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Abstract— Given the patchy nature of gas plumes and the
slow response of conventional gas sensors, the use of mobile
robots for Gas Source Localization (GSL) tasks presents sig-
nificant challenges. These aspects increase the difficulties in
obtaining gas measurements, encompassing both qualitative and
quantitative aspects. Most existing model-based GSL algorithms
rely on lengthy stops at each sampling point to ensure accurate
gas measurements. However, this approach not only prolongs
the time required for a single measurement but also hinders
sampling during robot motion, thus exacerbating the scarcity
of available gas measurements. In this work, our goal is to push
the boundaries in terms of continuity in sampling to enhance
system efficiency. Firstly, we decouple and comprehensively
evaluate the impact of both plume dynamics and gas sensor
properties on the GSL performance. Secondly, we demonstrate
that adopting a continuous sampling strategy, which has been
generally overlooked in prior research, markedly enhances
the system efficiency by obviating the prolonged measurement
pauses and leveraging all the data gathered during the robot
motion. Thirdly, we further expand the capabilities of the
continuous sampling by introducing a novel informative path-
planning strategy, which takes into account all the information
gathered along the robot’s movement. The proposed method
is evaluated in both simulation and reality under different
scenarios emulating indoor environmental conditions.

I. INTRODUCTION

Determining the source of a gaseous chemical leak re-
leased into the air has numerous applications in various crit-
ical situations [1]. In recent years, the area of Mobile Robotic
Olfaction (MRO) has experienced tremendous growth. De-
spite such increased attention, a number of challenges re-
lated to gas sensing techniques and gas dispersion modeling
remain unsolved, thereby impeding their application in real-
world scenarios. Gas dispersion is a complex phenomenon
that combines advection due to airflow, turbulent diffusion,
as well as molecular diffusion [2]. Consequently, the gas
plume exhibits intermittent and chaotic characteristics [3],
whereby the gas concentration at any given point in the
plume demonstrates dynamic and fluctuating behavior, as
shown in Fig.1a. This dynamic behavior makes the inference
of the source location from gas measurements a challeng-
ing task. Additionally, while executing a GSL task within
realistic scenarios, obstacles in the environment introduce
additional turbulence in the airflow [4]. Furthermore, the
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Fig. 1: (a) Evolution of gas concentration measured by a
static sensor in a plume; (b) Dynamics of a MOX gas sensor
when exposed to a sudden change in gas concentration (air-
gas-air experiment in a controlled gas chamber).

predominantly employed gas sensor in MRO, the Metal-
Oxide (MOX) sensor, can only provide highly localized
measurements of the gas concentration, with non-negligible
response and recovery times [5], as shown in Fig.1b. As a
result, when monitoring gas concentration in a plume with
MOX sensors, the gas measurements are not only noisy
because of the patchiness of the plume but also distorted
in time due to the intrinsic dynamics of the sensor.

GSL algorithms can be classified into model-free and
model-based algorithms. Model-free refer to algorithms that
use statistical features of local gas patches, such as gas detec-
tion events [6], gas gradient direction [7], or the frequency of
gas hits [8], to guide robot movements. These methods rely
on the magnitude differences between gas readings rather
than on their absolute value. While model-free algorithms are
characterized by a low computational cost, they are typically
too fragile to cope with complex environments [9]. Model-
based algorithms infer the source position efficiently from
scattered measurements and make informative navigation
decisions by incorporating knowledge of gas dispersion
models [10]. The belief of a candidate source position is
updated by comparing the actual measurements and the
expected concentrations derived from the plume model. As a
result, the accuracy of the absolute value of the measurement
is essential for the convergence of the estimation process
[11]. Therefore, while a strategy relying on continuous gas
sampling, which we will call sense-in-motion in this paper, is
widely used in model-free algorithms, a strategy that involves
lengthy stops, which we will call stop-sense-go in this paper,
is typically employed in model-based algorithms. In the latter
strategy, a stopping window of several seconds is employed
[12]–[17], and the average reading is considered as a single
measurement, given the previously discussed noisy nature of
gas measurements. In [18], the effect of both sensor response
time and duration of the stop-and-measure phase on a model-
based GSL method is studied. The authors concluded that a
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lengthy stop at each sampling point is essential for achieving
an accurate localization outcome. However, the stop-sense-
go strategy presents several limitations: firstly, it is time-
consuming and, therefore, not suitable for emergency appli-
cations. Secondly, it fails to include measurements obtained
while moving, which can yield significant insights despite
their inherent noise. Thirdly, as measurements are only taken
at the sampling locations, the informative goal selection is
critical to the overall success. Lastly, when deploying rotary-
wing aircraft for GSL tasks, hovering at the sampling point
can potentially lead to the dilution of the gas concentration
in the area due to the down-wash effect [19] [20].

