
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Formal Foundations of Capture Tracking

Aleksander Slawomir BORUCH-GRUSZECKI

Thèse n° 9872

2024

Présentée le 11 mars 2024

Prof. O. N. A. Svensson, président du jury
Prof. M. Odersky, directeur de thèse
Prof. S. Drossopoulou, rapporteuse
Prof. C. S. Gordon, rapporteur
Prof. C. Pit-Claudel, rapporteur

Faculté informatique et communications
Laboratoire de méthodes de programmation 1
Programme doctoral en informatique et communications

Do not go gentle into that good night,

Old age should burn and rave at close of day;

Rage, rage against the dying of the light.

— Dylan Thomas

Abstract

Type systems are a device for verifying properties of programs without running them. Many

programming languages used in the industry have always had a type system, while others were

initially created without a type system and later adopted one, when the advantages of doing

so became apparent. Most such type systems stop at verifying that operations are invoked on

appropriate operands, e.g., that we do not add characters and do not ask for the length of an

integer. Still, verifying many desirable properties requires a type system that can describe what

sort of operations a program might invoke. For instance, if a certain part of the program is

interpreted during compilation, we would prefer this part to refrain from accessing operations

whose result is non-deterministic, such as querying a database.

Naturally, various type systems which can verify such properties were proposed, with key areas

including effect systems, resource ownership systems and object capabilities. The outward

differences of these systems result in each of them being typically studied in the context

of different categories of properties. Of course, ideally we would want to verify as many

properties as possible, yet naively integrating different approaches in a single system does

not provide good results in practice. Moreover, the industry has so far been slow to adopt the

aforementioned systems, arguably because they are not yet sufficiently ergonomic and the

costs of applying them outweigh their numerous advantages.

I describe Capture Tracking, an approach which views both effects and resources through the

lens of capabilities tracked in types. The capability angle solves usability problems associated

with effect and resource ownership systems and provides a uniform framework for verifying a

wide range of properties. I present the key principles of Capture Tracking with the SCC system

and discuss how to extend it with type polymorphism based on two other systems, CF<: and

CC<:□. While doing so, I present extensions applying Capture Tracking to problems previously

studied in the literature, including non-local returns, region-based memory management, and

effect handlers. Finally I propose gradual compartmentalization, a technique for incrementally

compartmentalizing a software application via object capabilities tracked in types, illustrating

the practical applicability of Capture Tracking. The technique further relies on a concept of

runtime authority enforcement. I present ModCC and GradCC as the formal foundations for

the technique, extending CC<:□ with mutable state, records, and a form of graduality specific

to Capture Tracking which involves capture-unchecked values and dynamic enforcement of

capability access restrictions.

i

Résumé

Les systèmes de types sont un outil permettant de vérifier certaines propriétés des programmes

sans les exécuter. Beaucoup de langages de programmation utilisés dans l’industrie ont

toujours été dotés d’un système de types, tandis que d’autres, bien qu’initialement conçus

sans système de types, en ont adopté un lorsque les avantages sont devenus clairs. La plupart

des systèmes de types se contentent de vérifier que chaque opération est appliquée à des

opérandes appropriés, empêchant par exemple d’additionner des caractères ou de demander

la longueur d’un entier. Cependant, il existe de nombreuses propriétés souhaitables dont

la vérification exige un système de types capable de décrire quelles sortes d’opérations un

programme est susceptible d’invoquer. Par exemple, si un sous-programme doit être interprété

pendant la compilation, il est judicieux qu’il s’abstienne d’accéder à des opérations dont les

résultats sont non déterministes, telles que les requêtes sur une base de données externe.

Naturellement, de nombreux systèmes de types dotés de telles capacités ont été proposés,

dans des domaines clefs dont les systèmes à effets, à propriété des ressources, et à capacité

des objets. À cause de leurs différences extérieures, ces systèmes sont généralement étudiés

dans le contexte de catégories de propriétés distinctes. Si l’on souhaiterait idéalement vérifier

autant de propriétés que possible, intégrer naïvement différentes approches dans un unique

système ne donne en pratique pas de bons résultats. De plus, le secteur a jusqu’à présent

été lent à adopter les systèmes mentionnés ci-dessus, vraisemblablement à cause de leur

ergonomie insuffisante et des coûts associés à leur application, qui excèdent souvent leurs

avantages, aussi nombreux soient-ils.

Dans cette thèse, je décris le Traçage des Captures (Capture Tracking), une approche unifiant

les effets et les ressources comme capacités tracées par les types. Cette optique résoud les

problèmes d’ergonomie associés aux systèmes à effets et à propriétés de ressources, tout

en exposant un cadre uniforme pour vérifier un large spectre de propriétés. Je présente les

principes clefs du Traçage des Captures avec le système SCC et traite de son extension avec du

polymorphisme de types basé sur deux autres systèmes, CF<: et CC<:□. Ce faisant, je présente

des extensions appliquant le Traçage des Captures à des problèmes étudiés précédemment

dans la littérature, dont les retours non locaux, la gestion de la mémoire basée sur les régions, et

les gestionnaires d’effets. Finalement, je propose la compartimentalisation graduelle (gradual

compartmentalization), une méthode permettant de compartimenter incrémentalement une

application logicielle via des capacités d’objets tracées par les types, illustrant ainsi l’usage du

Traçage des Captures en pratique. Cette méthode repose sur un concept d’imposition d’une

autorité à l’exécution. Je présente ModCC et GradCC comme les fondations formelles de cette

iii

Résumé

méthode, en étendant CC<:□ avec de l’état muable, des enregistrements, et une forme de

gradation spécifique au Traçage des Captures qui repose sur des valeurs non assurées et une

imposition dynamique des restrictions d’accès aux capacités.

iv

Contents

Abstract (English/Français) i

1 Introduction 1

1.1 Preliminaries . 2

1.2 Contributions . 3

2 The Capture Tracking Approach 5

2.1 Key Aspects of Capture Tracking . 9

2.1.1 Capability Hierarchy . 9

2.1.2 Function Types . 10

2.1.3 Capture-Checking Closures . 11

2.1.4 Subtyping and Subcapturing . 11

2.1.5 Escape Checking . 12

2.2 The SCC Calculus . 14

2.2.1 Preliminaries . 16

2.2.2 Subcapturing . 16

2.2.3 Subtyping . 18

2.2.4 Typing . 18

2.2.5 Well-Formedness . 19

2.2.6 Reduction . 20

2.3 Metatheory . 20

2.4 Conclusion . 22

3 Impure Type Variables: CF<: 25

3.1 The CF<: Calculus . 25

3.1.1 Syntax of Terms and Types . 25

3.1.2 Preliminaries . 26

3.1.3 Operational Semantics . 27

3.1.4 Subcapturing . 27

3.1.5 Subtyping . 27

3.1.6 Typing . 28

3.1.7 Well-Formedness . 29

3.2 Metatheory . 31

3.2.1 Mechanization . 33

v

Contents

3.3 Evaluation . 34

3.3.1 Data Structures in CF<: - List . 34

3.3.2 Abort . 36

3.3.3 Non-Local Returns . 37

3.3.4 Regions . 41

3.3.5 Effect Handlers . 44

4 Boxing Capabilities: CC<:□ 49

4.1 Introduction . 49

4.2 Key Aspects of Capture Tracking in CC<:□ . 51

4.2.1 Capture Tunneling . 51

4.3 The CC<:□ Calculus . 53

4.3.1 Subcapturing . 55

4.3.2 Subtyping . 55

4.3.3 Typing . 55

4.3.4 Well-Formedness . 57

4.3.5 Operational Semantics . 58

4.4 Metatheory . 58

4.4.1 Predicting Used Capabilities . 60

4.4.2 Correctness of Boxing . 61

4.5 Examples . 62

4.5.1 Church-Encoded Lists . 63

4.5.2 Stack Allocation . 64

4.5.3 Collections . 65

4.6 Why Boxes? . 66

4.7 Scoped Capabilities . 69

4.7.1 Dynamic Semantics of Scoped Capabilities 70

4.7.2 Metatheory . 72

4.8 Conclusion . 73

5 Polymorphism and Capture Tracking 75

5.1 Deferred Closures . 76

5.2 Abstracting Over Arguments . 78

5.3 Mutable State . 80

5.4 Conclusions . 81

6 Gradual Compartmentalization 83

6.1 Introduction . 83

6.2 Background and Motivation . 85

6.3 Gradient . 87

6.3.1 Object Capabilities . 87

6.3.2 Capture Tracking . 89

6.3.3 Runtime-Assisted Graduality . 90

vi

Contents

6.4 Base Formalism . 93

6.4.1 Syntax . 93

6.4.2 Subcapturing . 97

6.4.3 Subtyping . 97

6.4.4 Typing . 97

6.4.5 Reduction . 99

6.4.6 Metatheory . 99

6.5 Formalising Capture-Unchecked Terms . 101

6.5.1 Changes to the System . 103

6.5.2 Reduction . 104

6.5.3 Metatheory . 104

6.6 Evaluation . 107

6.6.1 Migrating the Scala XML Library . 107

6.6.2 Implementing Gradual Compartmentalization 108

7 Background 111

7.1 Background . 111

7.1.1 Effects . 111

7.1.2 Resource Ownership . 112

7.1.3 Capabilities . 114

7.2 Related Work: Capturing Types . 117

7.3 Related Work: Gradual Compartmentalization . 121

7.3.1 Static Compartmentalization . 121

7.3.2 Dynamic Compartmentalization . 122

7.3.3 Tracking Capabilities in Types . 123

A CC<:□ Proofs 125

A.1 Proof devices . 125

A.2 Properties of Evaluation Contexts and Stores . 125

A.3 Properties of Subcapturing . 127

A.3.1 Subtyping inversion . 128

A.3.2 Permutation, weakening, narrowing . 130

A.4 Substitution . 132

A.4.1 Term Substitution . 132

A.4.2 Type Substitution . 134

A.5 Main Theorems – Soundness . 135

A.5.1 Preliminaries . 135

A.5.2 Soundness . 137

A.5.3 Consequences . 139

A.6 Correctness of boxing . 140

A.6.1 Relating cv and stores . 140

A.6.2 Relating cv and evaluation contexts . 141

vii

Contents

A.6.3 Relating cv to store and evaluation context simultaneously 141

A.6.4 Correctness of cv . 141

A.6.5 Core lemmas . 143

A.7 Avoidance . 144

B ModCC Proofs 147

B.1 Proof devices . 147

B.2 Properties of Evaluation Contexts and Stores . 148

B.3 Properties of Subcapturing . 149

B.3.1 Permutation, weakening, narrowing . 149

B.3.2 Subtyping inversion . 151

B.4 Substitution . 155

B.5 Main Theorems – Soundness . 157

B.5.1 Preliminaries . 157

B.5.2 Soundness . 161

C GradCC Proofs 167

C.1 Properties of Evaluation Contexts and Stores . 167

C.2 Properties of Cast Subcapturing . 169

C.2.1 Permutation, weakening, narrowing . 169

C.2.2 Subtyping inversion . 170

C.3 Substitution . 172

C.4 Main Theorems – Soundness . 173

C.4.1 Preliminaries . 173

C.4.2 Soundness . 175

Bibliography 193

Curriculum Vitae 195

viii

1 Introduction

Type systems allow us to validate certain program properties statically, without running the

program. A type system is a formal logic, one whose statements assign types to terms, which

formally represent programs. This logic gives formal foundations for the type-checker in a

compiler: the component which assigns a type to every expression in a program. In most type

system, this type describes the "shape" of the values the expression may result in, i.e., what

operations can be performed directly on said values: integers can be added, functions can be

called, records have fields which can be accessed, etc. Most programming languages used in

the industry feature type systems which stop at describing such “shapes”; doing so is enough

to rule out many invalid programs and expressing certain shapes may already require intricate

type system features.

Yet, many important properties can only be validated if we go beyond tracking shapes of

values. Some properties require reasoning about what functionality may be accessed by a

particular piece of code.

• In the context of compiler optimizations, certain optimizations are only valid for code

that does not access side-effectful APIs (common subexpression elimination being

possibly the simplest example).

• In a metaprogramming setting [Stucki 2023; Parreaux 2020], we similarly want to ensure

that code evaluated at compile time does not access side-effectful APIs.

• In a concurrent setting, objects shared between threads should not allow accessing

thread-unsafe APIs.

• In a setting without garbage collection, deallocated objects should not be accessed at

all.

• In a security-sensitive setting, we may want to restrict untrusted objects from accessing

privileged functionality, or we may want to ensure that private data is not accessed when

computing public information.

1

Chapter 1. Introduction

Naturally, there are many approaches which facilitate this sort of reasoning, with some par-

ticularly salient areas being effect systems (e.g., Koka [Leijen 2014], Effekt [Brachthäuser et al.

2020b,a]; also see Cyclone [Grossman et al. 2002] and Verse [2023]), resource ownership systems

(e.g., Rust [Rust 2023], Hylo, ownership types [see Clarke et al. 2013b,a; Mycroft and Voigt 2013],

linearity [Wadler 1990], uniqueness [see Marshall et al. 2022]), and capabilities (e.g., E [Miller

2006], Wyvern [Melicher 2020], KeyKOS [Hardy 2023, 1985], sel4 [Klein et al. 2009]).

Clearly we would like to statically validate as many program properties as possible. We could

certainly do so if we simply kept adding more and more features to the type system. Pro-

gramming languages, however, are often said to have a “complexity budget”: a cost-benefit

analysis might tell us that the cost of learning and dealing with a particularly complex lan-

guage outweighs the benefit of verifying more properties than what a simpler language would

allow. Even before we get there, we may be overburdened by an incomprehensible, impossible

to implement theory. Moreover, many existing systems already have some usability prob-

lems. Despite substantial amounts of research on systems for managing effects and resource

ownership, neither approach is widely adopted in the industry. Arguably, the reason why is

that the systems being proposed, despite having numerous significant advantages, are still

insufficiently ergonomic and the costs of adopting them outweigh the benefits of doing so.

The core concept explored in my thesis is that object capabilities whose Capture is Tracked in

types can be used to uniformly reason about both effects and resources, while also improving

on the usability of both approaches.

1.1 Preliminaries

Before moving on, I briefly clarify some terminology used in the introduction. Each concept is

introduced in greater detail as it becomes relevant to the subject at hand, and at the end of the

thesis I give a more detailed outline of the background work.1

A type-and-effect system directly tracks the effects of terms. It is typically distinguished by a

typing judgement that assigns an effect to terms as well as a type, although monads [see Wadler

and Thiemann 2003] as realized in, e.g., Haskell, are an effect system as well for most intents

and purposes. Early effect systems focused on tracking access to mutable state [Lucassen

and Gifford 1988], but this was quickly extended to tracking almost any observable effect,

such as throwing exceptions or potential divergence [Leijen 2014]. Algebraic effects and effect

handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013; Leijen 2016] are a particularly

salient approach for extending a language with a powerful facility for defining custom effects.

A resource ownership system tracks resources by their identity or provenance (i.e., approximate

identity) and restricts how they may be aliased; such systems often effectively enforce a

particular topology on the heap. Linear types [Wadler 1990] are an early and particularly

1The outline is necessarily incomplete! The literature on ownership types alone is substantial enough to merit
the existence of surveys of surveys.

2

1.2 Contributions

restrictive example of such a system. Rust [Rust 2023] is perhaps the most widely known such

system, especially if we take into account its industry mindshare.2 The literature on ownership

types features numerous examples of incredibly diverse resource ownership disciplines [see

Clarke et al. 2013b,a; Mycroft and Voigt 2013]. Some of the most recent academic works on a

resource ownership system include Hylo [Racordon et al. 2022], Gallifrey [Milano et al. 2022],

and Verona’s Reggio [Arvidsson et al. 2023a,b].

The object capability model declares that sensitive functionality may only be accessed by call-

ing methods on capabilities, a special kind of objects. Capability-safe code should additionally

have no ambient authority, i.e., an object should only be able to access pre-existing capabilities

if it receives them from another object. This dissertation focuses on object capabilities in

particular, but the term “capability” has a broader meaning. Object capabilities were first

articulated as an idea (in a formal publication, at least) in Miller’s seminal thesis on E [Miller

2006].

The above categories are neither exclusive nor exhaustive, for instance Wyvern features both

object capabilities and an effect system.

1.2 Contributions

I present the formal foundations for Capture Tracking, an approach to tracking capabilities in

types, based on a number of formal systems.

First I present SCC, the Simple Capture Calculus,3 and discuss the fundamental notions

on which the Capture Tracking approach is based. I conclude by showing the difficulties

associated with extending SCC with universal type polymorphism.

Next I present CF<: and CC<:□, two systems which take slightly but significantly different

approaches to solving the type polymorphism problem. I provide a mechanized proof of

soundness for CF<: and a pen-and-paper proof of soundness for CC<:□. Afterwards I contrast

the two approaches and discuss reasons why both of them are significant.

Finally I discuss Gradual Compartmentalization, an approach which uses Capture Tracking

together with other mechanisms to allow gradually introducing object capabilities to existing

codebases so that they can be compartmentalizated, as a validation that Capture Tracking is

practical and applicable to real-world problems. I present Gradient, a hypothetical Gradual

Compartmentalization extension to Scala, as well as GradCC, the foundational formal system

behind Gradient. I validate Gradual Compartmentalization by migrating the standard Scala

XML library to Gradient, and I provide a pen-and-paper proof of soundness for GradCC.

I conclude the thesis by discussing the background and the literature related to Capture

2Rust was voted the “most beloved” programming language in the annual global Stack Overflow survey seven
times in a row.

3The calculus is almost simply-typed, except that it features variable-dependent types.

3

Chapter 1. Introduction

Tracking and Gradual Compartmentalization.

The CF<: and CC<:□ systems were presented in Tracking Captured Variables in Types [Boruch-

Gruszecki et al. 2021] and Capturing Types [Boruch-Gruszecki et al. 2023]. The SCC calculus

itself is technically a new contribution, although its presentation is based on the presentation

of CC<:□, at times rewritten in my own voice to suit the thesis better. The presented version of

CF<: was not published before; I point out the differences between it and the ArXiv preprint

as it is presented. The entire presentation of CF<: and the comparison between CF<: and

CC<:□ were significantly rewritten for this thesis; large portions of the comparison are a new

contribution.

The Gradual Compartmentalization work is based on an unpublished paper, a result of a

collaboration between me and Adrien Ghosn, Mathias Payer, and Clément Pit-Claudel.

4

2 The Capture Tracking Approach

Effects are aspects of computation that go beyond describing shapes of values and that we still

want to track in types. What exactly is modeled as an effect is a question of language or library

design. Some possibilities are: accessing mutable state, throwing an exception, accessing I/O

functionality, suspending a computation (e.g., waiting for an event), using a continuation for

control operations, or even non-termination.

Despite hundreds of published papers there is comparatively little adoption of static effect

checking in programming languages. The few designs that are widely implemented (for in-

stance Java’s checked exceptions or monadic effects in some functional languages) are often

criticized for being both too verbose and too rigid. The problem is not a lack of expressive-

ness, as systems have been proposed and implemented for many kinds of effects. Rather, the

problem is the lack of usability and flexibility, with particular difficulties in describing poly-

morphism. This leads either to overly complex definitions, or to the necessity of duplicating

large bodies of code.

Classical type-systematic approaches to tracking effects have a crucial flaw, since effects are

inherently transitive along the edges of the dynamic call-graph. A function’s effects include

the effects of all the functions it transitively calls, and traditional type-and-effect systems have

no lightweight mechanism to describe this behavior. The standard approach is either manual

specialization alongside specific effect classes,1 which means large-scale code duplication, or

quantifiers on all definitions alongside possible call graph edges to account for the possibility

that some call target has an effect, which means large amounts of boilerplate in type signatures.

Arguably, it is this problem more than any other that has so far hindered wide scale application

of effect systems.

A promising alternative that circumvents this problem is to model effects via capabilities

tracked in the type system [Craig et al. 2018; Miller 2006; Marino and Millstein 2009b; Gordon

1We can see this in Haskell, where applications such as GHC may be expressed in terms of a single monadic data
type. Since monads (famously) do not naturally compose, Haskell’s ecosystem features multiple solutions to mak-
ing an application’s code effect-polymorphic, including monad transformers and the tagless final representation.

5

Chapter 2. The Capture Tracking Approach

2020; Liu 2016; Brachthäuser et al. 2020a; Osvald et al. 2016]. Capabilities exist in many forms,

but for the purposes of this thesis I focus on object capabilities, i.e., capabilities which are

objects accessible as regular program variables. For instance, consider the following two

morally-equivalent formulations of a method in Scala2.

def foo(): T throws E

def foo()(using CanThrow[E]): T

The first version looks like it describes an effect: function f returns a T, or it might throw

exception E. The effect is mentioned in the return type throws[T, E] where the throws

type operator is written infix.

The second version expresses analogous information as a capability: function f returns a

value of type T, provided it can be passed a capability ct of type CanThrow[T]. The capability is

modelled as a parameter. To avoid boilerplate, that parameter is synthesized automatically by

the compiler at the call site assuming a matching capability is defined there. This is expressed

by a using keyword, which indicates that a parameter is implicit in Scala 3 (Scala 2 would

have used the implicit keyword instead). The fact that capabilities are implicit rather than

explicit parameters helps with conciseness and readability of programs, but is not essential

for understanding the concepts discussed in this thesis.

Aside: The link between the “effect” and the “capability” version of f can be made even more

direct by means of context function types [Odersky et al. 2017]. It is embodied in the following

definition of the throws type:

infix type throws[T, E <: Exception] = CanThrow[E] ?=> T

The context function type CanThrow[E] ?=> T represents functions from CanThrow[E]

to T whose arguments are implicitly synthesized by the compiler. This gives a direct connection

between the effect view based on the throws type and the capability view based on its

expansion.

The crucial difference shows up once we consider what an effect-polymorphic function looks

like. In the imaginary Scala-with-effects, the signature of the map function on List would

look as follows.

class List[X]:

def map[Y, E](f: X -> Y eff E): List[Y] eff E

Here, X -> Y eff E is hypothetical syntax for the type of a function that takes arguments

of type X, produces results of type Y and causes effects E. In such a small example the signature

may still look reasonable, but in practice the number of effect parameters quickly gets out of

hand for more complicated higher-order functions. Indeed, many designers of programming

languages with support for effect systems agree that programmers should ideally not be

2Scala 3.1 with language import saferExceptions enabled.

6

confronted with explicit effect quantifiers [Brachthäuser et al. 2020a; Leijen 2017; Lindley et al.

2017]. This problem is especially acute in object-oriented languages, where practically every

function is higher-order [Cook 2009].

The signature of List#map with Capture Tracking is instead as follows.

class List[X]:

def map[Y, E](f: X => Y): List[Y]

Interestingly, it is exactly the same as the signature of List#map in current Scala, which

does not track effects! The reason why this works is that X => Y is the type of impure

functions, which may capture arbitrary capabilities; alongside it, we now also have a type of

pure functions X -> Y, which may not close over any capabilities. Capture Tracking follows

the capability style of thinking, which decomposes the effect space differently from classical

effect systems. The map method by itself is understood to be pure, since it does not cause any

effects using its own capabilities. When it is called with an impure closure as an argument, it

receives the permission to use the closure and cause any effect the closure may cause. This

does not require any additional annotation in the signature, since in the object capability

model having a capability is the same as being able to use it. I argue that this mental model

is closer to how most people think when writing programs: if a function takes a closure as

an argument we naturally expect it to use the closure. It is the reverse situation, where the

function does not immediately use the closure (and presumably stores it somewhere for later

use, possibly in its own result), which is less common. Therefore, by following the capability

model, Capture Tracking gains effect polymorphism for free.

This seems too good to be true and indeed there is a catch: since having a capability means

being able to use it, it now becomes necessary to track where capabilities may go and how they

may be reached; in particular we now need to reason about capabilities captured by closures.

To see why, consider that effect capabilities are often restricted to a particular scope and have

a limited lifetime. In our capability-based exceptions example, a CanThrow[E] capability

is created for the duration of a try block that catches exceptions E; this capability is only

valid as long as the try block is executing, i.e., there is a handler for exceptions E on the

stack. Figure 2.1 shows an example of capability-based checked exceptions; the left snip-

pet shows the source syntax example, while the right snippet shows desugared code where

the CanThrow capability is explicitly bound and passed as an argument. The try block

has a catch clause with a case for TooLarge exceptions and accordingly, the block intro-

duces a CanThrow[TooLarge] capability. Inside the block we map over a List[Int]

using a lambda which captures the CanThrow capability; doing so eagerly creates a new

List[Int], making this usage of CanThrow well-scoped.

The following listing shows a slight variation of Figure 2.1 where the capability usage is ill-

scoped. We map over an Iterator and not a List ; since the elements of Scala Iterator-s

are calculated lazily, by doing so we create a new Iterator which (indirectly) captures the

7

Chapter 2. The Capture Tracking Approach

class TooLarge extends Exception

def f(x: Int): Int throws TooLarge =
if x < limit then x * x
else throw new TooLarge ()

val xs: List[Int] = . . .
try

xs.map(f)
catch case TooLarge => Nil

def f(x: Int)
(using CanThrow[TooLarge]): Int =

if x < limit then x * x
else throw new TooLarge ()

val xs: List[Int] = . . .
try { using ct: CanThrow[TooLarge] =>

xs.map(x => f(x)(using ct))
} catch case TooLarge => Nil

Figure 2.1: Exception handling: source (left) and elaborated code (right)

CanThrow capability. We return this Iterator from under the try block and call its next

method, which may throw an unhandled exception.

val it =
try

xs.iterator.map(f)
catch case TooLarge => Iterator.empty

it.next()

A key question answered by Capture Tracking is how to rule out the snippet involving the

lazy map of Iterator while still allowing the one with the strict map of List . This is far

from a novel problem and there exists a large body of research which addresses it. Relevant

techniques include linear types [Wadler 1990], rank 2 quantification [Launchbury and Sabry

1997], regions [Tofte and Talpin 1997; Grossman et al. 2002], uniqueness types [Barendsen and

Smetsers 1996], ownership types [Clarke et al. 1998; Noble et al. 1998], and second class values

[Osvald et al. 2016].

Speaking in broad strokes, the main issue with the existing approaches is their relatively

high notational overhead, in particular when dealing with polymorphism. Additionally, such

systems are almost universally prescriptive: they are aimed at restricting certain access patterns

selected a priori, e.g., linear types only allow linear values to be accessed once. In contrast,

Capture Tracking at its core is descriptive: it focuses first and foremost on describing what

capabilities are captured by values of a given type.

This approach revolves around two interlinked concepts:

• A capturing type is of the form T ∧{c1,c2, . . . ,cn}; it is a classical type T augmented with a

capture set of capabilities {c1,c2, . . . ,cn}.

• A capability is a variable (local or a parameter) whose type is a capturing type with a

non-empty capture set. We also refer to such variables as tracked.

8

2.1 Key Aspects of Capture Tracking

These types are based on the notion that every capability is derived from other, more sweeping

capabilities, listed in the capture set of its type. Furthermore, Capture Tracking posits that

there exists a root capability “cap”, which is the “most sweeping” capability from which all

others are derived.

In this chapter I present SCC, the Simple Capture Calculus, as a foundational system which

allows reasoning about capture of capabilities and incorporates the key principles of Capture

Tracking. The system intentionally does not support universal type polymorphism; at the end

of this chapter we will see that combining Capture Tracking with universal type polymorphism

results in subtle problems, which will be the topic of the next three chapters.

Additionally, whereas many of our motivating examples describe applications in effect check-

ing, the formal treatment presented here avoids discussing any particular effects. In fact, the

effect domains are intentionally kept open: the foundational system is intended to work with

diverse effect extensions and so, to avoid enshrining any particular effect extension and privi-

leging it over others, all particular applications are left out of the core operational semantics

and left to extensions of the base system.

2.1 Key Aspects of Capture Tracking

I start by presenting and motivating the key elements of Capture Tracking. The examples are

written in an experimental language extension of Scala 3 [Scala 2022b], and they apply to all

the formalisms discussed in this dissertation.

