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Abstract. Objective. A key challenge of virtual reality (VR) applications is to

maintain a reliable human-avatar mapping. Users may lose the sense of controlling

(sense of agency), owning (sense of body ownership), or being located (sense of

self-location) inside the virtual body when they perceive erroneous interaction, i.e.

Break-in-embodiment (BiE). However, the way to detect such an inadequate event is

currently limited to questionnaires or spontaneous reports from users. The ability to

implicitly detect BiE in real-time enables us to adjust human-avatar mapping without

interruption. Approach. We propose and empirically demonstrate a novel Brain

Computer Interface (BCI) approach that monitors the occurrence of BiE based on the

users’ brain oscillatory activity in real-time to adjust the human-avatar mapping in VR.

We collected EEG data of 37 participants while they performed reaching movements

with their avatar with different magnitude of distortion. Main results. Our BCI

approach seamlessly predicts occurrence of BiE in varying magnitude of erroneous

interaction. The mapping has been customized by BCI-reinforcement learning (RL)

closed-loop system to prevent BiE from occurring. Furthermore, a non-personalized
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BCI decoder generalizes to new users, enabling ”Plug-and-Play” ErrP-based non-

invasive BCI. The proposed VR system allows customization of human-avatar mapping

without personalized BCI decoders or spontaneous reports. Significance. We anticipate

that our newly developed VR-BCI can be useful to maintain an engaging avatar-based

interaction and a compelling immersive experience while detecting when users notice

a problem and seamlessly correcting it.

1. Introduction

Virtual Reality (VR) systems are becoming widespread in industrial, clinical and

training applications for their benefit in ecological validity and physical involvement

of participants. One of the main challenges of VR is to provide users with a sense of

having a virtual body during immersion in order to interact with the virtual world.

The Sense of Embodiment (SoE) for a virtual body representation, the avatar, is a

highly subjective experience that must be induced and maintained to support successful

interactions in immersive VR [1]. SoE has been described to involve the following

components for successful human-avatar mappings: agency, body ownership, and self-

location [2]. The disruption of at least one of them causes a Break in Embodiment

(BiE), leading to a degradation of the virtual experience [1, 3, 4]. However, the way to

detect such an inadequate event is currently limited to explicit feedback from users, e.g.

questionnaires or spontaneous reports. Detecting BiE implicitly and in real-time would

allow customizing the mapping between users and their avatars so as to fine-tune the

interaction possibilities in VR without interruption.

In the 1990s, research on neural processes revealed error-related brain activity in

EEG signals originating from the anterior cingulate cortex (ACC) after perception of

errors [5, 6]. Holroyd and Coles [7] proposed that an error-processing system in the

ACC serves as reinforcement-learning signals to correct errors. Further studies have also

shown that error-related potentials (ErrPs) spontaneously arise when users experience

BiEs during avatar-based interaction in VR [4, 8, 9, 10, 11, 12, 13]. These findings

support the notion of an accumulation of errors in these conditions [14, 15, 16], where

cognitive processes in embodiment contribute to a global error in user experience. It

is also well established that brain-computer interfaces (BCIs) benefit from real-time

ErrP detection to offer intuitive control of external devices without requiring explicit

feedback, as instead they can infer participants’ perception of errors from their brain

activity and adapt accordingly [17, 18, 19, 20, 21, 22]. Some BCIs have succeeded in

decoding the presence of ErrPs during continuous interaction [23, 24, 25], with e.g., the

possibility to customize robot trajectories for each participant based on continuous ErrP

detection [26, 27]. It thus appears that the methods used in ErrP-based BCI provide

the adequate approach for continuously and implicitly adjusting the interaction with

avatar in immersive VR.

Although recent studies show that ErrP-based BCI allows customization of

continuous human-computer interactions, its use is still limited to interactions with
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a computer application [25] or a robotic arm [26, 27]. This may in part be due to the

need to train personalized decoders, which require a large amount of repetitions and

observations before being operational. In our context, this limitation would, however,

defeat the purpose of using BCI to implicitly improve interaction in VR as the objective

is specifically to avoid repetitively causing BiE, and eventually to use this method in

a general immersive VR application context. Hopefully, a recent study demonstrated

the feasibility of using the non-personalized decoder with some reductions in decoding

performance [24]. However, it remains to be tested if, despite these limitations, non-

personalized ErrP decoders can be used in a different way, as in our case for adjusting

the mapping between human and avatar actions.

In a previous study, we demonstrated the feasibility of adapting the human-avatar

mapping in VR based on the explicit feedback of users [28]. However, it still needs to

be demonstrated that it is possible to adjust this human-avatar mapping by implicitly

predicting the occurrence of BiE, while avoiding to interrupt the interaction flow and

break presence. We hypothesize that real-time detection of ErrPs during avatar-based

interaction can predict the occurrence of BiE, and thus allows seamless customization

of the mapping. To demonstrate this, we implemented a BCI system that monitors the

presence (or absence) of ErrP in real time while distorting the human-avatar mapping

in varying magnitudes (Figure 1a, c).

