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Novel theory and potential 
applications of central diastolic 
pressure decay time constant
Vasiliki Bikia 1*, Patrick Segers 2, Georgios Rovas 1, Sokratis Anagnostopoulos 1 & 
Nikolaos Stergiopulos 1

Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel 
model equal to the product of total peripheral resistance ( R ) times total arterial compliance ( C ). As 
such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the 
assessment of vascular health. This study aimed to investigate the relationship of the constant τ 
with the product T MBP

cPP

 , given by heart period ( T  ) times the ratio of mean blood pressure (MBP) to 
central pulse pressure ( cPP ). The relationship was derived by performing linear fitting on an in silico 
population of  n1 = 3818 virtual subjects, and was subsequently evaluated on in vivo data  (n2 = 2263) 
from the large Asklepios study. The resulted expression was found to be τ = k

′
T

MBP

cPP

, with k ′ = 0.7 
 (R2 = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between 
the estimated and reference τ values, with a correlation coefficient equal to 0.94 and a normalized 
RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient k ′ is age- and 
gender-independent. The proposed formula provides novel theoretical insights in the relationship 
between τ and central blood pressure features. In addition, it may allow for the evaluation of τ without 
the need for acquiring the entire central blood pressure wave, especially when an approximation of 
the cPP is feasible. This study adds to the current literature by contributing to the accessibility of an 
additional biomarker, such as the central diastolic pressure decay time constant, for the improved 
assessment of vascular ageing.
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The shape of the arterial blood pressure pulse alters significantly during its transmission across the vasculature. 
In addition to the variation of systolic pressure characteristics, the diastolic pressure decay is inherently different 
across individuals, with no evidence of it being a monotonic function of  time1,2. The central diastolic pressure 
decay is characterized by a time constant, τ , which has been used previously to describe the arterial Windkessel 
 properties3. According to the two-element Windkessel model, τ is equal to the product of the peripheral resist-
ance ( R ) and the total arterial compliance ( C ). The time constant τ can be calculated from the blood pressure 
waveform by fitting a mono-exponential decay function to the diastolic part of the curve.

Given the dependency of the central blood pressure waveform on structural and functional changes in the 
cardiovascular system, the diastolic pressure decay is also sensitive to the properties of the aortic wall and the 
peripheral vasculature, while it is influenced by factors such as age and blood  pressure3–5. The constant τ may 
therefore be an important metric in the assessment of cardiovascular function. Concurrently, there is emerging 
evidence on its utility in the diagnosis and management of various cardiovascular  diseases4,6–8. Experiments 
in dogs showed that the time constant ( τ ) of diastolic pressure decay correlated with variations in peripheral 
vascular resistance, indicating its practical value for continuous monitoring of systemic resistance. Moreover, 
it was found that aortic stiffening in hypertensive patients could impair myocardial viability by accelerating the 
diastolic exponential decay of central blood pressure, increasing the risk of ischemic heart disease. In another 
instance, it was observed that carotid τ was higher than radial τ , and the two variables were not correlated, sug-
gesting that local factors significantly influence diastolic pressure decay properties, making a systemic τ value 
unreliable without modification. In addition, the concept of the diastolic pressure decay time constant has been 
widely exploited for the derivation of total arterial  compliance9. Therefore, understanding and improving acces-
sibility to this parameter could provide valuable insights into the main parameters defining the hemodynamics 
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of the circulatory system and may add to the current assessment of vascular ageing, vascular stiffening, and the 
associated risk profile.

In this study, we derived an empirical relation between the central diastolic pressure decay time constant ( τ ) 
(dependent variable), the duration of the heart period ( T ), and the ratio of mean blood pressure over central 
pulse pressure, namely the difference between central systolic and diastolic pressure, (independent variables). 
A linear relationship to estimate τ was derived by implementing linear fitting on previously published in silico 
data  (n1 = 3818)10, which were generated using a well validated numerical model of the cardiovascular  system11. 
Subsequently, the derived equation was evaluated in vivo using a large human cohort  (n2 = 2263) from the 
Asklepios  study12.

Materials and methods
In silico dataset
In silico data that were generated in our previous  work10 were used to simulate various hemodynamic cases. 
The data generation relied on a previously developed, well-validated one-dimensional cardiovascular computer 
 simulator11 which ran using different combinations of physiologically relevant input model parameters. The 
distributions of the input model parameters were based on literature data, by identifying the normal values and 
ranges of the parameters. The parameters of arterial distensibility, terminal compliance, and peripheral resist-
ances were altered to achieve the specific value in the selected ranges. Furthermore, the geometry of the arterial 
network (namely length, inlet diameter, and outlet diameter of the arterial segments) was modified to simulate 
different body types by adapting the length and the diameter of all arterial vessels. A detailed description of the 
data generation processes is provided in the original  publication10.

In silico blood pressure data, such as the mean, systolic and diastolic blood pressure, pulse pressure, at the left 
common carotid artery and the brachial artery were extracted from the simulations. The τ values were derived 
as the product of total peripheral resistance ( R ) and total arterial compliance ( C ). The total arterial compliance 
of the in silico data was calculated analytically by summing of the incremental volume compliance of all arterial 
segments.

