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Abstract

We analytically investigate how over-parameterization of models in randomized
machine learning algorithms impacts the information leakage about their training
data. Specifically, we prove a privacy bound for the KL divergence between model
distributions on worst-case neighboring datasets, and explore its dependence on
the initialization, width, and depth of fully connected neural networks. We find
that this KL privacy bound is largely determined by the expected squared gradient
norm relative to model parameters during training. Notably, for the special setting
of linearized network, our analysis indicates that the squared gradient norm (and
therefore the escalation of privacy loss) is tied directly to the per-layer variance of
the initialization distribution. By using this analysis, we demonstrate that privacy
bound improves with increasing depth under certain initializations (LeCun and
Xavier), while degrades with increasing depth under other initializations (He and
NTK). Our work reveals a complex interplay between privacy and depth that
depends on the chosen initialization distribution. We further prove excess empirical
risk bounds under a fixed KL privacy budget, and show that the interplay between
privacy utility trade-off and depth is similarly affected by the initialization.

1 Introduction

Deep neural networks (DNNs) in the over-parameterized regime (i.e., more parameters than data)
perform well in practice but the model predictions can easily leak private information about the
training data under inference attacks such as membership inference attacks [44] and reconstruction
attacks [17, 7, 29]. This leakage can be mathematically measured by the extent to which the
algorithm’s output distribution changes if DNNs are trained on a neighboring dataset (differing only
in a one record), following the differential privacy (DP) framework [23].

To train differential private model, a typical way is to randomly perturb each gradient update in the
training process, such as stochastic gradient descent (SGD), which leads to the most widely applied
DP training algorithm in the literature: DP-SGD [2]. To be specific, in each step, DP-SGD employs
gradient clipping, adds calibrated Gaussian noise, and yields differential privacy guarantee that scales
with the noise multiplier (i.e., per-dimensional Gaussian noise standard deviation divided by the
clipping threshold) and number of training epochs. However, this privacy bound [2] is overly general
as its gradient clipping artificially neglects the network properties (e.g., width and depth) and training
schemes (e.g., initializations). Accordingly, a natural question arises in the community:

How does the over-parameterization of neural networks (under different initializations) affect the
privacy bound of the training algorithm over worst-case datasets?
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Table 1: Our privacy utility trade-off bounds for training linearized network (3) via Langevin diffusion,
under different hidden-layer width m, depth L and initializations. The per-layer widths m0 = d,
m1, · · · ,mL−1 = m and mL = o where d is the data dimension and o is number of classes. For
KL privacy bounds, we assume Assumption 2.2 holds and L ≥ 2 for simplicity. For the excess risk
bounds, we assume o = 1, d,m = Ω̃ (n) are large, and Assumption 2.2. Under LeCun and Xavier,
we prove privacy utility trade-offs that improve with over-parameterization (increasing depth).
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To answer this question, we circumvent the difficulties of analyzing gradient clipping, and instead
algorithmically focus on analyzing privacy for the Langevin diffusion algorithm without gradient
clipping nor Lipschitz assumption on loss function. 2 It avoids an artificial setting in DP-SGD [2]
where a constant sensitivity constraint is enforced for each gradient update and thus makes the privacy
bound insensitive to the network over-parameterization. Theoretically, we prove that the KL privacy
loss for Langevin diffusion scales with the expected gradient difference between the training on
any two worst-case neighboring datasets (Theorem 3.1). 3 By proving precise upper bounds on the
expected ℓ2-norm of this gradient difference, we thus obtain KL privacy bounds for fully connected
neural network (Lemma 3.2) and its linearized variant (Corollary 4.2) that changes with the network
width, depth and per-layer variance for the initialization distribution. We summarized the details of
our KL privacy bounds in Table 1, and highlight our key observations below.

• Width always worsen privacy, under all the considered initialization schemes. Meanwhile,
the interplay between network depth and privacy is much more complex and crucially
depends on which initialization scheme is used and how long the training time is.

• Regarding the specific initialization schemes, under small per-layer variance in initialization
(e.g. in LeCun and Xavier), if the depth is large enough, our KL privacy bound for training
fully connected network (with a small amount of time) as well as linearized network (with
finite time) decays exponentially with increasing depth. To the best of our knowledge, this is
the first time that an improvement of privacy bound under over-parameterization is observed.

We further perform numerical experiments (Section 5) on deep neural network trained via noisy
gradient descent to validate our privacy analyses. Finally, we analyze the privacy utility trade-off
for training linearized network, and prove that the excess empirical risk bound (given any fixed KL
privacy budget) scales with a lazy training distance bound R (i.e., how close is the initialization to a
minimizer of the empirical risk) and a gradient norm constant B throughout training (Corollary 6.4).
By analyzing these two terms precisely, we prove that under certain initialization distributions
(such as LeCun and Xavier), the privacy utility trade-off strictly improves with increasing depth
for linearized network (Table 1). To our best knowledge, this is the first time that such a gain in
privacy-utility trade-off due to over-parameterization (increasing depth) is shown. Meanwhile, prior
results only prove (nearly) dimension-independent privacy utility trade-off for such linear models
in the literature [45, 32, 37]. Our improvement demonstrates the unique benefits of our algorithmic
framework and privacy-utility analysis in understanding the effect of over-parameterization.

2A key difference between this paper and existing privacy utility analysis of Langevin diffusion [26] is that
we analyze in the absence of gradient clipping or Lipschitz assumption on loss function. Our results also readily
extend to discretized noisy GD with constant step-size (as discussed in Appendix E).

3We focus on KL privacy loss because it is a more relaxed distinguishability notion than standard (ε, δ)-DP,
and therefore could be upper bounded even without gradient clipping. Moreover, KL divergence enables upper
bound for the advantage (relative success) of various inference attacks, as studied in recent works [39, 28].
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1.1 Related Works

over-parameterization in DNNs and NTK. Theoretical demonstration on the benefit of over-
parameterization in DNNs occurs in global convergence [3, 21] and generalization [4, 16]. Under
proper initialization, the training dynamics of over-parameterized DNNs can be described by a kernel
function, termed as neural tangent kernel (NTK) [31], which stimulates a series of analysis in DNNs.
Accordingly, over-parameterization has been demonstrated to be beneficial/harmful to several topics
in deep learning, e.g., robustness [15, 54], covariate shift [50]. However, the relationship between
over-parameterization and privacy (based on the differential privacy framework) remains largely an
unsolved problem, as the training dynamics typically change [14] after adding new components in
the privacy-preserving learning algorithm (such as DP-SGD [2]) to enforce privacy constraints.

Membership inference privacy risk under over-parameterization. A recent line of works [47, 48]
investigates how over-parameterization affects the theoretical and empirical privacy in terms of
membership inference advantage, and proves novel trade-off between privacy and generalization error.
These literature are closet to our objective of investigating the interplay between privacy and over-
parameterization. However, Tan et al. [47, 48] focus on proving upper bounds for an average-case
privacy risk defined by the advantage (relative success) of membership inference attack on models
trained from randomly sampled training dataset from a population distribution. By contrast, our KL
privacy bound is heavily based on the strongest adversary model in the differential privacy definition,
and holds under an arbitrary worst-case pair of neighboring datasets, differing only in one record.
Our model setting (e.g., fully connected neural networks) is also quite different from that of Tan et al.
[47, 48]. The employed analysis tools are accordingly different.

Differentially private learning in high dimension. Standard results for private empirical risk
minimization [9, 46] and private stochastic convex optimization [11, 12, 5] prove that there is an
unavoidable factor d in the empirical risk and population risk that depends on the model dimension.
However, for unconstrained optimization, it is possible to seek for the dimension-dependency in prov-
ing risk bounds for certain class of problems (such as generalized linear model [45]). Recently, there
is a growing line of works that proves dimension-independent excess risk bounds for differentially
private learning, by utilizing the low-rank structure of data features [45] or gradient matrices [32, 37]
during training. Several follow-up works [33, 13] further explore techniques to enforce the low-rank
property (via random projection) and boost privacy utility trade-off. However, all the works focus
on investigating a general high-dimensional problem for private learning, rather than separating the
study for different network choices such as width, depth and initialization. Instead, our study focuses
on the fully connected neural network and its linearized variant, which enables us to prove more
precise privacy utility trade-off bounds for these particular networks under over-parameterization.

2 Problem and Methodology

We consider the following standard multi-class supervised learning setting. Let D = (z1, · · · , zn)
be an input dataset of size n, where each data record zi = (xi,yi) contains a d-dimensional feature
vector xi ∈ Rd and a label vector yi ∈ Y = {−1, 1}o on o classes. We aim to learn a neural network
output function fW (·) : X → Y parameterized by W via empirical risk minimization (ERM)

min
W

L(W ;D) :=
1

n

n∑
i=1

ℓ(fW (xi);yi) , (1)

where ℓ(fW (xi);yi) is a loss function that reflects the approximation quality of model prediction
fW (xi) compared to the ground truth label yi. For simplicity, throughout our analysis, we employ
the cross-entropy loss ℓ(fW (x);y) = −⟨y, log softmax(fW (x))⟩ for multi-class network with
o ≥ 2, and ℓ(fW (x);y) = log(1 + exp(−yfW (x)) for single-output network with o = 1.

Fully Connected Neural Networks. We consider the L-layer, multi-output, fully connected,
deep neural network (DNN) with ReLU activation. Denote the width of hidden layer l as ml for
l = 1, · · · , L − 1. For consistency, we also denote m0 = d and mL = o. The network output
fW (x) := hL(x) is defined recursively as follows.

h0(x) = x; hl(x) = ϕ(Wlx) for l = 1, · · · , L− 1; hL(x) = WLhL−1(x) , (2)
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where hl(x) denotes the post-activation output at l-th layer, and {Wl ∈ Rml×ml−1 : l = 1, . . . , L}
denotes the set of per-layer weight matrices of DNN. For brevity, we denote the vector W :=
(Vec(W1), . . . ,Vec(WL)) ∈ Rm1·d+m2·m1+···+o·mL−1 , i.e., the the concatenation of vectorizations
for weight matrices of all layers, as the model parameter.

