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Abstract

In humans and animals, surprise is a physiological reaction to an unexpected event, but

how surprise can be linked to plausible models of neuronal activity is an open problem. We

propose a self-supervised spiking neural network model where a surprise signal is extracted

from an increase in neural activity after an imbalance of excitation and inhibition. The sur-

prise signal modulates synaptic plasticity via a three-factor learning rule which increases

plasticity at moments of surprise. The surprise signal remains small when transitions

between sensory events follow a previously learned rule but increases immediately after

rule switching. In a spiking network with several modules, previously learned rules are pro-

tected against overwriting, as long as the number of modules is larger than the total number

of rules—making a step towards solving the stability-plasticity dilemma in neuroscience.

Our model relates the subjective notion of surprise to specific predictions on the circuit level.

Author summary

Everybody knows the subjective feeling of surprise and behavioral reactions to surprising

events such as startle response and pupil dilation are widely studied—but how can sur-

prise arise from neural activity? And why is surprise useful? To answer these questions we

use a modeling approach. We design a self-supervised spiking neural network capable of

extracting surprising information from its own activity. Surprise is measured by a mis-

match between the representation of the current stimulus inside the model and the expec-

tations of the model given previous stimuli. We propose a specific network architecture

which allows the network—in combination with a three-factor NeoHebbian learning rule

—to detect rule changes, signal these changes as a surprise signal, and in turn use the sur-

prise signal to rapidly re-adapt the model’s predictions of possible next stimuli. Our bot-

tom-up model presents a concrete hypothesis of a bio-plausible implementation of

surprise and makes several specific experimental predictions for future in vivo studies.

Introduction

An event is surprising if it does not match our expectations [1–4]. The unexpected punchline

of a joke [3], the unexpected continuation of a sequence of tones [5], harmonies [6, 7] or
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images [8–10], as well as rule switching such as shift of escape in the Morris watermaze [11] or

meaning of cues [12–15] induce measurable physiological and behavioral reactions in humans

and animals. Without expectations arising from previous experiences, an event such as the

observation of a new image may be perceived as ‘novel’ but cannot be ‘surprising’ [16, 17].

Surprise is a well-studied phenomenon in the neurosciences [1, 2] and has also been for-

mally analyzed in the mathematical literature [4]. In the neurosciences, startle responses [18],

delayed responses [2] and pupil dilation [19, 20] are measurable physiological manifestations

in response to surprising events. Moreover, EEG, fMRI, MEG, and electrophysiological studies

show an increase in brain activity shortly after a surprising event [1, 9, 21–25]. Apart from its

potential role for intrinsic motivation [26], surprise plays a crucial role in learning: surprising

events are more memorable [2, 27, 28] and allow quick adaptation to a changing environment

[29, 30]. In this modeling paper, we study the role of surprise in building expectations, modu-

lating learning, and detecting rule switches. Specifically, we focus on two aspects. First, surpris-

ing events significantly increase the speed of learning [16, 31–33] presumably by increasing

synaptic plasticity. Second, surprise is involved in the creation and consolidation of memories

[2, 34, 35], presumably including the memory of rules.

In contrast to mathematical studies that start from a normative framework of surprise [4,

36–46], we take a constructive approach based on a network of spiking model neurons with

plastic connections. We consider two aspects of spiking neural networks as crucial requirements

for biological plausibility. First, all information about expected and observed events, and an

occasional mismatch between the two, needs to be communicated via spikes; thus a comparison

of subthreshold membrane potentials across different neurons—as required in some existing

models [47–49]—is not possible. Second, synaptic plasticity rules should be expressed as Neo-
Hebbian three-factor learning rules [50–55] where the changes of a synapse from neuron A to

neuron B can only depend on the spikes of neuron A and the state of neuron B (the two ‘local’

factors’) plus one (or several) neuromodulators that play the role of a global feedback signal

(third factor) broadcast to large groups of neurons; in our approach, detailed synapse-specific

feedback as used in the BackProp algorithm [56] and variants thereof [57–60] is not needed.

Our main assumption is that surprise manifests itself in a spiking neural network as a mis-
match between excitation and inhibition in a layer of hidden neurons that represent the current

observation and compare it to the expectation arising from earlier observations. Our approach

is intimately linked to both the theory of excitation-inhibition balance (E-I balance) [61–63]

and the theory of predictive coding [64–67].

Predictive coding is an influential theory in the fields of neurosciences [24, 64, 68–70] and

bio-inspired artificial neural networks [71–74]. In contrast to the classic framework of predic-

tive coding that emphasizes sparsity of activity as a means to minimize redundancy of codes

[75], we emphasize the advantage of predictive codes for generating a surprise signal in spiking

neural networks. Importantly, we propose in this paper that an intrinsic spike-based surprise
signal can modulate biologically plausible synaptic plasticity rules so as to achieve fast adaptation
and continual learning across rule switches.

Prediction errors in predictive coding are typically local, e.g., if a subject tries to predict the

next image in a sequence, each wrong pixel gives a local prediction error. Similarly, E-I balance

is often defined on a per-neuron basis, i.e., each neuron tries to balance excitatory and inhibi-

tory inputs (detailed balance) [63]. In contrast to local prediction errors and detailed E-I bal-

ance, we consider in this paper surprise as a more global signal that sums over many local

prediction errors, or many E-I mismatch signals, to extract an area-wide surprise signal that

can be classified as an observation-mismatch surprise [4]. We emphasize that surprise is not

necessarily conscious. Indeed, unexpected continuations of tone sequences or harmonies

evoke EEG signals even in subjects without musical education [5, 7].
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We focus on two related tasks both involving sequences of observations. The first task illus-

trates the well-known problem of re-adaptation to abrupt switches in the stimulus statistics

where the same rule of stimulus generation is unlikely to occur twice [31, 42, 46]; the second

one exemplifies the problem of continual learning across rule switches where each rule should

be memorized since it is likely to re-appear [11, 15, 76]. In both tasks, expectations (‘predic-

tions’) must be built by self-supervised learning, and change points (‘rule switches’) must be

inferred from the observation sequence since they are not indicated by a cue. Our model links

observations in the neurosciences at the level of single neurons or circuits to psychological

phenomena of surprise and provides an alternative to algorithmic approaches to the stability-

plasticity dilemma [77, 78], continual learning [13, 76, 79, 80], context-dependent prediction

[81–83], or context buffers in artificial neural networks [72].

Results

Building expectations in a sequence task with rule switching

Imagine the following sequence of numbers

1! 2! 3! 4! 1! 2! 3! 4
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rule A

! 2! 1! 4! 3! 2! 1! 4! 3
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rule B

:
ð1Þ

The complete sequence is composed of transitions (e.g. 2! 3) and switches between two dif-

ferent rules (rule A! rule B). We refer to the moment of rule switching as a change point. The

“volatile sequence tasks” used in this paper generalize switches between elementary determin-

istic rules, as in (1), to more complex probabilistic sequences of images generated by the follow-

ing procedure. We have a total of R images. After presentation of image number i, the next

image is one of K images that are possible as successors of i. For example, for K = 2 the possible

successors after the image ‘apple’ could be ‘pen’ or ‘hat’ with equal probability. We will see later

that, when the rule of sequence generation changes (e.g., ‘apple’ is followed by ‘car’), participants

watching the sequence of images report the subjective feeling of surprise, consistent with earlier

experiments [84, 85]. Thus in such a framework, a change point triggers a surprise signal.

To generalize the above procedure to the case of K = 4 possible successor images, we may

think of a video taken in an empty apartment of R square rooms, each room recognizable by a

specific wallpaper. The video camera takes one static image of a room before it is moved to

one of the K neighboring rooms (Fig 1A). In total, RxR transitions would be possible, but

because of the specific layout of the apartment, not all of these are observed. An observer

watching the recorded sequence would see transitions of images (‘rooms’) 1! 2 with proba-

bility T∗
2;1

or 1! 3 with probability T∗
3;1

, etc. The hidden ‘rule’ of sequence generation arises

from the transition matrix T∗
i;j (Fig 1B). However, at unknown moments in time the rule

changes (with switch probability H, called ‘volatility’), akin to the switch from rule A! rule B
in (1). Note that the set of images remains the same after a change point while the transition

matrix changes [39, 47]. The above probabilistic task with rule switching is a generalization of

established tasks in cognitive neuroscience of surprise [31, 84–87].

As opposed to an agent that selects actions to collect information, our observer is passively

watching the image sequence. From the observed transitions between images, the observer

learns which image (or images) to expect given the current one, i.e., estimate transition proba-

bilities Ti,j. This passive mode is ideal for a study of surprise because, in the context of neurosci-

ence, it avoids any confounding factors arising from action selection [88] or reward [89] and, in

the context of reinforcement learning theory, it avoids any complex interaction with models of

curiosity, action selection policy or questions of model-based versus model-free reinforcement
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learning [90, 91]—simply because our observer does not choose actions. Once the set of possi-

ble transitions under a given rule has been learned, this knowledge could, of course, be used in

model-based reinforcement learning, but this is not part of the tasks that we consider.

A typical sequence of rule switches is shown in Fig 1C where different rules m = 1, 2, 3, . . .

correspond to different transition matrices T∗
i;jðmÞ. Inspired by experimental observations for

passive learning in humans and animals [10, 24, 87, 92, 93], we assume that the (potentially

unconscious) goal of observers is to predict possible next observations, i.e., estimate transition

probabilities Ti,j that are as close as possible to the real probabilities T∗
i;jðmÞ. Our spiking neural

network model (introduced in the next paragraph) implicitly encodes expectations about pos-

sible next stimuli in the set of synaptic weights. From this set of weights, we extract the expec-

tations at time t in the form of a learned transition matrix Ti,j(t) that can be compared to the

currently active rule T∗
i;jðmðtÞÞ (Fig 1B). Input images are represented in the model by a simple

code such that each image corresponds to a different subset of active sensory neurons. The

expectations summarized in the learned transition matrix Ti,j(t) are a prerequisite to extracting

a surprise signal.

A spiking network model

The Spike-based Surprise-Modulated (SpikeSuMrand) network model (Fig 2A) consists of an

input layer with random projections onto excitatory and inhibitory neurons in a prediction

Fig 1. Expected transitions in a volatile sequence task. A. At each presentation step, the stimulus presents the wallpaper image (indicated by different colors) in one of

the rooms of an apartment with R rooms (here R ¼ 16). The stimulation sequence reflects transitions (arrows) from the current room (current image) to one of the K
neighboring rooms (here K = 4). On rare occasions (change points), the transition rule is changed by a new random assignment of images to rooms. The same rule is

unlikely to return. B. The ground truth transition matrix T∗
i;jðmÞ for different rules m = 1, . . . 4 (left, yellow indicates T∗

i;j ¼ 1=4, dark blue T∗
i;j ¼ 0), compared to the

transition matrix Tij estimated by the model (right, light blue and green: 0< Tij< 1/4) at different time points of a simulation run. Rule 1 at t = 1000 corresponds to the

first configuration in A. C. Switching of rules over time in the simulation of B. Each rule (Rule 1, Rule 2, . . .) only appears once. Vertical lines indicate the time points in

B.

https://doi.org/10.1371/journal.pcbi.1011839.g001
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error layer, and a deep nucleus (i.e., a cluster of neurons in the central nervous system located

below cortex [68, 94]), e.g., the Locus Ceruleus [23], the ventral tegmental area [95] or higher-

order thalamus [96, 97]. Neurons in the prediction error layer receive spikes from a first pool

of N neurons encoding the currently observed stimulus and from another pool of N neurons

in a memory buffer that encodes information on the previously observed stimulus (Material

and methods). Synapses onto excitatory or inhibitory neurons have different weights. Two

populations of pyramidal neurons P1 and P2, putatively located in cortical layers 2/3 [24], com-

pare the weighted inputs of the current observation with the weighted inputs arising via con-

nections from the memory buffer that we interpret as ‘predictions’. Population P1 is inhibited

by the current observation and excited by the prediction coming from the buffer, whereas

Fig 2. Neurons in prediction error layer respond to unexpected transitions. A. Spiking network model ‘SpikeSuM’. From top to bottom: Every 100ms stimuli change,

giving rise to a sequence Rn−1, Rn, Rn+1. . . The presently observed stimulus (Rn, red box ‘OBS’) and the previous stimulus (Rn−1, ‘Buffer’) are encoded with spike trains of

128 neurons each (16 sample spike trains shown). These spike trains are transmitted to two excitation-inhibition networks (prediction error layer) composed of

pyramidal neurons (red triangles) and inhibitory neurons (orange circles). Pyramidal neurons in population P1 are excited (arrowheads) by the inputs representing the

prediction X̂ based on stimulus Rn−1 and inhibited (round heads) by the current observation X whereas neurons in P2 are inhibited by the prediction X̂ and excited by

the current observation X. The activity A1 and A2 of populations P1 and P2 is transmitted to pyramidal tract neurons (PT), which low-pass filter the activity and transmit

it to a group of neurons in a deep nucleus (green, labeled 3rd) which sends a neuromodulatory surprise signal back to the prediction error layer. Poorly predicted stimuli

increase activity in the prediction error layer and indirectly accelerate, via the 3rd factor, learning in the plastic connections (red lines). Inset: Time course of the 3rd factor

(green) over 4s before and after a rule switch at time tswitch. B: Spike trains of all 128 pyramidal neurons in population P2 during a specific stimulus Rn. The 128 neurons

have first been ordered from highest to lowest firing rate and then clustered into groups of 8 neurons, with neurons 1 to 8 forming the first cluster. Right: Histogram of

average firing rate per cluster (horizontal bars). B1: Random sparse connectivity from presynaptic neurons in the input layer to neurons in the prediction error layer.