In vivo dataset—Asklepios study (round 1)
Human data were made available from baseline (round 1) data of the Asklepios study, a broad prospective lon-
gitudinal study with the aim of assessing the development and progression of cardiovascular  disease12. A total 
of 2404 subjects were found eligible to be included in the study. The inclusion and exclusion criteria are listed 
in Table 1. The participants underwent a non-invasive evaluation of central hemodynamics, including record-
ings of carotid blood pressure. The study protocol was approved by the ethical committee of Ghent University 
Hospital and informed consent of participation was given by all subjects. All experiments were performed in 
accordance with relevant guidelines and regulations. A comprehensive description of the Asklepios data can be 
found in the original  publication12.

In the original study reporting the Asklepios data (round 1), central blood pressure waveforms were recorded 
at the left common carotid artery via applanation tonometry using a Millar pen-type tonometer (SPT 301; Millar 

Table 1.  Asklepios inclusion and exclusion  criteria12.

Inclusion criteria

 1. Male and female volunteers aged 35–55 years at study initiation, living in the communities of Erpe–Mere or Nieuwerkerken

Exclusion criteria

 1. Clinical presence of atherosclerosis/atherothrombosis

  (a) Atherosclerosis: symptomatic or haemodynamically significant (> 50% stenosis) presence of atherosclerosis in any major vascular bed

  (b) Atherothrombosis: acute coronary syndromes, cerebrovascular thrombosis

  (c) Previous or planned revascularization procedure (carotid, coronary, lower limb)

 2. Major concomitant illness

  (a) Cardiac: cardiomyopathy/heart failure, significant valvular disease, previous cardiac surgery, (complex) congenital heart disease, heart 
transplant

  (b) Organ failure: end-stage renal disease, hepatic insufficiency, previous organ transplant

  (c) Malignant tumours (recently diagnosed or currently treated, with < 3 years tumour-free follow-up or tumours that are metastatic or 
initial treatment was not curative)

  (d) Other conditions in which the screening physician expected a life expectancy < 5 years

 3. Diabetes mellitus

  (a) Diabetes mellitus type 1

  (b) Diabetes mellitus type 2 if confirmed macrovasculopathy (see exclusion criterion 1) or significant renal impairment [see exclusion 
criterion 2(b)]

 4. Specific conditions precluding accurate haemodynamic assessment

  (a) Continually irregular cardiac cycle: atrial fibrillation

  (b) State of hyperdynamic activity: pregnancy (in the preceding 6 months)

 5. Inability to provide informed consent
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Instruments, Houston, Texas, USA). The measurement set-up, processing, and calibration procedure (based on 
sphygmomanometer systolic and diastolic blood pressure and applanation tonometry at the brachial artery) 
were previously described in  detail12,13.

The carotid pressure was derived as a “mean” waveform of multiple beats from a 20-s  recording14. Pressure 
data were recorded in continuous sequences of 20 s. The Savitsky-Golay filter implemented in Matlab, The 
Mathworks Inc. was used to post-process the data. Identification of individual cycles, detrending (i.e., linearly 
smoothing out eventual differences in the numerical value of the start and end of the cycle), and averaging were 
performed. The average of these cycles was considered as the tonometry recording for the carotid artery. The 
calibration of the carotid waveform was based on the assumption that diastolic and mean blood pressure values 
remain fairly constant for the major arteries. The carotid pressure waveforms were calibrated to the diastolic and 
mean arterial blood pressure, with diastolic blood pressure taken from brachial cuff blood pressure measurement. 
Mean arterial pressure was assessed following a calibration scheme as the average of a brachial artery applanation 
tonometry waveform, calibrated to diastolic and systolic cuff blood pressure,  following15.

The τ values were derived as the product of total peripheral resistance ( R ) and total arterial compliance ( C ). 
In the Asklepios data, total arterial compliance was estimated using the pulse pressure  method16. The pulse 
pressure method is grounded in the observation that the modulus of the input impedance of the arterial system 
aligns closely with the two-element Windkessel model, particularly within the low frequencies spanning the 1st 
to the 5th harmonic. This implies a strong resemblance between the pulse pressure in the actual arterial system 
and that in the two-element Windkessel model. The method employs an iterative approach, aiming to determine 
the optimal value of total arterial compliance. This is achieved by iteratively refining total arterial compliance to 
achieve the best fit between the measured pulse pressure and the pulse pressure predicted by the two-element 
Windkessel model.

Analytical derivation of the formulas
In our analysis, we started from the widely accepted formula which suggests that total arterial compliance ( C ) 
is proportional to stroke volume ( SV  ) divided by central pulse pressure ( cPP)3,17,18:

In addition, the following equation holds:

where MBP is the mean pressure which is the same across all large and mid-sized arteries and CO is the cardiac 
output which equals heart rate ( HR ) times SV  , namely:

Finally, HR equals 60/T , where T is the time duration of a heartbeat.
Therefore, starting from Eq. (1), we can derive the relationship between RC and T MBP

cPP  as follows:

where k′ = k
60

.
The constant k′ in Eq. (5) was derived empirically using linear fitting on the in silico data. Subsequently, the 

resulted formula was evaluated on the in vivo data of the Asklepios cohort. In our analysis, the cPP was set equal 
to the central (carotid) pulse pressure value.

