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Anomalous and Chern topological waves in
hyperbolic networks

Qiaolu Chen1,2,3, Zhe Zhang 1,3, Haoye Qin1, Aleksi Bossart1, Yihao Yang 2,
Hongsheng Chen 2 & Romain Fleury 1

Hyperbolic lattices are a new type of synthetic materials based on regular
tessellations in non-Euclidean spaces with constant negative curvature. While
so far, there has been several theoretical investigations of hyperbolic topolo-
gical media, experimental work has been limited to time-reversal invariant
systems made of coupled discrete resonances, leaving the more interesting
case of robust, unidirectional edge wave transport completely unobserved.
Here, we report a non-reciprocal hyperbolic network that exhibits both Chern
and anomalous chiral edge modes, and implement it on a planar microwave
platform. We experimentally evidence the unidirectional character of the
topological edge modes by direct field mapping. We demonstrate the topo-
logical origin of these hyperbolic chiral edge modes by an explicit topological
invariant measurement, performed from external probes. Our work extends
the reach of topological wave physics by allowing for backscattering-immune
transport in materials with synthetic non-Euclidean behavior.

Non-Euclidean geometry assumes non-zero spatial curvature, thereby
deviating from the axioms and postulates of standard Euclidean geo-
metry. Its advent in the early 19th century marked a major turning
point in comprehending the universe. An important example is the
hyperbolic geometry1, which is relevant in general relativity to repre-
sent gravitational effects as the geometric curvature of space–time,
and furnishes an avenue to understand the “event horizon" of a black
hole. Beyond this, hyperbolic geometry also has substantial applica-
tions inmathematics, computer graphics and information theory. As a
result, there has been a growing interest in visualizing hyperbolic
geometry in Euclideanpictures (see Fig. 1a) and exploring theoretically
and experimentally the non-trivial physics of hyperbolic spaces.

Discrete translational symmetry supported in Euclidean lattices is
a cornerstone of modern physics, as it enables the propagation of
Bloch waves associated with a commutative translation group in
Euclidean spaces. In analogy with the Euclidean case, hyperbolic lat-
tices that exhibit discrete periodicity in hyperbolic spaces can also
support Bloch waves but with a twist: they belong to a non-
commutative group of hyperbolic translations, the Fuchsian group

Γ⊂ PSU(1, 1)2–8. This complexity therefore results in distinct spectra9

and band topology in hyperbolic momentum space, as theoretically
proposed in the hyperbolic analogues of the quantum spin Hall
effect10, Chern insulator11, higher-order topology12, Haldane13 and
Kane–Mele models5. Experimental demonstrations, all of which, how-
ever, are implemented in reciprocal systems, have been conducted in
circuit quantum electrodynamics14 and topolectrical circuits15–18. These
lumped circuits preserve time-reversal symmetry, making it impos-
sible to probe robust topological phases associated with non-
reciprocal edge modes, such as the Chern19–26 and anomalous Flo-
quet insulators (both belonging to class A)27–32, the latter being the
most robust two-dimensional topological phase known31,32. We notice
that a recent work17 simulates an infinite hyperbolic lattice, where the
periodic boundary condition with Bloch phases breaks the time-
reversal symmetry and reciprocity, as expected for any Bloch bound-
ary condition. However, it is applied to an infinite hyperbolic lattice
that does not break time-reversal symmetry or reciprocity. In addition,
these lumped circuits operate in a quasi-static regime governed by
Kirchhoff’s laws, describing a discrete system with no spatial extent in
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which, by definition, wave behavior is absent. Thus, the observation of
robust wave transport phenomena in topological hyperbolic lattices
has remained elusive thus far.

In this work, we design and demonstrate experimentally a topo-
logical hyperbolic lattice in a non-reciprocal scattering wave network,
establishing unidirectional channels to induce new and exciting
transport properties in curved spaces. Taking advantage of the non-
reciprocity of the scattering wave network, we unveil the existence
of two distinct classes of chiral topological edge modes, the Chern
and anomalous types, whose hyperbolic topology is confirmed by a
Chern vector and a unitary homotopy invariant. We observe them
experimentally for electromagnetic waves in the GHz range and vali-
date the unidirectional character of their propagation. An experi-
mental proof of the topological nature of the anomalous topological
edge modes is provided by directly measuring a topological invariant
basedon ageneralization of Laughlin’s pumpargument33 to hyperbolic
samples.

