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Abstract

Satellite remote sensing has become a key technology for
monitoring Earth and the processes occurring at its surface.
It relies on state-of-the-art machine learning models that re-
quire large annotated datasets to capture the extreme diver-
sity of the problems of interest to achieve effective monitor-
ing. While datasets for established problems like land cover
classification exist, niche applications such as marine de-
bris detection, deforestation, or glacier dynamics monitor-
ing still miss datasets of sufficient size and variety to train
successful deep learning models. Despite some advances
in transfer learning, current approaches remain problem-
specific and perform poorly out of domain. In this work,
we propose METEOR, a meta-learning model providing a
holistic, fine-grained classification setup capable of adapt-
ing to new problems with limited labels. We demonstrate
the performance and versatility of METEOR on a series of
remote sensing benchmark tasks from different disciplines.

1. Introduction
Satellite remote sensing is an emerging technology to

monitor the pulse of planet Earth and is becoming a prime
sensor data source for studying the effects of climate
change [26] and human activities [8]. Thanks to deep learn-
ing algorithms [1, 12], the accuracy of products derived
from satellite images is steadily increasing, and researchers
are considering increasingly multi-sensor, hybrid, and ex-
plainable models [22].

But despite its promises, deep learning for satellite re-
mote sensing still cannot live to its full potential, since many
problems of interest such as marine debris detection, defor-
estation mapping, or glacier dynamics monitoring still lack
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Figure 1. Concept of METEOR (center), which is pre-trained
on land cover source tasks (left) and deployed on diverse down-
stream tasks (right). A task is a dataset containing few annotated
images, divided into independent train and test sets. The task data
describe a new problem in a format that a machine learning model
can be optimized on. The meta-model is pre-trained with model-
agnostic meta-learning (MAML) [5] to solve land cover classifi-
cation source tasks in different geographic regions (left). MAML
yields a deep meta-model that has explicitly learned to learn from
different tasks with few labeled images. The pre-trained meta-
model can then be fine-tuned to diverse downstream problems
(right) with only few labeled images, thus leading to problem-
specific task models.

the large annotated dataset needed for model training and
evaluation. This is especially problematic as remote sens-
ing models are commonly learned in isolation for specific
problems of interest and geographical regions, limiting the
effectiveness of deep learning for less explored problems.
Moreover, this is further exacerbated by the differences in
sensors used, preventing straightforward model adaptation.



Therefore, models able to process data from multiple sen-
sors and to learn new problems from a handful of examples
(i.e., few-shot) are in high demand.

In this work, we address learning across different Earth
observation problems systematically: we propose ME-
TEOR, a meta-learning methodology for Earth observation
problems across different resolutions. METEOR is an
optimization-based meta-learning approach that uses a
small ResNet-12 deep learning model, which outputs a one-
against-all classification score. METEOR is pre-trained
with the model-agnostic meta-learning (MAML) [5] al-
gorithm to distinguish different land cover categories on
medium-resolution multi-spectral satellite data, as shown
in Fig. 1. Once trained on a dataset of land cover tasks,
it can then meta-learn downstream tasks of interest with
limited labeled samples. In our experiments, we focus ex-
plicitly on fine-tuning this meta-model to different hetero-
geneous real-world downstream classification problems in-
volving a different number of classes, data with different
spatial and spectral resolutions, and few annotated sam-
ples. Our experimental results show that METEOR im-
proves over the current state of the art and is a competitive
transfer learning strategy to learn across problems with lim-
ited examples.

2. Methods
2.1. The starting point: MAML

To train the meta-model, we use the model-agnostic
meta-learning (MAML) [5] algorithm that optimizes the
following objective:

min
θ

Eτ∼p(τ)

[
Ltest
τ (ϕτ,K (θ))

]
︸ ︷︷ ︸

outer loop/meta-learning

, (1)

s.t. ϕτ,k+1 ← ϕτ,k − α∇Ltrain
τ︸ ︷︷ ︸

inner loop/fine-tuning

andϕτ,0 = θ︸ ︷︷ ︸
initialization

. (2)

A task-model ϕτ is initialized from the meta-model θ and
iteratively fine-tuned with k ≤ K steps based on gradients
from a loss of training samples∇Ltrain in an inner loop. The
constant α denotes the inner learning rate. In the outer loop,
the meta-model parameters θ are updated by minimizing the
test loss Ltest

τ over a batch of tasks Eτ∼p(τ) with the fine-
tuned parameters ϕτ,K . These fine-tuned parameters are a
function of the initialization θ. This makes updating the
meta-model parameters with second-order gradients (outer
gradients through the inner loop gradients) possible. Over
several thousand iterations, this yields a meta-model that is
explicitly learned to learn differences between land cover
categories from different geographic areas. We chose the
standard second-order MAML algorithm [5] over more re-
cent variants like SparseMAML [24], as it achieved better
results on the realistic use-cases in our initial experiments.

Once the meta-model θ is trained, we use it as a starting
point to learn specific downstream task models with limited
labels.

