
New SIDH Countermeasures
for a More Efficient Key Exchange

Andrea Basso1[0000−0002−3270−1069] and Tako Boris Fouotsa2[0000−0003−1821−8406]

1 University of Bristol, Bristol, United Kingdom
andrea.basso@bristol.ac.uk

2 EPFL, Lausanne, Switzerland
tako.fouotsa@epfl.ch

Abstract. The Supersingular Isogeny Diffie-Hellman (SIDH) protocol
has been the main and most efficient isogeny-based encryption protocol,
until a series of breakthroughs led to a polynomial-time key-recovery
attack. While some countermeasures have been proposed, the resulting
schemes are significantly slower and larger than the original SIDH.
In this work, we propose a new countermeasure technique that leads to
significantly more efficient and compact protocols. To do so, we introduce
the concept of artificially oriented curves, which are curves with an
associated pair of subgroups. We show that this information is sufficient
to build parallel isogenies and thus obtain an SIDH-like key exchange,
while also revealing significantly less information compared to previous
constructions.
After introducing artificially oriented curves, we formalize several related
computational problems and thoroughly assess their presumed hardness.
We then translate the SIDH key exchange to the artificially oriented
setting, obtaining the key-exchange protocols binSIDH, or binary SIDH,
and terSIDH, or ternary SIDH, which respectively rely on fixed-degree
and variable-degree isogenies.
Lastly, we also provide a proof-of-concept implementation of the proposed
protocols. Despite being implemented in a high-level language, terSIDH
has very competitive running times, which suggests that terSIDH might
be the most efficient isogeny-based encryption protocol.

1 Introduction

Given two elliptic curves, finding an isogeny between them is widely believed
to be a computationally hard problem. This has led to the development of
several cryptographic protocols, whose security relies on the hardness of some
isogeny-related problem. While the first constructions date back to 1996 [22],
the first practical isogeny-based protocol was the Supersingular Isogeny Diffie-
Hellman (SIDH) key exchange [35]. After a decade of improvements and analysis,
the protocol became the most efficient and well-known encryption scheme from
isogenies, and it progressed through the four rounds of the NIST standardization
process.



2 Andrea Basso and Tako Boris Fouotsa

The security of the protocol, however, did not rely on the pure isogeny problem:
finding an isogeny between two supersingular elliptic curves. The problem is hard,
but its lack of structure makes it hard to obtain cryptographic functionalities off it.
Thus, SIDH needed to reveal additional information in the form of torsion images:
not only were the domain and codomain of the secret isogenies known, but also
their actions on a torsion subgroup of coprime order. This additional information
has been studied over the years, and it has been shown to lead to some active
attacks [33] and key-recovery attacks when the endomorphism ring of the two
curves is known [33] or when the protocol uses unbalanced parameters [40,42].
However, all these attacks came short of affecting the security of SIDH. The
situation changed when a series of works [9,38,43] developed a polynomial-time
attack against SIDH for all possible parameters.

These attacks do not affect the security of other isogeny-based protocols, such
as CSIDH [11] and SQISign [27], but they affect those protocols that reveal images
of torsion points, such as SÉTA [24]. Some countermeasures against the SIDH
attacks have been proposed [29]: they are based on scaling the torsion images
(M-SIDH) or computing variable-degree isogenies (MD-SIDH). However, the
complexity of the attacks against these protocols scale with the number of distinct
primes dividing the isogeny degrees: thus, to be secure, these protocols require
extremely large parameters, which lead to high running times and communication
costs.

Besides M-SIDH and MD-SIDH, the only currently secure encryption protocols
based on isogenies are CSIDH [11] and FESTA [5]. However, the first is vulnerable
to a subexponential quantum attack [39], which makes it hard to estimate the
quantum security of a given parameter set. The more conservative estimates
require large primes, which lead to impractically inefficient running times [16]. The
second, FESTA, is a recent public-key encryption protocol based on a constructive
application of the SIDH attacks. While the initial results are promising, the
protocol computes isogenies between elliptic curves of large prime degree (around
216) and isogenies between abelian varieties, which both affect the efficiency
of the protocol. A third key-exchange protocol, pSIDH [37], offered interesting
properties but was recently broken by Chen, Imran, Ivanyos, Kutas, Leroux and
Petit [14].

In this work, we aim to fill the gap by proposing new countermeasures against
the SIDH attacks that lead to a practically efficient SIDH-like key-exchange
protocol. To do so, we introduce the concept of artificial orientations: an artificial
A-orientation A on a supersingular elliptic curve E is a pair of cyclic disjoint
subgroups of E[A] of order A. Given an artificial orientation A = (G1, G2), an
A-isogeny ϕ is an isogeny whose kernel is the direct sum of a cyclic subgroup of G1

and a cyclic subgroup of G2. In other words, ϕ can be written as the composition
ϕ = ϕ2 ◦ ϕ1, where kerϕ1 ⊂ G1, kerϕ2 ⊂ ϕ1(G2), and the degrees of ϕ1 and ϕ2
are coprime. While an artificial orientation does not reveal the same information
as a standard orientation [18], it provides an interpolation between the original
SIDH construction and the oriented protocols, such as CSIDH [11], OSIDH [18],
and SCALLOP [26]. On one hand, artificial orientations and their images provide



New SIDH Countermeasures for a More Efficient Key Exchange 3

enough information to compute parallel isogenies, similarly to torsion images in
SIDH; on the other, orientations always imply an artificial orientation, because
given an orientation it is possible to recover the images of two cyclic disjoint
groups, i.e. an artificial orientation. For example, in CSIDH, the images of the
groups ker(π−1)∩E[ℓ] and ker(π+1)∩E[ℓ] under the secret isogeny ϕ : E → E′

are given by ker(π−1)∩E′[ℓ] and ker(π+1)∩E′[ℓ], respectively [10, Section 6.1].

Contributions. In this paper, we formalize the concept of artificial orientations and
introduce some computational problems related to artificially oriented isogenies.
We thoroughly assess the presumed hardness of these problems and we survey
potential attacks. Then, we propose binSIDH, or binary SIDH, the first protocol
that translates SIDH to the artificially-oriented setting. In other words, both
parties compute an oriented isogeny, one whose kernel is the direct sum of two
cyclic subgroups of the orientation, and reveal the images of a second orientation
under the secret isogeny. This allows both parties to obtain a shared secret while
revealing significantly less information.

As in SIDH, such a key exchange is limited to fixed-degree isogenies, which is
helpful to develop constant-time implementations and zero-knowledge proofs of
isogeny knowledge. Then, we generalize binSIDH to the case of variable-degree
isogenies to obtain terSIDH, or ternary SIDH, which achieves smaller parameters.

The two protocols, binSIDH and terSIDH, require both parties to use artificially
oriented isogenies, which results in a balanced protocol where the computational
requirements of both parties is similar. We also propose a new technique that
allows one party to compute SIDH-like isogenies, at the cost of the other party
computing longer oriented ones. This allows one party to be significantly more
efficient, which is particularly useful in advanced protocols between clients and
servers with unbalanced computational power: not only can the client be more
efficient than the server, but if the protocol requires proofs of isogeny knowledge,
those of the client can be computed much more efficiently as well. Since the same
technique can be applied to binSIDH and terSIDH, we obtain two new variants:
binSIDHhyb and terSIDHhyb.

Lastly, we generate parameter sets for all four protocols, for all security levels,
and we provide a SageMath proof-of-concept implementation of all proposed
protocols. Despite being implemented in a high-level language, terSIDH has very
competitive running times when compared to existing implementations of other
isogeny-based encryption schemes.

2 Preliminaries

In this section, we briefly introduce the SIDH protocol and the recent key-recovery
attacks. For more background information on elliptic curves and isogenies, we
refer the reader to [44].



4 Andrea Basso and Tako Boris Fouotsa

2.1 SIDH

SIDH, or Supersingular Isogeny Diffie-Hellman [35], is a key-exchange protocol
based on isogenies between supersingular elliptic curves. The main protocol
parameters are a prime p of the form p = ABf − 1, where A = 2a and B = 3b,
and a starting supersingular elliptic curve E0 defined over Fp2 . The protocol also
specifies two bases PA, QA and PB , QB that generate, respectively, E0[A] and
E0[B].

The first party, say Alice, generates her public key by sampling a random
secret key skA = α ∈ ZA, computing the isogeny ϕA : E0 → EA with kernel
kerϕA = ⟨PA + [α]QA⟩, and revealing pkA = (EA, RA = ϕA(PB), SA = ϕA(QB)).
The second party, say Bob, proceeds analogously with an isogeny of degree B:
he samples skB = β ∈ ZB, computes the isogeny ϕB : E0 → EB with kernel
kerϕB = ⟨PB + [β]QB⟩, and reveals pkB = (EB , RB = ϕB(PA), SB = ϕB(QA)).
Then, after exchanging public keys, both parties can obtain the same shared
secret by computing the push-forward of their isogeny under the other party’s
isogeny. Concretely, Alice computes the isogeny ϕ′A : EB → EAB with kernel
kerϕ′A = ⟨RB + [α]SB⟩ = ϕB(kerϕA), while Bob computes the isogeny ϕ′B :
EA → EBA with kernel kerϕ′B = ⟨RA + [b]SA⟩ = ϕA(kerϕB). The two isogenies
are the correct push-forwards, and thus ϕA, ϕB , ϕ′A, ϕ

′
B form a commutative

diagram. Hence, the codomain curves EAB and EBA are isomorphic, and their
j-invariant is the shared secret known to both Alice and Bob.

