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Abstract. We show that shifted pairs of discrete or continuous low-lying
horocycles equidistribute in the product space of two modular curves.

1 Introduction

1.1 Main results. A classical result of Sarnak [Sar81] says in a special
case that the image of a low-lying horocycle

{x + i/T | x ∈ [0, 1]}

of height 1/T equidistributes on the modular curve X = SL2(Z)\H with respect to
the usual hyperbolic probability measure

dμX(z) =
3
π

dx dy
y2

as T → ∞.
Similarly, one can consider for a prime q, say, “discrete” low-lying horocycles

Hq :=
{a + i

q
| a (mod q)

}
.

Except for the point iq ∈ H, this is the image of SL2(Z)i by the Hecke correspon-
dence Tq (which has degree q+1), and non-trivial bounds for eigenvalues of Hecke
operators imply that these discrete low-lying horocycles also equidistribute on X
as q → ∞.
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It is natural to investigate whether equidistribution persists when some addi-
tional constraints are imposed on the entries a. Identifying the set of a’s with
integers contained in the interval [0, q− 1], one can restrict a to belong to a subin-
terval I ⊂ [0, q − 1] (see [Str04]) or vary a along a subsequence of integers of a
special shape like a = [nc], c = 1.1 [Ven10] or ask for a to vary along the primes.

This last casewas studied by Sarnak andUbis [SU15] who proved, assuming the
Ramanujan–Petersson–Selberg conjecture that, as q → ∞, the “prime” q-Hecke
points

Hp
q :=

{p + i
q
, 1 � p � q − 1, p prime

}
become dense in X; more precisely any weak limit, μp say, of the uniform proba-
bility measures supported by the Hp

q satisfies

1
5
μX � μp � 9

5
μX.

As for the proof, the combinatorial decomposition of the characteristic function of
the primes lead naturally to handling sums of “Type I” and “Type II”. The treatment
of type I sums is closely related to restricting a to a sub-interval while the treatment
of type II leads a new equidistribution problem: the joint equidistribution of sets
of the shape

Hq,(b1,b2)(N) :=
{(b1a + i

q
,
b2a + i

q

)
| 1 � a � N

}
⊂ X × X

on the product X × X; here 0 < b1 < b2 are distinct integers bounded by a fixed
power of q and with N satisfying b1N, b2N � q.

In the present paper we investigate the distribution properties of the above sets
when we let a vary over the complete set of congruence classes modulo q and look
on how

Hq,b :=
{(a + i

q
,
ab + i

q

)
| a (modq)

}
distributes in the product X × X as q → ∞ as we allow b to possibly vary with q.
Clearly if b = 1 we cannot expect full equidistribution to hold: Hq,b is simply
trapped in the diagonally embedded copy of X in X × X (and equidistributes along
it). A similar phenomenon will occur for any fixed (i.e., independent of q) residue
class b. One might optimistically conjecture that something like q‖b/q‖ → ∞
(where ‖.‖ denotes the distance in R/Z) may suffice to ensure equidistribution, but
the situation is more subtle as we shall see in a moment.

It turns out to be useful to introduce the lattice

(1.1) �q,b = {(n1, n2) ∈ Z2, n1 + n2b ≡ 0 (modq)} ⊆ Z2.
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This lattice has covolume q and we denote by

s(q; b) = min
0 	=n∈�q,b

‖n‖

its minimum (i.e., the minimal euclidean norm of a non-zero element). It is
well-known from the geometry of numbers that

(1.2) s(q; b) 
 q1/2.

In particular s(q; b) → ∞ implies q → ∞. We are now ready to state our first
main result.

Theorem 1.1. Let q be a large prime and b ∈ (Z/qZ)×. Then for pairs (q, b)
such that s(q; b) → ∞ the set

(1.3) Hq,b =
{(a + i

q
,
ab + i

q

)
| a (modq)

}
⊆ X × X

becomes equidistributed with respect to the product of hyperbolic measures

μX×X = μX ⊗ μX.

Once the case of two factors is available, it is possible to obtain equidistribution
for more ([EL19, Corollary 1.5]):

Corollary 1.2. For d � 2 and a d-tuple of congruence classes

b = (b1, . . . , bd) ∈ ((Z/qZ)×)d

let
s(q; b) := min

i 	=j
s(q; bib

−1
j ).

Then for pairs (q, b) such that s(q, b) → ∞ the set

Hq,b :=
{(ab1 + i

q
, . . . ,

abd + i
q

)
| a (modq)

}
⊆ Xd

becomes equidistributed with respect to the product of hyperbolic measures
μXd = μ⊗d

X .

Remark 1.1. Theorem 1.1 and Corollary 1.2 hold true with X replaced by any
fixed modular curve X0(D) = �0(D)\H for D � 1 and

�0(D) =

{(
a b
c d

)
∈ SL2(Z), c ≡ 0 (modD)

}
.

In fact, for the proof we will need such an extension to a modular curve of higher
level.
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Remark 1.2. If we denote for a continuous, compactly supported function
ϕ : X × X → C by

(1.4) Wϕ(b; q) :=
1
q

∑
a (mod q)

ϕ
(a + i

q
,
ab + i

q

)
the corresponding Weyl sum, then one approach to Theorem 1.1 is to show that

(1.5) Wϕ(b; q) =
∫

X×X
ϕ(z1, z2)dμX×X(z1, z2) + oϕ(1).

If we assume the Ramanujan–Petersson conjecture for the Hecke eigenvalues of
Maaß cusp forms for the group SL2(Z) and ϕ is cuspidal (in both components), we
prove (1.5) with a polylogarithmic rate in the form

oϕ(1) 
ϕ,ε s(q; b)−1+ε + log−δ p

for some fixed δ > 0 and any ε > 0. See Section 1.2 for more details.

Remark 1.3. The condition s(q; b) → ∞ means that b/q must not be too close
to a rational number with fixed denominator (like 2/5), so b/q must be, in a rather
weak sense, “badly approximable”. We indicate in Remark 4.2 below why this
condition is probably sharp.

Remark 1.4. Theorem 1.1 can probably be generalized to composite numbers q

at the cost of slightly more work. For instance, some care must be taken if q
has many small prime factors which might collide with the auxiliary primes to be
chosen later.

We prove a similar theorem for “continuous” low-lying pairs of horocycles.

Theorem 1.3. Let T > 1, y ∈ [1, 2] and write y = a/q + O(1/qQ) for positive

coprime integers a, q with q � Q := T0.99. Let I ⊆ R be a fixed non-empty interval.

Then {(x + i
T
,
xy + i

T

)
| x ∈ I

}
⊆ X × X

equidistributes as T → ∞ for pairs (y,T) with q → ∞.

The condition on y is similar: y must be in some weak sense badly approximable
by rational numbers with small denominator. There is some flexibility in the
definition of Q as the proof shows. Also Theorem 1.3 can be generalized to d

factors in a similar way.
These results are new examples of a growing family of equidistribution re-

sults inspired by Sarnak’s classical theorem [Sar81] mentioned above, as well
as by Duke’s celebrated equidistribution theorems for Heegner points and closed
geodesics with increasing discriminants on modular curves [Duk88]; the latter
needs crucially subconvexity for twisted L-functions [DFI93] as an input.
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A new generation of equidistribution problems was posed by the second author
and Venkatesh in their ICM address [MV06] in the context of Duke’s theorem. Let
H(D) be the set of Heegner points in the imaginary quadratic field K = Q(

√−D).
Let [b] be an element in the class group of K (which acts on H(D)), and consider
the set of pairs

{(z, [b] � z) | z ∈ H(D)} ∈ X × X.

As D → ∞, does this equidistribute in the product space X × X? Similarly to the
assumption s(q; b) → ∞ in Theorem 1.1, a necessary condition to escape from
the diagonal is that the norm of the smallest ideal in [b] tends to infinity, and it is
reasonable to conjecture that this is sufficient. This is (a special case of) the mixing
conjecture. This conjecture is still open but two different conditional proofs were
given by Khayutin [Kha19] and Blomer–Brumley–Khayutin [BBK]. One of the
key ingredients in the former is a deep result in homogeneous dynamics due to
Einsiedler and Lindenstrauss [EL19] classifying under suitable condition joinings
in products of locally homogeneous spaces. As we will see below this result also
play a crucial role in the present paper. Further variations on this theme can be
found in [AES16, AEW22, ALMW22, BB], and we recommend in particular the
Bourbaki seminar by M. Aka [Aka21].