The use of distortion of the human-avatar mapping has been frequently employed

in 3D interaction methods, even without haptic feedback [29, 30, 31]. For example,

one of the earliest methods focused on enhancing the effectiveness of user interactions

by deliberately altering the mapping between real and virtual bodies for a stretching

arm. This alteration resulted in an expanded reachable space centered around the user’s

body [32]. Nevertheless, the challenge lies in fine-tuning of distortion parameters while

preventing the occurrence of BiE. For instance, Porssut et al. [1, 33] demonstrated that

users tolerate and even prefer distorted mapping with their avatar movement when this

helps to accomplish complex movements. However, once distortion surpasses a certain

threshold, it can lead to BiE. Specifically, our aim here was thus to customize the

human-avatar mapping distortion magnitudes based on implicit ErrP-BCI feedback in

order to aid in accomplishing a reaching action while preventing BiEs from occurring.

We recorded the EEG signals of participants while they were embodied in a full-

body avatar. The participants performed reaching movements to a target while their

avatar’s reaching movement was distorted in varying magnitudes. We expect ErrPs to

appear when participants perceive excessive support from the distortion. The real-time

ErrP decoding output was used to identify optimal distortion magnitudes through a

reinforcement learning (RL) algorithm. We then further investigated the feasibility of

customizing the mapping with the non-personalized ErrP decoder outputs in addition

to the use of personalized decoder in both time-locked and continuous classification.
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2. Methods

2.1. Participants

37 healthy subjects participated in the study (36 right-handed, 16 females, 23.4±3.5

years [mean±std]). All participants had normal or corrected-to-normal vision and gave

their informed consent prior to participation. The study was performed in accordance

with the ethical standards as defined in the Declaration of Helsinki and was approved

by the Swiss Ethics Committees of the canton of Vaud on research involving humans

(project n.2018-01601). Among the 37 subjects, the demographic survey revealed only

one person with extensive experience in VR, three with good experience with VR, and

ten with no experience while others tried it only a few times.

2.2. Experimental protocol

Experimental environment Participants sat in a comfortable chair and EEG signals

were recorded throughout the experiment. The HTC Vive Pro Eye, a Head-Mounted

Display (HMD) with 1440 x 1600 pixels per eye, 110 ◦ field of view and 90 Hz refresh

rate, and a 120 Hz eye-tracking system with an accuracy of 0.5-1.1◦ was used to monitor

subjects’ eye-movements. Bose QuietComfort 20 in-ear headphones with active noise

canceling delivered a non-localized white noise. We captured participants’ motion with

8 HTC Vive Trackers V2 (one to indicate the origin of the room in front of the chair

where subjects sit, one on the subjects’ chest, and three on each shoulder, elbow and

hand). The participants also held an HTC Vive controller in their left hand to answer

questions (Figure 1a). Figure 1 and a supplementary video illustrate the general study

design.

The virtual environment was a square room of 6×6×3m3 with a chair in the middle.

An avatar holding a tennis ball in its right hand was calibrated to co-locate the subjects’

body. Haptic feedback was sustained by physically holding a real tennis ball while

subjects observed a virtual tennis ball positioned in the same location. This maintained

visuo-proprioceptive and tactile coherence between the real and virtual hands. The

application was implemented using Unity 3D 2019.2.0f1. The participants’ movements

were reproduced through animation of the avatar using LimbIk from FinalIK‡.

Experimental procedure We performed the experiment in three groups. 14, 12 and 11

participants were in the first, second, and third groups, respectively. The experimental

procedures of the first and second groups were divided into five phases (Figure 1e);

calibration, explanation, decoder-calibration, practice and distortion-adaptation. First,

the motion capture suit, avatar, and EEG were calibrated (calibration phase). Then

the participants performed the six trials with instructions (explanation phase). They

then performed four runs of 75 trials, i.e. 50 trials without distortion and 25 trials with

distortion (decoder-calibration phase). These data were used to train a personalized

‡ root-motion.com
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ErrP decoder. Each run used a different magnitude of distortion in a random order

(3,5,7,10, see Section 2.3). The participants performed the same task as in the decoder-

calibration phase until convergence of the RL algorithm (distortion-adaptation phase,

see Section 2.5 for details). During the distortion-adaptation phase, the personalized

decoder predicted the occurrence of BiE to customize the human-avatar mapping. Time-

locked and continuous classification was performed during the distortion-adaptation

phase for the first and second groups, respectively. In the third group (non-personalized

decoder) the experiment was divided into the calibration, explanation, practice, and

distortion-adaptation phases (Figure 1f). The practice and distortion adaptation phases

were repeated twice. Each distortion-adaptation phase was carried out with time-locked

or continuous classification in a random order using the non-personalized decoder which

was calibrated with all data in the decoder-calibration phase recorded from the first two

groups.

