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Abstract
In the published paper titled ‘EAST discharge prediction without integrating simulation results’
(2022 Nucl. Fusion 62 126060), figure 5 used the wrong plot, and is not matched with table 3.
We used the plot discussed with referees, the case when we do not use IC 1 as a proxy. This
corrigendum provides the correct plot for figure 5.
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Figure 5. The similarity distribution and average similarity in the whole test set. The figure shows the similarity distributions of the output
signals (see table 1 in the original paper).
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Abstract
In this work, a purely data-driven discharge prediction model was developed and tested
without integrating any data or results from simulations. The model was developed based on
the experimental data from the Experimental Advanced Superconducting Tokamak (EAST)
campaign 2010–2020 discharges and can predict the actual plasma current Ip, normalized beta
βn, toroidal beta β t, beta poloidal βp, electron density ne, stored energy Wmhd, loop voltage
Vloop, elongation at plasma boundary κ, internal inductance li, q at magnetic axis q0, and q at
95% flux surface q95. The average similarities of all the selected key diagnostic signals
between prediction results and the experimental data are greater than 90%, except for the Vloop

and q0. Before a tokamak experiment, the values of actuator signals are set in the discharge
proposal stage, with the model allowing to check the consistency of expected diagnostic
signals. The model can give the estimated values of the diagnostic signals to check the
reasonableness of the tokamak experimental proposal.

Keywords: discharge prediction, machine learning, tokamak

(Some figures may appear in colour only in the online journal)

1. Introduction

The entire prediction of a plasma discharge in a tokamak is
a complicated and critical task, which needs to be enhanced
beyond the current capabilities of available simulation codes.
It is commonly used to check the consistency of the mod-
eled diagnostic signals, assist the experimental data anal-
ysis phase, validate theoretical models, control technology
R & D, and provide references for the design of an exper-
iment. In the framework of conventional discharge predic-
tion, from a physics point of view, the primary method

∗ Authors to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

is ‘integrated modeling’ [1] derived from first principles.
‘Integrated modeling’ involves lots of different physical pro-
cesses in tokamaks. Its accuracy depends on the completeness
and consistency of the tokamak’s physics derivations at the
base of the model itself. High-fidelity and fast simulation of
the entire tokamak discharge is still an open problem because
of the high non-linearity, multi-spatial-temporal scales and
multi-physics nature of tokamak plasmas [2].

A neural network based method is an alternative approach
for tokamak discharge prediction without integrating complex
physical modeling. The method has been adopted in mag-
netic fusion research to solve a variety of problems, includ-
ing disruption prediction [3–9], electron temperature profile
estimation from multi-energy SXR diagnostics [10], radiated
power estimation [11], filament detection [12], simulation
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acceleration [13–15], classifying confinement regimes [16],
plasma tomography [17], identification of instabilities [18],
estimation of neutral beam effects [19], determination of
scaling laws [20, 21] coil current prediction with the heat
load pattern [22], equilibrium reconstruction [10, 23–27],
and equilibrium solver [28], control plasma [29–34], physic-
informed machine learning [35]. Additionally, a method
mixed neural-network with simulation code for discharge
prediction [36] was noted. In that work [36], only the
backward (past) observation information was used without
considering the forward (future) information. While there
are tasks such as disruptions prediction, which must inher-
ently satisfy online causality settings, other tasks like dis-
charge predictive modeling can take advantage of a wider
context as far as offline analysis is concerned. In the
offline discharge prediction, where backward and forward
information is in principle equally important to describe
the dynamic of the system. Another limitation of that work
is that it allows predicting only a restricted set of signals
(i.e., stored energy Wmhd, loop voltage Vloop and electron
density ne). The evolution of a tokamak discharge is a com-
plex process characterized by many global parameters, such
as equilibrium and kinetic quantities. The restricted set of
quantities namely Wmhd, Vloop, ne, is still not enough for the
predictive modeling of a tokamak discharge. Moreover, the
model requires integrating a physical simulation code to esti-
mate the actual Ip as an input signal. The total inference time
of that model would be long and inefficient. The tokamak
simulation code (TSC) [37, 38], as used in that paper to
simulate the entire discharge plasma current Ip typically takes
several hours if multiple models (auxiliary-heating, current-
drive, alpha-heating, pellet-injection, etc) are included. In con-
trast, our model’s typical total inference time is ∼1 s. In
the present work, a new machine learning architecture was
designed to consider wider contextual information, predicted
eleven key signals of tokamak discharge, and values of all
the input signals that can be directly available or given by
the machine learning model without integrating any physical
simulation code results.