2.2 Polynomial time attacks on SIDH

The security of the SIDH protocol relies on the hardness of recovering a secret
isogeny from its action on a torsion basis. In a series of works by Castryck and
Decru [9], Maino, Martindale, Panny, Pope and Wesolowski [38], and Robert [43],
the authors show the problem can be solved in polynomial time when the torsion
information is sufficiently large compared to the degree of the isogeny. This leads
to an efficient key-recovery attack on all instances of SIDH.

The attacks slightly vary in their techniques, but they all rely on Kani’s
theorem [36], which implies that given an SIDH square with specific properties,
there exists an isogeny between the principally polarized abelian surface obtained
by gluing two curves in the SIDH square to the principally polarized abelian
surface obtained by gluing the other two curves in the square. It is possible to
generate an SIDH square with the desired properties and compute the genus-two
isogeny from the image points revealed in SIDH; evaluating such an isogeny
allows an attacker to evaluate the secret isogeny on any point, which in turn can
be used to recover the secret isogeny.

For the purpose of this work, the SIDH attacks can be abstracted as a generic
algorithm that recovers an isogeny ϕ : E0 → E1 of degree d when it receives
the curves E0, E1, the degree d, and the points P0, Q0 and ϕ(P0), ϕ(Q0), where
P0, Q0 are linearly independent points of order n and n2 > 4d. There is no known
technique that allows extending such attacks to a case where the image points
are not known exactly: indeed, all attacks on the proposed countermeasures [29],



New SIDH Countermeasures for a More Efficient Key Exchange 5

as well as the potential attacks discussed in this work, need to recover the exact
torsion images to apply the attacks.

3 Artificial orientations

In this section, we introduce artificial orientations, the main ingredient that
powers the countermeasures against the SIDH attacks. In the rest of the paper,
the integers A and B are assumed to be smooth, coprime with each other, and
square-free.3 They also define a prime p of the form p = ABf − 1, where f is a
small cofactor needed for primality; thus, the values A and B are always smaller
than p and coprime with it.

Artificial orientations are composed of two independent subgroups. This is
formalized in Definition 1, and we provide more information on how to explicitly
compute such isogenies in Eq. (2) in Section 4.1.

Definition 1. Let E be a supersingular elliptic curve defined over Fp2 , and let
A be an integer. An artificial A-orientation (of E) is a pair A = (G1, G2) where
G1, G2 ⊂ E[A] are cyclic groups of order A and G1 ∩G2 = {0}. (E,A) is called
an artificially A-oriented curve.

Remark 1. Artificial orientations are known in the number theory literature as
split Cartan level structures. We prefer the artificial orientation name as it may be
more familiar to those who know isogeny-based cryptography, but the connection
may lead to useful insights. For instance, see [17] for an analysis of the mixing
properties of the isogeny graph with split Cartan level structures.

Given an artificially A-oriented curve (E,A), one can compute a range of
isogenies whose kernels arise from A = (G1, G2). We formalize this concept, which
we call A-isogenies, in the following definition.

Definition 2. Let (E,A) where A = (G1, G2) be an artificially A-oriented curve.
An isogeny ϕ : E → E′ is said to be an A-isogeny if kerϕ is the direct sum of
a subgroup of G1 and a subgroup of G2, that is kerϕ = H1 ⊕H2 where Hi is a
subgroup of Gi for i = 1, 2.

If (E,A) is an artificially A-oriented curve and ϕ : E → E′ is a non-trivial A-
isogeny, then the artificial A-orientation on E cannot be carried onto E′ through
ϕ. In fact, since ϕ is non-trivial and kerϕ is the direct sum of a subgroup of G1

and a subgroup of G2, then at least one of the groups ϕ(G1) and ϕ(G2) has order
strictly smaller than A. In order to be able to carry the artificial A-orientation on
E onto E′ it is necessary that the degree of the isogeny considered is coprime to
A. We have the following definition for artificially A-oriented B-isogenous curves.

3 The square-free property is not necessary for the correctness of the protocols, but
square divisors of A and B decrease the efficiency of the protocols without increasing
their security



6 Andrea Basso and Tako Boris Fouotsa

Definition 3. Let (E,A) and (E′,A′) be two artificially A-oriented curves and
let B be an integer coprime to A. We say that (E,A) and (E′,A′) are B-isogenous
if there exists an isogeny ϕ : E → E′ of degree B such that A′ = ϕ(A), that is if
A = (G1, G2) and A′ = (G′

1, G
′
2), then G′

1 = ϕ(G1) and G′
2 = ϕ(G2).

Remark 2. Note that B-isogenous oriented curves include images of subgroups.
These can be represented by choosing a random generator. Thus, if we fix
generators ⟨P1⟩ = G1 and ⟨P2⟩ = G2, the subgroups G′

1 and G′
2 are represented

by [α]ϕ(P1) and [β]ϕ(P2) respectively, for some unknown α, β ∈ ZA.

3.1 A comparison of A-isogenies with existing techniques

In this section, we discuss the main differences between artificially oriented
isogenies and fully oriented isogenies, such as those used in CSIDH and SCALLOP,
and between oriented isogenies and the more generic isogenies used in SIDH,
M-SIDH, and MD-SIDH.

A-isogenies vs group actions. Artificially oriented isogenies share similarities
with those that arise from group actions, such as the isogenies in CSIDH, OSIDH,
and SCALLOP. In both instances, isogenies are restricted to specific subsets of all
possible isogenies, and the action of secret isogenies on two independent subgroups
is revealed [10, Section 6.1]. However, artificially oriented isogenies are significantly
different from those in CSIDH and SCALLOP: first, given any supersingular
elliptic curve, it is always possible to attach an artificial orientation to it, unlike
in CSIDH, where the curves need to be defined over Fp and the orientation is
already available through the Frobenius endomorphism; or SCALLOP, where not
all supersingular elliptic curves are oriented and a standard orientation needs
to be provided. Most importantly, artificial orientations do not give rise to a
commutative group action as the one from standard orientations, which means
that the quantum subexponential attack by Childs, Jao, and Soukharev [15] does
not apply. Similarly, artificial orientations are also immune to the attacks on
OSIDH [23].

A-isogenies vs SIDH. The main difference between SIDH-like isogenies and
artificially A-oriented isogenies is the amount of information needed to compute
their push-forwards. In the SIDH case, the kernel of the isogeny (say ψ) is
generated by a point of the form P + [α]Q. The kernel of the push-forward of ψ
through ϕ is generated by the point ϕ(P ) + [α]ϕ(Q). Therefore, the images of
torsion points P and Q are needed in order to compute the push-forward of ψ
through ϕ. Conversely, A-isogenies are limited to those that arise from A. Hence,
only the push-forward of the artificial orientation is needed, which means only
the images of two cyclic torsion groups are revealed. This prevents torsion point
attacks [40,42,9,38,43].



New SIDH Countermeasures for a More Efficient Key Exchange 7

A-isogenies vs M-SIDH. In M-SIDH and MD-SIDH [29], isogenies are defined
as in SIDH, but to compute their push-forwards, the torsion points images are
revealed while scaled (or masked) with the same scalar β. This means that instead
of revealing ϕ(P ) and ϕ(Q) as in SIDH, one reveals [β]ϕ(P ) and [β]ϕ(Q). This
is significantly more information than what is revealed to compute the push-
forwards of A-isogenies, since the image of an artificial orientation is equivalent, as
discussed in Remark 2, to revealing [α]ϕ(P ) and [β]ϕ(Q), for independent values
α and β. From a subgroup perspective, push-forwards of A-isogenies require
the images of two cyclic disjoint subgroups, whereas M-SIDH reveals two image
points scaled with the same value, which is equivalent to the images of three
cyclic disjoint groups of order ord(P ) (see [4, Lemma 1] and [30, Lemma 1]).

3.2 Security assumptions

Having introduced artificial orientations, we now introduce three computational
problems that relate to artificially oriented curves and isogenies. The first problem,
which we refer to as the Supersingular Isogeny Problem for artificially A-oriented
curves (SSIP-A), asks to recover an isogeny given its domain, together with an
artificial orientation, and its codomain, together with a compatible orientation.
This corresponds to finding a path of length B in the isogeny graph with split
Cartan level structure.

Problem 1 (SSIP-A). Let (E,A) be an artificially A-oriented curve and let B
be an integer coprime to A. Let ϕ : E → E′ be a cyclic isogeny of degree B and
let A′ = ϕ(A). Given (E,A) and (E′,A′) and the degree B, compute ϕ.

