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Abstract

Cortical populations of neurons develop sparse representations adapted to the statistics of

the environment. To learn efficient population codes, synaptic plasticity mechanisms must

differentiate relevant latent features from spurious input correlations, which are omnipresent

in cortical networks. Here, we develop a theory for sparse coding and synaptic plasticity that

is invariant to second-order correlations in the input. Going beyond classical Hebbian learn-

ing, our learning objective explains the functional form of observed excitatory plasticity

mechanisms, showing how Hebbian long-term depression (LTD) cancels the sensitivity to

second-order correlations so that receptive fields become aligned with features hidden in

higher-order statistics. Invariance to second-order correlations enhances the versatility of

biologically realistic learning models, supporting optimal decoding from noisy inputs and

sparse population coding from spatially correlated stimuli. In a spiking model with triplet

spike-timing-dependent plasticity (STDP), we show that individual neurons can learn local-

ized oriented receptive fields, circumventing the need for input preprocessing, such as whit-

ening, or population-level lateral inhibition. The theory advances our understanding of local

unsupervised learning in cortical circuits, offers new interpretations of the Bienenstock-Coo-

per-Munro and triplet STDP models, and assigns a specific functional role to synaptic LTD

mechanisms in pyramidal neurons.

Author summary

To understand how our brains carve out meaningful stimuli from a sea of sensory infor-

mation, experimentalists often focus on individual neurons and their receptive fields; i.e.,

the input patterns that best stimulate the neurons. The receptive field of a neuron adapts

to the statistics of the environment through plastic changes in the structure and strength

of its incoming connections. Prevailing models of this adaptation, such as Sparse Coding

and BCM theory, suggest that these connections are adjusted in a self-organized, unsuper-

vised manner such that neurons can extract relatively rare, but complex patterns from the

sensory input stream. Our theory extends these models, demonstrating that certain vari-

ants of the BCM model are capable of selectively ignoring pervasive second-order
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correlations and homing in on the pertinent, sparse signals in the stream of sensory sti-

muli. We have identified a carefully calibrated interaction between two aspects of synaptic

plasticity: linear long-term depression (LTD) and nonlinear long-term potentiation

(LTP). Such a balance enables a learning strategy that is sensitive to the complex statistical

properties (higher-order correlations) of sensory inputs. In contrast to earlier approaches,

so-called pre-whitening to remove second-order correlations is not necessary. Our find-

ings provide not only a new framework for understanding the diverse roles of synaptic

plasticity but also offer insights that may inform the development of artificial neural

networks.

Introduction

Cortical sensory areas contain rich representations of the external world, with individual neu-

rons responding selectively to particular stimuli [1, 2]. These representations develop in early

life and continue onward to adapt to the statistics of the environment [3]. While synaptic plas-

ticity is thought to be central to cortical learning, it is still unknown how these biological pro-

cesses can develop sensory representations. Normative models of sensory development,

including sparse coding, independent component analysis, and Bienenstock-Cooper-Munro

(BCM) plasticity [4–6], assume that cortical circuits self-organize to learn efficient sparse rep-

resentations, aligning their receptive fields to sparse latent features hidden in the activity of the

input population.

While synaptic plasticity models can be sensitive to sparse latent features, Hebbian mecha-

nisms are also sensitive to input second-order correlations. Although mechanisms like retinal

processing [7] and recurrent inhibition [8] can decorrelate neural activity, second-order corre-

lations are widespread in cortical networks [9–11]. Under such conditions, input correlations

(“second-order correlations”) can overshadow sparse latent features (“higher-order correla-

tions”) so that learning will be dominated by input directions with the largest variance, akin to

principal component analysis [12], developing selectivity for clusters of correlated inputs [13–

15], but in general, failing to learn sparse representations [16, 17]. Several previous models of

sparse sensory representations have side-stepped the issue by relying on assumptions of dec-

orrelated inputs and identical firing rates, artificially removing input correlations through a

preprocessing step referred to as ‘whitening’ [4, 18, 19].

Thus, it is still unknown how cortical learning mechanisms can learn from naturalistic

input statistics, weeding out spurious input correlations while maintaining selectivity to

higher-order correlations. Furthermore, the relation of plasticity rules derived from sparse

coding models to experimental data remains often at a high level and cannot explain func-

tional differences between plasticity mechanisms. In particular, the selective roles of homosy-

naptic LTD, on one side, and neuron-wide (heterosynaptic) depression mechanisms or

homeostasis, on the other side, remain unclear [20–22].

Here we develop a theory of cortical unsupervised learning that selectively learns sparse

latent features, taking into account the diverse statistics of presynaptic neurons. We demon-

strate that invariance to (second-order) input correlations leads to biologically plausible plas-

ticity mechanisms, requiring nonlinear Hebbian LTP and standard Hebbian LTD, linked with

a homeostatic factor of meta-plasticity, including as special cases variations of the BCM [23,

24] and the triplet STDP models [25], classic models of excitatory plasticity. We show that this

family of plasticity models optimizes an objective function, similar to that of sparse coding

models [4, 26], but with the additional constraint of invariance to second-order correlations.
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Thus our objective function aims to selectively detect sparse features while ignoring potentially

large second-order correlations in the synaptic input.

In simulations of increasing complexity, we demonstrate how invariance to second-order

correlations enables biologically realistic models to learn efficient decoders and sparse popula-

tion codes, developing synaptic weights that compensate for the noise of individual neurons,

heterogeneity of firing rates across neurons, and correlated amplitude fluctuations of groups

of neurons. Applied to sensory integration tasks, optimizing for sparsity translates to optimal

integration of noisy inputs, weighing them according to their scale and reliability, leading to

near-optimal linear decoders. In connected populations of neurons, the same plasticity rule

leads to precisely tuned neurons even in cases where inputs have strong spatial correlations.

Additionally, we adapted our theory to a spiking model of visual sensory development, with

spiking neurons learning localized receptive fields from spatially correlated natural stimuli,

even in the absence of decorrelating circuit mechanisms such as recurrent inhibition.

Learning with invariance to second-order correlations assigns a functional role to LTP,

LTD, and homeostasis. In particular, linear Hebbian LTD is critical for invariance to second-

order correlations, whereas alternative stability mechanisms, such as heterosynaptic plasticity

[20, 27], do not confer correlation-invariance. Our theory provides a normative explanation

for several distinct plasticity mechanisms in the brain. These results extend our understanding

of how unsupervised learning with local Hebbian plasticity might be implemented in cortical

circuits.

Results

Synaptic plasticity as sparse feature learning

We hypothesize that synaptic plasticity in single neurons implements an algorithm to learn

features hidden in the input arriving in parallel at multiple synapses. In this view, the forma-

tion of receptive fields of sensory neurons during development is a manifestation of successful

feature learning. We start by considering a simplified rate neuron y, with activation y =

(wTx)+, receiving N inputs x = (x1, . . ., xN) through synaptic connections w = (w1, . . ., wN),

where (.)+ denotes the rectified linear activation function, with activity y = wTx for wTx> 0

and y = 0 otherwise. We refer to the vector w of synaptic connections as the weight vector.