Single-trial procedure In both decoder-calibration and distortion-adaptation phases,

each trial consisted of three times an arm reaching movement followed by two questions.

Subjects started with their right hand on their belly holding a tennis ball. Three

semitransparent spheres (blue, red, and green) and a red cross were displayed for each

trial. Subjects were instructed to reach the first sphere (blue) to the right with the tennis

ball and to remain inside at least 1 s to validate this first step. The validation progress

was indicated in a gray circle, which became fully white once validated. Subjects then

performed the avatar’s arm reaching movement to the last sphere (green) while smoothly

passing through the second sphere (red). The green sphere moved along a circular

trajectory with a radius of 0.35 m. The distortion that helps reaching the green sphere

(Figure 1b) was activated when the avatar’s hand was located within the red sphere.

The distortion function (attraction well [28], Section 2.3) was centered on the green

target and expanded to the center of the red target (the same radius as the trajectory).

Subjects had to stay inside the green target for at least 4 seconds to complete a trial.

They were instructed to fixate their gaze on the red cross placed in front of them while

doing the movement. If the gaze was not fixed on the red cross for 0.5s, the trial restarted

after showing a warning message to subjects.

After each reaching movement, participants answered to two yes/no questions

by controlling a cursor; ”I felt that the virtual body moved exactly like me”,

and ”It felt that the virtual body was my own body.”. The first question

indicates the subjective experience on conscious perception of the distorted avatar’s

arm reaching movement (perception of distortion, PoD) [34], and the second question

indicates the presence of a BiE [1, 3]. After answering these questions, the full virtual

scene reappeared at their initial position and the next trial started.
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2.3. Attraction well

The distortion we used is designed to help participants reach and follow a moving

target [1], and an excessive distortion is known to induce a BiE [4]. The avatar’s hand

was first attracted towards the target until it reached the outer boundary of the moving

target (i.e. a sphere slightly bigger than a tennis ball). Once the virtual hand was

inside the moving target, the attraction was then progressively reduced to zero until the

avatar’s hand arrived at the center of the target.

In our implementation, the distortion function started at the green sphere and

extended towards the red one, following the trajectory. Please note that the green

sphere’s path aligned precisely with the red sphere’s position. To facilitate tracking

a vertically moving green sphere with one hand, we calibrated the position of the red

sphere for each subject. This calibration ensured that subjects did not have to fully

extend their arms as the red sphere’s position never exceeded 80% of their arm length

from the shoulder position.

The magnitude of distortion was controlled based on the distance D between the 3D

position of subject’s hand ~Preal and the 3D position of moving target ~Ptarget of radius R,

by the following equations; d = D
drange

and r = R
drange

where drange is the distance range

of the attraction force centered on the moving target.

The distortion magnitude was expressed as a function of the normalized distance d

(Figure 1b, d). For d > 1, no distortion occurred, hence the virtual hand position was

identical to the real hand position. An attraction was enforced whenever d < 1 thereby

bringing the avatar hand closer to the target compared to the real hand.

The maximum magnitude of the attraction force was denoted as G. Then:

f(d) =

{
G× (−2× (d

r
)3 + 3× (d

r
)2)) d∈ [0,r]

G× (2× ( (d−r)
(1−r))

3 − 3× ( (d−r)
(1−r))

2 + 1) d∈ [r,1]
(1)

Given the distortion value provided by the attraction profile f(d), an attraction

coefficient was computed 1/(1 + f(d)) to build the distorted hand position ~Pdistorted,

shown to subjects, from the knowledge of the current positions of the mobile target
~Ptarget and the real hand ~Preal. Then:

~Pdistorted = ~Ptarget + (
1

1 + f(d)
)× (~Preal − ~Ptarget) (2)

The magnitude of distortion f(d) being always positive, equation 2 ensured that

the distorted hand position ~Pdistorted always lied in-between the current target position
~Ptarget and the real hand position ~Preal. Both the real and distorted positions coincided

for the boundaries [0, 1] of the normalized distance d. The distortion was tuned based on

R, drange, and G (referred to as the ”distortion gain”). Based on the previous study [1],

the following discrete distortion gains were used in the distortion-adaptation phase: (0,

0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 4, 5, 7, 10). The last value covered
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the largest possible magnitude of distortion due to the limited field of view of the VR

display.