Linearized Network. We also analyze the following linearized network, which is used in prior
works [35, 3, 41] as an important tool to (approximately and qualitatively) analyze the training
dynamics of DNNs. Formally, the linearized network f lin,0

W (x) is a first-order Taylor expansion of
the fully connected ReLU network at initialization parameter W lin

0 , as follows.

f lin,0
W (x) ≡ fW lin

0
(x) +

∂fW (x)

∂W

∣∣∣
W=W lin

0

(
W −W lin

0

)
, (3)

where fW lin
0

(x) is the output function of the fully connected ReLU network (2) at initialization W lin
0 .

We denote Llin
0 (W ;D) = 1

n

∑n
i=1 ℓ

(
fW lin

0
(xi) +

∂fW (x)
∂W |W=W lin

0
(W −W lin

0 );yi

)
as the em-

pirical loss function for training linearized network, by plugging (3) into (1).

Langevin Diffusion. Regarding the optimization algorithm, we focus on the Langevin diffusion
algorithm [36] with per-dimensional noise variance σ2. Note that we aim to avoid gradient clipping
while still proving KL privacy bounds. After initializing the model parameters W0 at time zero, the
model parameters Wt at subsequent time t evolves as the following stochastic differential equation.

dWt =−∇L(Wt;D)dt+
√
2σ2dBt . (4)

Initialization Distribution. The initialization of parameters W0 crucially affects the convergence
of Langevin diffusion, as observed in prior literatures [52, 25, 24]. In this work, we investigate
the following general class of Gaussian initialization distributions with different (possibly depth-
dependent) variances for the parameters in each layer. For any layer l = 1, · · · , L, we have

[W l]ij ∼ N (0, βl), for (i, j) ∈ [ml]× [ml−1] , (5)

where β1, · · · , βL > 0 are the per-layer variance for Gaussian initialization. By choosing different
variances, we recover many common initialization schemes in the literature, as summarized in Table 1.

2.1 Our objective and methodology

We aim to understand the relation between privacy, utility and over-parameterization (depth and width)
for the Langevin diffusion algorithm (under different initialization distributions). For privacy analysis,
we prove a KL privacy bound for running Langevin diffusion on any two worst-case neighboring
datasets. Below we first give the definition for neighboring datasets.
Definition 2.1. We denote D and D′ as neighboring datasets if they are of same size and only differ
in one record. For brevity, we also denote the differing records as (x,y) ∈ D and (x′,y′) ∈ D′.

Assumption 2.2 (Bounded Data). For simplicity, we assume bounded data, i.e., ∥x∥2 ≤
√
d.

We now give the definition for KL privacy, which is a more relaxed, yet closely connected privacy
notion to the standard (ε, δ) differential privacy [22], see Appendix A.2 for more discussions. KL
privacy and its relaxed variants are commonly used in previous literature [8, 10, 53].
Definition 2.3 (KL privacy). A randomized algorithm A satisfies ε-KL privacy if for any neighboring
datasets D and D′, we have that the KL divergence KL(A(D)∥A(D′)) ≤ ε, where A(D) denotes
the algorithm’s output distribution on dataset D.

In this paper, we prove KL privacy upper bound for maxD,D′ KL(W[0:T ]∥W ′
[0:T ]) when running

Langevin diffusion on any worst-case neighboring datasets. For brevity, here (and in the remaining
paper), we abuse the notations and denote W[0:T ] and W ′

[0:T ] as the distributions of model parameters
trajectory during Langevin diffusion processes Eq. (4) with time T on D and D′ respectively.

For utility analysis, we prove the upper bound for the excess empirical risk given any fixed KL diver-
gence privacy budget for a single-output neural network under the following additional assumption
(it is only required for utility analysis and not needed for our privacy bound).
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Assumption 2.4 ([40, 20, 21]). The training data x1, · · · ,xn are i.i.d. samples from a distribution
Px that satisfies E[x] = 0, ∥x∥2 =

√
d for x ∼ Px, and with probability one for any i ̸= j, xi ∦ xj .

Our ultimate goal is to precisely understand how the excess empirical risk bounds (given a fixed KL
privacy budget) are affected by increasing width and depth under different initialization distributions.

3 KL Privacy for Training Fully Connected ReLU Neural Networks

In this section, we perform the composition-based KL privacy analysis for Langevin Diffusion given
random Gaussian initialization distribution under Eq. (5) for fully connected ReLU network. More
specifically, we prove upper bound for the KL divergence between distribution of output model
parameters when running Langevin diffusion on an arbitrary pair of neighboring datasets D and D′.

Our first insight is that by a Bayes rule decomposition for density function, KL privacy under a
relaxed gradient sensitivity condition can be proved (that could hold without gradient clipping).

Theorem 3.1 (KL composition under possibly unbounded gradient difference). The KL divergence
between running Langevin diffusion (4) for DNN (2) on neighboring datasets D and D′ satisfies

KL(W[0:T ]∥W ′
[0:T ]) =

1

2σ2

∫ T

0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
dt . (6)

Proof sketch. We compute the partial derivative of KL divergence with regard to time t, and then
integrate it over t ∈ [0, T ] to compute the KL divergence during training with time T . For computing
the limit of differentiation, we use Girsanov’s theorem to compute the KL divergence between the
trajectory of Langevin diffusion processes on D and D′. The complete proof is in Appendix B.1.

Theorem 3.1 is an extension of the standard additivity [51] of KL divergence (also known as chain
rule [1]) for a finite sequence of distributions to continuous time processes with (possibly) unbounded
drift difference. The key extension is that Theorem 3.1 does not require bounded sensitivity between
the drifts of Langevin Diffusion on neighboring datasets. Instead, it only requires finite second-order
moment of drift difference (in the ℓ2-norm sense) between neighboring datasets D,D′, which can be
proved by the following Lemma. We prove that this expectation of squared gradient difference incurs
closed-form upper bound under deep neural network (under mild assumptions), for running Langevin
diffusion (without gradient clipping) on any neighboring dataset D and D′.

Lemma 3.2 (Drift Difference in Noisy Training). Let MT be the subspace spanned by gradients
{∇ℓ(fWt(xi;yi) : (xi,yi) ∈ D, t ∈ [0, T ]}ni=1 throughout Langevin diffusion (Wt)t∈[0,T ]. Denote
∥·∥MT

as the ℓ2 norm of the projected input vector onto MT . Suppose that there exists constants
c, β > 0 such that for any W ,W ′ and (x,y), we have ∥∇ℓ(fW (x);y)) − ∇ℓ(fW ′(x);y)∥2 <
max{c , β∥W −W ′∥MT

}. Then running Langevin diffusion Eq. (4) with Gaussian initialization

distribution (5) satisfies ε-KL privacy with ε =
maxD,D′

∫ T
0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥2

2

]
dt

2σ2 where∫ T

0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
dt ≤ 2T · E

[
∥∇L(W0;D)−∇L(W0;D′)∥22

]
︸ ︷︷ ︸

gradient difference at initialization

+
2β2

n2(2 + β2)

(
e(2+β2)T − 1

2 + β2
− T

)
·
(
E
[
∥∇L(W0;D)∥22

]
+ 2σ2rank(MT ) + c2

)
︸ ︷︷ ︸

gradient difference fluctuation during training

+
2c2T

n2︸ ︷︷ ︸
non-smoothness

.

Proof sketch. The key is to reduce the problem of upper bounding the gradient difference at any
training time T , to analyzing its two subcomponents: ∥∇ℓ(fWt

(x);y))−∇ℓ(fWt
(x′);y′)∥22 ≤

2 ∥∇ℓ(fW0
(x);y))−∇ℓ(fW0

(x′);y′)∥22︸ ︷︷ ︸
gradient difference at initialization

+2β2 ∥Wt −W0∥2MT︸ ︷︷ ︸
parameters’ change after time T

+2c2, where (x,y) and

(x′,y′) are the differing data between neighboring datasets D and D′. This inequality is by the
Cauchy-Schwartz inequality. In this way, the second term in Lemma 3.2 uses the change of parameters
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to bound the gradient difference between datasets D and D′ at time T , via the relaxed smoothness
assumption of loss function (that is explained in Remark 3.5 in details). The complete proof is in
Appendix B.2.
Remark 3.3 (Gradient difference at initialization). The first term and in our upper bound linearly
scales with the difference between gradients on neighboring datasets D and D′ at initialization. Under
different initialization schemes, this gradient difference exhibits different dependency on the network
depth and width, as we will prove theoretically in Theorem 4.1.
Remark 3.4 (Gradient difference fluctuation during training). The second term in Lemma 3.2 bounds
the change of gradient difference during training, and is proportional to the the rank of a subspace MT

spanned by gradients of all training data. Intuitively, this fluctuation is because Langevin diffusion
adds per-dimensional noise with variance σ2, thus perturbing the training parameters away from the
initialization at a scale of O(σ

√
rank(MT )) in the expected ℓ2 distance.

Remark 3.5 (Relaxed smoothness of loss function). The third term in Lemma 3.2 is due to the
assumption ∥∇ℓ(fW (x);y))−∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥MT

}. This assumption
is similar to smoothness of loss function, but is more relaxed as it allows non-smoothness at places
where the gradient is bounded by c. Therefore, this assumption is general to cover commonly-used
smooth, non-smooth activation functions, e.g., sigmoid, ReLU.

Growth of KL privacy bound with increasing training time T . The first and third terms in our
upper bound Lemma 3.2 grow linearly with the training time T , while the second term grows
exponentially with regard to T . Consequently, for learning tasks that requires a long training time to
converge, the second term will become the dominating term and the KL privacy bound suffers from
exponential growth with regard to the training time. Nevertheless, observe that for small T → 0,

the second component in Lemma 3.2 contains a small factor e(2+β2)T−1
2+β2 − T = o(T ) by Taylor

expansion.Therefore, for small training time, the second component is smaller than the first and the
third components in Lemma 3.2 that linearly scale with T , and thus does not dominate the privacy
bound. Intuitively, this phenomenon is related to lazy training [19]. In Section 5 and Figure 2, we
also numerically validate that the second component does not have a high effect on the KL privacy
loss in the case of small training time.

Dependence of KL privacy bound on network over-parameterization. Under a fixed training time T
and noise scale σ2, Lemma 3.2 predicts that the KL divergence upper bound in Theorem 3.1 is depen-
dent on the gradient difference and gradient norm at initialization, and the rank of gradient subspace
rank(MT ) throughout training. We now discuss the how these two terms change under increasing
width and depth, and whether there are possibilities to improve them under over-parameterization.