In Problem 1, there is no constraint on the isogeny ϕ, apart from its degree
being B. When an artificial B-orientation B is provided on E, then one may
restrict to B-isogenies. This leads to the (supersingular) Artificially Oriented
Isogeny Problem (AOIP).

Problem 2 (AOIP). Let (E,A) an artificially A-oriented curve and let B be an
integer coprime to A. Let B be an artificial B-orientation on E. Let ϕ : E → E′

be a cyclic B-isogeny of degree B and let A′ = ϕ(A). Given (E,A,B) and (E′,A′),
compute ϕ.

We can also study a problem that is, in some sense, the converse of Problem 1.
Rather than considering general isogenies and the image of an artificial orientation,
we can focus on the case where the isogeny is artificially oriented, but more
torsion image information is revealed. This is summarized in the Supersingular
Isogeny Problem for B-isogenies (SSIP-B) problem.

Problem 3 (SSIP-B). Let (E,A) be an artificially A-oriented curve and let B be
an integer coprime to A. Let ϕ : E → E′ be a cyclic A-isogeny of degree A, with
B ≪ A. Let also P,Q be a basis of E[B]. Given (E,A), together with the points
P,Q, and the curve E′ with the points ϕ(P ) and ϕ(Q), compute ϕ.



8 Andrea Basso and Tako Boris Fouotsa

If B ̸≪ A, such a problem could be solved with the techniques introduced
in the SIDH attacks [9,38,43]. However, for larger choices of B (when compared
to A), Problem 3 is believed to be secure, and its hardness can be used to build
more efficient protocols, as we will see in Section 5.

3.3 Hardness analysis

In this section, we study the computational problems that we introduced, analyze
potential attacks, and justify their assumed hardness.

Finding an isogeny from the orientation image. The first problem, Prob-
lem 1 is already known in the literature, as it was recently introduced with a
different notation in [5, Problem 7], where it was called the Computational isogeny
with scaled-torsion (CIST) problem. As argued in [5], the problem appears to be
hard because the images of two subgroups do not provide enough information
for the SIDH attacks to be applicable. Given two images [α]ϕ(P ) and [β]ϕ(Q),
scaled by independent values α and β, an attacker can easily recover the product
αβ from pairing computations, but this is similarly insufficient to recover the
exact images that would enable the SIDH attacks. An attacker may attempt to
brute force the missing information, but this is computationally infeasible if the
degree of the secret isogeny is sufficiently large, which in turn makes the order of
the torsion information to be guessed large enough for the attack to be infeasible.
Note that the information revealed in Problem 1 is comparable to that in CSIDH
and SCALLOP, and significantly less than that in M-SIDH and MD-SIDH. It is
thus likely that an attack that can solve Problem 1 in its most general form, can
do so for such protocols as well.

Since not enough information is revealed for the SIDH attacks to apply, the
attack on starting curves with small endomorphisms [29] does also not apply
here. It is thus possible to choose a starting curve with known endomorphism
ring. Very recent analysis [12] has shown it is possible to recover an isogeny
from its scaled action and thus solve Problem 1 when the starting curve E0 and
the corresponding orientation has specific properties relative to the Frobenius
conjugate E(p)

0 of E0. It is thus important to select parameters that avoid these
issues; since the endomorphism ring of the starting curve can be public, this can
be done in a transparent manner without the need of a trusted setup. We further
expand on the choice of the artificial orientation and of the starting curve at the
end of this section.

Finding an oriented isogeny from the orientation image. In Problem 2,
the degree of the isogeny ϕ is not necessarily known: the degree of a B-isogeny
can range across all values dividing the order B of the subgroups in B, which
poses a first barrier to the application of the SIDH attacks. However, even if
we restrict to isogenies of full degree, i.e. deg ϕ = B, the torsion information
that is revealed is the same as that in Problem 1, and thus a similar analysis
follows. The fact that the unknown isogeny is a B-isogeny does not interact in



New SIDH Countermeasures for a More Efficient Key Exchange 9

any meaningful way with the SIDH attacks or the revealed torsion information:
as such, it appears to be hard for an attacker to exploit such attacks to solve
Problem 2. Hence, it seems likely that any attack would have to disregard the
artificial orientation and focus on recovering an isogeny between two given curves;
however, since the isogeny is a B-isogeny, this problem is easier than the general
case.

First, an attacker can simply brute force all the possible isogenies. If we restrict
ourselves to isogenies of full degrees, there are 2t possible B-isogenies, where t is
the numbers of primes dividing B. This suggests that the degree of the isogeny
should be the product of at least t = λ distinct primes. Second, generic attacks
to recover an isogeny between two given curves, such as the meet-in-the-middle
(MITM), van Oorschot-Wiener (vOW) [46], Delfs-Galbraith [28] attacks, are
not applicable since the prime characteristic and the isogeny degree, being the
product of at least λ distinct primes, are sufficiently large to make these attacks
computationally infeasible. However, it is possible to devise an enhanced MITM
attack that exploits the nature of the B-isogenies: the attacker fixes an attack
parameter 0 ≤ t′ ≤ t and then computes 2t

′
B-isogenies starting from E0. These

are chosen of the largest degree, i.e. the attacker first computes the isogenies with
degree corresponding to the largest primes dividing B, so that the end curves are
as close to E′ as possible. The attacker stores the j-invariants of the codomain
curves and starts a random walk of the correct degree from E′, in the hope of
finding a collision. The cost of the attack depends on the choice of t′: the first
part requires 2t

′
computations, while the second part requires computing all the

possible isogenies of a specific degree (the product of the smaller t− t′ primes
dividing B, assuming that B is square-free) starting from E′. This technique
yields a better attack than a simple brute-force approach, and thus it would
require larger parameters, albeit only moderately larger ones.

Example 1. For instance, when B is the product of the first 128 primes (the case
most suitable to this attack), the attack is optimal for t = 106, since such a value
minimizes the product of the costs of the MITM attack and the brute-force attack.
Setting t = 106 corresponds to an attack where 2106 isogenies are computed and
2106 j-invariants are stored in memory. Thus, to obtain λ = 128 bits of security,
we would need the B-isogeny to have a degree B that is the product of the
t = 154 smallest primes. This ensures that the optimal attack requires t > 128.
We remark that the security estimates depend not only on the number of distinct
primes dividing B, but also on the size of the specific primes.

The previous attack considers an attacker that has accesses to unbounded
memory. This is far from realistic, and we can obtain better estimates of the
attack possibilities when we impose an upper bound to the amount of memory
available. We follow the security analysis of SIDH [1,34], and we limit our analysis
to attackers with 280 units of memory for any security level.4 In this setting,
the best attack is a vOW version of the enhanced MITM attack presented
4 More precisely, we consider attackers that can store up to 280 j-invariants. Given the

size of the primes used, this corresponds to more than 290 bits of memory.



10 Andrea Basso and Tako Boris Fouotsa

before, which allows the attacker to trade higher computational costs for a lower
memory requirement. As shown in [1], a vOW search has a computational cost
of approximately

N3/2/w1/2,

where N is the number of collision points and w is the number of memory units
available. In our case, we have N = 2t

′
, and w = 280. This suggests that, for

λ = 128, this attack outperforms a brute-force search, but only marginally. If we
set the degree B to be the product of the first t distinct primes, the enhanced vOW
attack requires t = 137 (compared to t = 128, as suggested by the brute-force
attack). However, for higher security levels, the brute-force attack outperforms
the enhanced vOW attack, because the memory bound remains constant across
all security levels, and thus it has a larger performance impact on higher security
levels. Thus, for λ ∈ {192, 256}, we can choose t = λ.

The case with variable-degree isogenies follows similarly. A brute-force ap-
proach requires an attacker to compute isogenies starting from all previously
visited curves, rather than just the end ones. In other words, the attack starts
with a set of visited curves S = {E0}; for each prime pi, the attacker computes
two isogenies starting for all curves in S and adds the codomain curves to S. We
restrict ourselves to the case where the maximum degree is square free, as we
will choose for the parameters of terSIDH, since higher powers decrease efficiency
without improving security. In this case, the complexity of the attack is the same
a brute-force attack with fixed-degree isogenies with three options at each node.

Overall, the rest of the attack proceeds similarly: as in the binSIDH case,
the parameter t needs to be selected to avoid a brute-force attack, where the
specific value depends on the exponents of the primes dividing B. The enhanced
MITM and vOW attacks similarly apply to the variable-degree case: in this
case, however, the enhanced vOW attack outperforms a brute-force attack at
all commonly used security levels, and thus the parameters need to be slightly
larger than what a brute-force attack would suggest.

Finding an isogeny from the full torsion image. Lastly, Problem 3 is
vulnerable to the SIDH attacks, as discussed when introduced. However, the
A-isogeny needs to have a large degree A to be secure from the attacks outlined
above, and thus the torsion points would need a large order B for the SIDH
attacks to be applicable. More precisely, the attacks are possible when B2 > 4A,
but an attacker could guess part of the isogeny so that the remaining part is short
enough to be recovered through the SIDH attacks. This would suggest that if
2t

′
B2 ≈ A, an attacker can recover the unknown isogeny after iterating through

2t
′

isogenies. This is the case for generic isogenies, but in the case of oriented
ones, the attacker can brute force much longer isogenies at the same cost, since
there are only limited options for any prime degree dividing A. In particular,
after 2t

′
computations, the attacker obtains isogenies of degree At′ , the product

of the t′ largest primes dividing A. Thus, Problem 3 is secure against the SIDH
attacks when At′B

2 ≤ A.