2.1.1 Capability Hierarchy

An object is a capability if it allows accessing restricted functionality3, either directly or indi-

rectly. It follows that an object which captures a capability becomes a capability itself, which

naturally organizes capabilities into a derivation hierarchy. Further, Capture Tracking posits

that all capabilities are derived from other capabilities with the only exception being the root

capability cap , from which all other capabilities are derived. cap is a type system fiction:

it only exists to make the derivation hierarchy a tree rooted in cap . The following example

illustrates the idea of capability derivation, and how it is integrated into Capture Tracking.

class Fs:

. . . // methods for accessing the filesystem

class Logger(fs: Fs^{cap}):

3What functionality is “restricted”, i.e., guarded by capabilities, depends on the context we are in. In a security-
oriented setting like the E language, access to all system and hardware functionality is restricted, but exceptions
may be thrown freely. In a setting where we control side effects with capabilities, throwing exceptions and accessing
mutable state both should be guarded by a capability. Given a capability-based Rust-like memory management
system, all heap-allocated objects would be capabilities, i.e., heap access would be restricted.

9

Chapter 2. The Capture Tracking Approach

def info(msg: String): Unit =

. . . // Write to a log file , using `fs`

def test(fs: Fs^{cap}): LazyList[Int]^{fs} =

val log: Logger ^{fs} = new Logger(fs)

log.info("hello␣world!")

val xs: LazyList[Int]^{log} =

LazyList.from (1). map: i =>

log.info(s"computing␣elem␣#␣$i")

i * i

xs

In the example, the test method takes as an argument fs, an object of type Fs^{cap}

which allows accessing the file system. On the type level, fs is a capability since it has a

non-empty capture set. The first step of test is to create an instance of Logger , initializing

it with fs. The created object retains fs so that it may write logged messages to the disk. It is

assigned to log , a local variable whose type is Logger ^{fs}. Since log allows accessing

the filesystem, it is a capability; since it retains fs, the capture set of its type is {fs}, i.e., it is

derived from fs.

Next, test creates xs, a lazy list obtained from LazyList.from (1) by mapping consec-

utive integers while logging the operations. Since the elements of xs are computed lazily,

it must retain a reference to log for its internal computations. Hence, the type of xs is

LazyList[Int]^{log}: it is a capability derived from log which allows writing to the

file system by logging messages.

Furthermore, capturing types come with a subtype relation where types with “smaller” cap-

ture sets are subtypes of types with larger sets. In our example, xs can also be typed as

LazyList[Int]^{fs} and LazyList[Int]^{ cap}. This is formally expressed with

the subcapturing relation, which we will see shortly. If a type T does not have a capture set, we

refer to it as pure, and it is a subtype of any capturing type that adds a capture set to T.

2.1.2 Function Types

The function type A => B stands for a function that can capture arbitrary capabilities. We

call such functions impure. By contrast, the single arrow function type A -> B stands for a

function that cannot capture any capabilities, i.e., a pure function. Syntactically, one can add

a capture set after the arrow of an otherwise pure function. For instance, A ->{c, d} B

would be a function that can at most capture capabilities c and d. It can be seen as a shorthand

for the type (A -> B)^{c, d}.

The impure function type A => B is an alias for A ->{cap} B, i.e., impure functions are

functions that can capture any capability.

10

2.1 Key Aspects of Capture Tracking

2.1.3 Capture-Checking Closures

If a closure’s body refers to capabilities, the set of those capabilities is used as the capture set

for the type given to the closure, as illustrated by the following definition.

def test(fs: Fs^{cap}): String ->{fs} Unit =

(x: String) => new Logger(fs).info(x)

Here, the body of test is a lambda that refers to the capability fs, which means that fs is

retained by the lambda. Consequently, the type of the lambda is String ->{fs} Unit .

Note. On the term level, function values are always written with => (or ?=> for context

functions). There is no syntactic distinction for pure vs impure function values. The distinction

is only made in their types.

A closure also captures the capabilities captured by the functions it calls. For instance, in

def test(fs: Fs^{cap}) =

def f(x: String) = new Logger(fs).info(x)

val g = (x: String) => f(x)

g

the result of test has type String ->{fs} Unit , even though function g itself does not

refer to fs and merely indirectly closes over it.

2.1.4 Subtyping and Subcapturing

Capturing influences subtyping. As usual we write T1 <: T2 to express that the type T1 is a

subtype of the type T2, or equivalently, that T1 conforms to T2. An analogous subcapturing

relation applies to capture sets. If C1 and C2 are capture sets, we write C1 <: C2 to express that

C1 subcaptures C2, or, swapping the operands, that C2 accounts for C1.

Subtyping extends as follows to capturing types:

• Pure types are subtypes of capturing types, i.e., we have T <: T ∧C for any T and C .

• Smaller capture sets produce smaller types: T1
∧C1 <: T2

∧C2 if C1 <: C2 and T1 <: T2.

A subcapturing relation C1 <: C2 holds if C2 accounts for every element c in C1. This means

one of the following two conditions must be true:

• c ∈C2,

• c’s type has capturing set C and C2 accounts for every element of C (that is, C <: C2).

11

Chapter 2. The Capture Tracking Approach

Example. Given fs : Fs ∧ {cap},ct : CanThrow[Exception]∧ {cap} and l : Logger ∧ {cap}, we have

the following subcapturing relationships.

{l} <: {fs} <: {cap}

{fs} <: {fs,ct} <: {cap}

{ct} <: {fs,ct} <: {cap}

The set consisting of the root capability {cap} accounts for every other capture set. This is a

consequence of the fact that, ultimately, every capability is derived from cap .

2.1.5 Escape Checking

Capture sets describe the capabilities captured by an object. We can use this to ensure that if a

capability is scoped, it is not accessed outside of its scope. The idea is that when an object

leaves the scope of some capability, we make sure all the capabilities in the capture set of its

type are bound outside of the scope; in a sense, we check that all the capabilities reachable

through the object are still accessible. Then, we introduce scoped capabilities with a type

whose capture set contains cap , so that they aren’t accounted for by anything bound outside

of their scope: the only thing that accounts for them is cap , which is never bound anywhere.

In other words, to ensure that access to particular capabilities is well-scoped, it suffices to

(1) introduce them as capturing cap and (2) ensure that all objects leaving some capability’s

scope can be given a type with a capture set which does not contain cap .

It turns out to be convenient to also restrict type variables from ranging over types capturing

cap , for two reasons. First, it allows abstracting over the types of objects leaving the scope

of some capability. Second, it allows user-defined scoped capabilities, as illustrated by the

following example, based on the the try-with-resources pattern,

def usingFile[T](name: String , op: OutputStream ^{cap} => T):T =

val f = new FileOutputStream(name)

val result = op(f)

f.close()

result

val xs: List[Int] = . . .

def good() =

usingFile("out", os => xs.foreach(x => os.write(x)))

def fail() =

val later = usingFile("out", os =>

(y: Int) => xs.foreach(x => os.write(x + y)))

later (1)

The usingFile method runs its argument op on a freshly created file, closes the file, and

12

2.1 Key Aspects of Capture Tracking

returns the operation’s result. The method enables an effect (writing to a particular file) with

a limited validity (until the file handle is closed). Function good calls usingFile with an

operation which writes each element of a given list xs to the file. By contrast, function fail

represents an illegal usage: it invokes usingFile with an operation that returns a function

that, when invoked, will write list elements to the file. The precise issue is that a write hap-

pens when the returned function is called later(1), after the file handle has already been

closed. We can see this possibility in the type system: the closure argument to usingFile in

fail has the type (os: OutputStream ^{cap}) -> (() ->{os} Unit), inform-

ing us that the closure’s result may capture its argument. Additionally, later has the type

() -> {cap} Unit , which tells us it may capture arbitrary capabilities.

Capture Tracking allows allowing the first usage and rejecting the second by giving the capture

set {cap} to the type of the output stream passed to op. The Scala implementation of capture

checking rejects the second usage with an error message that the result of usingFile leaks

f. The error occurs since the implementation disallows instantiating type variables with types

whose capture sets contain cap , which happens in body of fail , in the call to usingFile .

To ensure that capability access is well-scoped, the type system needs to apply the same general

principle to every way an object can leave some capability’s scope. Another commonplace

way for an object to do so would be by being stored in mutable state, for example like this.

var loophole: () ->{cap} Unit = () => ()

usingFile("tryEscape", os =>

loophole = () => os.write (0)

)

loophole ()

Here, the closure passed to usingFile attempts to leak the scoped capability by creating a

closure capturing it and assigning the closure to a mutable variable, loophole .4 Disallowing

mutable state from having a type whose capture set contains cap prevents such issues.

A very similar example further illustrates the usefulness of disallowing type variables from

ranging over types capturing cap ,

class Cell[A](a: A):

var state: A = a

val loophole = new Cell [() ->{cap} Unit](() => ())

usingFile("tryEscape", f =>

loophole.state = () => f.write (0)

)

loophole.state()

4The loophole variable stores closures which take no arguments and which return Unit. Scala supports
multi-argument closures, unlike the formal systems we will see later.

13

Chapter 2. The Capture Tracking Approach

This example is very similar to the previous one, except that now loophole is an immutable

variable, a Cell instance. Class Cell has a mutable field, and it abstracts over the type of this

mutable state. The instance of Cell assigned to loophole allows storing closures capturing

arbitrary capabilities. Once again, we can exploit this to access out-of-scope capabilities like

in the previous example. Since it is clearly desireable to define classes which abstract over

the type of their mutable state, like Cell , disallowing type variables from ranging over types

capturing cap simultaneously prevents scoping issues involving such classes and supports

user-defined scoped capabilities, as illustrated with usingFile .

While the system presented in this chapter does not feature scoped capabilities or mutable

state, the later systems do; in particular, scoped capabilities are present in systems in Chapter 3

and Chapter 4 and mutable state is featured by systems in Chapter 3 and Chapter 6.

2.2 The SCC Calculus

Figure 2.2 shows the syntax of SCC, which stands for Simple Capture Calculus and can be

succintly explained as a dependently-typed variant of λ<: with capturing types. The notation

Ei
i

denotes a syntactic repetition of a non-negative number of syntax forms Ei .

Dependently typed. Types may refer to term variables in their capture sets, which introduces

a simple form of (variable-)dependent typing. As a consequence, a function’s result type may

now refer to the parameter in its capture set. To be able to express this, the general form of

a function type ∀(x : U)T explicitly names the parameter x. We retain the non-dependent

syntax U → T for function types as an abbreviation if the parameter is not mentioned in the

result type T .

Variable x, y, z, cap

Value v, w ::= λ(x : T) t
Answer a ::= v | x
Term s, t ::= a | x y | letx = s in t
Shape Type S ::= ⊤ | ∀(x : U)T
Type T,U ::= S | S ∧C
Capture Set C ::= {x}
Typing Context Γ,∆ ::= ; | Γ, x : T if x ̸= cap

Figure 2.2: SCC syntax.

14

2.2 The SCC Calculus

Monadic normal form. The term structure of SCC only allows variables as operands in

application. This approach is not a restriction on the surface syntax and does not incur a

loss of expresiveness, since classical-form terms can be easily elaborated into our formalism:

a general application t1 t2 can be expressed as letx1 = t1 inletx2 = t2 inx1 x2. This form is

a convenient way to formulate a formal system with variable-dependent types, since we

essentially obtain a name for every significant value. In particular, typing function application

in such a calculus requires substituting actual arguments for formal parameters. If arguments

are restricted to be variables, these substitutions are just variable/variable renamings, which

keep the general structure of a type. If arguments were arbitrary terms, such a substitution

would in general map a type to something that was not syntactically a type.5 Programs may be

written in the usual direct style. They can be elaborated during type-checking as necessary, as

the Scala compiler does.

Capturing types. The types in CC<:□ are stratified as shape types S and regular types T .

Regular types can be shape types or capturing types S ∧{x}. “∧” has a higher precedence than

∀, for instance ∀(x : S) {C }T is read as ∀(x : S)({C }T). Shape types comprise the usual type

constructors, which for SCC are simply function types. We freely use shape types in place of

types, assuming the equivalence S ∧{} ≡ S.

Capture sets. Capture sets C are finite sets of variables of the form {x}. The root capability cap

is a special variable that can appear in capture sets, but cannot be bound in Γ.

STLC with subtyping. SCC is based on the Simply Typed Lambda Calculus extended with

subtyping, a principal form of type polymorphism. Subtyping comes naturally with capabili-

ties in capture sets. First, a type capturing fewer capabilities is naturally a subtype of a type

capturing more capabilities, and pure types are naturally subtypes of capturing types. Second,

if capability x is derived from capability y , then a type capturing x can be seen as a subtype of

the same type but capturing y .

The only form of term-dependency in SCC is related to capture sets in types. If we omit capture

sets, the calculus is equivalent to standard λ<:, despite the differences in the syntactic form of

terms. In the figures we highlight essential additions w.r.t. λ<: with a grey background.

SCC is intentionally meant to be a small, canonical core calculus which does not include

high-level features such as records, modules, objects, or classes. While these features are

certainly important, their specific details are also somewhat more varied and arbitrary than

the core that’s covered.

Additionally, SCC intentionally leaves out another fundamental form of type polymorphism,

5Monadic Normal Form [Hatcliff and Danvy 1994] is a slight generalization of the rather more widely known
A-Normal Form (ANF) [Sabry and Felleisen 1993]. MNF allows arbitrary nesting of let expressions; systems in this
dissertation use a variant of MNF where applications are over variables instead of values.

15

Chapter 2. The Capture Tracking Approach

namely System F universal type polymorphism. There are subtle issues associated with

extending SCC with universal type polymorphism, and they will be studied in later chapters

(Chapter 3 and Chapter 4)

Many different systems can be built on SCC, extending it with various constructs to organize

code and data on a higher level. In fact, in later chapters we will see two ways of extending it

with universal type polymorphism, an extension with records and mutable state (Section 6.4)

as well as diverse effect extensions (Section 3.3).

2.2.1 Preliminaries

I write C \ x as a shorthand for subtraction of capture sets C \ {x}.

Term substitutions [x := y]t simultaneously replace the variable in both term and capture set

element positions.

The free variables fv(t) of a term t only include variables in term position; they do not include

variables which occur in types (concretely, in capture sets) appearing in t .

2.2.2 Subcapturing

Subcapturing establishes a preorder relation on capture sets that gets propagated to types

(Figure 2.3). The relation is defined by three rules. The first two, (SC-SET) and (SC-ELEM),

establish that subcapturing extends the subset relationship.

The third rule, (SC-VAR), is the most interesting since it reflects an essential property of object

capabilities. It states that a variable x of capturing type S ∧C generates a capture set {x} that

subcaptures the capabilities C with which the variable was declared. In a sense, (SC-VAR)

states a monotonicity property: a capability refines the capabilities from which it is created.

The rule also validates our definition of capabilities as variables with non-empty capture sets

in their types. Indeed, if a variable is defined as x : S ∧ {}, then by (SC-VAR) we have {x} <: {}.

Even if x occurs in a term, a capture set with x in it is equivalent to a capture set without

x, i.e., either one subcaptures the other. Hence, x can safely be dropped without affecting

subtyping or typing.

While rules (SC-SET) and (SC-ELEM) mean that we have C <: C ′ if C is a subset of C ′, the reverse

is not necessarily true. For instance, we can derive the following relationship via (SC-VAR)

(where Proc is the procedure type Unit→Unit).

x : Proc∧{cap}, y : Proc∧x ⊢ {y} <: {x}

The intuitive reason why we can do so is that y can capture no more than x. However, we

16

2.2 The SCC Calculus

Subcapturing Γ ⊢ C <: C

SC-ELEM

x ∈C

Γ ⊢ {x} <: C

SC-SET

Γ ⊢ {xi } <: C
i

Γ ⊢ {xi
i } <: C

SC-VAR

x : S ∧C ′ ∈ Γ Γ ⊢ C ′ <: C

Γ ⊢ {x} <: C

Subtyping Γ ⊢ T <: T

TOP

Γ ⊢ S <: ⊤
REFL

Γ ⊢ T <: T

TRANS

Γ ⊢ T1 <: T2 Γ ⊢ T2 <: T3 Γ ⊢ T2 wf
Γ ⊢ T1 <: T3

FUN

Γ ⊢ U2 <: U1 Γ, x : U2 ⊢ T1 <: T2

Γ ⊢ ∀(x : U1)T1 <: ∀(x : U2)T2

CAPT

Γ ⊢ C1 <: C2 Γ ⊢ S1 <: S2

Γ ⊢ S1
∧C1 <: S2

∧C2

Typing Γ ⊢ t : T

VAR

x : S ∧ C ∈ Γ
Γ ⊢ x : S ∧ {x}

SUB

Γ ⊢ t : T Γ ⊢ T <: U Γ ⊢ U wf
Γ ⊢ t : U

LET

Γ ⊢ u : U Γ, x : U ⊢ t : T x ∉ fv(T)

Γ ⊢ letx = u in t : T

ABS

Γ, x : U ⊢ t : T Γ ⊢ U wf
Γ ⊢ λ(x : U)t : (∀(x : U)T)∧ fv(t)\x

APP

Γ ⊢ x : (∀(z : U)T)∧ C Γ ⊢ y : U

Γ ⊢ x y : [z := y]T

Evaluation t −→ t ′

(APPLY) σ[η[x y]] −→ σ[η[[z := y]t]] if σ(x) =λ(z : T) t
(RENAME) σ[η[letx = y in t]] −→ σ[η[[x := y]t]]
(LIFT) σ[η[letx = v in t]] −→ σ[letx = v inη[t]] if η ̸= []

Store context σ ::= [] | letx = v inσ
Eval context η ::= [] | letx = η in t

Figure 2.3: SCC typing and evaluation rules.

17

Chapter 2. The Capture Tracking Approach

cannot derive {x} <: {y}, since arguments passed for y may in fact capture less than x, e.g., they

could be pure.

{cap} and {} are respectively the top and bottom capture sets, even though there are no explicit

subcapturing rules for either of them. (This only holds for well-formed capture sets, which I

define later.)

Proposition 2.1. If C is well-formed in Γ, then Γ⊢ {} <: C <: {cap}.

It is perhaps more intuitive that {} is the bottom capture set, since it is a subset of all other

sets. It is slightly trickier to see that {cap} is the top capture set. This property is a consequence

of having to bind every capability at a capture set which describes the capabilities captured

by the variable. In order to bind the first capability in Γ, we must bind it with a capture set

mentioning cap; there is no other variable we could possibly use. All variables bound before

the first capability must be untracked, meaning that for every such variable y we will have

{} <: {y} <: {cap} (see Section 2.3 reg. the proof).

We can show that transitivity and reflexivity are admissible, which establishes the following

proposition.

Proposition 2.2. The subcapturing relation Γ ⊢ _ <: _ is a preorder.

See Section 2.3 regarding the proof.

2.2.3 Subtyping

The subtyping rules of SCC (Figure 2.3) are very similar to those ofλ<:, with the only significant

addition being a single rule for capturing types. Note that as S ≡ S ∧{}, both transitivity and

reflexivity apply to shape types as well. Rule (CAPT) allows comparing types that have capture

sets, where smaller capture sets lead to smaller types.

2.2.4 Typing

The typing rules of SCC (Figure 2.3) also differ from λ<: only to account for capture sets.

Rule (VAR) refines the capture sets at which variables are typed. If x is declared with type S ∧C ,

then x itself is typed at capture set {x} instead of C . The capture set {x} is more specific than C ,

in the subcapturing sense, and we can recover the capture set C through subsumption. This

rule ensures that lambdas which immediately return their arguments have an appropriately

polymorphic type, as in the following example: choose returns either its second argument x or

18

2.2 The SCC Calculus

its third argument y and the capture set of its result is {x, y}.

choose : ∀(b : Bool)∀(x : Proc∧{cap})∀(y : Proc∧{cap})

Proc∧{x, y}

choose = λ(b : Bool)λ(x : Proc∧{cap})λ(y : Proc∧{cap})

if b thenx else y

Rule (ABS) assigns capture sets to lambda-abstractions based on the free variables of the term.

Untracked variables can be removed from this set via subsumption and rule (SC-VAR); observe

that b is absent from the second and third lambda’s capture sets.

The (APP) rule must replace references to the lambda’s parameter in its result type; it does so

with the argument passed to the lambda. This is possible since arguments are guaranteed to

be variables. The lambda’s capture set C is disregarded, reflecting the principle that having

access to a capability is the same as being able to use it, regardless of what capabilities it may

internally depend on.

Avoidance. As is usual in dependent type systems, rule (LET) has a side condition which

ensures that the let-bound variable x does not appear in the result type U . This so-called

avoidance property is usually attained through subsumption. For instance, consider an

enclosing capability c : T1 and the term

letx =λ(y : T2)c inλ(z : T3
∧{x}) z.

The most specific type of x is (∀(y : T2)T1)∧{c} and the most specific type of the body of the let

is (∀(z : T3
∧{x})T3)∧{z}. We need to find a supertype of the latter type that does not mention x.

It turns out the most specific such type is (∀(y : T3)T3)∧{c}, so that is a possible type of the let

form, and it should be the inferred type.

In general there is always a most specific avoiding type for a (LET).

Proposition 2.3. Consider a term letx = s in t in an environment Γ such that Γ ⊢ s : T1 and

Γ, x : T1 ⊢ t : T2. Then there exists a minimal (w.r.t. subtyping) type T3 such that T2 <: T3 and

x ∉ fv(T3).

See Section 2.3 regarding the proof.

2.2.5 Well-Formedness

Well-formedness Γ ⊢ T wf (Figure 2.4) is as expected, in the sense that the free variables in

types and terms must be defined in the environment, except that capturing types may mention

the root capability cap in their capture sets.

19

Chapter 2. The Capture Tracking Approach

Well-formedness Γ⊢C wf Γ ⊢ T wf

WF-CSET

C ⊆ dom(Γ)∪ {cap}

Γ ⊢ C wf

WF-TOP

Γ ⊢ ⊤wf

WF-FUN

Γ ⊢ U wf Γ, x : U ⊢ T wf
Γ ⊢ ∀(x : U)T wf

WF-CAPT

Γ⊢C wf Γ ⊢ S wf
Γ ⊢ S ∧C wf

Figure 2.4: SCC well-formedness rules.

2.2.6 Reduction

The operational semantics of SCC are defined by a small-step reduction relation. This relation

is quite different from usual reduction via term substitution, since substituting values for

variables would break the MNF form of SCC terms. Instead, we reduce the right hand sides of

let-bound variables in place and look up what values are variables bound to in the context

surrounding a redex.

Every redex is embedded in an outer store context and an inner evaluation context. These

represent orthogonal decompositions of let bindings. An evaluation context e always puts the

focus [] on the right-hand side t1 of a let binding letx = t1 in t2. By contrast, a store context σ

puts the focus on the following term t2 and requires that t1 is evaluated.

There are only three reduction rules. The first one, (APPLY), rewrites applications. It looks up a

variable in the enclosing store and proceeds based on the value that was found.

The last two rules are administrative in nature. They both deal with evaluated let forms in

redex position. If the right hand side of the form is a variable, the let form gets expanded out

by renaming the bound variable using (RENAME). If it is a value, the form gets lifted out into

the store context using (LIFT).

Proposition 2.4. Evaluation is deterministic. If t −→ u1 and t −→ u2, then u1 = u2.

Proof. By a straightforward inspection of the reduction rules and definitions of contexts.

2.3 Metatheory

I now describe the metatheoretic properties of SCC. These properties are, essentially, restate-

ments of the (chronologically earlier) developments for CC<:□ (Chapter 4), since SCC itself

is the monomorphic fragment of CC<:□. Properties analogous to the ones presented in this

chapter were proven for CC<:□ with a classical pen-and-paper proof. Since SCC merely re-

moves certain forms and their typing rules6 from CC<:□, the CC<:□ proofs are also applicable

6Concretely, SCC is CC<:□ without universal type polymorphism and boxes, as we will see later (Chapter 4).

20

2.3 Metatheory

to SCC properties merely by skipping certain cases during induction. The proofs for CC<:□

are included in the appendix.

The metatheory of SCC was developed following the Barendregt convention: we only consider

typing contexts where all variables are unique, i.e., for all contexts of the form Γ, x : T we have

x ̸∈ dom(Γ).

The Progress and Preservation Theorems both depend on a notion of a typing context matching

a store context (Figure 2.5).

Γ ⊢ v : T Γ, x : T ⊢ σ∼∆
Γ ⊢ letx = v inσ∼ x : T,∆

Γ ⊢ [] ∼ ·

Figure 2.5: Matching environment Γ ⊢ σ∼∆

Intuitively, having Γ ⊢ σ∼∆ means that σ is well-typed in Γ if we use ∆ as the types of the

bindings. The following four lemmas illustrate how store and evaluation contexts interact with

typing.

Definition 2.1 (Evaluation Context Typing). Evaluation context η can be typed at U ⇒ T in Γ,

written Γ⊢ η : U ⇒ T , iff for all t such that Γ⊢ t : U , we have Γ⊢ η[t] : T .

Lemma 2.1 (Evaluation Context Typing Inversion). Γ ⊢ η[s] : T implies that for some U we

have Γ⊢ e : U ⇒ T and Γ⊢ s : U .

Lemma 2.2 (Evaluation Context Reification). If both Γ ⊢ η : U ⇒ T and Γ ⊢ s : U , then

Γ ⊢ η[s] : T .

Lemma 2.3 (Store Context Typing Inversion). Γ ⊢ σ[t] : T implies that for some ∆ we have

Γ ⊢ σ∼∆ and Γ,∆ ⊢ t : T .

Lemma 2.4 (Store Context Reification). If Γ,∆ ⊢ t : T and Γ ⊢ σ∼∆, then also Γ ⊢ σ[t] : T .

We can now proceed to our main soundness theorems. Their statements differ slightly from

λ<:, as we need to account for MNF. First, I state the Preservation Theorem.

Theorem 2.1 (Preservation). If we have Γ ⊢ σ∼∆ and Γ,∆ ⊢ t : T , thenσ[t] −→σ[t ′] implies

that Γ,∆ ⊢ t ′ : T .

The statement of the Preservation Theorem captures the idea that the significant type to

preserve is the one assigned to the term under the store, not the one assigned to the entire

reduced term. This mirrors how the Preservation Theorem would be stated for a more classical

system which reduces store-term pairs.

Next I state the Progress Theorem, which needs an auxilliary definition first.

21

Chapter 2. The Capture Tracking Approach

Definition 2.2 (Proper Configuration). A term form σ[t] is a proper configuration if t is not of

the form letx = v in t ′.

Theorem 2.2 (Progress). If ⊢ σ[t] : T and σ[t] is a proper configuration, then either t is an

answer a, or σ[t] −→σ[t ′] for some t ′.

Capture sets and captured variables

The SCC typing rules use fv to calculate the capture set that should be assigned to terms.

With that in mind, we can ask the question: what is the exact relationship between captured

variables and capture sets terms are typed at?

Because of subcapturing, this relationship is not as obvious as it might seem. For fully evalu-

ated terms (of the form σ[a]), their captured variables are the most precise capture set they

can be assigned. The following lemma states this formally:

Lemma 2.5 (Capture Prediction for Answers). If Γ ⊢ σ[a] : S ∧C , then Γ ⊢ fv(σ[a]) <: C .

If we start with an unreduced term σ[t], the situation becomes more intricate. Such a term

can mention and use capabilities that will not be reflected in the capture set at all. For instance,

if t = x y , the capture set of x is irrelevant to the type assigned to t by (APP). However, if σ[t]

reduces fully to a term of the form σ[σ′[a]], the captured variables of σ′[a] will correspond

to capture sets we could assign to t .

In other words, the capture sets we assign to unreduced terms under a store context predict

variables that will be captured by the answer those terms reduce to, very much like types

assigned to unreduced terms by classical type systems describe the results of terms.

Lemma 2.6 (Capture Prediction for Terms). Let ⊢ σ ∼ ∆ and ∆ ⊢ t : S ∧C . Then σ[t] −→∗

σ[σ′[a]] implies that ∆ ⊢ fv(σ′[a]) <: C .

2.4 Conclusion

SCC is a minimal formal system which shows the key aspects behind Capture Tracking. So far,

I have intentionally avoided paying attention to the problem of universal type polymorphism.