1. The gradient norm at initialization crucially depends on how the per-layer variance in the
Gaussian initialization distribution scales with the network width and depth. Therefore, it is
possible to reduce the gradient difference at initialization (and thus improve the KL privacy
bound) by using specific initialization schemes, as we later show in Section 4 and Section 5.

2. Regarding the rank of gradient subspace rank(MT ): when the gradients along the training
trajectory span the whole optimization space, rank(MT ) would equal the dimension of the
learning problem. Consequently, the gradient fluctuation upper bound (and thus the KL
privacy bound) worsens with increasing number of model parameters (over-parameterization)
in the worst-case. However, if the gradients are low-dimensional [45, 32, 43] or sparse [37],
rank(MT ) could be dimension-independent and thus enables better bound for gradient
fluctuation (and KL privacy bound). We leave this as an interesting open problem.

4 KL privacy bound for Linearized Network under over-parameterization

In this section, we focus on the training of linearized networks (3), which fosters a refined analysis on
the interplay between KL privacy and over-parameterization (increasing width and depth). Analysis
of DNNs via linearization is a commonly used technique in both theory [19] and practice [43, 41].
We hope our analysis for linearized network serves as an initial attempt that would open a door to
theoretically understanding the relationship between over-parameterization and privacy.

To derive a composition-based KL privacy bound for training a linearized network, we apply The-
orem 3.1 which requires an upper bound for the norm of gradient difference between the training
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processes on neighboring datasets D and D′ at any time t. Note that the empirical risk function
for training linearized models enjoys convexity, and thus a relatively short amount of training time
is enough for convergence. In this case, intuitively, the gradient difference between neighboring
datasets does not change a lot during training, which allows for a tighter upper bound for the gradient
difference norm for linearized networks (than Lemma 3.2).

In the following theorem, we prove that for a linearized network, the gradient difference throughout
training has a uniform upper bound that only depends on the network width, depth and initialization.
Theorem 4.1 (Gradient Difference throughout training linearized network). Under Assumption 2.2,
taking over the randomness of the random initialization and the Brownian motion, for any t ∈ [0, T ],
running Langevin diffusion on a linearized network in Eq. (3) satisfies that

E
[
∥∇L(W lin

t ;D)− L(W lin
t ;D′)∥22

]
≤ 4B

n2
, where B := d · o ·

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
, (7)

where n is the training dataset size, and B is a constant that only depends on the data dimension d,
the number of classes o, the network depth L, the per-layer network width {mi}Li=1, and the per-layer
variances {βi}Li=1 of the Gaussian initialization distribution.

Theorem 4.1 provides a precise analytical upper bound for the gradient difference during training
linearized network, by tracking the gradient distribution for fully connected feed-forward ReLU net-
work with Gaussian weight matrices. Our proof borrows some techniques from [3, 54] for computing
the gradient distribution, refer to Appendix C.1 and C.2 for the full proofs. By plugging Eq. (7) into
Theorem 3.1, we obtain the following KL privacy bound for training a linearized network.
Corollary 4.2 (KL privacy bound for training linearized network). Under Assumption 2.2 and neural
networks (3) initialized by Gaussian distribution with per-layer variance {βi}Li=1, running Langevin
diffusion for linearized network with time T on any neighboring datasets satisfies that

KL(W lin
[0:T ]∥W

′lin
[0:T ]) ≤

2BT

n2σ2
, (8)

where B is the constant that specifies the gradient norm upper bound, given by Eq. (7).

Over-parameterization affects privacy differently under different initialization. Corollary 4.2 and
Theorem 4.1 prove the role of over-parameterization in our KL privacy bound, crucially depending
on how the per-layer Gaussian initialization variance βi scales with the per-layer network width mi

and depth L. We summarize our KL privacy bound for the linearized network under different width,
depth and initialization schemes in Table 1, and elaborate the comparison below.

(1) LeCun initialization uses small, width-independent variance for initializing the first layer β1 = 1
d

(where d is the number of input features), and width-dependent variance β2 = · · · = βL = 1
m for

initializing all the subsequent layers. Therefore, the second term
∑L

l=1
βL

βl
in the constant B of Eq. (7)

increases linearly with the width m and depth L. However, due to ml·βl

2 < 1 for all l = 2, · · · , L,
the first product term

∏L−1
l=1

βlml

2 in constant B decays with the increasing depth. Therefore, by
combining the two terms, we prove that the KL privacy bound worsens with increasing width, but
improves with increasing depth (as long as the depth is large enough). Similarly, under Xavier
initialization βl =

2
ml−1+ml

, we prove that the KL privacy bound (especially the constant B (7))
improves with increasing depth as long as the depth is large enough.

(2) NTK and He initializations use large per-layer variance βl =

{
2
ml

l = 1, · · · , L− 1
1
o l = L

(for

NTK) and βl =
2

ml−1
(for He). Consequently, the gradient difference under NTK or He initialization

is significantly larger than that under LeCun initialization. Specifically, the gradient norm constant B
in Eq. (7) grows linearly with the width m and the depth L under He and NTK initializations, thus
indicating a worsening of KL privacy bound under increasing width and depth.

5 Numerical validation of our KL privacy bounds

To understand the relation between privacy and over-parameterization in practical DNNs training
(and to validate our KL privacy bounds Lemma 3.2 and Corollary 4.2), we perform experiments for
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DNNs training via noisy GD to numerically estimate the KL privacy loss. We will show that if the
total training time is small, it is indeed possible to obtain numerical KL privacy bound estimates that
does not grow with the total number of parameter (under carefully chosen initialization distributions).
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Figure 1: Numerically estimated KL
privacy loss for noisy GD with con-
stant step-size 0.001 on deep neural
network with width 1024 and depth
10. We report the mean and standard
deviation across 6 training runs, tak-
ing worst-case over all neighboring
datasets. The numerical KL privacy
loss grows with the number of train-
ing epochs under all initializations.
The growth rate is close to linear at be-
ginning of training (epochs < 10) and
is faster than linear at epochs ≥ 10.

Numerical estimation procedure. Theorem 3.1 proves
that the exact KL privacy loss scales with the expectation
of squared gradient norm during training. This could be
estimated by empirically average of gradient norm across
training runs. For training dataset D, we consider all ’car’
and ’plane’ images of the CIFAR-10. For neighboring dataset,
we consider all possible D′ that removes a record from D, or
adds a test record to D, i.e., the standard "add-or remove-one"
neighboring notion [2]. We run noisy gradient descent with
constant step-size 0.01 for 50 epochs on both datasets.

Numerically validate the growth of KL privacy loss with
regard to training time. Figure 1 shows numerical KL pri-
vacy loss under different initializations, for fully connected
networks with width 1024 and depth 10. We observe that the
KL privacy loss grows linearly at the beginning of training
(< 10 epochs), which validates the first and third term in the
KL privacy bound Lemma 3.2. Moreover, the KL privacy
loss under LeCun and Xavier initialization is close to zero at
the beginning of training (< 10 epochs). This shows LeCun
and Xavier initialization induce small gradient norm at small
training time, which is consistent with Theorem 4.1. How-
ever, when the number of epochs is large, the numerical KL
privacy loss grows faster than linear accumulation under all
initializations, thus validating the second term in Lemma 3.2.
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(a) Privacy vs depth (20 epochs,
σ = 0.01, width = 1024)
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(b) Privacy vs depth (50 epochs,
σ = 0.01, width = 1024)

0 200 400 600 800 1,000

0.1

0.2

width

(c) Privacy vs width (50 epochs,
σ = 0.01, depth = 10)

Figure 2: Numerically estimated KL privacy loss for noisy GD with constant step-size on fully
connected ReLU network with different width, depth and initializations. We report the mean and
standard deviation across 6 training runs, taking worst-case over all neighboring datasets. Under
increasing width, the KL privacy loss always grows under all evaluated initializations. Under
increasing depth, at the beginning of training (20 epochs), the KL privacy loss worsens with depth
under He initialization, but first worsens with depth (≤ 8) and then improves with depth (≥ 8) under
Xavier and LeCun initializations. At later phases of the training (50 epochs), KL privacy worsens
(increases) with depth under all evaluated initializations.

Numerically validate the dependency of KL privacy loss on network width, depth and initializations.
Figure 2 shows the numerical KL privacy loss under different network depth, width and initializations,
for a fixed training time. In Figure 2c, we observe that increasing width and training time always
increases KL privacy loss. This is consistent with Theorem 4.1, which shows that increasing width
worsens the gradient norm at initialization (given fixed depth), thus harming KL privacy bound
Lemma 3.2 at the beginning of training. We also observe that the relationship between KL privacy
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and network depth depends on the initialization distributions and the training time. Specifically, in
Figure 2a, when the training time is small (20 epochs), for LeCun and Xavier initializations, the
numerical KL privacy loss improves with increasing depth when depth > 8. Meanwhile, when the
training time is large (50 epochs) in Figure 2b, KL privacy loss worsens with increasing depth under all
intializations. This shows that given small training time, the choice of initialization distribution affects
the dependency of KL privacy loss on increasing depth, thus validating Lemma 3.2 and Theorem 4.1.

6 Utility guarantees for Training Linearized Network

Our privacy analysis suggests that training linearized network under certain initialization
schemes (such as LeCun initialization) allows for significantly better privacy bounds under over-
parameterization by increasing depth. In this section, we further prove utility bounds for Langevin
diffusion under initialization schemes and investigate the effect of over-parameterization on the
privacy utility trade-off. In other words, we aim to understand whether there is any utility degradation
for training linearized networks when using the more privacy-preserving initialization schemes.