Inset: schematics, colors indicate connection strength from red (weak) to blue (strong). B2: Regular connectivity with binary connections. Inset: schematics, nonzero

connections (blue) are organized in clusters of 8 neurons, but for readability, only 4 clusters of two neurons each are shown. C1 and C2: To compare the two networks,

we show the spikes generated in response to a new stimulus Rn0 while keeping the same order of neurons. For random connectivity (C1) spike plots are different if Rn0 6¼
Rn but similar if Rn0 = Rn. The same holds for regular connectivity (C2). D1 and D2: Filtered activity of pyramidal neurons in populations P1 (red), P2 (cyan), and the total

filtered activity �A (black) as a function of time-averaged over 100 different sequences with a change point (switch of rule) after 500 presentation steps, for random (D1)

or regular (D2) connectivity (parameter K = 2). Both networks indicate a surprising transition (dashed vertical line) by increased activity. Insets show the activity before

and after the rule switch. E1 and E2: Same as in D1 and D2, but for the case of K = 4 possible next stimuli. Since predictions are less reliable, the activity �A converges to

higher levels.

https://doi.org/10.1371/journal.pcbi.1011839.g002
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population P2 is excited by the current observation and inhibited by the prediction. Both popu-

lations project to a group of pyramidal tract (PT) neurons, putatively located in layer 5b [55,

98], which output a low-pass filtered version �A of the summed neuronal activity. Since �A
reflects the combined outputs of populations P1 and P2, the output of PT neurons can be inter-

preted as a symmetric measure of ‘distance’ between prediction and observation (Material and

methods). If a prediction is correct, excitation and inhibition balance each other so that the

total activity �A of all pyramidal neurons is close to zero.

In our model, the PT-neurons send the filtered network activity information �A to an

unspecified nucleus (Fig 2A) which sends back a neuromodulatory signal 3rdð�AÞ that is broad-

casted across the prediction error layer. We have checked that a large activity �A, caused by pos-

itive or negative prediction errors [21, 24, 92, 99, 100] indicates an unexpected transition. A

transition is unexpected (‘surprising’) if the network has for example learned that after image

‘6’, the next possible images are 2,5,7 or 10 (Fig 1A), but the observed input corresponds to

image ‘3’, indicating that a switch point has occurred. Indeed we find that the amplitude

3rdð�AðtÞÞ of the 3rd factor increases after a switch of rules (Fig 2A, inset). We, therefore, inter-

pret 3rdð�AÞ as a ‘surprise signal’. Note that the surprise signal is a function of activity in the pre-

diction error layer—and therefore implicitly a function of the mismatch between excitation

and inhibition.

To achieve E-I balance for expected transitions, we assume that activated excitatory synapses

from the buffer (b) onto neurons in population P1 change according to an anti-Hebbian three-

factor plasticity rule, modulated by the surprise signal,

DwP1 ;b ¼ � 3rdð�AÞ hpost EPSCpre; ð2Þ

where EPSCpre is the filtered sequence of (unsigned) excitatory postsynaptic currents (EPSCs)

caused by the presynaptic spike train and hpost is the input potential of the postsynaptic neuron

(for details, see Material and methods). Analogously, we assume that activated inhibitory (I)
synapses onto neurons in population P2 change according to a Hebbian three-factor rule mod-

ulated by the surprise signal

DwP2 ;I ¼ 3rdð�AÞ hpost IPSCpre ð3Þ

where IPSCpre is the filtered sequence of (unsigned) inhibitory postsynaptic currents (IPSCs).

For convergence properties of the two learning rules see Material and methods.

A mismatch of excitation and inhibition yields an intrinsically generated

surprise signal

Earlier theories have established that both Hebbian learning of inhibitory synapses [63] and

anti-Hebbian learning of excitatory synapses [101] lead, for predictable inputs, to a stabiliza-

tion of the firing rate of postsynaptic neurons at a low value. To check whether this holds also

true for the above three-factor rules, we focus on a long stimulation sequence of 1000 presenta-

tion steps containing a single switch from rule 1 to rule 2 after 500 presentation steps. Consis-

tent with earlier Hebbian theories, we observe that the SpikeSuMrand network converges after

about 450 presentation steps to a stationary state of low activity (Fig 2D1). Moreover, the

switch between rules causes a sharp peak in the activity �A (Fig 2D1, inset). Thus the activity �A
of PT-neurons can indeed be used to extract a surprise signal that is large for unexpected
observations.

The predictability of the next stimulus is higher in a volatile sequence task with K = 2 possi-

ble transitions from a given observation (Fig 2D1) than in a task with K = 4 (Fig 2E1). Hence,
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the next stimulus becomes ‘more expected’, the prediction error is lower, and the population

activity converges to a lower value in Fig 2D1 than in Fig 2E1; mean activity averaged over the

last 100 presentation steps is 375Hz in Fig 2D1 versus 461Hz in Fig 2E1 (p< 10−10). This

observation leads to experimentally testable predictions (S2 Fig).

We consider two different architectures for the connectivity from the input spike trains to

the pools P1 and P2 of pyramidal neurons. The first one, SpikeSuMrand (Fig 2B1 and 2C1), uses

sparsely connected random projection weights from the input layer to the prediction error

layer, whereas the second one (SpikeSuM Fig 2B2 and 2C2) has a simplified connectivity

matrix with hand-wired binary weights implementing a direct representation of input stimuli

by non-overlapping subsets of pyramidal neurons in the prediction error layer (See Material

and methods). Despite the fact that activity is more localized in the network with the simplified

connectivity, we find that the qualitative features of the population activity in the simpler net-

work (Fig 2D2 and 2E2) are similar to those of the randomly connected network (Fig 2D1 and

2E1). In particular, the population activity increases for both connectivity patterns after a rule

switch. Given the qualitative similarity of responses for the two connectivity patterns, we focus

on the following on SpikeSuM with the simple regular connectivity as a reference because it is

faster to simulate and easier to interpret.

Activity in prediction error layer represents the present stimulus and

predicted alternatives

To illustrate the interpretation of the network with regular connectivity, we run the volatile

sequence task of Fig 1A with R ¼ 16 different stimuli (K = 4) for 3000 presentation steps. In

the beginning, the spike pattern across the populations P1 and P2 of pyramidal neurons in

the prediction error layer looks noisy (Fig 3 middle left), but after a few hundred presenta-

tion steps with the first transition rule T∗
k;qð1Þ, the prediction error layer exhibits four active

groups of neurons. These four groups represent the four possible transitions predicted from

the previous stimulus, including the currently observed one (Fig 3 middle, second panel).

Note that the predictions from the memory buffer of the previous stimulus excite neurons in

population P1, whereas the current stimulus mainly excites neurons in population P2 (Fig

2A). Therefore, with K = 4 possible transitions, the currently observed stimulus is repre-

sented by a single group of neurons in population P2 whereas neurons in population P1 rep-

resent the three alternative predictions consistent with the previous stimulus. Thus, for the

SpikeSuM network with regular connectivity, the activity in the prediction error layers

reflects a column of the transition matrix T∗
k;q where the fixed q denotes the previous stimulus

(stored in the buffer) and the index k runs over the groups of neurons in the prediction error

layer coding for stimulus k. Immediately after a switch to the new rule m = 2, a fifth cluster of

active pyramidal neurons is observed. The five clusters correspond to the four wrong predic-

tions (that have been learned with the previous rule and now cause negative prediction

errors) and the currently observed (unexpected) stimulus under the new rule (which gives

rise to a ‘positive prediction error’, in the sense that the current sensory input is stronger

than the prediction [24]).

Rapid learning after a rule switch

In order to decode the estimated transmission probabilities we use a decoding function that

we construct as follows: First, we present each of the R stimuli, one at a time, for a long dura-

tion while blocking the output of the buffer population. The projections to population P1 in

the prediction error layer cause an activity pattern xP1 across the pyramidal neurons in P1. We

optimize a decoding matrix D such that DP1xP1 best approximates the 1-hot encoded stimulus
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number. Similarly, we determine a second decoding matrix DP2 to read out the activity from

population P2. The two decoding matrices are kept fixed thereafter. In order to read out the

predicted activity during the experiments, we block for a moment the inputs from the current

observation so that neurons in P1 and P2 driven by the buffer and use the fixed decoding matri-

ces DP1 and DP2 . This yields the predicted stimulus labels that we use to construct the transition

matrix in Fig 3 bottom. For mathematical details see ‘Materials and methods’. We note that,

whenever the observation does not match the prediction, at least one of the populations P1 or

P2 is active so that predictions are also visible in the spike patterns (Fig 3 middle).

A switch between rules causes a large activity, and turns on the neuromodulatory surprise

signal 3rdð�AÞ that leads to a fast update of the weights. We find that, after the rule switch, the

new transition appears in the transition matrix already at the end of the first presentation step,

i.e., after only 100ms (Fig 3 bottom, red circle in the graph). Thus, a single novel transition is

sufficient to change the matrix (learning in ‘one shot’) by rapidly changing the synaptic

weights (S2 Fig).

After spending some time with stimulus presentations under the new rule, the activity �A of

PT-neurons returns to a low value and the new transition matrix can be extracted from the

weights onto pyramidal neurons in populations P1 and P2 (Fig 3, right, labeled 4).

Fig 3. Neuronal responses depend on the present stimulus, the previous stimulus, and consistent alternatives to the present stimulus in a task with R ¼ 16

stimuli and K = 4 transitions possibilities and two rules. Top: Activity (arbitrary units) of populations P1 (green) and P2 (red) as well as the total activity �A (black) of

all pyramidal neurons. After 1500 presentation steps, the transition rule switches from rule 1 to rule 2. Each presentation step corresponds to the exposure to one

stimulus for 100ms. Middle: Spike trains of pyramidal neurons during one presentation step, at different points during learning (from left to right): at the beginning

(label 1) and end of the first episode with rule 1 (label 2) and beginning (label 3) and end of the first episode with rule 2 (label 4). If the observation is stronger than the

prediction neurons in population P2 fire (blue dots); whereas if the observation is weaker than the prediction neurons in population P1 fire (red dots). Pyramidal

neurons (16 per stimulus, 8 neurons each from P1 and P2) have been sorted according to stimulus numbers for visual clarity. Bottom. Matrix of transitions between

stimuli decoded from the weights onto pyramidal neurons. At the end of the first presentation step after a change point (label 3), a new element (red arrow) has

appeared in the transition matrix corresponding to the newly observed transition, Rn−1! Rn. After some time with the novel rule, the new transition matrix is learned

(label 4) and the old one is suppressed.

https://doi.org/10.1371/journal.pcbi.1011839.g003
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Modulation of plasticity by surprise supports rapid re-adaptation

To understand whether the modulation of plasticity by surprise is necessary for the rapid re-

adaptation after rule switches, we use a long sequence of 10,000 presentation steps to compare

SpikeSuM with two simpler networks with the same architecture but different modulation (Fig

4A). In our reference model, the third factor 3rdð�AÞ has two components that yield a slow

modulation of plasticity for small �A and a rapid one for large �A (Fig 4C, red line). The two

components enable rapid learning after an unexpected rule switch (Fig 4B), and slower, but

sustained learning during a long phase with a fixed rule with a residual level of ‘expected

uncertainty’ [33] caused by stochastic transitions compatible with the rule. In comparison, a

network with an optimized, but constant learning rate (no modulation, SNNnm) converges

after a switch of rules with a short delay (Fig 4A) towards a high-error solution. Moreover, a

network with a simpler modulation SNNsm shows fairly good convergence but adapts more

slowly immediately after a switch (Fig 4B). We find that, within the family of tested functions,

a 3rd factor built of two components as in SpikeSuM is necessary to reach adaptation that is

both fast and precise, but adding a third component does not further improve learning.