Moreover, we implemented the same fitting process, that was performed on the in silico population, to derive 
the precise constant k′ for the Asklepios population data. The age and gender dependency of the constant k′ was 
investigated. Our initial hypothesis was that k′ varies with age and gender. In this respect, the fitting analysis was 
performed separately for three different age groups, namely < 40 years, 40–50 years and > 50 years for male and 
female subjects. Our investigation encompassed simultaneous and separate examinations of age- and gender-
specific differences in the k′ coefficient’s value.

Additionally, we examined potential dependencies between central pulse pressure and heart rate (HR) as well 
as mean blood pressure (MBP). To investigate whether the coefficient k′ is influenced by HR and MBP, we split 
the dataset into three groups according to the distribution of each independent variable (namely HR and MBP) 
using percentiles. The data were sorted based on the variable of interest, and we established the first percentile 
group (< Q1), the second percentile group [Q1,Q3], and the third percentile group (> Q3). Each data point was 
then assigned to a group based on its percentile.

(1)C ∝
SV

cPP
or C = k

SV

cPP

(2)R =
MBP

CO

(3)CO = SV ·HR

(4)

C = k
SV

cPP
⇒ RC = Rk

SV

cPP
⇒ RC = Rk

SV

cPP

τ=RC
⇒ τ = kR

SV

cPP

R=MBP
CO (Eq.2)
⇒ τ = k

MBP
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SV

cPP

CO=SV ·HR(Eq.3)
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MBP
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Within the scope of our investigation, we also analyzed the sensitivity of the k′ coefficient to variations in 
MBP estimation. We selected various MBP derivation formulas, guided by the recommendations from the study 
conducted by Papaioannou et al.25. The objective was to quantitatively assess the impact of differing MBP estima-
tion formulas on the variability of the k′ coefficient.

Finally, the formula using the in silico-derived coefficient k′(from the entire in silico dataset) was applied to 
make τ estimations for the Asklepios subjects. The accuracy of the estimated τ values was assessed by consider-
ing gender and age as separate criteria; namely the data were divided into male and female categories, as well as 
different age groups, to evaluate the accuracy with respect to these demographic factors.

Statistical analysis
All data are presented as mean and standard deviation (SD). The statistical analysis was performed in Python 
(Python Software Foundation, Python Language Reference, version 3.11.7, available at http:// www. python. org). 
The correlation, conformity, and precision between the estimations (using the linear formula) and the reference 
data were evaluated using the Pearson’s correlation coefficient (r), intraclass correlation coefficient (ICC), and 
the normalized root mean square error (RMSE). The computed normalized RMSE was based on the differ-
ence between the minimum and maximum values of the dependent variable (y) and was computed as RMSE/
(ymax−ymin). Bias and limits of agreement (LoA) (where the 95% of errors are expected to lie) were calculated 
using the Bland–Altman  analysis19. Linear least-squares regression was performed for the estimated and refer-
ence data. The slope and the intercept of the regression line were reported. Two-sided p-values for hypothesis 
tests were calculated using Wald Tests with t-distribution of the test statistic. The null hypothesis was that the 
slope is zero. A p < 0.05 was considered statistically significant.

Results
Out of the 2404 human participants in the Asklepios study, 141 were excluded due to inaccurate or missing 
data. The in vivo population consisted of 1090 (48%) male participants and 1173 (52%) female participants. The 
characteristics of the in silico  (n1 = 3818) and in vivo  (n2 = 2263) populations are described in Table 2. Mean and 
SD values were reported to be similar for brachial blood pressure values between the two populations. Central 
(carotid) systolic blood pressure (SBP) values were found to be slightly higher in the Asklepios data, whereas cen-
tral (carotid) diastolic blood pressure (DBP) was overall lower, thus leading to a higher mean pulse pressure in the 
in vivo human data. In addition, in vivo heart cycle was higher in comparison to the in silico heart cycle values. 
Similar distributions were observed for total arterial compliance and total peripheral resistance. In vivo cardiac 
output was reported to be lower when compared to the in silico cardiac output by approximately 18%. The latter 
is to be expected if we consider that for the same value of mean blood pressure (in silico data: 101 ± 21 mmHg 
and in vivo data: 100 ± 12 mmHg) and higher total peripheral resistance (in silico data: 1 ± 0.2 mmHg s/mL and 
in vivo data: 1.3 ± 0.4 mmHg s/mL), the cardiac output is expected to be adjusted accordingly.

Derivation of the theoretical τ formula (Eq. 5) using the in silico data
The constant k′ was defined by fitting the true τ and the right part of Eq. 5 using the in silico population. By per-
forming linear regression analysis between the true τ and the product T MBP

cPP  , we derived the mapping equation 
τ = 0.7 T MBP

cPP   (R2 = 0.9), as shown in Table 3. Table 4 presents the in silico results of the linear fitting performed 

Table 2.  Description of the cardiovascular characteristics and parameters of the in silico and in vivo data.