Convergence of training linearized network. We now prove convergence of the excess empirical risk
in training linearized network via Langevin diffusion. This is a well-studied problem in the literature
for noisy gradient descent. We extend the convergence theorem to continuous-time Langevin diffusion
below and investigate factors that affect the convergence under over-parameterization. The proof is
deferred to Appendix D.1.
Lemma 6.1 (Extension of [42, Theorem 2] and [45, Theorem 3.1]). Let Llin

0 (W ;D) be the
empirical risk function of a linearized network in Eq. (3) expanded at initialization vector
W lin

0 . Let W ∗
0 be an α-near-optimal solution for the ERM problem such that Llin

0 (W ∗
0 ;D) −

minW Llin
0 (W ;D) ≤ α. Let D = {xi}ni=1 be an arbitrary training dataset of size n, and denote

M0 =
(
∇fW lin

0
(x1), · · · ,∇fW lin

0
(xn)

)⊤
as the NTK feature matrix at initialization. Then running

Langevin diffusion (4) on Llin
0 (W ) with time T and initialization vector W lin

0 satisfies

E[Llin
0 (W̄ lin

T )]−min
W

Llin
0 (W ;D) ≤ α+

R

2T
+

1

2
σ2rank(M0) ,

where the expectation is over Brownian motion BT in Langevin diffusion in Eq. (4), W̄ lin
T =

1
T

∫
W̄ lin

t dt is the average of all iterates, and R = ∥W lin
0 −W ∗

0 ∥2M0
is the gap between initialization

parameters W lin
0 and solution W ∗

0 .
Remark 6.2. The excess empirical risk bound in Lemma 6.1 is smaller if data is low-rank, e.g., image
data, then rank(M0) is small. This is consistent with the prior dimension-independent private learning
literature [32, 33, 37] and shows the benefit of low-dimensional gradients on private learning.

Lemma 6.1 highlights that the excess empirical risk scales with the gap R between initialization and
solution (denoted as lazy training distance), the rank of the gradient subspace, and the constant B
that specifies upper bound for expected gradient norm during training. Specifically, the smaller the
lazy training distance R is, the better is the excess risk bound given fixed training time T and noise
variance σ2. We have discussed how over-parameterization affects the gradient norm constant B and
the gradient subspace rank rank(M0) in Section 3. Therefore, we only still need to investigate how
the lazy training distance R changes with the network width, depth, and initialization, as follows.

Lazy training distance R decreases with model over-parameterization. It is widely observed in
the literature [19, 55, 38] that under appropriate choices of initializations, gradient descent on fully
connected neural network falls under a lazy training regime. That is, with high probability, there exists
a (nearly) optimal solution for the ERM problem that is close to the initialization parameters in terms
of ℓ2 distance. Moreover, this lazy training distance R is closely related to the smallest eigenvalue of
the NTK matrix, and generally decreases as the model becomes increasingly overparameterized. In
the following proposition, we compute a near-optimal solution via the pseudo inverse of the NTK
matrix, and prove that it has small distance to the initialization parameters via existing lower bounds
for the smallest eigenvalue of the NTK matrix [40].
Lemma 6.3 (Bounding lazy training distance via smallest eigenvalue of the NTK matrix). Under
Assumption 2.4 and single-output linearized network Eq. (3) with o = 1, assume that the per-layer
network widths m0, · · · ,mL = Ω̃(n) are large. Let Llin

0 (W ) be the empirical risk Eq. (1) for
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linearized network expanded at initialization vector W lin
0 . Then for any W lin

0 , there exists a

corresponding solution W
1
n2

0 , s.t. Llin
0 (W

1
n2

0 )−minW Llin
0 (W ;D) ≤ 1

n2 , rank(M0) = n and

R ≤ Õ

max

 1

dβL

(∏L−1
i=1 βimi

) , 1
 n∑L

l=1 β
−1
l

 , (9)

with high probability over training data sampling and random initialization Eq. (5), where Õ ignores
logarithmic factors with regard to n, m, L, and tail probability δ.

The full proof is deferred to Appendix D.2. By using Lemma 6.3, we provide a summary of bounds
for R under different initializations in Table 1. We observe that the lazy training distance R decreases
with increasing width and depth under LeCun, He and NTK initializations, while under Xavier
initialization R only decreases with increasing depth.

Privacy & Excess empirical risk tradeoffs for Langevin diffusion under linearized network. We
now use the lazy training distance R to prove empirical risk bound and combine it with our KL
privacy bound Section 4 to show the privacy utility trade-off under over-parameterization.
Corollary 6.4 (Privacy utility trade-off for linearized network). Assume that all conditions in
Lemma 6.3 holds. Let B be the gradient norm constant in Eq. (7), and let R be the lazy training

distance bound in Lemma 6.3. Then for σ2 = 2BT
εn2 and T =

√
εnR
2B , releasing all iterates of Langevin

diffusion with time T satisfies ε-KL privacy, and has empirical excess risk upper bounded by

E[Llin
0 (W̄ lin

T )]−min
W

Llin
0 (W ;D) ≤ Õ

(
1

n2
+

√
BR

εn

)
(10)

= Õ

 1

n2
+

√
max{1, dβL

∏L−1
l=1 βlml}

2L−1ε

 (11)

with high probability over random initiailization Eq. (5), where the expectation is over Brownian
motion BT in Langevin diffusion, and Õ ignores logarithmic factors with regard to width m, depth L,
number of training data n and tail probability δ.

See Appendix D.3 for the full proof. Corollary 6.4 proves that the excess empirical risk worsens in
the presence of a stronger privacy constraint, i.e., a small privacy budget ε, thus contributing to a
trade-off between privacy and utility. However, the excess empirical risk also scales with the lazy
training distance R and the gradient norm constant B. These constants depend on network width,
depth and initialization distributions, and we prove privacy utility trade-offs for training linearized
network under commonly used initialization distributions, as summarized in Table 1.

We would like to highlight that our privacy utility trade-off bound under LeCun and Xavier ini-
tialization strictly improves with increasing depth as long as the data satisfy Assumption 2.4 and
the hidden-layer width is large enough. To our best knowledge, this is the first time that a strictly
improving privacy utility trade-off under over-parameterization is shown in literature. This shows the
benefits of precisely bounding the gradient norm (Appendix C.1) in our privacy and utility analysis.

7 Conclusion

We prove new KL privacy bound for training fully connected ReLU network (and its linearized
variant) using the Langevin diffusion algorithm, and investigate how privacy is affected by the network
width, depth and initialization. Our results suggest that there is a complex interplay between privacy
and over-parameterization (width and depth) that crucially relies on what initialization distribution is
used and the how much the gradient fluctuates during training. Moreover, for a linearized variant
of fully connected network, we prove KL privacy bounds that improve with increasing depth under
certain initialization distributions (such as LeCun and Xavier). We further prove excess empirical risk
bounds for linearized network under KL privacy, which similarly improve as depth increases under
LeCun and Xavier initialization. This shows the gain of our new privacy analysis for capturing the
effect of over-parameterization. We leave it as an important open problem as to whether our privacy
utility trade-off results for linearized network could be generalized to deep neural networks.
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A.1 Additional notations

Vecorization Vec(·) denotes the transformation that takes an input matrix A = (aij)i∈[r],j∈[c] ∈
Rr×c (with r rows and c columns) and outputs a rc-dimensional column vector: Vec(A) =
(a1,1, · · · , ar,1, a1,2, · · · , ar,2, · · · , a1,c, · · · , ar,c)⊤.

Softmax function: softmax(y) = ey
[j]∑o

j=1 ey
[j] where o is the number of output classes.

o: number of output classes for the neural network.
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A.2 Relation between KL privacy Definition 2.3 to differential privacy

KL privacy is a more relaxed, yet closely connected privacy notion to (ε, δ) differential privacy [22].

1. KL privacy and differential privacy are both worst-case privacy notions over all possible
neighboring datasets, by requiring bounded distinguishability between the algorithm’s output
distributions on neighboring datasets in statistical divergence. The difference is that KL
privacy requires bounded KL divergence, while (ε, δ)-differential privacy is equivalent to
bounded Hockey-stick divergence [6].

2. KL privacy and differential privacy are both definitions based on the privacy loss random
variable log P (A(D)=o)

P (A(D′)=o) , o ∼ A(D) (following the definition in [2, Equation 1]). KL
privacy implies that the privacy loss random variable has a bounded first order moment,
while differential privacy requires a high probability argument that the privacy loss random
variable is bounded by ε with probability 1− δ. Therefore, KL privacy is generally a more
relaxed notion than differential privacy.

3. Translation to each other: For ε = 0, KL privacy (bounded first-order moment of privacy
loss random variable) implies (0, δ)-differential privacy with δ =

√
ε
2 by Pinsker inequality.

Higher order moments of the privacy loss random variable suffice to prove (ε, δ)-differential
privacy for ε > 0. Note that (ε, δ)-DP with δ > 0 does not necessarily imply KL privacy, as
the privacy loss random variable may be large at the tail event with δ probability.

4. Due to the connection to the privacy loss random variable (which is closely connected to
the likelihood ratio test for membership hypothesis testing), both differential privacy and
KL privacy incur upper bound on the performance curve of inference attacks, such as the
membership inference and attribute inference [39, 28], as we discuss in Footnote 3.

B Deferred proofs for Section 3

B.1 Deferred proofs for Theorem 3.1

To prove the new composition theorem, we will use the Girsanov’s Theorem. Here we follow the
presentation of [18, Theorem 6].

Theorem B.1 (Implication of Girsanov’s theorem [18, Theorem 6]). Let (Xt)t∈[0,η] and (X̃t)t∈[0,η]

be two continuous-time processes over Rr. Let PT be the probability measure that corresponds to the
trajectory of (Xt)t∈[0,η], and let QT be the probability measure that corresponds to the trajectory of
(X̃t)t∈[0,η]. Suppose that the process (Xt)t∈[0,η] follows

dXt = btdt+ σdBt ,

where (Bt)t∈[0,T ] is a standard Brownian motion over PT , and the process (X̃t)t∈[0,η] follows

dX̃t = b̃tdt+ σdB̃t ,

where (B̃t)t∈[0,T ] is a standard Brownian motion over QT with dB̃t = dBt +
1
σ

(
bt − b̃t

)
. Assume

that σ is a r × r symmetric positive definite matrix. Then, provided that Novikov’s condition holds,

EQT
exp

(
1

2

∫ η

0

∥σ−1(bt − b̃t)∥22dt
)

< ∞ , (12)

we have that

dPT

dQT
= exp

(∫ η

0

σ−1(bt − b̃t)dB̃t −
1

2

∫ η

0

∥σ−1(bt − b̃t)∥22dt
)

.