Several studies explored the potential benefit and impact
of continuous sampling on the gas sensing quality. In [21],
the impact of the robot’s speeds on continuous sampling is
studied, where a negative correlation between the sensor re-
sponse amplitudes and the robot speed is indicated. The study
conducted in [22] shows that when there is no continuous
airflow, driving the robot with a constant speed introduces
an extra constant airflow to the sensor, which improves its
sensitivity compared to the stop-sense-go strategy. In [23],
the gas readings derived from a gas distribution map, created
through continuous measurements in motion, are used for
GSL tasks carried out in an obstacle-free environment.
However, it is unclear whether the good performance of
the sense-in-motion approach is due primarily to the usage
of a kernel-based interpolation technique for gas mapping
[24] and can be maintained in more complex environments.
Despite the numerous advantages of a continuous sampling
method, its integration into model-based GSL algorithms has
received limited attention so far.

Informative Path Planning (IPP) is commonly used in
probabilistic GSL frameworks [25] to maximize the informa-
tion gain at the next sampling point to increase the efficiency
of the algorithm. The information gain can be defined as a
measure of relative entropy, such as entropy loss [26] or
the Kullback-Leibler Divergence (KLD) [27] [28]. However,
this type of IPP exhibits two limitations. Firstly, these algo-
rithms usually require the prediction of gas measurements
at candidate sampling locations, which are not always trivial
to obtain. Secondly, the calculation of the updated posterior
for each candidate location is required, leading to additional
computational cost as the number of locations increases
[29]. As a result, previous contributions typically constrained
the number of possible candidate locations to a limited
set. In the context of continuous sampling, the traditional
computationally intensive assessment of information solely at
a limited number of locations proved to be less competitive.

This study aims at filling the research gap mentioned
above by quantitatively investigating the impact of the plume
dynamics and the sensor properties on GSL model-based
probabilistic approaches. In addition, it aims at devising a
dedicated IPP method able to take advantage of a sensing-in-
motion strategy. More concretely, this paper has the following
contributions:

• Section II-A elaborates on the design of dedicated
experiments to verify the viability and efficiency of a

sense-in-motion strategy in a Source Term Estimation
(STE) algorithm, serving as an example of model-based
probabilistic approaches for GSL;

• Section II-C introduces a novel belief-clustering-based
path planning algorithm, enabling efficient scanning of
the informative regions using an underlying sense-in-
motion approach;

• Sections III and IV perform a thorough evaluation and
result analysis of the proposed algorithm, using high-
fidelity simulation and physical experiments, respec-
tively.

II. METHODOLOGY

In this section, we define various gas sensor models and
sampling strategies, introduce the STE algorithm, and then
present both the commonly adopted and our novel IPP
methods.

A. Gas Sensor Models and Sampling Strategies

Based on literature contributions, the main rationale in
favor of a stop-sense-go strategy can be summarized as:

Argument I: The gas dispersion models used in STE
algorithms are usually time-averaged models [3]. To estab-
lish alignment between actual gas measurements and those
predicted by a plume model, it is, in principle, necessary
to stop for a specific duration and use the mean values as
measured data.

Argument II: MOX sensors have a slow reaction and
recovery time [30]. Consequently, a stop-sense-go strategy
enables MOX sensors to effectively react to gas stimulus
with prolonged sampling durations, providing more accurate
readings.

To quantitatively and separately evaluate the impact of the
two arguments above on the performance of STE algorithms,
leveraging high-fidelity simulation, we have designed an
experimental campaign involving idealized and realistic gas
sensors and different sampling strategies as follows.
1) Gas sensors:

• Ideal gas sensor: negligible response and recovery time,
considered as the ground truth for gas concentration.

• MOX gas sensor: non-negligible response and recovery
time, calibrated on the deployed physical sensor.

2) Sampling strategies:
• Stop-sense-go: uses the average gas reading over 5 s at

each sampling point.
• Visit-sense-go: uses the instantaneous gas reading at

each sampling point.
• Sense-in-motion: uses instantaneous gas readings, both

at each sampling point and during the robot’s motion.