2.4. EEG signal processing

EEG acquisition We recorded 32 EEG and 3 electrooculogram (EOG) signals

throughout the experiment at 512 Hz via three synchronized g.USBAmps (g.tec medical

technologies, Austria). EEG active electrodes were located at AF3, AF4, F3, F1, Fz,

F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, CP4,

P3, P1, Pz, P2, P4, PO3, POz, PO4, O1, O2 (10/10 international system), while the

3 EOG channels were placed above the nasion and below the outer canthi of the both

eyes, forming a triangle. The ground electrode was placed on the forehead (AFz) and

the reference electrode was on the left earlobe. The EEG and EOG signals were notch

filtered at 50 Hz to eliminate the power noise. To reduce signal contamination, subjects

were asked to stare at the cross and hold their heads still when reaching the targets.

If the movements of the eyes or the neck were above a certain threshold, the trial was

restarted to ensure the quality of the recorded signals.

Before the experiment, participants underwent 90 s of recording in which they were

asked to perform three different kinds of eye movement, 30 s each; clockwise and counter-

clockwise rolling of eyeballs, vertical and horizontal eye movements and repeated eye

blinks. These data were subsequently used to compute coefficients to linearly remove

EOG artifacts from EEG signals based on the autocovariance matrix of EEG and EOG

signals [35, 36].

EEG preprocessing EEG signals were band-pass filtered with a 4th order Butterworth

filter with cutoff frequencies of [1 10] Hz. The signals were then segmented into epochs

with a time window of [0.2 0.6] s relative to when the participants passed through the

red sphere for each trial.

Time-locked classification of ErrPs To build an ErrP decoder that monitors the

presence or absence of ErrPs in real-time, we used only the data collected during the

decoder-calibration phase. A personalized decoder was trained for participants in the

first and second groups, while a non-personalized decoder was trained for the third group

by accumulating all data in the first two groups’ decoder-calibration phase. All EEG

epochs were concatenated to build the non-personalized classifier.

To enhance the signal-to-noise ratio (SNR) of ErrPs for the subsequent classification

analysis, we applied a spatial filter based on Canonical Correlation Analysis (CCA) [37,

38, 39, 26]. CCA-based spatial filters were linear transformations that maximize pairwise

correlation between concatenated single-trial EEG epochs and averaged EEG epochs [40]

(see [37] and Supp. Figure 1 for details). The CCA spatial filter transformed the

averaged ErrPs into a subspace that contained different deflections. Only the first three

components were kept for further processing as described in previous studies [25, 37].
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We extracted EEG amplitudes resampled at 64 Hz and Welch’s power spectral density

between [4, 10] Hz with a step of 2 Hz as they have been shown to yield superior

performance in other studies [25, 26, 41]. All computed features were concatenated and

normalized within the range of [0, 1] via Min-Max normalization. From this feature

vector x, we computed the posterior probability of distortion p(distortion|x) using

diagonal linear discriminant analysis:

p(distortion|x) =
1

1 + exp−(w′x+b)
(3)

where, w and b are the parameters of the diagonal LDA.

For the first and third groups, in which a decoder was deployed to perform time-

locked classification during distortion-adaptation phase, we used the theoretical decision

threshold for binary classification, i.e. 0.5. Leave-one run-out cross validation was

performed to validate the classification performance of the decoder-calibration phase

for the first group.

Continuous classification of ErrPs For the second group that underwent the distortion-

adaptation phase with a personalized decoder for continuous classification, the decoder

was trained the same way as for the first group. In addition, we tuned the decision

threshold. Leave-one run-out cross validation was performed to estimate the pseudo-

continuous posterior probability at 32 Hz, i.e. from the onset to 0.6 s after reaching the

green target. The maximum estimated posterior probability within a trial determined

subjects’ perception of BiEs. If the maximum estimated posterior probability was

above the decision threshold, the decoder detected BiEs during continuous reaching

movements. The optimal operating point, which yielded the minimum number of false

predictions, of the Receiver Operating Characteristic (ROC) curve was determined as

the decision threshold for the continuous classification.

For the third group, in which the non-personalized decoder was used during the

distortion-adaptation phase, the optimal decision threshold for continuous classification

was inferred for each participant based on the maximal posterior probabilities of the first

four trials without distortion during the practice period (Figure 1f) [24]. We performed

leave-one subject-out cross-validation to compute the pseudo-continuous probabilities of

the data collected in the first two groups’ distortion-adaptation phase while avoiding the

use of individual decoder-calibration data. The averaged maximum posterior probability

of the first four trials during the practice period and the individual optimal threshold

were used to model the sigmoid function that inferred the optimal decision threshold.

Statistical analysis of ErrP decoding performance In the decoder-calibration phase, the

classification performance of the time-locked and continuous classification was measured

as the area under the curve (AUC) and was statistically evaluated by a two-sample t-test.