Results
A non-reciprocal hyperbolic scattering wave network
Scattering wave networks are systems in which waves travel along the
phase delay links of a complex graph, whose nodes correspond to
scattering events. They have been exploited as simple yet powerful
platforms for investigating topological wave physics in Euclidean
spaces. One important achievement in these networks is the realiza-
tion of the anomalous edge mode, a chiral topological mode that can
be found when node scattering exhibits sufficiently low reflection and
non-reciprocity34,35. Compared to the traditional case of Chern edge
modes, anomalous edge modes are robust to any distributed disorder
in the structure of the planar graph, with superior resistance to back-
scattering. However, no graph is allowed on an Euclidean plane: a

simple regular octagon tiling, for example, requires negative curva-
ture. The extension of such chiral edge modes to hyperbolic spaces is
thus by no means trivial.

Exploring this possibility, we implement a hyperbolic lattice in a
planar non-reciprocal scattering network by decoupling the physical
distances from the metric and distorting a curved hyperbolic tessel-
lation onto a two-dimensional Poincaré disk, as shown in Fig. 1b. The
hyperbolic lattice is constructed by regular octagons, where three
octagons meet at one node (lattice site), building a 8,3f g hyperbolic
lattice. In our scattering wave network, the scattering nodes (or lattice
sites) are three-port non-reciprocal unitary scatterers with C3 sym-
metry (i.e. circulators), linked with bidirectional connections involving
a phasedelayφ. The scattering process at each node canbe generically
described by a 3 × 3 asymmetric unitary scattering matrix S0, whose
general parametrization involves only two angles, ξ andη, each ranging
from −π/2 to π/2 (see Supplementary Note 1). By varying these two
angles, we can explore a family of circulators with all possible degrees
of non-reciprocity and reflection.

A recently developed hyperbolic Bloch theory reveals that,
despite the non-commutative character of its translation groups, the
hyperbolic lattice admits amomentum-spacedescriptionbased on the
notion of a hyperbolic Bravais lattice and a higher-dimensional Bril-
louin zone7. Following this insight, our 8,3f g hyperbolic lattice is
associated to a 8,8f g hyperbolic Bravais lattice (see Fig. 1b). The cor-
responding unit cell is an octagon containing 16 lattice sites, equipped
with a Bloch vector k = (k1, k2, k3, k4) under a non-commutative lattice
translation group Γ= hγ1,γ2,γ3,γ4 : γ1γ

�1
2 γ3γ

�1
4 γ�1

1 γ2γ
�1
3 γ4i. These

momentum components form a four-dimensional Brillouin zone,
whose dimensionality is determined by the minimal number of
hyperbolic translation generators. As a consequence, one can establish
a Bloch eigen-equation for the hyperbolic scattering wave network
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Fig. 1 | Hyperbolic non-reciprocal scattering wave network. a A periodic lattice
(orange lines) on ahyperboloid (t2−x2−y2 = 1) in (2+1)-dimensional (x, y, t)Minkowski
space is mapped onto a Poincaré disk (t =0) by stereographic projection through
the point (0, 0, −1). These two models of the hyperbolic lattice are isometrically
equivalent. b Poincaré disk model of a 8,3f g hyperbolic lattice in a non-reciprocal
scattering wave network. Here, the grey solid lines represent the 8,3f g hyperbolic

lattice, and the grey dashed lines are the corresponding 8,8f g hyperbolic Bravais
lattice. A central unit cell is highlighted in shaded grey, which consists of 16 three-
port non-reciprocal circulators connected via bidirectional phase links (blue solid
lines) (see a detailed unit cell in Supplementary Fig. 1b). Adjacent unit cells are
connected by the Bloch phase links (orange arrows).
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(see Supplementary Note 2)31,

SðkÞ∣bðkÞi= e�iφðkÞjbðkÞi: ð1Þ

Here, S(k) is a 48 × 48 unitary scattering matrix describing the scat-
tering property of circulators within a unit cell and the connectivity
between them. Due to the unitarity of S(k), the eigenvalue spectrum
e−iφ(k) lies on a unit circle, defining a Floquet eigen-problem with quasi-
energy φ(k) confined within this compact space, i.e. φ(k)∈ [0, 2π).