In the present work, we trained the bidirectional long short-
term memory (LSTM) models using large-scale data from the
Experimental Advanced Superconducting Tokamak (EAST)
tokamak [39–41] coming from 2010–2020 campaigns. Bidi-
rectional LSTM [42–44] connects two hidden layers with the
information propagating in opposite directions to the same out-
put. The output layer can obtain information from backward
and forward states simultaneously with these designations.
With the 96 actuator signals (introduce further in table 1)
as input, the model is able to reproduce the whole tokamak
discharge time evolution of eleven key diagnostic signals,
that are actual plasma current Ip, normalized beta βn, toroidal
beta β t, beta poloidal βp, electron density ne, stored energy
Wmhd, loop voltage Vloop, elongation at plasma boundary κ,
internal inductance li, q at magnetic axis q0, and q at 95% flux
surface q95.

This paper is organized as follows. First, section 2 details
the deep learning model architecture. Then, section 3 describes
the data preprocessing and selection criteria. Section 4 shows

the model training process. Next, section 5 presents the model
results, and a depth analysis is given. Finally, we make a brief
discussion and conclusion in section 6.

2. Model

In this work, a bidirectional recurrent neural network (RNN)
[42–44] was developed, and contextual information was taken
into account. In this paper, our deep learning architecture
stacked four bidirectional LSTM cells.

Theoretically, the bidirectional LSTM network simultane-
ously minimizes the objective function for the forward and
the backward passes. Because both future and past infor-
mation is available to the model during inference, the pre-
diction of the model does not depend on an individually
defined delay parameter [43]. We consider the tokamak dis-
charge evolution as a sequence-to-sequence process, and
as in a language translation task, the bidirectional LSTM
can utilize past and future information for current predic-
tion. In this work, the proposed model is designed for
the task of offline discharge modeling, and it exploits a
wider contextual information the future information utilization
is equivalent to relaxing the causality constraint to obtain
greater contextual information. It has been shown in several
works [45, 46] that a bidirectional LSTM is often able to
model more efficiently and robustly. Bidirectional long-term
dependencies between time steps of time series or sequence
data are particularly useful for regression tasks. The network,
having access to the complete time series at each time step, will
be more robust to the noise in the reconstruction of the toka-
mak discharge, improving the similarity of the reconstructed
parameters.

Figure 1 shows the deep learning model architecture
stacked four bidirectional LSTMs. For any time step t, we
define the mini-batch input as Xt ∈ R

n×d (number of exam-
ples: n, number of input features in each example: d). In
per layer bidirectional LSTM, the forward and backward hid-
den states for this time step are

−→
H t ∈ R

n×h and
←−
H t ∈ R

n×h,
respectively, where h is the hidden units number.

−→
H t ∈ R

n×h

and
←−
H t ∈ R

n×h are updated with standard bidirectional LSTM
layer operations [43].

Next, the forward and backward hidden states
−→
H t and

←−
H t

are concatenated to get the hidden state Ht ∈ R
n×2h and fed it

into the next layer. When we consider dropout, the hidden state
Ht ∈ R

n×2h will be randomly masked as zeros with a dropout
rate δ of 0.1 at each step during the training phase. The dropout
rate, as well as the other hyperparameters, have been optimized
maxing the performance of the model on the validation set,
according to the usual ‘hyperparameter tuning’ procedure. The
dropout can easily help prevent overfitting [47].