We assume that input features are characterised by sparse, non-Gaussian, statistics, as in

sparse coding and independent component analysis (ICA) frameworks [4, 5]. Sparse statistics

refer to long-tailed distributions, with a larger probability of atypical examples when compared

to a Gaussian distribution with the same variance. For instance, the distribution for localized

oriented filters in natural images can be modelled as a Laplace distribution, with longer tails

than the distribution for a random filter [16, 28]. Features with infrequent all-or-none occur-

rences, as in a low-probability Bernoulli distribution, are also sparse. Since the linear mixture

of sparse features is less sparse than the individual sources, we can use sparseness as an optimi-

zation principle to identify them [16]. As sparseness is determined by the shape of the distribu-

tion when normalized to unit variance, it is independent of second-order statistics. In contrast,

the distribution of Gaussian components is entirely determined by its second-order properties.

Under these assumptions, second-order correlations are uninformative about the latent

features.

It is possible [19, 29, 30] to learn such features with local plasticity models provided the

inputs have been decorrelated and normalized, i.e. whitened, by having been preprocessed to

have an identity covariance matrix and unit firing rates. For such preprocessed inputs, it has

been shown that a large class of sparsity maximization methods can retrieve the latent features

[17]. Classically the sparseness of the output activity y is quantified by higher-order statistics,
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such as h1
4
y4i, a measure related to kurtosis, where h.i denotes the expectation over the data

samples {x}, or, more generally, by an objective function hF(y)i, for some nonlinearity F(.) [29,

31]. An online plasticity rule (derived e.g. via stochastic gradient descent) converges to a solu-

tion that maximizes this objective, under the constraint of a normalized weight vector:

ð1 � aÞ Dw ¼ Z x f ðyÞ

1 � bð Þ w 
w þ Dw
kw þ Dwk

9
=

;
)
converges

Z!0
w ¼ argmaxw;jwj¼1

hFðyÞi ð1Þ

where η is a learning rate and f(.) is the derivative of F(.). In general, this algorithm is robust to

the specific shape of the nonlinearity f(.) [17, 31]. In particular, if FðyÞ ¼ 1

3
y3 then f(y) = y2,

which relates to known experimental and theoretical results for activity-dependent models, as

discussed below. The learning rule of Eq 1-a can be interpreted as a model of activity-depen-

dent synaptic plasticity with a nonlinear Hebbian form of LTP [17]. Eq 1-b assures normaliza-

tion of the weight vector and can be related to weight decay [32]. Normalization is a strict

form of stabilization of the weight vector. A weaker form of stabilization can be achieved

through dynamical mechanisms, such as heterosynaptic depression [27].

However, the simple sparsity objectives and related learning rules mentioned above do not

learn the desired features if different input neurons have diverse firing rates or second-order

correlations between them [17]. Instead of retrieving sparse features, they learn the input

directions of the largest variance, as do PCA methods. Throughout the paper, we use the term

‘correlation’ without further specification to mean second-order correlation and mention

higher-order correlation explicitly as such (e.g., ‘third-order correlation’).

Theory of correlation-invariant learning

We aim for a synaptic plasticity rule capable of differentiating between relevant and irrelevant

information, extracting low-amplitude sparse features even if synaptic inputs exhibit spurious

second-order correlations of large amplitude. Here spurious refers to modulations with a

Gaussian amplitude distribution whereas features are defined by a sparse non-Gaussian

distribution.

As shown in Methods, an online update rule with LTP and LTD solves the correlation-

invariant optimization problem
D
F y

sy

� �E
¼
D

y
sy

� �3 E
in a rectified linear neuron y = (wTx)+:

ð2 � aÞ Dw ¼ Z ðx y2 � hy x yÞ

ð2 � bÞ Dhy ¼ Zh ðy2 � hyÞ

)

)
converges

Z!0
w ¼ argmaxw

*
y
sy

 !3+

ð2Þ

Importantly, weight vectors are not constrained to norm one, but the output activity is nor-

malized by its standard deviation, sy ¼
ffiffiffiffiffiffiffiffiffiffi
h y2 i

p
. We define correlation-invariant objectives as

being invariant to the input correlations, and consequently invariant to linear transformations

of the input such as rescaling or whitening, as demonstrated in Methods.

The plasticity model in Eq 2-(a,b) together with a rectified linear activation function is a

variant of the BCM model with a dynamic threshold defined as hy = hy2i [6, 33]. More gener-

ally, the property of correlation-invariance will hold for variants in which the neuron is linear

or linear rectified and the LTP nonlinearity is a simple power-law, x yp−1, for all p> 2, p 2 R,

corresponding to the normalized objective h
y
sy

� �p
i. In other words, the original BCM model

[23] and later generalizations involving kurtosis optimization [6, 33], when implemented with

a rectified linear activation function, are all part of a family of local learning rules with
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correlation-invariance that can be cast as optimization problems hF(y/σy)i. In contrast to

learning rules derived from the objective in Eq 1 with normalized weight vector (as considered

in ICA variants [16]), BCM variants do not normalize the weight vector but instead provide

invariance to second-order correlations.

While invariant to correlations, this sparsity objective is still sensitive to the first-order sta-

tistics of the input, i.e. the input mean, which may dominate the learning objective. Following

our assumption that the goal of excitatory plasticity is to learn higher-order statistics, we

hypothesize that neurons subtract the input mean, and, accordingly, we normalize inputs to

zero mean in all our simulations. Short-term depression [34] and spiking threshold adaptation

[35] are candidate processes that might approximate input mean cancellation in cortical

neurons.

Eq 2-a is a plasticity rule combining nonlinear Hebbian potentiation with linear Hebbian

depression. Here, nonlinear (or linear) refers to the quadratic (respectively linear) dependence

upon the activity y of the postsynaptic neuron. Importantly, the amplitude of the depression

term is modulated by a metaplasticity function hy that tracks the squared rate of the postsynap-

tic activity, hy2i, estimated in Eq 2-b. We assume ηh� η so that hy converges more rapidly

than the weights.

We illustrate the effect of correlation-invariance in a neuron receiving inputs from three

sources, including a group of 20 inputs with a common sparse signal of unit amplitude,

another group of 20 inputs with a common high-amplitude Gaussian signal, and the third

group with small uncorrelated background activity (Fig 1A). The correlation-invariant learn-

ing rule learns the sparse signal despite its low amplitude, demonstrating selective sensitivity

to higher-order correlations (Fig 1C and 1E). The above statements are equally valid for a kur-

tosis-style BCM model where Δw = η (x y3 − hy x y), with hy = hy3i (Fig 1E). Thus there is a

class of correlation-invariant rules as opposed to a single instantatiation of a rule (Methods).

For comparison, we also simulate a similar plasticity model, but with a heterosynaptic LTD

mechanism adapted from the Oja learning rule [12], Δw = η (x y2 − w y2). Despite having a

nonlinear LTP factor [17], this model learns the high-amplitude Gaussian component, as

would a PCA model, and as does the original Oja rule, Δw = η (x y − w y2) (Fig 1D and 1E).

These simulation results illustrate that heterosynaptic LTD mechanisms provide stability, but

not correlation-invariance.

Linear LTD enables correlation-invariance

Numerous mechanisms have been proposed to account for the phenomenological properties

of synaptic plasticity, but their specific properties and interactions are unclear [18, 27, 36, 37].