Chiral edge modes in hyperbolic anomalous and Chern phases
The model of Eq. (1) provides a description of the hyperbolic scattering
wave network in terms of a Floquet band structure and Bloch-wave
functions, which we use to explore the hyperbolic topological physics.
We numerically compute the Floquet band structures for a supercell,
with periodic boundary conditions along the k2, k3, and k4 directions and

full-reflection boundary conditions along k1. Figure 2a (leftmost panel)
depicts the obtained band structure for circulator parameters ξ=−η=
π/8, corresponding to a low-reflection case. The band structure exhibits
eight bandgaps filled with chiral edge modes, which are located on two
opposite sides of the boundary (see Supplementary Fig. 5b). While the
computedChern vectors vanish for all bands (see SupplementaryNote 4
and Supplementary Fig. 8a), the unitary homotopy invariant Wφ

27,31,34

confirms the non-trivial topology of all gaps. We find that they are all
topological with Wφ= 1 (blue areas on the left side of band structure),
defining a hyperbolic extension of the anomalous Floquet
phase27,29,31,34,36. The situation is different at a higher value of the circu-
lator reflection (ξ= −η=π/4). As shown in Fig. 2b (leftmost panel), apart
from eight topological bandgaps, the band structure exhibits two
additional trivial bandgapswith homotopy invariantWφ=0, surrounded
by bands with non-zero Chern vectors (see Supplementary Fig. 8b),
namely the hyperbolic version of a Chern insulator.
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Fig. 2 | Chiral edge modes in hyperbolic anomalous and Chern phases. a and
b Floquet band structures (leftmost panels), two-port edge transmissions (middle
panels), the density of states and skin distance (rightmost panels) for an anomalous
phase (panel a, ξ = −η =π/8), and a Chern phase (panel b, ξ = −η =π/4). It shows that
the hyperbolic Bloch band theory and the exact diagonalization calculation give a
complete band characterization of hyperbolic lattices, confirming the anomalous
phase in panel awith chiral edgemodes filling every quasi-energy bandgap, and the
Chern phase in panel b with two additional trivial bandgaps. c Simulated wave

propagation in the hyperbolic scattering network, showing an anomalous chiral
edgemode in a topological bandgap (φ = 2π/5) and nomodewith total reflection in
a trivial bandgap (φ =π/2). d Topological bandgap map on ξ = −η line determined
by homotopy invariant Wφ, with Wφ = 1 for topological bandgaps (blue areas) and
Wφ =0 for trivial bandgaps (red areas). The grey areas represent the bulk bands. A
phase transition occurs at ξ = −η = 11π/60. e Topological phase diagram on (ξ, η)
plane. Blue and red areas correspond to anomalous and Chern phases. Grey line
(ξ = η) represents a trivial insulating phase.
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To test for hyperbolic topological transport associated with the
chiral edge modes, we compare the Floquet band structure in the
thermodynamic limit to the edge transmission computed for a finite
network. The finite network is made of n = 3 layers of neighbouring
octagons with two probes placed on the boundary (all other boundary
ports being closed with full-reflection boundary conditions). Figure 2a
and b (middle panels) represent the edge transmission versus quasi-
energy φ. As expected, the transmission in a topological (trivial)
bandgap approaches one (zero) and fluctuates within bulk bands. We
further validate this observationby visualizing thewavepropagation in
the network. As shown in Fig. 2c, wave transport is unidirectional along
the boundary (top panel: case of an anomalous topological bandgap
withφ = 2π/5). For comparison,we include the caseof a trivial bandgap
of the Chern phase (bottompanel:φ =π/2), for whichwaves are totally
reflected.