In the distortion-adaptation phase, ErrP-BCI output was compared with the answers

to the PoD and BiE questions. Classification performance was measured as balanced
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classification accuracy, mean of true positive and true negative rate. Its chance level is

0.5. Paired t-test was used to evaluate the classification performance between the time-

locked and continuous classification when using the non-personalized decoder, while a

comparison of other pairs was performed by a two-sample t-test. All p-values were

Bonferroni corrected.

2.5. Reinforcement Learning algorithm

In the present study, we used a reinforcement learning algorithm that had been

developed and validated in our previous study [28] to determine the pseudo-optimal

distortion value from a set of multiple options. Each of the available choices

corresponded to a distinct level of distortion gain, and the agents’ actions were met with

positive or negative rewards, depending on the magnitude of the distortion introduced.

This method enabled us to effectively identify the most suitable distortion level based

on the user’s implicit feedback, the ErrP-BCI output.

The reinforcement learning algorithm combined Upper-Confidence-Bound (UCB)

exploration with the ε-greedy policy. Q-values were initialized to zero for all actions [42].

The convergence of the Q-values, representing the expected rewards for each action, was

monitored to determine the optimal threshold.

To adapt to the dynamic nature of the problem, parameters such as the exploration

ratio ε and the learning rate α decayed over time. The study carefully selected decay

rates through a prior grid search. The algorithm also had termination conditions in place

to avoid running indefinitely (15 unchanged iterations after the 35th trial and stopped

if it reached 200 iterations). More details can be found in our previous study [28].

2.6. Psychometric function

We computed the PoD and BiE thresholds of each subject based on the answer to the

first and second questions during the distortion-adaptation phase, respectively. We used

a psychometric function [43, 44] to calculate each threshold (Supp. Figure 4). The PoD

threshold is the magnitude of distortion in which subjects detected the distortion 50%

of times, while the BiE threshold corresponded to an approximation of the minimum

magnitude of distortion in which subjects rejected the virtual body as their body at

50% of times.

2.7. Statistical analysis of the thresholds

In order to evaluate whether PoD, BiE and RL thresholds were comparable, a one-way

repeated measures ANOVA was performed for each decoding conditions, i.e., time-locked

and continuous classification with personalized and non-personalized decoders.
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3. Results

3.1. Electrophysiological analysis

We observed sequential negative, positive, and negative deflections after the onset of

distortions in the decoder-calibration phase (p < 0.05, paired Wilcoxon signed-rank test

followed by Benjamini-Hochberg false discovery correction (BHFDR), Figure 2a) [45, 46].

These deflections were present throughout the decoder-calibration phase (Supp. Figure

2). These deflections were strongly elicited from the parietal and central areas of the

brain (Figure 2a). On the other hand, EEG potentials remained mostly flat around

the onset without distortion. Similarly, in the distortion-adaptation phase, sequential

deflections were observed when participants perceived distortion (Figure 2b) and when

participants experienced BiE (Figure 2c), and these deflections were attenuated when

they did not.

3.2. Decoding of ErrPs

In the decoder-calibration phase, the estimated posterior probability in the trials without

distortion was lower than that with distortion (Figure 3a). The posterior probability

increased progressively over the magnitude of distortion for both time-locked (Spearman

r=0.72, p <0.001) and continuous classification (r=0.58, p <0.001). The AUC was 0.97

± 0.007 (mean ± SE) for time-locked, and 0.89 ± 0.029 for continuous classification

(Figure 3b). They were above the chance level (0.5), but the continuous classification

performance was significantly lower than the time-locked classification performance

(two-sample t-test, p =0.005, Figure 3b). Please note that our validation procedure,

leave-one run-out cross validation, did not positively bias the ErrP-BCI classification

performance (Supp. Figure 3).

Similarly to the decoder-calibration phase, the estimated posterior probability

progressively increased over the magnitude of distortion in the distortion-adaptation

phase for both time-locked (Spearman r=0.79, p <0.001) and continuous classification

(r=0.62, p <0.001, Figure 4a and Supp. Figure 4). Despite its consistent trend

over the magnitude of distortion, the probability was differentiated between time-

locked and continuous classification, especially in trials with no or small distortion.

Further, progressive increase in posterior probability was also observed when using

the non-personalized decoder for both time-locked (r=0.62, p <0.001) and continuous

classification (r=0.29, p <0.001, Figure 4b). The posterior probability range was smaller

when using the non-personalized decoder compared to the corresponding classification

approach using the personalized decoder.