Parameter

In silico population
n1 = 3818

In vivo population
n2 = 2263

Mean ± SD Mean ± SD

Age (years) n/a 46 ± 6

Gender (M/F) n/a 1090/1173

Height (cm) n/a 169 ± 9

Weight (kg) n/a 74 ± 14

Central (carotid) systolic blood pressure (mmHg) 124 ± 23 131 ± 17

Central (carotid) diastolic blood pressure (mmHg) 80 ± 21 77 ± 11

Central (carotid) pulse pressure (mmHg) 45 ± 19 54 ± 12

Mean blood pressure (mmHg) 101 ± 21 100 ± 12

Brachial systolic blood pressure (mmHg) 135 ± 24 132 ± 15

Brachial systolic blood pressure (mmHg) 77 ± 21 77 ± 11

Brachial pulse pressure (mmHg) 57 ± 23 54 ± 10

Cardiac output (L/min) 6 ± 1.2 4.9 ± 1.2

Heart cycle (s) 0.7 ± 0.1 1 ± 0.2

Total arterial compliance (mL/mmHg) 1.1 ± 0.5 1.4 ± 0.5

Total peripheral resistance (mmHg.s/mL) 1 ± 0.2 1.3 ± 0.4

Time constant τ (s) 1.3 ± 0.7 1.2 ± 0.3

http://www.python.org
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on the HR- and MBP-dependent groups, indicating insignificant changes in the derived k′ values. In addition, 
the analysis of the k′ coefficient’s sensitivity to the MBP estimation revealed minimal variability when applying 
different estimation formulas (Table 5). This negligible variation in the k′ coefficient is attributed to the observa-
tion that only slight discrepancies in MBP values were obtained across the various computational techniques.

Evaluation of the theoretical τ formula (Eq. 5) using the in vivo data
The results from the fitting processes for each Asklepios age group are aggregated in Table 3. The results indicate 
that k′ does not vary significantly across the age groups. No significant difference in the coefficient’s value was 
observed for the gender-specific analysis. In addition, the k′ values yielded from the separate Asklepios groups 
of HR- and MBP-dependent groups are presented in Table 4. Similarly, no pronounced variation was reported.

Subsequently, the resulted formula 
[

τ = 0.7T MBP
cPP

]

 was applied on the clinical data from the Asklepios study. 
The estimated versus the reference τ data are presented in Fig. 1. A high agreement was observed between the 
estimated and the reference τ values, with a Pearson’s correlation coefficient equal to 0.94 across all ages. The 
slope was found to be 0.9 (p < 0.0001) and the intercept was 0.25 s for all age groups. The Bland–Altman analysis 
yielded a low bias of 0.13 s and limits of agreement equal to [− 0.08, 0.34] s across all ages, while the normalized 
RMSE was reported to be low and equal to 5.5%. The age- and gender-specific results are reported in detail in 
Table 6. The study generally reported a modest overestimation, with the errors being marginally greater (nRMSE 
exceeding 10%) for female groups of < 40 years and > 50 years compared to the respective male groups.

Table 3.  Derivation of coefficient k′ from linear fitting.

Coefficient k′

All Male Female

Linear fitting
(in silico data)

n = 3818

0.7
(R2 = 0.9) n/a n/a

Linear fitting
(in vivo data—all ages)

n = 2263 n = 1090 n = 1173

0.64
(R2 = 0.88)

0.65
(R2 = 0.89)

0.62
(R2 = 0.85)

Linear fitting
(in vivo data— < 40 years)

n = 456 n = 216 n = 240

0.64
(R2 = 0.86)

0.66
(R2 = 0.9)

0.62
(R2 = 0.82)

Linear fitting
(in vivo data—40–50 years)

n = 1′147 n = 558 n = 589

0.64
(R2 = 0.88)

0.65
(R2 = 0.9)

0.62
(R2 = 0.86)

Linear fitting
(in vivo data— > 50 years)

n = 660 n = 316 n = 344

0.63
(R2 = 0.87)

0.64
(R2 = 0.89)

0.61
(R2 = 0.84)

Table 4.  Derivation of coefficient k′ from linear fitting for different heart rate (HR) and mean blood pressure 
(MBP) groups. a Including all age groups.

Coefficient k′

 <  Q1HR [Q1HR,  Q3HR]  >  Q3HR

Male and 
female Male Female

Male and 
female Male Female

Male and 
female Male Female

Linear fitting
(in silico data)

n = 1273 n/a n/a n = 1272 n/a n/a n = 1273 n/a n/a

0.72
(R2 = 0.91) n/a n/a 0.7

(R2 = 0.9) n/a n/a 0.68
(R2 = 0.9) n/a n/a

Linear fitting
(in vivo  dataa)

n = 775 n = 397 n = 372 n = 766 n = 394 n = 360 n = 722 n = 382 n = 358

0.66
(R2 = 0.85)

0.64
(R2 = 0.79)

0.67
(R2 = 0.88)

0.63
(R2 = 0.86)

0.62
(R2 = 0.85)

0.65
(R2 = 0.88)

0.61
(R2 = 0.89)

0.6
(R2 = 0.88)

0.62
(R2 = 0.9)

 <  Q1MBP [Q1MBP,  Q3MBP]  >  Q3MBP

Male and 
female Male Female

Male and 
female Male Female

Male and 
female Male Female

Linear fitting
(in silico data)

n = 1273 n/a n/a n = 1272 n/a n/a n = 1273 n/a n/a

0.74
(R2 = 0.91) n/a n/a 0.71

(R2 = 0.92) n/a n/a 0.66
(R2 = 0.88) n/a n/a

Linear fitting
(in vivo  dataa)

n = 755 n = 391 n = 364 n = 753 n = 391 n = 363 n = 755 n = 391 n = 363

0.64
(R2 = 0.87)

0.63
(R2 = 0.86)

0.66
(R2 = 0.89)

0.64
(R2 = 0.89)

0.62
(R2 = 0.86)

0.65
(R2 = 0.91)

0.63
(R2 = 0.87)

0.61
(R2 = 0.85)

0.64
(R2 = 0.89)
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Table 5.  Variation in k′ coefficient with respect to MBP estimation formulas. a Including all age groups. MBP: 
mean blood pressure; SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure; HR: heart 
rate.