B. Source Term Estimation Algorithm

STE is a well-known inverse modeling algorithm for
GSL tasks able to estimate the source terms, such as the
gas source location, release rate, and wind speed [25]. It
leverages a steady-state plume model and gas measure-
ments gathered at different sampling positions to update
the Probabilistic Distribution Function (PDF) of estimated



source terms iteratively. At each iteration k, the likelihood
p(D1:k|Θ), representing the probability of gathering a series
of measurements D1:k = {d1...dk}, given a set of source
terms Θ, is calculated through the difference between the
concentration value ck predicted by the plume model, and
the measurement dk at kth sampling point. σM and σD stand
for standard deviations of model and measurement errors,
respectively.

p(D1:k|Θ) ∝ exp

(
− 1

2

N∑
k=0

(dk − ck(Θ))2

σ2
M + σ2

D

)
(1)

Bayesian inference is used to update the posterior PDF
p (Θ | D1:k+1), representing the probability of the source
term being the set Θ when a new measurement dk+1 is avail-
able. We consider the evidence p(D1:k) to be a normalization
factor and the prior p(Θ) a uniform distribution within each
parameter limits. The process stops when either the maxi-
mum number of iterations is reached or the entropy of the
PDF, which measures the estimation uncertainty, drops below
a predetermined threshold. In our work, the estimated source
terms are the gas source location, namely Θ = {Sx, Sy}. The
STE algorithm has been extensively evaluated in obstacle-
free environments under consistent wind conditions [31]
[28]. Such scenarios are selected to ensure the assumptions
of the analytical gas dispersion model, such as the Gaussian
Plume Model (GPM), are satisfied. In our previous work
[32], we extended the STE algorithm to built environments
by replacing the analytical plume model with a Data-Driven
Plume Model (DDPM), which is trained with gas dispersion
maps under environments with different obstacle configura-
tions. In this work, to validate the generality of the proposed
approach, we test our system by deploying the same STE
algorithm with both GPM and DDPM.

C. Informative Path Planning

IPP is used to improve the navigation efficiency of the
robot, in particular by reducing the time needed for complet-
ing a GSL task. There are multiple possible implementations
for IPP-based navigation.

1) IPP Based on Kullback-Leibler Divergence [14]:
a navigation vector that incorporates a weighted sum of
exploration and exploitation factors is employed for the goal
selection. The exploratory component considers a set of most
informative goals by assessing maneuvers in eight ordinal
directions with a predefined step length. The evaluation of the
information gain is based on KLD [33] between the current
and updated PDFs after sampling at each candidate goal. The
exploitative component points to the most likely location of
the source.

2) IPP Based on Belief Clustering: a novel IPP method
tailored for sense-in-motion strategy. Compared to the KLD-
based IPP, which evaluates the information gained solely at
goal positions (end of the path), our approach evaluates the
navigation goals by taking into account information gathered
along the entire path.
a. Dynamic clustering of the belief - While sampling in
motion, the efficiency of the information gathering can

be improved by directing attention toward critical areas
rather than isolated critical points. Hence, it is important
to categorize the informative cells into coherent regions
and prioritize the visit of these regions. We use a dynamic
threshold to identify cells with significant information. Next,
a density-based clustering algorithm, DBscan [34], is utilized
to cluster the identified cells. The resulting clusters will
be the connected cells with sufficient information. The IPP
algorithm is altered to prioritize visits to clusters if they
are available, and alternatively, navigate towards the cell
exhibiting the maximal information gain.

As the PDF of the source term represents the likeliness
of the source presence in each cell given the current obser-
vations, it stands as the most straightforward and computa-
tionally efficient way to convey the information contained
within each cell. During each iteration k, the probability
p (Θ | D1:k) is normalized based on the min-max value, and
only the cells with normalized probability exceeding a given
threshold are retained. The threshold th is dynamically tuned
based on the entropy of the PDF, which is defined as follows:

th = 1− E [log(p (Θ)] /ζ with ζ ≥ E [log(g (Θ)] (2)

The th remains a positive value, with ζ larger than the
entropy of the uniform distribution g(·) across all Θ. At
the beginning of the task, no information is available for the
estimation; thus p (Θ) = g (Θ). The navigation algorithm
favors at the beginning a more exploratory strategy, con-
sidering a wider range of cells. As the level of uncertainty
in estimation reduces, the navigation shifts towards a more
exploitative strategy, focusing solely on cells with a relatively
high source-containing likelihood. The term ζ is utilized to
establish a trade-off between exploration and exploitation.
b. Scanning of informative regions - Following the definition
of the informative region, a cluster prioritization strategy
is introduced. Given the knowledge of the gas dispersion
model, a physical sample at every cell in a cluster is not
necessary. To maximize the spatial coverage, a rough scan
of a cluster is required. In this study, a simplified scanning
strategy is employed. When clusters are present, a rectangle
bounding box is computed for each cluster. The candidate
movement is then defined as directing the robot towards the
farthest vertex of each bounding box, which is considered
as the rough scan of the cluster. The cluster resulting in the
shortest traveling distance (to its farthest vertex) is selected
to minimize unnecessary back-and-forth movements.