Remark 1.5. The astute reader might have noticed that Hq is essentially the set
H(−4q2) of Heegner points of the highly non-maximal order of conductor −4q2.

More precisely, if q ≡ 3 (mod 4), we have

#H(−4q2) =
1
2
(q + 1),

and Hq corresponds to the q primitive quadratic forms

Fq,a := (q2, 2qa, a2 + 1) for a (mod q).

The forms Fq,a1 and Fq,a2 are equivalent if and only if a1a2 ≡ −1 (mod q)
or a1 ≡ a2 (mod q), so that Hq covers H(−4q2) twice except for the form Fq,0

which corresponds uniquely to the identity in H(−4q2).
If q ≡ 1 (mod 4), then

#H(−4q2) =
1
2
(q − 1),

and the same analysis holds, except that the two forms (q2, 2qa, a2+1)with a2 ≡ −1
(mod q) are not primitive any more, and the corresponding two representatives of
the same point in SL2(Z)\H are not counted by H(−4q2).

However the group action in H(−4q2) is quite different from the multiplication
in Hq.



30 V. BLOMER AND P. MICHEL

We recall that Khayutin’s work [Kha19] is tailored for fundamental discrimi-
nants and uses quite crucially the fact that the underlying order is maximal (or at
least not far away from being maximal, cf. [Kha19, Section 1.8.2]). While our
proof also builds crucially on the work of Einsiedler–Lindenstrauss, our approach
is different from Khayutin’s: instead of bounding a correlation function between
two measures, we prove, by direct arguments, that the Weyl sums attached to a
well chosen cuspidal test function ϕ converge to the correct limit (i.e., 0); the
classification theorem of Einsiedler–Lindenstrauss then allows us to bootstrap this
partial information to full equidistribution.

Remark 1.6. Unlike other examples, our result does not require any splitting
conditions: in our case such conditions are in fact automatically satisfied. As such,
this seems to be one of the first unconditional instances of a mixing type conjecture
(see also [Saw21] as well as [ST17] for proofs of function field versions of this
conjecture).

Remark 1.7. Lindenstrauss, Mohammadi and Wang [LMW] have obtained very
general and effective forms of equidistribution with polynomial decay rates for
certain types of one parameter unipotent flows on products of modular curves. It is
not clear to us whether this would cover all cases of Theorem 1.3 (as the analysis
in [LMW] depends on the injectivity radius of the base point x0) and then whether
this could be transferred to the discrete case treated in Theorem 1.1.

1.2 Principle of the proof. By the spectral decomposition and Weyl’s
equidistribution criterion, it is sufficient to bound non-trivially the Weyl sum
Wϕ(b; q) for ϕ = f1 ⊗ f2 when f1 and f2 are either constant functions or (non-
constant) Hecke eigenforms. The case where f1 or f2 is constant follows from the
equidistribution of (1.3) when projected to each factor X. To handle the remain-
ing sums and prove Theorem 1.1 we use different techniques depending on how
fast s(q; b) approaches ∞ within the range (1.2), a principle that is familiar from
[EMV13], [Kha19] or [BBK].

More precisely, let θ = 7/64 be the best known approximation towards the
Ramanujan–Petersson conjecture [Kim03] and suppose we are in the range

s(q; b) � q1/2−2θ−η

for some fixed η > 0. Bounds for the Weyl sums can be achieved by resolving
some versions of the shifted convolution problem (see Proposition 2.1). In this
regime, the Ramanujan–Petersson conjecture is not necessary and one can show
that equidistribution holds with a polynomial decay rate oϕ(1) 
 q−δ(η) in the
notation of (1.5).
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In the remaining range

q1/2−2θ−η � s(q; b) 
 q1/2,

methods from harmonic analysis do not work so well at the moment. Using sieve
methods instead together with the analytic theory of multiplicative functions, we
are able to bound non-trivially the Weyl sums (1.5) when f1 and f2 are cuspidal
and both satisfy the Ramanujan–Petersson conjecture. The Ramanujan–Petersson
conjecture is needed to implement the sieving argument as it insures that the
(multiplicative) Hecke eigenvalue functions n �→ λfi(n) are bounded in absolute
value by the divisor function. This reduces the problem to that of obtaining
a sufficiently good bound for sums of the Hecke eigenvalues along the primes,
namely

(1.6)
∑
p�z

p prime

|λf1 (p)| + |λf2 (p)|
p

� (2 − δ) log log z

for some fixed δ > 0 and sufficiently large z. Such a bound, which follows
from suitable approximations to the Sato–Tate conjecture for cusp forms, yields a
power saving in log p on the size of the Weyl sum (in a way similar to [Hol10]).
Unfortunately, if f1 or f2 is an Eisenstein series, the distribution properties for their
Hecke eigenvalues do not allow to obtain (1.6). Nevertheless it will be useful
to remember that if f1 and f2 are both CM forms (cusp forms attached to Hecke
characters of quadratic fields) the Ramanujan–Petersson conjecture holds and (1.6)
is unconditional.

To deal with the rest of the spectrum we take a very different route and make use
of a powerful measure classification theorem of Einsiedler–Lindenstrauss [EL19].
Let μq,b denote the uniform probability measure on X × X supported by Hq,b. As
we explain below in Section 5, μq,b is the projection to X × X of a measure μS

q,b

on a suitable S-arithmetic quotient

�S × �S\G(QS) × G(QS), G = PGL2

and (by non-trivial bounds for Hecke eigenvalues in the discrete case or Sarnak’s
theorem in the continuous case) any weak-� limit of the μS

q,b projects to the Haar
measure on each factor, i.e., it defines a joining of the Haar measures. Moreover,
these limits are invariant under the action of a rank 2 diagonalisable subgroup,
namely the diagonal subgroup of G(QS) × G(QS) generated by

(t1, t1) and (t2, t2) where ti =

(
q−1

i

qi

)
, i = 1, 2
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for q1, q2 two primes distinct from q. This is an immediate consequence of the
invariance of Hq,b under multiplicative shifts that we have already observed:

Hq,b =
{(aq2

i + i
q

,
aq2

i b + i
q

)
| a (modq)

}
, i = 1, 2.

By the measure classification theorem, any such joining is a convex combination
of algebraic measures which in the present situation are either the (image of the)
Haar measure on the full product space or the Haar measure along diagonal G-
orbits in the product. We will have to exclude the latter possibility. This will
follow—in a rather subtle way—from what we have already proved. Testing the
measure against a carefully selected test function ϕ = f1 ⊗ f2, where both f1 and f2
are suitable vectors in a certain CM automorphic representation (which satisfies
the Ramanujan conjecture), we show that the corresponding Weyl sum would have
a positive limit if the measure were not the full product measure.

Remark 1.8. This principle of using measure rigidity to bootstrap the evaluation
of Weyl sums for a small portion of the spectrum to a full equidistribution statement
has occurred in the past notably in [ELMV11] (for the Siegel Eisenstein series
for SL3). This principle is likely to be used again in higher rank situations in
connection to functoriality: for instance we hope that the results of this paper
will be useful for equidistribution problems associated with GSp4 (on using Saito–
Kurokawa lifts).

Remark 1.9. Notice that the two entries (a (modq), ab (modq)) in Theorem 1.1
are related by a linear equation. Another interesting question occurring in classical
problems from analytic number theory is whether joint equidistribution holds for
tuples of discrete horocycles whose entries are related by more general algebraic
equations. For instance, the second named author together with Einsiedler and
Lindenstrauss ([ELM18]) established joint equidistribution in the case ofmonomial
relations: given two fixed integers 1 � k < l, then as q → ∞ amongst the primes
and for any b ∈ (Z/qZ)×, the set

Hk,l,q,b :=
{(ak + i

q
,
bal + i

q

)
| a (modq)

}
becomes equidistributed on X × X. The proof uses again crucially the measure
classification theorem in [EL19], but the application is simpler: the sets Hk,l,q,b are
then invariant under the rank 2 subgroup generated by (tk1, t

l
1) and (tk2, t

l
2), and the

fact that 1 � k < l excludes the possibility of having measures supported along
diagonal G-orbits. The combination of the present results with those of [ELM18]
will be the topic of a future work, joint with Einsiedler and Lindenstrauss.
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2 Shifted convolution problems

In this section we prepare the stage for a proof of Theorem 1.1 in the “low regime”
case, i.e., when

s(q; b) � q1/2−2θ−δ

for some δ > 0.