Previous work has shown that an effective nonlinear Hebbian LTP factor is a key mechanism

for sparse feature learning, prevalent in many models [4, 5, 17, 38]. However, nonlinear Heb-

bian learning is not a sufficient mechanism, as illustrated by its failure in the presence of large

second-order input correlations. Our theory of correlation-invariant learning enables us to

extend these models to more general settings and assign distinct functional roles to LTP, LTD

and homeostasis. Importantly, it is not sufficient to add any type of LTD or homeostasis to

achieve a balance of LTP and LTD, but rather the above results indicate there is one preferred

way of adding LTD that achieves a particularly smart balance because it normalizes second-

order correlations instead of mean firing rates. And this specific form of LTD is linear in the

pre- and postsynaptic firing rate. In other words, the LTD factor must be proportional to x y
(and not to x y2 or x2y).

Let us recall the classic relationship between Hebbian learning and principal component

analysis [12]. The PCA algorithm maximizes the variance in the input, with an objective
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Fig 1. Learning sparse signals with correlation-invariance. A: Inputs belonging to three groups (20 inputs each): the sparse signal, with a non-Gaussian

common component; the network activity, with a common Gaussian component, representing input from other brain areas; and independent background

noise. Insets: histogram of amplitudes for sparse and network signals, with standard deviation σNetwork = 1.2 σSparse. B-D: Membrane potential as a function

of time, before learning (black), and after learning, for the correlation-invariant model (BCM rule, blue) and the model with Oja-like heterosynaptic LTD

(brown). Insets illustrate the synaptic strengths of each input group after learning. E: The learning dynamics of the weights (starting at the black X mark)

projected to the Sparse Signal (y-axis) and Network (x-axis) components. A subset of data samples is shown in grey. The correlation-invariant rule (blue)

converges to the direction of sparsest activity, as does the x y3 LTP variant (green). In contrast, the rule with heterosynaptic LTD (brown) and the original

Oja rule (purple) converge to the direction of largest variance. This illustrates how the BCM model can perform Independent Component Analysis without

a preprocessing step that decorrelates the inputs. F: To illustrate the mechanism behind correlation-invariance, we decompose the weights w into the

stability and selectivity components. As the homeostatic mechanism balances LTP and LTD in the stability component, the LTD term cancels the exact
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function F(y) = hy2i, for a linear neuron y = wTx, and can be implemented with a linear Heb-

bian learning rule, Δw/ x y, with a positive proportionality constant. In contrast, in the class

of correlation-invariant rules, the depression term is linear in pre- and postsynaptic activities,

with a negative proportionality constant, −x y, which has the effect of removing the depen-

dency on covariance from the learning rule, which we may call an “anti-PCA” effect. Therefore

the online learning procedure will learn features independently of the input correlation

profile.

To have complete correlation-invariance, the LTD mechanism must cancel the correct

amount of second-order dependency. We can show (Methods, Eqs 20–26) that this is exactly

what happens when the homeostatic factor hy drives LTP and LTD to cancel each other in the

direction of the weight vector. The component in the direction of the weight vector relates to

the stability of the synaptic connections (i.e., the norm of the weight vector), and will be called

‘stability direction’ in the following. The orthogonal directions relate to feature selectivity,

determining which feature has been learned. In Fig 1F, we give a geometric illustration for this

mechanism in the 2-dimensional setting, decomposing the weights into the stability and selec-

tivity components. The key insight is that changes in the stability component only scale the

inputs, affecting only second-order statistics, while not altering normalized higher-order statis-

tics. When the weight vector has approached its stable value, the LTD factor cancels the exact

amount of the second-order dependency of the LTP factor in both components, leading to cor-

relation-invariant learning. In contrast, heterosynaptic LTD is proportional to the weight vec-

tor w and does not act on the selectivity direction, leaving LTP selectivity dependent on

second-order statistics. Importantly, any plasticity model that enforces normalization of the

weight vector is unable to generically detect sparse features in the presence of second-order

correlation because the norm of the weight vector needs to adjust itself to reflect the ratio of

second-order and third-order correlations (or second-order and fourth-order correlations for

the kurtosis model) and this ratio depends on properties of the signal that are not known a pri-

ori (Methods).

Invariance to input amplitudes

Cortical neurons receive inputs from presynaptic neurons with complex firing statistics [39].

Many widely used plasticity models will fail to learn the expected features when different pre-

synaptic neurons exhibit different scales of firing rate modulation since classic Hebbian learn-

ing is sensitive to the activity level of presynaptic neurons [12]. However, the correlation-

invariant learning rule compensates for such differences. For example, let us assume that the

sparse signal arrives at the different synapses with different amplitudes but always with the

same signal-to-noise ratio (Fig 2A). In this case, each input has different second-order statistics

(Fig 2B). After learning, the synaptic weights are inversely proportional to the signal ampli-

tudes (Fig 2C), resulting in each input having the same contribution to the total input signal.

We can quantify the efficiency of the learning rule by estimating the signal-to-noise ratio of

the learned output signals, and compare it with that of an optimal linear decoder, trained with

linear regression to output the sparse latent feature. We see that the correlation-invariant

model achieves almost the optimal recovery of the latent signal (Fig 2E).

This invariance may be relevant for neurons with a large dendrite. For instance, the effect

of input spikes on the somatic membrane potential is scaled down by dendritic attenuation,

amount of second-order dependency of the LTP term. Since in the orthogonal direction (selectivity component) the second-order components cancel as

well, the net gradient Δw (green) of the selectivity component depends only on the selectivity to higher-order statistics of the LTP term.

https://doi.org/10.1371/journal.pcbi.1011844.g001
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which varies with the distance from the synapse to the soma. It has been observed that synaptic

strengths compensate for dendritic attenuation, and distal synapses have the same level of

depolarization as proximal ones [40]. Note that we always simulate a point-neuron model.

However, if we write the output as y = (∑j wjxj)+, then we implicitly assume that the xj repre-

sents the EPSP amplitude at the soma. In the presence of dendritic attenuation, the same syn-

aptic current at the location of the synapse generates a smaller EPSP at the soma if the synapse

is further away. Hence for the same signal-to-noise ratio in the input, the overall somatic

amplitude would be smaller for a far-away synapse. When assuming dendritic attenuation, our

model therefore predicts that a neuron with correlation-invariant plasticity will compensate

for the attenuation, as it self-organizes the synaptic weights to compensate for linear disparities

between synaptic inputs. Importantly, and in contrast with earlier work [41], this synaptic

plasticity rule compensates for the difference in signal amplitude while staying sensitive to

sparse features in the input, placing the compensation for dendritic attenuation within a nor-

mative framework.