To put it briefly, naively extending SCC with such polymorphism quickly violates the Capture

Prediction Lemmas. Concretely, assume that we add type variables as a new shape type form

together with type abstraction term and type forms; type variables may range over arbitrary

types. Then it becomes possible to hide the capture of a function which may capture arbitrary

capabilities simply by going through a type abstraction first, as the following example shows.

22

2.4 Conclusion

⊢Λ[F <: (Unit→Unit)∧{cap}]λ(f : F)λ(x : Unit) let y = f () in()

: ∀[F <: (Unit→Unit)∧{cap}]∀(f : F)∀(x : Unit)Unit

Observe that the last closure has a type with an empty capture set despite capturing f , itself

a closure which may capture arbitrary capabilities. The crux of the issue is that the naive

extension treats type variables like F as pure types since they lack a capture set, even though

there is a capture set hidden “under” the type variable. Clearly, we need to be just a bit more

sophisticated when extending SCC with universal type polymorphism. There are two avenues

we might take: either make the overall system aware that there are capture sets “under” type

variables, or make type variables range over pure types only. These avenues correspond to the

approaches I will present in the following two chapters.

23

3 Impure Type Variables: CF<:

In this chapter I present CF<:, one of the results of a long collaboration with Martin Odersky,

Jonathan Brachthäuser, Ondřej Lhoták, and Edward Lee. To resolve the issues that arise when

extending SCC with type polymorphism, we developed and evaluated a number of formal

systems where type variables can range over arbitrary types, with CF<: being the last entry in

that line of systems. (We explored one other approach to type polymorphism, which I discuss

in the next chapter.) A system very similar to CF<: was described in an ArXiv preprint [Boruch-

Gruszecki et al. 2021]. In contrast to that one, the system presented in this thesis allows type

variables to appear in capture sets. Doing so has subtle but important consequences, some of

which are discusses in Chapter 5.

The rest of this chapter is organized as follows. Section 3.1 presents CF<: and Section 3.2

presents its metatheory. Then, Section 3.3 evaluates the presented formalism, first in terms

of types assigned to common data structures (Section 3.3.1) and then by demonstrating its

applicability to problems previously studied in the literature (Section 3.3.2, Section 3.3.3,

Section 3.3.4, Section 3.3.5).

3.1 The CF<: Calculus

3.1.1 Syntax of Terms and Types

Figure 3.1 defines the syntax of CF<:, which can be concisely explained as a dependently-typed

version of System F<: with capturing types. I present it by contrasting it with SCC.

Classical term form. CF<: is chronologically older than SCC, and unlike SCC it does not

restrict its terms to MNF, i.e., application operands can be arbitrary terms. As a result of

that, it needs to introduce other (arguably worse) restrictions, which are incorporated into

its well-formedness rules (Section 3.1.7) and explicit well-formedness premises in (ABS) and

(T-ABS). Note that the atypical definition of well-formedness is necessary only because the

system is not in MNF. CF<: could be presented in MNF, at which point the system would be a

25

Chapter 3. Impure Type Variables: CF<:

Variable x, y, z, cap

Type Variable X ,Y , Z

Value v, w ::= λ(x : T) t | Λ[X <: T] t
Term s, t ::= v | x | t t | t [T]
Pretype U ,V ,W ::= ⊤ | ∀(x : T)T | ∀[X <: T]T
Type R,S,T ::= X | U ∧C
Capture Set C ::= {c}
Capture c ::= x | X
Typing Context Γ,∆ ::= ; | Γ, x : T | Γ, X <: T if x ̸= cap

Figure 3.1: CF<: syntax.

direct extension of SCC.

Types and Pretypes. Where SCC distinguishes types and shape types, CF<: makes a sharp

distinction between types T and pretypes U . Types T have only two forms: capturing types

U ∧C and type variables X . Type variables stand for a complete type U ∧C , i.e., both a capture

set C and a pretype U . Pretypes U are classical types like function types and type abstraction

types: they describe the “shape” of the value. Distinguishing between types and pretypes

syntactically prevents type variables from being given an additional capture set.

By convention empty capture sets can be omitted in writing, making pretypes U appear where

a capturing type U ∧ is grammatically expected. In practice, this has the same effect as SCC
positing an equivalence between shape types S and capturing types with an empty capture set

S ∧{}.

Capture Sets. CF<: capture sets {c} are finite sets of captures. A capture c is either a term

variable x or a type variable X , i.e., CF<: capture sets extend SCC capture sets, since they can

contain type variables. Intuitively, a type variable in a capture position stands for the capture

set of the type it will be instantiated to.

Since type variables may appear in capture sets, every proper type T has a capture set cs(T)

associated with it: the capture set C in case of capturing types U ∧C , and the type variable {X }

in case of type variables X .

3.1.2 Preliminaries

Definition 3.1 (Type capture set). The capture set cs(T) of a type T is defined as follows.

cs(U ∧C) =C cs(X) = {X }

26

3.1 The CF<: Calculus

Evaluation t −→ t

BETA-V

(λ(x : T) t) v −→ [x := v, x := fv(v)]t
BETA-T

(Λ[x <: S] t) [T] −→ [x := T] t

CONTEXT

t1 −→ t2

E[t1] −→E[t2]

E ::= [] | E t | E [T] | v E

Figure 3.2: Small step operational semantics of the CF<: calculus.

Subcapturing Γ ⊢ C <: C

SC-ELEM

x ∈C

Γ ⊢ {x} <: C

SC-SET

Γ ⊢ {xi } <: C
i

Γ ⊢ {xi
i } <: C

SC-VAR

x : T ∈ Γ Γ ⊢ cs(T) <: C

Γ ⊢ {x} <: C

SC-TVAR

X <: T ∈ Γ Γ ⊢ cs(T) <: C

Γ ⊢ {X } <: C

Figure 3.3: CF<: subcapturing.

3.1.3 Operational Semantics

Reduction in CF<: can be stated almost exactly the same as in call-by-value System F<:. Fig-

ure 3.2 defines the operational semantics with a single congruence rule that takes an evaluation

context E. The only difference compared to System F<: is that reducing term applications

with (BETA-V) needs to additionally replace capture occurences of the lambda parameter.

The parameter’s term and capture occurences need to be substituted differently; the term

occurences are replaced by the value applied to the lambda and the capture occurences are

replaced by what the value captured: its free variables. (This is in contrast to SCC where the

same substitution applies to both term and capture occurences, since we always replace one

variable with another thanks to MNF.)

3.1.4 Subcapturing

CF<: subcapturing is exactly the same as in SCC. The presented rules are equivalent to the ones

presented in the ArXiv version [Boruch-Gruszecki et al. 2021], although they are formulated

slightly differently. In particular we do not state a separate rule for {cap}, since all well-formed

CF<: capture sets anyway subcapture {cap} just like they did in SCC.

3.1.5 Subtyping

Due to the type/pretype split, there are technically two subtyping judgements, as shown in

Figure 3.4; one for types with rules (CAPT) and (TVAR) and one for pretypes with rules (FUN),

27

Chapter 3. Impure Type Variables: CF<:

Subtyping Γ ⊢ U <: U Γ ⊢ T <: T

REFL-TYP

Γ ⊢ T <: T
REFL-PRE

Γ ⊢ U <: U

TRANS-TYP

Γ ⊢ R <: S Γ ⊢ S <: T

Γ ⊢ R <: T

TRANS-PRE

Γ ⊢ U <: V Γ ⊢ V <: W

Γ ⊢ U <: W

TOP

Γ ⊢ U <: ⊤
TVAR

X <: T ∈ Γ
Γ ⊢ X <: T

CAPT

Γ ⊢ C1 <: C2 Γ ⊢ U1 <: U2

Γ ⊢ U1
∧C1 <: U2

∧C2

FUN

Γ ⊢ S2 <: S1 Γ, x : S2 ⊢ T1 <: T2

Γ ⊢ ∀(x : S1)T1 <: ∀(x : S2)T2

TFUN

Γ ⊢ S2 <: S1 Γ, X <: S2 ⊢ T1 <: T2

Γ ⊢ ∀[X <: S1]T1 <: ∀[X <: S2]T2

Figure 3.4: CF<: subtyping of types and pretypes.

Typing Γ ⊢ t : T

VAR-CONCRETE

x : U ∧C ∈ Γ
Γ ⊢ x : U ∧{x}

VAR-TVAR

x : X ∈ Γ
Γ ⊢ x : X

SUB

Γ ⊢ t : T Γ ⊢ T <: S

Γ ⊢ t : S

ABS

Γ, x : S ⊢ t : T Γ ⊢ ∀(x : S)T wf
Γ ⊢ λ(x : S) t : (∀(x : S)T)∧(fv(t) \ x)

APP

Γ ⊢ t : ∀(x : S)T ∧C Γ ⊢ s : S

Γ ⊢ t s : [x := cs(S)]T

T-ABS

Γ, X <: S ⊢ t : T Γ ⊢ ∀[X <: S]T wf
Γ ⊢ Λ[X <: S] t : (∀[X <: S]T)∧(fv(t) \ x)

T-APP

Γ ⊢ t : (∀[X <: S]T)∧C cap ∉ cv(S)

Γ ⊢ t [S] : [X := S]T

Figure 3.5: CF<: typing.

(TFUN), and (TOP). Reflexivity and transitivity apply to each kind of judgement; they are the

only duplicated rules. The subtyping rules are a straightforward extension of the subtyping

rules for System F<:; the only significant departure is the addition of (CAPT) for reasoning with

capture sets in types.

3.1.6 Typing

Figure 3.5 shows the typing rules for CF<:. Compared to SCC, there are two new typing

rules for type abstractions and a new typing rule for variables bound at a type which itself

is a variable. The differences between CF<: and System F<: are analogous to the differences

between SCC and λ<:, i.e., adjustments are minimal and only made to account for capture

sets and dependent types.

28

3.1 The CF<: Calculus

There are two typing rules for variables. Rule (VAR-CONCRETE) types variables x bound at a

concrete type x : U ∧C ∈ Γ, and rule (VAR-TVAR) types variables x bound at a type which is a

variable x : X ∈ Γ. The first rule types the variable as capturing {x}, which allows assigning pre-

cise types to lambda terms which return their arguments (see the choice term in Section 2.2.4).

On the other hand, the second typing rule has no capture set to refine: a type variable already

stands for a full type. Hence, it types variables simply as X .

Rule (T-ABS) types type abstraction forms and is exactly analogous to rule (ABS), which types

term abstractions. Rule (T-APP) types type application forms t [T] and is more interesting it

prevents instantiating type variables with types capturing cap via the cap ∉ cs(T) premise. As I

explained in Section 2.1.5, this restriction helps when extending the core system with concrete

capabilities. I will come back to this point later in Section 3.3.3, when we present an extension

of the core system with a primitive scoped capability.

Well-formedness constraints

Both (ABS) and (T-ABS) explicitly require the assigned types to be well-formed. I motivate this

in the following section.

3.1.7 Well-Formedness

In System F<:, a type is well-formed simply if all type variables mentioned in it are bound in

the environment. The CF<: well-formednesss rules (Figure 3.6) are more complicated: they

also track the variance at which term variables appear in capture sets embedded within a type.

Put briefly, the rules disallow term variables bound in the type from occuring in contravariant

positions.

Doing so is needed because, due to CF<: terms not being in MNF, there is a significant differ-

ence between the static semantics (i.e., typing) and the dynamic semantics (i.e., reduction).

Consider a type abstraction λ(x : S′) t : ∀(x : S)T (where we allow for some subtyping slack

S <: S′) and an argument v : S. The (APP) typing rule types an application of the lambda to the

argument by replacing occurences of x in T with cs(S), i.e., the capture set of the type. When

typing term application with (APP), the lambda’s parameter x is replaced with the cs of the

argument’s type S. Meanwhile, the (BETA-V) reduction rule instead substitutes occurences of

x in t with fv(v), and in general we only have fv(v) <: cs(S)! The static capture set cs(S) only

approximately predicts the free variables fv(v).

There are two ways to think about this fact. One is that the capture set of the argument’s type

can be widened through subtyping and subcapturing; another is that the capture set of the

argument’s type is term-dependent, and hence can shrink under reduction. To illustrate this,

let us consider the term:

f =λ (x : U ∧{cap}) λ
(
y : U ∧{x}

)
y

29

Chapter 3. Impure Type Variables: CF<:

Well-formedness Γ ; A+ ; A− ⊢ T wf

CAPT-WF

∀x ∈C . x ∈ A+ C ⊆ dom(Γ) Γ ; A+ ; A− ⊢ U wf
Γ ; A+ ; A− ⊢ U ∧C wf

ROOT-WF

Γ ; A+ ; A− ⊢ U wf
Γ ; A+ ; A− ⊢ U ∧{cap} wf

TVAR-WF

X <: T ∈ Γ
Γ ; A+ ; A− ⊢ X wf

FUN-WF

Γ ; A− ; A+ ⊢ S wf Γ, x : S ; A+∪ {x} ; A− ⊢ T wf
Γ ; A+ ; A− ⊢ λ [x : S] T wf

TFUN-WF

Γ ; A− ; A+ ⊢ S wf Γ, X <: S ; A+ ; A− ⊢ T wf
Γ ; A+ ; A− ⊢ ∀ [X <: S] → T wf

TOP-WF

Γ ; A+ ; A− ⊢ ⊤wf

Figure 3.6: CF<: type well-formedness.

applied to a pure value v of type U ∧ {}. Notice that x occurs contravariantly in the capture

set of parameter y . By (BETA-V), f v reduces to λ
(
y : U ∧{}

)
y , with type (∀(y : U ∧{})U ∧{y})∧{}.

However, by applying the subtyping rule (CAPT), we may also assign v the type U ∧{cap}, and

hence type the application f(v) with the type (∀(y : U ∧{cap})U ∧{y})∧{}. This is unsound, as the

function type (∀(y : U ∧{})U ∧{y})∧{} is categorically not a subtype of (∀(y : U ∧{cap})U ∧{y})∧{};

it can be applied to strictly fewer values.

The discrepancy between the typing rules and the operational semantics motivates the CF<:

well-formedness judgement, defined with a triple context Γ ; A+ ; A− ⊢ T wf. Here, Γ is the

standard environment and A+ and A− are sets of term variables. A term variable x can appear

covariantly only if it occurs in A+, and contravariantly only if it occurs in A−. For brevity, when

dealing with sets that contain both term and type variables, I write Γ ; A+ ; A− ⊢ T wf instead

of Γ ; A+∩D ; A−∩D ⊢ T wf where D is the set of term variables bound in Γ. I also define

Γ ⊢ T wf as Γ ; dom(Γ) ; dom(Γ) ⊢ T wf. To ensure that subtyping holds with respect to

term-dependent capture sets, rules (CAPT-WF), (FUN-WF) and (TFUN-WF) together ensure that

a term variable x in a type T can only occur in covariant position with respect to its binding

form. This notion is formalized in Section 3.2.

As we have seen, the well-formedness condition prevents direct coupling of capture sets at

different polarities. This is less of a restriction than it might seem, since we can express the

same coupling through a type variable. The following version of function f does typecheck.

f ′ =Λ[X <: U ∧{cap}]λ(x : X)λ(y : X) y

30

3.2 Metatheory

Note also that the well-formedness restriction only applies to the variable occurrences in the

type of the lambda; it does not apply when the variable occurs in the actual body of the lambda.

For a concrete example, the function

g=λ(x : U ∧{cap}) (λ(y : U ∧{x}) y) x

is well-typed with type ∀(x : U ∧{cap})U ∧{x}, even though x is captured at negative polarity in

the second lambda.

3.2 Metatheory

I proceed to presenting the metatheoretic properties of CF<:. The thesis is accompanied by a

full mechanization using the Coq theorem prover, described in more detail in Section 3.2.1.

First, observe that CF<: is indeed a straightforward extension of System F<:. In particular,

erasing capture sets from well-typed CF<: terms yields well-typed System F<: terms.

Lemma 3.1 (Erasure). Let t be a CF<: term such that ⊢ t : T for some type T . Let ⌈·⌉ be a

function from CF<: terms and types to System F<: terms and types that erases capture sets (and

thereby all term dependencies). Then we have ⊢ : ⌈t⌉ : ⌈T ⌉.

Proof. Immediate from structural induction on the typing derivation of ⊢ t : T .

Moreover, System F<: embeds naturally into CF<:, simply by annotating System F<: function

and type abstraction types with either the empty or the universal capture set.

Lemma 3.2 (Embedding). Let t be a System F<: term such that ⊢ t : T for some type T . Let

⌊·⌋ be a function from System F<: to CF<: terms and types that annotates System F<: types of

function and type abstractions with {}. Then we have that ⊢ ⌊t⌋ : ⌊T ⌋.

Proof. Structural induction on the typing derivation, after observing that every term variable

will be a subcapture of {}.

All of the following lemmas and theorems are mechanized in Coq.

Soundness

CF<: satisfies the standard Progress and Preservation lemmas.

Theorem 3.1 (Progress). If ⊢ t : T , then either t is a value, or there exists a term t ′ such that we

can take a step t −→ t ′.

Theorem 3.2 (Preservation). If Γ ⊢ t1 : T and t1 −→ t2, then we have that Γ ⊢ t2 : T .

31

Chapter 3. Impure Type Variables: CF<:

Substitution Lemmas

Due to term-dependency of CF<:, a few nonstandard substitution lemmas are necessary

to prove the Progress and Preservation theorems. Once again, this is due to the difference

between the static and dynamic semantics. This difference necessitates the following lemma,

linking the static and dynamic capture sets.

Lemma 3.3 (Term Substitution Preserves Typing). If Γ, x : S ⊢ t : T and Γ, x : S ; {x} ∪
dom(Γ) ; dom(Γ) ⊢ T wf, then for all v such that Γ ⊢ v : T , we have

Γ ⊢ [x := v, x := fv(v)]t : [x := cs(S)]T.

Without the well-formedness condition, we would only be able to show that

Γ ⊢ [x := v, x := fv(v)]t : [x := fv(v)]T.

Now, as Γ ⊢ fv(v) <: cs(S), and as x does not occur contravariantly in T due to our well-

formedness constraints, we have that Γ ⊢ [x := fv(v)]T <: [x := cs(S)]T . Formally, this is

stated below in the following lemma, which is needed to prove Lemma 3.3:

Lemma 3.4 (Monotonicity of Covariant Capture Set Substitution). If Γ, x : S ; dom(Γ) ∪
{x} ; dom(Γ) ⊢ T wf, then for all C1,C2 such that Γ ⊢ C1 <: C2, we have:

Γ ⊢ [x :=C1]T <: [x :=C2]T

Meaning of capture sets

Observe that the capture of a value’s type accounts for the value’s free variables.

Lemma 3.5 (Capture Prediction for Values). If Γ ⊢ v : T , then Γ ⊢ fv(v) <: cs(T).

Proof. Induction on the typing derivation Γ ⊢ v : T . Now, as v is a value, the base case is

either an application of the typing rule (ABS) or (T-ABS), and hence T = U ∧ fv(v) for some

pretype U , as desired. Inductively, we have an application of the typing rule (SUB). Hence

Γ ⊢ v : T ′, T ′ <: T , and Γ ⊢ fv(v) <: cs(T ′). Now, as v is a value, T ′ =U ′ ∧C ′ for some capture

set C ′ and pretype U ′, and hence T = U ∧C for some capture set C and pretype U . Hence

fv(v) <: cs(T ′) =C ′ <: C = cs(T), as desired.

Note that fv(v) and cs(T) are related via subcapturing: the former is not necessarily a subset

of the latter. For example, consider a value v = λ (x : ⊤∧{cap}). y in a typing environment

Γ= (x : ⊤∧{}). Here we may assign v the type T = (⊤∧{cap} →⊤)∧{} by subsuming away the

capture set for x, but we also have that Γ ⊢ (fv(v) = {x}) <: ({} = cs(T)).

32

3.2 Metatheory

The following theorem captures the essence of capture tracking in CF<:. From the Preservation

Theorem and the Capture Prediction for Values Lemma, it follows that CF<: capture sets

accurately track the captured variables of the value a term reduces to.

Theorem 3.3 (Capture Prediction for Terms). If Γ ⊢ t : T and t −→∗ v, then Γ ⊢ fv(v) <: cs(T).

Furthermore, observe that Theorem 3.3 can be applied to an arbitrary subterm of a term.

Corollary 3.1 (Capture Prediction in Context). Let C [s] be a term well-typed in the empty

environment, where C is an arbitrary term context with a single hole. Then Γ ⊢ s : T for some Γ

and T . If s −→∗ v, then Theorem 3.3 applies and we have Γ ⊢ fv(v) <: cs(T).

The theorem has important consequences, despite appearing deceptively simple. In core CF<:,

it allows predicting the free variables captured by the value a term reduces to. If we extend

CF<: with capabilities such that certain reduction steps only apply to redexes with a capability,

then the same theorem lets us reason about what reduction steps a term might take!

As a brief illustration of the idea, consider extending CF<: with the classical store-and-location

representation of mutable ML references [Pierce 2002]. In such a setting, free variables may be

replaced with locations. Assuming that locations are typed as capabilities, one application

of Theorem 3.3 is determining if a locally-created mutable reference can leak to the outer

context surrounding the term, i.e., if it is local to a particular subterm or not.

We will come back to this idea when discussing the extensions to CF<: in Section 3.3.2, Sec-

tion 3.3.3, Section 3.3.4 and Section 3.3.5: we will see that Theorem 3.3 is the formal basis

ensuring the soundness of each extension.

3.2.1 Mechanization

The CF<: proof of soundness was mechanized using the Coq theorem prover [Coq 2004;

Bertot and Castéran 2004]. The mechanization includes the soundness proofs for both the

core calculus and the non-local returns extension (Section 3.3.3). As CF<: is an extension of

System F<:, the Coq mechanization was based on the locally nameless proof of System F<: by

Aydemir et al. [2008]. In particular, since CF<: types can mention term variables, we chose the

locally-nameless approach to avoid problems with alpha-equivalence of types. I highlight two

interesting aspects of the mechanization.

Mechanizing Capture Sets

Capture sets in CF<: are mechanized as a product of sets, one per each kind of capture set

member. In total, the product had four elements: a boolean representing an occurence of

cap, a set of bound variables (de Bruijin indices), a set of free variables, and a set of labels

(introduced by the extensions). To support handling this construct, we have copied Coq’s FSet

33

Chapter 3. Impure Type Variables: CF<:

library and adapted its tactics to work with our capture sets. This worked well for the most

part, aside from some issues which are to be expected when usings sets. In particular, we often

had sets that were only equal propositionally (and not definitionally), for example {1,2,3} and

{1}∪ {2}∪ {3}. The number of such cases required adjustments to how the proofs are written

so that the required proofs of propositional equality could be discharged without too much

manual work, something which was not a noticeable problem for us in other contexts where

we could rely on Coq’s support for definitional equality.

Mechanizing Well-Formedness

The CF<: well-formedness judgement (Figure 3.6) needs to keep track of two term variables

sets, A+ and A−, which describe the variables in co- and contravariants position relative to

the current location in the type. A previous version of the judgment had A∗ that were not be

sets, but would actually bind the appropriate variables. However, mechanizing this version

required showing that well-formedness is preserved under permutation, and such proofs are

(reportedly) known to be challenging in Coq. We instead opted to use sets, which in the end

we indeed found more tractable.

3.3 Evaluation

Capture sets in the system presented so far faithfully track free variables of values. The system,

however, does not define any concrete capabilities with any particular operational semantics.

Capture Tracking can be used to track many different sorts of capabilities, none of which

should be privileged by being included in the base system.

To evaluate the base system, we will first see the signatures assigned in CF<: to common data

types, and then we will see how to extend the base system with capabilities and how the

metatheory of the base system is used to ensure the soundness of each extension.

3.3.1 Data Structures in CF<: - List

To give some intuition for the calculus, we first take a look at the type signatures of different

versions of the map function, which maps an arbitrary function argument over a list of values.

We can encode List in CF<: using the standard right-fold Böhm-Berarducci encoding [Böhm

and Berarducci 1985]. First, recall that (S → T)∧C is a shorthand for (∀(x : S)T)∧C . We write

List[T] as an abbreviation for the type

List[T] = (∀[X <: ⊤∧{cap}]∀(op : Op[T, X]) (∀(z : X) X)∧{op})∧cs(T),

where Op[T, X] is in turn an abbreviation for:

Op[T, X] = (T → (X → X)∧{cap})∧{cap}.

34

3.3 Evaluation

A list is encoded as a folding function which takes (1) a default value z of some desired result

type C to be returned when the list is empty and (2) a folding operation op to be applied when

the list is non-empty. Notice that the capture set of the list is cs(T): the list type captures

whatever the list’s elements capture.

We can type a strict map function strictMap, which applies some function f to each element

of the list, as follows:

strictMap : ∀[A <: ⊤∧{cap}]

∀[B <: ⊤∧{cap}]

∀(xs : List[A])

(∀(f : (A → B)∧{cap})

List[B])∧{xs}

The function argument f to map may capture arbitrary capabilities. As map is strict, that

capability is not retained in the final result type. It is, however, retained by the last curried

closure, since to produce the output of the map we naturally need the input list.

We can also consider a version of map which requires its function argument f to be pure. Here

is its signature.

pureMap : ∀[A <: ⊤∧{cap}]

∀[B <: ⊤∧{cap}]

∀(xs : List[A])

∀(f : A → B)

List[B]

This version of map enforces that the mapping function does not access any capabilities, which

is desireable if the implementation maps the collection in parallel and we want to ensure that

the result of mapping is deterministic.

Lazy lists, which evaluate their elements lazily only when the elements are accessed, can be

modelled as lists of thunks List[(Unit→ A)∧{A}]. Then a lazyMap function, which creates a list

of thunks that apply a given function f to the result of forcing each thunk of a given input list,

can be typed as follows.

lazyMap : ∀[A <: ⊤∧{cap}]

∀[B <: ⊤∧{cap}]

∀(xs : List[(Unit→ A)∧{A}])

(∀(f : (A → B)∧{cap})

List[(Unit→ B)∧{A, f }])∧{xs}

Note that the elements of the output list have capture set {A, f }: they capture the original

elements of type A and the function f , but not any values of type B . Values of type B will be

computed only when the elements of the output list are forced. If f is pure, we can enforce

this in its type; then f is not tracked, so it does not need to be included in the capture set of

35

Chapter 3. Impure Type Variables: CF<:

the elements of the output list.

lazyPureMap : ∀[A <: ⊤∧{cap}]

∀[B <: ⊤∧{cap}]

∀(xs : List[(Unit→ A)∧{A}])

∀(f : A → B)

List[(Unit→ B)∧{A}]

3.3.2 Abort

We will now see a number of progressively more complex extensions to CF<:, with each

extension adding some form of primitive capabilities to the system. Since the extensions

introduce capabilities which affect the operational semantics, it becomes interesting to ask

if a given term may access a particular capability. As we will see, the metatheory of the base

system can be used to perform such reasoning even after the system is extended.

The first extension (Figure 3.7) is rather simple: it adds a basic capabilitity which allows abort-

ing the entire computation. The Abort.do term form, when encountered during reduction in

a non-empty context, causes the entire surrounding term to reduce to Abort.do. Since the

Abort.do form is not a value, the Progress Theorem is now stated as follows:

Theorem 3.4 (Progress (abort variant)). If ⊢ t : T , then t either is a value, or it is the Abort.do

term, or there exists a term t ′ such that we can take a step t −→ t ′.

Importantly, Lemma 3.5 can be used to prove the following lemma:

Lemma 3.6 (Abort Blame Assignment). Let v s be a term well-typed in the empty environment.

Then ⊢ v : (∀(x : S)T)∧C and ⊢ s : S for some C ,S and T . If Abort ∉C ∪cs(S), then v s aborts

(reduces to Abort.do in one or more steps) only if s aborts.

Proof. By induction on steps of the v s −→∗ Abort.do relation. Since v is a value and Abort ̸∈C ,

by Lemma 3.5 and inspection of the subcapturing rules we know that Abort ̸∈ fv(v). If v s −→
Abort.do, then v s must be of the form E[E′[Abort.do]], where s =E′[Abort.do], which means

that s aborts as well. Otherwise, if v s steps with (BETA-V), then s is a value. Again by Lemma 3.5

we then know that Abort ∉ fv(v s), which means that we cannot have v s −→∗ Abort.do – a

contradiction. Otherwise, v s can step to v s′ such that s −→ s′, in which case we can conclude

by Theorem 3.2 and IH.