We are now ready to apply Girsanov’s theorem to prove the following new KL privacy composition
theorem for Langevin diffusion processes on neighboring datasets D and D′. For ease of description,
we repeat Theorem 3.1 as below.
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Theorem 3.1. [KL composition under possibly unbounded gradient difference] The KL divergence
between running Langevin diffusion (4) for DNN (2) on neighboring datasets D and D′ satisfies

KL(W[0:T ]∥W ′
[0:T ]) =

1

2σ2

∫ T

0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
dt . (13)

Proof. Recall that Wt denotes the model parameter after running Langevin diffusion on dataset D
with time t, and W ′

t denotes the model parameter after running Langevin diffusion on dataset D′

with time t. To avoid confusion, we further denote p[t1:t2] and p′[t1:t2] as the distributions of model
parameters trajectories W[t1:t2] and W ′

[t1:t2]
during time inteval [t1, t2] respectively. By definition of

partial derivative, we have that

∂KL(W[0:t]∥W ′
[0:t])

∂t
= lim

η→0

KL(W[0:t+η]∥W ′
[0:t+η])−KL(W[0:t]∥W ′

[0:t])

η
. (14)

Now we compute the term KL(W[0:t+η]∥W ′
[0:t+η]) as follows.

KL(W[0:t+η]∥W ′
[0:t+η]) = Ew[0:t+η]∼p[0:t+η]

[
log

(
p[t:t+η]|[0:t]

(
w[t:t+η]|w[0:t]

)
p[0:t](w[0:t])

p′[t:t+η]|[0:t]
(
w[t:t+η]|w[0:t]

)
p′[0:t](w[0:t])

)]

=Ew[0:t+η]∼p[0:t+η]

[
log

(
p[t:t+η]|[0:t](w[t:t+η]|w[0:t])

p′[t:t+η]|[0:t](w[t:t+η]|w[0:t])

)
+ log

(
p[0:t](w[0:t])

p′[0:t] , (w[0:t])

)]
(15)

where p[t:t+η]|[0:t]( · |w[0:t]) is the conditional distribution during running Langevin diffusion
on dataset D, given fixed values for model parameters trajectory W[0:t] = w[0:t]. Similarly,
p′[t:t+η]|[0:t]( · |w[0:t]) is the conditional distribution during running Langevin diffusion on dataset D′.

Therefore by using the Markov property of the Langevin diffusion process and the definition of KL
divergence in Eq. (15), we have that

KL(W[0:t+η]∥W ′
[0:t+η]) = Ewt∼pt

[
KL
(
p[t:t+η]|t( · |wt)

∥∥∥p′[t:t+η]|t( · |wt)
)]

+KL(pt, p
′
t) . (16)

Now to compute the term KL
(
p[t:t+η]|t( · |wt)

∥∥∥p′[t:t+η]|t( · |wt)
)

, we only need to apply Theorem B.1
to the following two Langevin diffusion processes (Wt+s|t)s∈[0,η] and (W ′

t+s|t)s∈[0,η], conditioning
on the observation Wt|t = W ′

t|t = wt at time t.

dWt+s|s = −∇L(Wt+s|t;D)dt+
√
2σ2dBs .

dW ′
t+s|t = −∇L(W ′

t+s|t;D
′)dt+

√
2σ2dB̃s .

Note that when η is small enough, we have that the Novikov’s condition in Eq. (12) holds because
the exponent inside integration 1

2

∫ η

0
∥σ−1

s (bs − b̃s)∥22ds scales linearly with η that can be arbitrarily
small. Therefore, by applying Girsanov’s theorem, we have that

KL
(
p[t:t+η]|t( · |wt)

∥∥∥p′[t:t+η]|t( · |wt)
)
=E

[∫ η

0

σ−1(bs − b̃s)dB̃s −
1

2

∫ T

0

∥σ−1(bs − b̃s)∥22ds

]
,

where bs − b̃s = −∇L(Wt+s|t;D) + ∇L(Wt+s|t;D′). By dB̃s = dBs +
1
σ

(
bs − b̃s

)
and Itô

integration with regard to W[t:t+η]|t, we have that

KL
(
p[t:t+η]|t( · |wt)

∥∥∥p′[t:t+η]|t( · |wt)
)
=

E
[∫ η

0

∥∥∇L(Wt+s|t;D)−∇L(Wt+s|t;D′)
∥∥2
2
ds
]

2σ2
.

(17)
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By plugging Eq. (17) into Eq. (16), we have that

KL(p[t:t+η], p
′
[t:t+η]) =

E
[∫ η

0
∥∇L(Wt+s;D)−∇L(Wt+s;D′)∥22 ds

]
2σ2

+KL(pt, p
′
t) . (18)

By plugging Eq. (18) into Eq. (14), and by exchanging the order of expectation and integration, we
have that

∂KL(pt, p
′
t)

∂t
=

1

2σ2
lim
η→0

∫ η

0
Ept+s

[
∥∇L(Wt+s;D)−∇L(Wt+s;D′)∥22

]
ds

η

=
1

2σ2
Ept

[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
. (19)

Note that here we exchange the order of expectation and integration by using the Tonelli’s The-
orem [49] for non-negative integrand function ∥∇L(Wt+s;D)−∇L(Wt+s;D′)∥22. Integrating
Eq. (19) on t ∈ [0, T ] finishes the proof.

B.2 Deferred proofs for Lemma 3.2

Lemma 3.2. Let MT be the subspace spanned by gradients {∇ℓ(fWt(xi;yi) : (xi,yi) ∈ D, t ∈
[0, T ]}ni=1 throughout Langevin diffusion (Wt)t∈[0,T ]. Denote ∥·∥MT

as the ℓ2 norm of the projected
input vector onto MT . Suppose that there exists constants c, β > 0 such that for any W ,W ′ and
(x,y), we have ∥∇ℓ(fW (x);y))−∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥MT

}. Then running
Langevin diffusion Eq. (4) with Gaussian initialization distribution (5) satisfies ε-KL privacy with

ε =
maxD,D′

∫ T
0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥2

2

]
dt

2σ2 where∫ T

0

E
[
∥∇L(Wt;D)−∇L(Wt;D′)∥22

]
dt ≤ 2T · E

[
∥∇L(W0;D)−∇L(W0;D′)∥22

]
︸ ︷︷ ︸

gradient difference at initialization

+
2β2

n2(2 + β2)

(
e(2+β2)T − 1

2 + β2
− T

)
·
(
E
[
∥∇L(W0;D)∥22

]
+ 2σ2rank(MT ) + c2

)
︸ ︷︷ ︸

gradient difference fluctuation during training

+
2c2T

n2︸ ︷︷ ︸
non-smoothness

.

Proof. By definition of the neighboring datasets D and D′, and the definition of empirical risk in
Eq. (1), we have that for any W , it satisfies that

∥∇L(W ;D)−∇L(W ;D′)∥22 =
1

n2
∥ℓ(fW (x);y))−∇ℓ(fW (x′);y′)∥22 , (20)

where (x,y) and (x′,y′) are the differing records between neighboring datasets D amd D′. By the
assumption that ∥∇ℓ(fW (x);y)) − ∇ℓ(fW ′(x);y)∥2 < max{c , β∥W − W ′∥MT

}, and by the
Cauchy-Schwarz inequality, we further have that for any W and Wt, it satisfies that

∥∇ℓ(fWt
(x);y))−∇ℓ(fWt

(x′);y′)∥22 ≤2 ∥∇ℓ(fW0
(x);y))−∇ℓ(fW0

(x′);y′)∥22
+ 2β2∥Wt −W0∥2MT

+ 2c2. (21)

The first term ∥∇ℓ(fW0
(x);y))−∇ℓ(fW0

(x′);y′)∥22 is constant during training (as it only depends
on the initialization). Therefore, we only need to bound the second term ∥Wt −W0∥2MT

. For brevity,
we denote the function Φ(W ) = ∥W − W0∥2MT

. Recall our definition, pt as the distribution of
model parameters after running Langevin diffusion on dataset D with time t, and p′t as the distribution
of model parameters after running Langevin diffusion on dataset D′ with time t. Then we have that

∂

∂t
Ept

[Φ(W )] = lim
η→0

Ept+η [Φ(W )]− Ept [Φ(W )]

η
. (22)

Denote Γs as the following random operator on model parameters θ.

Γs(W ) = θ − s∇L(W ;D) +
√
2σ2sZ ,
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where Z ∼ N (0, I). We first claim that the following equation holds.

lim
η→0

Ept+η
[Φ(W )]− Ept

[Φ(Γη(W ))]

η
= 0 . (23)

This is by using Euler-Maruyama discretization method to approximate the solution Wt of
SDE Eq. (4). More specifically, the approximation error Ept+η [Φ(W )] − Ept [Φ(Γη(W ))] is of
size O(rη2) for small η, where r is the dimension of W .

Therefore, by plugging Eq. (23) into Eq. (22), we have that

∂

∂t
Ept

[Φ(W )] = lim
η→0

Ept [Φ(Γη(W ))]− Ept [Φ(W )]

η
.

Recall that ∇2Φ(W ) exists almost everywhere with regard to W ∼ pt. Therefore we could
approximate the term Ept

[Φ(Γη(W );D,D′)] via its second-order Taylor expansion at W as follows.

∂

∂t
Ept

[Φ(W )] = lim
η→0

Ept [⟨∇Φ(W ),−η∇L(W ;D) +
√
2σ2ηZ⟩+ σ2ηZ⊤∇2Φ(W )Z + o(η)]

η

=− Ept
[⟨∇Φ(W ),∇L(W ;D)⟩] + σ2Ept

[Tr
(
∇2Φ(W )

)
] . (24)

By plugging Φ(W ) = ∥W −W0∥2MT
into Eq. (24), we have that

∂

∂t
Ept [∥W −W0∥2MT

] ≤− 2Ept [⟨W −W0,∇L(W ;D)⟩] + 2σ2rank(MT ) (25)

=− 2Ept
[⟨W −W0,∇L(W0;D)⟩] + 2σ2rank(MT )

− 2Ept
[⟨W −W0,∇L(W ;D)−∇L(W0;D)⟩]

≤E[∥∇L(W0;D)∥22] + Ept
[∥W −W0∥2Mt

] + 2σ2rank(MT ) (26)

+ Ept
[∥W −W0∥2MT

] + Ept
[∥∇L(W ;D)−∇L(W0;D)∥22] , (27)

where the last inequality is by using the Cauchy-schwartz inequality. By plugging the assumption
that ∥∇ℓ(fW (x);y))−∇ℓ(fW ′(x);y)∥2 < max{c , β∥W −W ′∥2} into the above inequality, we
have that

∂

∂t
Ept

[∥W −W0∥2MT
] ≤ (2 + β2)Ept

[∥W −W0∥2MT
] + E[∥∇L(W0;D)∥22] + 2σ2rank(MT ) + c2 .