Optimal decoding from noisy inputs

When performing inference about a sensory variable, the brain integrates information from

multiple unreliable sources, weighting them according to their reliability [42, 43]. To learn

Fig 2. Optimal decoding under variable input scaling and noise. A: Sparse inputs with different amplitude levels but fixed signal-to-noise ratio (left, 1-3)

and Gaussian-distributed inputs (right, 4 and 5). B: The sparse component group is divided into three subgroups with different standard deviations for

their signal (green) and noise (red) levels, with the same signal-to-noise ratios. C: The correlation-invariant rule learns weights that compensate for the

input scaling, with final weights inversely proportional to the input signal amplitude. D: The model with heterosynaptic LTD learns weights that are

proportional to the input amplitudes. E: Inset: Output activity after learning with the correlation-invariant rule. Main graph: Signal-to-noise ratio of the

output signal after learning with the correlation-invariant rule (Hebb-LTD, middle/blue), with heterosynaptic LTD (right/brown) and for the optimal linear

decoder trained on the 5 groups of input channels (optimal, left). F: Sparse inputs with different noise levels, but fixed signal amplitude (left, 1-3). G: The

sparse component group is divided into three subgroups with different noise levels (red), but the same signal amplitude (green). H: The correlation-

invariant rule decodes the signal, learning synaptic weights proportional to the input signal-to-noise ratios. I: For comparison, the rule with heterosynaptic

LTD learns weights proportionally to the input signal amplitude. J: As above, the correlation-invariant rule converges to a decoder almost as efficient as the

optimal linear decoder.

https://doi.org/10.1371/journal.pcbi.1011844.g002
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such an efficient decoder, neural circuits must be able to adapt incoming synapses according

to the information conveyed by each input, searching for the most informative input combina-

tion. Conveniently, when decoding sparse latent variables, the direction with the highest sig-

nal-to-noise ratio will also be the direction with the sparsest distribution, which allows for

classic ICA algorithms to also be applicable in the presence of noise [44]. Thus we can use our

sparse learning objective to recover the most informative direction, using the correlation-

invariant learning rule to learn an efficient decoder.

We simulated a neuron for which the inputs have variable signal-to-noise ratios (Fig 2F and

2G). The correlation-invariant learning rule develops weights proportional to the input signal-

to-noise ratio, giving more importance to more informative inputs, leading to an output sig-

nal-to-noise level close to the optimal linear decoder (Fig 2H and 2J). Importantly, the plastic-

ity rule does not simply select the one input synapse that has the highest signal-to-noise ratio

but selects all input synapses that carry the signal, albeit with different importance weights. On

the other hand, the learning rule with heterosynaptic LTD learns weights proportional to the

input signal amplitude, with little sensitivity to input signal-to-noise levels (Fig 2I and 2J).

These results suggest that correlation-invariance could be a fundamental learning mecha-

nism underlying near-optimal decoding from sensory information and multi-sensory integra-

tion, as seen in experiments [42, 43]. In comparison with related models based on maximal

information transmission, such as independent component analysis [5], the correlation-invari-

ant model requires minimal assumptions on the input distribution. A single plasticity rule

learns an efficient decoder for different input scales, noise levels and sparse latent

distributions.

Learning sparse population codes from correlated inputs

While so far we have considered the learning properties of single neurons, sensory networks

contain populations of neurons, with each neuron in the population representing different

parts of the latent space, illustrated by the tuning curves of the population. Tuning curves for

sensory signals are adapted to the statistic of input stimuli, and, in particular, are sharper for

behaviorally relevant stimuli, providing a neural basis for efficient sensory discrimination [45–

47]. As correlation-invariant plasticity leads to sparse and efficient responses, we demonstrate

here its capability to learn sparse population codes for continuous stimuli encoded in a diverse,

noisy input population.

We consider a line stimulus (or Gabor patch stimulus) that changes its orientation slowly

over time. The stimulus is encoded by a noisy input population, with input tuning curves tiling

the space of orientation angles (Fig 3A and 3B). As each input neuron is selective to only a part

of the input space, they show sparse activity, with the overlap of the tuning curves generating

positive input correlations between neighbouring neurons (Fig 3C).

We extend our single neuron model to a population of output neurons, with synapses from

input to output population following the correlation-invariant plasticity rule of Eq 2 (Fig 3D).

In cortical networks, recurrent inhibition is thought to decorrelate excitatory neurons, thereby

allowing them to learn different features [26, 48, 49]. We thus include inhibitory recurrent

connections between output neurons, which we consider a simplified effective description of

the local excitatory-inhibitory network [50, 51]. Recurrent connections change with a covari-

ance-based plasticity rule [48]. To avoid dynamic instabilities due to concurrent excitatory and

inhibitory plasticity, we include multiplicative weight decay in both [20].

After learning, output neurons developed Mexican hat-like synaptic weight profiles, which

have the effect of cancelling input correlations, leading to a population code tiling the space of

line orientations with tuning curves sharper than those of inputs in the input layer (Fig 3E,
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mean tuning width σθ = 0.07; input tuning width σθ = 0.11). Following the same learning prin-

ciples as in the single neuron case, the population code developed through learning can be

interpreted as an efficient code with minimal redundancy. In comparison, the learning rule

with heterosynaptic LTD learns wider tuning curves, which follow input directions of large

variance, dominated by the input correlations (Fig 3F, σθ = 0.17).

Under more realistic conditions, sensory populations must decode information from neu-

rons with diverse tuning properties. As we expect the correlation-invariant rule to be invariant

to such input properties, we test the plasticity model in the presence of input heterogeneities.

We simulated input tuning curves of variable widths, amplitudes and noise levels. As seen in

Fig 3G, the correlation-invariant model learns a population code with similar properties (σθ =

0.08) as for homogeneous input tuning, with higher selectivity for more precise input neurons.

On the other hand, a model without correlation-invariance learns wider tuning curves (σθ =

0.14), dependent on the input tuning profiles. In particular, neurons develop more selectivity

for input neurons with wider tuning, disregarding their precision (Fig 3H).

We have shown that correlation-invariant plasticity leads to sharper tuning curves, which

have been associated with adaptive neural responses [45–47]. Nevertheless, sharper tuning

does not imply higher Fisher information, a metric used to estimate the efficiency of popula-

tion code [52]. There is a complex relationship between the Fisher information and the

Fig 3. Correlation-invariant dictionary learning in a population coding network. A: A circular continuous latent variable follows a random walk with

values between [0, 1]. B: The input population x encodes the latent variable with N = 100 Gaussian tuning curves x(θ(t)). C: The activity of two input

neurons over time. Nearby inputs show positive correlations, following their overlap in tuning (inset, grey). D: Network diagram, with the input population

(green) projecting synapses to a decoding population (blue). The synapses change according to the synaptic plasticity model and can take positive or

negative values. Recurrent inhibition is included between all neurons (orange). E: The correlation-invariant model learns a dictionary of Mexican hat-like

synaptic weights (inset, blue), inverting the input correlation profile, with tuning curves tiling the latent space with small overlaps between response profiles

(coloured, variability in light shade). The population tuning curves are sharper (mean width at half maximum σθ = 0.07) than the tuning of input neurons

(σθ = 0.11). F: With heterosynaptic LTD, neurons in the population learn synaptic weights (inset) following the input correlations, with wider tuning curves

(σθ = 0.17) than those of input neurons. G: We simulate a new input population with heterogeneous tuning curves, with variation in width, amplitude and

noise levels (inset, green). The correlation-invariant model learns again a sparse dictionary, optimizing for a sparse, low-noise representation. Tuning

curves are sharper (σθ = 0.08) than the input tuning (σθ = 0.11), with higher selectivity for sharper input neurons (inset, correlation between input tuning

width σθ and synaptic weight magnitudes: ρσw = −0.28). H: With heterosynaptic LTD, the population dictionary follows the input variance and correlation

profile, learning wide tuning curves (σθ = 0.14), with higher weights for wider tuned input neurons (inset, ρσw = + 0.34).

https://doi.org/10.1371/journal.pcbi.1011844.g003
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sharpness of a population code, depending on latent dimensionality [53], the strength of lateral

interactions [54], the number of neurons or decoding time [55] and the input tuning profile

[56, 57]. In our model, the estimated Fisher information for the control network, with wider

tuning curves, is higher than for the sharper code, learned by the correlation-invariant rule

(FI = 38 � 103 for control, FI = 36 � 103 for correlation-invariant, for homogenous input tuning;

FI = 38 � 103 and FI = 33 � 103, for heterogeneous inputs). This result illustrates that this model

of cortical plasticity does not optimize Fisher information. While being an important metric

for population codes, optimal Fisher information can have limited applicability when realistic

constraints, such as wiring constraints and limitations in downstream readout populations,

are considered [55].