This lemma demonstrates that the capture sets assigned by typing to terms can be used to

reason about what subterm can cause the entire expression to abort. The type of v tells

us that it is abort-safe, i.e., it will not cause the evaluation to abort no matter whether its

argument s mentions abort or not. In terms of a complete programming language, a term like

v s corresponds to a function call. Thus, the above lemma tells us that if the execution of such

36

3.3 Evaluation

Syntax

q ::= . . . | Abort
t ::= . . . | Abort.do

Typing Γ ⊢ t : T

ABORT

Γ ⊢ Abort.do : T

Reduction t −→ t

BETA-ABORT

E ̸= []

E[Abort.do] −→Abort.do

Figure 3.7: Typing and operational semantics CF<: extended with aborting.

a call aborts, based on the type of the function v we know we can assign blame for aborting to

the argument s.

3.3.3 Non-Local Returns

The next extension illustrate how CF<: can be applied to the problem of scoped effects, i.e., ef-

fects which can only be performed in a limited scope, typically because after the scope is left

the entity which handles the effect becomes unavailable. I discuss extensions for non-local

returns, regions and effect handles. Exceptions are another commonplace example of a scoped

effect, and other examples can be found in the literature on effect masking [Biernacki et al.

2017; Mcbride and Wadler 2019; Zhang and Myers 2019].

The basis for all the extensions is the same in every case. Following the object capability model,

the effectful operation is guarded via a capability object introduced in the scope in which the

effect is available. Capture Tracking can guarantee that this capability is not accessed after the

scope is left, ensuring that all effect operations are well-scoped.

The first extension we inspect is a simple control effect: a non-local return. A non-local

return allows transferring the control flow to the end of a particular block, without necessarily

being within the lexical scope of that block. In contrast to a more classical return statement,

non-local returns work across method and function boundaries. Syntax and typing rules of

the extension are defined in Figure 3.8.

Example

We now take a look at a small term that demonstrates non-local returns. The term represents

a program which sums up the square roots of a list of numbers, returning NaN if one of the

37

Chapter 3. Impure Type Variables: CF<:

Syntax

U ::= . . . Pretypes
Return[T] return capability

t ::= . . . Terms
handlex : Return[T] in t return-able block
t .return s explicit return

Typing Γ ⊢ t : T

RETURN

Γ, x : Return[T]∧{cap} ⊢ t : T cap ∉ cs(T)

Γ ⊢ handlex : Return[T] in t : T

DO-RETURN

Γ ⊢ t : Return[S]∧C Γ ⊢ s : S

Γ ⊢ t .return s : T

Figure 3.8: Static semantics of CF<: extended with non-local returns.

numbers is negative.

root=
λ(x : Double) λ(ret : (∀(d : Double)Double)∧{cap})

if x < 0thenret NaNelsesqrtx

sumRoots=
λ(xs : List[Double]) λ(ret : (∀(d : Double)Double)∧{cap})

xs (λ(x : Double)λ(y : Double) y + (rootx ret))0.0

handler : Return[Double] in
sumRoots [1.0,2.0,3.0,−1.0](λ(x : Double)r.returnx)

The program is partitioned into three parts. First, the root function calculates the square root

of its first argument. In case the argument is negative, it uses its second argument (intended

to be a return capability), calling it with NaN as an argument. Second, the sumRoots function

applies root to each element of a list and sums up the results, using the right-fold encoding

of List (Section 3.3.1). It directly passes the ret function to root. Finally, the “main body” of

the program first introduces the r capability and then calculates the sum of the elements of

a particular list, using r to allow sumRoots to return early if an inappropriate list element is

found.

Note how the dynamic call to ret in function root is not in the lexical scope of the handler

introducing r: the non-local return capability allows root to return from a lexical scope in its

calling context, unlike a more typical return statement.

The program is well-typed, since the r capability is not captured by the result of application of

38

3.3 Evaluation

sumRoots. On the other hand, the following simple variation is ill-typed.

handler : Return[Double] in
λ()sumRoots [1.0,2.0,3.0,−1.0](λ(x : Double)r.returnλ() x)

Here, by rule (ABS), r does appear in the capture set of the handler’s body, which violates the

requirement for (RETURN). A version using lazy list (Section 3.3.1) would also be ill-typed.

Aside. Observe that the root and sumRoots are defined in such a way that the ret function

might abort the computation, or it might return a default value instead: since neither function

needs to receive direct access to a non-local return capability, it is their caller who decides how

the computation is to be carried out. Another reasonable version of ret could simply return

0.0, which would calculate the sum of non-negative elements of the list.

Operational semantics

The operational semantics of the non-local returns extension (Figure 3.9) are built around the

concept of labels l [Biernacki et al. 2020]. Labels are special forms, a formal representation

of runtime capabilities. They only exist when reducing terms: rule (BETA-RETURN-INTRO)

generates a fresh label when a non-local return scope is entered. Conceptually, labels represent

the location of an element of the stack, used to precisely look up which scope a non-local

return should terminate. In multiple senses, a label is like a variable: it needs to be bound to a

type in an environment (the signature environment), it can be either free or bound in a term,

and it is counted as a variable by fv (Figure 3.9). There are three key differences between labels

and variables. Labels are values (allowing them to be directly passed as arguments), labels

are never substituted, and types are well-formed even if they contain unbound labels. The

latter is permissible, since subcapturing treats labels solely based on their identity, i.e., they

are never looked up in the environment.

The operational semantics introduce three new reduction rules and three new evaluation

contexts. The most important new evaluation context form is handle l : T in E: it allows

reducing the term underneath the handle binder. There are two ways for the binder can be

removed during reduction. First, by reducing to a value and applying rule (BETA-RETURN),

which corresponds to normally returning from a block. Second, the term inside the block can

invoke the return capability and explicitly return from it, which corresponds to the (CONTEXT-

RETURN) reduction rule. Note that a term that tries to invoke a return capability after its binder

was removed would be stuck.

39

Chapter 3. Impure Type Variables: CF<:

Syntax and definitions

l ::= @a13,@4f1, . . . runtime labels

v ::= . . . | l label value

c ::= . . . | l label capture

t ::= . . . | handle l : Return[T] in t return scope

Σ ::=; | Σ, l : Return[T] signature environment

fv(l) = {l } fv(handle l : T in t) = fv(t) \ l

Subcapturing Γ ⊢ C <: C

SC-LABEL

Γ⊢ {l } <: {cap}

Type assignment Γ |Σ ⊢ t : T

RETURN-L

l : Return[T] ∈Σ Γ |Σ, l : Return[T] ⊢ t : T cap ∉ cs(T)

Γ |Σ ⊢ handle l : Return[T] in t : T

LABEL

l : Return[T] ∈Σ
Γ |Σ ⊢ l : Return[T]∧{l }

Reduction t −→ t

BETA-RETURN

handle l : Return[T] in v −→ v
CONTEXT-RETURN

handle l : Return[T] in E[l .returnv] −→ v

BETA-RETURN-INTRO

l fresh
handlex : Return[T] in t −→ handle l : Return[T] in [x := l] t

E ::= . . . | handle l : T in E | E.return t | l .returnE

Figure 3.9: Operational semantics of CF<: extended with non-local returns. The highlighted
parts of the judgments are merely a proof device to ensure the soundness of the extension.

40

3.3 Evaluation

Soundness

In this extension it is now possible for a term to be ill-scoped, i.e., attempt to access a non-local

return capability after the appropriate scope was already removed from the reduction context.

This was exemplified by the previously-presented examples, and is also illustrated by the

following term.

(handler : Return[Int] inλ(x : Int)r.returnx)0

To statically disallow such terms, we need to ensure that non-local return capabilities are only

accessed during their binders dynamic extent, i.e., while the appropriate handle form is in the

evaluation context.

There are two ways a capability could be accessed after its scope was left: either by being

captured by a value returned from the scope the normal way (with rule (BETA-RETURN)), or

by being captured by a value returned from the scope via the return capability itself (with

rule (CONTEXT-RETURN)). The restriction on cs(T) in (RETURN) ensures that neither case can

occur. Informally, If returning a value v of type T could leak the label l , then l ∈ fv(v). Then

by Lemma 3.5 and by inspecting the subcapturing rules, it follows that {l } <: cs(T). There

are two ways to derive this subcapturing relation: either x or cap must be a member of cs(T).

The first is prevented because we implicitly make the assumption that T is well-formed in

Γ, the second is explicitly prevent with the mentioned premise of (RETURN). Additionally,

observe that preventing type variables from ranging over types capturing cap with the premise

of (T-APP) is necessary for the soudness of this extension. Without that premise of (T-APP),

we would have trouble, like in the following term (which uses the standard desugaring of let

forms).

let f =Λ[X <: ⊤∧{cap}]handler : Return[X] inλ(x : X)r.returnx

inletg = f [(∀(u : Unit)Unit)∧{cap}]

ing (λ(u : Unit) ())

The abstraction f leaks a non-local return capability within a closure. Statically, the result of

the non-local return scope is typed with the type variable X , so the premise of (RETURN) is

satisfied since r ∉ (cs(X) = {X }). The rest of the term instantiates X to (∀(u : Unit)Unit)∧{cap},

binds the returned closure to g and proceeds to use it, which will get the term stuck during

reduction. Fortunately, the term is ill-typed due to the premise of (T-APP).

3.3.4 Regions

Next, we look at the applicability of CF<: to region-based memory management [Tofte and

Talpin 1997]. Briefly, the idea is to allocate some data structures in regions, which in this

extension are delimited by a lexical scope. After the lexical scope is left, the entire region can

be deallocated in a single operation, which can be more efficient than garbage-collecting or

41

Chapter 3. Impure Type Variables: CF<:

individually deallocating the data structures. Capture Tracking can be used to ensure that after

a region is left, the data allocated in the region cannot be accessed anymore, i.e., to statically

prevent use-after-free errors for region-allocated data.

Figure 3.10 shows the extensions to CF<:. There are two new major term forms: regions

are introduced with the reg x in t form, and references are created with the x.ref t form. The

extension also features standard assignment, dereference, and unit term forms. Rule (REGION)

types region scope forms. It includes a precondition which ensures that a region reference

does not leave its binding scope. Rule (REF) types reference creation forms. To ensure that

references allocated on a region cannot be accessed outside out-of-scope, the rule types the

newly created references with a capture set accounting for the region. Additionally, to ensure

that region references cannot be leaked by being assigned to references in outer regions, a

reference’s contents type is disallowed from capturing cap.

Note that the extension allows creating references on regions which are not statically known: if

x and y are regions and we have s ≜ if s′ thenx else y , then the type of s would be Region∧{x, y}

and also the following term is well-typed.

(if s′ thenx else y).ref t : Ref[T]∧{x, y}

Importantly, type-dependent capture polymorphism suffices in many cases where region

polymorphism would be otherwise necessary.. For example, the following lambda can derefer-

ence a reference allocated on an arbitrary region by typing it as capturing cap, whereas region

systems would typically require region polymorphism in such cases.

Λ[X <: ⊤∧{cap}]λ(x : Ref[X]∧{cap}) !x

A function can also accept a region reference as an argument in order to allocate a reference

on it. The following lambda accepts a region and a reference and duplicates the reference.

Λ[X <: ⊤∧{cap}]λ(y : Region∧{cap})λ(x : Ref[X]∧{y}) y.ref !x

Evaluation

I evaluate the extension by comparing it with Cyclone, a dialect of C notable for featuring

region-based memory management. Cyclone regions were limited to lexical scopes [Grossman

et al. 2002]; later, “dynamic” regions were added [Fluet et al. 2006]. Dynamic (non-lexical)

regions are allocated and de-allocated with a special form; to ensure their soundness, Fluet

et al. [2006] use linear types. Since regions in our extension could be similarly refined, I only

compare them to lexically-scoped Cyclone regions.

Contrary to Cyclone, the presented extension does not support an “outlives” relationship

42

3.3 Evaluation

Syntax
v ::= . . . Terms

()

t ::= . . . Terms
reg x in t region block
x.ref t ref creation
t := t assignment
!t dereference

U ::= . . . Core types
Region region capability
Ref[T] reference
Unit Unit type

Type assignment Γ ⊢ t : T

REGION

Γ, x : Region∧{cap} ⊢ t : T cap ̸∈ cs(T)

Γ ⊢ reg x in t : T

REF

s : Region∧C ∈ Γ Γ ⊢ t : T cap ∉ cs(T)

Γ ⊢ s.ref t : Ref[T]∧C

ASSIGN

Γ ⊢ t : Ref[S] Γ ⊢ s : S

Γ ⊢ t := s : Unit

DEREF

Γ ⊢ t : Ref[T]

Γ ⊢ !t : T

Figure 3.10: Static semantics of CF<: extended with regions.

between regions. This relationship, also called sub-regioning, allows passing references to

longer-lived regions where shorter-lived ones are expected. For instance, if we know that the r1

region is outlived by r2, we should be able to pass Ref[T]∧{r2} where we expected Ref[T]∧{r1}.

We would be able to do so if bounds of r2 permitted deriving that {r2} <: {r1}, i.e., if we could

put lower bounds on term variables (which matches what Cyclone does).

Still, subcapturing suffices in many cases where sub-regioning would be necessary in other

systems. For instance, a conditional expression which returns a reference allocated either on

r1 or on r2 can be typed with a type of the form Ref[T]∧{r1,r2}.

The extension as presented supports regions based on the more widely applicable type system

of CF<:, while Cyclone features are much more specialized. Cyclone has a separate concept

of region variables ρ and region handles region(ρ); region-polymorphic definitions must be

explicitly qualified. Cyclone tracks the use of regions with an effect system, and, to avoid

explicit effect polymorphism, defines a bespoke regions_of type operator. In contrast,

the Capture Tracking approach does not need a separate effect system, supports region

polymorphism without introducing region variables, and does not require unnecessarily

qualifying every region-polymorphic function with a region variable.

43

Chapter 3. Impure Type Variables: CF<:

Syntax

t ::= . . . Terms
handlex : Eff[S,T] =λ

(
y k

)
s in t handling

x.do t handler call

U ::= . . . Pretypes
Eff[S,T] effect capability

Type assignment Γ ⊢ t : T

HANDLE

(1a) cap ̸∈ cs(S) (1b) cap ̸∈ cs(T)
(2) Γ, y : S, k : (∀(x : B)R)∧{cap} ⊢ s : R

(3) Γ, x : Eff[S,T]∧{cap} ⊢ t : R

Γ ⊢ handlex : Eff[A,B] =λ
(
y k

)
s in t : R

DO

Γ ⊢ s : S
Γ ⊢ t : Eff[S,T]∧C

Γ ⊢ t .do s : T

Figure 3.11: Static semantics of CF<: extended with effect handlers.

3.3.5 Effect Handlers

As a final case study on effects, I present a generalization of the non-local returns extension

to algebraic effects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013]. Effect

handlers are a powerful program structuring paradigm: they can be viewed as exceptions

which allow resuming the interrupted computation, or otherwise as a more structured version

of delimited continuations. They allow expressing various complex control-flow patterns and

in fact generalize previously presented extensions, as well as Java-like checked exceptions.

The extension given here uses effect handlers in capability-passing style [Brachthäuser and

Schuster 2017; Zhang and Myers 2019; Brachthäuser et al. 2020a], since it perfectly fits the

Capture Tracking framework. To keep the presentation simple, following Zhang and Myers

[2019] effect handlers in this extension are limited to a single operation and cannot have return

clauses.

Figure 3.11 extends the core CF<: calculus with additional syntax for effect handlers. The

extension features a new pretype Eff[S,T], representing represents effect operations from S

to T . The type argument S indicates the type of values passed to an effect operation, and the

type argument T indicates the type of values returned by an effect operation. The extension

also features two new term forms. First, the term form handlex : Eff[S,T] = λ
(
y k

)
s in t

introduces the handler capability x : Eff[S,T]∧{cap} and binds it within the lexical scope of t .

The handler implementation λ
(
y k

)
s has two parameters: y will be bound to the argument of

type A passed to the effect operation, while k represents the continuation. To avoid having

to annotate the type of the continuation, this term form diverges slightly from the term

abstraction form, since the type annotation on x precisely specifies the types of y and k. In

the examples, I also sometimes use the shorthand handlex = h in s. Second, invoking an

effect operation with x.do v suspends the current computation, passing the argument v to

44

3.3 Evaluation

the handler bound to x.

Operational Semantics

The operational semantics for the effect handler extension are very similar to the ones for

the non-local return extensions (Figure 3.9). I present the operational semantics for this

extension by discussing each reduction rule separately. The full operational semantics are

shown later (Figure 3.12). Again, the extension uses runtime labels to mark positions on the

stack. Like with non-local returns, those runtime labels are introduced by the following rule.

BETA-HANDLE-INTRO

l fresh

handlex =λ
(
y k

)
s in t −→ handle l =λ

(
y k

)
s in [x 7→ l]t

Since reducing a handler generates a fresh label, the effect handlers in this extension are

generative [Biernacki et al. 2020]. Additionally, there are two new reduction rules. The first

rule removes the handler binder if the program w is already a value. This is only safe when w

does not mention the handler capability; otherwise we could perform an effect which has no

handler on the stack. As expected based on previous extensions, the typing rules ensure that

this is never the case.

BETA-HANDLE

handle l = h in w −→ w

The second rule reduces terms which invoke an effect operation, using the corresponding

handler to do so.

CONTEXT-HANDLE

E= handle l =λ
(
y k

)
s in E′

E[l .do v] −→ [k :=λ(z)E[z], y := v]s

To reduce a call to an effect operation l .do v in a context E, the context must provide a

handler bound at label l . Furthermore, the evaluation context between the handler and

the effect operation call is denoted by E′. The entire term is reduced by taking the handler

body s and substituting the argument v for y and the continuation λ(z)E[z] for k into it.

Calling the continuation will reinstantate the delimited evaluation context E; this context also

contains the handler bound at l . The presented operational semantics thus implement deep

handlers [Kammar et al. 2013].

45

Chapter 3. Impure Type Variables: CF<:

Typing

The typing rules in Figure 3.11 are naturally more complex than the ones for non-local returns,

but the core principle stays the same: in both cases the (HANDLE) rule ensures that the scoped

handler capability x does not outlive the scope that binds it. The premises of (HANDLE) can be

grouped two categories: The first row of premises (1a) and (1b) are well-formedness conditions

to assert non-escaping. The other two rows of premises type check the handler body (2) and

the handled program (3). I will now work through the different premises starting from the

last one, highlighting important aspects. Premise (3) types the handled program and brings

a capability of type Eff[S,T]∧ {cap} into scope. Premise (2) types the body of the handler. It

not only binds the argument of the effect operation y , but also the continuation, to which

we assign the type (∀(T)R)∧{cap}. The rule conservatively use {cap} as the capture set of the

continuation in order to ensure the continuation cannot be accessed outside of the handler

body. In particular, it could do so by being passed as an argument to another handler, by

being passed as an argument to itself, or by being (indirectly) returned from the handler body.

Finally, to guarantee that all accesses to the handler capability are well-scoped premises (1a)

and (1b) require that the root capability cap is not included in cs(S) (and cs(R) respectively).

This has an interesting consequence: the capture sets of S and R need to be concrete capture

sets. This restriction lets us rule out programs such as:

handlex = v in λ
(
y
)

x.do y −→
handle@a13= v in λ

(
y
)
@a13.do y −→

λ
(
y
)
@a13.do y

where x is unbound after reduction. In addition to restricting the answer type R , we also restrict

the argument type S. The motivation for this is more subtle. Let us assume the following

example adapted from Biernacki et al. [2020]:

handlex : Eff[(∀(Unit)Unit)∧{cap},Unit] =λ
(

f k
)

f () in
handley= h in

x.do λ () y.do ()

46

3.3 Evaluation

The example reduces as follows.

handle@a13 : Eff[Unit∧{cap}Unit,Unit] =λ
(

f k
)

f () in
handle@4f1= h in

@a13.do (λ () @4f1.do ())

−→
[f := . . . , l := . . .](f ())

−→
(λ () @4f1.do ()) ()

−→
@4f1.do ()

This leads to an undelimited, i.e., unhandled, effect call to the label @4f1. To avoid this, we

need to rule out the possibility that lambda abstractions closing over capabilities at the call

site can be passed to effect operations. By requiring that the capture set on A needs to be

concrete, we rule out the type of

Eff[(∀(Unit)Unit)∧{cap},Unit]

instead we would need to give the more precise type Eff[(∀(Unit)Unit)∧{y},Unit]. However,

this is again ruled out, since it is not well-formed in the outer typing context. y is not bound at

the handling site of x.

Conclusion

Capture sets allow reasoning about capability safety: we can ensure all effects are handled

simply by establishing that capabilities do not leave their corresponding effect handlers,

without equipping the language with an additional effect system. Capture sets also allow us

reasoning about the effects used by a function. Inspecting the capture set on the type of a

function value, we can conclude which effects can potentially be used by this function and in

particular, which effects cannot be used.

47

Chapter 3. Impure Type Variables: CF<:

Syntax

l ::= @a13,@4f1, . . . runtime labels

v ::= . . . | l label value
c ::= . . . | l label capture

t ::= . . . | handle l : Eff[T,T] =λ (x x) t in t effect handler

Σ ::=; | Σ, l : Eff[T,T] signature environment

fv(l) = {l } fv(handle l : T in t) = fv(t) \ l

Subcapturing Γ ⊢ C <: C

SC-LABEL

Γ⊢ {l } <: {cap}

Type assignment Γ |Σ ⊢ t : T

HANDLE-L

(1a) cap ̸∈ cs(S) (1b) cap ̸∈ cs(T)
(2) Γ, y : S, k : (∀(x : S)R)∧{cap} |Σ ⊢ s : R

(3) Γ |Σ, l : Eff[S,T] ⊢ t : R

Γ |Σ ⊢ handle l : Eff[S,T] =λ
(
y k

)
s in t : R

LABEL

l : Eff[S,T] ∈Σ
Γ |Σ ⊢ l : Eff[S,T]∧{l }

Reduction t −→ t

BETA-HANDLE-INTRO

l fresh

handlex =λ
(
y k

)
s in t −→ handle l =λ

(
y k

)
s in [x 7→ l]t

BETA-HANDLE

handle l = h in w −→ w

CONTEXT-HANDLE

E= handle l =λ
(
y k

)
s in E′

E[l .do v] −→ [k :=λ(z)E[z], y := v]s

E ::= . . . | handle l = h in E | E.do t | l .do E

Figure 3.12: Operational semantics of CF<: extended with effect handlers. The highlighted
portions are merely a proof device to ensure soundness of the extension.

48

4 Boxing Capabilities: CC<:□

4.1 Introduction

At the end of Chapter 2, we have seen the subtle issue with extending SCC to support universal

polymorphism: the type system either needs to be aware that there is a capture set “under” a

type variable, or type variables must only range over pure types, ones with an empty capture

set.

In Chapter 3, we have seen CF<:, which extends SCC with type variables ranging over arbitrary

types and allows type variables to appear in capture sets.

In this chapter, I present CC<:□, a further result of the collaboration with Martin Odersky,

Jonathan Brachthäuser, Ondřej Lhoták, and Edward Lee. CC<:□ takes the second approach to

extending SCC with universal polymorphism. Since type variables ranging over pure types on

their own are not very expressive, we will see that CC<:□ allows injecting impure capturing

types into pure types. In comparison to CF<:, CC<:□ supports more ergonomic types and

forms the formal basis for the Scala implementation of Capture Tracking. Additionally, in this

chapter I present examples which illustrate the practical usability of a Capture Tracking imple-

mentation based on CC<:□; the examples were checked with the capture checker prototype

implemented within the Scala 3 compiler.

The presented design is at the same time simple in theory and concise and flexible in its prac-

tical application. As we have said in the publication on which this chapter is based [Boruch-

Gruszecki et al. 2023], the following elements are essential for achieving good usability.

• Use reference-dependent typing, where a formal function parameter stands for the

potential references captured by its argument [Odersky et al. 2021; Brachthäuser et al.

2022]. Doing so avoids having to introduce separate binders for capabilities or effects.

Technically, this means that references (but not general terms) can form part of types

as members of capture sets. A similar approach is taken in the path-dependent typing

discipline of DOT [Amin et al. 2016; Rompf and Amin 2016] and by reachability types for

49

Chapter 4. Boxing Capabilities: CC<:□

alias checking [Bao et al. 2021].

• Employ a subtyping discipline that mirrors subsetting of capabilities and that allows

capabilities to be refined or abstracted. Subtyping of capturing types relies on a new

notion of subcapturing that encompasses both subsetting (smaller capability sets are

more specific than larger ones) and derivation (a capability singleton set is more specific

than the capture set of the capability’s type). Both dimensions are essential for a flexible

modelling of capability domains.

• Limit propagation of capabilities in instances of generic types where they cannot be

accessed directly. This is achieved by boxing terms and types when they enter a generic

context and later unboxing them on every use site [Brachthäuser et al. 2022].

Once again, whereas many of the examples motivating Capture Tracking describe applications

in effect checking, the core formal system of CC<:□ does not mention effects. The effect

domains are intentionally kept open since they are orthogonal to the aims of the core system.

Effects could be exceptions, file operations or region allocations, but also algebraic effects,

IO, or any sort of monadic effects. More advanced control effects usually require adding

continuations to the operational semantics, or using an implicit translation to the continuation

monad. In short, capabilities can restrict what effects can be performed at any point in the

program, but they by themselves don’t perform an effect [Marino and Millstein 2009b; Gordon

2020; Liu 2016; Brachthäuser et al. 2020a; Osvald et al. 2016]. To actually perform an effect

in the program, a library or a runtime system is needed. Both would need to be added as an

extension of CC<:□. Since CC<:□ is intended to work with all such effect extensions, we refrain

from adding a specific application to its core operational semantics.

Later, I introduce an extension of CC<:□ to demonstrate how to properly enforce scoping of

capabilities. The extension adds just enough primitives to CC<:□ so that ill-scoped terms

could get stuck, and then proceeds to show that all such terms are ruled out by the type system.

The version of CC<:□ presented here evolved from a system which was originally proposed

to make exception checking safe [Odersky et al. 2021]. The earlier paper described a way

to encode information about potentially raised exceptions as object capabilities passed as

arguments. It noted that the proposed system is not completely safe since capabilities can

escape in closures, and it hypothesized a possible way to fix the problem by presenting a draft

of what became CC<:□. At the time, the metatheory of the proposed system was not worked

out yet and the progress and preservation properties were left as conjectures. Additionally,

there are some minor differences in the operational semantics, which were necessary to make

the progress property hold.

The rest of this chapter is organized as follows. Section 4.2 explains and motivates key aspects

of capture tracking present in CC<:□. Section 4.3 presents CC<:□ itself. Section 4.4 lays out

its meta-theory. Section 4.5 illustrates the expressiveness of typing disciplines based on the

calculus in examples. Section 4.6 discusses the need for CC<:□ to include boxes as a core

50

4.2 Key Aspects of Capture Tracking in CC<:□

primitve. Section 4.7 extends CC<:□ with a primitive scoped capability. Finally, Section 4.8

concludes.

4.2 Key Aspects of Capture Tracking in CC<:□

CC<:□ builds on top of SCC, featuring all the aspects of Capture Tracking discussed in Sec-

tion 2.1: the hierarchy of capabilities, dependent function types, capture-checking closures

using the variables of their bodies, relating capture sets with subcapturing, and using capture

checking to ensure well-scoped access to local capabilities. To those, CC<:□ adds one new

aspect: capture tunneling.

All examples are written in an experimental language extension of Scala 3 [Scala 2022b] and

were compiled with the prototype implementation of a capture checker [Scala 2022c].

4.2.1 Capture Tunneling

Next, we discuss how type-polymorphism interacts with reasoning about capture. To this end,

consider the following simple definition of a Pair class1:

class Pair[+A, +B](x: A, y: B):

def fst: A = x

def snd: B = y

What happens if we pass arguments to the constructor of Pair that capture capabilities?

def x: Int ->{ct} String

def y: Logger ^{fs}

def p = Pair(x, y)

Here the arguments x and y close over different capabilities ct and fs, which are assumed to

be in scope. So what should be the type of p? Maybe surprisingly, it will be typed as:

def p: Pair[Int ->{ct} String , Logger ^{fs}] = Pair(x, y)

That is, the outer capture set is empty and it neither mentions ct nor fs, even though the

value Pair(x, y) does capture them. So why don’t they show up in its type at the outside?