Last, output Ot ∈ R
n×q(number of outputs: q) is computed

as follows:

Ot = activation(HtWhq + bq). (1)

Here, the weight matrix Whq ∈ R
2h×q and the bias bq ∈

R
1×q are the model parameters of the output layer.
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Table 1. The list of signals. The ‘raw signal’ means the original electrical signal, and these could be converted to signals with physical
meaning. The IC1 was estimated using a machine learning model and then fed to the diagnostic signals (output) reconstruction model as
input.

Signals Physics meanings Unit Number of Sampling rate Meaning of channels
channels channels

Output signals 12

Act.Ip Actual plasma current A 1 1 kHz Actual plasma current
ne Electron density 1019 m−3 1 1 kHz Electron density
Wmhd Plasma stored energy J 1 20 Hz Plasma stored energy
Vloop Loop voltage V 1 1 kHz Loop voltage
βn Normalized beta Dimensionless 1 15 Hz Normalized beta
β t Toroidal beta Dimensionless 1 15 Hz Toroidal beta
βp Beta poloidal Dimensionless 1 15 Hz Beta poloidal
κ Elongation at plasma boundary Dimensionless 1 15 Hz Elongation at plasma boundary
li Internal inductance Dimensionless 1 15 Hz Internal inductance
q0 q at magnetic axis Dimensionless 1 15 Hz q at magnetic axis
q95 q at 95% flux surface Dimensionless 1 15 Hz q at 95% flux surface

Feedback signal 1

IC1 In-vessel coil No. 1 current A 1 1 kHz In-vessel Rogowski coil No. 1 current

Input signals 95

Ref. Ip Reference plasma current A 1 1 kHz Reference plasma current
PF Current of PF coils A 14 1 kHz PF 0–14 current
Bt0 Toroidal magnetic field T 1 1 kHz Toroidal field at magnetic axis
LHW Power of lower hybrid wave kW 4 20 kHz 2.45 GHz LHW, and 4.6 GHz LHW

current drive and heating
system

NBI Neutral beam injection system Raw signal 8 5 kHz Acceleration voltage and beam current,
of No. 1–2 left/right ion source

ICRH Ion cyclotron resonance Raw signal 16 5 kHz Output of detector for rejected power of
heating system No. 1–16 transmitter

ECRH/ Electron cyclotron resonance Raw signal 4 50 kHz Output of detector for injected power
ECCD heating/current drive system measurement No. 1–4 gyrotron
GPS Gas puffing system Raw signal 12 10 kHz Horizontal ports J, K, D, B; upper port

O; lower ports O, C, H
SMBI Supersonic molecular beam injection Raw signal 3 10 kHz 3 ports of SMBI
PIS Pellet injection system Raw signal 1 10kHz 1 injection line for pellet injection
Ref. Shape Shape reference Raw signal 31 1 kHz 20 groups of control points

One of the key features of a bidirectional LSTM is that
information from both directions of the sequence is used to
estimate the current time step. The architecture uses future
(forward) and past (backward) information to perform the
inference. The final layer activation function is a linear func-
tion since we are dealing with a regression task and do not want
to constrain output parameters values.

3. Dataset

The whole EAST’s data system stores more than 3000 raw
channel data and thousands of processed physical analysis data
[48], which records the whole process of the EAST discharge.
All the tokamak data was divided into three categories: con-
figuration parameters, actuator signals, and diagnostic signals.

3
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Figure 1. The architecture of bidirectional LSTM. The subfigure on the left represents a bidirectional LSTM cell. Here, B, L, C, O are batch
size, the longest sequence length of a batch, feature size, and the number of output signal channels.

The configuration parameters describe constants related to
the tokamak such as magnetic probe positions. The actuator
signals such as the power of ECRH, etc, are actively controlled
quantities. The diagnostic signals are observable parameters
passively measured from internal plasma such as loop volt-
age Vloop etc. The configuration parameters are fixed during
the tokamak experiments. The discharge prediction task can
be essentially reduced to mapping actuator (input) signals to
diagnostic (output) signals.