We start with a variation of [Blo04, Theorem 1.3] with an additional summation
over h.

Proposition 2.1. Let N1N2, d, l1, l2 ∈ N with (N1N2l1l2, d) = 1,
H,M1,M2,P1,P2 � 1. Let f, g be two (holomorphic or Maaß) cuspidal newforms

of levels N1,N2 respectively and central characters χf , χg with Hecke eigenval-
ues λf (m), λg(m). Let G be a smooth function supported on [M1, 2M1]× [M2, 2M2]
satisfying

‖G(i,j)‖∞ 
i,j (P1/M1)
i(P2/M2)

j for i, j ∈ N0.

For H � h � 2H let |α(h)| � 1. Then

D :=
∑

H�h�2H
d|h,(d,h/d)=1

α(h)
∣∣∣∣ ∑
l1m1±l2m2=h

λf (m1)λg(m2)G(m1,m2)
∣∣∣∣


 (l1M1 + l2M2)
1/2+θ+ε

(H
d

)1/2(
1 +

H/d
l1l2(1 + H/l2M2)

)1/2

with an implied constant depending on ε and polynomially on P1,P2 and the

conductors of f and g.

The proof depends on the following bound for averages of twisted Kloosterman
sums. Here we work unconditionally and denote by θ � 7/64 an admissible
exponent towards the Ramanujan–Petersson conjecture.

Lemma 2.1. Let P0,P1,P2, S,H,Q � 1, d,N ∈ N with (d,N) = 1. Let χ be
a (possibly trivial) Dirichlet character modulo N. Let u be a smooth function with

support in [H, 2H] × [S, 2S] × [Q, 2Q] satisfying

‖u(ijk)‖∞ 
 (P0/H)i(P1/S)j(P2/Q)k

for 0 � i, j, k � 2. Let a(h) and b(s) for H � h � 2H, S � s � 2S be sequences of
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complex numbers. Then∑
s

∑
N|q

∑
d|h

(d,h/d)=1

a(h)b(s)Sχ(±h, s, q)u(h, s, q)


 Q
(∑

s

|b(s)|2
)1/2(

1 +
HS
Q2 +

S
N

)1/2

× dθ
(∑

d|h
|a(h)|2

)1/2(
1 +

H/d
N(1 + HS/Q2)

)1/2(
1 +

(HS
Q

)−θ)
(NHSQ)ε

with an implied constant that depends on ε and polynomially on P0,P1,P2.

Proof. We follow the proof of [Blo04, Proposition 3.5]. Instead of Uh(t, q)
we work with

U(t0, t1; q) =
∫ ∞

−∞

∫ ∞

−∞
u
(
x, y,

4π
√

xy

q

)4π
√

xy

q
e(−t0x − t1y) dxdy

which satisfies
∂n

∂qn
U(t0, t1; q) 
n

(
1 +

H|t0|
P0

)−2(
1 +

S|t1|
P1

)−2
HSQ

( QP2√
HS

)n

and

qu(h, s, q) =
∫ ∞

−∞

∫ ∞

−∞
U
(
t0, t1;

4π
√

hs
q

)
e(t0h + t1s) dt0 dt1.

As in [Blo04, Proposition 3.5] we now apply the Kuznetsov formula, Cauchy–
Schwarz and the spectral large sieve for cusp forms of level N and character χ.
Note that, as (d,N) = (d, h/d) = 1, we can extract the divisibility condition d | h at
the cost of a factor dθ in the h-sum and reduce the length of the h-sum to H/d. We
then arrive in the same way at [Blo04, (3.19)] except that the factor Thθ is replaced
with

dθ
(
T2 +

H/d
N

)1/2(∑
d|h

|a(h)|2
)1/2

,

and the result follows with the same choice of T as in [Blo04, (3.20)]. �
For the proof of Proposition 2.1we follow literally the proof of [Blo04, Theorem

1.3] in [Blo04, Section 4] with the only minor modification that f and g may be
two different cusp forms of potentially levels, they may have non-trivial central
characters, and that the summation condition can have either sign. We keep the
extra sum over h outside until the very end when we apply our Lemma 2.1 with
S = Q2/l2M2 and N = N1N2l1l2 as a replacement for [Blo04, Proposition 3.5]. This
replaces the factor hθ in [Blo04, (4.19)] with

dθ
(H

d

)1/2(
1 +

H/d
l1l2(1 + H/l2M2)

)1/2
,
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so that

D 
 (l1M1 + l2M2)
1/2+θ+ε

(H
d

)1/2(
1 +

H/d
l1l2(1 + H/l2M2)

)1/2

as desired. �

3 Application of a sieve

For X,Y � 1 and q ∈ N we denote by Cq(X,Y) the set of subsets S ⊆ N2 contained
in a ball of radius X100 about the origin and satisfying∑

n=(n1,n2)∈S
d1|n1,d2|n2

1 =
X

d1d2
+ O(Y)

for all (d1d2, q) = 1. A typical example is S = �∩Rwhere� ⊆ Z2 is a sublattice of
index q and shortest non-zero vector of length s, R ⊆ R2

>0 a non-empty, bounded,
connected and simply-connected set with piecewise smooth boundary ∂R, with

X =
vol(R)

q
, Y =

length(∂R)
s

.

Note that for (d1d2, q) = 1, the pairs (n1, n2) ∈ � with dj | nj for j = 1, 2 form a
sublattice of index d1d2.

Proposition 3.1. Let S ∈ Cq(X,Y). Let λ1, λ2 be two non-negative multi-

plicative functions satisfying λj(n) � τk(n) for some k ∈ N. Fix 0 < γ < 1/2 and
let z = Xγ. Then∑

(n1,n2)∈S
(n1n2,q)=1

λ1(n1)λ2(n2) 
k,γ,ε
X

(log z)2
exp

(∑
p�z

λ1(p) + λ2(p)
p

)
+

X1+ε

z1/4
+ XεYz3

for any ε > 0.

For z � 1 and q ∈ N let Pq,z be the set of primes p � z, p � q. For S ∈ Cq(X,Y),
a1, a2 ∈ N and y1, y2 � 1 define

S(a,y) :=
∑

n=(n1,n2)∈S
a1|n1,a2|n2

(n1/a1,Pq,y1 )=(n2/a2,Pq,y2 )=1

1.

As usual we write P+(n) for the largest prime factor of n (with the convention
P+(1) = 1). From a standard sieve, e.g. Selberg’s sieve, we obtain
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Lemma 3.1. For S ∈ Cq(X,Y), y1, y2 � 1, a1, a2 ∈ N with (q, a1a2) = 1 we

have

S(a, y) 
 X
a1a2 log(1 + y1) log(1 + y2)

+ Yy2
1y

2
2.

For the Proof of Proposition 3.1 we decompose a general n1 appearing in the
sum as

n1 = pe1
1 · · · pek1

k1
· p

ek1+1

k1+1 · · · per
r = a1b1

with

p1 < p2 < · · · , pj � q

and similarly for n2 = a2b2 where kj is maximal with aj � z = Xγ. Let

ξ := (log z)(log log z).

We distinguish the following four cases for n1:

(I) pk1+1 � z1/2, (II) pk1+1 < z1/2, a1 � z1/2,

(III) pk1+1 < ξ, a1 > z1/2, (IV) ξ � pk1+1 � z1/2, a1 > z1/2

and similarly for n2. This set-up goes back originally to Erdős [Erd52] and
was refined by Wolke [Wol71], Nair–Tenenbaum [NT98], Khayutin [Kha19] and
others.

