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An Energy Efficient Soft SIMD Microarchitecture
and Its Application on Quantized CNNs

Pengbo Yu∗, Flavio Ponzina∗, Alexandre Levisse∗, Mohit Gupta†, Dwaipayan Biswas†, Giovanni Ansaloni∗,
David Atienza∗, Francky Catthoor†

Abstract—The ever-increasing computational complexity and
energy consumption of today’s applications, such as Machine
Learning (ML) algorithms, not only strain the capabilities of
the underlying hardware but also significantly restrict their
wide deployment at the edge. Addressing these challenges, novel
architecture solutions are required by leveraging opportuni-
ties exposed by algorithms, e.g., robustness to small-bitwidth
operand quantization and high intrinsic data-level parallelism.
However, traditional Hardware Single Instruction Multiple Data
(Hard SIMD) architectures only support a small set of operand
bitwidths, limiting performance improvement. To fill the gap,
this manuscript introduces a novel pipelined processor microar-
chitecture for arithmetic computing based on the Software-
defined SIMD (Soft SIMD) paradigm that can define arbitrary
SIMD modes through control instructions at run-time. This
microarchitecture is optimized for parallel fine-grained fixed-
point arithmetic, such as shift/add. It can also efficiently execute
sequential shift-add-based multiplication over SIMD subwords,
thanks to zero-skipping and Canonical Signed Digit (CSD)
coding. A lightweight repacking unit allows changing subword
bitwidth dynamically. These features are implemented within a
tight energy and area budget. An energy consumption model is
established through post-synthesis for performance assessment.
We select heterogeneously quantized Convolutional Neural Net-
works (CNNs) from the ML domain as the benchmark and map
it onto our microarchitecture. Experimental results showcase
that our approach dramatically outperforms traditional Hard
SIMD Multiplier-Adder regarding area and energy requirements.
In particular, our microarchitecture occupies up to 59.9% less
area than a Hard SIMD that supports fewer SIMD bitwidths,
while consuming up to 50.1% less energy on average to execute
heterogeneously quantized CNNs.

Index Terms—Energy Efficient Computing, Software-defined
Single Instruction Multiple Data, Data-level Parallelism, Canonic
Signed Digit Coding, Heterogeneously Quantized Convolutional
Neural Networks.

I. INTRODUCTION

Single Instruction Multiple Data (SIMD) is a well-known
approach to enhance hardware computing efficiency through
data-level parallelism [1] [2] when executing a ubiquitous
computational pattern in many domains ranging from scientific
computing [3] to machine learning (ML) [4] [5]. SIMD im-
plementations employ wide registers and processing units that

Pengbo Yu, Flavio Ponzina, Alexandre Levisse, Giovanni Ansa-
loni, and David Atienza, are with the Embedded Systems Laboratory,
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support operations with subwords separated by multiplexers on
the datapath. However, typical Hardware SIMD (Hard SIMD)
architectures can only support a small set of subword sizes,
such as 8-, 16-, 32-, 64-bit [6], because (i) the subword
separation relies on multiplexers and can not be extended to
more SIMD modes once the hardware implementation is fixed,
and (ii) adding many SIMD modes (e.g., 3-, 4-, 6-bit, etc.) is
costly in terms of hardware (e.g., area, speed).

These downsides are significantly critical to further im-
proving computation performance, especially for algorithms
that have (i) intrinsic redundancy to support aggressive quan-
tization, (ii) a high degree of data-level parallelism, and
(iii) varying accuracy requirements in different computation
phases. For these cases, supporting operations with flexible
bitwidths can fully leverage the advantages of quantization
and parallelism to promote computation performance.

For example, Convolutional Neural Networks (CNNs) ex-
hibit a high degree of robustness against operand approxi-
mation, allowing them to maintain sufficient accuracy when
quantized with fixed-point data representation. Thus, quan-
tized CNNs have been widely adopted in edge inference,
which is a scenario with constrained resources and energy
budget [7] [8], to significantly increase energy efficiency and
reduce resource requirements, such as 8-/16-bit quantization
in [9]–[15]. CNNs can further be heterogeneously quantized
to arbitrarily bitwidths, such as 3-, 4-, 6-bit, etc. [16], and
result in more model compression and data-level parallelism
improvement. However, this approach has not yet been ex-
plored since most hardware resources do not allow for such
small-bitwidth operations.

To overcome the limited bitwidths support of the Hard
SIMD approach, we therefore present a novel pipelined pro-
cessor microarchitecture for arithmetic computing based on the
Software-defined SIMD (Soft SIMD) paradigm. Soft SIMD,
detailed in Section II-A, divides the boundaries of the subword
at the software level through control instructions, enabling
support for operations at arbitrary bitwidths with little added
cost, opening the way for the highly efficient use of data-level
parallelism down to very small bitwidths.

The proposed microarchitecture features a fine-grained con-
figurability of SIMD bitwidths that can be defined at run-
time. It can adapt to any desired computation precision in
targeted domains, such as different layers in quantized CNNs.
It also allows seamless transitions among different SIMD
formats using a dedicated Data Pack Unit (DPU). Furthermore,
this microarchitecture can efficiently perform parallel shift/add
operations, the basis of arithmetic computing, as well as shift-
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add-based parallel multiplication that uses Canonic Signed
Digit (CSD) coding for the multiplier to reduce iteration
cycles. We evaluate this microarchitecture with an example
benchmark in the ML domain, the quantized CNNs, which
have been quantized heterogeneously per layer under a maxi-
mum accuracy degradation constraint of 1%. The result shows
that our Soft SIMD microarchitecture significantly outper-
forms the Hard SIMD alternative on both energy and area.

In summary, our contributions are as follows:
• We introduce a novel pipelined processor microarchitec-

ture for arithmetic computing based on Soft SIMD. It
supports a fine-grained configurability of SIMD bitwidths
at run-time through instruction control and has very high
and flexible data-level parallelism with little added cost.

• We apply CSD coding and shift-add iteration to efficiently
perform parallel 2’s complement multiplications under
the Soft SIMD paradigm. We also explore the multipli-
cation performance and resource requirement versus the
maximum bit shift range when using CSD multiplier.

• We present a Data Pack Unit to repack the data size by
bridging different SIMD formats, and show its design
trade-off between flexibility and hardware cost.

• We choose heterogeneously quantized CNNs as an exam-
ple benchmark set from the ML domain to evaluate the
area, energy, and performance of our microarchitecture
through a complete post-synthesis exploration. We show
that our design requires up to 59.9% less area and 50.1%
(on average) less energy than a Hard SIMD alternative.

• This work also fills the gap in supporting heterogeneously
quantized CNNs from both software and hardware levels.

The paper proceeds as follows. In Section II, we introduce
the fundamental concepts that provide the basis for our design
choice. Then, the proposed microarchitecture is detailed in
Section III. Next, the experimental setup is given in Section IV.
Finally, the analysis of the results follows in Section V, and
the key conclusions are summarized in Section VI.

II. BACKGROUND

A. Soft SIMD

The implementation of typical Hard SIMD entails using
wide registers hosting a fixed number of subwords with
corresponding sizes, and processing units performing vector
operations among subwords, such as the Arithmetic Logic
Unit. Hard SIMD is constrained in supporting many SIMD
bitwidths since it relies on the multiplexers on the datapath to
separate the adjacent subwords and control the carry propaga-
tion in arithmetic operations.