In silico data In vivo  dataa

MBP estimation formula
MBP (mmHg)
mean ± SD Linear fitting

MBP (mmHg)
mean ± SD Linear fitting

MBP = average(BP) 101 ± 21 0.7
(R2 = 0.9) 100 ± 12 0.64

(R2 = 0.88)

MBP = 0.42 × SBP + 0.58 ×  DBP20 101 ± 20 0.7
(R2 = 0.91) 100 ± 12 0.63

(R2 = 0.88)

MBP = DBP + 0.33 ×  PP21 96 ± 20 0.72
(R2 = 0.93) 95 ± 12 0.66

(R2 = 0.87)

MBP = DBP + 0.33 × PP +  522 101 ± 20 0.69
(R2 = 0.93) 100 ± 12 0.63

(R2 = 0.88)

MBP = DBP + [0.33 + (0.0012 × HR)] ×  PP23 102 ± 20 0.69
(R2 = 0.91) 99 ± 12 0.64

(R2 = 0.87)

MBP = (SBP × DBP)1⁄224 101 ± 21 0.69
(R2 = 0.91) 101 ± 12 0.63

(R2 = 0.88)

Figure 1.  Scatter plot and Bland–Altman analysis between the estimated τ values using formula τ = 0.7T
MBP

cPP
 

and the reference values for the Asklepios data.
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Discussion
A new relationship was established between the central diastolic pressure decay time constant, τ , and the duration 
of the heart cycle and the ratio of mean blood pressure over central pulse pressure. Linear fitting was applied 
to estimate the linear coefficient using in silico  data10 which were generated using a validated one-dimensional 
mathematical model of the cardiovascular  system11. Validation of the derived equation was performed using 
in vivo data from the large Asklepios  cohort12. To our knowledge, this is the first study providing an explicit 
relationship between central diastolic pressure decay time constant and basic central pressure values. The derived 
formula was based on the generic C ∝

SV
cPP equation and appeared to apply well over a wide range of simulated 

and real physiological conditions.
The value of the linear coefficient was similar in both the synthetic and the human data, while the coefficient 

was reported to be age- and gender-independent. Notably, the in silico data provided valuable insights into the 
actual value of the coefficient k′ in real human data. Although the parameter distributions between the in silico 
and the in vivo population were not identical (Table 2), the in silico data appeared to simulate well the content of 
the real human population. These findings constitute another proof highlighting the significance of mathemati-
cal modelling in studying, understanding phenomena, but also quantifying physiological relationships between 
cardiovascular quantities.

Our study demonstrated that linear fitting across HR- and MBP-dependent groups yields k′ values with 
insignificant fluctuations, suggesting a uniform response of the k′ coefficient to variations in HR and MBP levels. 
Furthermore, our examination of the k′ coefficient’s sensitivity to MBP estimation methods revealed only minimal 
variability with different estimation formulas. This slight variation in k′ values was attributable to the fact that 
only minor differences were observed in MBP calculations across methods. Importantly, these findings indicate 
a consistent behavior of the  k′ coefficient across varying levels of HR and MBP, highlighting its reliability and 
applicability in diverse physiological conditions.

Previous research has demonstrated that the decay time of diastolic pressure holds significant pathophysi-
ological data from a clinical perspective. Aortic stiffening with reduced compliance may impair myocardial 
viability by hastening the diastolic exponential decay of the central blood pressure, rather than by increasing 
late-systolic augmentation. This predisposes hypertensive patients to ischemic heart  disease26. Providing a feasible 
substitute for aortic diastolic decay information may enable new strategies in the evaluation of vascular health. In 
addition, the findings of this study could be relevant in diseases where heart-arterial interactions are important, 
such as in patients with heart failure with preserved ejection fraction (HFpEF), where additional markers to 
monitor potential abnormal ventricular filling during diastole might be valuable.

The proposed empirical relationship provides a simple and fast formula to compute diastolic pressure 
decay time constant ( τ ) using heart period, MBP, and cPP without requiring the entire central pressure wave-
form. Undoubtedly, central pulse pressure is not as accessible as the brachial pulse pressure value acquired 
by the conventional cuff. When our analysis was repeated using the brachial (peripheral) PP instead of the 
carotid (central) PP, the fitting produced the following outcomes: k′ = 0.89  (R2 = 0.93) for the in silico data and 
k′ = 0.65  (R2 = 0.71) for the in vivo data, respectively. The variation in the coefficient k′ could be attributed to 

Table 6.  Metrics of accuracy, correlation, and agreement between estimated and reference τ values for 
the Asklepios subjects. r, Pearson’s correlation coefficient; ICC, intraclass correlation coefficient; nRMSE, 
normalized root mean square error.