III. SIMULATION EXPERIMENTS

This section presents simulation experiments supporting
a sense-in-motion strategy. Additionally, we compare the
performance of KLD- and belief-clustering-based IPP ap-
proaches.

A. Experimental Setup

We evaluated the different strategies in six diverse envi-
ronments of 13×4 m areas, whose maps and coordinates are
shown in Fig. 2. The testing maps were carefully hand-picked
to guarantee the generality of the results. Maps 1 to 4 were



retained from our previous work [32], as the performance
of DDPM had already been systematically evaluated in
simulation and physical reality. We have introduced Map 5,
as it presents a more challenging scenario due to the larger
size of the obstacles in comparison to those used in the
training dataset of the DDPM. In addition to these five maps,
including obstacles representative of built environments, we
have incorporated an obstacle-free environment, Map 0,
which allows us to use the analytical plume model GPM
instead, to demonstrate that the advantages of our method are
not dependent on the chosen plume model. The simulations
are conducted using Webots, an open-source, high-fidelity
robotic simulator [35], augmented with a gas dispersion
plugin [36] based on a filament-based model [37]. Each
environmental configuration is evaluated ten times using a
simulated Khepera IV robot. To ensure a rigorous and fair
evaluation of the strategies, the initial position of the robot is
randomized in the arena. The source position remains in the
upwind edge, with the y-coordinate set randomly. The robot’s
maximal speed is set as 0.2 m/s. The minimal sampling
period of the simulated gas sensor is 64 ms, corresponding to
the simulated timestep. Given the communication bandwidth
available on real robots (see Section IV-A), we opted to
keep only one gas measurement out of ten in simulation to
maintain as close as possible consistency with the physical
experiments.

The performance of each strategy is evaluated in terms
of source localization error, which is the Euclidean distance
between the estimated and true source position. For each
iteration, the robot updates the belief of the source terms and
selects the next goal position. Thus, the required number of
iterations for STE convergence is also evaluated to assess the
system’s efficiency.

B. Evaluation of Stop-sense-go and Its Arguments

Here, we present results from carefully designed experi-
ments to assess the significance of the previously explained
arguments in favor of a stop-sense-go strategy.

1) Evaluation of Argument I - Plume dynamics: To assess
the impact of using immediate rather than time-averaged
readings in a patchy plume, we compare the system perfor-
mance using an ideal sensor for both stop-sense-go and visit-
sense-go strategies. Fig. 3 reveals that both strategies when
provided with ideal gas measurements exhibit comparable
localization errors. However, visit-sense-go requires slightly
more iterations to converge. This can be attributed to the
fact that the probabilistic formulation inherently incorporates
the potential mismatch between the physical gas dispersion
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Fig. 2: The obstacle configuration of test maps.
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Fig. 3: Comparison between stop-sense-go and visit-sense-
go with an ideal gas sensor and IPP based on KLD.

and the underlying model, which is represented by the term
σM in the likelihood calculation, as shown in Eq. 1. The
degradation in sample accuracy raises the required number
of iterations to reach a confident estimation.

In conclusion, these findings indicate that, despite the
time-averaged property of the plume models, instantaneous
readings capture sufficient features of the plume for GSL.

2) Evaluation of Argument II - Sensor properties: To
evaluate the influence of the MOX sensor’s dynamic prop-
erties on GSL tasks, the stop-sense-go and visit-sense-go
strategies are compared using a MOX sensor. The response
and recovery phases of a MOX sensor, are simulated as two
first-order systems, as in [5] [38]. The parameters of the
simulated MOX sensor are calibrated to match the actual
deployed sensor in reality (MiCS-5521), with a response and
recovery time of 2.04 s and 4.57 s, respectively. The results
presented in Fig. 4 show that the stop-sense-go approach
exhibits comparable localization accuracy as those obtained
with an ideal gas sensor. However, the visit-sense-go strategy
with a MOX sensor is not able to localize the source within
the maximum iteration number, which is consistent with the
findings in [18] [11]. This can be explained by the fact
that the stop-sense-go strategy enables the MOX sensor to
respond to the actual concentration through the prolonged
stop phase. However, in the case of the visit-sense-go, the
immediate reaction of the MOX sensor deviates from the
actual concentration level, resulting in estimation divergence
in most scenarios.