In contrast, Soft SIMD supports basic operations (e.g.,
addition, shift) with variable bitwidths and composes them
to derive more complex operations, such as multiplication. In
this way, Soft SIMD allows the partitioning of data registers
into subword bit fields of arbitrary size. It can achieve flexible
SIMD configurations by the control instructions at run-time
on the software level (hence the name) with a small hard-
ware cost. Thus, it is particularly appealing when a strongly
heterogeneous fine-grained control of bitwidths is beneficial,
the employed bitwidths are small (<16-bit), and the desired
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Fig. 1. Topology of Soft SIMD design. Our approach supports signed arith-
metic, such as required computations for convolutional and fully connected
layers of CNNs, while employing a low-overhead guardbits-based solution.
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Fig. 2. Soft SIMD can adapt the subword bitwidth to the data size
requirements by instruction control at the software level, therefore maximizing
data-level parallelism and word space utilization. Here is an example of
arithmetic operations based on Soft SIMD. In the 3-bit subwords, the guardbits
are (a) set as ’0’ in addition, (b) set as ’1’ in subtraction, to avoid overflows
among subwords and guarantee correct carry propagation.

data representation precision changes in different computation
phases. These features are common in many domains, such as
heterogeneously quantized CNNs in the ML domain.

As opposed to our novel design, previous Soft SIMD
implementations [17]–[21] only support unsigned arithmetic,
limiting their applicability. We categorize them as unsigned
Soft SIMD in Figure 1. Moreover, they neither explore the
strategy and hardware-cost vs. flexibility trade-off of con-
version between different SIMD bitwidths, nor assess their
effectiveness on ML workloads. In contrast, our proposed
signed Soft SIMD approach supports 2’s complement op-
erations (addition/subtraction/shift/multiplication/etc.) that are
fundamental for running CNNs.

There are two implementation methods for signed or
unsigned Soft SIMD. A straightforward solution is to in-
sert multiplexers for all bit positions on the datapath (e.g.,
adder carry propagation chain) to support arbitrary SIMD
bitwidth [19] [20]. However, by doing so, a large number of
multiplexers are placed on the critical path, resulting in lower
performance. Another striking alternative is to use guardbits
to separate subwords on the datapath [18]–[21]. As indicated
in Figure 1, we herein adopt the second approach for our
proposed microarchitecture in Section III while using the first
one to build an alternative as a baseline in Section IV-C.

In the rest of the paper, we only consider signed Soft SIMD
implementations and their application to CNNs. For brevity,
we name the baseline Muxes-based Soft SIMD and our
proposed method Guardbits-based Soft SIMD, respectively.

As the example of the Guardbits-based Soft SIMD arith-
metic operations shown in Figure 2, operands A and B have
guardbits marked and identified by the mask vector (‘0’
for guardbits and ‘1’ for non-guardbits), which is decoded
from control instructions and defines the SIMD mode on the
software level at run-time. During addition or subtraction,
the guardbits are set to ‘0’ or ‘1’ by the logic operation to
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TABLE I
CHARACTERISTICS OF OUR PROPOSED DESIGN AND THE RELATED STATE OF THE ART

[9], [10] [11] [12] [13], [14] Our design

Subword Separation multiplexers multiplexers multiplexers guardbits guardbits

SIMD Mode 8,16 bits 16 bits 8 bits 8 bits arbitrary bits, e.g., 3,4,6,8,12,16,24 bits

Multiplication Method bit-serial, multiple shifts bit-serial bit-serial bit-parallel bit-serial, CSD coding, multiple shifts

Multiplicand Operand Size 8,16 bits 16 bits 8 bits 8 bits arbitrary bits, e.g., 3,4,6,8,12,16,24 bits

Multiplier Operand Size 1-16 bits 1-16 bits 1-16 bits 8 bits 1-16 bits

Average Cycles for N-bit multiplier N/2 N N 1 + extra cycles N/3

Accumulation Overflow Management no no no yes yes

(a) 2's complement (b) Canonic Signed Digit (CSD)

-0×25 + 1×24 + 1×23+ 
1×22 +1×21+1×20=31 1×25 -1×20=31

0 1 1 1 1 1 1 0 0 0 0 -

2021222324252021222324-25

Fig. 3. Reduce the number of non-zero bits from (a) 2’s complement to (b)
Canonic Signed Digit (CSD).

ensure the correct propagation of the carry between adjacent
subwords. Similarly, shift and multiplication operations can
be performed on the basis of guardbits, as detailed in Sec-
tion III-B. Contrary to Muxes-based Soft SIMD, the timing
overhead (hence the hardware cost) of Guardbits-based Soft
SIMD is minimal, since the extra logic operations introduced
are not on the critical path.

B. Canonical Signed Digit Coding

CSD representation [22] is a binary encoding method to
reduce the number of non-zero bits for 2’s complement. It
employs three symbols for each digit: ‘1’, ‘0’, and ‘-’, where
‘-’ indicates that the bit value is -1. Figure 3 gives an example
of how the CSD number is generated. The 2’s complement 31
(“011111”) in CSD notation equals (“10000-”, 32− 1 = 31),
reducing non-zero bits from five to two by eliminating two
or more consecutive ‘1’ iteratively from right to left. In CSD
formats, 2

3 of the digits are zero on average [23].
As detailed in Section III-B, our proposed microarchitecture

performs multiplications as a sequence of arithmetic shifts
and additions. Since additions are only executed when the
multiplier bit is non-zero, multiple multiplier bits can be
processed in one clock cycle for bit patterns with trailing zeros
such as “10”, “100”, “1000”, etc. CSD coding can significantly
increase the frequency of such bit patterns for the multiplier
operands. Therefore, we apply it to the Soft SIMD paradigm,
speeding up shift-add-based 2’s complement multiplication.

The CSD encodings are generated by the compiler when
the multipliers are known constants or by an online decoder
if they are unknown variables. Strategies for online methods
of computing CSD multiplier operands have been proposed
in [24]–[29]. They are compatible with our design with a
negligible hardware cost. For example, a 16-bit CSD decoder
only requires 431µm2 under 130nm technology in [29], which
is 21% of the 48-bit Soft SIMD area under 28nm technology
in this work. For advanced technology nodes (e.g., 28nm)
and a larger datapath (e.g., 192-bit), the area overhead is less
than 5%. This work focuses on the constant multipliers and
considers CSD multiplier operands as inputs to our proposed
microarchitecture.

C. Quantization of CNN models

Quantization is a class of optimization methods highly
investigated in the literature and largely employed in Edge
Machine Learning [30] [31] [32]. In general terms, quantiza-
tion restricts the set of representable values of a baseline data
representation (e.g., 32-bit floating-point) to more compact
integer formats. In doing so, it inevitably introduces an approx-
imation of the original representation. However, the intrinsic
redundancy and robustness of AI models like CNNs allow
quantization methods to be practical tools to reduce computing
complexity and required resources, with minimal impact on the
precision of a floating-point baseline [15], [33].

The most common approach to quantizing CNN models
is that of uniform quantization, where the same quantization
scheme is applied to weights and activations of all convolu-
tional and fully-connected layers [32]. Typical uniform quanti-
zation levels employ 8- or 16-bit activations and 8-bit weights,
without degrading the accuracy of the model [9] [15] [34].
A more recent quantization strategy is that of heterogeneous
quantization, which does not restrict the whole application
to use the same quantization scheme [16] [35]. In particular,
this quantization strategy is generally applied to CNN models
per layer, with the most robust layers represented with more
compact formats [9]. This approach suits hardware-software
co-design strategies well [10] [36] since it can (i) enable more
fine-grained optimizations of the CNN models, leveraging the
robustness of each layer to maximize the achieved compres-
sion, and (ii) adapt to the underlying resources by allowing,
in each layer, quantization schemes that can be effectively
exploited in hardware to get maximum efficiency gains.

Thus, heterogeneously quantized CNNs are employed in this
work as an example benchmark to evaluate the performance
of the proposed microarchitecture, detailed in Section IV-A.