In addition, we provide another point of view based on the study
of the density of states (DOS)37 and skin distance in a closed, finite
hyperbolic network. The DOS is defined as DOS(φ) =N(φ)/δ(φ),
where N(φ) counts the number of eigenmodes of the closed
network within [φ,φ + δ(φ)]. The skin distance is defined as
psð∣b

�Þ=PipsðiÞjbij2=
P

ijbij2, where ∣bi∣ is the amplitude ofmode ∣b
�
at

port i, and psðiÞ 2 N is the skin index of port i, ranging from ps = 1 on
the boundary to a (size-dependent) maximal value at the center. The
skin distance thus captures the averaged position of an eigenmode.
The results in the rightmost panels of Fig. 2a and b show that when φ
falls in a topological bandgap, the spectrum is dominated by edge
modes, with DOS and skin distance reaching low values. Conversely, if
φ belongs to a trivial bandgap, DOS is zero, and skin distance is
undefined. Finally, ifφ falls in a bulk band, both DOS and skin distance
reach high values depending on φ, indicating diffusive waves in bulk.
With the above topological invariants and observables, we, therefore,
conclude that hyperbolic scattering wave networks can indeed sup-
port both anomalous and Chern phases, with chiral topological edge
modes in every bandgap (anomalous phase), or only in some of them
(Chern phase).

Figure 2d displays the topological bandgap map of anomalous
and Chern phases along the ξ = −η angular parameter line. For a given
value of ξ = −η, the hyperbolic network is either in a topological
bandgap (Wφ = 1, blue area), a trivial bandgap (Wφ =0, red area), or a
bulk band (grey area). Besides, a phase transition occurs at ξ = −η = 11π/
60, with anomalous and Chern phases on its left and right sides,
respectively. We also map out in Fig. 2e the complete topological
phase diagram for every possible value of (ξ, η). The red and blue areas
correspond toChern insulators and anomalous Floquet insulators. The
grey line represents the trivial insulating phase, where its middle point
(ξ = η = 0) corresponds to a semi-metallic phase with all bandgaps
closed, serving as a crossing point of three phases (i.e., anomalous,
Chern, and trivial phases).

Observation of hyperbolic chiral transport
We design and build a prototype of a hyperbolic non-reciprocal scat-
tering network, which is composed of ferrite circulators linked with
coplanar waveguides (CPWs) and operating at microwave frequencies
(see Supplementary Note 7). To distort the curved tiling of regular
octagons onto the flat Euclidean plane, we adjust flexibly the physical
layout of each CPW while keeping its length unchanged, such that
the periodic nature of the lattice is guaranteed. Such flexibility allows
the arrangement of a curved lattice on a flat platform. A picture of
the prototype is shown in Fig. 3a. We note that, to accommodate
the CPWs on the extensive boundary and guarantee all the CPWs
experience approximately the same phase delay within the desired
frequency range of interest, the CPWs forming the central octagon
are adjusted to be longer than the others. These longer CPWs
exhibit an additional 2π phase delay at 5.93 GHz, effectively ensuring
the phase difference remains within ≤5% across the entire frequency

range of [5.75, 6.10] GHz (see Supplementary Fig. 13d). Aside from
the lattice itself, the network holds eight input/output ports for
measurements.

The first step is to extract the scattering matrix for a single cir-
culator, which predicts the hyperbolic scattering network stands in an
anomalous phase in the frequency range [5.5, 6.5] GHz and in a Chern
phase in [5.0, 5.5] GHz (see Supplementary Fig. 12a). Taking into
account the dispersion of CPWs, we could also predict the bandgap
map in the frequency spectrum, as shown in Supplementary Fig. 12d.
Next, we measure the field distributions by exciting an input port on
the boundary and probing the fields manually at each CPW. Figure 3e
reports the wave propagation between 5.8 and 6.1 GHz, visualizing the
anomalous chiral edgemodes transport clockwise along the boundary
while the bulk modes scatter in all possible directions. We note that
these bulk modes exhibit non-reciprocity to some extent but in a dif-
fusivemanner, as they typically consist of amixtureofmodes given the
high DOS.

Measurement of a topological invariant
To probe experimentally the topology of our hyperbolic lattice, we
perform a topological pumping experiment allowing for the direct
measurement of a scattering topological invariant by generalizing
Laughlin’s argument to the hyperbolic case33,38–40. The procedure
consists of first cutting the planar network model with Corbino disk
geometry along the radial direction41, and second, rolling it into a
truncated cone by bridging the gapusing twisted boundary conditions
(see Fig. 3b). The twisted boundary conditions impart a non-reciprocal
phase delay, which serves as a syntheticmagnetic fluxΦ threading the
truncated cone. One then defines the topological invariant W in
hyperbolic scattering networks as the winding number of the probe
reflection coefficientRon the bottomedgeduring anadiabatic cycle of
the flux Φ32,42–44, namely, W = 1=ð2πiÞ R 2π

0 dΦR*ð∂R=∂ΦÞ (see Supple-
mentary Note 5 and Supplementary Fig. 10).