A systematic comparison shows that SpikeSuM and SpikeSuMrand outperform SNNsm and

SNNnm across various instantiations of the volatile sequence task (Fig 4D). Moreover, the per-

formance of SpikeSuM is only slightly worse than that of the variational Bayesian algorithm

varSMiLe [46] or the online Bayesian change point detection algorithm BOCPA [42] which

are both surprise-based machine learning algorithms designed for near-optimal change-point

detection (Material and methods). For the comparison with the above benchmark algorithms,

the learning parameters of SpikeSuM and SpikeSuMrand have been optimized separately for

each paradigm. This may look unrealistic since in general the amount of stochasticity (charac-

terized by the stochasticity parameter K) is not known upfront, or could even be different for

Fig 4. Rapid adaptation enabled by surprise-modulated three-factor plasticity. A: Error magnitude of the transition matrix (Frobenius norm between the true

transition matrix T* and the estimated matrix T) as a function of time for the SpikeSuM model (red), and a Spiking Neural Network model (SNN) with the same

architecture and number of neurons as SpikeSuM, but simple modulation (cyan SNNsm) or no modulation (green SNNnm), in a volatile sequence task with R ¼ 16

different stimuli and K = 4 possible transitions. Rule switches cause the occasional abrupt increases in error. The SpikeSuM network exhibits faster learning immediately

after the switch as well as better convergence during periods when the rule stays fixed; volatility H=0.001. B Zoom on 200 presentation steps immediately after a rule

switch. The red curve goes down faster and to a lower value than the other two. C: The surprise signal transmitted by the 3rd factor as a function of the activity �A for

three cases (red: SpikeSuM rule; cyan: simplified modulation rule; green: constant learning rate, no modulation). The parameters of all three rules have been optimized.

D Average error over 10’000 presentation steps with volatility H = 0.001 for different values of R (size) and K. The performance of SpikeSuM is comparable to that of the

Bayesian Online Change Point detection algorithm (BOCPA, black) and varSMile (grey) and better than SNNnm or SNNsm. The results with random connectivity

SpikeSuMrand are shown in dark blue.

https://doi.org/10.1371/journal.pcbi.1011839.g004
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different transitions within the same rule. We have checked that a network with fixed parame-

ters can cope with a situation where stochasticity changes, within the same rule, from deter-

ministic (K = 1) to stochastic (K = 2); see S2 Fig.

In summary, on the volatile sequence task without re-occurrence of the same rule, our spik-

ing network with surprise-modulated learning shows faster relearning after a rule switch than

the one without which suggests an essential role of surprise-modulation in rapid, yet precise,

adaptation to changes in the stimulus statistics. Notably, the surprise signal is not some exter-

nal variable but is extracted from the spiking activity of the network itself.

Relation to behavioral surprise

In order to find out whether the surprise signal in our spiking network model is correlated

with the subjective experience of surprise, we ran an experiment with 85 human participants

viewing a sequence of images. Each of the images could be followed by one of K = 2 possible

next images with probability p = 0.5 (Fig 5A and 5B). Participants were asked to focus on one

image and report the feeling of surprise via a slider when seeing the following image (Fig 5C).

The 25 participants who saw a sequence of 200 image presentations all generated with the

same rule, reported (after an initial transient) a slowly decreasing surprise indicating that

Fig 5. Behavioral surprise of human participants compared to simulated surprise. Example of an image sequence. Each image is presented for 1s followed by a 1s
grey screen. Subjects are informed to focus on one specific image (e.g. ‘pen’) and the transition from there to the following image. B Sequence 1 is deterministic and used

to familiarize the subject with the task. Sequence 2 has stochastic transitions so that each given image can be followed by one of K = 2 other images, with equal

probability p = 0.5. C Participants observe the image sequence while attempting to predict the image following the pen and report their feeling of surprise continuously

by moving a ‘Surprise slider’. Participants are randomly assigned to two different groups, with and without change points. D Scaled normalized surprise Ŝ reported by

the 65 participants in group 1 (blue line: mean; shaded blue: variance) as a function of time (Methods), overlaid with appropriately scaled surprise in 60 simulations with

SpikeSuM (green line: mean; shaded green: variance) using the same sequence as in the experiments with change point after 150 image presentations. E Same as D, but

for the sequence without change-points. F Differences in the experimental data of participants are significant (t-test) in D between the 50 steps before and 50 steps after

the change point (blue bars in F); not significant in E between the 50 steps before and 50 steps after step 150 in the absence of change point; and significant for the time

steps 150–200 between D and E (blue vs. red bar in F). The symbol *** indicates p< 10−5, and ‘ns’ not significant.

https://doi.org/10.1371/journal.pcbi.1011839.g005
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subsequent images were more and more expected. The 60 participants, however, who experi-

enced a change of rule after 150 presentation steps, reported a strong increase in the subjective

feeling of surprise. Importantly, the feeling of surprise reported by human participants (Fig

5D–5F) is strongly correlated with the simulated surprise signal in the SpikeSuM network if

the model is stimulated with the same sequence (Pearson correlation 0.76 and 0.84 over all 200

time steps for experiments with or without change-point, respectively, calculated using several

random samples of 20 participants). Thus the surprise signal in the SpikeSuM network links

the notion of surprise in a behavioral experiment (Fig 5) with a functional role for modulating

synaptic plasticity (Fig 4) at the level of neuronal circuits.

Continual learning across rule switches is supported by the surprise signal

So far new rules involved each time a new transition matrix for the same set of stimuli. Each

rule change induced overwriting of the previous transition matrix. We now explore how over-

writing can be avoided. The first possibility is that different rules involve different stimuli. Sup-

pose that the number of neurons in the input layer and in the prediction error layer is

sufficient to accommodate 32 different stimuli, but rule A only uses 16 of these. If rule B uses

16 different stimuli, then a switch from rule A to rule B does not lead to overwriting. In this

section, we consider a second scenario so as to study continual learning without overwriting.

We now consider a task where all rules use the same stimuli (as before), but the same rules

reappear several times. We study a meta-network composed of M SpikeSuM modules each act-

ing as one of the rule memories (Fig 6A). We call this enlarged network SpikeSuM-C (for Spi-

keSuM with Context). Note that the set of stimuli (i.e., the different images) is the same for all

rules so the context needs to be inferred from the observed sequences. Ideally, each module m
2M should focus on one of the contexts, i.e., a single transition matrix (rule). We postulate

that in a well-functioning network, only predictions within the currently active rule are

updated while multiple other contexts that were memorized before are left untouched and can

be reused later when the same context reappears.

To implement this idea, we assume that a set of ‘context selector modules’ (CSMs) selects

the specific module that should learn the observed transition (Fig 6B and Material and meth-

ods). The indirect coupling of context memories via the CSMs gives rise to a Best-Predictor-
Learns (BPL) architecture, such that only the context module m with the lowest activity in the

prediction-error layer updates its weights. Importantly, the prediction-error module with the

lowest activity is the one with the best prediction for the currently observed transition. More-

over, the CSM have plastic weights that make a transition to a different module more likely if a

surprising stimulus appears while the system is in a module for which it is ‘confident’ i.e., for

which it has already encountered many stimuli.(Material and methods).

All CSMs compete with each other via standard Winner-Take-All dynamics [102], such

that all CSMs are silent except one. However, none of the prediction error neurons is shut

down by the competitive dynamics between CSMs, so an arbitrary population p in module m
has a non-zero activity. To restrict synaptic plasticity to the prediction error module with the

lowest activity, we hypothesize that the nucleus that broadcasts the third factor is organized in

several segments, such that segment m sends a neuromodulatory signal 3rdð�AmÞ to the corre-

sponding prediction-error module m. Such a structure with localized feedback loops is com-

patible with the anatomy of the higher-order thalamus [68, 96, 97] or the ventral tegmental

area [95]. More specifically, in our model the activity of populations P1 and P2 in the SpikeSuM

module m excites segment m of the nucleus. In parallel, high activity of another CSM m0 6¼m
(i.e., m0 is the winner) inhibits PT neurons in the prediction-error layer of module m and

hence suppresses segment m of the nucleus. But without neuromodulatory activity, plasticity
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Fig 6. Continual learning across re-occurring rule switches. A: The SpikeSuM-C network is composed of four layers. The input layer receives the stimulus and

connects to the prediction-error layer which is composed of several SpikeSuM modules (cf. Fig 2). A set of context selector modules (CSM) composed of dis-inhibitory

networks is bidirectionally connected with the prediction-error layer. Each SpikeSuM module excites its corresponding CSM. A Winner-Take-All circuit in the CSM

layer selects the least excited module. Inhibitory feedback weights from the CSM to the prediction-error layer inhibit the PT neurons of unselected SpikeSuM modules,

but not the prediction-error neurons (see Material and methods). Red weights are plastic. Non-plastic weights are shown in black for feedforward, solid blue for

feedback, and dashed blue for lateral inhibitory connections. B: Connectivity (schematic) within a single module. Disinhibition combined with WTA dynamics selects

the module with the lowest activity in the prediction error layer. C: Sequence of rule switches as a function of time. D: Summed activity of all PT-cells (grey, arbitrary

units) in a SpikeSuM-C network with 5 modules and error magnitude (green, mismatch between transition matrix in currently selected module and ground truth)

during learning. When the second rule appears for the second time, the error exhibits a short spike (green triangle) indicating successful switching between modules. At

rare moments (green star marks one of the examples) module switching is initiated at an inappropriate moment but stops immediately thereafter. The activity generated

by the switch to an unknown rule is stronger (grey bars exceed the horizontal orange dashed line) than that of a previously observed one (grey bars barely reach the cyan

dashed line). Red line: behavior of SpikeSuM (control, 1 single module). E Evolution of synaptic weight matrices over time for each of the five modules. After 500 time

steps, the transition matrix of rule 1 has been stored in module 5, and transition matrices of other rules are added as they appear.

https://doi.org/10.1371/journal.pcbi.1011839.g006
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does not occur in module m. Taken together, excitation and inhibition ensure that only the

module m0 with the lowest prediction error updates its weights (Material and methods).

To illustrate the function of the network, we initialize it with 5 empty context modules and

stimulate it with a stochastic sequence generated by switches between four different rules. Fig

6D shows that SpikeSuM-C learns the first rule as fast as SpikeSuM (equivalent to SpikeSuM-C

with 1 module). Moreover, if a known rule reappears it re-activates an existing module instead

of learning from scratch. Switches to a previously learned rule trigger a rapid switch of the net-

work to the correct module. Finally, we find that if the number of learned rules is smaller than

the number of allocated modules, empty modules stay untouched and therefore remain avail-

able for later use (Fig 6E).

The amplitude of the surprise signal after a switch to a previously encountered rule is

smaller than that after a switch to a completely new rule (Fig 6D). In the first case, surprise

leads to a switch to an existing module while in the second case to the recruitment of a previ-

ously untouched module. Thus, the surprise signals that are generated in the network are used

by the same network to trigger learning or switching between context modules—all in an

unsupervised manner (Material and methods for more details). We discuss in (Material and

methods the time scale of switching. Additional tests with different values of the volatility H
and stochasticity parameter K are summarized in Tables A and B in S1 Text. For the network

to function well, it is important that there are at least as many context modules as potential

rules (S1 Text).

A modular network architecture avoids the stability-plasticity dilemma

Carpenter and Grossberg identified many years ago the stability-plasticity dilemma of brain

plasticity: learning is either too slow to explain observed phenomena or, if fast, it leads to over-

writing of earlier memories [77]. To solve the dilemma, Gershman et al. [35] have suggested a

plasticity curve for memory formation that postulates memory modification for small predic-

tion errors and memory protection for large prediction errors, leading to an inverted-U-

shaped curve [35]. SpikeSum-C contains several populations of neurons, P1 and P2, that learn

to respond to negative and positive prediction errors, respectively. Here we ask whether plas-

ticity modulation by the third factor avoids the stability-plasticity dilemma in line with the

hypothesis of Gershman.

We focus on synapses onto the layer 2/3 prediction error neurons in SpikeSuM-C and

study the amplitude of the third factor as a function of the total activity in layer 2/3 (Fig 7A).

In the original SpikeSuM with a single module, the third factor 3rdð�AÞ increases monotonically

once the total activity is larger than a threshold θ defined in Eq 14 (Fig 7A1). In SpikeSuM-C,

however, the third factor jumps at θ to a large value and then decreases for higher values of

activity (Fig 7A2). The reason is that, in the SpikeSuM-C network with multiple modules, a

large activity of prediction error neurons in layer-2/3 of module k does not cause emission of

neuromodulator in module k since a different module k0 6¼ k is the winner.

The third factor influences the amount of plasticity, but synaptic plasticity also requires the

two Hebbian factors, i.e., ‘pre’ and ‘post’, to be non-zero; cf. Eqs (2) and (3). We define the

Hebbian drive as the multiplication of ‘pre’ and ‘post’ where ‘pre’ represents the presynaptic

activity EPSCpre or IPSCpre and ‘post’ the rectified and scaled postsynaptic membrane potential

½tanhðhpostÞ�
þ

where [.]+ is short-hand for rectification and tanh ensures scaling with a maxi-

mum of one. As a function of the Hebbian drive, the total amount of weight updates in popula-

tions P1 and P2 exhibits a monotonic increase in the SpikeSuM network with a single module,

but a bell-shaped dependence in the SpikeSuM-C network with multiple modules (Fig 7B).
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Finally, in order to relate our plasticity model to the hypothesis of Gershman [35], we ask

whether we can find a similar bell-shaped curve as a function of the prediction error at the

level of single postsynaptic neurons. We note that the prediction error is, by design of the net-

work, represented by the membrane potential hpost (where hpost ¼ 0 is the resting potential).