New SIDH Countermeasures for a More Efficient Key Exchange 11

Assuming this condition is satisfied, Problem 3 appears to be secure since the
oriented-isogeny structure does not interact with the revealed torsion information,
which does not make the problem easier. Lastly, before the attacks by Castryck
and Decru, Maino, Martindale, Panny, Pope and Wesolowski, and Robert, SIDH
with unbalanced parameters was vulnerable to torsion-point attacks [40,42] that
relied on knowledge of the endomorphism ring of the starting curve. These attacks
similarly do not apply to Problem 3 since the torsion information is much lower
than what is needed.

3.4 On the choice of the artificial orientation

As mentioned earlier in this section, a recent analysis [12] has shown it is possible
to solve Problem 1 in some particular cases:

– When the starting curve E0 is defined over Fp and the corresponding ori-
entation (G1, G2) is such that G1, G2 or both are fixed by the Frobenius
endomorphism.

– When the curve E0 is not defined over Fp, the attacks also extends to the
case where the curve E0 and its Frobenius conjugate E(p)

0 are connected by
a short isogeny ψ : E0 → E

(p)
0 and the artificial orientation (G1, G2) is such

that G1, G2 or both are fixed by the endomorphism π ◦ ψ̂.
– When the starting curve admits a small endomorphism that fixes one or both

groups G1 and G2 in a given artificial orientation.

We describe here another specific case where Problem 1 is potentially easy
to solve. Assume that E0 is defined over Fp (or it is close to its Frobenius
conjugate; the case follows similarly) and fix an artificial orientation (G1, G2)
where some subgroups of G1 and G2 are fixed by the Frobenius endomorphism.
Let ϕ : E0 → E be a secret isogeny artificially oriented by (G1, G2); then, when
the end curve E is also defined over Fp, this indicates that the kernel of the secret
isogeny is fixed by the Frobenius endomorphism, which discards any artificially
oriented isogeny whose kernel is not fixed by the Frobenius. This means that one
can discard several impossible secret keys just by looking at the field of definition
of the end curve. In order to avoid this, either all of the end curves need to be
defined over Fp, or none of them can be defined over Fp. In the first case, G1 and
G2 are fixed by the Frobenius and the artificial orientation is the same as that of
CSIDH. As highlighted above, this is not secure, hence the end curves should be
defined over Fp2 . To ensure this, no subgroup of the groups G1 and G2 should
be fixed by the Frobenius. For any given prime ℓ, there are ℓ+ 1 cyclic groups
of order ℓ, and at most two of them are fixed by the Frobenius endomorphism.
Hence ℓ− 1 cyclic groups of order ℓ are not fixed by the Frobenius, and these
ones can be used in the artificial orientations. Note that that when ℓ = 2, there
may be only one group that is not fixed by the Frobenius: in such a case, the
isogeny degrees A and B can be selected to be both odd. This issue with this
approach is that there is no guarantee that none of the attacks from [12] listed
earlier does not apply. For example, there is no guarantee that the groups in



12 Andrea Basso and Tako Boris Fouotsa

the artificial orientations are not fixed by a small endomorphism (that could be
exploited by an attacker). Therefore, all the strategies proposed till now do not
provide enough insurance that the starting curve and the artificial orientations
are secure.

In order to avoid all the problematic cases discussed above, we propose to
use a uniformly random supersingular elliptic curve as a starting curve. Such
a curve is defined over Fp2 with overwhelming probability (≈ 1− 1√

p ), it is far
from Fp curves, and it is not connected to its Frobenius conjugate by a short
isogeny (with overwhelming probability). Such a curve can be generated by per-
forming a long publicly-verifiable uniformly-random walk starting from a known
supersingular elliptic curve. Practically, this walk can be computed by “nothing-
up-my-sleeve” techniques: fix a seed s (say, the string "binSIDH+terSIDH"),
compute its hash h = H(s) (where H is a cryptographically secure hash function),
and pass it as input to the CGL hash function [13]. The CGL output curve is
then the starting curve E0 of binSIDH and terSIDH. The artificial orientations
are then generated as A = (⟨PA⟩, ⟨QA⟩) and B = (⟨PB⟩, ⟨QB⟩), where (PA, QA)
and (PB , QB) are canonical bases of E0[A] and E0[B], respectively. Note that
this approach is publicly verifiable by anyone and does not required any trusted
setup.

In the rest of this paper, we assume that the starting curve E0 and the
artificial orientations are chosen this way.

4 The binSIDH and terSIDH protocols

In this section, we propose two new protocols: binSIDH and terSIDH. Both
protocols translate the SIDH key exchange to the setting of artificially oriented
curves and isogenies. The former restricts itself to fixed-degree isogenies, while the
latter relies on variable-degree isogenies to improve on efficiency and compactness.

4.1 binSIDH

We first introduce binSIDH, which restricts itself to isogenies of full degree. The
protocols rely on the fact that A-oriented curves provide sufficient information
to compute parallel isogenies. More formally, let A be a product of t distinct
primes A =

∏t
i=1 pi and write A = A1A2 for a multiplicative splitting of A with

gcd(A1, A2) = 1. Then, given two A-oriented curves (E,A) and (E′,A′) connected
by a B-isogeny ϕ : E → E′, where A = (⟨G1⟩, ⟨G2⟩) and A′ = (⟨G′

1⟩, ⟨G′
2⟩), the

isogenies

ψ : E → E/⟨[A1]G1 + [A2]G2⟩, ψ′ : E′ → E′/⟨[A1]G
′
1 + [A2]G

′
2⟩

are parallel, i.e. we have kerψ′ = ϕ(kerψ) and the codomain curves are also
B-isogenous, connected by the isogeny ϕ′ with kernel kerϕ′ = ψ(kerϕ).



New SIDH Countermeasures for a More Efficient Key Exchange 13

The isogenies ψ and ψ′ are thus determined by the splitting of A as A = A1A2.
In other words, if we represent the subgroups ⟨G1⟩ and ⟨G2⟩ as

⟨G1⟩ = ⟨G1
1, G

2
1, . . . , G

t
1⟩,

⟨G2⟩ = ⟨G1
2, G

2
2, . . . , G

t
2⟩,

where

{
ord(Gi

1) = pi,

ord(Gi
2) = pi,

(1)

then the kernel of ψ is determined by selectively choosing either Gi
1 or Gi

2 to
be in the kernel of ψ, for every i ∈ [t]. The same holds for the isogeny ψ′ and
the generators G′

1 and G′
2. This suggests the following notation: if we fix an

artificial A-orientation (E,A = (G1, G2)), where A =
∏t

i=1 pi, we can associate
a vector a ∈ {1, 2}t to any A-oriented isogeny ϕ by writing

kerϕ = ⟨G1
a1
, G2

a2
, . . . , Gt

at
⟩, (2)

where the points Gi
1 and Gi

2 are defined as in Eq. (1) and ai denotes the i-th
element of a. Throughout the rest of the paper, we write ⟨a,A⟩ to denote the
subgroup corresponding to the orientation A with secret vector a, as computed
in Eq. (2).

We showed in Section 3.2 that we consider it secure to reveal artificially
oriented curves since the SIDH attacks are inapplicable. Moreover, artificial
orientations allow computations of parallel isogenies, and if the order A is
sufficiently composite, the number of potential parallel isogenies is exponentially
large. That is because the value A is the product of t distinct primes, which
means there are 2t potential splittings A = A1A2. This suggests it is possible to
replicate the SIDH key exchange with artificially oriented isogenies and to obtain
a secure protocol that is immune to the SIDH attacks. We call the resulting
construction binSIDH, and we represent it in Fig. 1.

Setup. Let λ be the security parameter and t an integer depending on λ. Let
p = ABf − 1 be a prime such that A =

∏t
i=1 ℓi and B =

∏t
i=1 qi are coprime

integers, ℓi, qi are distinct small primes, A ≈ B ≈ √
p and f is a small cofactor.

Let E0 be a supersingular elliptic curve defined over Fp2 with #E0(Fp2) = (p+1)2.
Let A be an artificial A-orientation on E0 and let B be an artificial B-orientation
on E0. The public parameters are E0, p, A, B, A and B.

KeyGen. Alice samples uniformly at random a vector a from {1, 2}t and computes
the A-oriented isogeny ϕA : E0 → EA of degree A defined by a. She also computes
the push forward B′ of B on EA through ϕA. Her secret key is a and her public
key is (EA,B

′). Analogously, Bob samples uniformly at random a vector b from
{1, 2}t and computes the B-oriented isogeny ϕB : E0 → EB of degree B defined
by b. He also computes the push forward A′ of A on EB through ϕB . His secret
key is b and his public key is (EB ,A

′).