In summary, the above findings suggest that the slow
dynamics of the MOX sensor further diminish the sensing
quality in the case of a too brief stop at the sampling point,
leading to failures in GSL tasks.

C. Evaluation of Sense-in-motion

Inspired by model-free GSL algorithms, we decided to
further investigate the impact of taking all measurements into
account, including those acquired during motion with a MOX
sensor. Surprisingly, as shown in Fig. 4, the sense-in-motion
strategy achieves comparable results to the stop-sense-go
strategy in terms of localization error, with a significantly
lower amount of iterations required. This finding contradicts
the intuition that an increased quantity of noisy measure-
ments would make the estimation algorithm further diverge.
Several factors can explain this result. Firstly, the sense-in-
motion method incorporates more data between sampling
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Fig. 4: Comparison of stop-sense-go, visit-sense-go and
sense-in-motion with a MOX sensor and IPP based on KLD.

points, a spatial aggregation process that appears to offer
similar advantages to the temporal averaging process in the
stop-sense-go method. Secondly, although a MOX sensor
cannot provide accurate measurements at the sampling points
in motion, it is nevertheless capable of providing a delayed
response faithful to the concentration in the proximity area.
Thus, sense-in-motion increases the probability of capturing
the existence of gas particles in a region. Thirdly, when
considering solely one measurement at the sampling point,
the outcome of the IPP has a substantial impact on the
efficiency of the algorithm. The effectiveness of IPP is
tightly related to the estimation results. In the case of
the visit-sense-go strategy, when the estimation is off, the
robot cannot be guided to appropriate positions, resulting in
an increased failure rate. However, with a sense-in-motion
strategy, the measurements obtained during motion leading
to a potentially suboptimal goal position are still taken into
account, partially mitigating the impact associated to a single
measurement at suboptimal positions. Regarding the required
iterations, as more samples are accessible at each iteration,
the convergence of the estimation algorithm is accelerated.

In conclusion, even though the quality of gas sensing is
degraded without a sufficient stop duration while sampling,
this factor can be mitigated through the adoption of a sense-
in-motion approach.

D. Performance Across Maps

Overall, the relative performance differences among the
three strategies remain consistent across all the maps, with
or without obstacles. Meanwhile, some noteworthy observa-
tions warrant discussion. A reduced estimation accuracy is
observed in Map 5 with the MOX sensor. Given the fact that
Map 5 is featured with more challenging obstacles, it can
be treated as an unseen environment for the DDPM, hence
degrading the quality of plume modeling. When this factor is
combined with the MOX sensor, there is a noticeable increase
in the variability of the failure rate. This finding provides
additional evidence for the correlation between the quality
of sensing/modeling and the estimation convergence.

E. Evaluation of IPP Based on Belief Clustering

The comparison of the sense-in-motion strategy using a
MOX sensor with the informative KLD and the belief cluster-
ing methods is shown in Fig. 5. The belief clustering method
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Fig. 5: Comparison of KLD versus belief-clustering based
IPP approaches with sense-in-motion and a MOX sensor.

achieves comparable localization error to KLD planning in
obstacle-free and built environments (Map 1 to 4) while
outperforming it in the challenging scenario (Map 5). The
observed improvement of belief clustering planning can be
explained by its reliance on the selection of informative
cells based on a percentage threshold rather than being
contingent upon exact values. This characteristic reduces
the dependence of planning performance on the accuracy
of estimation, allowing the robot to navigate toward impor-
tant locations more robustly. Furthermore, the exploratory
behavior exhibited during the early stage of the belief-
clustering strategy serves to enhance the spatial coverage of
gas samples, hence increasing the chance of capturing the
presence of the gas plume. This, in turn, leads to a reduction
of the necessary iterations.

IV. PHYSICAL EXPERIMENTS

This section presents the validation of the proposed meth-
ods through physical experiments. The performance of the
belief-clustering-based planning algorithm with the sense-in-
motion strategy was benchmarked with the informative KLD-
based planning algorithm with the stop-sense-go strategy. In
the following text, we will refer to these methods as cluster-
motion-sense and KLD-stop-sense, respectively.