In the present work, the output signals include all impor-
tant 0D EAST diagnostic signals routinely available after a
discharge. The input signals include all the quantities that may
affect the output. Table 1 contains detailed information about
input and output signals. The input signal ‘Ref. Shape’, in
a particular, requires a more in depth discussion. According
to the tokamak magnetic control system workflow [49], the
shape references affect the in-vessel Rogowski coil current
(IC1). So when estimating IC1, such shape references data
is required. On EAST, shape feedback control is realized
using the isoflux control scheme [50]. As the key concept
of isoflux control, the plasma target shape (Ref. Shape) is
interpreted as a set of control points defining the desired
plasma boundary, and the flux at each control point is regu-
lated to be equal. Usually, one of the control points is cho-
sen as a reference point, which is typically a point on the
limiter in a limited plasma configuration or the X point in a
diverted configuration. Thus the plasma boundary is controlled
by adjusting the poloidal field (PF) coil currents to eliminate
the flux error between the reference points and other boundary
control points. Some of the selected signals are processed
signals with clear physical meaning, and others are unpro-
cessed raw electrical signals. Since some signals of the actual
EAST experimental diagnostic system are not processed, we
directly selected some unprocessed raw electrical signals.

As long as the input signals include information to determine
the output, the unprocessed signals will not affect the modeling
result.

Tokamak discharge evolution is a multi-spatial-temporal
scales, non-linear, multi-physics quantities coupling process.
There is no simple function to determine the relationship
between the actuator signals and the diagnostic signals. Differ-
ent diagnostic parameters are determined by different inputs.
In the present work, the input signals cannot simply and
directly determine all the output signals. In our model training
experiments, li, βp cannot be accurately estimated by the input
signals that do not include IC1. When the input signals include
the actual IC1, all output signals of the present work can be
estimated. Since IC1 values cannot be obtained through direct
measurement, they have been indirectly estimated through a
machine learning model.

4. Training

This section shows details of model training and data pro-
cessing. The training model is divided into four steps as
follows:

(a) Obtaining and resampling the data of the 108 data chan-
nels (including input, feedback, and output signals as
shown in table 1) from the EAST source database, then
storing it in HDF54 file with each HDF5 file data prop-
erties (standard deviation δ, mean μ, etc) stored in Mon-
goDB.

4 Hierarchical data format (HDF) is a set of file formats (HDF4, HDF5)
designed to store and organize large amounts of data.

4
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Figure 2. The shots during time distribution of the input discharge
sequences. The number of buckets B = 3. The y-axis represents
distribution density, normalized as a probability density function.

(b) Standardizing the data with z-scores5 (also known as
standard scores).

(c) Using bucketing (explained further in section 4.3)
batch training for the deep learning model to be recon-
structed IC1.

(d) Integrating the estimated IC1 as input for the eleven key
diagnostic signals (table 1 output signals) reconstruction
model training.

4.1. Obtaining and resampling

The dataset is selected from EAST tokamak during the
2010–2020 campaigns, and the discharge shot number is in the
range #14866–88283 [39–41]. A total of 26230 normal shots
were selected. ‘Normal shot’ means that the plasma current
is safely landed without disrupting and the flat-top duration
is of at least two seconds. Moreover all the key quantities
(i.e., magnetic field Bt, PF) describing the magnetic configu-
ration as well as the actual plasma current are available for the

5 z-score is calculated by z = (x − μ)/σ where μ is the mean of the population.
σ is the standard deviation of the population.