In the distortion-adaptation phase, all four classification conditions outperformed

the chance level as measured in balanced classification accuracy for both PoD (Figure 4c)

and BiE questions (Figure 4d). For both questions, classification performance was

highest for the time-locked classification with the personalized decoder. On the other

hand, it was the lowest for the continuous classification with the non-personalized
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Personalized decoder Non-personalized decoder

Time-locked Continuous Time-locked Continuous

PoD threshold 1.20 ± 0.25 1.40 ± 0.30 1.36 ± 0.21 1.77 ± 0.41

BiE threshold 2.23 ± 0.70 2.84 ± 0.76 2.26 ± 0.74 2.18 ± 0.85

RL threshold 1.96 ± 0.19 1.94 ± 0.20 3.93 ± 0.85 2.95 ± 0.54

Number of trials 70 ± 6 77 ± 6 84 ± 12 75 ± 5

Table 1: PoD, BiE and RL thresholds and the number of trials performed in the

distortion-adaptation phase for each decoding condition (mean ± SE).

decoder. When comparing ErrP-BCI outputs with the PoD question, the statistical

differences were observed between the personalized and non-personalized decoder

for both the time-locked (two-sample t-test, p=0.04) and continuous classification

(two-sample t-test, p=0.02), and between time-locked and continuous classification

when using the non-personalized decoder (paired t-test, p=0.03). There were no

statistical differences between time-locked and continuous classification when using

the personalized decoder (two-sample t-test, p=0.16). For the BiE question, the

difference was observed between time-locked and continuous classification when using

the personalized decoder (two-sample t-test, p=0.04) and between the personalized

and non-personalized decoder for the time-locked classification (two-sample t-test,

p=0.04). On the other hand, no differences were observed between time-locked and

continuous classification when using the non-personalized decoder (paired t-test, p=1.0)

and between the personalized and non-personalized decoder for continuous classification

(two-sample t-test, p=0.30).

3.3. Behavioral and Reinforcement learning results

The PoD and BiE rates progressively increased along with the magnitude of distortion

(Spearman r=0.68, p <0.001 for PoD, r=0.49, p <0.001 for BiE, Figure 5a). However,

they showed slightly different modulations from each other. PoD rate showed a more

rapid increase relative to BiE rate.

The RL threshold was between the PoD and BiE thresholds when using the

personalized decoder (Figure 5b and Table 1). Statistical analysis did not reveal

differences between the three thresholds (two one-way repeated measures ANOVAs,

F (2, 26) = 1.61, p = 0.219 for time-locked, and F (2, 22) = 2.52, p = 0.103 for continuous

classification). On the other hand, when the non-personalized decoder was used, the

RL threshold was higher than the PoD and BiE thresholds (Figure 5c). The statistical

analysis did not reveal significant differences between the three thresholds (two one-

way repeated measures ANOVAs, F (2, 20) = 3.22, p = 0.061 for time-locked, and

F (2, 20) = 1.06, p = 0.364 for continuous classification).

Page 11 of 22 AUTHOR SUBMITTED MANUSCRIPT - JNE-106674.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



12

4. Discussion

We have presented a novel BCI-VR closed-loop system integrated in an immersive

interactive system that allows seamless adjustment of the mapping between the users’

actual movements and the one of their avatar for the benefit of interaction in VR. The

present study demonstrated the possibility of adjusting the magnitude of distortion

through an implicit ErrP-BCI feedback. The ErrP-BCI decoding output was exploited

as reward signals to adjust the magnitude of distortion to perform the avatar’s arm

reaching movement while preserving the SoE, thus maintaining their virtual experiences.

The proposed BCI-VR closed-loop system is beneficial for customizing the human-avatar

mapping based on user’s brain activity, which has been limited to users’ explicit feedback

to date. In order to compensate for the limited signal-to-noise ratio of the BCI output,

we incorporated the RL algorithm to identify the optimal magnitude of distortion. The

proposed approach successfully achieved the pseudo-optimal magnitude of distortion and

demonstrated its ability to tune levels of assistance for each participant while avoiding

degradation of virtual experiences due to BiEs.

Specifically, as shown in previous studies [1, 34, 47] and illustrated in Figure 5a,

participants maintained a high level of embodiment even when they could perceive the

distortion. In effect, we show that there are three distinct stages of cognitive processing

before participants notice and then reject a movement distortion of their avatar. In the

first stage, for very low distortions, they are not able to perceive the distortion. In the

second stage, between the PoD and the BiE thresholds, participants are still experiencing

a strong embodiment for their avatar despite being able to consciously evaluate that

the avatar’s arm reaching movement is distorted. In the third stage, beyond the BiE

threshold, participants reject the distortion as an error of the system, provoking an ErrP

that the BCI system can detect. The threshold computed by our BCI-RL approach

successfully computed the pseudo-optimal threshold to be in between the PoD and the

BiE thresholds when deploying the personalized ErrP decoder. Importantly, these RL

thresholds were nearly identical to those obtained with explicit feedback (1.93 ± 0.23

[mean±SE]) [28] (Table 1). Thus, thanks to our tuned distortion magnitude, users

performed the reaching task without affecting their experience of embodiment for their

avatar.