2.2. METEOR

METEOR is designed to facilitate heterogeneous trans-
fer across remote sensing problems that involve data of dif-
ferent sensors at different resolutions. This heterogeneous
transfer is enabled by three modifications of the original
MAML model:

• First, we replace all batch normalization [7] layers
with instance normalization [23]. It was shown that
classical, transductive batch normalization, usually
used in models trained with MAML [5], has detrimen-
tal effects on downstream problems with high class im-
balance [14]).

• Second, when learning downstream task models, we
dynamically select only the kernels in the first convo-
lution layer of the model that correspond to the input
channels (e.g., spectral bands) of the downstream task.
This allows us to fine-tune the model for tasks contain-
ing imagery with fewer spectral bands. This selection
is meaningful as long as the spectral bands form a sub-
set of those used to train the meta-model. Here, pre-
training was done on 2 radar and 13 optical channels,
which enables downstream tasks using various satellite
sensors, such as PlanetScope or Worldview.

• Third, we address downstream problems with differ-
ent numbers of classes by pre-training a binary meta-
model, fine-tuning this model to each class separately,
and ensembling a one-vs-all classifier.

These easy-to-implement, but important methodological
modifications result in METEOR: a single pre-trained meta-
model that can adapt to new problems of interest across ge-
ographies and sensors from limited label information. Us-
ing METEOR, domain experts can address these problems
with satellite data of varying spatial and spectral resolu-
tions, described by a few annotated images, and with a vari-
able number of target classes.

3. Data and competing methods
We first present the dataset used to train the meta-model

(Sen12MS, Sec. 3.1) and then the six datasets used as down-
stream tasks Sec. 3.2. In Sec. 3.3, the competing methods
are briefly presented.

3.1. Training the meta-model: Sen12MS

The Sentinel-12 Multi-Spectral (Sen12MS) [18] dataset
contains Sentinel-1 (synthetic aperture radar) and Sentinel-
2 (multispectral) images with associated land cover la-



bels in a coarse segmentation map in 125 globally dis-
tributed geographic regions, shown as red dots on the map
of Fig. 1. We use Sen12MS for classification by asso-
ciating the image with the majority class observed in the
patch [19]. The original dataset contains overlapping im-
ages of 256 px by 256 px. Following prior work [15], we
remove the overlap in the images yielding 128 px by 128 px
images. Nine different land use and land cover categories
are present [18,19]: forests, shrubland, savanna, grassland,
wetlands, croplands, urban/built-up, snow/ice, barren, wa-
ter. We split the data into distinct geographical regions. The
meta-model is trained on tasks from 75 training regions,
while tasks from the 25 validation regions are used for pa-
rameter tuning and early stopping of the pre-training.

3.2. The six downstream tasks

We assess the downstream adaptability of METEOR on
a variety of downstream tasks, including:

• Data Fusion Contest 2020 (DFC2020 [17]) : this
dataset mirrors Sen12MS with the same land classes
but with less noisy, refined annotations and realistic
data imbalance (contrarily to Sen12MS, which is class
balanced). The dataset spans seven geographic re-
gions, of which we show the results on the Kippa Ring
region in Tab. 1.

• EuroSAT [6], which contains multi-spectral Sentinel-
2 images of 64 px by 64 px with 13 spectral bands.
It features nine land use and land cover classes. The
dataset is artificially balanced with 2500 to 3000 im-
ages per class.

• NWPU-RESISC45 [4], which contains RGB images
of 256 px by 256 px at different resolutions of 45 di-
verse classes. Each class is represented by 700 im-
ages. To build an urban scene classification problem,
we specifically select the classes commercial, residen-
tial, dense-, medium-, and sparse residential.

• The Floating Marine Objects dataset [11], which con-
tains Sentinel-2 images with hand-annotated labels of
marine debris in 26 coastal regions across the globe.
We select images from the coastal region near Accra,
Ghana, where liquid pollutants were visually detected
and annotated on a Sentinel-2 scene on October 31st,
2018. In Tab. 1, we use this data in a binary classifi-
cation setting where images of floating objects are as-
signed a positive class, and randomly sampled images
from the entire Sentinel-2 scene are used as negatives.

• DENETHOR [9] is a crop type mapping dataset that
provides PlanetScope (4 bands, 3m resolution) and
Sentinel-2 images from nine crop categories. In Tab. 1,
we use one PlanetScope scene from May 8th, 2018.

For each field parcel, we cropped a rectangular image
of 128 px by 128 px enclosing it. We select only field
parcels larger than 30 000m2 to maintain a certain ho-
mogeneity after rescaling. We selected three classes
(wheat, corn, meadow) to obtain an annotated image
dataset of 640 images.

• AnthroProtect [21] was gathered to measure the pres-
ence of human influence from Sentinel-2 imagery in
Fennoscandia. The images depict areas designated as
naturally protected areas and minimally influenced by
humans. These images are classified against Sentinel-
2 scenes of non-protected areas within the same coun-
tries. This dataset contains 990 annotated images.