(1) Consider first pairs (n1, n2) such that n1 is in case (II). Then p
ek1+1

k1+1 � z1/2,
so n1 is divisible by a prime power pe � z1/2 with p < z1/2. Let e0 = e0(p, z) � 2
be the smallest positive integer with pe0 � z1/2. Estimating λ1(n1)λ2(n2) trivially,
by Lemma 3.1 the contribution of such pairs is at most


 Xε
∑

p�z1/2

p�q

S(pe0, 1, 1, 1) 
 X1+ε
( ∑

p�z1/4

1
z1/2 +

∑
z1/4�p�z1/2

1
p2

)
+ z1/2XεY


 X1+ε

z1/4
+ z1/2XεY.

(3.1)

The same argument works with exchanged indices if n2 is in case (II).

(2) Next consider pairs (n1, n2) such that n1 is in case (III). Then n1 is divisible
by a number z1/2 < a1 � z such that P+(a1) < ξ. Since∑

a�x
P+(a)�log x log log x

1 
 xε,
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estimating λ1(n1)λ2(n2) trivially, the contribution of such pairs is by Lemma 3.1
and partial summation at most

(3.2) 
 Xε
∑

z1/2�a�z
P+(a)�ξ
(a,q)=1

S(a, 1, 1, 1) 
 X1+ε

z1/2
+ XεY.

The same argument works with exchanged indices if n2 is in case (III).

(3) Finally we consider the situation when both n1 and n2 are in cases (I) or (IV).

Supposefirst that n1 is in case (I). Then z�(b1)/2 � b1 
 XO(1), so that�(b1) 
 1
and hence λ1(b1) 
 1. We conclude that n1 is divisible by some

a1 � z, (n1/a1,Pq,z1/2) = 1

and λ1(n1) 
 λ1(a1). The same argument works if n2 is in case (I) with exchanged
indices.

Next suppose that n1 is in case (IV). Then we localize pk1+1 into intervals of
the shape z1/(r+1) � pk1+1 � z1/r for 2 � r � log z/ log ξ. In each such interval
we have pk1 � pk1+1 � z1/r. We conclude that for each fixed r, the number n1 is
divisible by some

z1/2 < a1 � z, P+(a1) � z1/r, (n1/a1,Pq,z1/(r+1)) = 1,

and since�(n1/a1) � r, we have λ1(n1) 
 λ1(a1)kr since λj(n) � τk(n). The same
argument works if n2 is in case (IV) with exchanged indices.

We conclude that in either case the contribution of such pairs is∑
r1,r2�log z/ log ξ

kr1+r2
∑

δr1 	=1z1/2�a1�z

δr2 	=1z1/2�a2�z

P+(a1),P+(a2)�z1/r

(a1a2,q)=1

λ1(a1)λ2(a2)S(a1, a2, z
1/(r1+1), z1/(r2+1))


 ∑
r1,r2�log z/ log ξ

kr1+r2r1r2

∑
δr1 	=1z1/2�a1�z

δr2 	=1z1/2�a2�z

P+(a1),P+(a2)�z1/r

Xλ1(a1)λ2(a2)
a1a2(log z)2

+ XεYz3

where we used once again Lemma 3.1. By [Wol71, Lemma 3] we have

∑
δr1 	=1z1/2�a�z

P+(a)�z1/r

λj(a)
a


 exp
(∑

p�z

λj(p)
p

− cr log r
)
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for some constant c > 0, r 
 log z/ log log z (this condition is needed in the
proof and requires us to treat case (III) separately) and j = 1, 2, so that the total
contribution of pairs in the present case is

(3.3) 
 X
(log z)2

exp
(∑

p�z

λ1(p) + λ2(p)
p

)
+ XεYz3.

Combining (3.1), (3.2) and (3.3), we complete the proof. �

We will apply Proposition 3.1 to the multiplicative functions n �→ |λfi(n)|,
i = 1, 2, where f1, f2 are cuspidal (holomorphic or Maaß) Hecke eigenforms with
Hecke eigenvalues λfi(n) satisfying the Ramanujan–Petersson conjecture, so that

(3.4) |λf1 (n)|, |λf2(n)| � τ(n)

for all n � 1.

Lemma 3.2. Let f be a cuspidal newformwith Hecke eigenvalues λf satisfying

the Ramanujan–Petersson conjecture.

– If f is a dihedral form (in which case the Ramanujan–Petersson conjecture is
automatic), then for any z � 5 we have

(3.5)
∑
p�z

|λf (p)|
p

� 3
4

log log z + O
(
1 + log(condf )

)
.

– If f is not a dihedral form, then for any z � 5 we have

(3.6)
∑
p�z

|λf (p)|
p

� 17
18

log log z + O
(
1 + log(condf )

)
.

Proof. Let N denote the level of f and χ be its nebentypus. If f is dihedral,
we recall that it comes from some Hecke character (not of order 1 or 2 since f is
cuspidal) of a quadratic number field K/Q and hence λf (p) vanishes if p is inert
in K. For prime p � N split in K we have

|λf (p)| � 1 + |λf (p)|2
2

=
3
2

+
1
2
λf2 (p)

where f2 is the theta series induced from the square of the Hecke character men-
tioned above. We conclude that∑

p�z

|λf (p)|
p

� 3
2

∑
p�z,(p,N)=1

p split

1
p
w
(p

z

)
+

1
2

∑
p�z,(p,N)=1

p split

λf2 (p)
p

w
(p

z

)
+ O(log N)

for a smooth non-negative function w supported on [0, 2) and equal to 1 on [0, 1].
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The desired bound (3.5) follows after integration by parts fromPerron’s formula
applied to −d log ζK(s) and −d logL(s, f2) which are holomorphic and logarithmi-
cally bounded in a standard (Hadamard/de la Vallée–Poussin type) neighbourhood
of the line �s = 1 except for a pole at s = 1 (for the former) with residue +1 and
(possibly) a pole at some Siegel zero with residue −1 (which, if it exists, then
contributes a negative amount).

If f is not dihedral, the bound (3.6) is similar, but requires a few higher sym-
metric power L-functions of f (cf. [EMS84]). The starting point is the following
computation, valid for p � N and whenever |λf (p)| � 2, namely

|λf (p)| � 1 +
1
2
λf (p

2)χ(p) − 1
18
λf (p

2)2χ2(p)

=
17
18

+
4
9
λsym2f (p)χ(p) − 1

18
λsym4f (p)χ2(p).

We have therefore∑
p�z
p�N

|λf (p)|
p

�
∑
p�N

|λf (p)|
p

w
(p

z

)

� 17
18

log log z + O(1) +
4
9

∑
p�N

λsym2f (p)χ(p)

p
w
(p

z

)

− 1
18

∑
p�N

λsym4f (p)χ2(p)

p
w
(p

z

)
.

The bounds for the last two sums are then consequences of the holomorphy and
the logarithmic bounds satisfied by −d logL(s, sym2νf ×χν) for ν = 1, 2 when s is
within the standard neighbourhood of the line �s = 1.

For ν=1, the required properties follow from the cuspidality of L(s, sym2f × χ)
(since f is non-dihedral), and the absence of a Siegel zero established in [HL94,
Ban97]. For ν = 2, we know from [Kim03, KS02] that L(s, sym4f × χ2) is
automorphic but not necessarily cuspidal. It is cuspidal unless f is tetrahedral or
octahedral. In the tetrahedral case, we have by [KS02, §3.2]

L(s, sym4f × χ2) = L(s, sym2f × χ)L(s, χ3)L(s, χ3)

for χ3 = χ3,f a non-trivial character of order 3. In particular L(s, sym4f × χ2) has
no zeros or poles in a standard region along the line �s = 1. In the octahedral case
we have [KS02, Thm. 3.3.7]

L(s, sym4f × χ2) = L(s, π(χ))L(s, sym2f × ηχ−1
f )
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whereη = ηf is a quadratic character andπ(χ) is the dihedral representation induced
from a non-trivial cubic Hecke character χ = χf of the quadratic field determined
by η. It follows that L(s, sym4f × χ2) has no zeros or poles in a standard region
along the line �s = 1.