Group r/ICC Slope Intercept (s) nRMSE (%) Bias (s) Limits of agreement (s)

All ages
(n = 2263) 0.94/0.82 0.9

(p < 0.0001) 0.25 5.5 0.13 [− 0.08, 0.34]

All ages,
Male (n = 1090) 0.95/0.84 0.9

(p < 0.0001) 0.24 5.2 0.11 [− 0.09, 0.3]

All ages,
Female (n = 1173) 0.92/0.8 0.93

(p < 0.0001) 0.22 8.6 0.15 [− 0.06, 0.36]

Age: < 40 years
(n = 456) 0.93/0.8 0.89

(p < 0.0001) 0.27 6.3 0.13 [− 0.09, 0.34]

Age: < 40 years,
Male (n = 216) 0.95/0.86 0.9

(p < 0.0001) 0.23 5.1 0.09 [− 0.11, 0.29]

Age: < 40 years,
Female (n = 240) 0.91/0.75 0.93

(p < 0.0001) 0.25 12.6 0.16 [− 0.05, 0.37]

Age: 40–50 years,
(n = 1147) 0.94/0.82 0.9

(p < 0.0001) 0.25 6.2 0.12 [− 0.08, 0.33]

Age: 40–50 years,
Male (n = 558) 0.95/0.85 0.9

(p < 0.0001) 0.24 6.3 0.11 [− 0.09, 0.3]

Age: 40–50 years,
Female (n = 589) 0.93/0.8 0.92

(p < 0.0001) 0.24 8.3 0.14 [− 0.06, 0.35]

Age: > 50 years,
(n = 660) 0.94/0.82 0.91

(p < 0.0001) 0.24 9.6 0.14 [− 0.07, 0.35]

Age: > 50 years,
Male (n = 316) 0.95/0.82 0.9

(p < 0.0001) 0.25 8.7 0.12 [− 0.08, 0.32]

Age: > 50 years,
Female (n = 344) 0.92/0.81 0.96

(p < 0.0001) 0.2 13.5 0.15 [-0.06, 0.37]
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the disparity in central-to-peripheral pressure amplification between the two datasets. Yet, the linear relation-
ship remains valid. If this modeling criterion is met or if sufficient in vivo data are available (for experimentally 
deriving the linear coefficient), the brachial pulse pressure could serve as a viable alternative. Importantly, 
current advancements in the field of non-invasive central blood pressure monitoring can provide accurate 
approximations. In a previous study, we demonstrated that machine learning can offer robust and precise means 
to predict aortic blood pressure from cuff (brachial) systolic and diastolic blood  pressure27. Moreover, in an 
inverse approach, having the central diastolic pressure decay time constant available enables the derivation of 
central pulse pressure, as mean blood pressure can be easily derived in clinical settings (e.g. cuff blood pressure 
measurement).

A major limitation of the proposed study is that the relationship that maps τ to the product T MBP
cPP  was 

evaluated solely on healthy individuals under physiological conditions. Future work should emphasize on the 
applicability of the proposed formula in other populations including pathologies and diseases. In addition, as the 
Asklepios participants are a representative cohort of 35–55-year-old individuals, free from overt cardiovascular 
disease at study initiation, while only about 10% of the subjects (259) received anti-hypertensive medication. The 
size of this cohort is small for a meaningful sub-analysis according to different medication types. Yet, exploring 
relationships in reference to specific medications such as beta-blockers or renin–angiotensin–aldosterone sys-
tem (RAAS) agents may be considered in future research endeavors. Finally, while our study provides valuable 
insights into the Asklepios population within a specific age range, it is important to acknowledge the limitation 
of lacking data for individuals aged < 35 and > 55 years. This recognition is particularly significant given the 
prevalence of cardiovascular disease in the latter age group.

It should also be noted that, in this study, non-invasive carotid blood pressure waveforms were used as a sur-
rogate of central blood pressure, as invasive aortic blood pressure data are difficult to acquire in vivo, especially 
in large quantity. However, carotid blood pressure is considered as a well-established surrogate of central blood 
pressure, and it is frequently used as a replacement to the aortic blood pressure measurement. Adding to this, 
recent evidence demonstrated a near-absolute agreement between the aortic and the carotid τ values in an in 
silico population of virtual  subjects28, contributing additional support to the similarities observed in the pressure 
waves between the aorta and the carotid.

Conclusion
This study provides innovative theoretical insights into the association between τ and central blood pressure 
features. The presented empirical formula may facilitate the derivation of τ without the necessity of obtaining 
the entire aortic blood pressure wave, particularly when an approximation of central pulse pressure is viable (e.g. 
transformation of peripheral pulse pressure to central pulse pressure). Additionally, this study contributes to 
existing literature by enhancing the accessibility of an additional biomarker, such as the central diastolic pressure 
decay time constant ( τ ), potentially opening new avenues for assessing vascular aging or vascular risk factors.