14 Andrea Basso and Tako Boris Fouotsa

SharedKey. Upon receiving Bob’s public key (EB ,A
′), Alice checks that A′

is an artificial A-orientation on EB, if not she aborts. She computes the A′-
oriented isogeny ϕ′A : EB → EBA of degree A defined by a. Her shared key
is j(EBA). Similarly, upon receiving (EA,B

′), Bob checks that B′ is an ar-
tificial B-orientation on EA, if not he aborts. He computes the B′-oriented
isogeny ϕ′B : EA → EAB of degree B defined by b. His shared key is j(EAB).

Fig. 1: The binSIDH protocol.

4.2 The terSIDH variant

We now introduce terSIDH, a variant of binSIDH that is more efficient and more
compact, but these improvements come at the cost of relying on variable-degree
isogenies. In binSIDH, every A-oriented isogeny ϕ is determined by a binary
choice for each prime pi dividing A: the pi-degree isogeny has kernel generated
by either Gi

1 or Gi
2. However, we can introduce a third option by allowing the

isogeny to not have a pi component. In other words, write ϕ as the composition
of t isogenies ϕ = ϕt ◦ . . . ϕ2 ◦ ϕ1; then, the isogeny ϕi has kernel generated by
Gi

1, Gi
2, or O. We thus extend the notation introduced in the previous section

by letting the vector a have entries in {0, 1, 2}, and we set Gi
0 = O for all i ∈ [t].

The full protocol is described in Fig. 2.
Compared to binSIDH, terSIDH introduces more choices for each prime pi. In

particular, it provides three choices, which means that every pi dividing p+ 1
provides log2 3 ≈ 1.6 bits of security. Interestingly, terSIDH is the first counter-
measure technique against the SIDH attacks that can provide more than one bit
of security per prime pi. This means that, to provide enough security, the isogeny
degrees should be at least the product of t ≈ λ/1.6 primes, and thus terSIDH
can use significantly smaller parameters and shorter isogenies, leading to a more
efficient and more compact protocol. However, to achieve this, we necessarily rely
on variable-degree isogenies. This has some disadvantages: from an implementa-
tion perspective, the varying degree may make it harder to obtain constant-time
implementations, as seen in the case of CSIDH implementations [2,16]. The other
issue, as argued in [3,7], is that it appears to be hard to construct zero-knowledge
proofs of variable-degree isogenies because all known approaches invariably leak
the secret isogeny degree. This causes a major issue in the development of proofs
of terSIDH public key correctness, and it may prevent terSIDH from being an
SIDH drop-in replacement for advanced constructions.

Setup. Let λ be the security parameter and t an integer depending on λ. Let
p = ABf − 1 be a prime such that A =

∏t
i=1 ℓi and B =

∏t
i=1 qi are coprime



New SIDH Countermeasures for a More Efficient Key Exchange 15

integers, ℓi, qi are distinct small primes, A ≈ B ≈ √
p and f is a small cofactor.

Let E0 be a supersingular elliptic curve defined over Fp2 with #E0(Fp2) = (p+1)2.
Let A be an artificial A-orientation on E0 and let B be an artificial B-orientation
on E0. The public parameters are E0, p, A, B, A and B.

KeyGen. Alice samples uniformly at random a vector a from {0, 1, 2}t and
computes the A-oriented isogeny ϕA : E0 → EA defined by a, whose degree
divides A. She also computes the push forward B′ of B on EA through ϕA.
Her secret key is a and her public key is (EA,B

′). Analogously, Bob samples
uniformly at random a vector b from {0, 1, 2}t and computes the B-oriented
isogeny ϕB : E0 → EB defined by b, whose degree divides B. He also computes
the push forward A′ of A on EA through ϕB . His secret key is b and his public
key is (EB ,A

′).

SharedKey. Upon receiving Bob’s public key (EB ,A
′), Alice checks that A′

is an artificial A-orientation on EB, if not she aborts. She computes the A′-
oriented isogeny ϕ′A : EB → EBA of degree A defined by a. Her shared key is
j(EBA). Similarly, upon receiving (EA,B

′), Bob checks that B′ is an artificial
B-orientation on EA, if not he aborts. He computes the B′-oriented isogeny
ϕ′B : EA → EAB of degree B defined by b. His shared key is j(EAB).

Fig. 2: The terSIDH protocol. This is nearly the same as Fig. 1, with the main
difference being that KeyGen samples ternary secrets.

4.3 One more variant

It is possible to define a third variant of these protocols that relies on partial arti-
ficial orientations. Rather than revealing the images of two linearly independent
points G1 and G2, the protocol only reveals the image of one point G. Then, for
each Gi of coprime order that make up G, the possible isogenies are computed
by choosing whether Gi in the kernel of the isogeny or not. Using the vector
notation, its entries are chosen in {0, 1}.

Since the choice is binary, such a protocol would require similar parameters as
binSIDH, while also having the disadvantages of variable-degree isogenies discussed
in the context of terSIDH. As such, it does not appear to have any meaningful
advantage over the proposed constructions. However, the information that is
revealed about the secret isogeny is less: not only its degree remains unknown, as
in terSIDH, but its action on a single cyclic group is revealed. This suggests that
such a variant might be relevant if further cryptanalytic breakthroughs affect the
security of binSIDH and terSIDH.



16 Andrea Basso and Tako Boris Fouotsa

5 An oriented/non-oriented hybrid approach

There are applications where it is desirable for one party to be significantly more
efficient than the other. For example, this is the case for resource-constrained
devices communicating to powerful servers, but it also arises in advanced construc-
tions: for instance, in oblivious pseudorandom function protocols, it is generally
desired that the client is more efficient than the server. In this section, we propose
a technique that allows us to introduce trade-offs between the two parties and
enable one participant to obtain more efficient zero-knowledge proofs, which
makes this approach more appealing for advanced protocols that requires proofs
of isogeny knowledge. This technique has the added benefit of reducing the overall
prime size for binSIDH, while the ternary variant has primes of comparable size
as terSIDH.

In the previously presented protocols, both parties relied on artificially oriented
isogenies to avoid the SIDH attacks. However, the artificial orientation also
requires to use significantly longer isogenies than those used in the original
SIDH protocol. This suggests that it may be possible to reveal some unscaled
torsion information without affecting the security of the protocol, and if the
isogeny is sufficiently long, the revealed torsion may be large enough to allow
the computation of parallel isogenies that also guarantee sufficient security. In
other words, we can build a secure protocol through a hybrid approach where
one party computes binSIDH-like (or terSIDH-like) isogenies while the other party
computes SIDH-like isogenies.

More formally, let Bob denote the party computing binSIDH-like isogenies,
which means he computes artificially B-oriented isogenies where B = ℓ1 · · · ℓn;
let Alice be the party computing SIDH-like isogenies of degree A, i.e. isogenies
whose kernel is generated by PA + [α]QA, for some secret α ∈ ZA and fixed
points PA, QA. Fix a starting curve E0, points PA, QA, and a B-orientation
B = (G1, G2), Alice’s public key consists of the codomain of her secret isogeny,
together with the image of B under her secret isogeny, while Bob’s public key
includes the codomain of his secret B-oriented isogeny, together with the images
of PA and QA.

Since Alice is computing SIDH-like isogenies, the degree of her secret isogeny
can be very smooth (concretely, this will be a power of two); while this reduces
the size of the isogeny degree of one party, the degree of the other party needs to
increase to guarantee sufficient security. Thus, the resulting prime p is generally
of comparable size to that used in binSIDH and terSIDH. With this setup, we can
take A to be considerably smaller and smoother than B; this means that Alice
can be much more efficient in computing her isogenies. Not only that, but zero-
knowledge proofs of knowledge of an A-isogeny, both ad-hoc [25] and generic [20],
can be much more compact and efficient. More generally, computing SIDH-like
isogenies allows one party to fully reuse the range of techniques developed for
SIDH. The resulting schemes are described in Fig. 3.



New SIDH Countermeasures for a More Efficient Key Exchange 17

Setup. Let λ be the security parameter and t an integer depending on λ. Let
p = ABf −1 be a prime such that A = 2a (a ≈ 2λ) and B =

∏t
i=1 ℓi are coprime

integers, ℓi are distinct small odd primes, and f is a small cofactor. Let E0 a be
a supersingular elliptic curve defined over Fp2 with #E0(Fp2) = (p + 1)2. Let
B be an artificial B-orientation on E0 and set E0[A] = ⟨PA, QA⟩. The public
parameters are E0, p, PA, QA and B.

KeyGen (Alice). Alice samples uniformly at random an integer α ∈ Z/AZ and
computes ϕA : E0 → EA of kernel ⟨PA + [α]QA⟩. Her secret key is α and her
public key is the artificially B-oriented curve (EA, ϕA(B)).

KeyGen (Bob). Bob samples uniformly at random a vector b from {1, 2}t and
computes the B-oriented isogeny ϕB : E0 → EB of degree B defined by b. His
secret key is b and his public key is (EB , ϕB(PA), ϕB(QA)).