While assigning p the capture set {ct, fs} would be sound, types would quickly grow inaccu-

rate and unbearably verbose. To remedy this, CC<:□ performs capture tunneling. Once a type

variable is instantiated to a capturing type, the capture is not propagated beyond this point.

On the other hand, if the type variable is instantiated again on access, the capture information

“pops out” again.

1This class is covariant in both A and B, as denoted by the pluses.

51

Chapter 4. Boxing Capabilities: CC<:□

Even though p is technically untracked because its capture set is empty, writing p.fst would

record a reference to the captured capability ct. So if this access was put in a closure, the

capability would again form part of the outer capture set, as shown in the following example.

() => p.fst : () ->{ct} Int ->{ct} String

In other words, references to capabilities “tunnel through” generic instantiations—from cre-

ation to access; they do not affect the capture set of the enclosing generic data constructor

applications.

As mentioned above, this principle plays an important part in making capture checking

concise and practical. To illustrate, let us take a look at the following example.

def mapFirst[A,B,C](p: Pair[A,B], f: A => C): Pair[C,B] =

Pair(f(p.x), p.y)

The mapFirst function takes a Pair and a mapping function and applies the latter to the

first element of the former. Class Pair merely retains both its constructor arguments in im-

mutable fields. Thanks to capture tunneling, neither the types of the parameters to mapFirst,

nor its result type need to be annotated with capture sets. Intuitively, the capture sets do not

matter for mapFirst, since parametricity forbids it from inspecting the actual values inside

the pairs. If not for capture tunneling, we would need to annotate p as Pair[A,B]^{ cap},

since both A and B and through them, p can capture arbitrary capabilities. In turn, this means

that for the same reason, without tunneling we would also have Pair[C,B]^{ cap} as the

result type, which is an unacceptably inaccurate type.2

Section 4.3 describes the foundational theory on which capture checking is based. It makes

tunneling explicit through so-called box and unbox operations. Boxing hides a capture set

and unboxing recovers it. Boxed values need an explicit unbox operation before they can

be accessed, and that unbox operation charges the capture set of the environment. If the

unbox operation is part of a closure, the unboxed type’s capture set will contribute to the

captured variables of that closure. The need for such a mechanism is explained in more detail

in Section 4.6.

The capture checker inserts virtual box and unbox operations based on actual and expected

types similar to the way the type checker inserts implicit conversions. Boxing and unboxing

has no runtime effect, so the insertion of these operations is only simulated, but not kept in

the generated code. In this particular example, mapFirst operates only on generic types and

no box or unbox operations need to be inserted; how such operations are inserted is discussed

in Section 4.5.

2That is: assuming that we keep capture sets as sets of term variables. If we allow capture sets to contain type
variables as in CF<:, the result can be typed as Pair[C,B]^{C}.

52

4.3 The CC<:□ Calculus

Escape Checking

There is now an additional consideration when checking that local capabilities are not accessed

outside of their scope, compared to the concerns already mentioned in Section 2.1.5. One also

needs to prevent returning or assigning a closure with a local capability in an argument of a

parametric type. The following example illustrates the idea.

val sneaky = usingFile("out", os => Pair (() => os.write(0), 1))

sneaky.fst()

At the point where the Pair is created, the capture set of the first argument is {f}, which is

OK. But at the point of use, it is {cap}: since f is no longer in scope we need to widen the

type to a supertype that does not mention it (cf. the explanation of avoidance in Section 4.3.3).

This causes an error, as the universal capability is not permitted to be in the unboxed form of

the return type (cf. the precondition of (UNBOX) in Figure 4.2).

4.3 The CC<:□ Calculus

The syntax of CC<:□ is given in Figure 4.1. In short, it describes a dependently typed variant of

System F<: in monadic normal form (MNF) with capturing types and boxes.

Boxes. CC<:□ type variables X range over shape types only, not regular types. To make up for

this restriction, a regular type T can be encapsulated in a shape type by prefixing it with a box

operator □T . On the term level, □x injects a variable into a boxed type. A variable of boxed

type is unboxed using the syntax C ⊸x, where C is a capture set of the underlying type of x.

We have seen in Section 4.2 that boxing and unboxing allow a kind of capability tunneling

by omitting capabilities when values of parametric types are constructed and charging these

capabilities instead at use sites.

System F<:. CC<:□ extends a (perhaps the) standard system with the two principal forms of

polymorphism, subtyping and universal, just as CF<: did.

The specific challenges posed by the combination of universal polymorphism and Capture

Tracking are addressed in CC<:□ by restricting type variables to shape types and mediating

between shape types and regular types via box and unbox operations.

Capture Sets. CC<:□ capture sets C are finite term variable sets {x}, just as in SCC and as

opposed to CF<: capture sets, which can also contain type variables.

Capture sets of closures are determined using the cv function, in contrast to SCC using the

free variables fv instead. First, I define cv; then, I contrast it with fv.

53

Chapter 4. Boxing Capabilities: CC<:□

Variable x, y, z, cap

Type Variable X ,Y , Z

Value v, w ::= λ(x : T) t | λ[X <: S]t | □x
Answer a ::= v | x
Term s, t ::= a | x y | x [S] | letx = s in t | C ⊸x
Shape Type S ::= X | ⊤ | ∀(x : U)T | ∀[X <: S]T | □T
Type T,U ::= S | S ∧C

Capture Set C ::= {x}
Typing Context Γ,∆ ::= ; | Γ, X <: S | Γ, x : T if x ̸= cap

Figure 4.1: Syntax of CC<:□

Definition (Captured Variables). The captured variables cv(t) of a term t are given as follows.

cv(λ(x : T)t) ≜ cv(t) \ x

cv(λ[X <: S]t) ≜ cv(t)

cv(x) ≜ {x}

cv(letx = v in t) ≜ cv(t) ifx ∉ cv(t)

cv(letx = s in t) ≜ cv(s)∪cv(t) \ x

cv(x y) ≜ {x, y}

cv(x [S]) ≜ {x}

cv(□x) ≜ {}

cv(C ⊸x) ≜ C ∪ {x}

The definitions of captured and free variables of a term are very similar, with the following

three differences.

1. Boxing a term □x obscures x as a captured variable.

2. Dually, unboxing a term C ⊸x counts the variables in C as captured.

3. In an evaluated let binding letx = v in t , the captured variables of v are counted only if

x is a captured variable of t .

The first two rules encapsulate the essence of box-unbox pairs: boxing a term obscures its

captured variable and makes it necessary to unbox the term before its value can be accessed,

while unboxing a term presents variables that were obscured when boxing. The third rule is

motivated by the case where a variable x is bound to a value v ; then we do not want to count

54

4.3 The CC<:□ Calculus

the captured variables of v if x is either boxed or not mentioned at all in the let body. The

intuition behind this rule is that such variables would naturally be disregarded if CC<:□ was

not in MNF.3

Figure 4.2 presents the typing rules and operational semantics of CC<:□. In the following sec-

tions, I separately discuss the rules governing subcapturing, subtyping, typing and reduction.

4.3.1 Subcapturing

Subcapturing in CC<:□ is defined by the very same rules as in SCC see Section 2.2.2 for a

discussion of the rules. Just like in SCC, we can establish that {cap} and {} are respectively the

top and bottom capture sets.

Proposition 4.1. If C is well-formed in Γ, then Γ⊢ {} <: C <: {cap}.

A proof is enclosed in an appendix.

Proposition 4.2. The subcapturing relation Γ ⊢ _ <: _ is a preorder.

Proof. We can show that transitivity and reflexivity are admissible.

4.3.2 Subtyping

The subtyping rules of CC<:□ are very similar to those of System F<:, with the only significant

addition being the rules for capturing and boxed types. Note that as S ≡ S ∧{}, both transitivity

and reflexivity apply to shape types as well. (CAPT) allows comparing types that have capture

sets, where smaller capture sets lead to smaller types. (BOXED) propagates subtyping relations

between types to their boxed versions.

4.3.3 Typing

The typing rules for type abstractions are close to System F<:, with differences only to account

for capturing types. Typing rules are again close to System F<:, with differences to account for

capture sets.

Rule (VAR), the same as in SCC, is the basis for capability refinements. If x is declared with

type S ∧C , then the type of x has {x} as its capture set instead of C . The capture set {x} is

more specific than C , in the subcapturing sense. Therefore, we can recover the capture set C

through subsumption.

3Note that it is boxing which makes using cv necessary (as opposed to using fv). MNF alone does not require
using cv.

55

Chapter 4. Boxing Capabilities: CC<:□

Subcapturing Γ ⊢ C <: C

SC-ELEM
x ∈C

Γ ⊢ {x} <: C

SC-SET

Γ ⊢ {xi } <: C
i

Γ ⊢ {xi
i } <: C

SC-VAR
x : S ∧C ′ ∈ Γ Γ ⊢ C ′ <: C

Γ ⊢ {x} <: C

Subtyping Γ ⊢ T <: T

REFL

Γ ⊢ T <: T
TOP

Γ ⊢ S <: ⊤
TVAR
X <: S ∈ Γ
Γ ⊢ X <: S

TRANS
Γ ⊢ T1 <: T2 Γ ⊢ T2 <: T3 Γ ⊢ T2 wf

Γ ⊢ T1 <: T3

FUN
Γ ⊢ U2 <: U1 Γ, x : U2 ⊢ T1 <: T2

Γ ⊢ ∀(x : U1)T1 <: ∀(x : U2)T2

TFUN
Γ ⊢ S2 <: S1 Γ, X <: S2 ⊢ T1 <: T2

Γ ⊢ ∀[X <: S1]T1 <: ∀[X <: S2]T2

CAPT
Γ ⊢ C1 <: C2 Γ ⊢ S1 <: S2

Γ ⊢ S1
∧C1 <: S2

∧C2

BOXED
Γ ⊢ T1 <: T2

Γ ⊢ □T1 <: □T2

Typing Γ ⊢ t : T

VAR
x : S ∧C ∈ Γ
Γ ⊢ x : S ∧{x}

ABS
Γ, x : U ⊢ t : T Γ ⊢ U wf

Γ ⊢ λ(x : U)t : (∀(x : U)T)∧cv(t)\x

APP
Γ ⊢ x : (∀(z : U)T)∧C Γ ⊢ y : U

Γ ⊢ x y : [z := y]T

BOX
Γ ⊢ x : S ∧C C ⊆ dom(Γ)

Γ ⊢ □x : □S ∧C

UNBOX
Γ ⊢ x : □S ∧C C ⊆ dom(Γ)

Γ ⊢ C ⊸x : S ∧C

TABS
Γ, X <: S ⊢ t : T Γ ⊢ S wf

Γ ⊢ Λ[X <: S] t : (∀[X <: S]T)∧cv(t)

TAPP
Γ ⊢ x : (∀[X <: S]T)∧C

Γ ⊢ x [S] : [X := S]T

SUB
Γ ⊢ t : T Γ ⊢ T <: U Γ ⊢ U wf

Γ ⊢ t : U

LET
Γ ⊢ u : U Γ, x : U ⊢ t : T x ∉ fv(T)

Γ ⊢ letx = u in t : T

Reduction t −→ t ′

σ[η[x y]] −→ σ[η[[z := y]t]] if σ(x) =λ(z : T) t (APPLY)
σ[η[x [S]]] −→ σ[η[[X := S]t]] if σ(x) =Λ[X <: S′] t (TAPPLY)
σ[η[C ⊸x]] −→ σ[η[y]] if σ(x) =□ y (OPEN)
σ[η[letx = y in t]] −→ σ[η[[x := y]t]] (RENAME)
σ[η[letx = v in t]] −→ σ[letx = v inη[t]] if η ̸= [] (LIFT)
σ[η[t]] −→ σ[η[t ′]] if σ[t] −→σ[t ′] (CONTEXT)

where Store context σ ::= [] | letx = v inσ
Eval context η ::= [] | letx = η in t

Figure 4.2: CC<:□ typing rules and operational semantics.

56

4.3 The CC<:□ Calculus

Rules (ABS) and (TABS) augment the abstraction’s type with a capture set that contains the

captured variables of the term. Recall that untracked variables can immediately be removed

from this set through subsumption and rule (SC-VAR).

The (APP) rule substitutes references to the function parameter with the argument to the

function. This is possible since arguments are guaranteed to be variables. The function’s

capture set C is disregarded, reflecting the fact that the closure is consumed by the application.

Rule (TAPP) is analogous.

Aside: A more conventional version of (TAPP) would be the following one.

TAPP’
Γ ⊢ x : (∀[X <: S] ′T)∧C Γ ⊢ S <: S′

Γ ⊢ x [S] : [X := S]T

That formulation is equivalent to (TAPP) in the sense that either rule is derivable from the

other, using subsumption and contravariance of type bounds.

Rules (BOX) and (UNBOX) map between boxed and unboxed types. They require all members

of the capture set under the box to be bound in the environment Γ. Consequently, while we

can create a boxed type with {cap} as its capture set through subsumption, we cannot unbox

values of this type. This property is fundamental for ensuring scoping of capabilities: recall

that in Section 2.1.5 I have discussed how we can do so via a scheme which relies on checking

if particular types only capture capabilities bound in the current context. Boxing a capability

temporarily makes it not count as captured and forces the exact same check to be carried out

when the capability is unboxed, which simultaneously enables capture tunneling and can

serve as the basis for ensuring that capability access is well-scoped.

Avoidance.

In CC<:□, just like in SCC, there is always a most specific avoiding type for a (LET).

Proposition 4.3. Consider a term letx = s in t in an environment Γ such that Γ ⊢ s : T1 and

Γ, x : T1 ⊢ t : T2. Then there exists a minimal (wrt <:) type T3 such that T2 <: T3 and x ∉ fv(T3).

A proof is attached in an appendix.

4.3.4 Well-Formedness

CC<:□ well-formedness Γ ⊢ T wf is equivalent to well-formedness in System F<: in that free

variables in types and terms must be defined in the environment, except that capturing types

may mention the root capability cap in their capture sets. I present the well-formedness rules

in Figure 4.3.

57

Chapter 4. Boxing Capabilities: CC<:□

Type well-formedness Γ⊢C wf Γ ⊢ T wf

WF-CSET

C ⊆ dom(Γ)∪ {cap}

Γ ⊢ C wf

WF-TVAR

X <: S ∈ Γ
Γ ⊢ X wf

WF-FUN

Γ ⊢ U wf Γ, x : U ⊢ T wf
Γ ⊢ ∀(x : U)T wf

WF-CAPT

Γ⊢C wf Γ ⊢ S wf
Γ ⊢ S ∧C wf

WF-BOXED

Γ ⊢ T wf
Γ ⊢ □T

WF-TFUN

Γ ⊢ S wf Γ, X <: S ⊢ T wf
Γ ⊢ ∀[X <: S]T wf

WF-TOP

Γ ⊢ ⊤wf

Figure 4.3: Well-formedness rules of CC<:□.

4.3.5 Operational Semantics

Similarly to SCC, CC<:□ operational semantics are defined by a small-step reduction relation

which reduces terms under let-bindings and looks up the values to which variables are bound

in the context of the redex.

The first three rules — (APPLY), (TAPPLY), (OPEN) — rewrite simple redexes: applications, type

applications and unboxings. Rule (APPLY) is identical to the one from SCC, while the other

two rules reduce new term forms. All three rules look up a variable in the enclosing store and

proceed based on the found value.

The last two rules, (RENAME) and (LIFT) are administrative in nature and identical to the ones

in SCC. Recall that if the right hand side of the let is a variable, the let gets expanded out by

renaming the bound variable using (RENAME). If it is a value, the let gets lifted out into the

store context using (LIFT).

Proposition 4.4. Evaluation is deterministic. If t −→ u1 and t −→ u2, then u1 = u2.

Proof. By a straightforward inspection of the reduction rules and definitions of contexts.

4.4 Metatheory

I now present the metatheoretic properties of CC<:□. For the most part, they are exactly analo-

gous to the properties of SCC. The latter is chronologically younger: it is a variant of CC<:□

without universal type polymorphism and boxes. The proofs for all the lemmas and theorems

stated in this section are provided in an appendix. The Progress and Preservation Theorems

and the Capture Prediction Lemma for the calculus were also mechanized by Fourment and

Xu [2023].

58

4.4 Metatheory

As usual for the systems in this dissertation, the metatheory of CC<:□ follows the Barendregt

convention: we only consider typing contexts where all variables are unique, i.e., for all

contexts of the form Γ, x : T we have x ̸∈ dom(Γ).

Figure 4.4 shows the definition of matching contexts (identical to the one in SCC).

Γ ⊢ v : T Γ, x : T ⊢ σ∼∆
Γ ⊢ letx = v inσ∼ x : T,∆

Γ ⊢ [] ∼ ·

Figure 4.4: Matching environment Γ ⊢ σ∼∆

Recall that having Γ ⊢ σ∼∆ lets us know that σ is well-typed in Γ if we use ∆ as the types of

the bindings. The four lemmas relating the store and evaluation contexts to typing hold in

CC<:□ just as they did in SCC.

Definition 4.1 (Evaluation Context Typing). Evaluation context η can be typed as U ⇒ T in Γ,

written Γ⊢ η : U ⇒ T , iff for all t such that Γ⊢ t : U we have Γ⊢ η[t] : T .

Lemma 4.1 (Evaluation Context Typing Inversion). Γ ⊢ η[s] : T implies that for some U we

have Γ⊢ η : U ⇒ T and Γ⊢ s : U .

Lemma 4.2 (Evaluation Context Reification). If both Γ ⊢ η : U ⇒ T and Γ ⊢ s : U , then

Γ ⊢ η[s] : T .

Lemma 4.3 (Store Context Typing Inversion). Γ ⊢ σ[t] : T implies that for some ∆ we have

Γ ⊢ σ∼∆ and Γ,∆ ⊢ t : T .

Lemma 4.4 (Store Context Reification). If both Γ,∆ ⊢ t : T and Γ ⊢ σ∼∆, then Γ ⊢ σ[t] : T .

The Preservation and Progress Theorems are stated exactly the same as for SCC. Compared to

the System F<: theorems, the ones presented here have adjustments only to account for MNF.

Theorem 4.1 (Preservation). If we have Γ ⊢ σ∼∆ and Γ,∆ ⊢ t : T , thenσ[t] −→σ[t ′] implies

that Γ,∆ ⊢ t ′ : T .

Definition 4.2 (Proper Configuration). A term form σ[t] is a proper configuration if t is not of

the form letx = v in t ′.

Theorem 4.2 (Progress). If ⊢ σ[t] : T and σ[t] is a proper configuration, then either t is an

answer a, or σ[t] −→σ[t ′] for some t ′.

Capture sets and captured variables

I now revisit the lemmas relating the variables of terms to the capture sets assigned to terms

by typing.

For fully evaluated terms (of the form σ[a]), their captured variables are the most precise

capture set they can be assigned. The following lemma states this formally.

59

Chapter 4. Boxing Capabilities: CC<:□

Lemma 4.5 (Capture Prediction for Answers). If Γ ⊢ σ[a] : S ∧C , then Γ ⊢ cv(σ[a]) <: C .

In contrast to SCC, this lemma uses cv and not fv, to account for CC<:□ featuring boxes.

Just as for SCC, this lemma can be extended to apply to unreduced terms σ[t]. Recall that

such terms can mention and use capabilities which are not reflected in the final capture set at

all, since capture sets assigned to terms describe the capabilities captured by the value the

term reduces to. Once again, this is formally expressed by the following property..

Lemma 4.6 (Capture Prediction for Terms). Let ⊢ σ ∼ ∆ and ∆ ⊢ t : S ∧C . Then σ[t] −→∗

σ[σ′[a]] implies that ∆ ⊢ cv(σ′[a]) <: C .

4.4.1 Predicting Used Capabilities

In this section, I develop an additional correctness criterion for CC<:□: a theorem that uses

capture sets to predict what capabilities may be used during the reduction of a term. Since

the ability to perform effects is mediated by capabilities in capability-safe systems, predicting

what capabilities may be used by terms gives a formal basis for reasoning about the authority

of programs to perform side-effectful operations [Miller 2006; Drossopoulou et al. 2016]. As

I will discuss later, this theorem is also an important correctness criterion for boxing. It is

much less interesting in a system without boxing, explaining its absence from metatheories of

systems presented in previous chaptes.

If we want to reason about what capabilities are used, we need to have a concept of primitive

capabilities which must be tracked, not unlike how STLC needs base types to make its cor-

rectness theorem non-vacuous [Pierce 2002]. While object capabilities come in many forms,

for our current purposes it suffices to consider capabilities that exist for the entire duration

of the program, such as a capability to access the filesystem or the standard output. Within

core CC<:□, we can simply designate an outer fragment of the store as the platform context Ψ,

which introduces well-behaved primitive capabilities:4

Ψ ::= [] | letx = v inΨ if fv(v) = {}

The operational semantics of the capabilities in Ψ are defined by the values v . The values

need to be closed, since otherwise the capabilities would depend on other capabilities and

would not be primitive. Since Ψ binds capabilities, their capture set should be {cap}:

Definition (Well-typed program). A term Ψ[t] is a well-typed program if we have ∆⊢ t : T for

some ∆ such that ⊢Ψ∼∆ and for all x ∈∆ there exists a shape type S such that x : S ∧{cap} ∈∆.

It is now possible to state an intermediate lemma necessary to proving the desired correctness

criterion:
4This is another advantage of the MNF “restriction”. Since variables bound in the surrounding store are never

substituted and a function applied to such a variable will reduce, we can faithfully model capabilities as such
variables without having to introduce labels as a separate concept, as we had to do in CF<: (Section 3.3).

60

4.4 Metatheory

Lemma 4.7 (Program authority preservation). Let Ψ[t] −→Ψ[t ′], where Ψ[t] is a well-typed

program. Then cv(t ′) is a subset of cv(t).

I will now formally state what capabilities are used during evaluation. Since Ψ only binds

abstractions, it makes sense to say a capability x is used if during evaluation we reduced an

application form.

Definition (Used capabilities).

used(t1 −→ t2 −→ ·· · −→ tn) ≜ used(t1 −→ t2)∪used(t2 −→ ·· · −→ tn)

used(σ[η[x y]] −→σ[t]) ≜ {x}

used(σ[η[x [S]]] −→σ[t]) ≜ {x}

used(t1 −→ t2) ≜ {} (otherwise)

The last case applies to rules (OPEN), (RENAME), (LIFT).

All the definitions needed to state the correctness theorem are now in place.

Theorem 4.3 (Used capability prediction). Let Ψ[t] −→∗Ψ[t ′], where Ψ[t] is a well-typed

program. Then the primitive capabilities used during the reduction are a subset of the authority

of t :

{ x | x ∈ used(Ψ[t] −→∗Ψ[t ′]), x ∈ dom(Ψ) } ⊆ cv(t)

4.4.2 Correctness of Boxing

Both Lemma 4.7 and Theorem 4.3 would be trivially true if cv(t) was just the free variables of

t , since reduction typically does not add new free variables to a term. However, boxes allow

preventing some captured free variables from appearing in capture sets. For instance, if we

first box x and then pass it as an argument to f , the overall cv will not mention x:

cv(let y =□x in f y) = { f }

Given this behavior, what is the correctness criterion for how we type box and unbox forms?

Intuitively, it should not be possible to “smuggle in” a capability via boxes: a term’s capabilities

should all be accounted for. By the Progress Theorem and a straightforward induction, we can

prove that the cv of a term which boxes and immediately unboxes a capability accounts for

the unboxed capability:

Proposition 4.5. Let ⊢σ∼∆ and t = (let y =□x inC ⊸y) such that we have ∆⊢ η[t] : T for

some η and T . Then cv(t) =C and we also have:

∆⊢ {x} <: C

Speaking more generally, the fundamental function of boxes is that they allow temporarily

61

Chapter 4. Boxing Capabilities: CC<:□

preventing a captured free variable from affecting the cv of a term. The capability inside the

box can still be used via the unbox form C ⊸x, but only at the cost of adding C , the “key” used

to open the box, to the cv of the term. The correctness criterion for box and unbox forms is

that the keys used to open boxes should account for the capabilities inside the box: a term

should only be able to use capabilities that are accounted for by its cv, just as Lemma 4.7 and

Theorem 4.3 show.

There is another aspect of boxing explained by these theorems: boxes can later be opened

with unbox forms, shifting where capture sets appear. As an example, consider the following

two lambdas, both of which may use fs (where Proc≜∀(x : Unit)Unit):

fs : Fs∧{cap} ⊢λ
(

f : Proc∧{fs}
)

f () : ∀(f : Proc∧{fs})Unit
fs : Fs∧{cap} ⊢λ

(
f : □Proc∧{fs}

)
letg = {fs} ⊸f ing () : (∀(f : □Proc∧{fs})Unit)∧{fs}

Figure 4.5: An example of boxes shifting what capture sets are charged with capabilities.

The first lambda’s argument is a capability: a closure capturing fs. The lambda can invoke this

closure without affecting its capture set. Meanwhile, the argument of the second lambda is

pure: a box containing a closure capturing fs. The second lambda can still invoke its argument,

but only after unboxing it, which charges its capture set with the fs capability.

Understanding that capture sets describe the authority of terms explains why it is sound

for boxes to shift a capability from one capture set to another. To illustrate, let Γ bind the

first closure from Figure 4.5 as f1 : ∀(g : Proc∧ {fs})Unit and the second closure as f2 : (∀(g :

□Proc∧{fs})Unit)∧{fs} and also bind an fs-capturing procedure as p : Proc∧{fs}. Calling either

f1 or f2 can use fs, which is reflected by cv even if the capture sets of f1 and f2 are different.

In the first case, we have Γ⊢ cv(f1 p) <: {p} <: {fs}: we can elide f1 from the capture set, but

afterwards the smallest set we can widen to is {fs}. In the second case, we have Γ⊢ cv(letp ′ =
□p in f2 p ′) = { f2} <: {fs}: p is absent from the cv, but the smallest capture set to which we can

widen { f2} is still {fs}. We correctly predict the authority of both terms.

When I refer to untracked closures, such as f : (∀(x : Unit)Unit)∧{}, as pure, I am also indirectly

using the notion that a term’s cv reflects its authority. What I mean is that such closures cannot

be used to cause any effects on their own. Formally, when we reduce f () to [x := ()]t , based on

(ABS) we must have cv([x := ()]t) = {}, i.e., the result is a term that cannot use any capabilities.

4.5 Examples

During the collaboration we have implemented a type checker for CC<:□ as an extension

of the Scala 3 compiler, to enable experimentation with larger code examples. Notably, the

extension infers which types must be boxed, and automatically generates boxing and unboxing

operations when values are passed to and returned from instantiated generic datatypes, so

62

4.5 Examples

none of these technical details appear in the actual user-written Scala code. The presented

implementation was developed almost entirely by Martin Odersky, but it and the examples

typechecked with it are a significant part of the argument for the practicality of CC<:□ as

a formalism and Capture Tracking as an approach. Hence, I now present examples which

demonstrate the usability of the implementation.

4.5.1 Church-Encoded Lists

In this section, I remain close to the core calculus by encoding lists using only functions; here,

I still show the boxed types and boxing and unboxing operations that the compiler infers in

gray, even though they are not in the source code.

Using the Scala prototype implementation of CC<:□, the Böhm-Berarducci encoding [Böhm

and Berarducci 1985] of a linked list data structure can be implemented and typed as follows.

Recall from the analogous CF<: example that in this encoding a list is represented by its right

fold function.

type Op[T <: □ Any^, C <: □ Any^] =

(v: T) => (s: C) => C

type List[T <: □ Any^] =

[C <: □ Any^] -> (op: Op[T, C]) ->{op} (s: C) -> C

def nil[T <: □ Any^]: List[T] =

[C <: □ Any^] =>

(op: Op[T, C]) => (s: C) => s

def cons[T <: □ Any^](hd: T, tl: List[T]): List[T] =

[C <: □ Any^] =>

(op: Op[T, C]) => (s: C) => op(hd)(tl[C](op)(s))

A list inherently captures any capabilities that may be captured by its elements. Therefore,

naively, one may expect the capture set of the list to include the capture set of the type T of its

elements. However, boxing and unboxing enables eliding the capture set of the elements from

the capture set of the containing list; something which was not the case in CF<: (Section 3.3.1).