entire duration of the shots. If there is not a certain magnetic
field configuration, it is impossible to constrain (or control) the
plasma. Furthermore, during a tokamak experiment, the actual
Ip is a key physical quantity, the experiment is generally con-
sidered a failure if there is no actual Ip. In model usage, actual
Ip is a output signal. Additionally, from a pure technical point
of view, the training as well as the testing of the deep learning
model cannot be performed if unless at least one output signal
is available. Three different data sets are needed while devel-
oping the bidirectional LSTM model for discharge modeling.
A training set is required for training the model. A validation
set is needed for hyper-parameters tuning, whereas a test set is
used to measure the final accuracy of the deep learning model,
as well as its generalization capability. The training set should
use the earliest data of the selected EAST campaign to simulate
the new data faced in practice, as it always happens in practice.
It is worth mentioning that, despite of the chronologically
order, validation and test sets do not contain more recent pulse
scheduling/piloting techniques with respect to what is not
included in the training set. The capability of more advanced
operations and control schemes as well as the target plasma
evolve over the years according to the experimental program.
For the sake of consistency, completely new control techniques
and piloting schemes have not been considered for the eval-
uation of the current models. The test set and validation set
are assumed to be statistically similar, so we can expect the
best performance on the test set by optimizing the accuracy of
the validation set. For each epoch, the model must input every
shot in the validation set to get the performance metric, and the
validation set is not used to update the model parameters. So
relatively small validation set can accelerate the model train-
ing. The shot range of the validation set and the test set should
not have any intersection to ensure the objectivity of the test
set. The test set should only be used once, that is for assessing
the real accuracy of the model. In other words, the test set
should be used only for model testing and should not be present
during the model training or tuning phase. These three data sets
have been carefully selected to meet these strict requirements.
Shot #14866–74999 in the EAST database is selected as the
training set. 21192 normal shots are reserved at last. The
validation set has shot numbers in the range #75000–77000.
Shots #77000–88283 are in the test set.

All data are resampled with the same sample rate 1 kHz.
Although we used a relatively low sampling rate, the original
resampled data set still contains 55 GB of data. Therefore
for each shot, the data is saved to an HDF5 file, not in the
database server for quick and robust training. The metadata is
stored in MongoDB for double-checking the data validity and
availability by the human and program.

We align our data with the same time axis by linearly inter-
polating to up-sample and a simple moving average (SMA)
to down-sample. The SMA is the unweighted mean of the k
data-points and works like a low-pass filter. Our SMA used the
information from the later time. Since we use a bidirectional
LSTM as architecture for the model and we aim to offline
discharge modeling, we can remove the causality constraint
for the sequences fed to the model for training. From another

5
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Figure 3. Using the trained model.

Table 2. Our model Hyperparameters.

Hyperparameter Explanation Best value

η Normal learning rate 3 × 10−3 or 5 × 10−3

ηf Fine-tuning learning rate 1 × 10−4

γ Momentum factor 0.5
L2 L2 regularization rate 0.01
Loss function Loss function type Masked MSE
Optimizer Optimization scheme RMSprop
Dropout Dropout probability 0.1
dt Time step 1 ms
Batch_size Batch size 8, 4, 1
RNN_type Type of RNN Bidirectional LSTM
nrnn Number of RNN stacked 4
Hrnn Hidden size of RNN 512
nencoder Number of BiLSTMs stacked in encoder 2
ndecoder Number of BiLSTMs stacked in decoder 2

perspective, since high-frequency fluctuations are not a rele-
vant outcome of the experimental proposal stage, we process
the data by filtering out high-frequency fluctuations.