SharedKey (Alice). Upon receiving Bob’s public key (EB , R, S), Alice checks
that eA(R,S) = eA(PA, QA)

B, if not she aborts. She computes the isogeny
ϕ′A : EB → EBA of kernel ⟨R+ [α]S⟩. Her shared key is j(EBA).

SharedKey (Bob). Upon receiving (EA,B
′), Bob checks that B′ is an artificial

B-orientation on EA, if not he aborts. He computes the B′-oriented isogeny
ϕ′B : EA → EAB of degree B defined by b. His shared key is j(EAB).

Fig. 3: The binSIDHhyb protocol. A similar variant, based on terSIDH, can be
obtained by changing Bob’s KeyGen algorithm to sample vectors from {0, 1, 2}t.

6 Security analysis

In this section, we analyze the security of the proposed protocols, both binSIDH
and terSIDH, as well as their hybrid variants binSIDHhyb and terSIDHhyb.

We analyzed the hardness assumptions relative to artificial orientations in
Section 3.2, which guarantees it is unfeasible for an attacker to recover a secret
key from a public key. In particular, the hardness of Problem 2 guarantees the
security of binSIDH and terSIDH against key-recovery attacks, while the hardness
of Problem 1 and 3 protects binSIDHhyb and terSIDHhyb from key-recovery attacks
(Problem 1 for Alice’s public key and Problem 3 for Bob’s). However, the security
of the key-exchange protocols, as well as any other protocol built on those,
depends on the hardness of a different problem, which we call the Artificially
Oriented Computational Diffie-Hellman (AO-CDH) problem.

Problem 4 (AO-CDH). Let the notation be as in Fig. 1. Let ϕA : E0 → EA

be a A-isogeny, and ϕB : E0 → EB be a B-isogeny. Given (EA, ϕA(B)) and
(EB , ϕB(A)), compute j(EAB), where EAB is the codomain of the push-forward
of ϕA under ϕB (or vice versa).



18 Andrea Basso and Tako Boris Fouotsa

The problem, as stated, guarantees the security of terSIDH. We can easily
obtain similar problems for the remaining protocols by either requiring that the
isogenies have fixed degrees (binSIDH) or allowing one party to use unoriented
isogenies (binSIDHhyb, terSIDHhyb). We can also consider a decisional variant of
these problems, where given an additional j-invariant j′, the problem asks to
determine whether j′ = j(EAB). While the security of the proposed protocols
does not depend on such decisional problems, advanced constructions based on
these protocols might require such an assumption.

The relationship between these problems and those introduced in Section 3.2
is similar to that between the Computational Diffie-Hellman problem and the
Discrete Logarithm problem, or between the Supersingular Computational Diffie-
Hellman problem and the Computational Supersingular Isogeny problem [35].
While there exists no known reduction from the problems in Section 3.2 to
Problem 4, it is likely that any attack that breaks the proposed protocols would
need to efficiently solve the problems of Section 3.2.

Remark 3. In binSIDH and terSIDH, the two parties reveal the codomain of their
secret isogenies, together with only the images of two disjoint cyclic subgroups.
This is, in some sense, optimal, as it is the minimum amount of information
needed for the other party to compute the push-forwards. Thus, if any major
cryptanalytic breakthrough managed to break binSIDH and terSIDH, it seems
likely that any possible SIDH-like construction would equally be broken, including
the existing countermeasures against the SIDH attacks [29].

6.1 The relation with the Uber-isogeny problem

When proposing SÉTA [24], its authors also introduced the Uber-isogeny problem,
which is the following:

Problem 5 (O-Uber Isogeny Problem). Let p > 3 be a prime and let O = Z[w] be a
quadratic order of discriminant ∆. Let E0 and E be two O-oriented supersingular
curves, and let θ ∈ End(E0) be an endomorphism such that Z[θ] ∼= O, that
is θ allows to explicitly embed Z[θ] into End(E0). Given E0, E and θ, find a
power-smooth ideal a of norm co-prime with ∆ such that [a] ∈ Cl(O) is such
that E ∼= a ∗ E0.

In other words, ϕ : E0 → E is an O-oriented isogeny, one is given the actual
embedding of O into End(E0) but not that of O into End(E), and one is asked
to recover ϕ, or an equivalent isogeny of power-smooth degree. The authors of
SÉTA [24] showed that the security of SIDH [35], CSIDH [11], OSIDH [19] and
SÉTA [24] reduces to the Uber-isogeny problem. It is natural to wonder whether
the security of our schemes can similarly be reduced to the Uber-isogeny problem
as well. As we will show below, this is possible when the endomorphism ring of
the starting curve E0 is known, but the reduction is not trivial. In what follows,
we relate Problem 4 to the Uber-isogeny problem.

A first approach proceeds as follows. Let ϕA : E0 → EA be Alice’s artificially
oriented isogeny with respect to an artificial orientation A = (G1, G2). If the



New SIDH Countermeasures for a More Efficient Key Exchange 19

endomorphism ring End(E0) ∼= O0 of the starting curve E0 is known, then one
can efficiently compute an endomorphism θ ∈ End(E0) such that θ(G1) = G1 and
θ(G2) = G2. Let w be a quaternion such that its norm and trace agree with θ, i.e.
ww = N(w) = deg θ and w+w = tr(w) = θ+ θ̂, and set O = Z[w]. Then E0 and
EA are O-oriented supersingular curves, and θ provides the actual embedding
of O into End(E0). Any algorithm that solves the Uber-isogeny problem can be
used to recover a power-smooth O-oriented isogeny ψA : E0 → EA.

Such a reduction, however, presents an issue: with high probability, the
recovered isogeny ψA : E0 → EA cannot be used as the secret in binSIDH. This is
because Bob only reveals ϕB(A), which allows the attacker to compute only the
push-forwards of isogenies oriented by (G1, G2) and thus whose degree divides
the order A. This implies that the knowledge of ψA is not sufficient to compute
the shared secret in the key exchange. To solve this issue, we force both Alice’s
artificial orientation and Bob’s artificial orientation to be restrictions of the same
bigger O-orientation on E0.

As before, let us assume that the endomorphism ring End(E0) ∼= O0 of the
starting curve E0 is known. Let A = (Ga

1 , G
a
2) and B = (Gb

1, G
b
2) be Alice’s and

Bob’s artificial orientations, respectively. Set G1 = Ga
1 ⊕Gb

1 and G2 = Ga
2 ⊕Gb

2.
It is possible to efficiently compute an endomorphism θ ∈ End(E0) such that
θ(G1) = G1 and θ(G2) = G2. Let w be a quaternion such that w + w = tr(w) =

θ + θ̂ and ww = N(w) = deg θ, and set O = Z[w]. Then E0, EA and EB are all
O-oriented supersingular elliptic curves, and θ provides the actual embedding
of O into End(E0). Moreover, both Alice’s artificially oriented secret isogeny
ϕA : E0 → EA and Bob’s artificially oriented secret isogeny ϕB : E0 → EB are
O-oriented. Thus, the reduction starts by first using the algorithm to solve the
Uber-isogeny problem with E0 and EA to recover a power-smooth O-oriented
isogeny ψA : E0 → EA, and then with E0 and EB to recover a power-smooth
O-oriented isogeny ψB : E0 → EB. Now, since all curves are O-oriented the
underlying binSIDH scheme can be interpreted within the framework of the
OSIDH [19] protocol. To obtain the shared secret, the reduction concludes by
computing the push-forward ψ′

B of ψB through ψA (or vice-versa). The j-invariant
of the codomain of ψ′

B is the shared key.

6.2 Adaptive security

SIDH has been known to be vulnerable to active adaptive attacks [33,30], i.e.
attacks where the target has a long-term static key and the attacker is a participant
of the key exchange. In this section, we show how the proposed protocols are
unfortunately similarly vulnerable to adaptive attacks.

In binSIDHhyb and terSIDHhyb, one party computes SIDH-like isogenies. As
such, they are vulnerable to exactly the same attacks that SIDH is. We can thus
focus on active attacks against oriented isogenies, which covers the remaining
cases.

Let us assume Alice is the target party, while Bob plays the role of the attacker.
For simplicity, let us also assume we are in the case of binSIDH, where Alice’s
secret is the binary vector a ∈ {1, 2}t. The case of terSIDH follows similarly.



20 Andrea Basso and Tako Boris Fouotsa

Bob can use potentially malicious public keys and check whether both parties
obtained the same shared secret. In other words, the attacker has access to the
following oracle:

O(E,A, j′) =

{
true if j(E/⟨a,A⟩) = j′,

false otherwise.

Write A, the order of the artificial orientation A, as A =
∏t

i=1 pi. To target
the i-th bit of the secret key ai, the attacker can honestly compute the curve
EB and the image orientation A = (G1, G2) and write Gj = H1

j ⊕ . . .⊕Ht
j for

j ∈ {1, 2}, where each Hk
j has order pk, which are all pairwise coprime. Then, if

Ii1 is any cyclic subgroup of order pi such that Ii1 ∩Hi
1 = {O}, the attacker can

define A′ = (G′
1, G2), where G′

i is the same subgroup as Gi with Hi
1 replaced by

Ii1, i.e. G′
1 = H1

1 ⊕ . . .⊕Ii1⊕ . . .⊕Ht
1. The attacker can also obtain the j-invariant

jAB corresponding to the shared secret of an honest exchange and query the
oracle O(EB ,A

′, jAB). If the oracle returns true, the shared secret is unchanged:
this means that modified subgroup did not affect the computations, and thus
ai = 2. Otherwise, the modified subgroup did change the shared secret, and thus
ai = 1.