Finally if f is not of the above type then L(s, sym4f ×χ2) is cuspidal and has no
zeros or poles in a standard region along the line�s = 1 except for a possible Siegel
zero. If χf is trivial, the existence of a Siegel zero was ruled out by Ramakrishnan
and Wang in [RW03, Theorem B’]. As was pointed out to us by D. Ramakrishnan,
the proof extends to the case of a general nebentypus with adequate modifications:
let� be the degree 9 isobaric sum

� = 1 � sym2f × χ� sym4f × χ2;

its degree 81 Rankin–Selberg L-function (which has non-negative coefficients)
factors as

L(s,�×�) = ζ(s)L(s, sym2f × χ)4L(s, sym4f × χ2)4L(s, sym6f × χ3)2

× L(s, sym2f × sym2f × χ2)L(s, sym4f × sym4f × χ4)(3.7)

= L(s, sym4f × χ2)4L2(s)

say. Following the proof of [RW03, Theorem B’] it is sufficient to prove that L2(s)
is holomorphic along the interval (1/2, 1) (cf. [RW03, Prop. 5.21]). Using the
factorisation

L(s, sym3f ; sym2 × χ3) = L(s, sym2f ⊗ χ)L(s, sym6f ⊗ χ3),

one can rewrite L2(s) into the form

L2(s) = ζ(s)L(s, sym2f × χ)2L(s, sym3f ; sym2 × χ3)2

× L(s, sym2f × sym2f × χ2)L(s, sym4f × sym4f × χ4),

and it remains to prove the holomorphy of L(s, sym3f ; sym2 × χ3) along (1/2, 1).
One then proceeds as in [RW03, Lem. 5.25 & §7]. The only difference is that,
when χ3 is non-trivial, one has to use the work of Takeda [Tak14] in place of
the work of Bump–Ginzburg [BG92] regarding the holomorphy of the incomplete
L-function LS(s, sym3f ; sym2×χ3) (where S is the union of the archimedean places
and the finite places where f is ramified). �

Remark 3.1. In this paper we will need only the case where f has trivial neben-
typus.
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Remark 3.2. In the non-CM case the Sato–Tate conjecture predicts the constant
8/(3π) in place of 17/18 in (3.6), and it is known when f is holomorphic [CHT08,
HSBT10, Tay08, NT21]. In the CM case, the best possible constant is 2/3 which
is attained if f comes from a character of order 3.

Corollary 3.1. Let f1, f2 be cuspidal newforms with Hecke eigenvalues

(λfi(n))n�1, i = 1, 2, satisfying the Ramanujan–Petersson conjecture (3.4). Then,
with the notation of Proposition 3.1 we have∑

(n1,n2)∈S
(n1n2,q)=1

|λf1 (n1)λf2 (n2)| 
f1,f2,γ,ε
X

(log z)1/9
+

X1+ε

z1/4
+ XεYz3

for any ε > 0.

4 Equidistribution for the cuspidal spectrum

In this section, we establish the equidistribution statements of Theorems 1.1 and 1.3
for pairs of cuspidal newforms (assuming the Ramanujan–Petersson conjecture).

4.1 The discrete case. For q ∈ N and b ∈ (Z/qZ)× we recall the definition
(1.1) of the lattice

�q;b = {(n1, n2) ∈ Z2, n1 + bn2 ≡ 0 (modq)}
and its minimum s = s(b; q). We start with the following simple result.

Lemma 4.1. Let (db, q) = 1. Then

d−1s(b; q) � s(bd; q) � ds(b; q)

and

d−1s(b; q) � s(bd̄; q) � ds(b; q)

and s(b; q) = s(b̄; q).

Proof. Clearly (n1, n2) ∈ �q;b implies (n1d, n2) ∈ �q;bd, so that

s(bd; q) � ds(b; q).

Similarly, s(bd̄; q) � ds(b; q). Replacing bwith bd̄ and bd weobtain the inequalities
in the other direction. The last statement follows from exchanging n1 and n2. �

With future applications in mind, we consider slightly more general Weyl sums
than in (1.4).
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Theorem 4.1. Let q be a large prime, b ∈ (Z/qZ)× and s = s(b; q).
Let fj, j = 1, 2, be two L2-normalized cuspidal Hecke–Maaß newforms of lev-

els Nj with Hecke eigenvalues λj(n) for which the Ramanujan–Petersson conjecture

holds.
Let x0 ∈ R, y0 ∈ R×, r0 ∈ Q where the denominator of r0 is coprime to N1N2q,

and let

(4.1) Wf1,f2 (b; q; x0, y0, r0) :=
1
q

∑
a (mod q)

f1
(a + i

q

)
f2
(ba + x0 + y0i

q
+ r0

)
.

One has
Wf1,f2 (b; q; x0, y0, r0) 
f1,f2,x0,y0,r0,ε sε−1 + (log q)−1/9

for any ε > 0 with an implied constant depending polynomially on |x0|, y0 + y−1
0 ,

the denominator of r0 and the conductors of f1 and f2. In other words, for
fixed (x0, y0, r0) and fixed cusp forms f1, f2 we obtain decay as soon as s → ∞.

Remark 4.1. The reason to include general triples (x0, y0, r0) (and not just the
triple (0, 1, 0) as in (1.4)) is that we will later apply this to pairs of cusp forms
(f1, f2) where f2, lifted to a function on an S-adic quotient of

PGL2(R) × PGL2(Qq1) × PGL2(Qq2 )

for two fixed primes q1, q2, is acted on by a fixed group element

g ∈ PGL2(R) × PGL2(Qq1) × PGL2(Qq2).

When translated back to classical language, this action has the effect of introducing
the extra parameters (x0, y0, r0). See Section 5 for details.

We remark that a similar bound can be obtained for more general test functions,
for instance Maaß forms of fixed weights kj, or even more generally automor-
phic forms whose archimedean component is a fixed test function (for instance
compactly supported) in the Kirillov model.

Remark 4.2. To see that the condition s → ∞ cannot be dropped completely
or replaced with a simpler condition of the kind q‖b/q‖ → ∞, consider the case
where b = (q + 1)/2 (for odd q). Then the Fourier expansion (4.4) below yields
essentially

1
q

∑
n1,n2�q
q|n1−bn2

λ1(n1)λ2(n2).

The congruence is equivalent to q | 2n1 − n2, and so we obtain a diagonal term

1
q

∑
n�q

λ1(a)λ2(2a)
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which in the case f1 = f2 and λ2(2) 	= 0 does not decay in q. In other words, the
underlying condition for equidistribution is really of diophantine nature.

Proof. We start with the Fourier expansion

(4.2) fj(z) =
√

y
∑
n�1

λj(n)
( 2 cosh(πtj)
L(1, sym2fj)

)1/2
Kitj(2πny)(e(nx) + εje(−nx))

where εj is the parity, λj(n) is the n-th Hecke eigenvalue (we have assumed that
the fj are newforms) and1 tj � 0 is the spectral parameter of fj for j = 1, 2. For
notational simplicity let us write

Lj = L(1, sym2fj)
1/2, K∗

it(x) = cosh(πt)1/2Kit(2πx).

We use the simple bound

xj dj

dxj
K∗

it(x) 
j,A,ε,t x−ε(1 + x)−A

for j ∈ N0, A, ε > 0 with polynomial dependence in t. In the following we use
the convention that all implied constants may depend polynomially on cond(fj)
and |x0|, y0 + y−1

0 , den(r0) without further mention.
Summing over a (mod q), we conclude that

Wf1,f2 (b; q; x0, y0, r0) =
2|y0|1/2
L1L2q

(
(1 + ε1ε2)

∑
q|n1+bn2

+(ε1 + ε2)
∑

q|n1−bn2

)
λ1(n1)λ2(n2)

× e
(n2x0

q
+ n2r0

)
K∗

it1

(n1

q

)
K∗

it2

( |y0|n2

q

)
.

This vanishes unless ε1 = ε2 = ε, say, in which case we get

Wf1,f2 (b; q; x0, y0, r0) =
1
q

∑
±

∑
q|n1±bn2

λ1(n1)λ2(n2)e(n2r0)G
(n1

q
,
n2

q

)
with

(4.3) G(x1, x2) =
4e(x0x2)

L1L2
K∗

it1 (x1)K
∗
it2 (|y0|x2)

satisfying

|x1|j1 |x2|j2 dj1

dxj1
1

dj2

dxj2
2

G(x1, x2) 
ε,A,j1,j2,x0,y0 |x1x2|−ε(1 + |x1| + |x2|)−A.