Hence we study the update magnitude Δw of all synapses onto a given postsynaptic neuron as

a function of the rectified and scaled membrane potential ½tanh hpost�
þ

and average the result

overall prediction error neurons (Fig 7C). Since the membrane potential encodes positive (in

population P2) or negative (in population P1) prediction errors, the graph in Fig 7C can be

interpreted as the total amount of synaptic plasticity (vertical axis) as a function of prediction

error (horizontal axis). The small magnitude of synaptic changes for very large prediction

errors (Fig 7C2) is functionally important because it leads to the protection of existing modules

after a switch of context.

Therefore our model has translated a hypothesis at the cognitive level [35] into specific

experimental predictions for synaptic plasticity at the circuit level. In an in-vivo experiment

Fig 7. Synaptic plasticity as a function of prediction error has two regimes in SpikeSuM-C. A1-A2: The magnitude of modulation (3rd factor) is shown as a function

of the total activity �A of layer-2/3 neurons for a SpikeSuM-C network with a single module (A1; equivalent to the original SpikeSuM) and for a SpikeSuM-C network

with three modules (A2). The threshold θ is defined in Eq 14. Bars: standard error of the mean. The difference between the two curves (A1-A2) arises from the inhibition

of model PT-neurons if they are not located in the winning module: in A1, the activity �A of PT neurons always reflects the activity A of layer-2/3 neurons, in A2 it does

not. Inset: Histogram of modulation amplitudes 3rdð�AmÞ for values slightly above θ: the distribution of modulation amplitudes is bimodal with rare events of large

modulation. Arrow: the peak is due to known transitions that remain after a rule change. B1-B2: The update magnitude |Δwik| of a specific synapse is shown as a function

of the Hebbian drive RetanhðhiÞ � �EPSCk i.e., the multiplication of postsynaptic membrane potential and the current influx caused by presynaptic spike arrival (long-

dashed line, averaged over all neurons i in the postsynaptic population P1). Analogously, for postsynaptic population P2 (dotted line) and mean over both populations

(solid line). C1-C2: The total amount of synaptic plasticity, represented by the update magnitude ∑k|Δwik| summed over all synapses onto an arbitrary neuron i is shown

as a function of the prediction error, represented by the rectified and scaled membrane potential Retanhhi. In a network with a single module (C1), plasticity increases

with prediction error so that large prediction errors after a context change lead to overwriting of existing memories. In the network with multiple modules (C2), the

plasticity in the SpikeSum-C network exhibits two regimes: prediction errors between 0.1 and 0.4 generate small but non-negligible changes, and induce a refinement of

existing memories, whereas for prediction errors above 0.6 existing memories are protected since other memories are created or changed. The error bars represent the

90% confidence interval of the mean. The vertical bar indicates the separation between the two regimes predicted by Gershman et al. [35].

https://doi.org/10.1371/journal.pcbi.1011839.g007
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involving multiple contexts, presynaptic activation and postsynaptic membrane potential of

putative prediction-error neurons should be monitored while the size of the synaptic connec-

tion is measured, e.g., by spine size estimation from optogenetic experiments. We speculate

that in primary sensory areas, future experimental observations might resemble the qualitative

features of SpikeSuM whereas in the frontal cortex or subcortical areas those of SpikeSuM-C.

Discussion

Our network of spiking model neurons enables the rapid formation of context-dependent

expectations in a paradigm of continual learning where rule switching occurs at unknown

moments in time. Importantly, rapid adaptation becomes possible by surprise-modulated

learning. In contrast to earlier implementations of surprise in cognitive neuroscience models

[16, 31–33, 38, 40], surprise manifests itself in our spiking neural model by increased popula-

tion activity caused by a momentary imbalance of excitation and inhibition [24, 63]. The sur-

prise signal has two different roles in our model. First, it triggers the release of feedback signals

(e.g., neuromodulators) that serve as ‘third factors’ in an unsupervised NeoHebbian learning

rule [50, 51, 54]. Second, it initiates switches between modules and avoids overwriting old

memories [35, 79, 80], since synaptic plasticity is dis-inhibited only in the module representing

the current rule. We find that the protection of earlier memories of transition rules is possible

only if the number of available network modules is larger than the number of different rules

(S1 Text) Thus the number of modules limits the overall network capacity to encode different

rules. If more rules than modules are encountered, all modules re-learn and adjust to the pres-

ent rule, akin to catastrophic forgetting. If however, the number of rules is smaller to or equal

to the number of modules, the modules focus on different rules so that earlier knowledge is

not forgotten. Yet, each of the modules is not simply frozen, but remains plastic so as to enable

further fine-tuning of ‘its’ rule. Each of the learned transition rules can be interpreted as a dif-

ferent context: given that the network is currently in, say, state number four, the most likely

transition under the first rule (context one) might be to state seven, but under the second rule

(context two) to state five. The network dynamics implicitly keeps a memory of the current

context over short times that stabilizes learning while the surprise signal enables rapid switch-

ing if necessary.

In our approach, predictive coding is a consequence of our aim to extract a surprise signal

from spiking activity—as opposed to classic approaches where predictive coding is a conse-

quence of redundancy-reducing or energy-minimizing codes [64, 75]. Surprise requires expec-

tations that arise from earlier experience. In our model, the sensory experience of the previous

presentation step is represented in the buffer population while predictions are encoded in the

connection weights. It is not necessary that the buffer population uses the same code as the

observation population since the comparison of prediction and observation occurs via plastic
synapses originating from the buffer. Our model does not specify whether the buffer popula-

tion is located in the same area (e.g. cortical L5 cells [24]) or in some other area (e.g., prefrontal

cortex [103, 104]). The anti-symmetric architecture of the prediction-error circuit in each

module requires two separate excitatory and inhibitory pathways onto model neurons that

extract positive and negative error prediction, similar to putative prediction error neurons in

layer 2/3 of the sensory cortex [93, 105]. We propose that the activity of these neurons is

summed, and potentially low-pass filtered, by layer 5b PT neurons [55, 98] which would then

transmit the aggregated signal (‘surprise’) to other areas or nuclei that eventually trigger a feed-

back signal such as the release of a neuromodulator. While positive or negative prediction

errors can be assigned to single neurons, surprise in our model is extracted from the aggregated
unsigned prediction error—available by a summation over large groups of neurons.
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Our model is a conceptual one and makes no specific predictions on the type or origin of

these feedback signals. However, candidate sources for such feedback signals could be acetyl-

cholinergic neurons in nuclei of the basal forebrain and brain stem, potentially linked to

arousal and plasticity [68, 94, 106]; noradrenergic neurons in Locus Ceruleus linked to cogni-

tion, attention, network reorganization, and gating of plasticity [23, 107, 108]; serotonergic

neurons in the Raphe nuclei linked to surprise [14]; dopaminergic neurons in the ventral teg-

mental area linked to reward [109]; or populations of neurons in the higher-order thalamus

potentially linked to consciousness or predictive processing [68, 96, 97]. At least for the last

two it is known that the population is not homogeneous but structured [95, 97] which is a nec-

essary condition for the proposed model of switching between different rules encoded in dif-

ferent modules. Even though dopamine is largely correlated with reward and reward

prediction error [89, 109], dopamine has also been linked to novelty and potentially surprise

[109, 110]. On the other hand, dopamine can also be triggered by activity in Locus Ceruleus

[111, 112], a nucleus that is traditionally associated with noradrenaline [107]. Hence, a one-to-

one mapping between neuromodulators and functional roles should not be expected [52].

Predictions in our model are encoded at two levels, i.e., in the weights of synaptic connec-

tions and the activity pattern of excitatory neurons in the prediction-error layer (Fig 3). While

the model was not designed to reproduce experimental data of frontal cortex neurons, several

aspects of the activity patterns in the SpikeSuM-C model are qualitatively consistent with delay

activity [104], implicit encoding of associations [103], and mixed activity profiles [113] which

enables to decode from the population activity the current rule, the present input, the previous

stimulus, and alternative observations consistent with the previous stimulus but inconsistent

with the present input. A limitation of our current implementation of the model is the assump-

tion of a buffer population that keeps the memory of the previous event Rt−1. The weights onto

pyramidal neurons in the prediction layer implicitly estimate the transition matrix P̂ðRtjRt� 1Þ.

The combination of discrete representation time steps with an explicit buffer population has

enabled us to extract the transition matrix by a local learning rule modulated by a third factor.

It is conceivable that the buffer population could be replaced by a recurrent network where

information about the past reverberates and is available from the current network state Rt−1�

F(statet) where F is a decoding function. In such a scenario, the expectation about the current

state would have to be encoded by a modified transition matrix ~PðRtjFðstatetÞÞ. Whether a

standard three-factor rule is sufficient in this case, or whether a bio-plausible learning rule that

approximates backpropagation through time [59, 114] is preferable, needs further research.

A further limitation is the organization of the model circuits in an anti-symmetric fashion.

While positive and negative prediction errors need to be processed by separate circuits [24],

the circuitry in Fig 2A has several biologically implausible features. First, the inhibitory neu-

rons in the model circuit implement exact sign inversion. This restriction could be relaxed in a

randomly coupled recurrent network where inhibitory neurons connect to each other to

implement a K-winner-take-all circuit. Second, plasticity is restricted to a peculiar subset of

connections. This condition could be relaxed as shown by the following thought experiment:

We assume a large number of neurons in the input and prediction error layer and suppose

that connections (YES or NO) with plasticity (ON or OFF) are assigned randomly to all eight

connection types, i.e., buffer to excitatory P1, buffer to excitatory P2, buffer to inhibitory neu-

rons projecting to P1, buffer to inhibitory neurons projecting to P2, and analogously four con-

nections types from the current observation to P1 and P2. Then a small, but non-negligible

fraction of all connections would have the ‘correct’ combination as shown in Fig 2 in a sea of

many other connections. Thus, only a small fraction of neurons in the prediction error layer

would actually encode positive or negative prediction errors, consistent with experimental
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data in layer 2/3 [115]. The other connection types in such a random connectivity scheme are

likely to specialize to other tasks. While the other connection types may increase the noise in

the surprise signal, there is no reason to believe that they would systematically cancel the sur-

prise signal established by the ‘correct’ combination of connections. We therefore assume that

the activity of neurons embedded in other connection patterns ‘average out’ and do not con-

tribute to the surprise signal that marks change points. Whether this assumption is justified, or

whether additional feedback processes are needed to further select the ‘correct’ wiring patterns

remains an open question.

Another limitation is that, in particular for SpikeSum-C, parameters depend on the level K
of stochasticity of the rule. While SpikeSum-C with a fixed set of parameters is able to cope

with stimuli that combine deterministic (K = 1) with probabilistic transitions with K = 2 (S2

Fig), the switching between modules is no longer reliable if parameters optimized for stochasti-

city K = 4 are used for stimuli with K = 2 or vice versa. Interestingly, for our behavioral experi-

ments with human participants we anectodically observed that paradigms that combine K = 1

and K = 2 work well (Fig 5) whereas paradigms with K> 2 do not. This suggests that parame-

ters of brain circuit that extract transition rules might by default be tuned to low stochasticity.

Whether, and how, parameters can be automatically adjusted to rules with large, but variable,

levels of stochasticity is an open research question. One suggestion is that slow variables with

low-pass filter characteristics keep track of the variance of the transition probabilities and feed

the variance signal back to adjust hyperparameters.

A distinction between expected and unexpected uncertainty has been proposed in the liter-

ature on reward-based learning [33, 116]. Analogously, we can define expected and unex-

pected uncertainty in the absence of rewards. In our volatile sequence task, the expected

uncertainty depends on the number K of possible next stimuli whereas the unexpected uncer-

tainty corresponds to unpredictable switches between rules. For K = 1, the expected uncer-

tainty vanishes. For K> 1, the level of expected uncertainty is, after learning, represented in

our model by the remaining activity of excitatory neurons in the prediction error layer which

could be tested in experiments (S2 Fig). Expected uncertainty can also be visible as a non-zero

tonic level of the surprise signal (i.e., the 3rd factor). The unexpected uncertainty is repre-

sented by sharp peaks in the activity of the prediction error neurons (Fig 6D).

Detecting unpredictable switches in the rules governing the momentary environment is a

challenge for both artificial neural networks [76] and biological brains [14, 104]. If rule switch-

ing is not detected, for example, because of reduced serotonergic signaling, behavior exhibits

reduced adaptation speed [14] or even obsessive-compulsive signatures [14, 117]. Surprise in

our model is putatively related to mismatch negativity in EEG signals. Interestingly, schizo-

phrenia patients exhibit a reduced mismatch negativity [118] and a reduced capacity to make

valid prediction [119–121]. In our model, missing surprise signals lead to an impairment of

memory formation and consolidation, potentially linked to deficits in schizophrenia patients

[122–125].