The active attack against the proposed protocols is slightly more powerful
than the GPST attack. It does not involve carefully crafted torsion points, and it
allows to target any bit of the secret key without necessarily proceeding in order.
In the PKE setting, one party can achieve long-term security with the use of the
Fujisaki-Okamoto transform [31], while in the key exchange setting, it is possible
to obtain active security for both parties, thus obtaining a non-interactive key
exchange, by introducing a proof of public key correctness. For artifically oriented
curves, this can be achieved by adapting the zero-knowledge proof of masked
public keys from [3] to work with independently scaled points.

7 Implementation

7.1 Parameter selection

Following the security analysis of Section 3.2, we generated parameter sets for
the four proposed protocols at security levels λ ∈ {128, 192, 256}.

In binSIDH and terSIDH, both parties rely on oriented isogenies, and thus the
degrees corresponding to both isogenies need to be quite large: in the case of
binSIDH, at least the product of λ distinct primes. This is reduced to λ/ log2(3)
for terSIDH, since each prime provides log2(3) bits of security. To obtain a
balanced trade-off between the two parties, we assign consecutive primes to
different parties; in other words, the degree of Alice’s isogenies is the product
of t even-index primes, while the degree of Bob’s isogenies is the product of t
odd-index primes. Moreover, the isogeny degrees need to be coprime, and thus
the underlying prime necessarily needs to be larger than the product of the first
2λ in binSIDH (2λ/ log2(3) in terSIDH). The resulting parameter sets for binSIDH



New SIDH Countermeasures for a More Efficient Key Exchange 21

and terSIDH are summarized in Table 1, where we also list the corresponding
public key sizes.

Remark 4 (Public-key compression). As in SIDH, public keys can be compressed
by expressing the torsion points with respect to a deterministically generated
basis [21]. This requires three coefficients in SIDH since both points can be
scaled by the same value without affecting the SIDH computations, which means
that one of the four coefficients can be fixed to one. In our case, however, the
two points that generate artificial orientations can be scaled independently: this
means that the public keys of the proposed protocols can be compressed to only
two coefficients.

Alice Bob

λ log p t B |pk| |pkcmp| t B |pk| |pkcmp|

binSIDH 128 2421 134 211 1816 907 134 211 1816 909
192 3710 192 212 2783 1390 192 212 2783 1392
256 5201 256 212 3901 1949 256 212 3901 1950

terSIDH 128 1568 93 211 1176 587 93 211 1176 588
192 2295 128 211 1722 860 128 211 1722 861
256 3035 162 212 2277 1137 162 212 2277 1139

binSIDHhyb 128 2004 1 2 1503 937 203 211 1503 565
192 3126 1 2 2345 1465 296 211 2345 878
256 4267 1 2 3201 2004 387 212 3201 1195

terSIDHhyb 128 1532 1 2 1149 701 156 210 1149 447
192 2373 1 2 1780 1089 226 211 1780 690
256 3216 1 2 2412 1479 293 211 2412 932

Table 1: Parameters for binSIDH and terSIDH. The coloumn t reports the number
of distinct primes dividing the degrees of Alice’s and Bob’s isogenies, while their
smoothness bound is reported in the B column. The columns |pk| and |pkcmp|
reports the size of the public keys of both parties, respectively uncompressed and
compressed.

The size of the primes and public keys of binSIDH and terSIDH is a stark
improvement over those of the existing countermeasures M-SIDH and MD-
SIDH [29]. For instance, at λ = 128, the primes of binSIDH and terSIDH are 2.5×
and 8.8× smaller than those in M-SIDH and MD-SIDH, respectively.5 While
terSIDHhyb requires larger parameters than terSIDH, binSIDHhyb manages to
5 Interestingly, in the terSIDH case, the variable-degree isogenies allow us to achieve

smaller parameters, while in MD-SIDH, the variable-degree isogenies require larger
parameters because of the information leakage due to pairing computations.



22 Andrea Basso and Tako Boris Fouotsa

be smaller and more efficient than binSIDH. When compared to M-SIDH, the
underlying prime in binSIDHhyb is 2.9× smaller.

7.2 Implementation results

We developed a proof-of-concept implementation of all four protocols in Sage-
Math [45], based on the Kummer Line library [41] to estimate the running
times of the proposed protocols6. We report the average running times on an
Apple M1 PRO CPU in Table 2.

Timings (s)

λ log p KeyGenA KeyGenB SharedKeyA SharedKeyB

binSIDH 128 2421 13.69 13.86 9.40 9.46
192 3710 48.69 49.36 27.39 27.81
256 5201 140.79 140.57 94.13 95.67

terSIDH 128 1570 2.07 2.09 1.38 1.38
192 2297 6.84 6.83 4.50 4.39
256 3039 15.68 16.03 10.00 10.35

binSIDHhyb 128 2004 0.23 14.33 0.22 10.66
192 3126 0.62 56.77 0.61 42.85
256 4267 1.41 157.58 1.34 117.07

terSIDHhyb 128 1532 0.16 3.21 0.16 1.96
192 2373 0.47 13.44 0.44 10.01
256 3216 0.94 34.66 0.90 23.57

Table 2: Execution times in seconds of the SageMath proof-of-concept imple-
mentation. Since it is a PoC in a high-level language, we expect an optimized
implementation of the same protocols to be several times more efficient.

The results of Table 2 show that the ternary variants significantly outperforms
the binary ones, especially at higher security levels. This is because binSIDH uses
larger prime fields and larger-degree isogenies than terSIDH.7 Moreover, terSIDH
does not need to compute full-degree isogenies due to its varying-degree nature: it
is thus likely that the benefits of this are reduced in a constant-time optimization.
Nonetheless, the results of terSIDH are encouraging. At security λ = 128, the

6 The source code is available at https://github.com/binary-ternarySIDH/
bin-terSIDH-SageMath

7 The specific SageMath implementation of VéluSqrt [6] that we rely on does not
outperform Vélu’s formulae [47] until the isogeny degree is extremely large. We thus
expect a low-level implementation to significantly improve the computation times of
high-degree isogenies, more so than for lower-degree ones.

https://github.com/binary-ternarySIDH/bin-terSIDH-SageMath
https://github.com/binary-ternarySIDH/bin-terSIDH-SageMath


New SIDH Countermeasures for a More Efficient Key Exchange 23

SharedKey computations take around 1.4 seconds, while key generation (which is
run less often) requires about two seconds. The current implementation is only
a proof of concept in a high-level language: we can thus expect it to be several
times faster once optimally implemented in a low-level language.

Despite the lack of optimizations, the current implementation already outper-
forms optimized implementations of CSIDH with parameters sufficiently large to
guarantee post-quantum security [16], which require between 2.8 and 5.8 seconds
to compute a group action at security level one.8 Very recently, a new imple-
mentation of CSIDH [8] achieves lower running times for a single group action,
which takes between 0.9 and 4.6 seconds. While the CSIDH implementation with
a smaller prime outperforms the SageMath implementation of terSIDHhyb, the
former is heavily optimized: we thus expect a similarly optimized implementation
terSIDHhyb to be significantly more efficient than CSIDH.

Comparing to other protocols, our proof-of-concept implementation out-
performs the PoC implementation of FESTA [5], which is based on the same
SageMath library and takes 3.5 seconds to encrypt and 10.1 seconds to decrypt.
It is thus mostly likely that terSIDH provides the most efficient key exchange and
encryption protocol among all isogeny-based protocols.

Moreover, the results of the hybrid variants show that it is possible to have
very low running times for one party, at the cost of a slight increase in the running
times of the other party. The hybrid variants significantly reduce the overall
running time of a complete key exchange.

8 Conclusion

In this work, we introduced artificial orientations, and proposed two new protocols,
binSIDH and terSIDH, that translate the SIDH key exchange to the artificially
oriented isogeny setting. This allows us to develop two protocols that are resistant
against the SIDH attacks, while also achieving significantly smaller parameters
than the previously proposed countermeasures. We also proposed binSIDHhyb

and terSIDHhyb, hybrid variants of binSIDH and terSIDH respectively, that allow
one party to have very short and efficient isogenies. To validate the concrete
efficiency of the protocols, we developed a proof-of-concept implementation.
Despite being far from optimal, it already outperforms existing implementations
of other isogeny-based encryption protocols (both key exchanges and public-key
encryption protocols), which suggests that optimized implementations of terSIDH
and its hybrid variant might have practical running times.

