) is meant to be large,
and it is possible that the correlation between the prediction
target and the data projected onto a pattern P τ might not be
statistically significantly different from 0. The latter can be
tested using resampling techniques: we first randomly select
10 years of data that we leave aside; this subset will not be
used to train the algorithm. We then compute for each lead
time τ , ranging from τ = 1 d to τ = 4.5 months with daily
increments, the patterns P τ ∈ RD by application of sPCA to
the 30 remaining years. Once done, we extract the patterns
Pτ for each lead time τ , project the data from the 10 years
that were left out onto the patterns, and compute the corre-
lation between the time series of projected coefficients and
the corresponding SSW index. The train–test split procedure
is commonly employed in machine learning, and we repeat
it 100 times for multiple random splits to estimate the un-
certainty associated with our data set. To ensure the repre-
sentativeness of the testing set, the split is stratified by SSW
occurrences, as defined by the zonal wind reversal criterion
at 10 hPa and 60◦ N; i.e., we ensure that 50% of the years
include a sudden stratospheric warming in each set. In gen-
eral, splitting is done purely at random, but in this setting, it
is necessary to exclude data from entire winters to limit the
impact of temporal dependence, which is likely to impact the
model evaluation by artificially inflating performance met-

rics. We obtain a set of 100 curves describing how the esti-
mated maximum correlation evolves as a function of the lead
time τ . At each individual lead time we can then assess the
statistical significance at a given level of significance, e.g.,
5%, of the correlation between the pattern projections and
the SSW index by counting the number of curves with cor-
relations close to 0; see Fig. 5. More precisely, because we
repeat the experiment 100 times, significance arises at lead
time τ if more than 95 curves exceed the upper bound of the
estimated confidence interval under the null hypothesis H0:
corr{〈X(t1:(N−τ+1)),P τ 〉,I (tτ :N )} = 0, i.e., approximately a
value of 0.018.

We start by analyzing potential vorticity: this physical
quantity is available from the ERA-Interim reanalysis at 29
pressure levels from the low troposphere, i.e., 800 hPa, to
roughly the top of the polar vortex, i.e., 1 hPa. As discussed
in Sect. 2, directly applying sPCA to the original data would
be computationally very expensive, if tractable, and suscep-
tible to numerical instabilities; therefore we first employ the
functional representation described in Sect. 2. Our focus be-
ing on large-scale vortex perturbations, we use only the 150
first functional coefficients for each pressure level, yielding a
vector of sizeD = 29×150= 4350 to represent the PV field
at a time t over the 29 pressure levels. Before applying sPCA,
we first need to normalize the PV data: a first normalization,
which leads to what we simply call anomalies, consists in
removing the seasonal cycle and standardizing each individ-
ual grid cell to have unit variance. The second normalization
aims to assess if a pattern of planetary waves is indicative of
SSWs with slow recovery and thus removes the zonal mean
from the PV data at each time step.

Focusing first on anomalies, the leftmost panel in Fig. 5
shows that this normalization yields the strongest correlation
for short lead times, the latter being statistically significant
up to 54 d in the future. We note that while the index charac-
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terizes strong SSWs with slow recovery, its value reaches a
maximum about 2 weeks after the onset of the SSW events,
as defined by the zonal wind reversal criterion at 10 hPa and
60◦ N, so the temporal window of significance should not be
interpreted as the existence of early signals about 2 months
prior to the onset of an event but only about 6 weeks before
the start of the SSW event. The sPCA patterns P τ extracted
for multiple time steps can be found in Appendix B1: we
observe first in Figs. B1 to B4 that the predictive signal is
mostly concentrated between pressure levels of 1 to 10 hPa,
with no consistent pattern at tropospheric levels. During and
around the peak of the SSW event, i.e., for lead times from
τ = 6 h to τ = 14 d illustrated by Figs. B1 and B2, we ob-
serve strong circular negative anomalies centered at the pole.
In Fig. B3, as the lead time increases, the pattern transitions
to bi-modal with negative anomalies above the Aleutian Is-
lands and positive anomalies above Europe on pressure levels
of 10 to 2 hPa. Then, in Fig. B4, the pattern finally returns to
a circular shape with positive anomalies above the pole.