1by the Selberg eigenvalue conjecture, although this is not essential for the argument, unlike the
Ramanujan–Petersson conjecture at finite places.
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By trivial estimates we can truncate the n1, n2-sum at q1+ε at the cost of a negligible
error. Moreover, if r0 = c0/d0, we can replace the additive character n2 �→ e(n2r0)
with (a linear combination of) Dirichlet characters χ modulo d0, so that it suffices
to bound

1
q

∣∣∣∣ ∑
q|n1±bn2

n1,n2
q1+ε

λ1(n1)λ2(n2)χ(n2)G
(n1

q
,
n2

q

)∣∣∣∣(4.4)

for some choice of ±.
The character χ may not be primitive; if it is induced by the primitive charac-

ter χ∗, we obtain by Möbius inversion and the Hecke multiplicativity relations

1
q

∣∣∣∣ ∑
q|n1±bn2

n1,n2
q1+ε

λ1(n1)λ2(n2)χ
∗(n2)

∑
f |(n2,d0)

μ(f )G
(n1

q
,
n2

q

)∣∣∣∣
� 1

q

∑
f |d0

∣∣∣∣ ∑
q|n1±bfn2

n1,fn2
q1+ε

λ1(n1)
∑

g|(f,n2)

μ(g)λ2

( f
g

)
λ2

(n2

g

)
χ∗(n2)G

(n1

q
,
fn2

q

)∣∣∣∣
� 1

q

∑
g|f |d0

∣∣∣λ2

( f
g

)∣∣∣∣∣∣∣ ∑
q|n1±bfgn2

n1,n2fg
q1+ε

λ1(n1)λ2(n2)χ
∗(n2)G

(n1

q
,
gfn2

q

)∣∣∣∣.
The point of this manoeuvre is to show that in (4.4) we may assume without loss
of generality that χ is primitive. Since (d0,N2) = 1, the function n �→ λ2χ(n)
describes the Hecke eigenvalues of the newform f2 × χ, which allows us to apply
Proposition 2.1. To this end we have to replace b by some fixed multiple, but by
Lemma 4.1 we have s(b; q) � s(fgb; q), so that the subsequent analysis remains
unchanged. We may therefore return to (4.4) under the assumption that χ is
primitive.

The (n1, n2)-sum runs through a lattice �q,±b with basis(
∓b
1

)
,

(
q
0

)

of volume q and minima 0 < s(b; q) = s(−b; q) 
 q1/2. Let us fix one sign and
drop it from the notation. Let (

x1

x2

)
,

(
y1

y2

)
,

be a reduced basis of �q,b with the first vector of minimal length so that

|x1| + |x2| 
 s.
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Both x1, x2 are non-zero (since q � b) and coprime (since s is minimal). In terms
of this basis, the congruence condition reads

(4.5) n1x2 ≡ n2x1 (mod q).

We now use two different methods to estimate the n1, n2-sum depending on the
size of s.

If s is not too big, then we interpret the n1, n2-sum as a shifted convolution
problem and apply first Proposition 2.1 to the inner sum with summation condition
(4.5) which we write as an equality

n1x2 − n2x1 = h

with q | h (see [BFK+17] for a similar argument).
Since s 
 q1/2 and n1, n2 
 q1+ε, we have automatically that (h/q, q) = 1. We

need to treat the diagonal term� with h = 0 separately. In this case x1 | n1, x2 | n2,
and by Rankin–Selberg theory (and the Ramanujan conjecture, although this could
be dispensed with) it is easy to see the contribution is

(4.6) � 
 1
s1−ε .

Let us call W∗
f1,f2 (b; q; x0, y0, r0) the remaining portion of (4.4). Applying a

smooth partition of unity to the n1, n2, h-sums, we obtain by Proposition 2.1 with

d = q, M1,M2 
 q1+ε, H 
 l1M1 + l2M2, l1, l2 
 s

the upper bound

(4.7) W∗
f1,f2 (b; q; x0, y0, r0) 
 s1+θqθ−1/2+ε.

Note that the θ-dependence in Proposition 2.1 comes from the entire spectrum of
forms of level x1x2, not from the two forms f1, f2.

Alternatively, we apply absolute values to the inner sum in (4.4), and we can
then apply Proposition 3.1 with z = qγ for some very small γ > 0 and

S = � ∩ R

for suitable sets R ⊆ R2
>0. More precisely, we estimate the contribution of the

terms with q | n1n2 trivially by O(qε−1). For the remaining terms we apply a

decomposition into annuli (k − 1)q �
√

n2
1 + n2

2 � kq for k = 1, 2, . . . , qε, and by
Proposition 3.1 we obtain the bound

Wf1,f2 (b; q; x0, y0, r0) 
 qε
(1

q
+

1
z1/4

+
z3

s

)
+

1
(log q)2

exp
(∑

p�z

|λ1(p)| + |λ2(p)|
p

)
.
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Employing Lemma 3.2, we obtain

(4.8) Wf1,f2 (b; q; x0, y0, r0) 
 1
(log q)1/9

+
q3γ+ε

s
.

Combining (4.6), (4.7) and (4.8), we complete the proof of Theorem 4.1. �

Remark 4.3. The bound (4.8) is almost sufficient alone. The shifted convolution
argument is only needed when s grows below the qε-scale, say logarithmically
with q. On the other hand, however, the shifted convolution argument is more
robust and provides a power saving.

4.2 The continuous case. For the continuous joint equidistribution prob-
lem in Theorem 1.3 we need the following analogue of Theorem 4.1.

Theorem 4.2. Let f1, f2 be two L2-normalized cuspidal Hecke–Maaß new-
forms of levels Nj with Hecke eigenvaluesλj(n) for which the Ramanujan–Petersson

conjecture holds. Let x0 ∈ R, y0 ∈ R×, r0 ∈ Q such that the denominator of r0 is co-
prime to N1N2. Let T > 1, I ⊆ (0,∞) a fixed compact interval, y ∈ I and W a fixed

smooth weight function with compact support in R and write y = a/q + O(1/qQ)
for positive coprime integers a, q with q � Q := T0.99. Then∫

W(x)f1
(
x +

i
T

)
f2
(
xy + r0 +

x0 + iy0

T

)
dx 
ε,f1,f2,x0,y0,r0

1
(logT)1/9

+
1

qε−1

for any ε > 0 with an implied constant depending polynomially on the conductors

of f1 and f2 and on |x0|, y0 + 1/y0 and the denominator of r0.

Proof. We start again with the Fourier expansion (4.2) and perform the x-
integration. As in (4.4) this leaves us with bounding

Rf1,f2 (y,T) :=
1
T

∑
±

∣∣∣∣ ∑
n1,n2
T1+ε

Ŵ(n1 ± n2y)λ1(n1)λ2(n2)χ(n2)G
(n1

T
,
n2

T

)∣∣∣∣
where Ŵ denotes the Fourier transform of W, G is as in (4.3) and χ is some
primitive character whose conductor divides the denominator of r0. Inserting the
rational approximation, the n1, n2-sum is, up to a negligible error, restricted by

qn1 ± an2 
 H := Tε
(
q +

T
Q

)
.

For now, let us only assume logQ � logT . Applying Proposition 2.1 with d = 1
and treating the diagonal contribution qn1 ± an2 = 0 separately as in (4.6), we
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obtain the first bound

Rf1,f2 (y,T) 
 1
q1−ε +

Tε

T
(qT)1/2+θ

(
q +

T
Q

)1/2(
1 +

T
qQ

)1/2


 1
q1−ε + Tε(qT)θ

( q
T1/2 +

T1/2

Q

)
.

(4.9)

On the other hand, we can apply absolute values to Rf1,f2 (y,T) and use Proposi-
tion 3.1. To this end, let S±(a, q,H′,T ′) for H′ ∈ N and T ′ � 1 be the number of
(n1, n2) such that T ′ < n2 � 2T ′ and H′ < qn1 ± an2 � 2H′. Then

∑
λ∈S±(a,q,H′,T ′)

d1|λ1,d2|λ2

1 = H′
( T ′

qd1d2
+ O(1)

)
,

so that

S±(a, q,H′,T ′) ∈ C1(H
′T ′/q,H′).