Spiking model of sensory development with correlated inputs

The relevance of a plasticity model comes from both the biological plausibility of the plasticity

rule and from emerging functionality when embedded in plausible networks of spiking neu-

rons. The correlation-invariant learning rule has a solid foundation in plasticity rules extracted

from experimental data on cortical excitatory synapses. Cortical development is driven by volt-

age-dependent and spike-timing-dependent-plasticity (STDP), with synaptic changes depend-

ing on the relative timing of pre and post-synaptic spikes [58]. In particular, plasticity in

excitatory synapses is modelled well by the voltage-based Clopath model [18] or the triplet

STDP model [25], in which LTP depends on one pre- and two post-synaptic spikes, and LTD

on single pre- and post-synaptic spikes (Fig 4C). The triple STDP model has been derived [25]

from experimental data, in particular experiments with triplets of spikes and the frequency

dependence of STDP [59, 60]. Considering a Poisson firing regime, and a homeostatic mecha-

nism, the triplet model can, under rather general assumptions, be reduced to the rate model

we have considered so far, Δw = η (x y2 − hy x y) [18, 25, 61]. From this relation, we might

expect a spiking model of sensory development with triplet STDP to show correlation-invari-

ance. Relative to rate models, spiking models are notoriously challenging to train, with added

difficulty including spiking variability and spike-spike correlations [61]. Additionally, spiking

constrains the input representation to be non-negative, changing how sensory information is

processed.

We implemented a spiking network for sparse population coding, modelling V1 receptive

field development from natural images (Fig 4A and 4B). It is a classic example where neurons

develop selectivity to specific properties in their input, with the network creating a dictionary

of localized orientation-selective features, which are the sparse features of natural images [4,

28]. Such models, however, do not differentiate between encoding higher-order and second-

order correlations, and rely on inputs being preprocessed to be decorrelated and normalized

[17]. Though the retinal pathway is known to partially decorrelate the visual stimuli, the input

to cortical neurons still maintains some degree of correlation [9–11]. In the presence of spatial

correlations, other models relied on recurrent inhibition, which diversifies the features learned

by the network [19, 62]. In situations where single neurons or small networks learn the princi-

pal components (non-localized spatial Fourier filters) of the input images, features of sparse

coding appeared only if recurrent inhibition was strong and the network was large enough [4,

19]. Motivated by the correlation-invariant theory, we wanted to test whether the STDP model

can learn localized filters directly from natural stimuli containing spatial correlations, without

invoking lateral inhibitory connections.

We considered an input dataset of natural image patches, encoded into ON and OFF spik-

ing inputs, showing positive input correlations for neighbouring pixels (Fig 4A). Similarly to

the rate model, we implement triplet STDP on input-to-output connections, output neurons
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modelled as leaky integrate-and-fire, and recurrent inhibition with inhibitory plasticity [48]

(Fig 4B, see Methods).

To probe if learning was possible with single output neurons, we first ran the model without

lateral inhibition. After learning, neurons developed localized receptive fields, composed of

ON and OFF parts, similar to what is observed in V1 (Fig 4D), showing that the model can

develop sparse features even without lateral inhibition. Even though each neuron has identical

inputs, we see a diversity of receptive fields due to random initial conditions of the synaptic

weights. When lateral inhibition was included, the model learned a similar dictionary of local-

ized filters (Fig 4E). While lateral inhibition was not necessary in this setting for learning local-

ized filters, it ensures the diversity of receptive fields [4, 17].

We compared our results with those of variation of the triplet STDP model, including a het-

erosynaptic LTD factor in place of the original Hebbian LTD factor, and found that in this

case, all neurons learned a non-localized receptive field covering the whole patch, as is

expected for a principal component of the input (Fig 4F). Only when lateral inhibition was

included, did ON/OFF receptive fields appear, though not completely localized (Fig 4G). It

demonstrates that without correlation-invariance, the spiking model is sensitive to input cor-

relations, and requires lateral inhibition to enforce the tiling of the input space into sparse tun-

ing curves. These results indicate that while correlation-invariance can be sufficient for

learning sparse tuning curves, lateral inhibition can produce similar effects, with both mecha-

nisms potentially at work in parallel in cortical circuits. In summary, by adding robustness to

Fig 4. Correlation-invariant learning with triplet STDP facilitates receptive field development in a spiking network. A: Inputs were sampled from

16x16 patches of natural images (left), encoded as ON/OFF populations with Poisson spiking rates (right), representing visual input projections. The input

has high pair-wise correlations for nearby pixels, and positive correlations over the whole patch (inset, grey) B: Spiking network model, with inputs

projecting feed-forward excitatory weights to a population of 64 spiking neurons and recurrent inhibition. C: Excitatory weights are modified through

triplet STDP, including the LTD mechanism linear on pre-post spiking correlations. D: Showing correlation-invariance, spiking neurons with triplet STDP

learn localized receptive fields despite input correlations even in the absence of lateral inhibition. E: With recurrent inhibition included, neurons still learn

similar receptive fields. F: Variation of the triplet STDP model with heterosynaptic LTD learns non-local input projections, due to sensitivity to input

correlations. G: In the absence of correlation-invariance, lateral inhibition can promote somewhat more localized receptive fields, though still sensitive to

the input correlation profile.

https://doi.org/10.1371/journal.pcbi.1011844.g004
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input noise, scaling and second-order correlations, the spike-based version of the correlation-

invariant rule supports the spiking network to develop sensory representations with a diversity

of localized receptive fields.

Discussion

We have presented correlation-invariance as a critical property of cortical synaptic plasticity.

Correlation-invariance is derived from the normative perspective of feature learning, in which

cortical neurons develop responses to sparse latent features [4, 17, 26], while differentiating

between high-order and second-order correlations. By discounting input correlations, we have

shown how plastic cortical networks can solve efficient decoding tasks and learn sparse popu-

lation codes with robustness and versatility.

Correlation-invariance stands in contrast to the original Hebbian learning perspective,

grounded on learning by association [12, 63]. Instead, correlation-invariant models discount

linear correlations, learning only higher-order correlations. The critical mechanism is a linear

LTD factor, in agreement with models fitted to pairing experiments in excitatory synapses [18,

25, 59, 60], for which our results suggest a functional explanation. Our theory extends our pre-

vious understanding of Hebbian mechanisms and may aid the development of more complex

representation learning models.

A unifying theory for models of synaptic plasticity

Unifying theories have the potential to integrate diverse models, offering clarity on their rela-

tions as well as unique characteristics. They also highlight shared mechanisms essential to all

models. For example, previous research emphasized the importance of a nonlinear LTP factor

in synaptic plasticity, which enables sensitivity to higher-order statistics [17, 29]. Correlation-

invariance theory introduces another crucial mechanism for sparse feature learning: a linear

LTD factor that mitigates the effects of second-order input correlations. Consequently, our

findings broaden the theory of synaptic plasticity exposing necessary mechanisms for the bal-

ance of LTP and LTD. Importantly, a linear LTD factor is consistent with the frequency depen-

dence of STDP experiments as found by Sjostrom et al. [59] and described in the triplet STDP

model [25].