Definitions of surprise in a probabilistic framework [4] have previously been used to

explain adaptation to rule switching [42–45]. However, these definitions cannot be directly

applied to spiking neural networks since a correct normalization of probability distributions is

difficult to maintain within spiking networks [126, 127] and the calculation of a distance, or

Kullback-Leiber divergence, between two probability distributions [4, 128] is even harder. Sur-

prise-driven neural networks for adaptive decision-making [129] or neural particle filters for

adaptive perception [130] are not easily extendable to networks of spiking neurons. Our

approach extracts from the activity of spiking neurons a qualitative surprise signal that can be

interpreted as a measure of observation-mismatch surprise [4] without a direct link to proba-

bility distributions. In summary, surprise, i.e., a response of the brain to a stimulus that occurs

PLOS COMPUTATIONAL BIOLOGY Fast Adaptation to Rule Switching using Neuronal Surprise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011839 February 20, 2024 17 / 41

https://doi.org/10.1371/journal.pcbi.1011839


against expectations [1–4], is a phenomenon of relevance similar to that of reward. Similar to

reward and reward expectations [89], surprise must be detected by neuronal networks in the

brain and transformed into modulatory signals that influence synaptic plasticity. Our concep-

tual model study shows how surprise detection and modulation of plasticity can be imple-

mented in spiking neural networks and how these networks can be used for memory

formation, memory protection, and prediction of upcoming inputs, in the absence of reward.

Material and methods

Two volatile sequence tasks

In the volatile sequence tasks (Fig 1A), a sequence of stimuli is generated by a doubly stochastic

Markov chain. At each presentation step, a stimulus with index q is chosen from a finite set of

R different inputs, 1 � q � R. Given a stimulus q at presentation time step n, a stimulus k at

presentation step n + 1 is chosen with probability T∗
k;q where T* is the transition matrix that

summarizes a given rule. At each presentation step, rules switch stochastically with probability

H� 1, called the volatility of the rule. We often refer to the moment of rule switch as a ‘change

point’. From the point of view of the observer, switches are unexpected and potentially cause a

high surprise.

While the theory is more general, we often visualize stimuli as static wallpaper images col-

lected by a video camera that is moved randomly across an apartment composed of R rooms

(Fig 1A), each enabling K possible transitions to other rooms. Rooms have distinct wallpapers.

The stimulus Rn stands for the wallpaper in the room seen at presentation step n. The transi-

tions are stochastic and follow:

PðRnþ1jRnÞ ¼

1

K if stimuli Rnþ1 and Rn refer to connected rooms

0 otherwise;

(

ð4Þ

We assume periodic boundary conditions, e.g., room 4 in Fig 1A is a neighbor to rooms 1,3,8

and 16. Thus the layout of the apartment defines the hidden rule of allowed transitions

between stimuli. In particular, a transition matrix generated from a given apartment has the

property that for each starting stimulus q, the elements T∗
k;q either vanish or take a value T∗

k;q ¼

1=K with constraints
P

kT
∗
k;q ¼ 1 and T∗

q;q ¼ 0. In the theory below we do not assume that the

transition matrix is symmetric, even though whenever we simulate an apartment with a two-

dimensional layout and K = 4 (or a 1-dimensional apartment with K = 2), then the matrix is

symmetric T∗
k;q ¼ T∗

q;k.

We design two tasks with different switching patterns. In both tasks, the number of differ-

ent stimuli is fixed and equal to R. For the first task (‘volatile sequence task without re-occur-

rence of rules’), at each change point, all stimulus numbers are randomly shuffled. Thus at

each change point, a new transition rule is generated while keeping the number K of possible

next stimuli fixed (visualized as a new layout of the apartment in Fig 1). For the second task

(‘volatile sequence task with re-occurrence of rules’), we first randomly shuffle the set of R
stimulus numbers M times (i.e., we first create M different apartments that all use the same

wallpapers). This procedure gives rise to M different transition rules. At each change point, we

randomly choose one of the M − 1 possible other rules. Thus, the number of potential transi-

tion rules is finite. The first task implies that having a memory of a past rule is vain as there is a

very low probability of encountering the same rule multiple times. Hence, an adaptive algo-

rithm with rapid forgetting is suited to solve this task. For the second task, a suitable algorithm

should memorize context-dependent predictions and quickly re-activate the correct context

after each rule switch.
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In the simulations in the main text, we use symmetric transition matrices with neighbor-

hood relations that can be visualized as apartments with either R ¼ 16 or R ¼ 32 rooms and

vary the number K of allowed transitions per room between K = 2 and K = 8. The terms ‘apart-

ment’, ‘room’, and ‘wallpaper’ are for illustration purposes only since each stimulus is repre-

sented in the model by a unique neuronal input pattern (see below).

Spike trains of sensory neurons

To simulate the volatile sequence task with R discrete stimuli (‘wallpapers of rooms’), we

translate the stimuli into spiking patterns of abstract ‘sensory’ neurons: each stimulus is repre-

sented by a distinct cluster of m = 8 neurons with an elevated firing rate of 100Hz. (We may

think of these ‘sensory’ neurons as the output of a multi-layer network with wallpaper images

as input and 8-hot coding as output, but we do not implement such a preprocessing network.)

Each stimulus presentation lasts for 100ms (=1 presentation step), and thereafter a new input

stimulus is presented to the network. The network input layer is composed of two populations

of ‘sensory’ neurons: a population of observation neurons and a population of buffer neurons

(see Fig 2). Both populations consist of m�R Poisson neurons. Note that we use m = 8 neu-

rons per cluster to have a good estimation of the firing rate; however, for a network of rate neu-

rons, it would be sufficient to use a single neuron per stimulus (1-hot coding).

In a network of 8�R presynaptic neurons per sensory population, the first cluster of 8

neurons represents the first stimulus (q = 1) of the volatile sequence task, the second cluster

consists of neurons 9 to 16 the second one and so forth. For each observation, neurons in one

of the clusters will spike with firing probability 0.1 at each time step of dt = 1ms (firing rate

100Hz), whereas all other neurons fire with probability �� 0.1 at each time step. Note that,

sensory neurons in the buffer population have the same behavior as those in the observation

population except that active neurons encode the stimulus number of the previous

observation.

Transmission from sensory neurons to prediction error neurons

Each spike zk in neuron k of one of the sensory populations triggers an unsigned square EPSC

of length l = 4ms which is transmitted to neurons in the prediction error layer consisting of two

populations p 2 {P1, P2}. The total input current Ii into neuron i of the prediction error layer is

IP1
i ¼ x̂P1

i � xP1
i ; ð5Þ

if neuron i is in population P1 and

IP2
i ¼ xP2

i � x̂P2
i ; ð6Þ

if neuron i is in population P2. Here and in the following the variable xpi without hat refers to

the observed, and the one with hat to the predicted input current to neuron i and p 2 {P1, P2}

refers to the two populations in the prediction error layer. Specifically,

xpi ðtÞ ¼
X

k

wp;o
ik EPSC

o
kðtÞ; ð7Þ

is the input from sensory neurons in the observation population to neuron i in population p of

the prediction error layer where EPSCo
kðtÞ is 1 if neuron k in the observation population has

fired in the last 4ms and wp;o
ik are fixed observation weights. Similarly,

x̂pi ðtÞ ¼
X

k

wp;b
ik EPSC

b
kðtÞ: ð8Þ
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is the input from sensory neurons in the buffer population to neuron i in population p of the

prediction error layer where EPSCb
kðtÞ is 1 if neuron k in the buffer population has fired in the

last 4ms and wp;b
ik are plastic weights driven by the plasticity rule of Eq 19. We refer to x̂pi ðtÞ as

the (learned) prediction and to xpi ðtÞ as the (representation of the present) observation. To sim-

plify the notations we drop in the following the time argument t and replace

xpi ≜ xpi ðtÞ

x̂pi ≜ x̂pi ðtÞ
ð9Þ

Spiking neuron model

Neurons in the prediction error layer are described by the Spike Response Model SRM0 [131,

132]. Each prediction error neuron i receives an input current Ipi where p stands for P1 or P2;

cf. Eqs 5 and 6. The input current is then integrated to obtain the input potential (Fig 8)

t
dhpi
dt
¼ � hpi þ Ipi � ! hpi ðtÞ ¼

1

t

Z t

� 1

es� tt Ipi ðsÞds ð10Þ

Combining the input potential with a refractory kernel η leads to the membrane potential

upi ðtÞ ¼ Zðt � t0iÞ þ hpi ðtÞ; ð11Þ

where t0i stands for the last firing time of post-synaptic neuron i, and Zðt � t0iÞ ¼ � e
�
ðt� t0i Þ
t is an

exponential refractory function, preventing the neuron to fire again right after a spike. Spikes

are generated stochastically with probability

Pðzi ¼ 1Þ ¼ �ðuiÞ ¼ ½tanhðuiÞ�þ ð12Þ

per time steps of dt = 1ms where ϕ is the activation function of the neurons and [x]+ = x for

x> 0 and zero otherwise. Eqs (10), (11) and (12) define the Spike Response Model of the pre-

diction error neurons.

Fig 8. Spike Response Model of neurons in the prediction error layer. Each postsynaptic neuron receives an input current Ii. This current is integrated, with

membrane time constant τ, to obtain the input potential hi. The actual membrane potential of the neuron ui is the combination of both the input potential and a

refractory function η, where η is a strong negative potential activated after a spike, forcing the neuron to stay silent for a while. The spike times are then randomly

drawn with probability ϕ(ui) generating the spike train of neuron i.

https://doi.org/10.1371/journal.pcbi.1011839.g008
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Two connectivity patterns onto the prediction error layer: Random and

regular

The first projection pattern (SpikeSuMrand) is sparse random connectivity (with density 0.1)

and weights uniformly drawn between 0 and 1. In other words, for each of the 256 postsynap-

tic neurons in the prediction error layer, we draw an input connection to a specific presynaptic

neuron with a probability of 10 percent and then connect the two neurons with a random

weight (Fig 2). Since in our standard simulations, we have 16 different stimuli and each stimu-

lus is represented by a distinct cluster of m = 8 presynaptic neurons, the average number of

input connections to a neuron in the prediction error layer is 0:1 �m �R ¼ 12:8 with a mean

weight of 0.5. Thus, in the prediction error layer stimuli are represented by overlapping groups

of neurons of different firing rates (coarse coding).

The second projection pattern is a regularly structured connectivity pattern (SpikeSuM).

Presynaptic neurons are, as before, separated in R clusters of m = 8 neurons each, but each

cluster projects (with binary weights) to a different group of 8 neurons in the prediction error

layer. In other words, both pre-and postsynaptic layers are composed of 8R neurons such that

different stimuli are represented in the prediction error layer by distinct, non-overlapping

groups of neurons (Fig 2).

SpikeSuM network architecture

Eqs (5) and (6) show that Ipi ¼ 0 if and only if x̂pi ¼ xpi , for p 2 {P1, P2}. Note that x̂pi is the pre-

diction arising from the activity of the buffer population whereas xpi is the present observation.

Hence, the total input is minimal if the prediction coincides with the observation. A wrong

prediction increases the activity in at least one of the two populations in the prediction error

layer: if x̂pi > xpi for many neurons in p = P1, then many neurons in population P1 have a posi-

tive input current and nonzero spiking activity; on the other hand, if x̂pi < xpi for many neurons

in p = P2, then many neurons in population P2 have a positive input current and nonzero spik-

ing activity. Because of the rectification at the transition from neuronal input Ipi to output

spikes (Eq 12), the two populations P1 and P2 complement each other. A natural way to esti-

mate the overall prediction error of the network is therefore to collect the spikes of both popu-

lations P1 and P2. We assume that the population of PT-neurons acts as a linear filter and

transmits a mean activity �A defined as

t�A
d�A
dt
¼ � �A þ c

X

p¼P1 ;P2

X

i

EPSCp
i ; ð13Þ

where EPSCp
i denotes the square excitatory postsynaptic current of neuron i of population p

and t�A and c are constants. In our model, �A provides the total drive of neurons in a deep

nucleus that receives dense input connections from PT cells. The neurons in the deep nucleus

send back a broadcast signal that measures the total surprise

0surprise0 ¼ Z1tanhð�AÞ þ Z2tanhð�AÞYð�A � yÞ ¼ 3rdð�AÞ ð14Þ

where 3rdð�AÞ is a nonlinearly increasing function of �A, Θ is the Heaviside step function and η1,

η2, θ are fixed hyper-parameters. Since the surprise signal modulates learning, we refer to it as

a 3rd factor that gates plasticity in NeoHebbian three-factor learning rules [54].

The third factor, composed of two non-linear components, could either be interpreted as a

single neuromodulator with a complex nonlinearity or alternatively as the combined action of

two neuromodulators involved in surprise-based learning [33]. Following the terminology of

[33], the adaptation to the expected uncertainty (e.g., stochastic transitions to one of the
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possible next stimuli under a fixed rule) could be controlled by the action of acetylcholine

[described in our model by the term Z1tanhð�AÞ], whereas the adaptation speed to the unex-
pected uncertainty (i.e. a rule switch) could be controlled by the action of norepinephrine

[turned on in our model if �A > y].