Data availability
The in silico dataset used and analysed in the current study is available from the corresponding author (vicky-
bikia@gmail.com) on reasonable request. The in vivo data that support the findings of this study are available 
from the University of Ghent but restrictions apply to the availability of these data, which were used under license 
for the current study, and so are not publicly available. Data are however available from the authors upon reason-
able request and with permission of the University of Ghent (Patrick.Segers@UGent.be).

Received: 6 April 2023; Accepted: 1 March 2024

References
 1. Kroeker, E. J. & Wood, E. H. Beat-to-beat alterations in relationship of simultaneously recorded central and peripheral arterial 

pressure pulses during Valsalva Maneuver and prolonged expiration in man. J. Appl. Physiol. 8(5), 483–494. https:// doi. org/ 10. 
1152/ jappl. 1956.8. 5. 483 (1956).

 2. Kroeker, E. J. & Wood, E. H. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, 
exercise and tilted position in man. Circ. Res. 3(6), 623–632. https:// doi. org/ 10. 1161/ 01. res.3. 6. 623 (1955).

 3. Westerhof, N., Stergiopulos, N. & Noble, M. I. M. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education 
(Springer, 2010).

 4. Nichols, W. W., O’Rourke, M. F. & Vlachopoulos, C. McDonald’s Blood Flow in Arteries (Arnold, 2011).
 5. Charlton, P. H. et al. Modeling arterial pulse waves in healthy aging: A database for in silico evaluation of hemodynamics and pulse 

wave indexes. Am. J. Physiol.-Heart Circ. Physiol. 317(5), H1062–H1085. https:// doi. org/ 10. 1152/ ajphe art. 00218. 2019 (2019).
 6. Izzo, J., Anwar, M., Elsayed, S., Osmond, P. & Gavish, B. Implications of diastolic pressure-decay differences in the radial and 

carotid arteries. J. Hypertens. 37, e317. https:// doi. org/ 10. 1097/ 01. hjh. 00005 73952. 91074. 62 (2019).
 7. Hashimoto, J. & Ito, S. Central diastolic pressure decay mediates the relationship between aortic stiffness and myocardial viability: 

Potential implications for aortosclerosis-induced myocardial ischemia. J. Hypertens. 35(10), 2034–2043. https:// doi. org/ 10. 1097/ 
HJH. 00000 00000 001436 (2017).

 8. Bourgeois, M. J., Gilbert, B. K., Donald, D. E. & Wood, E. H. Characteristics of aortic diastolic pressure decay with application to 
the continuous monitoring of changes in peripheral vascular resistance. Circ. Res. 35(1), 56–66. https:// doi. org/ 10. 1161/ 01. RES. 
35.1. 56 (1974).

 9. Stergiopulos, N., Meister, J. J. & Westerhof, N. Evaluation of methods for estimation of total arterial compliance. Am. J. Physiol.-
Heart Circ. Physiol. 268(4), H1540–H1548. https:// doi. org/ 10. 1152/ ajphe art. 1995. 268.4. H1540 (1995).

 10. Bikia, V., Rovas, G., Pagoulatou, S. & Stergiopulos, N. Determination of aortic characteristic impedance and total arterial compli-
ance from regional pulse wave velocities using machine learning: An in-silico study. Front. Bioeng. Biotechnol. 9, 649866. https:// 
doi. org/ 10. 3389/ fbioe. 2021. 649866 (2021).

 11. Reymond, P., Merenda, F., Perren, F., Rüfenacht, D. & Stergiopulos, N. Validation of a one-dimensional model of the systemic 
arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1), H208-222. https:// doi. org/ 10. 1152/ ajphe art. 00037. 2009 (2009).

https://doi.org/10.1152/jappl.1956.8.5.483
https://doi.org/10.1152/jappl.1956.8.5.483
https://doi.org/10.1161/01.res.3.6.623
https://doi.org/10.1152/ajpheart.00218.2019
https://doi.org/10.1097/01.hjh.0000573952.91074.62
https://doi.org/10.1097/HJH.0000000000001436
https://doi.org/10.1097/HJH.0000000000001436
https://doi.org/10.1161/01.RES.35.1.56
https://doi.org/10.1161/01.RES.35.1.56
https://doi.org/10.1152/ajpheart.1995.268.4.H1540
https://doi.org/10.3389/fbioe.2021.649866
https://doi.org/10.3389/fbioe.2021.649866
https://doi.org/10.1152/ajpheart.00037.2009


9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5913  | https://doi.org/10.1038/s41598-024-56137-8

www.nature.com/scientificreports/

 12. Rietzschel, E.-R. et al. Rationale, design, methods and baseline characteristics of the Asklepios Study. Eur. J. Cardiovasc. Prev. 
Rehabil. 14(2), 179–191. https:// doi. org/ 10. 1097/ HJR. 0b013 e3280 12c380 (2007).

 13. Segers, P. et al. Carotid tonometry versus synthesized aorta pressure waves for the estimation of central systolic blood pressure 
and augmentation index. Am. J. Hypertens. 18(9), 1168–1173. https:// doi. org/ 10. 1016/j. amjhy per. 2005. 04. 005 (2005).

 14. Segers, P. et al. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. 
Hypertension 49(6), 1248–1255. https:// doi. org/ 10. 1161/ HYPER TENSI ONAHA. 106. 085480 (2007).