As opposed to previous works that evaluated the user’s brain response at given time

points (e.g., after the executions of a movement by an avatar) [20, 21, 48], we performed

continuous classification of ErrPs during avatar-based interactions and used the ErrP-

BCI decoding outputs to customize the human-avatar mapping. Replacing time-locked

by continuous classification of ErrPs is a challenge for BCI due to the uncertainty

of EEG signals, but a necessary step for applying it to VR interaction, as users

continuously interact with their embodied avatar. Although a previous work showed

the customization of robot trajectories through continuous ErrP classification [26], their

task did not involve varying magnitudes in erroneous interactions. A recent study [25]

revealed the scalability of the ErrP-BCI decoding outputs over the magnitude of errors,
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and posed the challenge of decoding ErrPs induced by small errors. Critically, our

experimental protocol did not include trials with a small magnitude of distortions in

the decoder-calibration phase. Nevertheless, our BCI-VR closed-loop system using a

personalized decoder successfully classified trials with small distortions and customized

the human-avatar mapping, allowing one to maintain embodiment for their avatar.

Furthermore, we also evaluated to what extent the decoder trained with multiple

participants generalizes to a new group of participants (non-personalized decoder) [49,

50]. The decoding performance degraded both in time-locked and continuous

classification compared to the personalized decoder (Figure 4c and d). The RL threshold

obtained with the non-personalized decoder did not reveal significant differences from

the PoE nor BiE threshold, while being higher than them. These RL thresholds

were also higher than those identified with explicit feedback [28] (Table 1). Notably,

when the non-personalized decoder was used, participants saved about 90 min as data

collection to calibrate the personalized decoder was omitted. Thus, they were still able to

receive implicit BCI feedback immediately after the practice to customize their human-

avatar mapping. Although the non-personalized decoder showed degraded performance

(Figure 4c and d), our analysis revealed a progressive increase in the output of the

non-personalized decoder output for both time-locked and continuous classification over

the magnitude of distortions, but limited to smaller ranges (Figure 4a and b). This

suggests the importance of calibrating the decision threshold when deploying the non-

personalized decoder for both time-locked and continuous classification and also the need

to update the decoder to increase the range of posterior probabilities. These procedures

may further improve precision of RL thresholds when using a non-personalized decoder.

One of the limitations of the present study is the relatively specific human-avatar

mapping and BCI algorithms. For example, subjects were instructed to fix their gazes

and head movements to preserve EEG signals from possible muscle contamination, and

they performed repetitive reaching actions to collect enough data to build a personalized

decoder and calibrate their interaction. In an ideal scenario, we expect participants to

move freely without repetitive actions, while the BCI-VR closed-loop system implicitly

calibrates their human-avatar mapping without the need for collecting data for building

a personalized decoder.

In summary, this study demonstrated the possibility and showed the benefits of

online adaptation of the human-avatar mapping during VR experiences, without asking

explicitly or interrupting the interaction. Although the RL threshold obtained with a

non-personalized decoder was not between PoD and BiE thresholds, the decoder may

be adaptively updated in an experiment consisting of multiple sessions [25]. Thus, it

would be crucially important to test our BCI-VR system over longitudinal sessions

because one could speculate that users would increase their sensitivity to perceive

visuo-proprioceptive conflicts and become more susceptible to BiE over time. Future

studies may include use of the VR system over multiple sessions and evaluate their

PoD, BiE and RL threshold, with the possibility to change over sessions while updating

the decoder. With increasing involvement of full-body interaction in immersive VR
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commercial products, BCI-VR systems would be beneficial for optimizing the human-

avatar mapping, allowing to maintain an engaging avatar-based interaction and a

compelling immersive experience while detecting when users notice a problem and

seamlessly correcting it.

Acknowledgement

This work was supported by the Swiss National Science Foundation (project ‘Immersive

Embodied Interactions’, 200020.178790), the Hasler Foundation, Switzerland, and by

the Swiss National Center of Competence in Research in Robotics (NCCR).