SpikeSuM learning rule: Derivation of Hebbian factors

We aim for a NeoHebbian plasticity rule with three factors [54], i.e., a rule that combines traces

of pre-and postsynaptic activity with a modulation of the learning rate. As indicated above, a

good prediction of the present observation is indicated by the small current in Eqs (5) and (6)

or, similarly, by a small value of the input potential hpi of all pyramidal neurons in populations

P1 and P2; cf. Eq (10). We therefore minimize the loss function

L ¼
Z tstop

tstart
L̂ðtÞ dt ¼

Z tstop

tstart

1

2

X

p¼P1 ;P2

X

i

½hpi ðtÞ�
2 dt ð15Þ

where t is time and runs from the beginning tstart to the end tstop of the experiment. Optimiza-

tion is implemented as online gradient descent with respect to the weights wp;b
ik that project

from neuron k in the buffer population to neuron i in population p of the prediction error net-

work. We recall that weights wp;o
ik from observation neuron k to neuron i are fixed. We present

here all the calculations for p = P1 only. For the population P2 one just needs to add a minus

sign. The integral over time corresponds to a batch rule; for stochastic gradient descent (online

rule) we can focus on an arbitrary point in time and apply the chain rule of differentiation

@L̂ðtÞ
@wP1 ;b

ik

¼ hiðtÞ
@hP1

i ðtÞ
@wP1 ;b

ik

ð16Þ

where we can evaluate the derivative using Eqs (5) and (8)

@hP1
i ðtÞ

@wP1 ;b
ik

¼

Z t

� 1

es� tt
@IP1

i ðsÞ
@wP1 ;b

ik

ds ¼
Eq:ð8Þ

Z t

� 1

es� tt EPSCb
kðsÞds ð17Þ

Since EPSCs have a rectangular shape with duration l we can evaluate further

@hP1
i ðtÞ

@wP1 ;b
ik

¼
X

t0k�t

e� tt
Z t0kþDk

t0k

estds ¼
X

t0k�t

e
� ðt� t0

k
Þ

t e
Dk
t � 1

h i
≜EPSCb

k; ð18Þ

where EPSCb
k is a low-pass filtered version of the EPSC, t0k are the spike times of neuron k and

Dk ¼ minðt � t0k; lÞ. We now apply online gradient descent with an update amplitude propor-

tional to the variable 3rd (‘learning rate’) and the step size dt

dwP1 ;b
ik

dt
¼ � 3rd hP1

i EPSCb
k in population P1;

dwP2 ;I
ik

dt
¼ þ3rd hP2

i IPSCb
k in population P2:

ð19Þ

The above NeoHebbian rule combines a trace of the incoming EPSCb
k (presynaptic factor) with

the momentary input potential hP1
i (rather than the spike time) of the postsynaptic neuron

(postsynaptic factor): these are the two Hebbian factors. Repeating the same derivation for the

plastic inhibitory connections in population P2 leads to the second update rule in Eq (19)

which is analogous to the first one except for the sign. In standard stochastic gradient descent,
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the learning rate 3rd could be fixed or slowly decrease over time as learning proceeds (‘freez-

ing’), and also depend (via a momentum term) on the recent history. However, in our model,

the learning rate increases whenever the prediction fails (indicated by a large prediction error)

so we refer to the learning rate 3rd as a surprise-driven neuromodulator. To summarize, we

have a three-factor learning rule with the following properties: (i) EPSCb
k (respectively IPSCb

k)

limits the weight update to active connections; (ii) hi is the local signed prediction error and

goes to zero if the prediction for neuron i is correct; (iii) finally, 3rd is a function of the global

unsigned prediction error which is sent back as ‘surprise’ to the full network; see main text and

section (Mathematical Details below).

SpikeSuM learning rule: Third factor

There is no fundamental reason that a learning rate should be fixed as long as each update step

(in the batch-rule) decreases the loss [133]. However, in an online gradient descent rule, we

have to make sure that all observations get an appropriate statistical weight during the update.

In particular, we have to ensure that none of the observations is systematically ignored. This

could happen if the learning rate 3rd vanished whenever a specific stimulus appears. Such a

problem is not a hypothetical one, because of the rectification of the neuronal gain function;

cf. Eq 12. Suppose that for a given stimulus, the observation xP1
i is larger than the prediction

x̂P1
i for all neurons in population P1. In this case, none of the neurons in population P1 would

respond. If we were to use a third factor that is proportional to the activity A1 of population P1

(e.g., if we set 3rd = βA1), then this stimulus would never lead to an update.

However, the dependence of the third factor 3rdð�AÞ upon the total population activity �A of

the prediction error layer together with the anti-symmetric architecture avoids this problem.

Whenever the observation does not match the prediction, at least one of the populations, either

P1 or P2, will be turned on. This is true throughout the simulation because (i) there are many

plastic weights that code for each stimulus (e.g., with regular connectivity and R ¼ 16 differ-

ent stimuli, we have 64 weights coding for each stimulus in each of the two populations); (ii)

all synaptic weights in both populations are initialized in the range [0, 1]; (iii) the update rule

Eq (19) is symmetric for both populations (i.e., if the excitatory weights onto a neuron in P1

increase, then the inhibitory weights onto a neuron in P2 decrease) which ensures that the

symmetries at initialization remain throughout learning.

Thus whenever predictions and observations do not match, the total activity �A conveys a

prediction error signal which leads to a non-zero learning rate 3rdð�AÞ that is identical for all
weights.

Benchmark algorithms

We compare the performance of our network to several state-of-the-art algorithms (Fig 4). For

fairness of comparison, each of these algorithms uses surprise-based online adaptation to

detect change points induced by rule switching. BOCPA [42] is a Bayesian online algorithm

for exact inference of the most recent change point. It is a message-passing algorithm that

infers the probability distribution over the run time since the last switch. It is known to be opti-

mal on average for long simulations. VarSMiLe [46] is a variational approximation [134] of

BOCPA that uses the Bayes Factor surprise SBF [46] to detect change points. VarSMiLe does

not need message-passing (as implemented in BOCPA) and has a closed-form update rule

similar to the SMiLe rule [39].

We also compare SpikeSuM with networks of the same architecture but with a simplified

function for the third factor. The function 3rd, introduced in Eq (3), scales the amount of
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plasticity. The first line in the following equation gives the definition while the other lines the

simplifications considered

3rdð�AÞ ¼ Z1tanhð�AÞYð�AÞ þ Z2tanhð�AÞYð�A � yÞ; for SpikeSuM

3rdð�AÞ ¼ Z1tanhð�AÞ; for SNNsm

3rdð�AÞ ¼ Z1 for SNNnm :

ð20Þ

This comparison of 3rd factors allows us to investigate the impact of modulation on the learn-

ing. The differences in the number of networks parameters can be found in Table 1.

Simulation parameters and comparison of algorithms

Simulations are obtained by running networks composed of, 8�R, presynaptic neurons (so

that 8 neurons have sustained spiking for each stimulus), and 128 postsynaptic neurons (256

for random connectivity). The presynaptic neurons have a firing rate of 100Hz if representing

the observed stimulus and the squared EPSCs (IPSCs for inhibitory neurons) last for 4ms. The

integration time of the input potential τ = 10ms. See Table 2.

Hyper-parameters (η1, η2, θ) of SpikeSum as well those for VarSMiLe and BOCPA have

been optimized using the python library scikit-optimize [135] minimizing
P

njjTn � T̂ njj
2

F ,

where Tn is the transition matrix defining the rule at time step t and T̂ n the estimated transi-

tion matrix extracted from the weights and ||.||F the Frobenius norm.

The full SpikeSuM network with modulation by the standard third factor has more parame-

ters than the network with no modulation (nm), or simple modulation (sm) as indicated in

Table 1.

Behavioral experiments

Experimental setup: Participants sit in front of a screen and observe a sequence of images on

the screen. Images are black-and-white drawings of objects of daily life on a grey background

from the Bank of Standardized Stimuli (BOSS) [136]. Each image is presented for 1s followed

by a 1s grey screen. Participants are informed to focus on one specific image (e.g. ‘shoe’) and

the transition from there to the following image (Fig 5A–5C). Participants are informed to

Table 1. Networks parameters for simulations with R stimuli.

Presynaptic neurons Postsynaptic neurons 3rd hyper-parameters

SpikeSuM 8�R 128 3

SpikeSuMrand 8�R 256 3

SNNsm 8�R 128 1

SNNnm 8�R 128 1

https://doi.org/10.1371/journal.pcbi.1011839.t001

Table 2. Summary of fixed network parameters.

Parameters list value

refractoriness η 0.9

presentation Tpres 100

input integration τ 10

input rate ν 0.1

length E(I)PSC l 4

https://doi.org/10.1371/journal.pcbi.1011839.t002
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predict the image following the shoe and asked to report their feeling of surprise continuously

throughout the task by moving a ‘Surprise slider’ horizontally.

Familiarization task. Sequence 1 is deterministic, i.e., given image n only one image (K = 1)

is possible as subsequent input (Fig 5B). All participants first perform the familiarization task

once before turning to the experimental task.

Experimental task. Sequence 2 has stochastic transitions so that each given image can be fol-

lowed by one of K = 2 other images, with equal probability p = 0.5. Sequence 2 can either con-

tain a change of rule after 150 image presentations (group 1, with change point) or not (group

2, control). 60 participants were randomly assigned to group 1 and 25 participants to group 2.

Data was collected on the platform ‘prolific’, courtesy of Michael Herzog and Wei-Hsiang Lin,

EPFL, according to the Ethics rule of the EPFL ethics committee.

Normalized subjective surprise Ŝ. All participants in a given group see the same realization

of the stochastic sequence. In the first processing step, the reported raw surprise S is, for each

participant, normalized to zero mean and unit variance during time steps 1 to 150 to yield a

normalized subjective surprise

ŜðtÞ ¼
SðtÞ � E½S½1:150��

s½S½1:150��

where S(t) is the raw surprise on the slider at time step t. In the second step, we calculate the

average over all participants in a given group.

Context modules: Architecture of SpikeSuM-C

SpikeSuM-C is an extension of the original SpikeSuM network and is composed of M Spike-

SuM modules (Fig 6A).

Each context selection module (CSM) has two layers, schematically shown in Fig 9. Infor-

mation flows from the prediction error layer of module m into layer L1 of the CSM with the

Fig 9. Context selector module (CSM). Each CSM contains two layers of inhibitory neurons. Layer 1 receives

excitatory input from the corresponding SpikeSuM module. Layer 2 receives inhibition from layer 1 and lateral

inhibition from layer 2 of other CSMs. The more excitation a CSM receives, the lower the activity in layer 2. Because of

WTA dynamics implemented by lateral inhibition, the CSM module with the lowest excitation is selected, inhibits

other CSMs, and shuts down the plasticity of other SpikeSuM modules. The red weights are plastic and can be

interpreted as a ‘commitment’ to the selected module. The network activity represents the activity across all SpikeSuM

modules and supports the WTA dynamics.

https://doi.org/10.1371/journal.pcbi.1011839.g009
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same index m. The output from layer L2 of the CSM with index m inhibits other CSMs with

index m0 6¼m and also inhibits the PT neurons of other modules m0 6¼m. All NCSM spiking

neurons in each of the two layers of one CSM are described by the Spike Response Model in

Eq 10. We now discuss the different components in turn.

Inputs to the CSM). The first layer (L1) of CSM m receives excitatory input from prediction

error module m via feedforward synapses Wp;m;FF
i;k (Fig 6B) that connect neuron k in population

p 2 {P1, P2} to neuron i in layer L1,

ImL1;i ¼ a1

X

p

X

k

Wp;m;FF
ik EPSCp;m

k � b

" #

ð21Þ

where β> 0 is a parameter. Neurons in layer L1 of module m send inhibitory input to the sec-

ond layer (L2) of the same module via weights WInh;m
ik . But layer L2 in module m also receives

inhibitory input from layer L2 of other modules m0 6¼m. The inputs to neurons in layers L1

and L2 are

ImL2;i ¼ a2 � a3

X

k

WInh;m
ik IPSCm

L1;k � a4

X

m0 6¼m

X

k

WWTA;m0
ik IPSCm0

L2;k þ a5Iext

" #

: ð22Þ

where a1, a2, a3, a4, and a5 are fixed positive parameters and IPSCm0
L2;k denotes the amplitude of

the IPSC from neuron k in layer L2 of module m0 to neuron i in layer L2 of module m. The

negative sign of inhibition has been made explicit as a minus sign in front of a3 and a4, Mutual

inhibition implements a Winner-Takes-All (WTA) circuit where the least inhibited module

stays selected whereas the other ones are silenced. Iext ¼
P

p

P
m

P
k EPSC

p;m
k is the sum over all

possible spikes in the prediction error populations (across all context modules) and serves as a

positive bias that triggers the WTA dynamics.