In practice, the synthetic magnetic flux is implemented with
reconfigurable non-reciprocal phase shifters that provide a non-
reciprocal phase delay ±Φ, controlled by external voltages V1 and V2

(see Supplementary Fig. 14). The twisted boundary condition is then
applied by inserting three phase shifters within the cut links, as shown
in Fig. 3c. The measured topological invariant in the frequency spec-
trum is reported in Fig. 3d, showing W = 1 in frequency ranges
[5.8, 5.82] and [5.98, 6.07] GHz, and W =0 in other ranges. This is in
perfect agreementwith the predicted bandgapmapobtained from the
measured scatteringmatrix S0 of the single circulator. Tocomplete the
picture, we map out several measured windings of reflection coeffi-
cient on the complex plane, as shown in Fig. 3f. As expected, the
reflection coefficient at 5.8 and 6.0GHz winds in a non-contractible
loop. Such a non-zero winding constitutes strong evidence of the
topological non-triviality of the anomalous chiral edge modes. The
situation is different for bulk modes at 5.9 and 6.1GHz, whose reflec-
tion coefficient does not exhibit any winding. The matching between
theoretical predictions, measured field maps, and measured topolo-
gical invariants is excellent, confirming the existence of anomalous
edge transport in our prototype.

Discussion
We have experimentally proven that non-reciprocal scattering net-
works represent an ideal platform to explore topological wave physics
in a curved hyperbolic lattice, giving access to substantial physical
implications and potential applications of non-Euclidean geometry in
wave transport and control. Taking advantage of non-reciprocity,
hyperbolic chiral transport has been demonstrated by expanding the
celebrated notions of Chern and anomalous phases to the hyperbolic
world. Thesedistinct phases can, for example, be used to reconfigure a
domain wall between two differently tessellated hyperbolic networks
and redirect the hyperbolic energy flowwithout flipping the magnetic
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field. Anomalous hyperbolic transport, in particular, may form a basis
for robust point-to-point energy transport in non-Euclidean spaces.
Generalizing Laughlin’s pump argument to hyperbolic geometries33,
we have provided conclusive evidence for the topological origin of the
hyperbolic chiral transport. Such a practical method is general and
applicable for arbitrary scattering networks in both Euclidean and

non-Euclidean lattices. Compared to Euclidean networks, hyperbolic
networks exhibit a larger boundary-bulk ratio, allowing for the creation
of chiral transport over a long edge, albeit with a compact bulk. We
surmise that exploring the implications of bulk-boundary correspon-
dence in other types of hyperbolic spaces, or in the presence of
non-Hermiticity, will soon unveil other surprising edge or skin
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guides (CPWs). b Schematic for measuring the topological invariant of the hyper-
bolic lattice. The magnetic flux Φ in the topological pump (left panel) is
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winding of the reflection coefficient at a probe on the edge during a cycle of the
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in two opposite directions by tuning the bias voltages V1 and V2, respectively. The
inset depicts the phase delay as a function of bias voltage. dMeasured topological
invariant W in the frequency spectrum. The darker blue and grey areas (split by
dashed lines) respectively feature edge modes and bulk modes, according to the
predicted bandgapmap (see Supplementary Fig. 12d). e, fMeasured field maps (e)
and measured windings of reflection coefficient (f). The frequencies are 5.8 GHz
(W = 1, edge mode), 5.9 GHz (W =0, bulk mode), 6.0GHz (W = 1, edge mode), and
6.1 GHz (W =0, bulk mode).
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phenomena45,46 based on the interplay between topology, non-Her-
miticity, and negative spatial curvature.

Methods
More extensive information, alongwith additional data and discussion
regarding theory, simulations, and experiments, can be found in the
supplementary information file.

Data availability
The data that support the findings of this study are available at https://
zenodo.org/records/10409107.

Code availability
The codes that support the findings of this study are available at
https://zenodo.org/records/10409107.
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