When constructing a list using cons, the elements must be boxed:

cons(□ 1, cons(□ 2, cons(□ 3, nil)))

A map function over the list can be implemented and typed as follows:

The mapped function f may capture any capabilities, as documented by the capture set

{cap} in its type. However, this does not affect the type of map or its result type List[B],

since the mapping is strict, so the resulting list does not capture any capabilities captured by

63

Chapter 4. Boxing Capabilities: CC<:□

f. If a value returned by the function f were to capture capabilities, this would be reflected in

its type, the concrete type substituted for the type variable B, and would therefore be reflected

in the concrete instantiation of the result type List[B] of map .

4.5.2 Stack Allocation

Automatic memory management using a garbage collector is convenient and prevents many

errors, but it can impose significant performance overheads in programs that need to allocate

large numbers of short-lived objects. If we can bound the lifetimes of some objects to coincide

with a static scope, it is much cheaper5 to allocate those objects on a stack as follows.6

class Pooled

val stack = mutable.ArrayBuffer[Pooled]()

var nextFree = 0

def withFreshPooled[T](op: Pooled => T): T =

if nextFree >= stack.size then stack.append(new Pooled)

val pooled = stack(nextFree)

nextFree = nextFree + 1

val ret = op(pooled)

nextFree = nextFree - 1

ret

The withFreshPooled method calls the provided function op with a freshly stack-allocated

instance of class Pooled. It works as follows. The stack maintains a pool of already allocated

instances of Pooled. The nextFree variable records the offset of the first element of stack

that is available to reuse; elements before it are in use. The withFreshPooled method first

checks whether the stack has any available instances; if not, it adds one to the stack. Then it

increments nextFree to mark the first available instance as used, calls op with the instance,

and decrements nextFree to mark the instance as freed. In the fast path, allocating and

freeing an instance of Pooled is reduced to just incrementing and decrementing the integer

nextFree.

However, this mechanism fails if the instance of Pooled outlives the execution of op, if op

captures it in its result. Then the captured instance may still be accessed while at the same

time also being reused by later executions of op. For example, the following invocation of

withFreshPooled returns a closure that accesses the Pooled instance when it is invoked on

the second line, after the Pooled instance has been freed.

5Remark that it sometimes makes sense to run a JVM without garbage collection: https://openjdk.org/jeps/318.
6For simplicity, this example is neither thread nor exception safe.

64

https://openjdk.org/jeps/318

4.5 Examples

val pooledClosure =

withFreshPooled { pooled =>

() => pooled.toString

}

pooledClosure ()

Using capture sets, we can prevent such captures and ensure the safety of stack allocation just

by marking the Pooled instance as tracked.

def withFreshPooled[T](op: Pooled^ => T): T =

Now the pooled instance can be captured only in values whose capture set accounts for

{pooled}. The type variable T cannot be instantiated with such a capture set because pooled

is not in scope outside of withFreshPooled, so only cap would account for {pooled}, but

we disallowed instantiating a type variable with {cap}. Having withFreshPooled defined

as in the preceding example, the pooledClosure example is correctly rejected, while the

following safe example is allowed.

withFreshPooled(pooled => pooled.toString)

4.5.3 Collections

In the following examples I show that a typing discipline based on CC<:□ can be lightweight

enough to make capture checking of operations on standard collection types practical. This is

important, since such operations are the backbone of many programs. All examples compile

with the current capture checking prototype [Scala 2022b].

We contrast the APIs of common operations on Scala’s standard collection types List and

Iterator when capture sets are taken into account. Both APIs are expressed as Scala 3

extension methods [Odersky and Martres 2020] over their first parameter. First, I present the

List API.

extension [A](xs: List[A])

def apply(n: Int): A

def foldLeft[B](z: B)(op: (B, A) => B): B

def foldRight[B](z: B)(op: (A, B) => B): B

def foreach(f: A => Unit): Unit

def iterator: Iterator[A]

def drop(n: Int): List[A]

def map[B](f: A => B): List[B]

def flatMap[B](f: A => IterableOnce[B]^): List[B]

def ++[B >: A](xs: IterableOnce[B]^): List[B]

Notably, these methods have almost exactly the same signatures as their versions in the

65

Chapter 4. Boxing Capabilities: CC<:□

standard Scala collections library. The only differences concern the arguments to flatMap

and ++ which now admit an IterableOnce argument with an arbitrary capture set. The type

IterableOnce[B]^ makes a subtle distinction: this collection may perform computation

to produce elements of type B, and it may have captured capabilities to perform this computa-

tion as denoted by the “^”. All these capabilities will have been used (and therefore discarded)

by the time the resulting List[B] is produced. Of course, we could have left out the trailing

“^”s, but this would have needlessly restricted the argument to non-capturing collections.

Contrast this with some of the same methods for iterators:

extension [A](it: Iterator[A]^{it})

def apply(n: Int): A

def foldLeft[B](z: B)(op: (B, A) => B): B

def foldRight[B](z: B)(op: (A, B) => B): B

def foreach(f: A => Unit): Unit

def drop(n: Int): Iterator[A]^{it}

def map[B](f: A => B): Iterator[B]^{it, f}

def flatMap[B](f: A => IterableOnce[B]^): Iterator[B]^{it, f}

def ++[B >: A](xs: IterableOnce[B]^): Iterator[B]^{it, xs}

Here, methods apply, foldLeft, foldRight, foreach again have the same signatures as

in the current Scala standard library. But the remaining four operations need additional

capture annotations. Method drop on iterators returns the given iterator it after skipping n

elements. Consequently, its result has {it} as capture set. Methods map and flatMap lazily

map elements of the current iterator as the result is traversed. Consequently they retain both

it and f in their result capture set. Method ++ concatenates two iterators and therefore retains

both of them in its result capture set.

The examples attest to the practicality of capture checking. Method signatures are generally

concise. Higher-order methods over strict collections by and large keep the same types as

before. Capture annotations are only needed for capabilities that are retained in closures

and are executed on demand later, which matches the developer’s intuitive understanding of

reference patterns and signal information that is relevant in this context.

4.6 Why Boxes?

Boxed types and box/unbox operations are a key part of the calculus to make type abstraction

work. This might seem suprising. After all, as long as the capture set is not the root capture

set {cap}, one can always go from a capturing type to its boxed type and back by boxing and

unboxing operations. So in what sense is this more than administrative ceremony? The key

observation here is that an unbox operation C ⊸x charges the capture set of the environment

with the capture set C . If the unbox operation is part of a closure with body t then C will

contribute to the captured variables cv(t) of the body and therefore to the capture set of

66

4.6 Why Boxes?

the closure as a whole. In short, unbox operations propagate captures to enclosing closures

(whereas, dually, box operations suppress propagation).

To see why this matters, assume for the moment a system with type polymorphism but

without boxes, where type variables can range over capturing types but type variables are not

themselves tracked in capture sets. Then the following is possible:

val framework

: [X <: Any^] -> (x: X) -> (X -> Unit) -> Unit =

= [X <: Any^] => (x: X) => (plugin: X -> Unit) => plugin(x)

The framework function combines the two sides of an interaction, with an argument x and an

argument plugin acting on x. The interaction is generic over type variable X. Now instantiate

framework like this:

val c: File^{cap}

val inst

: (File^{c} -> Unit) -> Unit

= framework[File^{c}](c)

This looks suspicious since inst now has a pure type with empty capture set, yet invoking it

can access the c capability. Here is an example of such an access:

val writer

: File^{c} -> Unit

= (x: File^{c}) => x.write

inst(writer)

This invocation clearly executes an effect on the formal parameter x, which gets instantiated

with c. Yet both inst and writer have pure types with no retained capabilities. Note that

writer gets the necessary capability {c} from its argument, so the function itself does not

retain capabilities in its environment, which makes it pure. It is difficult to see how a system

along these lines could be sound. At the very least it would violate the Capture Prediction

Lemma (Lemma 4.6).

Boxing the bound of X and adding the required box/unbox operations rejects the unsound

instantiation. The definitions of framework and inst now become:

val framework

: [X <: □ Any^] -> (x: X) -> (X -> Unit) -> Unit =

= [X <: □ Any^] => (x: X) => (plugin: X -> Unit) => plugin(x)

val inst

: (□ File^{c} -> Unit) -> Unit

= framework[□ File^{c}](□ c)

67

Chapter 4. Boxing Capabilities: CC<:□

Now any attempt to invoke inst as before would lead to an error:

val writer

: (□ File^{c}) ->{c} Unit

= (x: File^{c}) => ({c} ◦− x).write

inst(writer) // error

Indeed, writer, the argument to inst, now has the type

(□ File^{c}) ->{c} Unit

because the unbox operation in the lambda’s body charges the closure with the capture set

{c}. Therefore, the argument is now incompatible with plugin’s formal parameter type

(□ File^{c}) -> Unit

which is a pure function type.

This example shows why one cannot simply drop boxes and keep everything else unchanged.

But one could also think of several other possibilities:

One alternative is to drop boxes, but keep the stratification of shape types and full types.

Type variables would still be full types but not shape types. Such a system would certainly be

simpler but it would also be too restrictive to be useful in practice. For instance, it would not

be possible to invoke a polymorphic constructor that creates a list of functions that capture

some capability.

In summary, a system with boxes turned out to lead to the best ergonomics of expression

among the alternatives we considered. The core property of boxes is that unboxing charges

the environment with the capture set of the unboxed type and thus allows to correctly recover

captured references in a box without having to propagate these captures into the types of

polymorphic type constructors. So in a sense, the conclusion is that one can always unbox (as

long as the capture set is not the universal one), but it does not come for free.

Xu and Odersky [2023] show that boxed types and boxing and unboxing operations can be

inferred. That paper presents an algorithmic type system that inserts boxed type constructors

around capturing type arguments and inserts box and unbox operations as needed in the

terms accessing values of these type arguments. As is typical, the algorithmic type system is

significantly more involved than the declarative system presented in this chapter.

One can also turn that around. If we have a sound system with type variables (for instance

by inserting implicit boxed types and box/unbox operation in the way our implementation

works), then it is possible to define box and unbox as library operations in the language, along

the following lines:

class Box[T](elem: T)

def box[T](x: T): Box[T] = new Box[T]

68

4.7 Scoped Capabilities

def unbox[T](x: Box[T]): T = x.elem

This construction demonstrates that in essence, boxes can be seen as a mechanism to obtain

sound polymorphism for capturing types. Once we have a such a system, the functionality of

source-boxes can also be obtained by defining a parametric class (or an equivalent Church-

encoding) with a constructor/destructor pair. That’s why the implementation does not need to

expose boxed types and primitive box and unbox operations in the source code: a construction

like the one above is enough to simulate this functionality.

4.7 Scoped Capabilities

In this section I present an extension to CC<:□ which illustrates how boxes can be used to

ensure scoping of capabilities, using the scheme discussed back in Section 2.1.5. Figure 4.6

shows the extensions to the static semantics. The extension is minimal: we add a boundary

form boundary[S] x ⇒ t , mirroring a Scala 3 feature [Scala 2022a]. The boundary form delimits

a scope that can be broken out of by using the break capability x : Break[S]; the form is

parameterised by a type argument S which can be inferred in the implementation. A boundary

is a more expressive version of a labeled block that can be returned from: it also allows

returning across closure and function boundaries since the break capability is a first-class

value that can be closed over and passed as an argument. The type system should disallow

invoking the capability once the boundary is left, since intuitively at that point there is no

scope to be broken out of. As I explained in Section 4.4.2, a variable x of boxed type can only

be opened via an unbox form C ⊸x such that C accounts for the capability in the box. The

plan is simple: we 1) ensure that all capabilities leaving the boundary scope are boxed and 2)

ensure that the scoped capability cannot be accounted for by any variable other than itself. In

this extension, the only way for a scoped capability to leak is by being directly returned from

its scope, so it suffices to require in rule (BOUNDARY) that the result of a boundary form is

pure. To illustrate, consider the following attempt to leak a scoped capability by returning a

closure (where Proc≜∀(y : Unit)Unit):

⊢ boundary[. . .] x ⇒ let f =λ
(
y : Unit

)
x () in□ f : □Proc∧{cap}

Since a boundary’s result must be pure, we have no choice but to box the closure. Since x is

not in scope outside of the boundary, the capture set under the box must be {cap}. Since no

typing context accounts for {cap}, the box cannot be opened anymore and we are safe.

In a fully featured programming language, there are other channels for scoped capabilities to

leak, e.g. via mutable state. With boxing, to make such channels sound it suffices to only allow

pure values to pass through them. For instance, if we want to store a capability in mutable

state, we need to box it; afterwards we can only use it in a typing context that accounts for the

capabilities under the box. In more complicated scenarios, a capability may return to its scope

after leaving it; such cases could occur, for instance, when we allow sending values between

69

Chapter 4. Boxing Capabilities: CC<:□

Syntax and definitions

Term t , s ::= boundary[S] x ⇒ t | . . .
Shape type S,R ::= Break[S] | . . .

cv(boundary[S] x ⇒ t) = cv(t) \ x

Subtyping

BREAK

Γ⊢ S2 <: S1

Γ⊢Break[S1] <: Break[S2]

Typing

BOUNDARY

Γ, x : Break[S]∧{cap} ⊢ t : S x ̸∈ fv(S)

Γ ⊢ boundary[S] x ⇒ t : S

INVOKE

Γ⊢ x : Break[S]∧{cap} Γ⊢ y : S

Γ⊢ x y : T

Figure 4.6: Scoped Capability Extensions to the static rules of System CC<:□

threads and when we allow effect-polymorphic effect handlers [Leijen 2014; Biernacki et al.

2020]. Boxing has been shown to be sound and behave as expected in the latter scenario: the

boxed capability can be unboxed once it is back in its scope, but not earlier [Brachthäuser et al.

2022]. Thus, while the extension we show is minimal, it presents all the formal foundations we

need for ensuring scoping of capabilities.

4.7.1 Dynamic Semantics of Scoped Capabilities

Figure 4.7 shows the extensions to the dynamic semantics of CC<:□. We add new evaluation-

time term forms; we explain them by inspecting the relevant evaluation rules. Rule (ENTER)

reduces a term of the formσ[η[boundary[S] x ⇒ t]] toσ[letx = lS inη[scopelS
t]]: entering

a boundary binds the break capability lS in the store and adds a scope form to the evaluation

context. The break capability is a label l annotated with the boundary’s return type, where a

label represents a boundary’s unique runtime identifier. The scope form scopelS
t is a marker

on the stack (formally represented the evaluation context), denoting where a boundary ends;

all scopes are annotated with their corresponding labels. When the break capability is invoked,

the term has the form σ[η1[scopelS
η2[x y]]] and the evaluation context is split by a scope

form into the part outside and inside the scope. Rule (BREAKOUT) reduces such terms to

70

4.7 Scoped Capabilities

Syntax and definitions

Label l ::= @123 | @456 | . . .
Value v, w ::= lS | . . .
Term t , s ::= scopelS

t | . . .
Captured Reference c ::= x | l
Capture Set C ::= {c}

cv(scopelS
t) = cv(t) cv(lS) = {l }

Subcapturing Base subcapturing rules use c instead of x.

SC-LABEL

Γ⊢ {l } <: {cap}

Typing

LABEL

Γ⊢ lS : Break[S]∧{l }

SCOPE

Γ⊢ t : S

Γ ⊢ scopelS
t : S

Reduction

σ[η[boundary[S] x ⇒ t]] −→ σ[letx = lS inη[scopelS
t]] if l fresh (ENTER)

σ[η1[scopelS
η2[x y]]] −→ σ[η1[y]] if σ(x) = lS (BREAKOUT)

σ[η[scopelS
a]] −→ σ[η[a]] (LEAVE)

where Eval context η ::= scopelS
[] | . . .

Figure 4.7: Operational semantics of CC<:□ extended with scoped capabilities.

σ[η1[y]], dropping the scope form together with the inner evaluation context. Once only an

answer remains under the scope, rule (LEAVE) reduces σ[η[scopelS
a]] to σ[η[a]]. Typing

ensures that after a boundary is left, its capability is never invoked; otherwise we could get

stuck terms since the scope form needed by (BREAK) would be absent from the evaluation

context.

71

Chapter 4. Boxing Capabilities: CC<:□

4.7.2 Metatheory

If we start evaluation from a term well-typed according to the static typing rules (one that

does not mention any labels or scope forms), the evaluation rules maintain an invariant: all

break capabilities are well-scoped, and all scope labels are unique; maintaining this invariant

is necessary to avoid getting stuck terms. We state this invariant formally and incorporate it

into the main correctness theorems.

For the purposes of our metatheory (including this invariant), we understand labels as prim-

itive capabilities provided by the “runtime” to the program; in particular, the cv of a closed

term may now mention labels, which we understand as the primitive capabilities a program

can access.

Definition (Captured variables of contexts). We extend cv to contexts by cv([]) = {}.

Definition (Proper program). A term is a proper program if it has the form σ[η[t]] s.t.:

• for all l such that l ∈ cv(σ[η[t]]):

– there exists a unique x such that σ(x) = lS for some S

– there exist unique η1 and η2 such that η= η1[scopelS
η2] for the same S

– for the same η1 we have l ̸∈ cv(η1)

• scope forms in σ[η[t]] only occur in η

Theorem 4.4 (Preservation). Let Γ ⊢ σ∼∆ and Γ,∆ ⊢ t : T , where σ[t] is a proper program.

Then σ[t] −→σ[t ′] implies that Γ,∆ ⊢ t ′ : T and that σ[t ′] is a proper program.

Theorem 4.5 (Progress). If ⊢ σ[t] : T andσ[t] is a proper program and a proper configuration,

then either t is an answer a or σ[t] −→σ[t ′] for some t ′.

In the base system, we needed Theorem 4.3 to demonstrate that boxes are typed correctly,

since unboxing a capability could never lead to a stuck term. In this extension, unboxing

an out-of-scope capability can lead to a stuck term, so we can demonstrate soundness of

the boxing rules in a more direct way, by showing the classical progress and preservation

theorems. In fact, Lemma 4.7 and Theorem 4.4 both employ an identical argument in the case

for rule (OPEN).

Predicting used capabilities

We can understand labels as the primitive capabilities a program may access. This makes the

situation more complicated than before, since primitive capabilities can now be created and

dropped. This is entirely expected when taking the object capability perspective. For example,

in Wyvern [Melicher et al. 2017] creating capabilities is a commonplace occurrence, since an

72

4.8 Conclusion

object with mutable state counts as a capability. In systems where file handles are capabilities,

a capability is created or dropped every time we open or close a file handle.

This means that when reasoning about what capabilities are used, we need to consider what

capabilities were created or dropped. To account for this, we reason about traces: sets of events

that occurred during evaluation.

Definition (Evaluation trace).

trace(t1 −→ t2 −→ ·· · −→ tn) ≜ trace(t1 −→ t2)∪ trace(t2 −→ ·· · −→ tn)

trace(σ[η[x y]] −→ s) ≜ {use(l)} if σ(x) = lS

trace(σ[η[boundary[S] x ⇒ t]] −→ s) ≜ {create(l)} if s =σ′[η[scopelS
t]]

trace(σ[η[scopelS
a]] −→ s) ≜ {drop(l)}

trace(t1 −→ t2) ≜ {} otherwise

We need three auxilliary functions.

Definition (Used, created, and gained capabilities).

used(t −→∗ s) = {x | use(x) ∈ trace(t −→∗ s)}

created(t −→∗ s) = {x | create(x) ∈ trace(t −→∗ s)}

gained(t −→∗ s) = {x | create(x) ∈ trace(t −→∗ s),drop(x) ∉ trace(t −→∗ s)}

The Program Authority Preservation Lemma is now stated slightly differently. First, we only

consider break capabilities to be primitive. Second, programs can gain authority over new

capabilities, but only by creating them and only until the capabilities are dropped. Typing

already ensures that all break capabilities are tracked and labels are always “bound”, so it is

now unnecessary to separately define platform contexts and well-typed programs.

Lemma 4.8 (Program authority preservation). Let t −→ t ′, where ⊢ t : T . Then:

cv(t ′) ⊆ cv(t)∪gained(t −→ t ′)

Finally, we reformulate the Used Capability Prediction Theorem.

Theorem 4.6 (Used Capability Prediction). Let t −→∗ t ′, where ⊢ t : T . Then the primitive

capabilities used during the evaluation are within the authority of t :

used(t −→∗ t ′) ⊆ cv(t)∪created(t −→∗ t ′)

4.8 Conclusion

CC<:□ is a formal system for tracking captured references of values. Tracked references are

restricted to capabilities, where capabilities are references bootstrapped from other capabili-

73

Chapter 4. Boxing Capabilities: CC<:□

ties, starting with the universal capability. Implementing this simple principle then naturally

suggests a chain of design decisions.

1. Because capabilities are variables, every function must have its type annotated with its

free capability variables.

2. To manage the scoping of those free variables, function types must be dependently-

typed.

3. To prevent non-variable terms from occurring in types, the programming language is

formulated in monadic normal form.

4. Because of type dependency, the let-bindings of MNF have to satisfy the avoidance

property, to prevent out-of-scope variables from occurring in types.

5. To make avoidance possible, the language needs a rich notion of subtyping on the

capture sets.

6. Because the capture sets represent object capabilities, the subcapture relation cannot

just be the subset relation on sets of variables – it also has to take into account the types

of the variables, since the variables may be bound to values which themselves capture

capabilities.

7. To keep the size of the capture sets from ballooning out of control, the paper introduces

a box connective with box and unbox rules to control when free variables are counted as

visible.

We showed that the resulting system can be used as the basis for lightweight polymorphic

effect checking, without the need for effect quantifiers. We also identified three key principles

that keep notational overhead for capture tracking low:

– Variables are tracked only if their types have non-empty capture sets. In practice the

majority of variables are untracked and thus do not need to be mentioned at all.

– Subcapturing, subtyping and subsumption mean that more detailed capture sets can be

subsumed by coarser ones.

– Boxed types stop propagation of capture information in enclosing types which avoids

repetition in capture annotations to a large degree.

Our experience so far indicates that the presented calculus is simple and expressive enough to

be used as a basis for more advanced effect and resource checking systems and their practical

implementations.

74

5 Polymorphism and Capture Tracking

In the previous two chapters we have seen CF<: and CC<:□ two systems which take different

approaches to extending SCC with universal type polymorphism. CF<: allows type variables

which range over capturing types, while CC<:□ restricts type variables to ranging over pure

types and introduces boxed types, which allow capture sets to “tunnel” through seemingly

pure types. Ultimately, it was CC<:□ which was chosen as the formal basis for the experimental

Capture Tracking implementation in Scala 3, since it has distinct advantages when it comes to

commonplace types assigned to data structures.

Still, Capture Tracking is an ongoing research project larger than this thesis, which is focused

on the formal foundations behind the approach. The key goal of Capture Tracking is to find

a way of tracking capabilities in types which is sufficiently ergonomic to make a real impact

on how programs are written in the industry. In pursuit of this goal, we have developed

more than 7 different versions of the base formal system, and we have built (and rebuilt)

diverse extensions based on subtly different versions of the formalism. The real test Capture

Tracking has to pass is actually being adopted in the industry, by people who genuinely find

the approach intuitive. The only way to check if it passes this test is to make an informed guess

about what features make the approach intuitive, implement a system based on these features,

and validate the guess empirically, by using the implementation and promoting its use in the

industry. It may yet turn out that in order for the approach to be sufficiently practical, some of

the restrictions imposed by the CC<:□ approach will need to be lifted.

With this in mind, the rest of this chapter is organized as follows. First I discuss three different

classes of definitions where the CF<: approach to universal type polymorphism has advantages

compared to CC<:□; these classes may turn out to be significant enough to warrant extensions

to the implementation. Afterwards, I conclude by proposing a way to integrate the two

approaches in a single system.

75

Chapter 5. Polymorphism and Capture Tracking

5.1 Deferred Closures

The defer statement is a facility in the Go language which allows deferring code to be executed

at the end of the current function; it is the idiomatic way to “clean up” the local state, for

instance by closing file handles. A hypothetical extension to Scala which adds the defer

statement may look as follows.

def foo() = {

val file1 = new File(. . .)

defer { file1.close() }

val file2 = new File(. . .)

defer { file2.close() }

// Both `file1 ` and `file2 ` will be closed when `foo ` exits.

. . .

}

Compared to “manually” closing the file handles at the end of the function, the defer

statement makes it easier to do the right thing in the presence of exceptions; in particular,

both deferred blocks will execute no matter if one of them aborts or not. Compared to the

Java try-with-resources pattern, the defer statement avoids unnecessary, unwieldy levels of

nesting.

The defer statement, like most facilities dealing with control flow, can be implemented

using an effect handler. The idea is to introduce a lexical scope with a capability that allows

deferring closures until the scope’s end; since the closures are executed for their side effects,

their shape type can simply be Unit → Unit. Their capture set, however, is a more intricate

matter. The deferred closures clearly need to be impure, since (once again) they are invoked

for side effects. However, they cannot simply be allowed to capture arbitrary capabilities, since

those capabilities may no longer be in scope when the closure is invoked. For an example,

consider the following snippet, making use of our hypothetical effect-handler-based defer .

def foo() = withDefer { h =>

try {

h.defer { throw new Exception () }

} catch {

case _: Exception => . . .

}

}

We first introduce handler for defer with the withDefer function and then enter a try

block which allows throwing Exception-s. Inside the try block, we defer a block that

throws an Exception . The deferred block will be executed when we exit the try block, at

which point it will throw an unhandled exception.

76

5.1 Deferred Closures

What is it that really went wrong? The deferred block was allowed to capture a scoped capability.

Deferred blocks should only be able to capture capabilities which are guaranteed to be in

scope when the blocks are executed, i.e., capabilities which outlive the defer scope. We can

understand the problem by using the effect handler CF<: extension to formally represent

withDefer with the following term.

withDefer≜Λ[X <: ⊤∧{cap}]Λ[R <: ⊤∧{cap}]

λ(thunk : (∀(defer : Eff[(Unit→Unit)∧{X },Unit]∧{cap})R)∧{cap})

handlex : Eff[(Unit→Unit)∧{X },Unit] =
λ

(
f k

)
letz = k () in (f (); z)

in thunk x

First, let’s take a close look at what this term does. The thunk argument to withDefer is the

scope within which we can defer closures. The scope returns a value of arbitrary type R

and receives defer as an argument: a capability of type Eff[(Unit → Unit) ∧ {X },Unit] ∧ {cap}.

Invoking this capability with a closure of type (Unit→Unit)∧{X } defers the closure until the

end of withDefer. The capability is backed by a straightforward handler form λ
(

f k
)

letz =
k () in (f (); z). When the handler is invoked, it first runs k, the continuation of the defer scope,

then it runs f , the deferred closure, and finally it returns the result of running k.

What is really interesting about this definition is that the type of the deferred closure, (Unit→
Unit) ∧ {X }, disallows it from capturing a local capability! The type which would enable it

do so would instead be (Unit→Unit)∧{cap}, but this type is, as expected, disallowed by rule

(HANDLE), since neither type argument to Eff can capture cap. Instead, the capture set of the

closure is only allowed to be {X }, where X is a type parameter of withDefer. Recall that the

CF<: (T-APP) rule prevents type variables from being instantiated with a type capturing cap. As

I have argued in Section 2.1.5, this restriction ensures that all the capabilities captured by the

instantiation of X must be in scope and available for the entire duration of withDefer. Note

also that X only appears in capture position, effectively making it a capture set parameter. To

sum up, the base rules of CF<: allow withDefer to be parameterized with a set of capabilities

which are guaranteed to outlive it!

To conclude, the defer statement is a particular example of a facility which takes a closure

and runs it at a later point, possibly in an outer lexical scope. Another example of such a facility

is scheduling closures to run at an unspecified point. Properly expressing such facilities inside

the language is possible only if the type system allows abstracting over a set of capabilities

which are guaranteed to be in scope while the facility is accessible, and CF<: impure type

variables are one way to enable doing so.

77

Chapter 5. Polymorphism and Capture Tracking

5.2 Abstracting Over Arguments

Next, I present an issue that was discovered when experimenting with the implementation.