(28)

By solving the above ordinary differential inequality on t ∈ [0, T ], we have that

Ept
[∥W −W0∥2MT

] ≤ e(2+β2)t − 1

2 + β2

(
E[∥∇L(W0;D)∥22] + 2σ2rank(MT ) + c2

)
. (29)

By plugging Eq. (29) into Eq. (21) and Eq. (20), followed by integration over time t ∈ [0, T ], we
have that∫ T

0

Ept

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
dt ≤ 2T · Ep0

[
∥∇L(W ;D)−∇L(W ;D′)∥22

]
(30)

+
2β2

n2(2 + β2)

(
e(2+β2)T − 1

2 + β2
− T

)
·
(
Ep0

[
∥∇L(W ;D)∥22

]
+ 2σ2rank(MT ) + c2

)
+

2c2T

n2
,

(31)

which concludes our proof.
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C Deferred proofs for Section 4

C.1 Bounding the gradient norm at initialization

To bound the moment of ℓ2 norm of the gradient ∂f(x)
∂Wl

of network output function, we need the
following (extended) lemmas from Zhu et al. [54].

Lemma C.1 ([54, Lemma 1]). Let w ∼ N (0, σ2In), then for two fixed non-zero vectors h1,h2 ∈
Rn whose correlation is unknown, define two random variables X = (w⊤h11{w⊤h2≥0})

2 and
Y = s(w⊤h1)

2, where s ∼ Ber(1, 1/2) follows a Bernoulli distribution with 1 trial and 1
2 success

rate, and s and w are independent random variables. Then X and Y have the same distribution.

Lemma C.2 (Extension of [54, Lemma 2]). Given a fixed non-zero matrix H1 ∈ Rp×r and a fixed
non-zero vector h2 ∈ Rp and , let W ∈ Rq×p be a random matrix with i.i.d. entries Wij ∼ N (0, β)

and a matrix (or vector) V = ϕ′(Wh2)WH1 ∈ Rq×r, then, we have E[ ∥V ∥2
F

∥H1∥2
F
] = qβ

2 .

Proof. According to the definition of V = ϕ′(Wh2)WH1 ∈ Rq×r, we have:

∥V ∥2F =

q∑
i=1

r∑
j=1

(
Di,i⟨W [i;],H

[;j]
1 ⟩
)2

,

where Di,i = 1{⟨W [i],h2⟩≥0}, W [i;] is the i-th row of W , and H
[;j]
1 is the j-th column vector of H1.

Therefore by Lemma C.1, with i.i.d. Bernoulli random variable ρ1, · · · , ρq ∼ Ber(1, 1/2), we have

∥V ∥2F
d
=

q∑
i=1

r∑
j=1

ρi⟨W [i;],H
[;j]
1 ⟩2 =

q∑
i=1

r∑
j=1

ρiβ∥H [;j]
1 ∥22w̃2

ij , (32)

where w̃ij = ⟨W [i;],H
[;j]
1 ⟩/

(√
β∥H [;j]

1 ∥22
)

. By the fact that W [i;] has i.i.d. Gaussian entries, for

any fixed j, we have that w̃ij ∼ N (0, 1), i = 1, · · · , q independently. Therefore, we have

E
[
∥V ∥2F

]
=

q∑
i=1

r∑
j=1

E[ρi]β∥H [;j]
1 ∥22E[w̃2

ij ] =
qβ

2
E[∥H1∥2F ] .

Now, we are ready to prove output gradient expectation at random initialization as follows.

Lemma C.3 (Output Gradient Expectation Bound at Random Initialization). Fix any data record x,
then over the randomness of the initialization distributions for W1, · · · ,WL, i.e., Wl ∼ N (0, βlI)
for l = 1, · · · , L− 1, it satisfies that

EW

[
∥ ∂f(x)

∂Vec(W )
∥2F
]
= ∥x∥22o

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
. (33)

Proof. We use Vec(Wl) to denote the concatenation of all row vector of the parameter matrix Wl.
By chain rule, for l = 1, · · · , L− 1, we have that

∂f(x)

∂Vec(Wl)
=

∂hL(x)

∂hL−1(x)

(
L−1−l∏
i=1

∂hL−i(x)

∂hL−1−i(x)

)
∂hl

Vec(Wl)
(34)

= WL

(
L−1−l∏
i=1

σ′
L−iWL−i

)
σ′
l

h⊤
l−1 0 · · ·
...

...
...

0 0 h⊤
l−1


ml×mlml−1

. (35)
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Similarly, for the L-th layer, we have that

∂f(x)

∂Vec(WL)
=

h⊤
L−1 0 · · ·
...

...
...

0 0 h⊤
L−1


o×omL−1

. (36)

By properties of ReLU activation ϕ, we have ϕ′
L−i = diag[sgn(WL−ihL−1−i)], where sgn(x) ={

1 x > 0

0 x ≤ 0
operates coordinate-wise with regard to the input matrix. Therefore, we have that for

l = 1, · · · , L− 1

∂f(x)

∂Vec(Wl)
=WL

(
L−1−l∏
i=1

diag[sgn(WL−ihL−1−i)]WL−i

)
· diag[sgn(Wlhl−1)]

h⊤
l−1 0 · · ·
...

...
...

0 0 h⊤
l−1


ml×mlml−1

.

For notational simplicity, we introduce the notation of tl
′

l for l = 1, · · · , L − 1 and l ≤ l′ < L as
follows.

tl
′

l :=

(
L−1−l∏
i=L−l′

diag[sgn(WL−ihL−1−i)]WL−i

)
· diag[sgn(Wlhl−1)]

h⊤
l−1 0 · · ·
...

...
...

0 0 h⊤
l−1


ml×mlml−1

.

Then by definition, we have that

EW

[
∥ ∂f(x)

∂Vec(Wl)
∥2F
]
= EW

[
∥WLt

L−1
l ∥2F

]
= EW

[
∥WLt

L−1
l ∥2F

∥tL−1
l ∥2F

·
∥tL−1

l ∥2F
∥tL−2

l ∥2F
· · ·

∥tl+1
l ∥2F
∥tll∥2F

· ∥tll∥2F

]

= EW1,··· ,Wl

[
∥tll∥2F · EWl+1

[
∥tl+1

l ∥2F
∥tll∥2F

· · ·EWL

[
∥WLt

L−1
l ∥2F

∥tL−1
l ∥2F

]]]
.

By rotational invariance of Gaussian column vectors, we prove that for any possible value of tL−1
l

(which is completely determined by W1, · · · ,WL−1 and x), for any l = 1, · · · , L− 1, we have that

EWL

[
∥WLt

L−1
l ∥2F

∥tL−1
l ∥2F

]
= EWL

[
∥WLe1∥22
∥e1∥22

]
= βLo . (37)

By Lemma C.2, for any l = 1, · · · , L− 2 and l ≤ l′ ≤ L− 2, we have that

EWl+1

[
∥tl

′+1
l ∥2F
∥tl′l ∥2F

]
=

βl′+1

2
ml′+1 . (38)

We now bound the last term EW1,··· ,Wl

[
∥tll∥2F

]
for l = 1, · · · , L− 1. By definition, we have that

EW1,··· ,Wl

[
∥tll∥2F

]
= EW1,··· ,Wl

[
ml∑
i=1

1{W [i;]
l hl−1≤0} · ∥hl−1∥22

]
=

ml

2
EW1,··· ,Wl−1

E[∥hl−1∥22] .

(39)

To bound the EW1,··· ,Wl
[∥hl−1∥22], note that by Lemma C.2, we prove that for any l = 1, · · · , L− 1

EWl−1

[
∥hl−1(x)∥22
∥hl−2(x)∥22

]
=

βl−1

2
ml−1 . (40)
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Therefore, for any l = 1, · · · , L, we have that

EW1,··· ,Wl−1

[
∥hl−1(x)∥22

]
= EW1,··· ,Wl−1

[
∥hl−1(x)∥22
∥hl−2(x)∥22

· · · ∥h1(x)∥22
∥x∥22

]
· ∥x∥22 (41)

=

(
l−1∏
i=1

βi

2
mi

)
∥x∥22 . (42)

By plugging (42) into (39), we have that

EW1,··· ,Wl

[
∥tll∥22

]
=

ml

2

(
l−1∏
i=1

βi

2
mi

)
∥x∥22 . (43)

By combining (37), (38) and (43), we have for any l = 1, · · · , L− 1

EW

[
∥ ∂f(x)

∂Vec(Wl)
∥2F
]

=
ml

2

(
l−1∏
i=1

βi

2
mi

)
·

(
L−1∏
i=l+1

βi

2
mi

)
· βLo · ∥x∥22 =

βL

βl
∥x∥22o

(
L−1∏
i=1

βimi

2

)
.

On the other hand, by plugging Eq. (42) (under ℓ = L) into Eq. (36), we have that

EW

[
∥ ∂f(x)

∂Vec(WL)
∥22
]
= o

(
L−1∏
i=1

βi

2
mi

)
∥x∥22

Therefore,

EW

[
∥ ∂f(x)

∂Vec(W )
∥2F
]
=

L∑
l=1

∥∂f(x)
∂Wl

∥2F = ∥x∥22o

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
,

which suffices to prove Eq. (33).

C.2 Deferred proof for Theorem 4.1

Finally, we prove that the gradient difference between two training datasets under linearized network
is bounded by a constant throughout training (which only depends on the network width, depth and
initialization distribution).

Theorem 4.1. Under Assumption 2.2, taking over the randomness of the random initialization and
the Brownian motion, for any t ∈ [0, T ], running Langevin diffusion on linearized network Eq. (3)
satisfies that

E
[
∥∇L(W lin

t ;D)− L(W lin
t ;D′)∥22

]
≤ 4B

n2
, (44)

where n is the training dataset size, and B is a constant that only depends on the data dimension d,
the number of classes o, the network depth L, the per-layer network width {mi}Li=1, and the per-layer
variances {βi}Li=1 of the Gaussian initialization distribution as follows.

B := d · o ·

(
L−1∏
i=1

βimi

2

)
L∑

l=1

βL

βl
, (45)

Proof. Denote W as the initialization parameters and denote W lin
t as the parameters for linearized

network after training time t. Then the gradient difference under linearized network and cross-entropy
loss function is as follows.