In future work, we are interested in developing efficient and optimized imple-
mentations of binSIDH and terSIDH to accurately measure their running times.
Moreover, this work opens up new possibilities that were previously closed by
the SIDH attacks. In particular, it is interesting to assess the impact of the
proposed protocols on the SIDH-based constructions, such as the round-optimal
8 Note, however, that the CSIDH implementations are constant-time, and that CSIDH

does not require the Fujisaki-Okamoto [32] to obtain IND-CCA security.



24 Andrea Basso and Tako Boris Fouotsa

OPRF construction by Basso [3], where we expect binSIDH and terSIDH to have
a significant impact in reducing prime size and computational costs.

Acknowlegements. We would like to express our gratitude to the anonymous
reviewers of ASIACRYPT 2023 for their valuable comments that helped improve
this paper. We thank Wouter Castryck and Fre Vercauteren for sharing their
early draft on attacks on some instances of M-SIDH and FESTA, the attacks
described in this draft were useful in the security analysis of our schemes. The
first author has been supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-
Henríquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr:, M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 322–
343. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-10970-7_
15

2. Banegas, G., Bernstein, D.J., Campos, F., Chou, T., Lange, T., Meyer, M., Smith,
B., Sotáková, J.: CTIDH: faster constant-time CSIDH. IACR TCHES 2021(4),
351–387 (2021). https://doi.org/10.46586/tches.v2021.i4.351-387, https://tches.iacr.
org/index.php/TCHES/article/view/9069

3. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptology
ePrint Archive, Report 2023/225 (2023), https://eprint.iacr.org/2023/225

4. Basso, A., Kutas, P., Merz, S.P., Petit, C., Sanso, A.: Cryptanalysis of an obliv-
ious PRF from supersingular isogenies. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part I. LNCS, vol. 13090, pp. 160–184. Springer, Heidelberg (Dec
2021). https://doi.org/10.1007/978-3-030-92062-3_6

5. Basso, A., Maino, L., Pope, G.: FESTA: Fast Encryption from Supersingular
Torsion Attacks. Cryptology ePrint Archive, Paper 2023/660 (2023), https://eprint.
iacr.org/2023/660, https://eprint.iacr.org/2023/660

6. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Series 4(1), 39–55 (2020). https://doi.org/10.
2140/obs.2020.4.39

7. Beullens, W., Feo, L.D., Galbraith, S.D., Petit, C.: Proving knowledge of isogenies
– a survey. Cryptology ePrint Archive, Paper 2023/671 (2023), https://eprint.iacr.
org/2023/671, https://eprint.iacr.org/2023/671

8. Campos, F., Chavez-Saab, J., Chi-Domínguez, J.J., Meyer, M., Reijnders, K.,
Rodríguez-Henríquez, F., Schwabe, P., Wiggers, T.: On the practicality of post-
quantum tls using large-parameter csidh. Cryptology ePrint Archive, Paper 2023/793
(2023), https://eprint.iacr.org/2023/793, https://eprint.iacr.org/2023/793

9. Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In:
Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp.
423–447. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/
978-3-031-30589-4_15

10. Castryck, W., Houben, M., Merz, S.P., Mula, M., van Buuren, S., Vercauteren,
F.: Weak instances of class group action based cryptography via self-pairings.
Cryptology ePrint Archive, Paper 2023/549 (2023), https://eprint.iacr.org/2023/
549, https://eprint.iacr.org/2023/549

http://www.ukrise.org
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://eprint.iacr.org/2023/225
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1007/978-3-030-92062-3_6
https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/793
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://eprint.iacr.org/2023/549
https://eprint.iacr.org/2023/549
https://eprint.iacr.org/2023/549


New SIDH Countermeasures for a More Efficient Key Exchange 25

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg (Dec
2018). https://doi.org/10.1007/978-3-030-03332-3_15

12. Castryck, W., Vercauteren, F.: A polynomial time attack on instances of M-SIDH
and FESTA. To appear in ASIACRYPT 2023 (2023)

13. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. Journal of Cryptology 22(1), 93–113 (Jan 2009). https://doi.org/
10.1007/s00145-007-9002-x

14. Chen, M., Imran, M., Ivanyos, G., Kutas, P., Leroux, A., Petit, C.: Hidden stabilizers,
the isogeny to endomorphism ring problem and the cryptanalysis of psidh (2023)

15. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in
quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014). https://doi.
org/10.1515/jmc-2012-0016, https://doi.org/10.1515/jmc-2012-0016

16. Chávez-Saab, J., Chi-Domínguez, J.J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low
exponents. Journal of Cryptographic Engineering 12(3), 349–368 (Sep 2022). https:
//doi.org/10.1007/s13389-021-00271-w

17. Codogni, G., Lido, G.: Spectral theory of isogeny graphs (2023)
18. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Cryptology ePrint

Archive, Report 2020/985 (2020), https://eprint.iacr.org/2020/985
19. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Journal of Mathematical

Cryptology 14(1), 414–437 (2020)
20. Cong, K., Lai, Y.F., Levin, S.: Efficient isogeny proofs using generic techniques.

Cryptology ePrint Archive, Report 2023/037 (2023), https://eprint.iacr.org/2023/
037

21. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
compression of SIDH public keys. In: Coron, J.S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part I. LNCS, vol. 10210, pp. 679–706. Springer, Heidelberg
(Apr / May 2017). https://doi.org/10.1007/978-3-319-56620-7_24

22. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

23. Dartois, P., De Feo, L.: On the security of OSIDH. Cryptology ePrint Archive,
Report 2021/1681 (2021), https://eprint.iacr.org/2021/1681

24. De Feo, L., de Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A., Petit, C.,
Silva, J., Wesolowski, B.: Séta: Supersingular encryption from torsion attacks. In: Ti-
bouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 249–
278. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-92068-5_9

25. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 310–
339. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-22966-4_
11

26. De Feo, L., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: SCALLOP: Scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.)
Public-Key Cryptography – PKC 2023. pp. 345–375. Springer Nature Switzerland,
Cham (2023)

27. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64837-4_3

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://eprint.iacr.org/2020/985
https://eprint.iacr.org/2023/037
https://eprint.iacr.org/2023/037
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2021/1681
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3


26 Andrea Basso and Tako Boris Fouotsa

28. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography 78(2), 425–440 (Feb 2016). https:
//doi.org/10.1007/s10623-014-0010-1, https://doi.org/10.1007/s10623-014-0010-1

29. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering SIDH
Attacks by Masking Information. In: Hazay, C., Stam, M. (eds.) Advances in
Cryptology – EUROCRYPT 2023. pp. 282–309. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_10

30. Fouotsa, T.B., Petit, C.: A new adaptive attack on SIDH. In: Galbraith, S.D. (ed.)
CT-RSA 2022. LNCS, vol. 13161, pp. 322–344. Springer, Heidelberg (Mar 2022).
https://doi.org/10.1007/978-3-030-95312-6_14

31. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052225

32. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1_34

33. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (Dec 2016). https:
//doi.org/10.1007/978-3-662-53887-6_3

34. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess,
B., Jalali, A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes,
J., Soukharev, V., Urbanik, D., Pereira, G., Karabina, K., Hutchinson,
A.: SIKE. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

35. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011. pp. 19–34. Springer, Heidelberg (Nov / Dec
2011). https://doi.org/10.1007/978-3-642-25405-5_2

36. Kani, E.: The number of curves of genus two with elliptic differentials. Journal für die
reine undangewandte Mathematik 1997(485), 93–122 (1997). https://doi.org/doi:
10.1515/crll.1997.485.93

37. Leroux, A.: A new isogeny representation and applications to cryptography. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 3–35.
Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-22966-4_1

38. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A Direct Key
Recovery Attack on SIDH. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
– EUROCRYPT 2023. pp. 448–471. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-30589-4_16

39. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 463–492. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45724-2_16

40. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 330–
353. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/978-3-319-70697-9_
12

41. Pope, G.: Kummer Isogeny SageMath Library. https://github.com/jack4818/
KummerIsogeny (2023)

https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/doi:10.1515/crll.1997.485.93
https://doi.org/doi:10.1515/crll.1997.485.93
https://doi.org/doi:10.1515/crll.1997.485.93
https://doi.org/doi:10.1515/crll.1997.485.93
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://github.com/jack4818/KummerIsogeny
https://github.com/jack4818/KummerIsogeny


New SIDH Countermeasures for a More Efficient Key Exchange 27

42. de Quehen, V., Kutas, P., Leonardi, C., Martindale, C., Panny, L., Petit, C., Stange,
K.E.: Improved torsion-point attacks on SIDH variants. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 432–470. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84252-9_15

43. Robert, D.: Breaking SIDH in Polynomial Time. In: Hazay, C., Stam, M. (eds.)
Advances in Cryptology – EUROCRYPT 2023. pp. 472–503. Springer Nature
Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17

44. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer Science &
Business Media (2009)

45. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.8) (2023), https://www.sagemath.org

46. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic
applications. Journal of Cryptology 12(1), 1–28 (Jan 1999). https://doi.org/10.
1007/PL00003816

47. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273,
305–347 (1971)

https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://www.sagemath.org
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/PL00003816

	New SIDH Countermeasures for a More Efficient Key Exchange