The issue revolves around PartialFunction , a special type from the Scala standard library

which can be described as a Function that knows where it is defined. PartialFunction

is a trait defined by two abstract methods, apply and isDefinedAt .

trait PartialFunction[-A, +B] extends (A -> B):

def apply(arg: A): B

def isDefinedAt(arg: A): Boolean

The Scala compiler has support for PartialFunction literals: the following two definitions

are equivalent, i.e., head1 is elaborated into head2 .

val head1: PartialFunction[List[Int], Int] =

{ case i :: is => i }

val head2 =

class headImpl extends PartialFunction[List[Int], Int]:

def apply(arg: List[Int]): Int =

case i :: is => i

def isDefinedAt(arg: List[Int]): Boolean =

case i :: is => true

case _ => false

new headImpl ()

Attempt to use PartialFunction-s together the Capture Tracking extension to Scala

will result in rather puzzling errors. One way to encounter such errors would be to de-

fine a PartialFunction which destructures a LazyList . Since a LazyList builds

itself lazily, it may capture capabilities which are necessary to calculate its elements, so our

PartialFunction should range over LazyList-s capturing arbitrary capabilities. Such

a definition might look as follows.

val headLL1: PartialFunction[LazyList[Int]^, Int] =

{ case n #:: ns => n }

However, the implementation will reject this snippet, informing us that type arguments (in

this particular example, LazyList[Int]^) cannot be instantiated with a type capturing

cap .

If we try to restrict ourselves to PartialFunction-s whose arguments have a concrete

capture set, we will still encounter issues. In the following example, we have a file f and we

78

5.2 Abstracting Over Arguments

intend to load all the lines from this file into a LazyList ; such a LazyList has to capture

f.

val f: File^ = . . .

def lines(f: File ^): LazyList[String]^{f} = . . .

val head: PartialFunction[LazyList[String]^{f}, String] =

{ case str #:: strs => str }

Even with this restriction in place, we will still get a compiler error.

To understand where the errors are coming from, we need to desugar the PartialFunction

literals into classes, and we need to make box and unbox operations explicit.

val file: File^ = . . .

val head2: PartialFunction[□ LazyList[String]^{f}, String]^{} =

class headImpl extends PartialFunction[

□ LazyList[String]^{f},

String

] {

def apply(arg: □ LazyList[String]^{f}) =

({f} ◦− arg) match {

case str #:: strs => str

}

def isDefinedAt(arg: □ LazyList[String]^{f}) =

({f} ◦− arg) match {

case str #:: strs => true

case _ => false

}

}

(new headImpl () :

PartialFunction[□ LazyList[String]^{f}, String]^{f})

Now we can see that the type argument to PartialFunction is (and must be) boxed, which

requires the bodies of apply and isDefinedAt to unbox the method arguments. Hence,

any instance of headImpl will be charged with the capture set {f}, making the definition of

head2 ill-typed due to a mismatch between the highlighted capture sets.

The issue can be concisely stated as follows: given a class C which abstracts over the type of

an argument, like PartialFunction does,1 instances of C receive unexpected capture sets,

ultimately due to CC<:□ requiring all capturing type arguments to be boxed. The issue simply

does not exist in CF<:, since its type variables are not boxed.

1Notably, the same issue is exhibited by all Single Abstract Method (SAM) types in Scala.

79

Chapter 5. Polymorphism and Capture Tracking

5.3 Mutable State

Finally, I present an issue which arises when working with mutable state.

When working with capture-polymorphic definitions using Capture Tracking, for the most part

we can rely simply on the dependently-typed nature of the approach. Doing so is sufficient

to express definitions such as a capture-polymorphic map and scales to expressing the Scala

collections API (Section 4.5.3).

However, we can encounter issues when working with definitions that abstract over mutable

state. As a formal illustration of these problems, consider the following term from the region

extension to CF<:.

fn≜Λ[A <: ⊤∧{cap}]Λ[B <: ⊤∧{cap}]

λ(x : Ref[Ref[B]∧{A}]∧{cap})λ(y : Ref[B]∧{A}) t

First, observe that fn can be applied to Ref-s whose contents have an arbitrary capture: it

could be a singleton capture set {c}, or it could contain multiple variables, e.g., {c1,c2}, if the

region of the inner Ref is not exactly known. Next, observe that t , the exact body of fn, is

intentionally opaque. The fn function could perform a number of operations on x and y . It

could write the contents of y to the contents of the inner cell of x, or the other way around,

and it could write y to x directly.

This sort of flexibility is clearly useful when working with mutable data, even if it might only

be necessary to express uncommon definitions. Between the CF<: and CC<:□ approaches to

type polymorphism, it is only supported by the former and not the latter. In particular, CC<:□

does not support “parametric capture polymorphism”: it is not possible to abstract over an

entire capture set by making it a parameter, like the CF<: version of fn does with A. CC<:□ does

support the following two alternative versions of fn.

fn1 ≜Λ[A <: ⊤]Λ[B <: □Ref[A]∧{cap}]

λ(x : Ref[B]∧{cap})λ(y : B) t

fn2 ≜Λ[B <: ⊤]

λ(r : ⊤∧{cap})λ(x : Ref[Ref[B]∧{r }]∧{cap})λ(y : Ref[B]∧{r }) t

However, both versions are less flexible than fn. In particular, fn1 is disallowed from reading

from and writing to y and the inner Ref of x because the bound of B is boxed, and fn2 can only

be applied when the capture of y and the contents of x is known to be a single capability.

While the term is specific to the particular CF<: extension, the general situation is not. Mutable

state cannot be allowed to capture cap , since doing so inherently allows accessing out-of-

scope capabilities (see Section 2.1.5). And while the reason why the inner Ref has a capture in

80

5.4 Conclusions

the first place is that Ref-s are allocated on Region-s in the CF<: extension, similar scenarios are

entirely possible if we define a class which has mutable state and needs to capture capabilities

to carry out some computation, for instance if the class computes the initial mutable state

lazily.

To conclude, being able to abstract over a capture set by giving it a name, i.e., parametric

capture polymorphism, appears useful when working with mutable state. CF<: gives us a

way of extending Capture Tracking with parametric capture polymorphism by re-using type

variable binders, without adding a new kind of binder to the language. Doing so is a natural

extension of supporting impure type variables, since such variables need to appear in capture

sets and at that point what we have is precisely parametric capture set polymorphism.

5.4 Conclusions

We have seen three classes of situations where the CF<: approach to type polymorphism has

advantages compared to CC<:□. However, we want to keep the ergonomic data structure types

afforded by CC<:□ type polymorphism.. So, what are we to do?

One potential solution would be to integrate both forms of type polymorphism in a single

system. Formally, there is nothing stopping us from doing so: we can have have a calculus

with two different type abstraction forms and two different kinds of type variables.

The remaining question is that of language design: how to expose those two forms of poly-

morphism to the users? I propose that a natural way to do so might be to tie them to variance

of type parameters. Observe that contravariant type parameters always range over types of

inputs, by their very definition. One of the basic assumptions underlying Capture Tracking is

that inputs are typically there to be used; this assumption is the basis of the argument that

capability-style effect polymorphism is more natural (see the introduction to Chapter 2). By

extension, the type variables which range over inputs should not prevent the inputs from

being used.

Strictly tying the two forms of polymorphism to variance of type parameters would solve the

problems with abstracting over argument types, but not the other two classes of problems we

discussed. To solve them, we need proper parametric capture set polymorphism. I propose

to allow explicitly specifying if a type parameter should be pure or impure, and to use the

parameter’s variance to select the default if the purity is unspecified. Doing so would solve

all the three classes of problems we have seen and would expose a lightweight syntax for

the common case where we want boxing covariant and invariant type parameters to enable

ergonomic types and non-boxing contravariant type parameters to allow using inputs typed

with a type parameter.

81

6 Gradual Compartmentalization

In the previous chapters we have seen a number of formal systems culminating in CC<:□,

which provided the formal foundations for the prototype Scala implementation of Capture

Tracking. In this chapter my goal is to further argue for the practical applicability of Capture

Tracking as a technique. To this end, I present the results of a collaboration with Adrien Ghosn,

Clément Pit-Claudel, and Mathias Payer, which revolve around gradual compartmentaliza-

tion: an approach to incrementally compartmentalizing a preexisting codebase via object

capabilities tracked in types. The results are not yet published.

6.1 Introduction

Modern software development favors productivity over security. Application developers rely

on diverse, unverified libraries written by unknown authors and downloaded off the Internet in

order to extend their applications with basic functionality. In the extreme, modern application

development becomes merely “gluing libraries together”. This situation gave rise to supply

chain attacks, a very dangerous attack vector. Finding a bug in a popular library, compromising

a genuine one (e.g., by stealing its author’s credentials) or publishing obfuscated malicious

code can potentially grant access to hundreds of thousands of devices [Nikiforakis et al. 2012].

Modern software needs fine-grained compartmentalization, i.e., intra-process isolation. Ide-

ally, application developers should be able to enforce the Principle of Least Authority (or

Privilege) [Saltzer 1974; Melicher et al. 2017]: any software component’s access to program

and system resources should be limited to the minimum required for its correct operation.

Object capabilities are a particularly attractive approach to compartmentalization with a

long history of research [Dennis and Van Horn 1966; Morris 1973; Rees 1996; Miller 2006;

Melicher 2020]. The ocap discipline views all code in terms of objects and specifies that access

to program and system resources is mediated via special objects: capabilities. Capabilities

originate from the program’s entrypoint; objects can only access a capability they received

from another object, i.e., there is no ambient authority in the system. Packages are also viewed

83

Chapter 6. Gradual Compartmentalization

as objects, called modules [Melicher et al. 2017]. Since a module can only use capabilities it

received from other objects, an application can control the authority of its components by

controlling how capabilities are distributed.

Despite their clear advantages, ocap languages (e.g., E [Miller 2006], Newspeak [Bracha et al.

2010] or Wyvern [Melicher et al. 2017]) are not widely used in the industry. Arguably, this is

precisely because they assume an application’s code to have no ambient authority: existing

applications were not written under such an assumption. If their developers want to reap the

benefits of ocap, they face an extensive rewrite of their entire codebase, including the very

libraries they introduced to the codebase to reduce their own labor.

In this chapter, I develop an approach for compartmentalizing an application which allows a

gradual migration to object capabilities. Code at various levels of migration can coexist within

a single application; this not only allows introducing the object capability discipline to the

application component by component, but also allows extending an application with non-

ocap components while still maintaining our desired security guarantees. I take inspiration

from the idea of dynamically-enforced types from the gradual typing literature [Siek and Taha

2006; Wadler and Findler 2009; Wadler 2015], which allows values (equivalently, objects) to be

dynamically typed, i.e., they can be used for any operation at the cost of potential runtime

errors. The concept of dynamic enforcement is applied specifically to the authority of objects

and not their entire types.

The key problem the approach solves is that until recently, it was unclear how to integrate

existing non-ocap code with ocap code in a single application and still allow its components

to be compartmentalized. The object capability discipline assumes no part of the system has

ambient authority, while existing non-ocap code was written under no such assumption and

may access arbitrary program and system resources. As a schematic example, in currently

existing code a Log4J logger can simply be instantiated as:

(new log4j.Logger ()). info("msg")

In contrast, an ocap version of the Logger class would need to be refactored to explicitly

take the capabilities to access the filesystem (and the network [Chowdhury et al. 2022]) as

arguments:

(new log4j.Logger(fs, net)). info("msg")

Ocap and non-ocap code seem to be fundamentally at odds. I alluded that mediating between

them seems to inherently require dynamically enforcing the authority of non-ocap code. Such

enforcement must be done efficiently enough to make the approach feasible in practice.

Recently, Enclosures [Ghosn et al. 2021] were proposed as an approach to compartmentalizing

untrusted code which provides security guarantees even for foreign binaries thanks to relying

on hardware support. An Enclosure restricts what program and system resources can be

accessed in a given lexical scope; its restriction is expressed in terms of packages (and the

84

6.2 Background and Motivation

memory associated with them) and system calls. Our key insight is that we can understand

system calls as though they were method calls to a capability captured by the surrounding code,

in addition to understanding mutable objects as capabilities. Doing so allows understanding

existing non-ocap code as ocap code which was already initialized with some capabilities, and

allows restricting the authority of such code at runtime with an Enclosure-like mechanism.

Furthermore, the type system is extended to verify that all foreign code had its authority

restricted, either via dynamic checks or statically, with the type system itself. The extension

uses Capture Tracking [Boruch-Gruszecki et al. 2023], a recently-published approach which

augments types with capture sets, describing what capabilities each object has captured and

therefore its authority. A particular advantage of Capture Tracking is its low annotation burden.

Tracking the authority of objects in their types adds an intermediate step when migrating

an application’s component to object capabilities: the type system can be used to statically

restrict the component’s authority, without refactoring the component to take its desired

capabilities as arguments.

Our contributions are as follows:

• Gradual compartmentalization, a hybrid approach which has the advantages of both

dynamically-enforced and statically-verified compartmentalization and allows a gradual

migration from one approach to the other.

• We discuss Gradient, a proof-of-concept gradual compartmentalization extension to

the Scala language, in order to illustrate the key principles of our approach.

• We show the GradCC system to demonstrate Capture Tracking can be used to track

authority of mutable objects even in presence of capture-unchecked terms.

• We validate that migrating existing Scala code to capture-checked, non-ocap Gradient

code is practical by migrating Scala’s standard XML library.

The rest of this section is organized as follows. First, I discuss additional background and

motivation behind the approach (Section 6.2). Next, I present Gradient (Section 6.3). Then, I

present the formal system (Section 6.4,Section 6.5) and finally I evaluate Gradient based on the

experience of migrating a real-world Scala library and I discuss the feasibility of implementing

Gradient (Section 6.6).

6.2 Background and Motivation

I distinguish and contrast between two salient ways of approaching compartmentalization:

dynamic enforcement and static verification.

Dynamically-enforced compartmentalization is widely adopted in the industry. Examples

include website sandboxing (e.g., Chromium tab isolation), containerization (e.g., Docker),

85

Chapter 6. Gradual Compartmentalization

systemd sandboxing, Linux application sandboxing (e.g., Snap, Flatpak), and mobile app

permissions.

Dynamic mechanisms often operate at a coarse granularity, such as memory pages and pro-

cesses. Compartmentalizing an existing application with such an approach is often challeng-

ing, requires heavy refactoring and incurs runtime costs. For instance, compartmentalizing an

untrusted library with a process-based approach requires re-designing the application to run

the untrusted code in a separate process and incurs the overhead of process switching and

inter-process communication.

An important benefit of such low-level mechanisms is allowing heterogenous software written

in any language, delivered as source code or as binaries. For instance, enclosures still provide

security guarantees even in the presence of calls to foreign code which may forge arbitrary

pointers.

Still, dynamic mechanisms naturally lead to runtime errors. Determining what policies to

implement with such an approach is a matter of costly trial and error, since most software

does not specify what permissions it needs. Overly broad policies weaken security; overly tight

policies may cause runtime errors and prohibit expected functionality. Tellingly, Linux distri-

butions do not agree on the systemd sandboxing restrictions placed on various services [Sand-

boxdb 2023] and the Java Security Manager was deprecated partly due to the “practically

insurmountable challenge” [Java 2021] of determining appropriate security policies.

Statically-verified compartmentalization can be significantly more ergonomic, especially if it

is integrated with a programming language. Such an approach inherently can assume code to

be homogenous. It can tightly integrate enforcement of security policies with existing language

constructs and types, dealing with objects rather than memory pages and system calls and

scoping the restrictions to code blocks rather than to entire libraries. Such a mechanism

can also statically verify if an application’s components obey their intended system access

restrictions, without incurring a performance cost and providing feedback quickly and reliably.

Such feedback enables rapid development of security-conscious software and improves its

maintainability: after any change, including a dependency update, security policies can be

statically verified.

Gradual compartmentalization is a hybrid approach which lets the users adopt the best

possible isolation strategy for each library:

1. Ocap code uses object capabilities as the principled compartmentalization mechanism.

2. Ocap code can interoperate with non-ocap code by leveraging Capture Tracking in order

to track the authority of objects in types.

3. When all else fails, an Enclosures-inspired runtime component can dynamically enforce

capability access restrictions, and Capture Tracking ensures the runtime component is

used.

86

6.3 Gradient

6.3 Gradient

The three key elements of gradual compartmentalization are object capabilities, tracking

capabilities in types, and runtime authority enforcement. I present and discuss them based

on Gradient, a proof-of-concept extension to the Scala programming language.

6.3.1 Object Capabilities

In Scala, similarly to most programming languages, ambient authority allows accessing system

functionality simply by importing and using the appropriate packages. The object capability

discipline, however, dictates that system functionality can be accessed only by calling methods

on capabilities. As a result, Gradient code is organized in class-like units called modules.1 Like

classes, modules have constructors, which may take arguments. If the code within a module

needs to use capabilities, the module needs to take such capabilities as constructor arguments.

(In all our examples, the modules retain their constructor arguments as private fields.) For

example, the following snippet shows an example Gradient program’s entrypoint:

module Main(fs: Fs^, net: Net^):

def main() =

val logger = new Logger(fs)

... // do useful work

The program defines the Main module with a main method. The module’s constructor takes

two capability arguments: fs and net . They implement the Fs and Net interfaces, respec-

tively, and are marked as capabilities by the hat ^ sign. The program starts by instantiating the

Main module with the appropriate capabilities and calling its main method.

The main method itself begins by instantiating the Logger module, passing it the fs capability

as an argument. The Logger module is defined as follows:

module Logger(fs: Fs^):

def info(msg: String): Unit = ... // log the message

Organizing the code into ocap modules has some major benefits. First, it facilitates inspecting

what system functionality may be accessed by an untrusted module. Gradient ensures that

there is only a limited number of ways a module can gain direct access to a preexisting2

capability; it can receive it as an argument (to a constructor or a method), receive it as a result

of a method, or read it out of mutable state. For instance, to convince ourselves that Logger

cannot access the network, we begin by checking that it does not receive a capability to do so

1Gradient modules are, if we disregard the gradual fragment, the same as Wyvern modules.
2Note that ocap allows objects, including modules, to create some capabilities out of nowhere. For instance,

mutable objects in Wyvern are capabilities, and they can be created without access to any capability. Likewise,
the extensions to CF<: and CC<:□ allow pure code which creates local effect capabilities. Perhaps one way
to characterise such capabilities is by saying that creating them does not grant any additional authority over
preexisting capabilities.

87

Chapter 6. Gradual Compartmentalization

as a constructor argument. By further inspecting its API, we see it cannot receive this capability

as a method argument either, and so it cannot access the network as desired.

Second, modules allow easily attenuating [Miller 2006] the authority gained through capa-

bilities. Since a capability is just an object, we can create a wrapper capability around it and

inspect every method call and its arguments to decide if it should be allowed; in a sense,

doing so injects bespoke filters between a capability and its calling context. For instance,

the following snippet schematically shows how Main can restrict Logger so that it can only

access files in the “/var/log” directory.

module Main(fs: Fs^, net: Net^):

def main() =

val wfs = new Fs:

def open(path: Path): FileHandle =

if path.isRootedIn("/var/log") then fs.open(path)

else throw IllegalArgumentException ()

val logger = new Logger(wfs)

... // do useful work

Interestingly, Logger itself is a capability that attenuates filesystem access granted by fs: it

allows accessing the filesystem only to perform limited logging-related operations.

Strictly observing ocap allows the program’s code to be naturally compartmentalized: security

policies can be expressed by controlling the capabilities received by a module and attenuating

their authority. For example, if the Log4j library [Chowdhury et al. 2022; Hiesgen et al. 2022] was

implemented as an ocap module, all program using it would know it may access the network,

since the Log4j module would require the net capability as an argument. Furthermore, if

the library initially never accessed the network and only tried to do so after a (potentially

malicious) update, programs attempting to use the new version of the library would not

compile until their code was intentionally modified to grant the library additional capabilities.

There is one remaining piece of the puzzle: mutable state. If two modules share mutable

state, they can communicate. They can exchange capabilities between each other, defeating

compartmentalization attempts. More subtly, they can exchange information to influence

their behaviour and make the recipient use their capabilities in a particular way, potentially

leading to issues such as a confused deputy attack [Hardy 1988]. Ocap code is inherently

more resistant to such attacks [Rajani et al. 2016]; in particular, ocap forbids global mutable

variables: two modules can only communicate through mutable state if they both share access

to the same mutable object. Gradient goes a step further and tracks all mutable objects in its

type system, making it easier to verify that two modules cannot communicate. To explain this,

I first discuss how Gradient employs Capture Tracking to track capabilities in types.

88

6.3 Gradient

6.3.2 Capture Tracking

Gradient depends on the experimental Scala implementation of Capture Tracking to track

capabilities in types; doing so facilitates reasoning about module compartmentalization.

Tracking capabilities

Capture Tracking makes capabilities visible in Gradient types, making it easier to verify if a

module can potentially gain access to a capability. Consider the following variant signature of

Logger :

module Logger(fs: Fs^):

def info(lvl: Level , msg: String): Unit

To verify that an instance of Logger cannot gain access to a capability other than fs, we need

to check it cannot receive it as a method argument. Normally, we would need to inspect the

implementations of all the parameter types (i.e., both Level and String in our example)

and verify that they cannot store a capability. Capture Tracking simplifies this, since it allows

we can instead inspect their capture sets alone. In our example, both lvl and msg are

untracked (their types have empty capture sets), meaning that Logger cannot receive a

capability reference as an argument.

In particular, note that since Gradient treats all mutable objects as capabilities, the above

signature also lets us know that both lvl and msg are deeply immutable, i.e., they are them-

selves immutable and do not grant access to (have not transitively captured) any mutable

object.

Borrow safety

In some cases we may want to restrict a module from retaining a capability. Consider the

following scenario:

module OCR():

def update_models(net: Net^): Unit =

... // download updated models

def ocr_pdf(stream: InputStream ^): String =

... // OCR the contents of the stream

module Main(fs: Fs^, net: Net^):

def main() =

val ocr = new OCR()

ocr.update_models(net)

... // do useful work involving OCR

89

Chapter 6. Gradual Compartmentalization

OCR , a module with code for Optical Character Recognition defines update_models , a

method for downloading an updated version of its internal models from the network. The

same module defines ocr_pdf , a method which OCRs a file. If it retained net after the call

to update_models it could exfiltrate private information from the files it OCRs.

Gradient uses Capture Tracking to statically rule out such problems and ensure borrow safety: a

capability can only be retrieved out of mutable state if it is derived from other, already available

capabilities. In the above example, OCR cannot store net in its own state and retrieve it later:

net is derived from cap and OCR did not (in fact, cannot) receive cap during its instantiation.

Note that some capabilities can be read from mutable state. As an example, we can loop over

all files in a directory and keep the current file in a mutable variable:

def foo(fs: Fs^) =

val iter : Iterator[File^{fs}] = fs.children (...)

var file : File^{fs} = null

while iter.has_next ():

file = iter.next()

... // do useful work involving file

6.3.3 Runtime-Assisted Graduality

Currently existing code uses system calls to access system features, while ocap code calls

methods on capabilities to do the same. Crucially, we can think of system calls as though they

were method calls to a particular capability. Such capabilities are the most basic capabilities

available to the program: I will call them devices, following Miller [2006]. Ocap code also uses

devices to access system features: any module can request them as arguments while the Main

module is special and it can be initialized with devices by the runtime.

For instance, fs is a device for accessing the file system. Devices are singleton objects: fs is

the only such device. While devices appear as common objects to the program, their methods

are runtime primitives which invoke system calls under the hood. For instance, if the Main

module requests the fs device, the main method can call fs.open . Under the hood, this

invokes the open system call. On the other hand, non-ocap code can invoke the same system

call directly, which can be treated as calling a method on the fs device.

Still, how does non-ocap code receive the capabilities it needs? Non-ocap code in Gradient is

organized in packages, the same as Scala code. Packages can be treated as objects which are

pre-initialized by the runtime with the capabilities they need, even before the Main module

is initialized and the main method is called. In addition, a Gradient package may optionally

be capture-unchecked, which allows using any existing Scala package in Gradient with no

migration cost, but at the cost of relying on a runtime component to ensure the package does

not exceed its authority.

90

6.3 Gradient

When migrating a preexisting Scala package to ocap, the first step is to make it capture-checked.

Since the code in the package can still be written as though it had ambient authority, this first

step in many cases should only require adding capture signatures to existing code, without

needing to refactor it (see Section 6.6). The package can later be refactored into a module by

rewriting the code so that it accepts the resources it needs as arguments from code outside

the module; doing so allows the users of the module to attenuate the authority they grant to

the module, as described in Section 6.3.1. Such an architecture resembles the “dependency

injection” design pattern and arguably is a good software engineering practice [Miller 2006].

Capture-checked packages

The following example uses a capture-checked Logger package.

module Main(device fs, device net , package Logger):

def main() =

Logger.info("Starting ...")

... // do useful work and log it

There is a number of differences between this version of Main and the one presented in

Section 6.3.1. First, its constructor now requires special arguments, as signified by the device
and package keywords and the lack of type ascriptions. The keywords signify that fs and

net must be the appropriate devices, as opposed to arbitrary objects implementing the Fs

and Net interfaces. Similarly, Logger must be the object representing the Logger package:

it needs to be explicitly requested similarly to a device. Since there’s only one possible instance

of each of fs, net and Logger in the entire program, Main can request them by name

without specifying their type, much like import statements do not require a type.

The main method can call Logger.info , presumably accesing the filesystem. This does

not mean ocap is compromised: Logger was pre-instantiated with capabilities before Main

was instantiated. The following example schematically illustrates how Logger is defined.

package Logger:

def info(msg: String): Unit =

fs.open("...").write(msg)

In the source, Logger.info can directly access fs, not unlike how existing Scala packages

can access the filesystem by calling appropriate APIs. However, Gradient interprets this

definition differently from baseline Scala: the package statement logically defines a first-

class object available in the global lexical scope. Non-ocap code in other packages can directly

use it, while ocap modules need to explicitly require it as an argument.

Enforcing security policies on non-ocap packages presents some difficulties, since they are

initialized with capabilities even before Main . The ability to attenuate capability access is

lost; Capture Tracking, however, still tracks the capabilities captured by Logger in its type.

91

Chapter 6. Gradual Compartmentalization

Gradient allows using this information to check at compile time what capabilities Logger

may access, using a restricted block.

module Main(device fs, device net , package Logger):

def main() =

restricted [{fs}] { Logger.info("Starting ...") }

... // do useful work and log it

A restricted block is the equivalent type ascription for capability access: the ascribed

block ({ Logger.info("Starting ...") } in the example) can only access capabili-

ties from the ascription ({fs} in the example, note it is accessed indirectly by Logger). For

convenience, these ascriptions can be collected into a module.

module SafeLogger(device fs, package Logger):

def info(msg: String): Unit =

restricted [{fs}] { Logger.info(msg) }

In either case, thanks to Capture Tracking we re-gain the desired security guarantees. Our

program statically checks if Logger accesses only the devices we permit it to access.

We have seen that we can integrate non-ocap and ocap code without compromising the

compartmentalization guarantees or essential aspects of object capabilities. Still, we have

assumed that the Logger package has capture signatures, i.e., it is capture-checked. Naturally,

this is not the case for arbitrary existing Scala code: assigning it capture signatures involves a

degree of manual work and in edge cases may require refactoring the code.

Capture-unchecked packages

As the name suggests, the signatures of a capture-unchecked package do not mention capture

sets. This means we cannot rely on the restricted block to restrict the authority of such a

package. Instead, the enclosed block can be used to dynamically restrict access to devices

using a runtime component. The type system ensures that all code from capture-unchecked

packages is run in an enclosed block. Syntactically, using a capture-unchecked package is

similar to previous examples:

#package Logger:

def info(msg: String): Unit = fs.open("...").write(msg)

module Main(device fs, device net , #package Logger):

def main() =

enclosed [{fs}] { Logger.info("Starting ...") }

... // do useful work and log it

An enclosed block operates at a lower granularity than a restricted block: its restriction

can only mention devices and regions. All modules have an associated memory region, and all

92

6.4 Base Formalism

mutable objects are at creation associated with such a region. The runtime component can

efficiently check that only the specified devices and regions are accessed. If an enclosed

block exceeds its restriction due to capture-unchecked code, its execution will be aborted and

an exception will occur; capture-checked code can still be verified statically.