D. Motivation and related works

Taking the accelerator for quantized CNNs as an example,
we compare the differences between our proposed Soft SIMD
paradigm and related state of the art, as summarized in
Table I. Similar to our design, bit-serial (shift-add-based)
multiplication is also used in the works of [9]–[12], and they
support a broad range of multiplier operand size as well.
However, the multiplicand operand size can only be either 8-
or 16-bit, while our design provides super flexible multiplicand
bitwidths. Hence, these works only release the quantization
space of weights (multipliers) but can not leverage that of
activations (multiplicands) due to the limited operand size,
restricting further acceleration for quantized CNNs. Moreover,
the average multiplication cycles for N-bit multiplier is N
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Fig. 4. Block scheme of the proposed Soft SIMD microarchitecture. The first
stage is an Arithmetic Unit (AU), and the second stage is a Data Pack Unit
(DPU). R1 to R4 are registers.

in [11] [12], N/2 in [9] [10], while just N/3 in our design
thanks to CSD coding, as detailed in Figure 14. Finally, our
work explores how to prevent overflow during accumulation,
which has not been discussed in these works.

The work in [13] [14] also presents a method to realize
SIMD operations that map operands in non-conflicting bit
ranges and use guardbits to separate subwords. Nonetheless,
their approach requires extra cycles and resources for operand
packing and output correction (e.g., two shifts, one addition,
one multiplication and one output correction for an 8-bit*8-bit
multiplication with two subwords), making it difficult to scale
beyond a few typical supported SIMD formats.

III. ARITHMETIC MICROARCHITECTURE

This section details the implementation of the proposed
pipelined processor microarchitecture for arithmetic comput-
ing based on Guardbits-based Soft SIMD. First, Section III-A
shows the overview of the block scheme. Then, Section III-B
introduces how to build the Arithmetic Unit (AU, the first stage
of the pipeline) and perform arithmetic operations such as
addition, shift, and multiplication. Then, Section III-C presents
the data conversion strategy among different SIMD bitwidths
and the trade-off between flexibility and cost for the Data Pack
Unit (DPU, the second stage of the pipeline) to perform such
conversions. Finally, Section III-D shows a mapping example
with the proposed pipeline microarchitecture.

A. Microarchitecture Overview

A block scheme of the proposed microarchitecture is il-
lustrated in Figure 4. It consists of two pipeline stages, AU
and DPU, respectively. Four registers are employed at their
boundaries. The register R1 stores the data fetched from the
memory when such data needs to be used multiple times.
The R2 and R3 are pipeline registers between the two stages.
The register R4 keeps the output from the first or second
stage as intermediate values for data reuse in the first stage.
The datapath can be interfaced with the typical memory
hierarchy or with Very Wide Registers (VWR) [37] [38] for
high computational throughput.

The first stage (AU) is dedicated to parallel iterative shift-
add operations, sequentially performing multiplications or ac-
cumulations. It can flexibly support different SIMD bitwidths
by being configured on the software level at run-time. Accord-
ing to different functional requirements, the input of the first

stage can be read from registers R1 and R4, or memory. The
output of the first stage can be written (i) to register R4 as the
input for the first stage in the next cycle, (ii) to register R2 or
R3 as the input for the second stage, or (iii) back to memory.
Details of the first stages are introduced in Section III-B.

The second stage (DPU) is instead devoted to repacking
data, namely, translating values between bitwidths across
computation phases to adopt different SIMD modes. In the
second stage, the input is read from register R2 or/and R3,
and the output can be written (i) to register R4 as the next
cycle’s input in the first stage or (ii) back to memory. The
second stage can be bypassed if no data conversion is required.
Details of the second stage are described in Section III-C.

B. Arithmetic Unit

This section details the first pipeline stage (AU) by (i) Soft
SIMD supported shift and addition/subtraction, (b) shift-add-
based multiplication, and (iii) overflow management and word
space utilization using guardbits.

1) Soft SIMD Supported Shift and Addition: As illustrated
in Figure 5(a), the AU consists of a shifter and an adder
in series. Figure 5(b) shows that the shifter is a logarithmic
topology circuit consisting of multiple layers. The number of
layers dictates the maximum bit-shift that can be performed in
a single operation. For example, a two-layer logarithmic shifter
would allow a maximum bit-shift of 3 (as a combination of
shift 1-bit and shift 2-bit, i.e., 1+2), while a three-layer design
would allow 7 (1+2+4).

In order to show the details of the shifter and adder more
clearly, we use the 1-bit schematic as an example, as presented
in Figure 5(c,d). In the two schematics, signal ‘Ai’ and ‘Bi’
are two input operands, signal ‘Vi’ is the mask vector to define
SIMD mode and identify guardbits (‘0’ represents guardbits
while ‘1’ non-guardbits), signal ‘Ctrli’ is the control of the
shifter, and signal ‘Mi’ is the combinational logic output of
‘Ai’, ‘Bi’, and ‘Vi’. The following shift and add operations
use one guardbit in each subword, similar to the example
in Figure 2.

As Figure 5(c) shows, the 1-bit shifter consists of a
multiplexer. The shifter control signal, ‘Ctrli’, executes an
AND operation with signal ‘Vi’ to generate the selection
signal for the multiplexer, which identifies the guardbits when
shifting. Thus, if ‘Vi=1’, the shifter performs regular right
shift (selection signal is ‘1’, ‘Shifti’ <= ‘Ai+1’) for non-
guardbits, while the sign bit extension (selection signal is ‘0’,
‘Shifti’ <= ‘Ai’) for guardbits to prevent being affected by
adjacent subwords.

The adder, depicted in Figure 5(d), consists of a standard
adder cell and peripheral logic gates. When performing ad-
dition, both the operands ‘Ai’ and ‘Bi’ perform an AND
operation with ‘Vi’ to ensure that the carry-out signal of
each guardbit, which is the carry-in for the least significant
bit (LSB) of the subsequent subword, is ‘0’ (0 + 0). When
performing subtraction, they perform an OR operation with
the inverse of ‘Vi’ to ensure that the carry-out signal of
each guardbit is instead ‘1’ (1 + 1), as required by signed
arithmetic in 2’s complement. The final XOR operation checks
and guarantees the correctness of the output. The logic gates
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Fig. 5. Block schemes of the first pipeline stage. (a) The AU consists of a
shifter and an adder. (b) The shifter has a logarithmic topology, consisting of
multiple layers, and can support multiple shifts. (c) 1-bit shifter: it implements
right shift for non-guardbits and sign extension for guardbits. (d) 1-bit adder:
it consists of a standard adder cell and peripheral logic gates. The adder
supports Soft SIMD addition/subtraction by configuring guardbits as ‘0’/‘1’,
respectively.

around the standard adder cell are not in the carry chain, hence
do not affect the critical path much. Therefore, the required
hardware consumption is less than in the case of Muxes-
based Soft SIMD, especially when timing path constraints
are stringent, such as for higher frequencies, larger-bitwidth
operands, or larger shifter numbers, as reported in Section V.

2) Shift-add-based Multiplication: Based on the shift and
addition circuits introduced above, the AU supports the fol-
lowing operations, where A and B are two input operands:

(i) (A>>) +/− B → addition or subtraction between A
(possibly right-shifted) and B.

(ii) (-A>>) +/− B → addition or subtraction between -A
(possibly right-shifted) and B.

B can be set to 0, resulting in:
(iii) (A>>) +/− 0 and (iv) (-A>>) +/− 0.
Thus, the AU allows the execution of multiplications by

decomposing them in iterative shifts-adds. In this work, fixed-
point Q1.X 2’s complement representation is selected as the
data format, i.e., with one leading bit for the integer parts
and the rest devoted to the fractional part. The multiplier is
encoded to CSD notation to reduce the number of non-zero
bits and required iteration cycles. Several multiplicands with
the same multiplier are organized in subwords with Q1.X
representation, separated by one guardbit, enabling data-level
parallelism.

