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ABSTRACT

Plastic litter is a major environmental hazard that endangers human, animal, and
plant health on the planet. A substantial portion of plastic pollutants is washed
from rivers and beaches into the oceans and aggregates at the surface as marine
debris before decomposing into microplastics and being digested by animals or
sedimented on the sea floor. The marine debris is inherently challenging to an-
notate manually on satellite images, as the boundaries of floating objects are not
sharp, and a specific mixture of water is always present at the pixel level. Hence,
all available annotated marine debris datasets suffer from annotation errors. In this
work, we present a label refinement algorithm for marine debris detection that im-
proves upon rough hand annotations and considers the spectral characteristics of
marine debris. We show quantitatively that a deep learning model trained with im-
proved annotations achieves a higher classification accuracy on confirmed marine
debris on two out of three datasets of confirmed plastic marine debris in Africa
(in Ghana and South Africa). Thanks to the refinement module, we improve re-
sults for an environmentally important application that would benefit from further
research attention to mitigate important associated challenges like label noise, do-
main shifts, and severe class imbalance.

1 INTRODUCTION

Microplastics are found across the entire planet. They have been shown to affect the growth of corals
(Chapron et al., 2018) and were even detected in human stool (Schwabl et al., 2019). They enter the
food chain in the oceans, where macro-plastics (> 5mm diameter) decompose into micro-plastics
(< 5mm diameter) in the open water or during their transport in rivers (Van Emmerik et al., 2019;
van Emmerik & Schwarz, 2020). Further, Van Dyck et al. (2016) demonstrated in beach surveys
along the Accra-Temur Coastline in Ghana that beaches polluted by plastic debris are also a source
of bacterial hazards, as shown by water samples taken simultaneously to the plastic surveys. Finally,
many economic costs can also be associated with marine pollution, from clean-up expenses to loss
of tourism revenue (Beaumont et al., 2019).

On open waters and under specific conditions, macroplastics can aggregate in elongated lines called
windrows. These windrows are accumulations of surface debris. Ship-based collection along these
features has proven highly effective, as demonstrated by Ruiz et al. (2020), who gathered 16.2
tons of floating marine litter in the Bay of Biscay, France, during a 68-working day campaign.
These collection efforts are mainly scientific today, but rising economic demand for recycled ocean
plastics may make a systematic collection of marine debris economically feasible. Magnier et al.
(2019) have shown in a 2017 survey study in the Netherlands that sustainability-oriented consumers
are interested and willing to pay a price premium for these products, and current campaigns raising
awareness towards these issues are likely to increase the public sensitivity on this topic in future.

However, tracking marine debris in open waters is difficult (Cressey, 2016) and the lack of knowl-
edge on the timely location of marine debris on the sea severely limits the efficiency of collection
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Figure 1: Label refinement module, producing a context-aware refined annotation mask from a
Sentinel-2 image and a coarse original mask, hand-annotated.

efforts. Here, machine learning-based classification and detection models trained on open remote
sensing data – as, for instance, the Copernicus Sentinel-2 satellite constellation – can support the
collection efforts by providing up-to-date estimates of the location of marine debris at regular inter-
vals.

To train these models on available Sentinel-2 imagery, comparatively large datasets of image scenes
have been hand-annotated (Mifdal et al., 2021; Kikaki et al., 2022). However, the high manual effort
in annotating this imagery and the lack of clear boundaries of marine debris make it challenging to
produce a precise annotation map. For instance, Mifdal et al. (2021) annotated these elongated
features exclusively as poly-lines of constant width rather than polygons. They then rasterized them
to a single-pixel width ground reference map. While this often captures the general shape, it fails to
capture variations in width that can sometimes be found in some large marine debris agglomerations.

In this work, we design a context-aware label refinement algorithm that inputs coarse hand anno-
tations of marine debris and the Sentinel-2 image and provides an improved annotation mask that
captures the true shape of marine debris in the dataset. It combines a classical semi-supervised com-
puter vision processing pipeline with features based on our knowledge of the spectral signature of
marine debris. We then use these refined labels as ground truth while training a conventional Unet++
segmentation model. We evaluate the performance of models trained with and without refined la-
bels on two Sentinel-2 scenes of marine debris in Africa where marine debris has been confirmed
to be present and on a dedicated Marine debris archive (MARIDA; Kikaki et al. (2022)) containing
several annotated Sentinel-2 scenes. Our results indicate that adding an automatic refinement for
these coarse annotations is generally beneficial, improving classification accuracy on two of three
datasets.