Outputs of the CSM. Neurons k in CSM m0 sends inhibitory weights of magnitude WWTA;m0
ik

to L2-neurons other CSMs; see Eq (22) above. Moreover, the L2-neurons of the CSM with

index m0 send also inhibitory input of fixed amplitude J to PT neurons in module m:

t�Am
d�Am

dt
¼ � �Am þ c

X

p¼Pm
1
;Pm

2

X

i

EPSCp;m
i � J

X

m0 6¼m

X

k

IPSCm0
L2;k; ð23Þ

The sums run over all neurons j of all CSM other than the one with index m. We chose J = 20

for strong inhibition. We recall that the activity of PT-neurons �Am directly influences the third

factor 3rdð�AmÞ and hence modulates plasticity in module m.

Synaptic plasticity. The neurons in SpikeSuM module m are updated following

DwP1;b;m
ik ¼ � 3rdð�AmÞ hmi EPSC

P1 ;m
k in population P1;

DwP2;I;m
ik ¼ 3rdð�AmÞ hmi IPSC

P2 ;m
k in population P2:

ð24Þ

for each SpikeSuM module. The function form of 3rd(.) is the same as in Eq (14). Suppose for

the moment that m is the active module. As a result of the strong inhibition from other mod-

ules (cf. Eq (23)), the third factor 3rdð�AmÞ is positive for module m whereas 3rdð�Am0 Þ ¼ 0 for

modules m0 6¼m. Thus, the third-factor limits plasticity to the winning module. The selection

of the winning module is done in the CSM network (Fig 9) via the WTA dynamics. The net

result is a Best-Prediction-Learns (BPL) dynamics. It is a combination of dis-inhibitory feed-

forward connectivity within a module and lateral Winner-Take-ALL (WTA) dynamics

between modules.
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While the weights Wp,m,FF and WWTA;m0 are fixed at a value of one, the connections WInh;m
ik

from L1 to L2 are plastic. The inhibitory connections WInh;m
ik are potentiated by a Hebbian rule

modulated by a third factor and depressed by an unspecific decay term with decay rate α

DWInh;m
ik ¼ Z g3rdð�AmÞ IPSCm

L2;i IPSC
m
L1;k � aðW

Inh;m
ik � WInh

0
Þ: ð25Þ

where g3rdð�AmÞ is a third factor modulating plasticity (Fig 9). We call the weights WInh;m
ik the

confidence weights. Indeed, the product IPSCm
L2;iIPSC

m
L1;k > 0 drives the potentiation as long as

neurons in both L1 and L2 are active; i.e. when the module m is selected. During this phase, we

consider that the module builds its confidence about being a ‘good predictor’ for the current

rule. After learning a rule for some time, WInh;m
ik is much larger than its initial weight WInh

0
. The

term aðWInh;m
ik � WInh

0
Þ, α� 1, implements weight decay on a long timescale so that a module

that is not used for a long time is slowly forgotten.

The function g3rdð�AmÞ in Eq 25 allows to influence the direction of learning. We choose

g3rdð�AmÞ ¼ ð1 � 2Yð�Am � yÞÞ ð26Þ

Network function. The least active SpikeSuM module (i.e., the one yielding the best predic-

tion) is chosen by the CSM network as the module that learns. Here, a3 governs the overall

strength of the feedforward dis-inhibitory drive from the SpikeSuM module. The connection

strength a4 controls the strength of lateral inhibition in the WTA circuit. The common bias

Iext accounts for the variability in the network activity so that the WTA dynamics works

equally for predictable and unpredictable inputs and is not hindered by random variations due

to spiking noise. The parameter a2 is a scaling parameter that we found useful in setting up the

simulations. The choice of parameters is discussed below in SpikeSuM-C parameters.

Suppose that module m has been selected for some time, but now suddenly a higher predic-

tion error in SpikeSuM module m occurs. This causes an increase of activity in L1 and leads to

strong inhibition (because the weights had been potentiated earlier) of neurons in L2 so that

the WTA mechanism rapidly ‘un-selects’ this module in favor of another one. Note that post-

synaptic neurons in L2 of a CSM that lost the WTA competition are silenced so that connec-

tions to these neurons are no longer potentiated. The net result of the plasticity rule is that

modules that have never been chosen in the past have connection weights that are still close to

their initial values—and these modules can then be later selected by the WTA dynamics for

new tasks.

Analysis of switch point dynamics

We may ask ourselves how the network detects outliers that trigger a switch of modules. To

study this, let us focus on the presentation step of 100ms during which the first outlier occurs,

and analyze the Eq 22 in a rate model with constant input. We assume WTA dynamics. Let Z
be the maximum activity of the PT neurons of the currently active module during the observa-

tion of an outlier and ZL1 the one in the first layer of the context detector. The dynamic in

layer 2 of the active module is then

tL2

_hL2 ¼ � hL2 þ a2½� a3ZL1 þ a5Iext�: ð27Þ

We assume that a5 is small enough so that a2½� a3ZL1 þ a5Iext� < 0. Then over time neurons in

layer 2 of this module will be silenced as soon as hL2 passes below zero, which implies that the

observation triggers a switch-point. Hence the parameter a2 together with the time scale tL2

determine the resilience of the model to outliers. Indeed, the smaller a2 and the longer tL2
, the
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more observations are required to detect a change point. For small tL2
and large a2, an outlier

will be detected in a single presentation step and will lead to immediate switching of modules.

In S1 Text we show the success rate of SpikeSuM-C as a function of the parameter a2 in a para-

digm with K = 2 potential next states, but with transitions that are biased rather than balanced

between the two possible next states.

So far we looked at a strong outlier that indicates a switch. At the other extreme would be a

slow drift. For example, while each of the R inputs is encoded by m Poisson neurons (e.g,

m = 8) after some time the code shifts so that 1 of the m neurons that have coded for stimulus

Rn has changed identity and now codes for stimulus k(n) where k(n) is some permutation of

stimulus indices. After several of such minor code switches effectively a different transition

rule is implemented even though the rule would be represented by the same module.

SpikeSuM-C parameters

Simulation results reported in Figs 6 and 7 are obtained in a paradigm with volatility H = 0.001

by running networks with the parameters summarised in Tables 3 and 4. The presynaptic neu-

rons have a firing rate of 100Hz if representing the observed stimulus and the squared EPSCs

and IPSCs last for 4ms. The integration time of the input potential τ = 10ms. The code is avail-

able on Git Hub (https://github.com/martinbarry59/SpikeSuMNet).

Mathematical details: Decoding and transition probabilities

We claim that the anti-symmetric architecture of the prediction error layer in SpikeSuM

together with the three-factor learning rule makes the weights converge to a solution that

reflects the main features of the hidden rule defined by the transition matrix T∗
k;q between sti-

muli. As before we consider a doubly stochastic process where the transition rules change with

a small probability H per presentation step and each transition rule is defined by the transition

matrix T∗
k;q. The amount of stochasticity of a given rule is controlled by a parameter K. For

example,K = 4 means that four possible next stimuli can follow a specific stimulus q. We want

Table 3. Summary of SpikeSuM-C parameters with stochasticity parameter K = 2. The volatility parameter H = 1/

1000 is used in the main text (middle column). Further results with H = 1/500 and H = 1/2000 can be found in Table A

of S1 Text.

Context selection module parameters H = 1/500 H = 1/1000 H = 1/2000

a1 0.256 0.22 0.22

a2 0.05 0.05 0.05

a3 4 4 4

a4, a5 20 20 20

α 1e-06 1e-06 1e-06

β 0.045 0.045 0.045

η 0.0003 0.00025 0.0003

WInh;m
max 0.11 0.08 0.09

SpikeSuM parameters

η1 1e-05 1e-05 1e-05

η2 0.005 0.005 0.005

θ 0.45 0.45 0.45

Winit 60 60 60

c 40 40 40

EI-neurons 128 128 128

https://doi.org/10.1371/journal.pcbi.1011839.t003
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to show that, for a transition matrix T∗
k;q with K entries of value 1/K per column and zero

entries otherwise, the weights onto the pyramidal neurons in the prediction error layer are

adjusted such that all possible transitions are predicted proportional to their statistical proba-

bilities. We will also show how to decode the predictions of the network.

Preliminaries: Encoding of stimuli and decoding of predicted transitions

As an abstract encoding of stimuli, we use 1-hot encoding. If the total number of stimuli is R,

then a specific stimulus q (with 1 � q � R) is encoded by an R-dimensional vector Rq 2

f0; 1g
R

with the qth component equal to 1 and all other components equal to zero. The transi-

tion matrix T∗ 2 R�R that describes the probability of a transitions from stimulus Rq to

stimulus Rk has elements T∗
k;q defined as

T∗
k;q ¼ ProbðRkjRqÞ ð28Þ

with
P

kT
∗
k;q ¼ 1 for all q. The set of stimuli fR1; :::;RRg represented by 1-hot coding vectors

defines an orthogonal basis in an R-dimensional vector space which gives rise to the following

properties of the transition matrix T*. First, multiplication of the matrix with the stimulus vec-

tors from both sides gives back the transition

RkT∗Rq ¼ T∗
k;q ð29Þ

and, second, one-sided multiplication with a stimulus Rq gives a vector R.|q with non-zero ele-

ments for all those stimuli that can follow Rq

R:jq ¼ T∗Rq ¼
X

k

RkT
∗
k;q : ð30Þ

We interpret R.|q as the code of ‘consistent next stimuli’ that can follow stimulus q. It repre-

sents the qth column of the transition matrix T* and can be expressed as a linear sum over the

Table 4. Summary of SpikeSuM-C parameters with stochasticity parameter K = 4. The volatility parameter H = 1/

1000 is used in the main text (middle column). Further results with H = 1/500 and H = 1/2000 can be found in Table B

of S1 Text.

Context selection module parameters H = 1/500 H = 1/1000 H = 1/2000

a1 0.07 0.07 0.07

a2 0.05 0.05 0.05

a3 4 4 4

a4, a5 20 20 20

α 1e-06 1e-06 1e-06

β 0.055 0.055 0.055

η 0.0008 0.0007 0.0006

WInh;m
max 0.1 0.11 0.13

SpikeSuM parameters

η1 1e-06 1e-06 1e-06

η2 0.002 0.002 0.002

θ 0.5 0.5 0.5

Winit 9 9 9

c 40 40 40

EI-neurons 512 512 512

https://doi.org/10.1371/journal.pcbi.1011839.t004
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one-hot-coded stimuli Rk. In particular, for K = 4, the vector on the left-hand-side of Eq (30)

contains four non-zero entries (with a value of 1/4 each) that represent the four possible sti-

muli after the stimulus with index q.

The actual encoding of stimuli in the input layer of the SpikeSuM network corresponds to

m-hot encoding, since stimulus Rq is represented in the input layer by a cluster of m neurons

that fire at a high rate (ν=100Hz); cf. Spike trains of sensory neurons. For the sake of simplic-

ity of the arguments below, we assume that the neurons representing other stimuli Rk 6¼ Rq are

inactive (�! 0) when stimulus Rq is observed. Thus we can think of the input representation

of stimulus q as an m-hot encoding Vq ¼ P1!mRq 2 f0; 1g
mR

, where P1!m is the rectangular

expansion matrix from 1-hot encoding to m-hot encoding transforming the R-dimensional

space of stimuli into a mR-dimensional space of input neurons.

We now turn to the representation of stimuli in the prediction error layer. For the Spike-

SuM network with regular connectivity, the representation in the prediction error layer is also

an m-hot encoding in each of the two populations P1 and P2. However, to keep our arguments

general we will also include the case of random connectivity. From Eq (7) we know that the

input neurons in the observation population drive neuron i in population p of the prediction

error layer with a current xpi ðtÞ ¼
P

kw
p;o
ik EPSC

o
kðtÞ. We collect the set of neurons i in popula-

tion p into a vector xp, and the weights wp;o
ik into a matrix Wp,o and write the vector equation

xpðtÞ ¼Wp;oEPSCoðtÞ : ð31Þ

Let us consider a time point tn located close to the end of the nth presentation step. Further-

more, let us suppose that during the nth presentation step stimulus RqðtnÞ
was observed. Here q

(tn) denotes the index of the stimulus in presentation step n.