3.3. Comparison methods

We compare METEOR to self-supervised learning (SSL)
approaches, pre-trained on either multi-spectral satellite
(SSLTRANSRS [16] and SSL4EO [25]), RGB satellite
data (SECO [10]), or on natural RGB images (SWAV [2]
and DINO [3]). As further comparisons, we train a BASE-
LINE to classify all ten classes present in the training ar-
eas of the Sen12MS dataset in a supervised way. We also
add two ResNet-50 additional baselines, one initialized on
ImageNet weights (IMAGENET) and another with random
initialization (SCRATCH). For these approaches, we load
the respective feature extractors with pre-trained weights,
encode the few training samples in the respective feature
spaces, average them to class-prototypes, and assign the test
imagery to the class of the nearest prototype, as done in Pro-
totypical Networks [20]. We also generate MOSAIKS [13]
features dynamically for each downstream task from the
training data and predict the test data with a random forest
classifier.
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Figure 2. Performance of METEOR vs supervised baselines as
a function of the number of shots used in the EuroSAT down-
stream task. In low shot scenarios, METEOR provides better rep-
resentations, is easier to fine-tune to the specific task and better
transfers from the task used for training the meta-model.
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dataset AnthPr. [21] DENETHOR [9] DFC2020-KR [19] EuroSAT [6] fl. obj. [11] NWPU-Urban [4]
spatial res. 10m 3m 10m 10m 10m < 1m
spectral res. 10 bands 4 bands 13 bands 13 bands 12 bands 3 bands

# classes 2 3 5 10 2 5
# training imgs 10 15 25 50 10 25

model rank (↓) accuracy (↑)

METEOR 3.6 83.7 75.6 87.7 60.9 90.8 57.4
SWAV [2] 4.2 96.7 69.8 54.2 67.7 65.4 70.4
MOSAIKS [13] 4.3 86.4 76.4 82.3 57.9 88.8 54.0
DINO [3] 5.0 91.2 66.2 56.6 61.3 65.1 70.6
SECO [10] 4.7 91.4 61.7 67.6 62.7 65.9 67.4
SSLTRANSRS [16] 5.3 90.7 65.5 76.3 59.7 78.9 52.1
SSL4EO [25] 5.5 96.2 58.0 80.2 59.1 82.4 49.9
BASELINE 6.8∗ 89.0 60.8 87.4 39.8 69.8 36.7
PROTO [20] 8.3∗∗ 59.7 56.2 76.9 46.1 67.3 39.1
IMAGENET 8.8∗ 83.7 59.7 50.8 42.7 64.1 60.5
SCRATCH 9.5∗∗ 64.8 61.1 66.5 25.7 64.4 32.3

Table 1. Quantitative comparison of METEOR with several state-of-the-art methods (rows) across different heterogeneous Earth
observation datasets (columns). Each evaluated task is characterized by a different number of spectral bands, number of classes, and
spatial resolution. METEOR achieves the best average rank of 3.6, closely followed by SWAV with 4.2 and MOSAIKS with 4.3 across
the evaluated datasets. Different models are optimal for different tasks, and no model dominates all tasks. This is reflected in the Wilcoxon
Signed Rank test that shows that the performance of METEOR is only significantly different (∗: p < 0.05; ∗∗: p < 0.01) from the
BASELINE, PROTO, IMAGENET, SCRATCH models. This comparison shows that METEOR achieves state-of-the-art few-shot performance
across various remote sensing problems. Example images of each class for each downstream task are shown in the bottom row.

4. Experiments

In Fig. 2, we compare the METEOR model, fine-tuned
on the EUROSAT downstream task in several few- and
many-shot settings: METEOR shows competitive perfor-
mances in all settings and is particularly accurate in few-
shot scenarios, showing that METEOR can leverage the
knowledge from the meta-learning task while adapting effi-
ciently to the new task better than fully supervised models.

In Tab. 1, we compare the performance of several SSL
and few-shot methods detailed in Sec. 3.3. Across all meth-
ods, METEOR shows the best average rank (3.6 out of 11),
closely followed by the large-scale contrastive pre-training
methods SWAW (4.2) and DINO (5.0). This is surpris-
ing since those methods are trained only on RGB data. On
the contrary, existing SSL methods trained on multispectral
data perform worse on average (e.g., SSLTRANSRS (5.3),
SSL4EO (5.5)) but still show some significant improve-
ments over the baseline (6.8) or basic pre-training (e.g., on
IMAGENET (8.8)).

5. Discussion and Conclusion
In this short paper, we presented the results of a few-shot

model for satellite remote sensing data named METEOR.
Learned from global land cover class examples, METEOR
improves on the model-agnostic meta-learning strategy to
learn to learn different tasks and therefore is naturally per-
formant in fine-tuning new classification problems involv-
ing a variable number of classes, different sensors (the
meta-model is trained on both multispectral and radar data)
and only a very limited number of labeled samples.

Our experiments confirmed that utilizing transfer- and
meta-learning for different-but-related tasks is important for
addressing meaningful problems with limited training data.
This is particularly evident in naturally unbalanced prob-
lems.

Future directions to further improve the model comprise,
for example, a more diversified meta-training encompassing
a larger variability of thematic classification tasks that can
be encountered in remote sensing.

The source code and pre-trained
weights of METEOR are available under
https://github.com/marcCoru/meteor
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