4.2. Data standardization

Firstly, all source data was saved in the HDF5 file. Then,
discharge duration time and every signal mean, variance, and
existence flag will be saved to the MongoDB database shot-by-
shot. Saving the mean and variance of each signal of each shot
data is necessary not only to double-check the presence of out-
liers in the signals but also for calculating the global means and

standard deviations for the huge dataset by MapReduce [51].
If a signal in a shot has outliers, then the signal values in this
shot will not be used to calculate the signal’s global mean and
standard deviation. MapReduce is a programming model and
an associated implementation for processing and generating
big data sets with a parallel, distributed algorithm on a cluster.
The reasons for using MapReduce are that if the global mean
and standard deviation were calculated directly, the calcu-
lation would be overflowed. When the source data means
and standard deviations have been calculated, the z-scores
will be applied for standardization. In this step, if the input

6
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Figure 4. Comparison of the modeling result and EAST experiment
data. ‘Sim’ is similarity (equation (6)) and ‘loss’ is MSE
(equation (7)). Shot #77873 have two LHW injections during
discharge. No experimental data are available for the gray area, so
the modeling results for this area are unreliable. During model
training, we used the start value and end value to fill these areas for
time axis alignment.

data have NaN (invalid value) or Inf (infinite value) will be
replaced by a linear interpolation value and 3.2 × 1032 (it is
not the maximum value of the float 32 type, but it is large
enough. And it can still be calculated without overflowing),
respectively.

4.3. Bucketing batchwise training

Mini-batching gradient descent [52, 53] is a valuable technique
for enhancing GPU performance [54] and accelerating the
training convergence of deep-learning models. The parameter
loss gradients are computed for several examples in parallel
and then averaged. However, this operation requires all exam-
ples have the same length. Therefore, training RNN or its
variants on a large amount of data with different lengths is a
quite challenging problem. Bucketing [55] was used to solve
this problem in the present work.

The bucketing method can be reduced to a partition
problem. Let S = {s1, s2, . . . , sn} be sequences set and the
length of sequence si is li = |si|. Each GPU processes
sequences in a mini-batch in a synchronized parallel manner,
so processing time of a mini-batch Ibatch = {s1, s2, . . . , sk} is
proportional to O

(
maxi∈1,...,kli

)
and processing time of the

whole set is expressed as:

T(S) = O
(
n/k∗maxi∈1,...,k li

)
. (2)

If the dataset sequences were shuffled randomly before
splitting, the minimum and maximum sequence lengths in the
mini-batch would be very different. As a result, the GPU would
do additional work for processing the meaningless tails of
shorter sequences. Additionally, the too-long sequence with
a non-suitable batch size will be overflowed due to the GPU
memory capacity limit. Specifically, if we use the same batch
size for long sequences input as for short sequences input,
it will take up more GPU memory which will easily cause
overflows. We used customized bucketing to optimize the
batch training to overcome this flaw and reduce training time.
As shown in figure 2, according to length, all sequences are

partitioned to B buckets. Let Si =
{

s j1 , s j2 , . . . s jki

}
. For each

bucket, we execute the mini-batch training with different batch
sizes. The processing time of the whole set is expressed as:

T(S) =
B∑

i=1

O(T(Si)). (3)

We manually partitioned the sequence length set in the
present work because the different sequence length sets will
use different batch sizes. The result of the partition is shown in
figure 2. Bucket 1, 2, 3 are in intervals [2, 12.3], (12.3, 50], and
(50, 412] respectively. Because of the GPU memory capacity
limit, the batch size of the three buckets is set at 8, 4, 1, respec-
tively. These batch sizes can control GPU memory overflow
and easily allocate the input tensor for each GPU.

The sequences within every bucket were shuffled randomly.
And then, the sequences were generated batch-by-batch. To
train batchwise with a batch size M, we need M independent
shot discharge sequences of the same bucket to feed to the
GPU. The different length discharge sequences were padded
by zeros to the same length. We did this by using M processes
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Figure 5. The similarity distribution and average similarity in the whole test set. The figure shows the similarity distributions of the output
signals (see table 1).

Table 3. The average similarity and MSE of the eleven diagnostic
signals.

Output signals Average similarity Average MSE

Act.Ip 0.986 0.0015
ne 0.911 0.341
Wmhd 0.972 0.077
Vloop 0.872 0.354
βn 0.961 0.062
β t 0.970 0.130
βp 0.915 0.179
κ 0.961 0.0019
li 0.916 0.127
q0 0.878 0.129
q95 0.944 0.093

to read sequence data in parallel. The M sequences were
fed to a buffer first to solve the problem of GPU and
CPU speed mismatch since data from HDF5 files are read
through a CPU.