For PV waves, we analyze the atmosphere only above
500 hPa as lower levels yield non-relevant patterns domi-
nated by numerical instabilities. As shown in the middle
panel of Fig. 5, we find weaker signals with lower correla-
tion significant only up to 48 d. Analyzing the correspond-
ing patterns, we find that for short lead times in Fig. B6,
the barely significant signal is strongest in the lower part of
the stratosphere with two regions of negative anomalies, one
above Europe and one above the Aleutian Islands, and one
positive “hot spot” above Siberia. In Figs. B7, B8, and B9,
the predictive pattern shifts upward in the stratosphere for
lead times τ = 14 to τ = 60 d, with a strong wave-1 pattern
of negative anomalies above the Aleutian Islands and posi-
tive anomalies above Europe similarly to PV anomalies. At
lower stratospheric levels, the tri-polar pattern described for
shorter time horizons remains stable.

We also searched for early signals in other physical quan-
tities of the climate system. The divergence of the Eliassen–
Palm flux (EP flux; Eliassen and Palm, 1960), which is used
to quantify the eddy momentum and heat transport by waves,
is computed for the levels between 700 and 1 hPa. Strong
EP flux convergence can lead to a deceleration of the west-
erly winds of the stratospheric polar vortex, which in the case
of a sufficient weakening and reversal of the winds to easter-
lies corresponds to an SSW (Limpasuvan et al., 2004). By
application of sPCA to the divergence of the EP flux, we
found a statistically significant correlation up to a lead time
of 38 d, with lower correlations than if the sPCA were ap-
plied to PV anomalies; the evolution of the correlation with
time is shown in the rightmost panel of Fig. 5. The pattern
corresponding to lead time τ = 28 d in Fig. B13 reveals a
strong negative heat flux at the top of the stratosphere, i.e.,
from 10 to 1 hPa, which can be attributed to the breaking
of planetary waves initiating the warming. Figures B11 and
B12 show that the region of negative anomalies then slowly
shifts downward in the stratosphere until reaching pressure

levels between 100 and 20 hPa at a lead time of 6 h. During
its descent, the region of negative anomalies is also being
replaced by strong positive anomalies, giving a strong con-
trast between the lower and upper regions of the stratosphere,
which is characteristic of SSWs with slow recovery (Kuroda
and Kodera, 2004).

Finally, we also consider tropical stratospheric winds, i.e.,
the zonal (U ) wind component averaged between −5 and 5◦

latitude. This variable is analyzed because the zonal winds
are strongly determined by the quasi-biennial oscillation,
which is considered a useful indicator for the probability of
occurrence of SSWs on sub-seasonal timescales (Garfinkel
et al., 2018). However, applying sPCA to tropical U did not
yield any significant correlation at any lead time.

To summarize, sPCA has allowed us to find statistically
significant early signals for the occurrence of SSWs with
slow recovery up to 6 weeks prior to the onset of the event.
The signal is strongest for PV anomalies with a predictive
pattern localized in the upper part of the stratosphere, i.e.,
from 50 to 10 hPa. In this case, the corresponding three-
dimensional pattern retrieves the vortex pre-conditioning
mechanism first mentioned in McIntyre and Palmer (1983):
indeed, positive PV anomalies above the pole in the upper
stratosphere indicate the presence of a strong centered vortex
about 45 d before the peak of the subsequent SSW.

5 Performance comparison of ML and dynamical
models

Now that we know which physical quantities show statisti-
cally significant correlations, as well as where in the atmo-
sphere and how much in advance these variables are relevant,
we can use this knowledge to design machine learning tech-
niques to forecast the index I defined in Sect. 3. We will also
inquire if this kind of forecast could be used to improve the
performance of the sub-seasonal numerical prediction model
ECMWF S2S.

Forecast performance being a relative notion, we need ref-
erence forecasting models against which new algorithms will
be compared. The first most natural choice is the climatolog-
ical forecast, i.e., a forecast whose prediction matches the
corresponding day and month of the average seasonal cycle.
This forecast is usually seen as the least informative as this
strategy does not take into account the current state of the
system; it is thus seen as the baseline that has to be beaten
for a forecast to exhibit any kind of predictability.

A more informed and more accurate alternative, corre-
sponding to the current state of the art, comprises the sub-
seasonal forecasts produced by numerical models. In partic-
ular, we analyze the performance of the S2S forecasts pro-
duced by the ECMWF presented in Sect. 2.