 15. Verbeke, F. et al. Noninvasive assessment of local pulse pressure: Importance of brachial-to-radial pressure amplification. Hyper-
tension 46(1), 244–248. https:// doi. org/ 10. 1161/ 01. HYP. 00001 66723. 07809. 7e (2005).

 16. Stergiopulos, N., Meister, J. J. & Westerhof, N. Simple and accurate way for estimating total and segmental arterial compliance: 
The pulse pressure method. Ann. Biomed. Eng. 22(4), 392–397 (1994).

 17. de Simone, G. et al. Stroke volume/pulse pressure ratio and cardiovascular risk in arterial hypertension. Hypertension 33(3), 
800–805. https:// doi. org/ 10. 1161/ 01. HYP. 33.3. 800 (1999).

 18. Chemla, D. et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am. J. Physiol.-
Heart Circ. Physiol. 274(2), H500–H505. https:// doi. org/ 10. 1152/ ajphe art. 1998. 274.2. H500 (1998).

 19. Bland, J. M. & Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 
1(8476), 307–310 (1986).

 20. Wezler, K. & Böger, A. Die dynamik des arteriellen systems: Der arterielle Blutdruck und seine Komponenten. Ergebnisse Physiol. 
Exp. Pharmakol. 41(1), 292–606. https:// doi. org/ 10. 1007/ BF023 22413 (1939).

 21. Gauer, O. Kreislauf des Blutes. Lehrbuch Physiol. Menschen 1960, 125 (1960).
 22. Chemla, D., Hébert, J.-L., Zamani, K., Coimult, C. & Lecarpentier, Y. Estimation of mean aortic pressure. The Lancet 354(9178), 

596. https:// doi. org/ 10. 1016/ S0140- 6736(05) 77948-4 (1999).
 23. Razminia, M. et al. Validation of a new formula for mean arterial pressure calculation: The new formula is superior to the standard 

formula. Cathet. Cardio. Intervent. 63(4), 419–425. https:// doi. org/ 10. 1002/ ccd. 20217 (2004).
 24. Chemla, D. & Nitenberg, A. A call for improving mean aortic pressure estimation. Am. J. Hypertens. 18(6), 891–891. https:// doi. 

org/ 10. 1016/j. amjhy per. 2004. 10. 025 (2005).
 25. Papaioannou, T. G. et al. Mean arterial pressure values calculated using seven different methods and their associations with target 

organ deterioration in a single-center study of 1878 individuals. Hypertens. Res. 39(9), 640–647. https:// doi. org/ 10. 1038/ hr. 2016. 
41 (2016).

 26. Tagawa, K., Takahashi, A., Yokota, A., Sato, T. & Maeda, S. Aortic diastolic pressure decay modulates relation between worsened 
aortic stiffness and myocardial oxygen supply/demand balance after resistance exercise. J. Appl. Physiol. 127(3), 737–744. https:// 
doi. org/ 10. 1152/ jappl physi ol. 00117. 2019 (2019).

 27. Bikia, V. et al. Noninvasive estimation of aortic hemodynamics and cardiac contractility using machine learning. Sci. Rep. 10(1), 
15015. https:// doi. org/ 10. 1038/ s41598- 020- 72147-8 (2020).

 28. Bikia, V., Rovas, G., Anagnostopoulos, S. & Stergiopulos, N. On the similarity between aortic and carotid pressure diastolic decay: 
A mathematical modelling study. Sci. Rep. 13(1), 10775. https:// doi. org/ 10. 1038/ s41598- 023- 37622-y (2023).

Author contributions
VB and NS conceived and designed the experiments. VB performed the original analysis, processed the data, 
ran the experiments, and drafted the manuscript. All authors discussed the results and edited the manuscript.

Funding
This work was funded by Innosuisse (Grant no. 56211.1 IP-LS).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to V.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1097/HJR.0b013e328012c380
https://doi.org/10.1016/j.amjhyper.2005.04.005
https://doi.org/10.1161/HYPERTENSIONAHA.106.085480
https://doi.org/10.1161/01.HYP.0000166723.07809.7e
https://doi.org/10.1161/01.HYP.33.3.800
https://doi.org/10.1152/ajpheart.1998.274.2.H500
https://doi.org/10.1007/BF02322413
https://doi.org/10.1016/S0140-6736(05)77948-4
https://doi.org/10.1002/ccd.20217
https://doi.org/10.1016/j.amjhyper.2004.10.025
https://doi.org/10.1016/j.amjhyper.2004.10.025
https://doi.org/10.1038/hr.2016.41
https://doi.org/10.1038/hr.2016.41
https://doi.org/10.1152/japplphysiol.00117.2019
https://doi.org/10.1152/japplphysiol.00117.2019
https://doi.org/10.1038/s41598-020-72147-8
https://doi.org/10.1038/s41598-023-37622-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Novel theory and potential applications of central diastolic pressure decay time constant
	Materials and methods
	In silico dataset
	In vivo dataset—Asklepios study (round 1)
	Analytical derivation of the formulas
	Statistical analysis

	Results
	Derivation of the theoretical  formula (Eq. 5) using the in silico data
	Evaluation of the theoretical  formula (Eq. 5) using the in vivo data

	Discussion
	Conclusion
	References