The employed algorithm is shown in Figure 6, presenting
an example of a Q1.7 multiplier and two 8-bit multiplicands
stored in subwords, themselves represented as Q1.6 values

Multiplicand
(2×8-bit, Q1.6, 1 guardbit)

X1 = 0.9375 X2 = -0.953125

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 ×

Multiplier in CSD 
(8-bit, Q1.7, no guardbit)

1 0 0 - 0 - 0 1

Y = 0.8515625 (01101101) 

+= (X1 X2) * (+1)0

+ (X1 X2) * (-1)>>2

+ (X1 X2) * (-1)>>2

+ (X1 X2) * (+1)>>3

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0

0.796875 (-0.2%) -0.8125 (+0.1%) 
(2×8-bit, Q1.6, 1 guardbit)

=

Fig. 6. Example of iterative shift-add-based multiplication. Multiplicand
operands are in two subwords with Q1.X 2’s complement format (X=6 in
the example, with 1 guardbit), and a multiplier in Q1.Y CSD format (Y=7
in the example). At each step, partial results are computed by right shift and
addition/subtraction. Multiple bit-fields of the multipliers containing trailing
zeros can be processed in one cycle. The output is also in Q1.X (X=6) 2’s
complement format (with 1 guardbit). A total of three cycles are needed since
the shift-add corresponding to the 1st and 2nd non-zero bits can be merged
in one cycle.

(with 1 guardbit). In each cycle, from right to left, the non-
zero bits of the multiplier are processed, and right shift and
addition/subtraction are performed, as dictated by bit values,
until the multiplication result is computed. Due to CSD coding,
multiplier bit patterns containing trailing zeros, such as “-0”
and “100” in this example, can be processed in one cycle.
Thus, the amount of cycles for this 8-bit multiplier example
decreases from eight to three.

It can be seen that the bitwidth of the multiplication results
and those of the multiplicands are the same, Q1.6 values (with
1 guardbit); hence, truncation errors occur. However, the errors
are negligible even for very constrained bitwidths, for exam-
ple, approximately 0.2% in the example in Figure 6. Wider
bitwidths would result in even lower truncation errors, while
narrower ones would increase parallelism and performance.
We showcase in Section IV-A an accuracy-driven methodology
that navigates this trade-off.

3) Overflow Management and Word Space Utilization:
For the shift, addition, and multiplication operations intro-
duced above, guardbits are used to (i) separate subwords, (ii)
ensure correct shift operations in each subword, and (iii)
guarantee the correct carry generation and propagation in
addition or subtraction operations between any two adjacent
subwords and avoid possible overflows. It can be noted that
guardbits are only required when data traverses the first
stage (AU) of this pipeline microarchitecture.
If the first stage output needs to be reused as an input in
the next cycle through datapath loops, the most significant
bit (MSB) of each subword is used as a guardbit, which
does not encode numerical values, as shown in Figure 6.
Conversely, if the first stage output is used as input for the
second stage or written back to memory, no guardbits are
required, and the MSB encodes numerical values again.
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Fig. 7. (a) Example of the data repacking with a 48-bit word size. The
registers R2 and R3 have four 12-bit subwords (0/1/2/3 in R2, and 4/5/6/7 in
R3). After repacking, the SIMD format can be converted to 16-bit with three
subwords, 8-bit with six subwords, 6-bit with eight subwords, or still 12-bit
with four subwords. (b) For repacking from 12- to 16-bit, the output subwords
can be fetched from different input positions. (c) Number of connections with
input bits for each output bit. ‘–’ indicates non-supported packing modes.

Therefore, guardbits do not reduce word space uti-
lization nor increase storage requirements. The only
requirement is the range of the input data for the first
stage. For example, for N-bit operands, the input can be
represented at a maximum with (N-1)-bit, to avoid the
possible overflow after addition, and the Nth bit (MSB) is
temporarily used as a guardbit.
Since each addition increases the bitwidth of the result by

1-bit, for multiple additions such as the multiply–accumulate
(MAC) operations, the second stage (DPU) is used to repack
the data to a larger bitwidth before arithmetic operations in
the first stage. We detailed this procedure in Section III-C.
C. Data Pack Unit

The role of the second pipeline stage (DPU) is to bridge
across different SIMD formats. To this end, a crossbar-based
DPU similar to [39] is employed to repack words from register
R2 or/and R3 into other supported bitwidths. The resulting
resized words are then written to register R4 as the input of
the first stage (AU) or back to memory.
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Fig. 8. Top: Different DPU configurations supporting (a) 2 SIMD modes, 4
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packing modes, (f) 7 SIMD modes, 29 packing modes. Bottom: Normalized
area cost of (a) ∼ (f) under logic synthesis and lightweight model evaluation.

Figure 7(a) shows an example of the repacking operation.
In this example, we consider R2 and R3 as 48-bit words
composed of four 12-bit subwords. Each subword can be
resized to 6-, 8-, 12-, or 16-bit through the DPU, which
manages increase and decrease in subword size. If the subword
size increases, the sign bit of input subword data is extended,
which provides a larger bitwidth to ensure that overflow does
not occur in the following arithmetic operations in the first
stage (AU). Conversely, if the subword size decreases, the
input subword data is truncated with the required MSBs. In
addition, subword sizes can stay the same when traversing
the DPU, such as when R2 or/and R3 are used to store data
temporarily for reducing read/write to memory.

Output subwords can be fetched from different input po-
sitions. For example, Figure 7(b) shows the possible four
cases when repacking from 12- to 16-bit1. From a hardware
perspective, the number of such cases reflects how many input
bits are connected to each output bit in DPU, hence the
connectivity/complexity of the data packing mode, and it is
positively correlated to hardware cost.

As an illustrative example, in Figure 7(c), we consider 48-bit
registers with 3-, 4-, 6-, 8-, 12-, 16-, and 24-bit SIMD modes,
and show their connectivity. Some data packing modes are not
supported due to the presence of only two input registers (R2
and R3). For example, converting from 12- to 3-bit would
require four input registers and hence cannot be done in a
single DPU traversal. The result also shows that the required
connectivity for some data packing patterns is very large, such

1For simplicity, only the cases when starting data packing operations from
R2 are presented here. The number of cases would double when symmetrical
cases starting with R3 are considered.
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TABLE II
A MAPPING EXAMPLE ON THE PROPOSED SOFT SIMD MICROARCHITECTURE

Cycle Read R1 R4 Stage 1 R2 R3 Stage 2 Write
1 B[11:0] ResB [11 : 0] ← 0 ± B[11 : 0]
2 B[11:0] ResB [11 : 0] ResB [11 : 0] ← ResB [11 : 0] >> ± B[11 : 0]
3 B[11:0] ResB [11 : 0] ResB [11 : 0] ← ResB [11 : 0] >> ± B[11 : 0]
4 B[23:12] ResB [23 : 12] ← 0 ± B[23 : 12] ResB [11 : 0]
5 B[23:12] ResB [23 : 12] ResB [23 : 12] ← ResB [23 : 12] >> ± B[23 : 12] ResB [11 : 0]
6 B[23:12] ResB [23 : 12] ResB [23 : 12] ← ResB [23 : 12] >> ± B[23 : 12] ResB [11 : 0] ResB [7 : 0]
7 ResA[7 : 0] ResB [7 : 0] Sum[7 : 0] ← ResA[7 : 0] + ResB [7 : 0] ResB ]11 : 0] ResB [23 : 12] ResB [15 : 8] Sum[7 : 0]
8 ResA[15 : 8] ResB [15 : 8] Sum[15 : 8] ← ResA[15 : 8] + ResB [15 : 8] ResB [23 : 12] ResB [23 : 16] Sum[15 : 8]
9 ResA[23 : 16] ResB [23 : 16] Sum[23 : 16] ← ResA[23 : 16] + ResB [23 : 16] Sum[23 : 16]

as from 3- to 8-bit or 16-bit, which means that such operations
are very costly in hardware.