Data-driven alternatives such as machine learning algo-
rithms provide point forecasts by default, i.e., not an en-
semble but only one value for each lead time. Comparing
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Figure 5. Maximum correlation as a function of the lead time for PV anomalies (a), PV waves (b), and eddy heat flux (c). Each of the gray
curves is obtained by randomly selecting 30 years to which the sPCA algorithm is applied for each individual lead time τ = 1, . . .,126 (d) to
predict the index I . Correlation is then computed using the 10 remaining years. Random winter selection and splitting is repeated 100
times to obtain the displayed set of curves. The blue curve represents the mean of all gray curves. Correlation is significant at a 5%
confidence level if fewer than five curves drop below the upper bound of the estimated confidence interval under the null hypothesis
H0 : corr{〈X(t1:(N−τ+1)),Pτ 〉,I (tτ :N )} = 0 denoted by the dashed black line. Red points represent the time steps −6 h and −14, −30,
−44, and −60 d, whose patterns can be found in Appendix B.

probabilistic forecasts, such as the ECMWF ensemble mem-
bers, with point forecasts is therefore challenging. Modifying
machine learning algorithms to output probabilistic forecasts
is possible but requires either advanced techniques such as
Bayesian computation or model ensemble methods. The link
between numerical ensembles and probabilistic forecasts is
an active field of research (Collins et al., 2012; Rougier and
Goldstein, 2014); thus in this exploratory study, we focus on
classical ML algorithms, leaving probabilistic modeling for
future work. To ensure the fairest possible comparison be-
tween point and ensemble forecasts, we use the mean abso-
lute error (MAE) as the metric of performance: for a point
forecast, the MAE is simply the absolute value of the differ-
ence between the ground truth, in this work the ERA-Interim
data, and the forecast. For the ECMWF hindcasts and for the
climatology, we consider the mean of the absolute difference
between all equally likely outcomes and the ground truth.

To forecast the index I , we consider two machine learn-
ing algorithms to be potential competitors for our reference
scenarios: the first is a simple linear regression using as
predictors the projection of ERA-Interim data onto the pat-
terns described in Sect. 4. This approach is similar to that
of Kretschmer et al. (2017), where instead of using sPCA to
uncover relevant regions and variables, the authors rely on a
causal discovery algorithm. Secondly, we used a multilayer
perceptron (Friedman et al., 2009, pp. 391–395) taking PV
anomalies over multiple levels as input. To limit the complex-
ity of the learning procedure and make the optimization eas-
ier, we kept the dimensionality of the input vector relatively
low by retaining only the pressure levels with the largest
anomalies in Sect. 4: the input vector thus contains the first
150 Laplacian coefficients of pressure levels 150, 100, 70,
50, 10, 2, and 1 hPa, yielding a vector of size 900. We choose
a neural network with three fully connected layers with 100

neurons per layer and combine them using ReLU (rectified
linear unit) activation functions. The network is implemented
with PyTorch and estimated using an Adam optimizer with
a learning rate of 0.001. Alternative architectures have also
been considered and could be further fine-tuned but only
for relatively minimal performance improvement. Finally, we
also considered kernel analog resampling techniques (Mc-
Dermott and Wikle, 2016; Yiou, 2014), which generate new
random trajectories by re-combining previously observed at-
mospheric states, thereby naturally producing probabilistic
forecasts. We however did not manage to successfully apply
analog techniques in a way for them to provide any kind of
performance improvement over numerical forecasts. These
algorithms suffer from the curse of dimensionality, so we at-
tribute the poor performance to the lack of a low-dimensional
and sufficiently relevant representation of the vortex dynam-
ics to measure the “distance” between trajectories. We still
believe that these techniques have very attractive properties
and can successfully be used to improve prediction perfor-
mance in this context; we however leave such developments
for future work.

To enable a comparison with the ECMWF hindcasts, we
first repeat the analysis described in Sect. 3 and compute
the index I over the full period, using daily mean temper-
ature averages for pressure levels 100, 50, and 10 hPa only.
The SSW index produced with this more limited quantity of
data behaves similarly to the original one; it is thus used as
ground truth to quantify forecast performance. Next, to as-
sess and compare the performance of each machine learn-
ing algorithm employed, the reanalysis data are divided into
three independent subsets: first, the validation set is used
to perform parameter tuning and model selection and in-
cludes four randomly selected winters between June 1979
and June 2015; all remaining winters over this period form
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the training set. Finally, we use the last four winters, Oc-
tober 2015 to April 2019, as a test set; i.e., the data from
these winters are used to compute the MAE and to compare
model performance. Note that all sets, i.e., the train, valida-
tion, and test sets, are designed to include an equal propor-
tion of winters with and without SSWs with slow recovery.
Figure 6 gives the evolution of the MAE for each model as a
function of the lead time. We first observe that all models can
be considered skillful as they provide a lower MAE than the
climatological forecast. For short lead times, i.e., from 1 d to
about 25 d, the ECMWF model performs best as the influ-
ence of the initial conditions is still strong. Beyond this time
horizon, the multilayer perceptron (MLP) starts to outper-
form the ECMWF prediction system, followed by the sPCA
linear regression about 10 d later. The results show that ML
algorithms are capable of outperforming numerical models
for extended-range forecasts and could be leveraged to im-
prove the performance of sub-seasonal forecasts.