∥∇L(Wt;D)−∇L(Wt;D′)∥2F

=

∥∥∥∥∇fW (x)⊤ (softmax(fWt
(x))− y)

n
− ∇fW (x′)⊤ (softmax(fWt

(x′))− y′)

n

∥∥∥∥2
F

≤ 2

n2

(
∥∇fW (x)∥2F + ∥∇fW (x′)∥2F

)
.

Plugging Lemma C.3 into the above equation with data Assumption 2.2 suffice to prove the result.
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D Deferred proofs for Section 6

D.1 Deferred proof for Lemma 6.1 on convergence of training linearized network

In this section, we prove empirical risk bound for the average of all iterates of Langevin diffusion,
building on standard results [42, Theorem 2] and [45, Theorem 3.1] for the (discrete time) stochastic
gradient descent algorithm.

Lemma 6.1. (Extension of [42, Theorem 2] and [45, Theorem 3.1]) Let Llin
0 (W ;D) be the empirical

risk function of linearized newtork Eq. (3) expanded at initialization vector W lin
0 . Let W ∗

0 be an
α-near-optimal solution for the ERM problem such that Llin

0 (W ∗
0 ;D) − minW Llin

0 (W ;D) ≤
α. Let D = x1, · · · ,xn be an arbitrary training dataset of size n, and denote M0 =(
∇fW lin

0
(x1), · · · ,∇fW lin

0
(xn)

)⊤
as the NTK feature matrix at initialization. Then running

Langevin diffusion (4) on Llin
0 (W ) with time T and initialization vector W lin

0 satisfies

E[Llin
0 (W̄ lin

T )]−min
W

Llin
0 (W ;D) ≤ α+

R

2T
+

1

2
σ2rank(M0) ,

where the expectation is over Brownian motion BT in Langevin diffusion Eq. (4), W̄ lin
T =

1
T

∫
W̄ lin

t dt is the average of all iterates, and R = ∥W lin
0 − W ∗

0 ∥2M0
is the gap between ini-

tialization parameters W lin
0 and solution W ∗

0 .

Proof. Our proofs are heavily based on the idea in [45, Theorem 3.1] to work only in the parameter
space spanned by the input feature vectors. And our proof serves as an extension of their bound to
the continuous-time Langevin diffusion algorithm. We begin by using convexity of the empirical loss
function Llin

0 (W ;D) for linearized network to prove the following standard results

Llin
0 (W̄ lin

T ;D)− Llin
0 (W ∗

0 ;D) ≤ ⟨W̄ lin
T −W ∗

0 ,∇Llin
0 (W̄ lin

T ;D)⟩ . (46)

Denote M0 =
(
∇fW lin

0
(x1) · · · ∇fW lin

0
(xn)

)
and compute the gradient under cross entropy

loss and linearized network, we have ∇Llin
0 (W lin

T ;D) lies in the column space of M0. Denote ΠM0

as the projection operator to the column space of M0, then (46) can be rewritten as

Llin
0 (W̄ lin

T ;D)− Llin
0 (W ∗

0 ;D) ≤ ⟨ΠM0
(W̄ lin

T −W ∗
0 ),∇Llin

0 (W̄ lin
T ;D)⟩. (47)

By taking expectation over the randomness of Brownian motion in Langevin diffusion, we have

E[Llin
0 (W̄ lin

T )]− Llin
0 (W ∗

0 ;D) ≤ 1

T

∫ T

0

E
[
⟨ΠM0(W

lin
t −W ∗

0 ),∇Llin
0 (W lin

t ;D)⟩
]
dt . (48)

We now rewrite E
[
⟨ΠM0(W̄

lin
t −W ∗

0 ),∇Llin
0 (W lin

t ;D)⟩
]

by computing ∂
∂tE[∥W

lin
t −W ∗

0 ∥2M0
],

where ∥W lin
t −W ∗

0 ∥2M0
= ΠM0

(
W lin

t −W ∗
0

)⊤
ΠM0

(
W lin

t −W ∗
0

)
. By applying (24) with pt

being the distribution for W lin
t in Langevin diffusion for linearized network starting from point

initialization W lin
0 , and with function d(W ) = ∥W −W ∗

0 ∥2M0
, we have that

∂

∂t
E[∥W lin

t −W ∗
0 ∥2M0

] ≤ −2E[⟨ΠM0

(
W lin

t −W ∗
0

)
,∇Llin

0 (W lin
t ;D)⟩] + σ2rank(M0).

(49)

Therefore by plugging (49) into (48), we have that

E[Llin
0 (W̄ lin

T )]− Llin
0 (W ∗

0 ;D) ≤ − 1

2T

∫ T

0

∂

∂t
E[∥Wt −W ∗

0 ∥2M0
]dt+

1

2
σ2rank(M0) (50)

≤ 1

2T
∥W lin

0 −W ∗
0 ∥2M0

+
1

2
σ2rank(M0) (51)
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D.2 Deferred proof for Lemma 6.3

To bound lazy training distance of training linearized network, we would need the following auxiliary
Lemma about high probability upper bound for the final layer output of linearized network at
initialization.

Lemma D.1. Fix any data record x, then with high probability 1 − δ over random initialization
Eq. (5) of model weight matrices W 1, · · · ,WL for layer 1, · · · , L, i.e., Wl ∼ N (0, βlI), it satisfies
that

∥fW (x)∥2 ≤ ∥x∥22Õ

(
βL

(
L−1∏
i=1

βimi

))
(52)

where Õ ignores logarithmic terms with regard to width m, depth L and tail probability δ.

Proof. To bound the term ∥fW lin
0

(xi)∥22, by definition Eq. (2), for any x, we have that

∥fW lin
0

(x)∥22 =
∥hL(x)∥22

∥hL−1(x)∥22
· · · ∥h1(x)∥22

∥h0(x)∥22
· ∥h0(x)∥22

∥x∥22
∥x∥22 (53)

We now bound the terms in the right-hand-side of Eq. (53) one by one.

Regarding the first term ∥hL(x)∥2
2

∥hL−1(x)∥2
2

in Eq. (53), observe that by the network output definition Eq. (2),
we have that

∥hL(x)∥22 = ∥WLhL−1(x)∥22
d
=βL∥hL−1(x)∥22w̃2 (54)

where w̃ ∼ N (0, 1) and the last equality is by rotaional invariance of Gaussian distribution used
for initializing L-th layer weight matrix WL ∈ R1×m. Therefore, by tail probabilty expression
for standard Gaussian random variable, we have that with high probability 1 − δ

L over random
initialization of WL ∈ R1×m, it satisfies that

∥hL(x)∥22
∥hL−1(x)∥22

≤ 2βL log
L

δ
(55)

Regarding the terms ∥hl(x)∥2
2

∥hl−1(x)∥2
2

in Eq. (53) for layer l = 1, · · · , L− 1, by setting H1 = h2 = hl−1

in Eq. (32), we immediately prove that over random initialization of weight matrix W l ∈ Rml×ml−1 ,
it satisfies that

∥hl(x)∥22
∥hl−1(x)∥22

d
=

ml∑
i=1

ρiβlw̃
2
i (56)

where ρ1, · · · , ρml

i.i.d.∼ Ber(1, 1
2 ) and w̃1, · · · , w̃ml

i.i.d.∼ N (0, 1) and ρi and w̃i are independent.

By tail probabilty expression for Gaussian random variable w̃i, we have that P (w̃2
i ≥ t) ≤ e−t/2 for

any t > 0. By union bound over i = 1, · · · ,ml, we prove that for any layer l = 1, · · · , L− 1, with
high probability 1− δ

2L over random initialization of weight matrix W l ∈ Rml×ml−1 , it satisfies that

max
i

w̃2
i ≤ 2 log

2mlL

δ
(57)

Moreover, by applying Hoeffding’s inequality to i.i.d. Bernoulli r.v.s ρ1, · · · , ρm, we prove with high
probability 1− δ

2L , it satisfies that
∑m

i=1 ρi ≤
ml

2 (1 + log(2L/δ)). By combining it with Eq. (57)
via union bound, and plugging the result into Eq. (59), we prove for any l = 1, · · · , L− 1, it satisfies
with high probability 1− δ

L over random initialization of weight matrix W l ∈ Rml×ml−1 that

∥hl(x)∥22
∥hl−1(x)∥22

= mlβl log
2mlL

δ
· (1 + log(2L/δ)) (58)
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By using union bound over Eq. (58) for layer l = 1, · · · , L− 1 and Eq. (55), we have that with high
probability 1− δ over random initialization Eq. (5), it satisfies that

∥hL(x)∥22
∥h0(x)∥22

≤ Õ(

L−1∏
i=1

βimi) (59)

where Õ ignores logarithmic factors with regard to m, L and δ.

By plugging Eq. (59) into Eq. (53), we prove that with high probability 1 − δ over initialization
Eq. (5), the following bound holds.

∥fW (x)∥2 ≤ ∥x∥22Õ

(
βL

(
L−1∏
i=1

βimi

))
, (60)

where Õ ignores logarithmic terms with regard to width m, depth L and tail probability δ.

Lemma 6.3. (Bounding lazy training distance via smallest eigenvalue of the NTK matrix) Under
Assumption 2.4 and single-output linearized network Eq. (3) with o = 1, assume that the per-layer
network widths m0, · · · ,mL = Ω̃(n) are large. Let Llin

0 (W ) be the empirical risk Eq. (1) for
linearized network expanded at initialization vector W lin

0 . Then for any W lin
0 , there exists a

corresponding solution W
1
n2

0 , s.t. Llin
0 (W

1
n2

0 )−minW Llin
0 (W ;D) ≤ 1

n2 , rank(M0) = n and

R ≤ Õ

max

 1

dβL

(∏L−1
i=1 βimi

) , 1
 n∑L

l=1 β
−1
l

 , (61)

with high probability over training data sampling and random initialization Eq. (5), where Õ ignores
logarithmic factors with regard to n, m, L, and tail probability δ.

Proof. Given an arbitrary initialization parameter vector W lin
0 , we first construct an solution W

1
n2

0

that is nearly optimal for the ERM problem over Llin
0 (W ), as follows.

W
1
n2

0 −W lin
0 = M†

0

2 lnn · y1 − fW lin
0

(x1)
...

2 lnn · yn − fW lin
0

(xn)

 (62)

where M0 =

∇fW lin
0

(x1)
⊤

...
∇fW lin

0
(xn)

⊤

 is the gradient matrix at initialization and † denotes pseudo-inverse.