Hence, while the DPU could theoretically support con-
version from/to any bitwidth, in practice, design complex-
ity (hence area, energy, etc.) must be accounted for, which
varies with the number and the selections of data packing
modes [39] [40]. For instance, replacing a 3- to 16-bit repack
with a 2-step 3- to 4-bit and 4- to 16-bit reduces design
complexity. Also, since the DPU is mainly composed of mul-
tiplexers that can be reused by different data packing modes,
choosing the modes with higher logic share is beneficial,
such as more than 50% between 4- to 8-bit and 8- to 16-bit
conversions.

To exemplify this, Figure 8(top: a∼f) describes six possible
choices having different flexibility and hardware requirements,
ranging from supporting 4, 7, 9, 12, 19, and 29 data packing
modes. Since the DPU is combinational logic and not the
timing bottleneck of the datapath, we focus on the area cost in
the following. Figure 8(bottom) presents the normalized area
cost of (a) ∼ (f) based on the two following approaches:

(i) Logic synthesis under TSMC 28nm technology.
(ii) Calculate the number of required multiplexers based

on the connectivity values in Figure 7(c), considering the
multiplexers reuse among different data packing modes.

The result shows that supporting more SIMD and data pack-
ing modes can incur high area penalties. Nonetheless, as the
number of modes increases, the area growth rate falls because
of the multiplexers reuse among different modes. Also, the
results obtained by logic synthesis and model estimation are
very close, which indicates that we can use lightweight model
estimation to evaluate the hardware resource requirement of
different packing choices. In the design investigated in Section
IV-B, we select the choice in Figure 8(e) because it supports
all the required packing modes for MAC operations in CNNs
while occupying 21.5% less area than the design in Figure 8(f).
D. Mapping Example

Table II shows a mapping example of performing multipli-
cation, repack, and accumulation on our microarchitecture. We
assume the register size is 48-bit, and the subword size can
be 4-, 6-bit, etc. Operands A and B are 4-bit multiplicands
with 24 subwords, while operands m1 and m2 are common
multipliers. The operation is : Sum <= A × m1 + B × m2. For
simplicity, we only show the details of shift-add-based mul-
tiplication and repacking of ResB[23:0] <= B[23:0] × m2.
The multiplication input operands and result are both 4-bit,
so 12 subwords can be executed in parallel. The multiplicand
(B[11:0] or B[23:12]) is fetched from memory in the start
cycle of each multiplication, followed by shift-add iterations
through registers R1 and R4 via the local datapath loop
under control signals converted from the multiplier m2. The

multiplication results (ResB[11:0] and ResB[23:12]) are then
temporarily stored in registers R2 and R3 for repacking to 6-bit
(ResB[7:0], ResB[15:8], and ResB[23:16]) to prevent possible
addition overflows. The same operations are performed to
obtain ResA [23:0], and the repacked outputs (ResA[7:0],
ResA[15:8], and ResA[23:16]) are already stored in memory.
Finally, Sum[7:0], Sum[15:8] and Sum[23:16] are obtained.

Similar to this example, through careful mapping, our
pipeline microarchitecture can ensure that the first stage (AU)
is fully and seamlessly utilized to provide better perfor-
mance/latency, while the second stage (DPU) is only activated
when repack operations are required to save energy cost.

IV. EXPERIMENTAL SETUP

This section details the settings for our experiments. Sec-
tion IV-A first introduces the selected CNN benchmarks,
their quantization schemes, and the mapping strategy onto
the proposed Guardbit-based Soft SIMD microarchitecture.
Then Section IV-B summarizes the assigned parameters for the
proposed microarchitecture. Section IV-C lists the two base-
lines, and Section IV-D specifies the synthesis configuration
for Soft SIMD implementations. Finally, Section IV-E presents
the power consumption model for performance evaluation.

A. CNN Benchmarks Selection

1) CNNs Quantization: To effectively leverage the comput-
ing capabilities of the proposed microarchitecture illustrated
in Section III, we adopt a hardware-aware heterogeneous
method to optimize the CNN benchmarks based on per-
layer quantization, similar to the methodology in [41]. This
strategy aims to reduce the number of shift-add operations
as much as possible (hence the bitwidth of activations and
weights), resulting in speed-ups and energy cost reductions,
while keeping accuracy drops below a user-defined constraint.

An overview of the adopted optimization approach is de-
picted in Figure 9. Its input is a trained CNN model uniformly
quantized to 16-bit activations and 8-bit weights [9] [10] [15].
Then, the first step of the optimization loop measures the
potential reduction of the shift-add operation numbers when
reducing the quantization level of either activations or weights
in each layer. Following a greedy approach, the optimization
action leading to the highest reduction is selected and applied
to the model. After reducing the bitwidth of the target operands
(i.e., either activations or weights) in the target layer, 20 re-
training epochs are run. Finally, the accuracy of the obtained
model is measured. If it satisfies the user-defined accuracy
threshold, the optimization loop continues. Otherwise, the
applied optimization is discarded and will not be considered in
future iterations. This process ends when no further optimiza-
tion actions can be performed. Note that, while this process



8

Input CNN

Optimized CNN

Optimization Loop
Weights Activations

Quantize   Retrain          Check

Accuracy

Fig. 9. The method to quantize CNN models heterogeneously. The optimiza-
tion loop adjusts the bitwidth of activations and weights to maximize shift-add
cycle-reduction while abiding by bitwidth and accuracy constraints.
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Fig. 10. (a) In the example, the input size is 6×6×6, the filter size is 3×3×6,
and the output size is 4×4×1. (b) The word in each row contains multiple acti-
vations (multiplicands) from different convolutions and shares the same weight
(multiplier) from the filter. The multiplication results are then accumulated in
the column to get the convolution results. The activation bitwidth determines
the maximum degree of parallelism. (c) All the multiplication results from the
same column are accumulated with repacking to larger bitwidths constantly
to avoid overflows. The number of repacking times is logarithmically related
to the filter size.

induces a training time overhead, it only has to be performed
once (offline) for a given network, training set, and accuracy
threshold. Moreover, its complexity only scales linearly with
the number of network layers, allowing it to converge in a
reasonable time even for models having tens of layers.

2) CNNs Mapping: Figure 10 gives a mapping example of
the basic convolution operation. As shown in Figure 10(a), the
filter size is 3×3×6, and the input and output sizes are 6×6×6
and 4×4×1, respectively. In this setting, each convolution
operation requires 54 multiplications and 53 additions. In
Figure 10(b), each row represents a word containing serval
subwords (multiplicands) and the corresponding weight from
the filter (multiplier), while each column describes the accu-
mulation of multiplication results in each convolution. To per-
form multiplications, multiple activations (up to the maximum
amount of possible subwords) in different convolutions are
mapped together on the same word and multiplied with the
shared weight. Thus, the final output also contains multiple
convolution results in a word.

As for accumulation (detailed in Figure 10(c)), operations
are organized into a binary tree, in which the number of
layers is logarithmically related to the size of the filter (e.g.,

TABLE III
ACCURAY AND SHIFT-ADD-REDUCTION OF CNN BENCHMARKS

UQ CNN Accuracy HQ CNN Accuracy HQ CNN Shift-add
Reduction Percentage

LeNet5 74.35% 73.42% 70.40%
AlexNet 50.69% 49.75% 45.25%
VGG16 66.57% 66.63% 68.01%

ResNet20 62.66% 61.88% 87.88%
MobileNet 62.20% 61.30% 61.44%
ResNext 69.31% 68.51% 66.12%

for 53 additions, 6 layers). The first layer of the binary tree
corresponds to the multiplication results of all the subwords
in the same column (e.g., 54 subwords in the first column in
Figure 10(b)), and the last layer is the convolution output (e.g.,
y000 in the first column in Figure 10(b)). Since each addition
increases the subword size, the DPU stage is used to repack
the data to a larger bitwidth to avoid possible overflows.