Therefore, we propose to post-process S2S forecasts based
on ML forecasts to improve the overall model performance:
for a given initialization date, we start by producing a fore-
cast Î for the SSW index I at all lead times using the ma-
chine learning algorithm with the best average performance,
i.e., the multilayer perceptron. We then compute the distance
between each of the 11 ensemble members and the vector of
predictions. Out of these 11 trajectories, we select the 1 with
the lowest distance over all lead times, i.e., the most likely
ensemble member with respect to the ML prediction; the lat-
ter is then labeled as the post-processed S2S. In other words,
we solve for each lead time tl the following minimization
problem:

argmin
i=1,...,11

|Î (tl)− Ii(tl)|, (4)

where Ii refers to the ith of the 11 ECMWF ensemble mem-
bers. The presented procedure relies only on the output of
the ML model and thus does not use any information that
would not be known a priori at the time of initialization of
the numerical model. We repeat this process for all initial-
ization dates of the ECMWF hindcasts to retain only one
ensemble member per date. Computing distances between
ensemble members and the vector of predictions using only
lead times between 37 and 47 d, where the ML algorithm
performs best, provides better overall performance. Figure 6
shows that the post-processed ECMWF hindcasts have an
MAE up to 20% lower than the original ensemble with sig-
nificant performance improvement after day 25. While the
post-processed ECMWF model has a larger MAE than the
original MLP algorithm for lead times of 28 to 47 d, it has
the advantage of providing predictions for not only the index
I but also all other atmospheric variables as we only select 1
of the 11 ensemble members of the ECMWF model.

We showed here that ML methods can be used to improve
long-range forecast performance in the stratosphere. Further
fine-tuning of different ML models, by trying more combi-

Figure 6. Mean absolute error (MAE) as a function of the lead time
for the following forecasting models: climatology (solid black),
ECMWF model (solid red), linear regression with sPCA output
(double-dashed blue), multilayer perceptron (dashed orange), and
post-processed ECMWF model (dotted red).

nations of variables or hyperparameters, is likely to further
improve the performance of the ML models and the post-
processed S2S model but is left for future work.

6 Conclusions

We presented in this work a framework to analyze and predict
atmospheric dynamics using machine learning. The method-
ology presented is a three-step procedure: we first use unsu-
pervised machine learning techniques to produce a univari-
ate index quantifying the occurrence and the strength of sud-
den stratospheric warmings with slow recovery. The index
is then used as input for supervised algorithms in order to
assess “where” and “when” in the system we can find rel-
evant predictors. Finally, the answer to these questions is
used to produce ML forecasts up to 47 d in the future for
the proposed SSW index. The performance of these fore-
casts is compared against the state-of-the-art ECMWF nu-
merical prediction model: the latter performs best for short-
to medium-range lead times of up to 25 d, while the data-
driven model outperforms the dynamical prediction model
for longer lead times. Machine learning forecasts are then
used to post-process S2S predictions, yielding a 20% de-
crease in terms of mean absolute error. A part of the increased
predictability at longer lead times comes from the fact that
SSW events often occur as part of PJO events. Their onset
in the upper stratosphere tends to occur on average slightly
before SSW events; hence the onset of an SSW event that oc-
curs during a PJO event will likely be more predictable as the
PJO event has already started at the time of the SSW onset.