A. Experimental Setup

The experiments were carried out within our wind tunnel
facility, as shown in Fig. 7, ensuring consistent testing con-
ditions throughout multiple runs. The wind tunnel provides
a volume of 18× 4× 1.9 m, and is equipped with a Motion
Capture System (MCS), which offers accurate localization
information to the robots. The wind speed was kept at
0.75 m/s throughout all the experiments. Three maps were
selected to be reproduced in reality, namely Maps 2, 4 and
5. For each map, nine experiments were conducted, with
the source’s x position held constant in an upwind position,
while y is selected within a predefined set, namely Sy =
{1 m, 2 m, 3 m} to cover the y-axis broadly. A Khepera
IV robot, equipped with a gas sensing module composed of
a MiCS-5521 sensor, sampled at 10 Hz, was used as the
mobile robotic platform. The maximal speed of the robot
was set as 0.27 m/s. The STE algorithm was executed on a
laptop (Intel Core i7-12700H). After each iteration, a new
goal position was sent to the robot. The robot navigated
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Fig. 6: Results of physical experiments in the wind tunnel.

to each goal point, collected gas samples, and transmitted
them back to the laptop. Due to the limited communication
bandwidth, while sampling continuously, one out of eight
samples was retained and used for the estimation process.

B. Results and Discussion

The results of the physical experiments can be seen in Fig.
6. In terms of metrics, besides the localization error on the X-
and Y-axis and the required iterations, the time to localize the
source and the traveling length have been also considered.
The localization time is the total time required to complete
a single trial, including the time for navigation, sampling,
and STE computation. We have tested the performance of
KLD-stop-sense in Maps 2 and 4 in our previous work
[32], which revealed a satisfactory performance in Map 2
but an increased estimation error in Map 4. We repeated
the experiments, and similar results were observed here.
The observed outcome was likely due to the fact that Map
4 exhibits a more transitory scenario compared to Map
2. This can be attributed to the presence of a rectangu-
lar object positioned in the center, which potentially leads
to the generation of a Kármán vortex street [39] behind
the obstacle. However, capturing this phenomenon in the
plume model is challenging because of its time-average
nature. A degradation in performance of the KLD-stop-
sense method is observed in Map 5, consistently with the
simulation results, given the increased challenge in obstacle
configuration. Compared to the KLD-stop-sense strategy, the
cluster-motion-sense achieved a similar performance in Map
2 while demonstrating superior performance in Maps 4 and
5. The observed results confirm those obtained in simulation:
the cluster-motion-sense method achieves better localization

Fig. 7: The experimental setup in the wind tunnel.

accuracy in case of a discrepancy between the gas plume
model and reality. This is achieved by obtaining more gas
samples with the sense-in-motion strategy and expanding the
spatial coverage with the belief-clustering method.

In terms of the iterations, the cluster-motion-sense halved
the necessary iterations for Map 2 and significantly decreased
them for Maps 4 and 5. A similar trend can be observed in
the localization time. This can be explained by the fact that
the sense-in-motion behavior avoids stopping, which reduces
sampling time. Additionally, the belief-clustering approach
eliminates the PDF calculation for candidate goals, which
decreases computing time. In terms of trajectory length, the
results are similar across both methods. However, the cluster-
motion-sense strategy exhibits a substantially longer traveling
length per iteration. This limitation is brought by the more
exploratory behavior of the belief-clustering strategy in the
initial phase, which can be further improved.

V. CONCLUSION

The sense-in-motion strategies have been generally over-
looked in existing model-based GSL algorithms due to
the hard-to-model and noisy-to-sense nature of gas-sensing
tasks. This study investigated the quantitative impact of such
strategic choice in the context of GSL tasks. While we
confirm that the gas sensing quality is degraded due to the
limited raising and recovery speed of MOX sensors and the
patchy property of the plume, we have shown that these
challenges can be efficiently tackled by an increased amount
of gas samples continuously gathered during navigation.
Encouraged by the performance of continuous sampling in
high-fidelity simulation, we further extended the IPP strategy
from target-point sampling to target-region scanning. The
performance of the approach was thoroughly assessed in both
high-fidelity simulation and physical reality, in particular
by considering different obstacle configurations and various
starting points of the robot and placements of the source.
When compared to a strategy based on informative KLD and
measurement stops, our novel approach combining sense-in-
motion and belief-clustering-based IPP reached a comparable
level of performance in terms of localization error and a
superior one in terms of time and number of iterations needed
to localize the source. Such results are encouraging us to
further investigate GSL approaches leveraging a sense-in-
motion strategy.
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