Fully connected layers are mapped with the same strategy,
as they can be executed via sequences of MAC operations [10].

It can also be noted that a smaller activation bitwidth
means higher word-level parallelism, and a smaller weight
bitwidth means fewer shift-add-based multiplication iteration
cycles. The previous heterogeneous quantization methodology
considers these two aspects comprehensively.

3) Target Benchmarks: We consider six popular edge
CNN models with different complexity: LeNet5 [42],
AlexNet [43], VGG16 [44], ResNet20 [45], MobileNet [46],
and ResNext [47]. Accuracy is reported on the CIFAR-10
dataset [48] for LeNet5 and the CIFAR-100 dataset [48] for
the other CNN benchmarks.

CNN benchmarks are first uniformly quantized with 16-
bit activations and 8-bit weights (named as UQ in the fol-
lowing), as done in [9] [10] [15]. They are then quantized
heterogeneously using the methodology presented in Figure 9
(named as HQ in the following). The maximum accuracy drop
threshold is set as 1.0%. Here, UQ is used as the baseline CNN
implementations as well as a reference to contrast with HQ.
Note that HQ can only be supported by an architecture that
features flexible subword sizes, as is the case in Soft SIMD.

Across experiments, multiplication operations need a max-
imum bitwidth of 16 bits, while the accumulation outputs
require a maximum of 24 bits to ensure that overflow does not
occur. Therefore, we consider the following subword bitwidth
sets: 3, 4, 6, 8, 12, 16, and 24 bits. For weights, bitwidth varies
from 1 to 16 bits. Both activations and weights are scaled to
(-1,1) and are represented in Q1.X notation.

Figure 11 presents the HQ bitwidths of activations and
weights in each layer for all CNN benchmarks. Table III lists
the inference accuracy of UQ and HQ CNNs, as well as the
shift-add reduction percentage, which is 66.52% on average
and up to 87.88% for the ResNet20 case.

B. Guardbits-based Soft SIMD Instantiation
As a template instantiation for the proposed Guardbits-based

Soft SIMD pipeline microarchitecture described in Section III,
we consider: (i) the support for heterogeneous subwords width
of 3, 4, 6, 8, 12, 16, and 24 bits, which can fully exploit the
proposed microarchitecture, and (ii) a word size of 48 bits,
which is the least common multiple of all SIMD modes to
ensure full utilization of the word space.
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Fig. 11. The activation (blue bar) and weight (orange bar) bitwidth of each layer in corresponding heterogeneously quantized CNN benchmarks.

TABLE IV
CONFIGURATIONS OF GUARDBITS-BASED SOFT SIMD INSTANTIATION

Configurations
SIMD Modes [3, 4, 6, 8, 12, 16, 24] bits
Word bitwidth 48 bits

Packing modes 3 to 4, 4 to 6, 6 to 8, 8 to 12, 12 to 16, 16 to 24 bits
4 to 3, 6 to 4, 8 to 6, 12 to 8, 16 to 12, 24 to 16 bits

Shifter range 0 ∼ 3, 0 ∼ 7

TABLE V
THE PROPOSED METHOD AND TWO BASELINES

Guardbits-based
Soft SIMD (Proposed)

Muxes-based
Soft SIMD

Hard SIMD
Multiplier-Adder

Word Bitwidth 48 48 48
SIMD Modes 3,4,6,8,12,16,24 3,4,6,8,12,16,24 8,16,24

It should be noted that only the second stage (DPU) of
the pipeline is impacted by the choice of supported subwords,
while the first stage (AU) is only influenced by the word size.
In this work, available data packing modes reflect the ones
illustrated in Figure 8(e): 3- to 4-bit, 4- to 3-bit, 4- to 6-bit,
6- to 4-bit, 6- to 8-bit, 8- to 6-bit, 8- to 12-bit, 12- to 8-bit,
12- to 16-bit, 16- to 12-bit, 16- to 24-bit, 24- to 16-bit, and
other seven modes that keep the original bitwidth.

Finally, we consider two implementations for the logarith-
mic shifter in the first pipeline stage (AU), having two or
three layers. In the first case, up to 3-bit right-shifts can be
performed in a single operation, while up to 7-bit right-shifts
in the second. The two cases are named shift3 and shift7,
respectively, in the following. As most operand bitwidths are
below 16-bit, shifting more than 7-bit is rarely required, so we
do not explore even more complex shifters.

All design parameters are summarized in Table IV. Such
choices abide by the characteristics of the target scenarios
(CNN benchmarks), but are not an intrinsic limitation of
our hardware/software methodology or microarchitectural tem-
plate.

C. Baselines

In order to evaluate the performance of the proposed
Guardbits-based Soft SIMD microarchitecture, we propose
two baselines in Table V : (i) Muxes-Based Soft SIMD mi-
croarchitecture, to compare the performance of different Soft
SIMD implementation methods, (ii) Hard SIMD Multiplier-
Adder, to compare the performance of the microarchitecture
based on Soft SIMD versus Hard SIMD.

The Muxes-Based Soft SIMD baseline uses multiplexers
to separate subwords instead of guardbits. It has the same

features as the proposed Guardbits-based Soft-SIMD microar-
chitecture in Section III, but employs a different mecha-
nism for implementing subword separation. The hardware
implementation of Muxes-Based Soft SIMD baseline is sim-
ilar to [9] [10] [11] [12], which performs shift-add-based
arithmetic operations under 8- or 16-bit subword size for
quantized neural network acceleration. Such an approach is
here extended to the SIMD modes in Table V for greater
flexibility, and CSD coding is adopted to speed multiplication.

On the other hand, the Hard SIMD Multiplier-Adder base-
line is a typical microarchitecture that can perform parallel
multiplication and addition in one cycle under limited SIMD
modes. Here, we select 8-, 16-, and 24-bit SIMD modes
since more modes bring a large area and energy increase.
Indeed, even with this reduced set of supported bitwidths,
this implementation requires vastly more area and energy with
respect to Soft SIMD alternatives (see Section V).

D. Technology and Synthesis Configuration

The hardware implementations of the proposed microar-
chitecture and two baselines use a 28nm technology node
and regular voltage standard cell library from TSMC, with
a maximum operating frequency of 1.0GHz.

One particularity for the Guardbits-based and Muxes-based
Soft SIMD microarchitecture synthesis is that, by default, the
worst critical path length is dictated by the adder in the AU,
which starts from bit 0 to bit 47 in this work. Nonetheless, no
Soft SIMD configuration can traverse all word bits in practice,
as we constrain the maximum operand width to 24-bit in
this work. Such mismatch can cause an overly constrained
optimization during synthesis, which impacts area and energy.
To avoid it, we enforce specific timing constraints in the
synthesis tool, ensuring that the worst critical path length
of the adder corresponds to the supported SIMD modes (in
this work, 16- and 24-bit, as the corresponding subwords
delimitations are overlapping). Again, this does not restrict
our methodology, as such an approach can be applied to any
Soft SIMD microarchitecture synthesis.