The methodology presented in this paper has been devel-
oped to ensure both tractability and interpretability of the re-
sults. As the drivers behind SSWs with slow recovery are
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large-scale circulation patterns, we successfully reduced the
data dimensionality using a functional representation of the
data that allows us to apply machine learning algorithms us-
ing reasonable computational times and resources, making it
possible to test statistical significance using resampling tech-
niques. We focused here mostly on algorithms, such as lin-
ear regression, whose interpretability is straightforward and
which not only improve the forecast performance but also
potentially allow us to deepen our understanding of SSW dy-
namics. However, non-linear and more complex data-driven
methods such as Laplacian eigenmaps (Belkin and Niyogi,
2003) or diffusion maps (Coifman et al., 2005; Coifman and
Lafon, 2006) that have already been applied to study cli-
mate dynamics (Bushuk et al., 2014; Székely et al., 2016)
could also be used as a replacement for PCA in Sect. 3. Sim-
ilarly, in Sect. 4, using the kernelized generalization of sPCA
could also help uncover non-linear relationships between po-
tential predictors and SSW events. The linearity of sPCA
might indeed be one of the reasons why our method was not
able to detect any significant signal from tropospheric plan-
etary waves. However, not all SSWs have anomalous tropo-
spheric precursors beyond a sufficiently large tropospheric
wave forcing, and anomalies in the wave flux (Birner and Al-
bers, 2017) or wave amplitude (Domeisen et al., 2018) often
only emerge within the stratosphere, which might be a fur-
ther reason why the model does not detect anomalous tropo-
spheric precursors. Section 5 is an exception to our constraint
of interpretability as we considered a multilayer perceptron a
potential candidate for a forecasting model: neural networks
are difficult to interpret in general, but their interpretability is
a very active field of research (e.g., Lundberg and Lee, 2017).

The major drawback of the post-processing presented in
Sect. 5 is that the probabilistic interpretation of ensemble dy-
namical forecasts is lost by selecting only one relevant tra-
jectory. Potential improvements would thus refine the pro-
cessing by computing mixture weights, i.e., the relative like-
lihood of each ensemble member with respect to the current
forecast. To achieve this goal, possible directions could be
to use, for example, kernel weights proportional to the dis-
tance between the numerical and the ML forecasts or more
generally to produce probabilistic ML forecasts. In the latter,
the likelihood of each ensemble member could then be de-
duced directly from the distributional forecast. As mentioned
in Sect. 5, usage of kernel analogs was attempted but without
success. A deeper understanding of the vortex dynamics and
its representation in low-dimensional spaces will be essential
to producing analogs that outperform numerical models on
all timescales.

Appendix A: Dynamics of SSW events without slow
recovery

Figure A1. First four principal components for winters 1980/99,
1999/2000, 2006/07, and 2007/08 obtained using PCA on polar-
cap-averaged temperature anomalies at pressure levels 150, 125,
100, 70, 50, 30, 20, 10, 7, 5, 2, and 1 hPa with a temporal embed-
ding of T = 2 months. Vertical dashed line: central date of the 2009
SSW. Solid black line: SSW index I over the same period defined
as a function of the second and third principal components as in
Eq. (2).
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Appendix B: Three-dimensional patterns of SSW early
signals

B1 PV anomalies

Figure B1. Pattern of PV anomalies maximizing correlation with the SSW index at a lead time of 6 h.

Figure B2. Pattern of PV anomalies maximizing correlation with the SSW index at a lead time of 14 d.
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Figure B3. Pattern of PV anomalies maximizing correlation with the SSW index at a lead time of 30 d.

Figure B4. Pattern of PV anomalies maximizing correlation with the SSW index at a lead time of 44 d.
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Figure B5. Pattern of PV anomalies maximizing correlation with the SSW index at a lead time of 60 d.

B2 PV waves

Figure B6. Pattern of PV waves maximizing correlation with the SSW index at a lead time of 6 h.
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Figure B7. Pattern of PV waves maximizing correlation with the SSW index at a lead time of 14 d.

Figure B8. Pattern of PV waves maximizing correlation with the SSW index at a lead time of 30 d.
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Figure B9. Pattern of PV waves maximizing correlation with the SSW index at a lead time of 44 d.

Figure B10. Pattern of PV waves maximizing correlation with the SSW index at a lead time of 60 d.
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B3 Heat flux

Figure B11. Patterns of heat flux maximizing correlation with the SSW index at a lead time of 6 h. The upper-left plot displays the patterns’
zonal averages.

Figure B12. Patterns of heat flux maximizing correlation with the SSW index at a lead time of 14 d. The upper-left plot displays the patterns’
zonal averages.
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Figure B13. Patterns of heat flux maximizing correlation with the SSW index at a lead time of 30 d. The upper-left plot displays the patterns’
zonal averages.

Figure B14. Patterns of heat flux maximizing correlation with the SSW index at a lead time of 44 d. The upper-left plot displays the patterns’
zonal averages.
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