4.4. Model training

IC1 is an in-vessel Rogowski coil current [49, 56], and this
current does not have a direct reference signal. In-vessel cur-
rent distribution play a key role in the accuracy of recon-
struction through a free boundary plasma equilibrium solver.
The estimation of such in-vessel current distribution through
simulation codes is very expensive and given the large num-
ber of discharges used to train and assess the performance
of the model described in this paper, we decided to rely on

the IC1 measured current, which acts basically as a proxy
for the in-vessel current distribution. Although this might
potentially introduce errors in the reconstruction of equilib-
rium quantities, it was found that not including IC1 in the
set of input parameters heavily affected the accuracy of the
reconstruction of quantities such as βn, βp and li. The IC1
signal cannot be programmed or manually set in the exper-
iment proposal stage. Therefore, first, we train a machine
learning model (same model architect as depicted in figure 1)
to reconstruct IC1. Secondly, we connected the trained IC1
reconstruction model and the diagnostic parameters recon-
struction model for training, where the IC1 reconstruction part
was fine-tuned using a minimal learning rate. For this reason,
the output of the IC1 reconstruction model and the input IC1
to the deep learning model are different.

To facilitate fine-tuning the IC1 part, the model for recon-
structing IC1 and the diagnostic parameters has the same
architecture, initializer, optimizer, training set, validation set,
test set, etc, in which only the input and output are different.
The input of the IC1 reconstruction includes all input signals in
table 1. The input of the diagnostic parameters reconstruction
includes the output of the IC1 reconstruction model and does
not use the shape reference signals. The training process is
similar to using the trained model, as shown in figure 3.

The deep learning model uses end-to-end training executed
on 8× Nvidia P100 GPUs with PyTorch [57] on the Cen-
tos7 operating system. The weight initialization scheme for
the deep learning model is Xavier initialization [58], bias
initializer is zeros, and optimizer is RMSprop [59]. The loss
function of this training should be noted. The function is
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masked MSELoss, which has some improvements for mean
squared error (MSE) loss function. The masked MSELoss can
be described as:

l(x, y) = L =

∑i=N
i=0 {l1, l2, . . . , lN}

N
, (4)

li =
j=len∑
j=0

(
xi

j − y i
j

)2
, (5)

where N is the batch size, x and y are the batch experimental
sequence and batch predicted sequence, xi

j, y i
j are the jth

point values of the ith experimental sequence and predicted
sequence. The subtlety of this work is ‘ j = len’, where ‘len’
is the length of the ith sequence. So the masked MSE function
can prevent useless training of the zeros padding section of
the sequence. In training our model, multiple sets of hyper-
parameters were tried. It was a trial-and-error approach on
different sets of hyperparameters. The best hyperparameter set
was selected based on the best performances of the validation
set. Table 2 shows the best hyperparameter set.

5. Results

The model was tested on unseen data (test set), as shown in
figure 3. In the present work, models are used in sequence. The
#1 deep learning model is used first to get the IC1 estimated
values and then the #2 deep learning model to estimate the
tokamak’s main diagnostic signals. The preprocessing steps
on new data are the same as before, keeping the training set
parameters (the mean μ and the standard deviation σ) for
standardization.

This section details the results and analyzes. The results
include representative modeling results and eleven diagnostic
signal similarity distributions of the test set. Additionally, the
present work uses similarity and means square error (MSE)
as quantitative measurements of the accuracy of the modeling
results.

S(x, y) = max

(
Σ(x− x̄)(y− ȳ)√
Σ(x− x̄)2Σ(y− ȳ)2

, 0

)
, (6)

MSE(x, y) =
1
n

n∑
i=1

(xi − yi)
2, (7)

where x is experimental data, y is modeling result, x̄, ȳ are the
means of the vector x and vector y, xi, yi are the point values of
the vector x, y. The MSE is the mean ( 1

n

∑n
i=1) of the squares

of the errors (xi − yi)
2. MSE will be affected by the outlier

but it can more accurately measure the difference of values.
Similarity can only measure whether the trend is consistent,
but it cannot measure the difference in value.