E. Power Consumption Model

To evaluate the energy performance of the three implemen-
tations in Section IV-C, we develop a power consumption
model containing the energy consumed by basic operations.
For both Guardbits-based and Muxes-based Soft SIMD mi-
croarchitecture, we characterize the energy consumption of
shift-add operations under different bitwidths and that of data
packing operations. For the Hard SIMD Multiplier-Adder,
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(b) Data packing operations.

similarly, we extract the energy cost of additions and multipli-
cations for each supported bitwidth. Such energy extraction is
based on the post-synthesis simulation at the register transfer
level (RTL).

Figure 12 shows the energy consumption of all basic oper-
ations for the proposed Guardbits-based Soft SIMD microar-
chitecture at 1.0GHz. The decrease in energy consumption per
subword operation is significant when the operands have a
smaller bitwidth, such as 3-, 4-, 6-bit, since it results in higher
data-level parallelism. The energy cost of data packing oper-
ations, which exhibits the same trend as shift-add operations,
is shown in Figure 12(b).

We use this energy characterization to evaluate the energy
cost of executing quantized CNN benchmarks. To this end,
in the case of Soft SIMD architectures (both Guardbits-based
and Muxes-based), we first map the CNN benchmarks to the
microarchitecture as a sequence of shift-add and data packing
operations (as explained in Section IV-A). Then, we multiply
the number of basic operations by the corresponding energy
cost to determine the overall energy consumption. A similar
approach is followed for the Hard SIMD case, but considering
multiplications and additions as basic operations.

V. RESULTS

Section V-A first presents the area performance comparison.
Then, Section V-B contrast the multiplication speed and energy
performance. Finally, Section V-C analyzes the performance of
running CNN benchmarks. In the following, we compare the
performance of each 48-bit datapath for the three implemen-
tations in Table V. We consider the same operating conditions
(e.g., voltage, frequency) and workload (CNN benchmarks)
for all of them and explore trade-offs between area, latency,
and energy consumption.

A. Area Evaluation

Figure 13 compares the area of the proposed Guardbits-
based Soft SIMD microarchitecture and of two baselines when
synthesized at 200MHz and 1.0GHz, respectively.

First, the comparison shows that the area increase brought
by rising the maximum shift bits from 3 to 7 is marginal (while
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Fig. 13. When operating at 200MHz and 1.0GHz, synthesis area of
(i) Guardbits-based Soft SIMD microarchitecture (’shift3’ and ’shift7’),
(ii) Muxes-based Soft SIMD microarchitecture (’shift3’ and ’shift7’), and
(iii) Hard SIMD Multiplier-Adder. The area is composed of three parts:
Arithemetic Unit (the first stage, AU), the Data Pack Unit (the second stage,
DPU), and the Registers and other Combinational Logic (R+CL).

the added flexibility does induce speed-ups when performing
multiplications, as discussed in Section V-B). Besides, the area
of the second stage (DPU) remains almost constant while that
of the first stage (AU), which is the critical path, increases
significantly with tighter timing constraints. The area of the
registers and other combinational logic (R+CL) also fluctuates
slightly.

Then, as expected, since Guardbits-based and Muxes-based
Soft SIMD implementations do not require a complex combi-
natorial multiplier, they take up considerably less area (for
‘shift7’ at 1.0GHz, 59.9% and 59.3%, respectively) with
respect to the Hard SIMD Multiplier-Adder, even if the latter
supports fewer SIMD modes (8-, 16-, and 24-bit).

Finally, the Guardbits-based Soft SIMD microarchitecture
scales better (i.e., has a smaller area increase) for tighter timing
constraints than the Muxes-based Soft SIMD alternative, as
it has a shorter critical path. For example, the area cost of
Muxes-based Soft SIMD microarchitecture is always smaller
than that of Guardbits-based Soft SIMD microarchitecture for
‘shift3’ configurations. However, its area cost becomes the
larger one for ‘shift7’ cases at 1.0GHz. Also, for a constant
frequency constraint, when increasing the shift from 3 to 7, the
Guardbits-based Soft SIMD microarchitecture area grows by
6.8% and 8.4% at 200MHz and 1.0GHz, respectively, while for
Muxes-based Soft SIMD microarchitecture 6.6% and 13.3%.
These again prove a better resilience to tighter timing con-
straints for the Guardbits-based Soft SIMD microarchitecture.

B. Speed and Energy Evaluation of Iterative Multiplication

1) Soft SIMD Multiplication Cycle Count: The shifter range
(‘shift3’ or ‘shift7’) affects not only the area cost but also the
iterative amount cycles to complete a shift-add-based multipli-
cation with CSD coding on both Guardbits-based and Muxes-
based Soft SIMD microarchitecture. The average cycles (for
‘shift3’, ‘shift7’, and a theoretical infinitely-wide shifter with
CSD coding, and the work in [9]–[12] without CSD coding)
to finish a multiplication are presented in Figure 14.
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Thanks to the CSD coding, the trendline slope of our design
drops by 18.0% (‘shift3’) and 35.4% (‘shift7’) with respect to
that of [9] [10], and by 59.0% (‘shift3’) and 67.7% (‘shift7’)
with respect to that of [11] [12]. For the ‘shift7’ case, its
trendline slope is almost the same as that of the infinitely-wide
shifter, and the average cycle count difference between the
two is less than 0.30 cycles. In contrast, for the ‘shift3’ case,
its trendline slope increases by 27.3% compared with that of
the theoretical scenario, resulting in less multiplication speed,
especially for the larger-bitwidth multiplier. For example, the
‘shift3’ case requires an average of 0.38 more cycle count for
the 8-bit multiplier and 1.09 more for the 16-bit multiplier
than the ‘shift7’ case.

2) Soft SIMD Multiplication Energy: The impact of the
shifter range on multiplication energy consumption is further
contrasted on both Guardbits-based and Muxes-based Soft
SIMD microarchitecture in Figure 15. Therein, we select 8-
bit multiplicand as an example, and describe the relationship
between the average multiplication energy cost per subword
and the bitwidth of the multiplier for four Soft SIMD configu-
rations (Guardbits-based or Muxes-based, ‘shift3’ or ‘shift7’).
The energy cost of the Hard SIMD Multiplier is omitted as
it is much larger (from 3-bit to 16-bit, ×4.8∼×2.0 times) than
Soft SIMD alternatives.

First, the results indicate that Guardbits-based and Muxes-
based Soft SIMD microarchitectures adopting ‘shift7’ is al-
ways better than those with ‘shift3’ when the multiplier
bitwidth is larger than 6-bit. For multipliers bitwidth lower
than 6-bit, the four Soft SIMD configurations have a mini-
mal difference. Since Guardbits-based and Muxes-based Soft
SIMD microarchitectures in ‘shift7’ configuration have advan-
tages on both speed and energy consumption with only a few
area increases, they are chosen for further explorations in the
following.

Moreover, Guardbits-based Soft SIMD microarchitecture
always consumes less energy than Muxes-based Soft SIMD
microarchitecture, and the energy advantage becomes more
significant as the multiplier bitwidth increases. The reason is
that the critical path growth of Guardbits-based Soft SIMD
microarchitecture is much lower than that of Muxes-based
Soft SIMD microarchitecture. Thus, it has more prominent
advantages for larger bitwidths, tighter timing constraints, and
higher operating frequencies.

In addition, Guardbits-based Soft SIMD microarchitecture
with ‘shift7’ has the minimum energy consumption when the
multiplier bitwidth is larger than 6-bit. Also, it has the smallest
trendline slope, again proving its best energy efficiency.

3) Soft and Hard SIMD Multiplication Energy Comparison:
In Figure 16, 8-bit multiplicand by 8-bit multiplier is selected
as the example, and the average energy consumption per
subword of Guardbits-based Soft SIMD microarchitecture,
Muxes-based Soft SIMD microarchitecture, and Hard SIMD
Multiplier-Adder, are compared, considering target clock fre-
quencies from 200MHz to 1.0GHz.