2 METHODOLOGY

The label refinement module inputs an image patch of the multi-spectral Sentinel-2 (S2) image and
the original hand annotations from the FloatingObjects dataset (Mifdal et al., 2021). Examples are
shown in the top left of fig. 1. Given these inputs, it outputs a refined mask capturing the geometry
of the marine debris visible in the Sentinel-2 scene (bottom right of fig. 1). Refining a single image-
label pair is fast and we can repeat this process with different parameters to obtain multiple refined
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masks (bottom row of fig. 1), thus exploiting the uncertainty in the shape of marine debris during
training the semantic segmentation model that learns from the refined masks.

The module itself consists of two stages: the first stage (left side of fig. 1) buffers the hand-annotated
line to obtain a region of potential marine debris. It creates a first segmentation map of marine debris
using the Otsu threshold (Otsu, 1979) on a “Floating Debris Index” (FDI) (Biermann et al., 2020)
feature map. The FDI interpolates the spectral reflectance between the measured red-infrared edge
(RE2: 782.8 nm) and short-wave infrared (SWIR: 1613.7 nm) signal and subtracts this interpolation
from the measured near-infrared (NIR: 832.8 nm) signal. In seawater, the interpolated NIR is typi-
cally close to the measured NIR, which leads to a low FDI, while marine debris has a higher response
in near-infrared, leading to a high FDI. The buffer and segmentation are combined to obtain a pre-
liminary area of marine debris near the original annotations. We use this preliminary area of marine
debris to sample marker pixels, which are areas that confidently contain marine debris or non-debris
(top right of fig. 1). These markers are the starting points of a computationally fast random walk
segmentation algorithm (Grady, 2006). The markers are assumed to be accurately annotated, while
the pixels between the markers are more uncertain. The random walker annotates these intermediate
areas by an underlying anisotropic diffusion process that ensures that homogeneous areas are as-
signed to the same class. We apply this algorithm stochastically, meaning that one set of parameters
(homogeneity criterion, buffer size, marker sampling frequency) of the random walker algorithm
leads to one potential debris map, and running it with different parameter sets leads to a collection
of potential refined masks.

We use the refinement module while training a UNET++ (Zhou et al., 2018) semantic segmentation
model. We use a learning rate of 0.01 and weight decay 1 × 10−6 for 100 epochs. Before training,
we generate target masks with the label refinement module with a buffer size of 0, 1, or 2 pixels, the
β-parameter of the random walker (a penalization coefficient for the walker motion) of 1 or 10, and
the marker density for marine debris of 5%, 25%, 50% or 75% (the density of other markers is fixed
at 5%). Combined with the original mask, this yields 25 different target masks consistent with the
hand annotations and the FDI image but of varying shapes and sizes.During training, we randomly
choose one of these target masks as a kind of label augmentation. In our opinion, this reflects best
the undefined borders of the marine debris that we aim to detect.

3 DATASET

We train on a combination of the two available marine debris datasets on Sentinel-2 data, namely the
FloatingObjects dataset of Mifdal et al. (2021) and the Marine Debris Archive (MARIDA) collected
by Kikaki et al. (2022). FloatingObjects contains 26 different globally distributed Sentinel-2 scenes.
Overall, 3297 floating objects were annotated as lines when visually identified as marine debris .
MARIDA contains 63 temporally overlapping Sentinel-2 scenes from 12 distinct regions. In total,
6672 polygons were annotated, of which 1882 are marine debris and 2447 marine water . The
remaining 2343 polygons are annotated in one of 13 further classes, such as shallow water or ships,
and were not added to the joint dataset. Additionally, we add images of ships without annotated
marine debris as negative examples to our dataset. We use the S2Ships dataset of Ciocarlan &
Stoian (2021), which segmented ships with Sentinel-2 imagery.

As a test set, we evaluate two Sentinel-2 scenes Accra (2018-10-31) and Durban (2019-04-24) that
very likely contain plastics in the marine debris, as confirmed by social media and related studies
(Van Dyck et al., 2016). In Accra, Ghana, beach surveys in 2013 showed that plastic materials made
up the majority of 63.72% of marine debris washed onto evaluated beaches (Van Dyck et al., 2016).
Further, visual inspections of the evaluation Sentinel-2 scene from 2018-10-31 and high-resolution
imagery confirmed that beach waste deposits are subject to coastal erosion. The second evaluation
scene from Durban, South Africa, 2019-04-24, shows marine debris being washed from the harbor.
This image was taken shortly after a flood event that washed substantial amounts of plastic materials,
as confirmed by the news and social media (Biermann et al., 2020). Finally, we use the test partition
of the MARIDA archive as the third evaluation dataset.