We exploit the m-hot encoding to write for the mean activity pattern in population p

ES½xpðtnÞ� ¼Wp;oP1!mRqðtnÞ
n l ð32Þ

where ES½x� denotes the expectation over stochastic spiking of the Poisson neurons in the

input layer,Wp,o is the matrix of fixed connectivity weights to the pyramidal neurons in the

prediction error layer, ν is the firing rate of the active neurons, and l is the duration of the rect-

angular EPSC. Similarly, the expected prediction generated by connections from neurons in

the buffer population to those in population p 2 {P1, P2} is

ES½x̂pðtnÞ� ¼Wp;bP1!mRkðtn� 1Þ
n l: ð33Þ

Since we would like to interpret activity patterns in terms of the stimuli, we introduce hypo-

thetical decoding weights Dp from the space of neuronal activities (in one of the pyramidal

populations in the prediction error layer, p 2 {P1, P2}) to the space of stimulus labels in 1-hot

coding. We choose decoding weights such that encoding followed by decoding forms an auto-

encoder for arbitrary stimuli Rq:

Rq ¼ Dp Wp;oP1!mRq ð34Þ

With these decoding weights fixed, the read-out with the matrix Dp enables us to interpret the

momentary activity xp(tn) of neurons in the prediction error layer in terms of stimulus labels;

to see this compare the right-hand side of Eq (33) with Eq (34). Note that the decoding weights

are an interpretation tool, but not implemented in the network (even though it would be easy

to learn them, for example with the perceptron learning rule).
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In order to interpret the predicted activity ES½x̂pðtnÞ� in terms of stimulus labels, we use the

same decoding weights D as for the observed activity

R̂ :jkðtn� 1Þ
¼ DpWp;bP1!mRkðtn� 1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ES ½x̂pðtnÞ�=ðn lÞ

;
ð35Þ

where k(tn−1) is the index of the stimulus during presentation step n − 1 and R̂ :jkðtn� 1Þ
is the pre-

diction of stimuli in step n, given the stimulus with index k(tn−1) in step n − 1. These predicted

stimulus labels enable not only the decoding of predictions in the figures of the Results section

but are also at the core of the following theory insight.

Weights after convergence reflect transition probabilities

Loosely speaking, we claim that given that the stimulus in the previous time step tn−1 was Rq,

the predictive input from the buffer population can be decoded and represents the average of

the possible next stimuli consistent with the rule; cf. Eq (30).

To make the above statement more precise, we formulate the following claim:

For a large number of input neurons (m!1), a small fixed learning rate 3rd = η� 1, pre-
sentation steps longer than the membrane time constant (ΔT� τ), and a large dwell time with a
given rule (H! 0), the synaptic weights connecting the buffer population to the prediction error
layer converge under the plasticity rule of Eq (19) to a stationary state such that (if the input
from the momentary observation is blocked) the activity of rectified linear neurons in the predic-
tion error layer can be decoded as

R̂ :jq ¼ Etr½RkjRq� ¼
X

k

RkT
∗
k;q ¼ T∗Rq ð36Þ

where Etr denotes expectations over transitions conditioned on the index q of the previous
stimulus.

Notes:

(i) For the situation with K = 4 transitions per stimulus, the above statement implies that the

network activity of the prediction error layer reflects all four possible next stimuli (with

equal weights) if there is no input from the current observation.

(ii) The condition of a small and constant learning rate ensures a separation of time scales. If

learning is slow enough to keep fluctuations of weights small, then learning becomes self-

averaging after many presentation steps [137].

(iii) The condition of m!1 where m is the number of neurons in the input layer coding for

the same stimulus ensures that fluctuations due to spikes, and in particular those correla-

tions between input-and-output spikes that are not accounted for by correlations of firing

rates, become negligible [101].

(iv) We only need to calculate the stationary state because for the plasticity rule of Eq (19) the

local stability of the stationary state is guaranteed by [63, 101].

Informal proof sketch:

According to Eq (19) the update of the weights from an input neuron k to the set of neurons

in population p is proportional to the product of the membrane potential and the postsynaptic

current PSC(t) (EPSC or IPSC), so that at the end of a single presentation time step of duration
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ΔT� τ

Dwp
kðDTÞ ¼ Z

Z DT

0

dt0hp
ðt0ÞPSCb

kðt
0Þ;

¼ �Z

Z DT

0

dt0
Z t0

� 1

ds es� tt ðxpðsÞ � x̂pðsÞÞ PSCb
kðtÞ

ð37Þ

where η is a small constant learning rate and PSCk are the filtered PSCs from the presynaptic

neuron k. The plus-sign applies to population p = P1 and the minus sign to p = P2. We

exploited that the presentation time step (ΔT = 100 ms) is long compared to the membrane

time constant τ so that the transients of neuronal activities after the transition between stimuli

can be neglected.

We study the network at the end of presentation step n and assume that during the previous

presentation step n − 1 the stimulus Rq with index q was observed. There are two levels of sto-

chasticity in Eq (37), stochasticity of transitions and stochasticity of spike firing. We first take

the average over the stochasticity of spiking ES, by taking the expectation over the Poisson dis-

tribution of input spikes

ES½DwP
k jRq� ¼ �ZES

Z DT

0

dt0
Z t0

� 1

ds es� t
0

t ððxpðsÞ � x̂pðsÞÞ PSCb
kðt
0Þ jRq

" #

: ð38Þ

Under the condition m!1, correlations between input spikes and membrane potential can

be neglected [101]. We can therefore separate the conditioned expectations into two indepen-

dent terms and write

ES DwP
k jRq

h i
¼ �Z

Z DT

0

dt0
Z t0

� 1

ds es� t
0

t ES xpðsÞ jRq

h i
� ES x̂pðsÞ jRq

h i� �
ES PSCb

kðt
0Þ jRq

h i
: ð39Þ

We define the expected input current originating from neuron k of the buffer population as

ES½PSCb
kjqðt

0Þ jRq� ¼
�J k which is constant after an initial transient; this simplifies the notation

of the last factor on the right-hand side of Eq (39). Furthermore, we use Eqs (32) and (33) to

evaluate the two remaining expectations in Eq (39).

ES DwP
k jRq

h i
¼ �Z

Z DT

0

dt0
Z t0

� 1

ds es� t
0

t n l Wp;oP1!mRjðtnÞ j q
� Wp;bP1!mRq

� �
�J kjq ð40Þ

where RjðtnÞ j q
is the stimulus observed in presentation step n given that stimulus Rq was

observed in step n − 1. Note that the index j(tn) depends on the specific realization of the sto-

chastic transition starting from stimulus Rq.

Exploiting that H! 0, we now compute the average over a long observation sequence

(expectation En over presentation steps tn) with the same rule. We can decompose this average

into a multiplication between the probability P(q) of observing stimulus Rq and the expected

transitions Etr½RjðtnÞjq
� from stimulus Rq to other stimuli Rj. We exploit that the stimuli reach-

able from stimulus Rq are given by transition matrix T*.
After convergence, the change of weight DwP

k averaged over many presentation steps and

realizations of spike trains is zero. Hence we will set En½ES½DwP
k �jRq� ¼ 0. Since the filtering

operations induced by the two integrations in Eq (40) are linear, they yield a fixed factor which

can—just like the fixed multiplicative parameters ηνl—be dropped after convergence. We

exploit that the only term that depends on transitions is Rj|q so that we can pull the transition
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average inside and find

0 ¼ En½ES½DwP
k �jRq� ¼

XR

q¼1

ðWp;oP1!mEtr½Rjjq� � Wp;bP1!mRqÞ
�J kjq PðqÞ: ð41Þ

Using Eq (30) we rewrite Etr½Rjjq� ¼ T∗Rq ¼
P

jRjT∗
j;q.

Since decoding is linear, stationary, and deterministic, we can multiply Eq (41) with the

decoding weights Dp from the left. From Eqs (34) and (35) we obtain

0 ¼
XR

q¼1

PðqÞ�J kjq
X

j

RjT
∗
j;q � R̂p

:jq

 !

: ð42Þ

Note that because of the presynaptic factor proportional to �J kjq, only those weights will be

changed that receive input from a neuron k coding for stimulus Rq. However, since in the long

sequence, all stimuli appear with non-zero probability P(q) = 1/K, for each choice of k the syn-

aptic input current �J kjq is non-zero during some presentation steps so that all weights are even-

tually adapted during the presentation sequence and the terms inside the parenthesis must be

zero. Hence

R̂p
:jq ¼

X

j

RjT
∗
j;q ð43Þ

Eq 43 shows that the synaptic rule with a fixed learning rate has a stationary solution where the

weight pattern predicts possible next stimuli according to the probabilities of the transition

matrix. This ends the proof sketch.

Notes:

(i) The stationary solution is locally stable both for the plastic excitatory weights in P1 [101]

and for the plastic inhibitory weights in P2 [63].

(ii) In the proof, we decode stimuli from the membrane potential of neurons in the prediction

error layer. If neurons in the prediction error layer are rectified linear and the input from

the observation pool is blocked, then their output is either zero or proportional to their

potential. Neurons in at least one of the populations, P1 or P2, have a positive potential and

can therefore be decoded.

(iii) The predictions reported in the Results section are the average across the readouts from

two populations P1 and P2

R̂q ¼
1

2
ðR̂P1

:jq þ R̂P2

:jqÞ: ð44Þ

Predicted next stimuli with learning rate modulated by surprise

In the previous subsection, the learning rate was a constant η whereas in our model the learn-

ing rate is modulated by the third fact 3rdð�AÞ. Let us consider a transition from stimulus q to

one of the possible next stimuli. If these stimuli have different transition probabilities, e.g.,

T∗
1;q ¼ 0:7 and T∗

2;q ¼ T∗
3;q ¼ T∗

4;q ¼ 0:1, then the transition to stimulus j = 1 is less surprising

than the transition to one of the other possible stimuli. Since the amount of activity depends

on the surprise level, the third factor will be a function of the stimulus j that is reached from
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stimulus q: 3rdð�AÞ ¼ 3rd
jjq. We need to include this dependence in our calculations and modify

Eqs (41) and (42) accordingly. Multiplication on the right-hand-side of Eq (41) with 3rd
jjq gives a

weighted average

0 ¼ En½ES½DwP
k �jRq� ¼

XR

q¼1

Etr½3
rd
jjq ðW

p;oP1!mRjjq � Wp;bP1!mRqÞ
�J kjq �PðqÞ: ð45Þ

As before, we now use linear decoding weights

0 ¼
XR

q¼1

PðqÞ�J kjq
X

j

3rd
jjqRjT

∗
j;q �

X

j

3rd
jjqR̂

p
:jq

 !

: ð46Þ

which gives a weighted average for the predicted stimuli,

R̂p
:jq ¼

X

j

3rd
jjqRjT

∗
j;q

 !

=ð
X

j

3rd
jjqÞ ð47Þ

Thus, for surprise-modulated learning rate and in-homogeneous transition probabilities, the

code of the predicted stimuli does not correctly reflect the statistical weights, and rare transi-

tions are slightly amplified.

Supporting information

S1 Fig. Deterministic transitions have a different signature than stochastic ones. The para-

digm uses a volatile sequence task with a re-occurrence of rules but restricted to R ¼ 8 differ-

ent (auditory or visual) stimuli and two different transition rules (A and B) and could be tested

in rodent experiments.A Transition matrix corresponding to rule A (left) and rule B (right).

The transition to stimulus ‘0’, T7!0 = 1, is deterministic (yellow square, lower left corner)

under rule A but stochastic with a value of T4!0 = 0.5 (light blue) under rule B, and vice versa

for the transitions stimulus ‘4’.B Population activity averaged over network neurons in popula-

tions P1 and P2 during all presentations of stimulus xt+1 = 0 (left) or xt+1 = 4 (right). Black

lines: SpikeSuM without context. Orange/blue lines: population of neurons in module 1 of Spi-

keSuM-C. Green/red lines: population of neurons in module 2 of SpikeSuM-C. Module 1

learns to implement rule A (indicated by decreased activity). Horizontal axis: count of occur-

rences of stimulus ‘0’ or ‘4’, respectively. Inset, middle: histogram of average activity after 200

presentation time steps under a given rule. Black bars: comparison of activity under rules A

and B in SpikeSuM without context. Colored bars: The activity of neurons in module 1 of Spi-

keSuM-C during stimuli under rule A is compared with that of neurons in module 2 during

stimuli under rule B. In both cases, the network is driven by the same stimulus, but a stochastic

transition causes more activity than a deterministic one, since the prediction in the stochastic

setting is less reliable.C, same as in B, but only the activity of those neurons responsive to stim-

ulus ‘0’ (left) or ‘4’ (right) is shown. In contrast to the simple SpikeSuM network without con-

text, neurons in the SpikeSuM-C network that respond to stimulus ‘4’ in module 1 under rule

A (blue) respond even stronger in the context of rule B but this does not affect their plasticity.

Thus the same experimental paradigm also differentiates between models with and without

context modules.

(EPS)

S2 Fig. Synaptic weight evolution. Simulations use K = 4 and have a switch-point after 500

stimuli. The weights are averages over 100 simulations using the same rules and over the
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intrinsic redundancy of k-hot representations. A Evolution of all the weights from stimulus 1

to the prediction error population P1. The weights of the four possible transitions increase

their magnitude while the others decay, until the change point. From the evolution of the

weights we can observe that rule 1 has 2 transitions in common with rule 2. B Same for P2. C

Same but averaged over the two populations. D Same as before, but all weights for all the sti-

muli.

(EPS)

S1 Text. Further details and additional results for the Network model SpikeSum-C.

(PDF)
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