Hebbian models such as BCM and Oja learning rules are decades old, and many studies

have investigated their functional properties, concerning their stability, feature selectivity and

receptive field development [24, 29, 33, 64]. In particular, BCM models have been motivated

by their selectivity to higher-order statistics (enabled by its nonlinear LTP factor) and a meta-

plastic stability mechanism. It has been observed that BCM variants can learn localized recep-

tive fields when input images were preprocessed with a Difference of Gaussian filter, and thus

are not wholly whitened, suggesting a lower sensitivity to second-order moments [33, 38]. In

our derivations we have formalized these observations, revealing that some BCM models have

in fact complete invariance to second-order statistics and that this is a key property to under-

stand their distinct function.

In contrast, the original Oja’s rule [12] only learns second-order correlations (due to its lin-

ear LTP factor), while stability is achieved by synaptic depression using heterosynaptic weight

scaling. Nevertheless, the functional difference between Oja’s heterosynaptic weight scaling

and BCM’s anti-Hebbian depression factor has remained unclear. Our analysis shows that lin-

ear LTD allows for correlation-invariance in the feature direction, while Oja’s heterosynaptic

weight scaling only acts on the stability component. Importantly, our results regarding the

functional difference between weight scaling and linear LTD are to a large degree independent

of the LTP model as long as the LTP model is nonlinear (e.g., y2 or y3) in the postsynaptic
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activity and linear in the presynaptic activity. This type of nonlinearity was predicted by the

BCM model in 1982 [23] and confirmed by the analysis of experimental data via the triplet

STDP model [25]. Therefore multiple theoretical plasticity models can now be unified in a the-

oretical framework and based on experimental data.

We have also uncovered an interesting relation between BCM, ICA and sparse coding,

which are classic models of early sensory development. ICA and sparse coding start from simi-

lar normative assumptions, with inputs as mixtures of latent sparse features [65]. Our normal-

ized objective function F(y/σy) can be seen as an alternative to the standard formulation of

sparse coding which usually defines a raw objective function F(y) where normalization of the

weight vector is added as a further constraint [17]. Though the BCM model was first proposed

as a stable version of Hebbian learning, we have shown that it links naturally to a normative

formulation of sparse feature learning, with each of its elements seemingly designed for this

task. We believe our theory provides a systematic basis for the analysis and development of

Hebbian plasticity models.

Though our theory is based on a single-neuron objective, our network simulations demon-

strate that correlation-invariant learning is compatible with learning network representations.

It is essential to investigate how the theory of correlation-invariance might be integrated with

related normative models for learning sparse, efficient representations [19, 49].

Correlation-invariance in cortical neurons

The correlation-invariant learning rule has a precise correspondence to phenomenological

models of spike-timing-dependent plasticity, including the triplet and voltage-dependent

STDP models, which reduce to a quadratic postsynaptic factor for LTP and a linear postsynap-

tic factor for LTD [18, 25]. In particular, our theory suggests that pyramidal neurons should

include synaptic LTD mechanisms linear in both pre and post-synaptic activities, in agreement

with models of excitatory synapses [18, 25] fitted to data from pairing protocols [59, 60]. Since

the experimental evidence for linear LTD factors is only indirect, inferred from the best-fitting

models, it would be valuable to perform pairing experiments under Poisson firing times of pre

and post-synaptic neurons to further investigate to what extent these properties hold [66].

Previous theoretical work has shown that the triplet STDP model generalizes the BCM

model to the spatiotemporal domain [25], learning higher-order input spiking patterns,

enabled by the nonlinear dependency on post-synaptic spikes [18, 61]. The models included a

homeostatic factor hy as a stabilizing mechanism, as was already mentioned in the original

triplet STDP model [18, 25, 61]. However, going beyond a generic role in stabilization, in the

current paper we have shown that the linearity of the LTD term is crucial in achieving feature

selectivity in the presence of a potentially large amount of second-order correlations. The slid-

ing of the factor hy (equivalent to the ‘sliding threshold’ of the original BCM model [23]) has

been interpreted in the past as metaplasticity or homeostasis. However, since traditional meta-

plasticity experiments have searched on slow time scales [20], it is unclear whether a rate detec-

tor exists that is fast enough to fulfil the function of the relatively fast sliding factor hy [67]. In

principle, stability may also be achieved through other mechanisms, such as heterosynaptic

plasticity, though in this case, correlation-invariance will be partial and dependent on input

statistics. In this case, there will be a compromise between learning higher-order and second-

order statistics. Some sensitivity of plasticity rules to second-order statistics might be useful for

other tasks, such as learning associative memories [27].

Our results are not in contradiction with the formation of Hebbian assemblies from corre-

lations but rather give a refined view of how correlations drive assembly formation. Experi-

mental tests of Hebbian assembly formation, also called memory engrams, have been
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performed in several brain regions [68–71]. Typically, a subset of neurons is switched on

together during a training stimulus, which stops after some time. Such a switching process is

very similar to the assumption in Fig 1A and induces a strong non-Gaussian distribution of fir-

ing rates and hence strong higher-order correlations. Thus our simulations are in line with

existing experimental paradigms of assembly formation, even though Fig 1 focuses on a single

postsynaptic neuron. In studies of recurrent networks of spiking neurons, several modelling

papers have shown that variants of the triplet STDP rule, similar to the STDP rule or the BCM

rate model in the present paper, give rise to the formation of Hebbian assemblies [18, 27, 72].

Again, the induction protocol used a switching process which generated not only second-

order but also higher-order correlations. Importantly, our analytical insights predict that the

formation of assemblies is dominantly driven by higher-order correlations and only weakly, or

not at all, by second-order correlations. This insight is not in contradiction with earlier work,

but suggests that statements such as ‘assembly formation is driven by correlation’ should be

translated into the more precise statement ‘assembly formation is driven by higher-order cor-

relations’. It also agrees with the functional role of higher-order correlations in theoretical

STDP models [61, 73, 74].

Some findings on synaptic weight distribution provide evidence that cortical synapses self-

organize with correlation-invariance. It has been observed that distal synapses are relatively

up-regulated compared to proximal ones, and have in general somatic effects in the same

order of magnitude as proximal connections [40]. Experiments on how synaptic profiles

depend on input firing rates and correlations would be ideal to probe to which extent correla-

tion-invariance might be at work in cortical circuits.

Learning efficient population codes under diverse conditions

Experimental evidence indicates that primates can combine unreliable sensory information as

would a near-optimal decoder [42, 43]. Normative population coding models approach this

task by defining what each neuron represents about stimuli, for instance, the log-likelihood

[75] or a probability distribution [76], from which a decoder can be designed. Such a design is

difficult to learn with local rules, especially if inputs have unknown levels of reliability and cor-

relations [77].

Instead, the correlation-invariant sparse objective operates at the algorithmic level, with

minimal assumptions about how the input represents the latent variable. By assuming sparse

latent variables, the objective becomes equivalent to maximizing the signal-to-noise ratio, and

hence information transmission, enabling the development of population codes with sharp

tuning and low noise. These properties do not imply, however, an optimization of the Fisher

information for the population code [53–55]. How sparsity-based models relate to other nor-

mative population coding models is an important topic for further investigation.