4 EXPERIMENTS

Table 1a compares a UNET++ model trained on targets with label refinement module (LRM) and
without the module (NO LRM) activated. All accuracy metrics slightly improved in the Durban
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UNET++ Accra Durban MARIDA
LRM NO LRM LRM NO LRM LRM NO LRM

ACCURACY 0.930 ± 0.016 0.948 ± 0.008 0.934 ± 0.018 0.905 ± 0.011 0.867 ± 0.005 0.851 ± 0.006
F-SCORE 0.926 ± 0.018 0.948 ± 0.008 0.837 ± 0.053 0.776 ± 0.026 0.749 ± 0.009 0.710 ± 0.015
AUROC 0.981 ± 0.006 0.989 ± 0.005 0.914 ± 0.018 0.886 ± 0.053 0.746 ± 0.021 0.733 ± 0.006
JACCARD 0.862 ± 0.031 0.900 ± 0.014 0.722 ± 0.048 0.635 ± 0.034 0.598 ± 0.012 0.551 ± 0.018
KAPPA 0.859 ± 0.031 0.897 ± 0.017 0.797 ± 0.063 0.717 ± 0.031 0.661 ± 0.012 0.615 ± 0.017

improved? no yes yes

(a) Quantitative comparison

input (12 spectral bands) target UNET++ predictions

RGB FDI label LRM NO LRM
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(b) Qualitative predictions on each 2.56 km by 2.56 km scenes from the Accra and Durban.

Table 1: Comparison of UNET++ models with and without the label refinement module activated.

scene and on the MARIDA test set. However, the model without the refinement module achieved
slightly better metrics in the Accra scene. In table 1b, we show two qualitative examples from the
Accra and Durban scenes. Both models capture the general shape of marine debris visible in the
FDI representation of the Sentinel-2 scene. However, the fine-grained individual patches of marine
debris are not always accurately captured since both models smooth the prediction mask. The model
with refinement predicts larger patches of marine debris than without refinement. This is an effect
of the label refinement module always enlarging the original 1-pixel line annotations into patches
and, hence, biases the model to predict larger patches on average.

In summary, we can see a positive effect of the label refinement module on the MARIDA scenes
and Durban. However, this effect is smaller than hoped, as only a small improvement was measured
compared to the model without LRM.

5 DISCUSSION AND CONCLUSION

Detecting marine debris accurately and at a large scale from readily available satellite data is key
to efficient clean-up and collection efforts of plastic litter in open waters. These efforts are becom-
ing increasingly important fields with further increasing levels of pollution of our waters and may
become economically viable due to increased sensitivity for sustainable economics and increased
demand for recycled plastics, for instance, in clothing.

We tested a label refinement module specifically designed for the characteristics of marine debris.
Training an off-the-shelf deep learning model with refined annotations from this module leads to
better results on two of three evaluation datasets. The results in this work highlight the benefit
of designing components of a machine learning model specifically for a given problem. The fact
that we could not improve the detection across all three datasets highlights the difficult and diverse
nature of marine debris in open waters that vary in composition and appearance from region to
region. Further canonical research is necessary to build reliable marine debris detectors and to
identify sources of ocean pollution with available data.

4



Published as a conference paper at ICLR 2023 Workshop in Machine Learning for Remote Sensing

REFERENCES

Nicola J Beaumont, Margrethe Aanesen, Melanie C Austen, Tobias Börger, James R Clark, Matthew
Cole, Tara Hooper, Penelope K Lindeque, Christine Pascoe, and Kayleigh J Wyles. Global eco-
logical, social and economic impacts of marine plastic. Marine pollution bulletin, 142:189–195,
2019.

Lauren Biermann, Daniel Clewley, Victor Martinez-Vicente, and Konstantinos Topouzelis. Finding
plastic patches in coastal waters using optical satellite data. Scientific reports, 10(1):1–10, 2020.

Leila Chapron, Erwan Peru, Adam J. Engler, Jean-François Ghiglione, Anne-Leila Meistertzheim,
Audrey M Pruski, Autun Purser, Gilles Vétion, Pierre E Galand, and Franck Lartaud. Macro-and
microplastics affect cold-water corals growth, feeding and behaviour. Scientific reports, 8(1):1–8,
2018.

Alina Ciocarlan and Andrei Stoian. Ship detection in sentinel 2 multi-spectral images with self-
supervised learning. Remote Sensing, 13(21):4255, 2021.

Daniel Cressey. The plastic ocean. Nature, 536(7616):263–265, 2016.

Leo Grady. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(11):1768–1783, 2006.

Katerina Kikaki, Ioannis Kakogeorgiou, Paraskevi Mikeli, Dionysios E Raitsos, and Konstantinos
Karantzalos. Marida: A benchmark for marine debris detection from sentinel-2 remote sensing
data. PloS one, 17(1):e0262247, 2022.

Lise Magnier, Ruth Mugge, and Jan Schoormans. Turning ocean garbage into products–consumers’
evaluations of products made of recycled ocean plastic. Journal of cleaner production, 215:84–98,
2019.
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