As expected, Guardbits-based and Muxes-based Soft SIMD
implementations consume at least 41.0% and 37.5% less
energy than Hard SIMD Multiplier using complex combi-
national logic. Moreover, the energy consumption of Hard
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SIMD Multiplier grows 6.6 and 6.1 times faster with frequency
than that of Guardbits-based and Muxes-based Soft SIMD
microarchitecture. Also, consistent with the previous analy-
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sis, the energy consumption of Guardbits-based Soft SIMD
microarchitecture is always lower than that of Muxes-based
Soft SIMD microarchitecture for all frequencies.

C. CNN Benchmarks Energy Cost Evaluation

The energy consumption and execution time of the selected
CNN benchmarks (LeNet5, AlexNet, VGG16, ResNet20, Mo-
bileNet, and ResNext) have been evaluated using the CNNs
mapping method detailed in Section IV-A and the power
consumption model illustrated in Section IV-E. We consider
both uniformly quantized (UQ) and heterogeneously quantized
(HQ) CNN benchmarks.

Table VI and VII present the normalized energy consump-
tion and execution time to run per inference of different
CNN benchmarks on the proposed Guardbits-based Soft SIMD
microarchitecture and two baselines (Muxes-based Soft SIMD
microarchitecture and Hard SIMD Multiplier-Adder) when
operating at 1.0GHz.

Guardbits-based Soft SIMD microarchitecture consumes
9.9% (UQ) / 9.2% (HQ) less energy than Muxes-based Soft
SIMD microarchitecture on average, while having the same
execution time. Therefore, we only compare the energy and
execution time performance of CNN benchmarks running on
Guardbits-based Soft SIMD microarchitecture and Hard SIMD
Multiplier-Adder in the following.

First, as Figure 17(a) presents, Guardbits-based Soft SIMD
microarchitecture can significantly reduce energy consumption
compared to Hard SIMD Multiplier-Adder. Moreover, due
to using shift-add iterations to replace one-cycle multiplier,
Guardbits-based Soft SIMD microarchitecture has an exe-
cution time increase for most CNN benchmarks, as shown
in Figure 17(b). Specifically, for UQ CNN benchmarks, our
proposed microarchitecture has an average energy reduction of
38.4% and execution time increase of 76.1% compared to Hard
SIMD Multiplier-Adder. Since all UQ CNN benchmarks have
16-bit activations and 8-bit weights, their energy and execution
time reduction has a slight difference of less than 1.0%
across benchmarks. Conversely, for HQ CNN benchmarks, our
proposed microarchitecture has an average energy reduction
of 50.1% (ranging from 41.2% to 66.2%) and execution time
increase of 31.5% (ranging from -14.5% to 58.7%). Their
performance difference is due to the different quantization
schemes adopted in each CNN benchmark (hence different
activation and weight bitwidths, see Figure 11). Besides,
from the perspective of TOPS/W, Guardbits-based Soft SIMD
microarchitecture has an average increase of 63.2% (ranging
from 60.0% to 68.8%) for UQ CNN benchmarks and 107.9%
for HQ CNN benchmarks (ranging from 69.5% to 194.1%)
with respect to Hard SIMD Multiplier-Adder.

Moreover, Guardbits-based Soft SIMD microarchitecture
performs better with heterogeneously than uniformly quan-
tized CNN benchmarks because they can fully use small
bitwidth activations (i.e., higher data-level parallelism) and
weights (i.e., fewer iterative cycles for multiplication). For in-
stance, the average execution time overhead drops from 76.1%
(UQ) to 31.5% (HQ), while the average energy reduction rises
from 38.4% (UQ) to 50.1% (HQ). Especially for ResNet20
(HQ), Guardbits-based Soft SIMD saves 66.2% energy cost

TABLE VI
NORMALIZED ENERGY COST PER CNN INFERENCE AT 1.0GHZ

Guardbit-based
Soft SIMD

Muxes-based
Soft SIMD Hard SIMD

UQ HQ UQ HQ UQ HQ
LeNet5 1.38 1.00 1.52 1.10 2.24 1.70
AlexNet 1.53 1.00 1.68 1.10 2.48 2.22
VGG16 2.14 1.00 2.35 1.09 3.48 1.84
ResNet20 3.73 1.00 4.10 1.07 6.06 2.96
MobileNet 1.40 1.00 1.54 1.10 2.27 1.72
ResNext 2.18 1.00 2.39 1.09 3.53 2.04

TABLE VII
NORMALIZED EXECUTION-TIME PER CNN INFERENCE AT 1.0GHZ

Guardbit-based
Soft SIMD

Muxes-based
Soft SIMD Hard SIMD

UQ HQ UQ HQ UQ HQ
LeNet5 1.45 1.00 1.45 1.00 0.82 0.63
AlexNet 1.64 1.00 1.64 1.00 0.93 0.81
VGG16 2.45 1.00 2.45 1.00 1.39 0.73
ResNet20 4.28 1.00 4.28 1.00 2.44 1.17
MobileNet 1.46 1.00 1.46 1.00 0.83 0.64
ResNext 2.37 1.00 2.37 1.00 1.35 0.78
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Fig. 17. When running per inference of different CNN benchmarks at 1.0GHz,
the normalized (a) energy consumption reduction, (b) execution time (delay)
reduction, (c) energy-delay product reduction, (d) area-energy-delay product
reduction, by Guardbits-based Soft SIMD microarchitecture relative to Hard
SIMD Multiplier-Adder. The reduction is defined as (CostHard SIMD −
CostSoft SIMD)/CostHard SIMD .

and reduces 14.5% the execution time because its activations
and weights in many layers can be quantized to very small
bitwidths (see Figure 11).

In addition, Figure 17(c) presents the energy-delay (execu-
tion time) product reduction. UQ CNN benchmarks exhibit
an increase in this metric (ranging from 7.9% to 8.7%, and
by 8.4% on average). However, by co-optimizing from the
hardware and software aspects, HQ alternatives can reduce the
energy-delay product (ranging from 6.5% and up to 71.1% for
different quantization schemes, and by 32.3% on average).
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In summary, we compare all metrics employed (area, en-
ergy consumption, and execution time) by the energy-delay-
area product in Figure 17(d). These results show that our
proposed Soft SIMD microarchitecture significantly improves
concerning a Hard SIMD alternative for both UQ and HQ
CNN benchmarks. Specifically, for UQ CNN benchmarks,
the energy-delay-area product decreases 56.6% on average,
with less than 0.4% difference between benchmarks. For
HQ CNN benchmarks, the energy-delay-area product declines
from 62.7% to 88.5%, with an average of 72.9%.

VI. CONCLUSION
Typical Hardware SIMD resources can only support a small

set of subword sizes, limiting their performance on fully
quantized and highly data-level parallel algorithms, especially
for small-bitwidth arithmetic operations. Filling this gap, our
work has introduced a novel pipeline microarchitecture for
arithmetic computing based on the Software-defined SIMD
paradigm, which can flexibly support arbitrary SIMD modes at
run-time through control instructions. This microarchitecture
efficiently executes shift/add operations and shift-add-based
multiplication/accumulation operations in highly parallel using
guardbits. CSD coding is used to feature the skipping of trail-
ing ’0’ digits in multiplier operands, providing multiplication
operations with further energy gains and savings in execution
time. A Data Pack Unit is introduced to bridge across different
SIMD formats and seamlessly support a wide range of quan-
tization levels. We choose heterogeneously quantized CNNs
from the ML domain as the benchmark and map it onto this
microarchitecture for performance evaluation. Experiments
showcase that our Soft SIMD microarchitecture significantly
outperforms Hard SIMD alternative when executing CNNs
inferences, highlighting energy gains of 50.1% on average
while requiring 59.9% less area.
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