Search for biological learning algorithms

Representation learning is a difficult task and it is puzzling how the brain is capable of develop-

ing, maintaining and adapting a complex model of the external world. Only recently have arti-

ficial learning models been able to learn with very large, complex networks, but with methods

that are not easily mapped to biological mechanisms [78, 79].

In the absence of supervising signals, unsupervised Hebbian plasticity provides the frame-

work for learning a representation and may underlie how the cortex learns through local infor-

mation [80–82]. Reinforcement learning is another central paradigm for understanding

biological learning, believed to have a biological instantiation in neuromodulators and reward

modulated plasticity. Indeed there is evidence in favour of the influence of reward-based
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learning on input representations and receptive fields in sensory cortices [83, 84]. It is an active

field of research on how neuromodulators interact with Hebbian mechanisms [85–87]. It

would be interesting to see how theories of sparse feature learning and correlation-invariance

might be integrated with reinforcement learning objectives. Correlation-invariance extends

the theory and function of Hebbian plasticity and might be an additional building block for

models and theories of biological learning [88].

Methods

Linear invariance of the normalized objective function

We consider the unconstrained normalized projection pursuit objective (referred to as correla-

tion-invariant objective), i.e. the output activity y is normalized and the total weight |w| norm

is unspecified, of the form:

w∗ ¼ argmaxw

*

F
y
sy

 !+

ð3Þ

with s ¼
ffiffiffiffiffiffiffiffiffiffi
h y2 i

p
and y = g(wTx), for an output activation function g(.). We want to show the

equivalence of this objective to a constrained unnormalized objective, for decorrelated inputs

~x ¼ Mx, of the form

~w∗ ¼ argmax
~w ;cð~wÞ h Fð~yÞ i ð4Þ

for some constraint c, ~y ¼ gð~wT~xÞ, with M being a transformation matrix for x that makes it

decorrelated:

~x ¼ Mx) h ~x~xT i ¼ I ð5Þ

The transformationM is called whitening [89]. For instance, we can construct M = RD−1/2RT,

where D is a diagonal matrix and hxxTi = RDRT is the eigenvalue decomposition of the input

correlation matrix.

We consider first a linear neuron, y = wTx. Using that x ¼ M� 1~x and defining

~w ¼ ðM� 1Þ
Tw, we have

*

F
wTx
sy
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¼
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F wTM� 1~xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ðwTM� 1~xÞ2 i
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¼
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F ~wT ~xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ð~wT ~xÞ2 i
p

� �+

ð7Þ

¼

*

F
~wT

j~wj
~x
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ð8Þ

where we used Eq 5 to simplify the denominator:

h ð~wT~xÞ2 i ¼ h ~wT~x~xT ~w i ¼ ~wTh ~x~xT i~w ¼ ~wT ~w ¼ j~wj2. Thus the normalized objective func-

tion can be mapped to a standard objective function, with normalized weights and whitened
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inputs ~x,

~w∗ ¼ argmax
~w ;j~w j¼1

h Fð~wT~xÞ i ð9Þ

with an optimum in the original input space given by w∗ ¼ MT ~w∗.

Now considering a general activation function, y = g(wTx), we have an analogous derivation,

however without the simplification of the denominator,

*

F gðwTxÞ
sy

� �
+

¼

*

F gð~wT ~xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h gð~wT ~xÞ2 i
p

� �+

ð10Þ

Thus the normalized objective function can be mapped to an unnormalized objective for whit-

ened inputs ~x and a constraint over the output standard deviation,

~w∗ ¼ argmax
~w ;s~y¼1

h Fð~yÞ i ð11Þ

and ~y ¼ gð~wT~xÞ. Transforming the solution back into the original input space yields

w∗ ¼ MT ~w∗.

Analogously, given any linear transformation of the input, x0 = Lx, for an invertible matrix

L, we may map the normalized projection pursuit to the whitened projection pursuit of Eq 11,

with the optima given by w0∗ ¼ ðL� 1Þ
T MT ~w∗. Hence, the normalized objective function of

Eq 3 is invariant to linear transformations of the input.

A correlation-invariant rule with arbitrary norm |w|

We consider F(a) = a3 with a ¼ y
sy

and search for the optimal weight vector

w∗ ¼ argmaxw

*

y
sy

� �3

+

ð12Þ

assuming that the neuron has a rectified linear activation function y = (wTx)+ and where

sy ¼
ffiffiffiffiffiffiffiffi
hy2i

p
.

The normalized skewness contrast function has been considered in a variant of the BCM

model (for a sigmoid activation function instead of a linear rectifier), and the derivations

below follow similar steps to derive an online learning rule from it [23, 33]. Proceeding with

gradient ascent on w, we have

@h F i
@w

¼
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We now use that the neuron has a rectified linear activation function so that
@y
@w ¼ xþ and

@sy
@w ¼

@

ffiffiffiffiffi
hy2i
p

@w ¼ hyxþi=sy, where we define x+ = x Iy>0 as the input for samples in which y� 0.

Since the output of the neuron is always non-negative, we have y� 0 for all x so that we have
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x+y = x y and x+y2 = x y2. This yields

@h F i
@w

¼
3
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y

*
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ð16Þ

¼
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� �

ð17Þ

To derive an online learning rule, we consider a separation of time scales and assume that

the estimation of σy and
hy3i
hy2i is performed at a faster time scale than the other factors, which

allows us to consider them as constants. We derive a stochastic gradient ascent learning

dynamics by removing the estimation over the whole dataset,

Dw / x y2 � hy x y ð18Þ

We refer to the specific choice h∗y ¼
hy3i
hy2i as the balancing homeostatic factor. We claim that

the balancing homeostatic factor leaves the learning rule at an indifferent stability in the direc-

tion of the weights, leaving the norm fluctuating freely. We can check this property by showing

that the gradient in the direction of the synaptic connections is zero when averaged over the

full dataset,

hwTDwi / hy3i � h∗yhy
2i ¼ 0 ð19Þ

It is a consequence of using an objective function that is invariant to the norm of the weight

vector.

A family of correlation-invariant learning rules with stable weights

While the top-down derivation of the correlation-invariant learning rule leads to a specific bal-

ancing homeostatic factor h∗y ¼
hy3i
hy2i, it is not a stable learning rule, as the norm of the weight

vector will fluctuate freely. Instead, we can consider factors that are stable, such as hy = hy2i. In

fact, any supralinear factor hy = hyri, with r> 1, will lead to stable dynamics [6, 23]. We claim

that the family of stable plasticity rules with these alternative homeostatic factors will, after

convergence, optimize the same objective function as the learning rule derived in the previous

paragraph. To demonstrate this, we calculate the homeostatic factor once the norm has con-

verged to a stable value. Under the assumption that the gradient in the direction of the weights

w is zero, we find

hwTDwi / hy3i � hyhy2i ¼ 0) hy ¼ hy3i=hy2i ¼ h∗yðyÞ ð20Þ

which implies that when the weight norm has approached a stable value during the learning

process, the stabilizing homeostatic factor hy will have the same value as the balancing homeo-

static factor h∗y for the same weights, and consequently will have the same correlation-invariant

properties.