A typical entire process discharge prediction of our model is
shown in figure 4. In the present work, the trained model can
reproduce the eleven diagnostic signals during experimental
proposal stage, from ramp-up to ramp-down, without relying
on any physical codes.

Figure 4 shows our model can accurately reproduces the
slopes of the ramp-up and ramp-down and the amplitude of the

flat-top. The model can also reflect the external auxiliary sys-
tem signal impact on the diagnostic signal. The vertical dash-
dot lines of figure 4 indicate the rising and falling edges of the
external auxiliary system signals and the plasma response.

The whole test data set of shot range 77000–88283 is used
to quantitatively evaluate the reliability of the modeling results
of the eleven signals. The statistical results of the similarity
and MSE between modeling results and experimental data are
shown in figure 5 and table 3. Except for q0 and Vloop, the
average similarity of other key signals is greater than 90%.
And the similarity distribution is concentrated above 90%. The
average similarity of q0 is greater than 85%. This quantity
has a poor similarity, because if the equilibrium reconstruction
is not properly constrained with pressure profiles and kinetic
measurements, q0 might be unreliable. Since it might suffer
from large variance, as the model is struggling mostly for
the reconstruction of that parameter. Most of the errors in
the reconstruction of Vloop are related to the plasma start-up
and shut-down phases. To sum up, all selected key diagnos-
tic signals, excluding Vloop are regarded as almost wholly
predicted.

6. Conclusion and discussion

In the present work, we propose a tokamak discharge pre-
diction method based on bidirectional LSTM. The bidirec-
tional LSTM was developed to introduce the wider contextual
information of discharge sequence to achieve a more efficient
model. The model was trained on the EAST experimental
dataset in shot range #14866–88283. This model can use the
actuator signals to reproduce the normal discharge evolution
process of the eleven key signals (i.e., actual plasma current Ip,
normalized beta βn, toroidal beta βt, beta poloidal βp, electron
density ne, stored energy Wmhd, loop voltage Vloop, elongation
at plasma boundaryκ, internal inductance li, q at magnetic axis
q0, and q at 95% flux surface q95.) without having as input
any quantity derived by physical models. Bidirectional LSTM
architecture is robust to outliers. The average similarities of all
the selected key diagnostic signals between modeling results
and the experimental data are greater than 90%, except for the
Vloop and q0. The results presented in this paper demonstrate
the effectiveness of using a purely data-driven model to assist
the validation of the experimental proposal for a tokamak
discharge.

The present work demonstrates that the model can easily
be extended to more diagnostic signals. Compared with physi-
cal models, experimental data-driven models have proven to
be very efficient computationally. Once the machine learn-
ing model has been trained, a run of the trained machine
learning model is faster by orders of magnitude with respect
to the whole process of tokamak discharge modeling. The
total inference time of our model for an entire discharge
prediction is about 1 s. The present work shows very
promising results exploiting experimental data-driven mod-
eling as a supplement to physical-driven modeling toka-
mak. Another important point which is worth mentioning
is that our model currently uses a smoothed version of the
measured actuator signals as input and not directly the
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corresponding programmed plasma control system (PCS)
trajectories. A complete understanding of the actuator
trajectories prior to a shot is challenging. The feasibility of
using programmed PCS trajectories as model input to predict
the evolution of a tokamak discharge will be the object of
future work. Besides, we want to integrate the model into
the PCS to automatically check the control strategy. 1D and
2D plasma profiles (kinetic quantities, radiation distribution)
are also particularly important for tokamak discharge model-
ing, since they can support scenario development with par-
ticular reference to operational limits in high-performance
scenarios [60].
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