We now prove that the solution W
1
n2

0 is close to the initialization parameters W lin
0 in ℓ2 distance

with high probability. By applying the holder inequality in (62), we have that

R = ∥W
1
n2

0 −W lin
0 ∥22 ≤ ∥M†

0∥22 ·

∥∥∥∥∥∥∥
2 lnn · y1 − fW lin

0
(x1)

...
2 lnn · yn − fW lin

0
(xn)


∥∥∥∥∥∥∥
2

2

(63)

≤ 1

λ0
·

∥∥∥∥∥∥∥
2 lnn · y1 − fW lin

0
(x1)

...
2 lnn · yn − fW lin

0
(xn)


∥∥∥∥∥∥∥
2

2

(64)

where λ0 is the smallest non-zero eigenvalue of the PSD matrix M0M
⊤
0 . When the data regularity

assumption Assumption 2.4 holds and the per-layer width m0, · · · ,mL = Ω̃(n), by applying existing
bounds for the smallest eigenvalue of the NTK matrix M0M

⊤
0 for single-output network in [40,
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Theorem 4.1], we prove that with high probability over data sampling and random initialization Eq. (5),
it satisfies that

O

((
d

L−1∏
l=1

ml

)
·

(
L∏

l=1

βl

)
·

(
L∑

l=1

β−1
l

))
≥ λ0

≥ Ω

((
d

L−1∏
l=1

ml

)
·

(
L∏

l=1

βl

)
·

(
L∑

l=1

β−1
l

))
, (65)

where we have set the auxiliary variables ξl = 1 in [40, Theorem 4.1] because the per-layer width
ml = Ω̃(n) are large enough for l = 0, · · · , L (where n is the number of training data).

Therefore, by using Eq. (65), we have that with high probability over data sampling and random
initialization Eq. (5), it satisfies that

1

λ0
≤ O

 1(
d
∏L−1

l=1 ml

)
·
(∏L

l=1 βl

)
·
(∑L

l=1 β
−1
l

)
 , (66)

where ml is the width of layer l and n is the number of training data.

For the second term in Eq. (64), by Cauchy-Schwarz inequality, we have that∥∥∥∥∥∥∥
2 lnn · y1 − fW lin

0
(x1)

...
2 lnn · yn − fW lin

0
(xn)


∥∥∥∥∥∥∥
2

2

≤ 2 · (2 lnn)2
n∑

i=1

y2i + 2

n∑
i=1

∥fW lin
0

(xi)∥22 (67)

By Lemma D.1, we have that ∥fW lin
0

(x)∥2 ≤ Õ
(
d · βL

(∏L−1
i=1 βimi

))
with high probability over

the random initialization Eq. (5). By plugging this result and yi ∈ {−1, 1} into Eq. (67), we have
that with high probability over random initialization Eq. (5), it satisfies that∥∥∥∥∥∥∥

2 lnn · y1 − fW lin
0

(x1)
...

2 lnn · yn − fW lin
0

(xn)


∥∥∥∥∥∥∥
2

2

= Õ

(
n+ ndβL

(
L−1∏
i=1

βimi

))
, (68)

where Õ ingores logarithmic factors with regard to n, m, L, and tail probability δ. Therefore, by
combining Eq. (66) and Eq. (68) with union bound, and by plugging the result into Eq. (64), we have
that with high probability over data sampling and random initialization Eq. (5), it satisfies that

R ≤ Õ

 n+ ndβL

(∏L−1
i=1 βimi

)
(
dβL

∏L−1
l=1 βlml

)
·
(∑L

l=1 β
−1
l

)


≤ Õ

max

 1

dβL

(∏L−1
i=1 βimi

) , 1
 n∑L

l=1 β
−1
l

 .

where ml is the width of layer l, n is the number of training data, and Õ ignores logarithmic factors
with regard to n, m, L, and tail probability δ.

We finally prove that W
1
n2

0 is a 1
n2 -near-optimal solution. Note that Eq. (65) implies that with

high probability M0M
⊤
0 is full rank, i.e., rank(M0M

⊤
0 ) = n. Therefore M†

0 = M⊤
0 (M0M

⊤
0 )−1

and


f
W

1
n2
0

(x1)

...
f
W

1
n2
0

(xn)

 =

2 lnn · y1
...

2 lnn · yn

 with high probability over the training data sampling and

random initialization Eq. (5). By plugging it into the cross-entropy loss for the single-output network
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defined below Eq. (1), we have that with high probability over the training data sampling and random

initialization Eq. (5), the solution W
1
n2

0 satisfies

Llin
0 (W

1
n2

0 )−min
W

Llin
0 (W ;D) ≤ log(1 + exp(−2 lnn)) <

1

n2
. (69)

D.3 Deferred proof for Corollary 6.4

Corollary 6.4. (Privacy utility trade-off for linearized network) Assume that all conditions in
Lemma 6.3 holds. Let B = d

(∏L−1
i=1

βimi

2

)∑L
l=1

βL

βl
be the gradient norm constant proved in

Eq. (7), and let R ≤ Õ
(
max

{
1

dβL(
∏L−1

i=1 βimi)
, 1

}
n∑L

l=1 β−1
l

)
be the lazy training distance bound

proved in Lemma 6.3. Then for σ2 = 2BT
εn2 and T =

√
εnR
2B , releasing all iterates of Langevin

diffusion with time T satisfies ε-KL privacy, and has empirical excess risk upper bounded by

E[Llin
0 (W̄ lin

T )]−min
W

Llin
0 (W ;D) ≤ Õ

(
1

n2
+

√
BR

εn

)
(70)

= Õ

 1

n2
+

√√√√ 1

2L−1ε
max{1, dβL

L−1∏
l=1

βlml}

 (71)

with high probability over random initiailization Eq. (5), where the expectation is over Brownian
motion BT in Langevin diffusion, and Õ ignores logarithmic factors with regard to width m, depth L,
number of training data n and tail probability δ. A summary of our excess empirical risk bounds
under different initializations is in Table 1.

Proof. By setting W ∗
0 = W

1
n2

0 in Lemma 6.1 with W
1
n2

0 constructed as Lemma 6.3, we have with
high probability over random initialization Eq. (5), we have

E[Llin
0 (W̄ lin

T )]−min
W

Llin
0 (W ;D) ≤ 1

n2
+

R

2T
+

σ2n

2
. (72)

where R ≤ Õ
(
max

{
1

dβL(
∏L−1

i=1 βimi)
, 1

}
n∑L

l=1 β−1
l

)
by Lemma 6.3.

Meanwhile, to ensure ε-KL privacy, by Corollary 4.2, we only need to set σ2 = 2BT
εn2 where

B = d
(∏L−1

i=1
βimi

2

)∑L
l=1

βL

βl
by for single-output network with o = 1. By plugging σ2 = 2BT

εn2

into (72), we prove that

E[Llin
0 (W̄ lin

T )]−min
W

Llin
0 (W ;D) ≤ 1

n2
+

R

2T
+

BT

εn
. (73)

Setting T =
√

εnR
2B in (73) and elaborating the computations suffice to prove the result.

E Discussion on extending our results to Noisy GD with constant step-size

In this section, we discuss how to extend our privacy analyses to noisy GD with constant step-size.
Specifically, we only need to extend the KL composition theorem under possibly unbounded gradient
difference, i.e., Theorem 3.1, to the noisy GD algorithm.

Theorem E.1 (KL composition for noisy GD under possibly unbounded gradient difference). Let
the iterative update in noisy GD algorithm be defined by: W(k+1) = W(k) − η∇L(W(k);D) +
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√
2ησ2Zk, where Zk ∼ N (0, I). Then the KL divergence between running noisy GD for DNN (2)

on neighboring datasets D and D′ satisfies

KL(W(1:K),W
′
(1:K)) =

1

2σ2

K−1∑
k=0

η · E
[∥∥∇L(W(k);D)−∇L(W(k);D′)

∥∥2
2

]
. (74)

Proof. Denote p(k) as the distribution of model parameters after running noisy GD on dataset
D with k steps, and similarly denote p′(k) as the distribution of model parameters after run-
ning noisy GD on dataset D′ with k steps. Similarly, denote p(1:k) as the joint distribution of
(W(1), · · · ,W(k)), and denote p′(1:k) as the joint distribution of (W ′

(1), · · · ,W
′
(k)). Now we expand

the term KL(p(1,k+1), p
′
(1,k+1)) by the Bayes rule as follows.

KL(p(1:k+1), p
′
(1:k+1)) (75)

=Ep(1:k+1)(W(1:k+1))

[
log

(
p(k+1)|(1:k)(W(k+1)|W(1:k))p(1:k)(W(1:k))

p′(k+1)|(1:k)(W(k+1)|W(1:k))p
′
(1:k)(W(1:k))

)]

=Ep(1:k+1)(W(1:k+1))

[
log

(
p(k+1)|(1:k)(W(k+1)|W(1:k))

p′(k+1)|(1:k)(W(k+1)|W(1:k))

)]
+ Ep(1:k)(W(1:k))

[
log

(
p(1:k)(W(1:k))

p′(1:k)(W(1:k))

)]
=Ep(1:k)(W(1:k))

[
KL(p(k+1)|(1:k), p

′
(1:k+1)|(1:k))

]
+KL(p(1:k), p

′
(1:k)) (76)

Observe that conditioned on fixed model parameters W(1:k) at iteration 1, · · · , k, the distributions
p(k+1)|(1:k), p

′
(k+1)|(1:k) are Gaussian with per-dimensional variance σ2. Therefore, by computing

the KL divergence between two multivariate Gaussians, we have that

KL(p(k+1)|(1:k), p
′
(k+1)|(1:k)) =

1

2σ2
· η ·

∥∥∇L(W(k);D)−∇L(W(k);D′)
∥∥2
2

(77)

Therefore, by plugging Eq. (77) into Eq. (76), we have that

KL(p(1:k+1), p
′
(1:k+1)) =

η

2σ2
E
[∥∥∇L(W(k);D)−∇L(W(k);D′)

∥∥2
2

]
+KL(p(1:k), p

′
(1:k)) (78)

By summing (78) over k = 0, · · · ,K−1 and observing that KL(p(0), p
′
(0)) = 0 (as the initialization

distribution is the same between noisy GD on D and D′), we finish the proof for Eq. (74).
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