Critically for the invariance properties in Eqs 20 and 19 to hold, we used that (i) a power-

law sparsity function F(a) = ap can be written as F(a) = a F0(a)/p for all p> 2 with p 2 R and

(ii) a linear or rectified linear transfer function can be written as g(wTx) = (wTx) g0(wTx), where

F0 and g0 are the derivatives of F and g, respectively. We note that for a rectified linear transfer

function g0 is either zero or one. Together these properties yield a rewrite

FðgðwTxÞÞ ¼ ð1=pÞ F0ðgðwTxÞÞ g 0ðwTxÞ wTx ð21Þ
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In contrast, a sigmoidal activation function y = σ(wTx), as in the original BCM model [23], or a

different LTP nonlinearity, e.g. x (y − 1)+, will generally not satisfy these properties and there-

fore do not generically lead to complete correlation-invariance.

In summary, we have shown that the family of correlation-invariant learning rules of the

form:

Dw / x yp� 1 � hy x y ð22Þ

with y = wTx or y = (wTx)+, hy = hyri, for any p> 2 and r> p − 2, where p; r 2 R, will converge

to w∗ ¼ MT ~w∗, where ~w∗ is a local optimum of the constrained objective for whitened inputs

~x ¼ Mx, with h ~x~xT i ¼ I:

~w∗ ¼ argmax
~w ;s~y¼1

h ~yp i ð23Þ

Therefore, any plasticity rule of the form (22) in a linear or rectified linear neuron model will be
insensitive to second-order correlations in the input.

We can also calculate analytically the norm the weights will have during the learning pro-

cess. For hy = hy2i, we have

hy ¼ hy3i=hy2i,hy2i ¼ hy3i=hy2i ð24Þ

,jwj2hx2
wi ¼ jwjhx

3
wi=hx

2
wi ð25Þ

,jwj ¼ hx3
wi=hx

2
wi

2
ð26Þ

where xw = (wTx)+/|w| is the rectified projection of the input x on the normalized direction w/|

w|. Notably, the norm of the weight vector does not converge to a predefined value, e.g. as in

the original Oja rule [12], but has a final value that depends on the input statistics. For arbi-

trary parameters p> 2 and r> p − 2, the equivalent of Eq 26 reads:

jwj ¼
hxpwi

hxrwi hx2
wi

� �1=ðr� pþ2Þ

ð27Þ

Thus, we have a family of learning rules for different r and p that all have the same qualitative

features.

Simulations

For the single neuron simulations, we generated three input groups of 20 neurons each. The

sparse signal had ON states with a duration of 100ms, with interstimulus intervals following an

exponential distribution (time scale τ1 = 1000ms), and added independent Gaussian noise to

each neuron. The network signal followed an Ornstein-Uhlenbeck process (time scale τ2 =

200ms), and added independent Gaussian noise. The third group of inputs was generated as

independent Gaussian noise. All inputs were mean subtracted, xi ¼ x0i � hx
0
ii, where x0i is the i-

th component of the raw input. For Fig 1, the input standard deviations of each group were σ1

= 1., σ2 = 1.2, and σ3 = 2.2, respectively. For Fig 2A and 2B, the sparse signal inputs were subdi-

vided into three groups with different amplitudes, σ11 = 1.5, σ12 = 1., σ13 = 0.7. For Fig 2F and

2G, the sparse signal inputs were subdivided into three groups with different independent

noise amplitudes, sn
11
¼ 1:5, sn

12
¼ 1:, sn

13
¼ 0:7.

The homeostatic factor hy = hy2i was estimated as a moving average of y2 with time scale of

τh = 200 samples: ht ¼ ht� 1 ð1 � 1=thÞ � y2
t =th. All simulations generated 106 data samples

and ran the learning model for 106 time steps. We implemented stochastic gradient descent
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updates using the Adam optimizer with learning rate η = 0.003, mini-batches with 100 random

samples, and random initial weights with a Gaussian distribution of mean zero and unit

variance.

For the population coding simulations, we generated the latent variable from a random

walk, smoothed with an exponential filter (time scale τ3 = 100ms), with circular values, by clip-

ping to [0, 1]. We generated 100 inputs, with evenly spaced Gaussian tuning curves, with 0.05

width, including additive independent Gaussian noise to the input activities (σ = 0.01). For

generating heterogeneous tuning curves, we scaled the noise, width and amplitude of each tun-

ing curve by independent log-normal random variables, with zero mean and σ = 0.2. The pop-

ulation network included 16 output neurons. We included all-to-all inhibitory recurrent

connections wrecij from neuron j to neuron i, without self-connections. Each neuron had activa-

tion yj ¼ ðwTx þ wTrecyÞþ, with inhibitory plasticity Dwrecij ¼ � Z
recðyiðyj � yÞ � l

recwrecij Þ, clipped

to negative values only, with λrec = 1.0, θ = 1., ηrec = 0.03. To maintain network stability, we

also added weight decay to the feedforward plasticity model, Dwt ¼ Zðxty2
t � hyxtyt � lwÞ,

with λ = 0.001. For each input sample, we ran the recurrent dynamics for 10 time steps.

For the spiking network, we generated 16x16 image patches, sampled from black and white

natural images [4], divided into ON and OFF cells, totalling 512 input neurons. Input spike

trains were generated as Poisson processes, with the rate modulated by the pixel amplitude,

and 100ms duration per data sample. 64 output neurons were simulated as standard leaky inte-

grate-and-fire neurons, with Vrest = −65mV, Vthreshold = −50, Vreset = −65mV, τmem = 15ms. We

simulated an input mean cancellation mechanism through a negative input current with its

amplitude following an estimate of the input firing rate, calculated as the moving average of

the input spike train with time scale τ4 = 200s. Short-term depression [34] and spiking thresh-

old adaptation [35] are possible mechanisms for an effective mean subtraction in cortical

neurons.

The minimal triplet-STDP model [25] was implemented with weight decay and a homeo-

static factor, in which synaptic changes follow

d
dt
wðtÞ ¼ ZþyðtÞ�yþðtÞ�xþðtÞ � Z� hyxðtÞ�y

� ðtÞ � lwðtÞ ð28Þ

where y(t) and x(t) are the post- and pre-synaptic spike trains, respectively: y(t) = ∑fδ(t − tf),
where tf are the firing times and δ denotes the Dirac δ-function; x(t) is a vector with compo-

nents xiðtÞ ¼
P
fdðt � t

f
i Þ, where tfi are the firing times of pre-synaptic neuron i. η+ = 10−4, η−

= 10−4 and λ = 0.05 are unit-free constants, and �yþ, �xþ and �y � are moving averages, imple-

mented by integration (e.g. t
@�y
@t ¼ � �y þ y), with time scales of 30 ms. The homeostatic factor

hy = hyi2, estimated with a time scale τh = 200s. The variation of the triplet STDP model with

heterosynaptic LTD was composed of the triplet LTP factor and a heterosynaptic LTD factor,

d
dt
wðtÞ ¼ ZþyðtÞ�yþðtÞ�xþðtÞ � Z� wðtÞhy ð29Þ

with η+ = 10−4, η− = 10−4 and hy = hyi2, estimated with a time scale τh = 200s.
Recurrent inhibitory plasticity was adapted from [48], with weight decay, with synaptic

changes following

d
dt
wðtÞ ¼ Z �xðtÞðyðtÞ � yÞ þ xðtÞð�yðtÞ � yÞð Þ � lwðtÞ ð30Þ

with constants η = 0.001, θ = 0.003 and λ = 3.0.
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