ORCID IDs

Fumiaki Iwane: 0000-0002-9659-4127

Thibault Porssut:0000-0002-6691-1427

Olaf Blanke: 0000-0002-9745-3983

Ricardo Chavarriaga: 0000-0002-8879-2860
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a b

c d

e f

Figure 1: Protocol Overview. a, Setup of the experiment. 1). Computer connected to

the EEG amplifier, 2). EEG amplifier, 3). EEG cap and electrodes, 4). HMD (HTC

Vive), 5). Mask and gloves were worn during the experiment due to the COVID-19 safety

regulations and 6). Motion tracker (HTC Vive tracker). b, Overview of the well-shaped

distortion function (attraction well). No distortion was applied when d is greater than 1

(region 1). When d is below 1, the virtual hand attracted to the target. The magnitude

of attraction increased inverse proportion of d from 1 to r (region 2). The attraction

diminished to zero as d decreases from r to 0 (region 3). c, Participants were immersed

to VR environment by using tracking system and head mounted display, while recording

EEG signals. During the distortion-adaptation phase, online detection of ErrPs were

performed to infer occurrence of BiE. d, Each trial consisted of the the two sequential

reaching movements; i). from belly to the blue sphere, ii). from blue sphere to green

sphere while passing through the red sphere. The distortion was induced when passing

through the red sphere to induce BiE. e, Main phases of the first and second groups.

Time-locked classification was performed during the distortion-adaptation phase for the

first group and the continuous classification was performed for the second group . f,

Main phases timeline of the third group. Each distortion-adaptation phase performed

time-locked or continuous classification in a random order.
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Figure 2: Grand-averaged EEG potentials at Cz electrode. a, Grand averaged signals

of Cz channel with respect to the onset of trials (the vertical black line, t=0) with

a non-causal band-pass filter in decoder-calibration phase. Each colored line and

shaded area correspond to different magnitudes of distortion (mean ± SE). The gray-

shaded areas represent the time samples in which significant differences were observed

between the trials without distortion (D = 0) and those with distortion (D = 3,

5, 7, 10, paired Wilcoxon signed-rank test followed by BHFDR, α < 0.05). Insets

represent topographical representations of each deflection at 0.20, 0.30 and 0.50 s. b,

Grand averaged signals of Cz channel in distortion-adaptation phase. Each colored

line corresponds to the answer to the perception of distortion (PoD) question. The

gray-shaded areas represent the time samples with significant differences between each

answer. c, Grand averaged signals of Cz channel in distoation-adaptation phase. Each

colored line corresponds to the answer to the break-in-embodiment (BiE) question.
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Figure 3: Decoding results of ErrPs in the decoder-calibration phase. a, Estimated

posterior probability while validating the personalized decoder for each magnitude of

distortion in the time-locked and continuous classification (mean ± SE). The decoder

was trained to differentiate between trials with and without distortion. Each black dot

corresponds to a participant. b, The area under the curve (AUC) of the time-locked

and continuous classification (mean ± SE). The horizontal black dashed line indicates

their chance level (0.5). Each dot corresponds to a participant. AUC was higher in

the time-locked classification than in the continuous classification (two-sample t-test,

p=0.005).
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Figure 4: Decoding results of ErrPs in the distortion-adaptation phase. a, Estimated

posterior probability for all 17 magnitudes of distortion in the distortion-adaptation phase

for the time-locked and continuous classification when using the personalized decoder.b,

Estimated posterior probability when using the non-personalized decoder. c, Balanced

classification accuracy compared to the PoD answer for time-locked and continuous

classification when using the personalized and the non-personalized decoder (mean ± SE).

The horizontal black dashed line indicates the chance level, 0.5. Each dot corresponds to

a participant for each decoding condition. Statistical analysis revealed significant differences

between the personalized and non-personalized decoder for both the time-locked (two-sample t-

test, p=0.04) and continuous classification (p=0.02), and between time-locked and continuous

classification when using the non-personalized decoder (paired t-test, p=0.03). d, Balanced

classification accuracy compared to the BiE answer (mean ± SE). Significant differences

were observed between time-locked and continuous classification when using the personalized

decoder (two-sample t-test, p=0.04) and between the personalized and non-personalized

decoder for time-locked classification (p=0.04).
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Figure 5: Behavioral results and comparison of the PoD, BiE and RL thresholds. a,

Behavioral answer to the perception of distortion (PoD) and break-in-embodiment (BiE)

questions for each magnitude of distortion. Each colored line and shaded areas represents

the answer to each question (mean ± SE). The black dashed vertical line represents

the mean PoD threshold, while the solid black vertical line indicates the mean BiE

threshold. b. PoD, BiE and RL thresholds for time-locked and continuous classification

when using the personalized decoder. Each bar corresponds to the PoD (red), BiE

(blue), and RL threholds (green). Each dot corresponds to a participant. No statistical

differences were observed between the three thresholds (two one-way repeated measures

ANOVAs, F (2, 26) = 1.61, p = 0.219 for time-lock, and F (2, 22) = 2.52, p = 0.103

for continuous classification). c. PoD, BiE and RL thresholds for time-locked and

continuous classification when using the non-personalized decoder. Similar to the case

using the personalized decoder, No statistical differences were observed between the

three thresholds (two one-way repeated measures ANOVAs, F (2, 20) = 3.22, p = 0.061

for time-lock, and F (2, 20) = 1.06, p = 0.364 for continuous classification).
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