Recall that Ŵ(x)G(x1, x2) 
A (1 + x)−A|x1x2|−ε(1 + |x1|)−A(1 + |x2|)−A. Now from
Theorem 3.1 and Lemma 3.2 we conclude for some sufficiently small γ > 0
similarly as in the preceding proof

Rf1,f2 (y,T)


 T−10 +
1
T

(( (q + T/Q)T
q(logT)1/9

)
+ Tε

( (q + T/Q)T
qTγ/4

)
+
(
q +

T
Q

)
T3γ
)


 1
(logT)1/9

+
T
qQ

+
q

T1−3γ−ε .

(4.10)

We may now choose, for instance, Q = T0.99 (with γ as above sufficiently small)
and combine (4.9) and (4.10) to obtain the desired bound

Rf1,f2 (y,T) 
 1
(logT)1/9

+
1

qε−1 + Tε min
q�Q

(
(qT)θ

q
T
,
T4γ

q

)
,

and the last term is absorbed in the previous two terms. �

5 Application of the joinings theorem of Einsiedler–
Lindenstrauss

In this section we use the powerful measure classification theorem of Einsiedler–
Lindenstrauss [EL19].
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5.1 Passage to an S-arithmetic quotient. For any place v of Q we
denote byQv the corresponding completion and for a finite place v = p by Zp ⊆ Qp

the closure of Z. We denote by

A = R × Af = R ×∏
p

′
Qp

the ring of adeles (the first component is always the infinite place).
We fix an integer D � 1 and a non-empty finite set of places S = {∞} ∪ Sf

containing ∞ and such that the primes in S are coprime to D; we set

QS =
∏
v ∈S

Qv , ZS =
∏
p∈S

Zp, Z[1/S] = Z

[∏
p∈S

1
p

]
,

and
A(S) =

∏
v 	∈S

′
Qv , Ẑ(S) =

∏
p	∈S

Zp.

Let G = PGL2 and let K(D)(S) be the open-compact subgroup

K(D)(S) =
∏
p	∈S

K(D)p ⊆ G(A(S))

where for p 	∈ S we put

K(D)p =

{(
a b

c d

)
∈ G(Zp), c ∈ DZp

}
⊆ G(Zp);

in particular one has K(D)p = G(Zp) for p � D. We also set

K∞ = PSO2(R) ⊂ G(R).

By the strong approximation property for SL2 and the fact that

det(K(D)(S)) = Ẑ(S)×/(Ẑ(S)×)2

we have
G(Q)G(QS)K(D)(S) = G(A)

and
G(Q)\G(A)/K(D)(S) � �(D)S\G(QS),

where

�(D)S := G(Q) ∩ K(D)(S) =

{(
a b

c d

)
∈ G(Z[1/S]), c ∈ DZ[1/S]

}
⊆ G(Z[1/S])

is a discrete subgroup of G(QS). In the sequel we set

X(D)S = �(D)S\G(QS).
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For S={∞} andD=1, the spaceX(1)∞ is a covering of the level 1 modular curve

X = SL2(Z)\H � G(Z)\G(R)/K∞ � X(1)∞/K∞

with compact fibers. More generally the S-arithmetic quotient X(D)S is a covering
of the usual modular curve X0(D) of level D. The compact fiber of a point z ∈ H is

�(D)SgzK∞G(ZS)

where gz ∈ G(R) is such that gz.i = z. We denote by

πS : X(D)S → X0(D) → X0(1) = X

the composite of this projection and the usual finite covering. Since the fibers of
this map are compact, �(D)S ⊆ G(QS) has finite covolume (i.e., is a lattice).

5.2 Lifting the measures. To simplify notations, we omit the dependency
in D and write XS for X(D)S, �S for �(D)S etc.

Given a prime q 	∈ S and a ∈ Z we set

ua/q :=

(
1 a/q

0 1

)
.

We define

xS
q,a := �S

(
ua/q

(
1 0
0 q

)
, ua/q, . . . , ua/q

)
∈ XS.

We observe that since q 	∈ S the �S-coset xS
q,a depends only on the congruence class

a (modq): for p ∈ S and k ∈ Z we have

u(a+qk)/q = uk.ua/q ∈ �Sua/q.

Let
HS

q := {xS
q,a | a ∈ Z/qZ} ⊆ XS.

By construction we have
πS(H

S
q) = Hq.

Let us pass to the product: given b ∈ (Z/qZ)× we set

HS
q,b :=

{
(xS

q,a, x
S
q,ab) | a ∈ Z/qZ

} ⊆ XS × XS

so that
(πS × πS)(H

S
q,b) = Hq,b ∈ X × X.

Let us denote by μS
q,b the uniform probability measure on XS × XS supported

on HS
q,b.
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There are multiple advantages of lifting the whole situation to the S-arithmetic
group quotient XS = �S\G(QS).

• The space XS is endowed with an action of G(QS) by right multiplication
(noted x.g = �Sug for x = �Su ∈ XS and g ∈ G(QS)) and a left action on its
space of functions: for f : XS → C

g.f : x ∈ XS �→ f (x.g) ∈ C.

• We can test the lifted measures μS
q and μS

q,b against more general functions,
e.g., corresponding to automorphic forms not necessarily of weight 0.

• The lifted measures have additional invariance from the places in S.

5.3 Properties of the measures μS
q,b. We now specify the set of places S

we will use: given D � 1, let q1, q2 be two fixed primes coprime with D and put

S = {∞, q1, q2}.

In this section we verify that any weak-� limit of the μS
q,b is a joining. Let μS

q,b,i,
i = 1, 2, denote the image of μS

q,b on XS under the first and second coordinates
projections πi : XS × XS → XS.

Lemma 5.1. As q → ∞, the measures μS
q,b,i, i = 1, 2, converge to the Haar

probability measure μS
G on XS.

Proof. For q large enough, we have q 	∈ S and (q,D) = 1, and the two
projections of HS

q,b are given by the set HS
q . Since q is prime, HS

q is the q-
Hecke orbit of the identity class �SId ∈ XS minus one point, namely xS

q,∞ defined
like xS

q,a but with ua/q replaced by diag(q, q−1); equidistribution HS
q follows from

the equidistribution of q-Hecke orbit. �

Remark5.1. In particular anyweak-� limit of the (μS
q,b)q (the limit of a converging

subsequence) is a probability measure.

We now make use of the auxiliary places q1 and q2. We introduce the two
diagonal matrices

t1 =

(
q−1

1

q1

)
, t2 =

(
q−1

2

q2

)

which we view as embedded diagonally into G(QS) and also diagonally embedded
into G(QS) × G(QS), i.e. via t�1 = (t1, t1), t�2 = (t2, t2) ∈ G(QS) × G(QS).
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Lemma 5.2. The set HS
q,b is invariant under right multiplication by the ele-

ments t�1 and t�2 .

Proof. For any a ∈ Z/qZ we have

xS
q,a.t1 = �S

(
ua/q

(
1 0
0 q

)(
q−1

1

q1

)
, ua/q

(
q−1

1

q1

)
, . . . , ua/q

(
q−1

1

q1

))

= �St1

(
uaq2

1/q

(
1 0
0 q

)
, uaq2

1/q
, . . . , uaq2

1/q

)

= �S

(
uaq2

1/q

(
1 0
0 q

)
, uaq2

1/q
, . . . , uaq2

1/q

)
= xS

q,aq2
1

where we used that diag(q−1
1 , q1) commutes with diag(1, q) and t1 ∈ �S. Also

recall that q1 is coprime to q (since q is a sufficiently large prime). Likewise

xS
q,ab.t1 = xS

q,aq2
1b

and so
HS

q,b.t
�
1 =

{
(xS

q,aq2
1
, xS

q,aq2
1b

) | a ∈ Z/qZ
}

= HS
q,b.

The same computation applies to t2. �
Applying [EL19, Thm. 1.4] (see also [Kha19, Thm. 4.4] for the formulation

we use here) we obtain

Proposition 5.1. Letμ∞ be a weak-� limit of the measuresμS
q,b parametrized

by pairs (b, q) with q → ∞. Then μ∞ is a (t�1 , t
�
2 )-invariant probability measure,

and any of its ergodic components is of the shape
– either μG×G, the (image of the) product Haar measure μG(QS)×G(QS)

on XS × XS;
– or μG,h, the (image of the) Haar measure μG(QS) on a G(QS)-orbit of the

shape
(�S × �S)G

�(QS)(1, h) ⊂ XS × XS, h ∈ G(QS),

where G� denotes the image of the diagonal embedding

� : g ∈ G ↪→ (g, g) ∈ G × G.

More precisely, there exists a probability measure λ on G(QS) such that μ∞ is a

convex combination of μG×G and of

μG� :=
∫

G(QS)
μG,hdλ(h),

i.e., there exists c ∈ [0, 1] such that

μ∞ = (1 − c)μG×G + cμG�.
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5.4 Excluding the diagonalmeasures. In this section we use the bounds
for certain well chosen Weyl sums established in Theorem 4.1 to show that the
coefficient c of μG� in the decomposition of μ∞ is zero, effectively concluding the
proof of Theorem 1.1. The proof of Corollary 1.2 is a consequence of this result
and [EL19, Cor. 1.5].

Consider a subsequence of the μS
q,b converging to some measure of the shape

μ∞ = (1 − c)μG×G + cμG�

and suppose that c > 0.

Let � be a cuspidal automorphic representation such that its space �K(S)
of

K(S)-invariant vectors occurs in XS, and let ϕ1, ϕ2 be two smooth L2-normalized
vectors in �. Consider the function on XS × XS given by

ϕ = ϕ1 ⊗ ϕ2 : (g, g′) ∈ XS × XS �→ ϕ1(g)ϕ2(g
′).

Then for h ∈ G(QS) we have

μG,h(ϕ) =
∫

XS
ϕ1(g)ϕ2(g.h)dg = 〈ϕ1, h.ϕ2〉

where we have set

〈ϕ1, ϕ2〉 = μS
G(ϕ1ϕ2) =

∫
XS
ϕ1(g)ϕ2(g)dg.

We have therefore

μG�(ϕ) =
∫

G(QS)
〈ϕ1, h.ϕ2〉dλ(h) = 〈ϕ1, λ ∗ ϕ2〉

where

λ ∗ ϕ2 : g �→
∫

G(QS)
ϕ2(g.h)dλ(h).

The integral λ ∗ ϕ2 converges since the measure λ is finite and cusp forms have
rapid decay. Roughly speaking, we will choose ϕ1 = λ ∗ ϕ2. On the one hand,
Theorem 4.1 will imply that under certain conditions μ∞(ϕ) = 0. On the other
hand, we will show, under certain conditions, that λ∗ϕ2 	= 0, which is only possible
if c = 0. We now make this precise.

We make the following choices: let K = Q(
√

229) (notice that 229 is a prime
fundamental discriminant); this quadratic field has class number 3. Let χ be a
class group character of order 3; it lifts to an automorphic form fχ of level 229 with
central character the Legendre symbol χ229 = ( 229

.
). Since 229 ≡ 1 (mod 4), there
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exists primitive Dirichlet characterψ modulo 229 of order 4 and its square is χ229.
The automorphic form

(5.1) f = fχ ×ψ

is an automorphic form of level 2292 with trivial central character and Laplace
eigenvalue 1/4 (i.e., spectral parameter t = 0). Let

q1 = 37, q2 = 53.

These are split primes in K lying below principal ideals. Moreover, q1 and q2 are
4-th power residues modulo 229, so ψ is trivial on q1, q2. We conclude that the
automorphic representation� generated by f satisfies the following properties:

• it is cuspidal;
• it has trivial central character;
• it satisfies the Ramanujan conjecture at all places;
• it is ramified only at 229 which is disjoint from S;
• it has trivial Langlands parameters at all three places in S = {∞, q1, q2}.

Of course these properties could have been obtained in a rather general way,
the explicit construction above is only for illustrative purposes. The key point
is the last property, for the following reason: We consider the representation
�S = �∞ ⊗ �q1 ⊗ �q2 . Since � is locally unramified principal series at all
places in S, we can consider its induced model IS which is the space of functions
F : G(QS) → C that transform like
(5.2)

F(zn[x]a[y]g) = |y|1/2S F(g), z ∈ Z(G), n[x] =

(
1 x

1

)
, a[y] = diag(y, 1)

where we use that the Langlands parameters at places in S are trivial. (Note
that y is only well-defined up to units in the non-archimedean case, but this is
irrelevant for the transformation rule.) We have a G(QS)-equivariant vector space
homomorphism ι : �S → IS.

The image of the weight 0 Maaß form f defined in (5.1), lifted to a vector in
the adelic representation�, projected onto�S in the model IS, corresponds to the
function F on G(QS) that is 1 on PSO(2) × G(Zq1 ) × G(Zq2 ) which is obviously
non-negative on all of G(QS) by (5.2). In particular, λ ∗ F is not the zero function,
so there exists some δ > 0 with

0 < δ < ‖λ ∗ ι−1F‖2

where ι−1F is an L2-normalized spherical vector in �S (or in �).
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For R > 0 let BR ⊆ G(QS) denote a ball of radius R about the origin. Choose
R > 0 so that ∫

BR

dλ(g) � 1 − δ,

and let us denote by λR the measure restricted to BR. We now choose

ϕ2 = ι−1F, ϕ1 = λR ∗ ϕ2.

Note that ϕ1 is a smooth vector since λR is compactly supported. Setting as above
ϕ = ϕ1 ⊗ ϕ̄2, we have

μ∞(ϕ) = (1 − c)μG×G(ϕ) + cμG�(ϕ) = cμG�(ϕ) = c〈λR ∗ ϕ2, λ ∗ ϕ2〉.

Since ‖ϕ2‖2 = 1 and λ is a probability measure, we obtain by Cauchy–Schwarz
and the definition of λR that

|〈λR ∗ ϕ2, λ ∗ ϕ2〉 − 〈λ ∗ ϕ2, λ ∗ ϕ2〉| � δ,

so that

(5.3) μ∞(ϕ) � c(‖λ ∗ ϕ2‖2 − δ).

On the other hand, setting gq,a = ua/qdiag(1, q) we have

(5.4) μS
q,b(ϕ1 ⊗ ϕ2) =

1
q

∑
a (mod q)

ϕ1(gq,a)ϕ2(gq,ba) → μ∞(ϕ)

as q → ∞ (over primes). The left hand side equals∫
‖g‖�R

1
q

∑
a (mod q)

ϕ2(gq,ag)ϕ2(gq,ba) dλ(g).

By strong approximation, we can translate this back into classical language.
Clearly,

ϕ2(gq,ba) = f
(ba + i

q

)
.

Moreover, any g ∈ G(QS) with ‖g‖ � R can be written g = g∞ × gq1 × gq2 with

g∞ ∈
(

y0 x0

0 1

)
K∞, gqj ∈

(
q

rj

j ξj
0 1

)
G(Zqj)

for some y0 ∈ R×, x0 ∈ R, rj ∈ Z, ξj ∈ Z[q−1
j ], then

ϕ2(gq,ag) = f

((
Y r0

0 1

)(
1/q a/q

1

)(
y0 x0

1

)
.i

)
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for some r0 ∈ Z[q−1
1 , q−1

2 ] and Y = q−r1
1 q−r2

2 . Matrix multiplication shows that this
equals

f
(aY + Yx0 + iy0Y

q
+ r0

)
.

Thus we see that with the notation (4.1)

1
q

∑
a (mod q)

ϕ2(gq,ag)ϕ2(gq,ba) = Wf̄ ,f (b̄Y, q; x0Y, y0Y, r0).

The entries x0Y, y0Y, r0,Y are bounded in terms of R and as q → ∞ (through
primes), we have

s(q; b̄Y) �Y s(q; b) → ∞,

by our assumption. By Theorem 4.1 and Lemma 4.1 we obtain that

Wf̄ ,f (b̄Y, q; x0Y, y0Y, r0) → 0,

uniformly for ‖g‖ � R and therefore (5.4) tends to zero.

This contradicts (5.3) unless c = 0 and this completes the proof of Theorem 1.1.

The proof of Theorem 1.3 is similar, based on Theorem 4.2 instead which we
need to apply with yr0 instead of y. If y = a/q + O(1/qQ), then

yr0 = ar0/q + O(r0/qQ),

so as long as r0 is fixed, this changes (as in the previous proof) only the implicit
constants.
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