6.4 Base Formalism

This section, as well as the following one, present the formal foundations for Gradient, split

into two fragments. I start by presenting ModCC, the fragment which accounts for capture-

checked Gradient programs and their features: modules, packages and mutable state. Later I

present GradCC, which allows formally representing capture-unchecked code.

Recall that the notation Ei
i

denotes a syntactic repetition of a non-negative number of syn-

tax forms Ei . If the individual forms never occur alone, the index can be omitted, as in E .

Furthermore, the notation E
0..1

denotes an optional occurence of E .

6.4.1 Syntax

I begin by giving an overview of ModCC and its syntax; we discuss how ModCC can formally

represent Gradient programs at the end of this subsection.

ModCC is based on CC<:□, since Gradient depends on the Scala implementation of Capture

Tracking, itself grounded in the CC<:□ formalism.Recall that CC<:□ is a capture-tracked version

of System F<: with boxes and MNF terms. In turn, ModCC is a version of CC<:□ without type

polymorphism and with modules, mutable state, and paths instead of variables.

Paths. ModCC allows selecting module fields with paths p. A path x. f is a root variable x

followed by a zero or more field selections . f . ModCC paths effectively replace CC<:□ variables:

operands in terms and capture set elements both are paths, where they were variables in CC<:□.

Additionally, an ModCC path can be looked up in a typing context Γ(p) → T (Figure 6.2), much

like a CC<:□ variable could be looked up with Γ ∋ x : T .

Dependent types. ModCC types may refer to a term variable if it occurs in a capture set;

accordingly, function types have the form ∀(x : T1)T2 to allow x to occur in T2.

Capture Tracking. ModCC types are partitioned into shape types S and regular types T .

Syntactically, the latter are capturing types S ∧C , where the capture set C is a set of paths. We

freely use shape types as regular types, assuming that S ≡ S ∧{}. Shape types comprise boxed

types and the usual types of values.

Boxes. ModCC inherits box forms □p and unbox forms C ⊸p from CC<:□. Boxing a capability

temporarily prevents it from counting as captured by the surrounding term; its type also

becomes a pure boxed type □T . In order to use such a capability, first it needs to be unboxed

93

Chapter 6. Gradual Compartmentalization

Variable x, y, z,cap
Field f ,reg
Path p, q ::= x. f

Value v, w ::= □p | λ(x : T) t | { f = p} | ()

Term t ,u ::= p | v | p p | C ⊸p | letx = t in t | region

| !p | p := p | p.ref p | mod(p) { f = p}

Shape Type S,R ::= ⊤ | ∀(x : T)T | □T | Unit
| Ref[S] | Reg | µx0..1 { f : T }

Type T,U ::= S ∧C
Capture Set C ,D ::= {p}
Typing Context Γ,∆ ::= ; | Γ, x : T if x ̸= cap

Figure 6.1: ModCC syntax. Highlighted forms are new compared to CC<:□.

Context lookup Γ⊢ p bd ⇐⇒ ∃T. Γ(p) → T Γ(p) → T

Γ ∋ x : S ∧C

Γ(x) → S ∧C

Γ(p) →µy y { fi : T fi

i
}∧C

Γ(p. f) → [y := x y]T f

Figure 6.2: Context lookup rules.

C ⊸p, which can only be done at the cost of counting the capabilities in C as captured by the

surrounding term.

Recall that both box and unbox operations are statically inferred by the compiler; they are

specific to the formal system and not a feature of the surface language.

Boxes allow formally representing the interaction between capabilities and mutable state

(6.3.2): since the contents of mutable references Ref[S] must be pure, a capability can only

be stored if it is boxed. An object which reads a capability out of mutable state has to unbox

it before it can be used, which can only be done if the object’s capture set accounts for the

obtained capabilities.

References and regions. ModCC features mutable references which can be written to and read

from, which are always associated with a region. (ModCC regions are never deallocated, unlike

the regions discussed in Section 3.3.4.) A reference is created with the p.ref q form, where q is

the initial value of the reference and p is a region capability, itself created with the region form.

Importantly, no capability is necessary to create a region, which allows creating regions and

94

6.4 Base Formalism

Definition 6.1 (Capture Set Operations). We define the following path-aware set operations.

C ⊖x ≜ { y . f ∈C | y ̸= x } x ∝C ≜ x ∈ { y | y . f ∈C }

Definition 6.2. The captured paths are given by the cv function, defined as follows.

cv(p) ≜ {p}
cv(□p) ≜ {}
cv(λ(x : U) t) ≜ cv(t)⊖x

cv({ fi = pi
i
}) ≜ {pi

i }
cv(letx = v in t) ≜ cv(t) ifx ̸∝ cv(t)
cv(letx = u in t) ≜ cv(u)∪cv(t)⊖x
cv(p q) ≜ {p, q}
cv(C ⊸p) ≜ C ∪ {p}
cv(p.refq) ≜ {p, q}

cv(mod(p) { fi = qi
i
}) ≜ {p, qi

i }
cv(region) ≜ {}

Figure 6.3: The definition of cv.

using them to allocate local mutable state even inside untracked (pure) functions. References

can be read with the !p form and written with the p := q form.

Records and modules. ModCC extends CC<:□ with records { f = p} and their usual semantics.

In addition, ModCC also features modules: special records which can be created with the

mod(p) { f = q} form. Doing so creates a record that packs together a region capability p with

other values q (the bodies of fields f); the region capability is stored in the special field reg
and the field bodies may reference the packed region capability. Both records and modules

are typed with the record type µx { f : T }, which allows an optional recursive qualifier. In a

sense, ModCC modules are like a specialized version of ML modules [Mitchell and Harper

1988]: a Gradient module is always parameterized with a single region. We borrow the idea of

modeling objects as records from DOT [Amin et al. 2016]; our record type features a recursive

qualifier analogous to variable-recursive types from DOT. The qualifier is useful specifically

for modules whose fields reference the region packed together with the module.

Captured Capabilities. In Section 6.3, we saw that Gradient uses capture sets to reason about

capabilities captured by objects. To formally reason about captured capabilities, we use paths

rooted in free variables of terms representing objects; such variables will be substituted with

store locations which may contain capabilities. We define the cv function (Figure 6.3) to

calculate such captured paths. Essentially, cv is a close cousin of fv which accounts for boxing

and ANF:

• A boxed path □p does not count as captured. Dually, for an unbox form C ⊸p only the

“key” C counts as captured.

95

Chapter 6. Gradual Compartmentalization

• A let-bound variable, the v in letx = v in t , is only considered captured if it, or paths

rooted in it, are captured by t .

Using paths instead of variables (i.e., defining cv(x. f) ≜ {x. f }) increases the precision of cv

when dealing with records and modules. The following example shows how this affects ModCC
typing:

fn : ∀(x : { f1 : Proc∧{cap}, f2 : Proc∧{cap}}∧{cap}) { f0 : Proc∧{x. f1}}∧{x. f1}

fn=λ(x : { f1 : Proc∧{cap}, f2 : Proc∧{cap}}∧{cap}) { f0 =λ(x : Unit) x. f1 ()}

The result of fn captures only {x. f1}, i.e., a single field of x. As a consequence, if fn is called

with an argument whose field f1 is pure, the result of the call will be pure no matter what is

captured by the other fields of the argument.

Gradient and ModCC. ModCC is intended to be the formal foundation underlying Gradient.

Gradient modules can be translated to a formal ModCC term much like Scala classes can be

translated to a DOT term [Amin et al. 2016; Martres 2023]. Concretely, a module corresponds

to a Gradient function which formally represents the module’s constructor: it takes the con-

structor’s arguments, creates a fresh region for the module and creates the module itself, as

illustrated in the following example.

module Logger(fs: Fs^):

def log(msg: String): Unit = . . .

let newLogger = λ(fs: Fs^)

let r = region in

let _log = λ(msg: String) . . . in

mod(r) { log = _log }

in

module Main(fs: Fs^, net: Net^):

def main() =

val logger = new Logger(fs)

. . .

let newMain = λ(fs: Fs^) λ(net: Net^)

let r = region in

let _main = λ(u: Unit)

let logger = newLogger fs in . . .

in mod(r) { main = _main }

in

// initialize Main & run the program

let main = newMain fs net in

main.main ()

The example also shows that a Gradient program corresponds to a ModCC term. The Gradient

program comprises contains module and package definitions which correspond to let-bound

ModCC terms;3 the body of the innermost let term initializes the packages (if there are any)

and the Main module, and proceeds to run the program by calling the main method. We treat

3Technically, the translation approach demonstrated in the example does not allow for mutually-recursive
modules. Possibly, such modules could be supported by a different translation scheme where modules are
stored in and read from mutable state (simulating lazy let bindings, which do allow mutually-recursive modules).
Alternatively, ModCC could be extended with record/module forms with field initializers, as in pDOT [Rapoport
and Lhoták 2019]. Doing so would allow definining mutally-recursive modules as fields of a single record.

96

6.4 Base Formalism

Gradient devices such as fs and net (and their types) as extensions to the base formalism;

we do not privilege any particular device by baking it into the formal system.

6.4.2 Subcapturing

Figure 6.4 shows the subcapturing rules of ModCC. Subcapturing consistently uses paths

instead of variables; accordingly, rule (SC-PATH) uses path lookup and replaces rule (SC-

VAR) from CC<:□, which only looked up variables. Rules (SC-ELEM) and (SC-SET) are directly

inherited from CC<:□. In addition, rule (SC-MEM) allows relating a module’s field to the module

itself. For simplicity, ModCC subcapturing features a separate transitivity rule (SC-TRANS),

while transitivity in CC<:□ was inlined into premises of subcapturing rules and therefore an

admissible property.

6.4.3 Subtyping

Nearly all subtyping rules of ModCC are inherited from CC<:□ (Figure 6.4). Like in CC<:□, rule

(CAPT) connects subtyping to subcapturing. Rule (REC) is the standard breadth-and-width

rule for subtyping records. Since reference types are invariant, they do not have a dedicated

subtyping rule and can only be compared with (REFL). Like in the DOT family of systems,

recursive types do not participate in subtyping; instead, they can be eliminated and introduced

in typing.

6.4.4 Typing

Figure 6.4 presents our typing rules. We inherit all the typing rules of CC<:□, with small

adjustments to account for paths replacing variables: the (VAR) variable typing rule from

CC<:□ is replaced with the path typing rule (PATH), while the CC<:□ rules (BOX) and (UNBOX)

use path lookup to ensure that the typing context binds all capture set elements. Rules (PACK)

and (UNPACK) allow packing and unpacking recursive qualifiers on module types. Rule (ABS)

types term abstractions; it uses the cv of the abstraction term as the assigned capture set.

Rule (APP) types term applications p q . Since the result of a function type may depend on its

parameter, (APP) replaces such parameter occurences with the concrete argument applied to

the abstraction. Rules (LET), (SUB) are standard.

Rules (REGION) and (REF) type region and reference creation forms, respectively. The capture

set assigned to a reference is the region capability used to create it. Rule (REF) ensures that only

pure, untracked objects can be stored in references. As explained in Section 6.4.1, this forces

tracked objects to be boxed before they can be stored in mutable state. If a tracked object is

read out of mutable state, it needs to be unboxed before it can be accessed. Doing so adds the

capabilities used to unbox the object to the cv of the unboxing term, which guarantees borrow

safety (6.3.2).

97

Chapter 6. Gradual Compartmentalization

Subcapturing Γ ⊢ C <: C

SC-PATH

Γ(p) → S ∧C

Γ ⊢ {p} <: C

SC-ELEM
p ∈ D

Γ ⊢ {p} <: D

SC-MEM

Γ⊢ p. f bd
Γ ⊢ {p. f } <: {p}

SC-SET

Γ⊢ {pi } <: D
i

Γ ⊢ {pi
i } <: D

SC-TRANS

Γ⊢C1 <: C2 Γ⊢C2 <: C3

Γ ⊢ C1 <: C3

Subtyping Γ ⊢ T <: T

CAPT
Γ ⊢ S1 <: S2 Γ ⊢ C1 <: C2

Γ ⊢ S1
∧C1 <: S2

∧C2

TOP

Γ ⊢ S <: ⊤
REFL

Γ ⊢ T <: T

TRANS
Γ ⊢ T1 <: T2 Γ ⊢ T2 <: T3

Γ ⊢ T1 <: T3

BOXED
Γ ⊢ T1 <: T2

Γ ⊢ □T1 <: □T2

FUN
Γ ⊢ U2 <: U1 Γ, x : U2 ⊢ T1 <: T2

Γ ⊢ ∀(x : U1)T1 <: ∀(x : U2)T2

REC

Γ⊢U f j <: T f j

j

Γ⊢ { fi : U fi

i
} <: { f j : T f j

j
}

Typing Γ ⊢ t : T

UNIT

Γ ⊢ () : Unit

PATH

Γ(p) → S ∧C

Γ ⊢ p : S ∧{p}

UNPACK

Γ⊢ p :µx { f : T }∧C

Γ⊢ p : ([x := p]{ f : T })∧C

PACK

Γ⊢ p : ([x := p]{ f : T })∧C

Γ⊢ p :µx { f : T }∧C

ABS
Γ, x : U ⊢ t : T Γ⊢U wf

Γ ⊢ λ(x : U) t : (∀(x : U)T)∧(cv(t)⊖x)

APP
Γ ⊢ p : (∀(x : U)T)∧C Γ ⊢ q : U

Γ ⊢ p q : [z := q]T

LET
Γ ⊢ u : T Γ, x : T ⊢ t : U x ̸∝ fv(U)

Γ ⊢ letx = u in t : U

SUB
Γ ⊢ t : T Γ ⊢ T <: U Γ ⊢ U wf

Γ ⊢ t : U

BOX

Γ ⊢ p : S ∧C Γ⊢ q bdq∈C

Γ ⊢ □ p :□ S ∧C

UNBOX

Γ ⊢ p :□ S ∧C Γ⊢ q bdq∈C

Γ ⊢ C ⊸p : S ∧C

REGION

Γ⊢ region : Reg∧{cap}

REF

Γ ⊢ p : Reg∧{cap} Γ⊢ q : S

Γ ⊢ p.ref q : Ref[S]∧{p}

READ

Γ ⊢ p : Ref[S]∧{cap}

Γ ⊢ !p : S

WRITE

Γ ⊢ p : Ref[S]∧{cap} Γ ⊢ q : S

Γ ⊢ p := q : Unit

RECORD

Γ⊢ pi : Si
∧Ci

i

Γ⊢ { fi = pi
i
} : { fi : Si

∧Ci
i
}∧(

⋃
i Ci)

MODULE

Γ⊢ q : Reg∧{cap} Γ⊢ pi : Ui
i

Ti = [q := x.reg]Ui
i

Γ⊢mod(q) { fi = pi
i
} :µx {reg : Reg∧{cap}, fi : Ti

i
}∧{cap}

Figure 6.4: ModCC static rules. Highlighted rules and premises are new or changed (resp.)
compared to CC<:□.

98

6.4 Base Formalism

Rules (READ) and (WRITE) type read and write forms. Finally, rule (RECORD) is the standard

record typing rule; the capture set of a record is the union of the field capture sets. Rule

(MODULE) is a variant of (RECORD): a ModCC module is a record “packed” together with a

region. For each field fi , the rule requires the field’s body pi , to be typeable at some type Ui .

However, in the entire module’s type the type of each field fi is instead [q := x.reg]Ui , where

q is the region packed with the module and x is the DOT-like recursive self-reference. Finally,

since a module packs a region into itself, the capture set of the entire module is simply {cap}.

6.4.5 Reduction

Figure 6.5 shows our reduction rules and runtime-specific forms. Unlike CC<:□, ModCC
reduces store-term configuration pairs (σ, t). The term t is decomposed into an evaluation

context η and a potential redex u. The rules are deterministic: at any point there is at most

one applicable rule.

Reduction rules use l for store locations and r for paths rooted in locations. Rather than

treating locations as a different grammatical category and defining additional typing rules, we

make the simplifying assumption that they are variables. Stores σ comprise location-entry

pairs l 7→ e; an entry e is either a value, a region, a region-associated reference or a module.

Rules (APPLY), (TAPPLY), (OPEN), (RENAME) and (LIFT) are inherited from CC<:□. Rules (GET)

and (SET) reduce mutable state reads and writes. Reference and module creation forms are

reduced by rules (ALLOC) and (MALLOC). Because the fields of records and modules in the store

always point to other paths and ultimately resolve to a location, runtime paths are effectively

aliases for locations. Store lookup is aware of such aliases, e.g., given σ= l1 7→ { f = l2}, l2 7→ v

we have σ(l1. f) =σ(l2) = v .

6.4.6 Metatheory

I show that ModCC is sound with the standard Progress and Preservation Theorems [Wright

and Felleisen 1994]. The metatheory of ModCC is developed following the Barendregt conven-

tion: we only consider typing contexts where all variables are unique, i.e., for all contexts of

the form Γ, x : T we have x ̸∈ dom(Γ).

As usual, a definition of store typing σ∼∆ is necessary. (As a convention, we use ∆ to refer to

typing contexts related to stores.) It is defined in terms of store entry typing ∆⊢ l 7→ e ∼∆ as

follows:

Definition 6.3. We have li 7→ ei
i ∼∆ if and only if:

1. We have both ∆⊢ li 7→ ei ∼∆i
i

and ∆=∆i
i
.

2. If ei is a record { f j = r j
j
} or a module mod(r ′) { f j = r j

j
},

then for some Ti we have ∆=∆′, li : Ti ,∆′′ and we have ∆′ ⊢ r j bd j
.

99

Chapter 6. Gradual Compartmentalization

Reduction (σ; t) −→ (σ; t)

(σ;η[r r ′]) −→ (σ ;η[[x := r ′]t]) if σ(r) =λ(x : T) t (APPLY)
(σ;η[C ⊸r]) −→ (σ ;η[r ′]) if σ(r) =□r ′ (OPEN)
(σ;η[!r]) −→ (σ ;η[v]) if σ(r) = l ▷ ref v (GET)
(σ;η[r := r ′]) −→ (σ′;η[()]) if σ′ = [r 7→σ(r ′)]σ (SET)
(σ;η[v]) −→ (σ, l 7→ v ;η[l]) if l fresh (LIFT)
(σ;η[letx = r in t]) −→ (σ ;η[[x := r]t]) (RENAME)
(σ;η[r.ref r ′]) −→ (σ, l 7→ e;η[l])

if l fresh, σ(r) = regionl ′ , e = l ′▷ refσ(r ′) (ALLOC)

(σ;η[mod(r) { f = r ′}]) −→ (σ, l 7→ e;η[l])

if l fresh, σ(r) = regionl ′ , e =mod(l ′) { f = r ′} (MALLOC)

Variable l , . . .

Store context σ ::= l 7→ e
Eval context η ::= [] | letx = η in t

Store entry e ::= v | regionl | l ▷ ref v | mod(l) { f = r }
Runtime path r ::= l | r. f

Figure 6.5: ModCC operational semantics.

The first condition connects store typing to store entry typing: the typing context of the

former must be assembled out of fragments built by the latter. The second condition is a

well-formedness criterion for stores: bodies of modules can only refer to paths bound before

the module is bound. and likewise for records. Most of the store entry typing rules are the

same as their corresponding typing rules ((UNIT), (BOX), (ABS), (REF)), e.g., if ∆≜ l1 : Reg∧

{cap}, l2 : Ref[Unit]∧{cap} we have both ∆⊢ l1 7→ regionl1
: Reg∧{cap} and ∆⊢ l2 7→ l1▷ ref () ∼

l2 : Ref[Unit]∧{cap}.

The store typing rules for records and modules are slightly different than their corresponding

typing rules, since they also add path aliases p ≡ q to the output (Figure 6.6); the syntax of

typing contexts is extended to allow such aliases. The primary reason the metatheory needs to

be aware of path aliases is that during reduction, given a region packed with a module, a direct

reference to the region must be equivalent to referencing it through the module. Furthermore,

a module may refer to a region indirectly, through one or more fields of another module or a

record. Hence, a record’s or a module’s fields should be equivalent to their bodies in general.

Finally, all aliased paths must be bound to an equivalent type in the store-corresponding

typing context. To ensure this is the case, both (ST-RECORD) and (ST-MODULE) use path lookup

to assign types to the bodies of fields.

Path aliases are a minimalistic version of singleton types studied in pDOT [Rapoport and

Lhoták 2019]; similarly, using path lookup instead of typing resembles the concept of strict

typing used to prove the soundness of systems from the DOT family [Amin et al. 2014; Rapoport

and Lhoták 2019; Boruch-Gruszecki et al. 2022]. Both are a proof device for establishing the

100

6.5 Formalising Capture-Unchecked Terms

Store entry typing ∆⊢ l 7→ e ∼∆

ST-RECORD

∆(ri) → Ti
i

∆⊢ l 7→ { fi = ri
i
} ∼ l : { fi : Ti

i
}, l . fi ≡ ri

i

ST-MODULE

∆⊢ l : Reg∧{cap} ∆(ri) →Ui
i

Ti = [l := x.reg]Ui
i

∆⊢ l0 7→mod(l) { fi = ri
i
} ∼ l0 :µx { fi : Ti

i
}, l ≡ l0.reg, l . fi ≡ ri

i

Figure 6.6: Some ModCC store entry typing rules. The full version is attached in the appendix.

soundness properties of ModCC, rather than a core feature of the system; they are presented

as part of the metatheory and not of the formal system proper since an alternative proof which

does not rely on them would be equally valid.

The Progress and Preservation Theorems are stated as follows.

Theorem 6.1 (Progress). Let σ∼∆ and ∆⊢ t : T . Then either there exists r such that t = r , or

there exist σ′, t ′ such that (σ, t) −→ (σ′, t ′).

Theorem 6.2 (Preservation). Let σ∼∆ and ∆⊢ t : T . Then (σ, t) −→ (σ′, t ′) implies that there

exists a typing context ∆′ such that σ′ ∼∆,∆′ and ∆,∆′ ⊢ t ′ : T .

Proofs of both theorems are attached in an appendix.

6.5 Formalising Capture-Unchecked Terms

I proceed to introduce GradCC, which extends ModCC and allows capture-unchecked code to

be formally represented. GradCC borrows inspiration from the gradual typing literature [Siek

and Taha 2006; Wadler and Findler 2009; Wadler 2015], where casts are used to formally repre-

sent type-unchecked code. Concretely, in such a representation the types of all expressions

have been erased (i.e., they were all cast to the dynamic type Dyn) and every time an expression

is used as an operand, an appropriate cast is used (e.g., an expression is cast to Int before being

incremented).

GradCC takes a similar approach: it allows marking a path # p, which replaces its capture set

with a mark #, marking the path as capture-unchecked. Accordingly, capturing types are now

equipped with a capture descriptor C ?, which is either a capture set C as in ModCC, or a mark

#. Capture sets themselves still only contain proper (non-marked) paths, but they may be

improper if they can be widened through subcapturing so that they contain a path which is

bound at a marked capturing type S ∧#. By extension, a path p is improper iff the capture set

{p} is improper.

101

Chapter 6. Gradual Compartmentalization

Since a marked path is capture-unchecked, it allows accessing arbitrary capabilities. Likewise,

an improper path allows (indirectly) accessing an actual capture-unchecked, marked path,

which similarly may mean accessing arbitrary capabilities.

The following example shows the example capture-unchecked Logger package discussed

in 6.3.3 may be represented with a GradCC term. Recall that a capture-unchecked package

corresponds to a normal Scala package. Importantly, the types in such a package do not

mention any capture sets. To integrate this with the capture-aware type system, types occuring

in a capture-unchecked are interpreted as marked capturing types S ∧ #, i.e., types whose

inhabitants can capture arbitrary capabilities and whose authority should be dynamically

enforced. (Types which are well-known to always be pure, such as String , do not need to be

marked.) Accordingly, capability references in the body of Logger correspond to a marked

path # fs, a special path form which types any path with a mark # instead of a capture set.

#package Logger:

def log(msg: String): Unit =

fs.open (...). write(msg)

let logger =

let r = region in

let _log = λ(msg: String)

let h = #fs.open (. . .) in

#h.write msg

in mod(#r) { log = #_log }

in . . .

Dynamic restrictions. A marked path can be used similarly to a capture-checked one, e.g., it

can be called if its shape type is a function type. Since its type does not specify a capture set,

we no longer know what capabilities may be accessed through the marked path; improper

paths pose similar problems. To solve this problem, GradCC features the enclosed term form

encl[C][T] t , which allows dynamically restricting what capabilities may be accessed by t . The

capture set C is a restriction: it lists the capabilities which may be accessed by t . The restriction

C can only contain regions, which correspond to Enclosure memory arenas (Section 6.6.2);

this allows enclosed term forms to be efficiently implemented with Enclosures.

Obscuring marks. Capture-unchecked code needs to call out to capture-checked code. For

instance, consider the following snippet of Gradient.

#package Logger

def logAll(msgs: List[String])

msgs.foreach { msg =>

fs.open (...). write(msg)

}

In this snippet, a capture-unchecked package Logger calls List#map , a capture-checked

function. This is enabled by the obscur form obscur p asx in t , which allows temporarily

treating p as though its capture set was {cap}. An obscur form can only be used with a dynamic

authority restriction in place. Capture Tracking is used to ensure x is scoped and cannot be

102

6.5 Formalising Capture-Unchecked Terms

accessed outside of the dynamic extent of its lexical scope. The Logger.logAll definition

can be formally represented with the following term.

let logger =

let r = region in

let _logAll = λ(msg: List[String])

let f : (String -> Unit)^# = λ(msg: String)

(#fs).open (...). write(msg)

obscur f as g in

msgs.foreach g

in mod(#r) { log = #_log }

in . . .

Marks and boxes. Capture-unchecked code also needs to interact with boxes. First, both

marked and improper paths are still tracked and need to be boxed before being written to

mutable state. Second, as capabilities read out of capture-checked mutable references must

be unboxed, improper paths can be boxed and boxes can be opened with a mark-open form

⊸p.

Definition 6.4 (Capture Descriptor Operators). Capture set operators are extended to capture

descriptors as follows. Note that # is effectively empty according to both ∈̇ and ∝̇.

∪̇C ? ≜ # # ⊖̇x ≜ # p ∈̇C ≜ p ∈C

C ? ∪̇ # ≜ # C ⊖̇x ≜ { y . f ∈C | y ̸= x } p ̸∈̇ #

C1 ∪̇C2 ≜C1 ∪C2 x ̸∝̇ #

Definition 6.5. The cv function is extended as follows. Previous rules use capture descriptor

operators instead of capture set operators.

cv(# p) ≜ #

cv(encl[C ′][S ∧C ?] t) ≜ C ? ∪̇C ′

cv(obscurp asx in t) ≜ #

cv(# ⊸p) ≜ #

6.5.1 Changes to the System

Figure 6.7 shows the complete syntax of the new GradCC forms and Figure 6.8 shows the new

subtyping and typing rules. The rules make use of the following auxilliary definition.

Definition 6.6 (Well-Formed Restriction). C is a well-formed restriction in Γ, or Γ⊢C wfr, iff

we have C = {xi
i } such that Γ⊢ xi : Reg∧Di

i
for some Di

i
.

The subcapturing rules of GradCC are the same as they were in ModCC, in particular subcap-

103

Chapter 6. Gradual Compartmentalization

Unmarked path ρ ::= x. f

Stable path p, q ::= ρ | #ρ

Term t ,u ::= . . . | encl[C][T] t | obscur p asx in t | # ⊸r

Type T,U ::= S ∧ C ?
Capture descriptor C ? ::= C | #

Capture set C ::= { ρ }

Figure 6.7: GradCC syntax. Unmarked paths ρ are used only to make the syntax more succinct.

turing still only relates capture sets C and not capture descriptors C ?. Subtyping is extended

with (MARKED), which relates marked types. While S ∧C and S ∧# are unrelated via subtyping,

it is always possible to convert a term from S ∧C to S ∧# by marking it. Typing is extended

with four straightforward rules, one per each new term form. Notably, (OBSCUR) only allows

returning pure terms from an obscur form, forcing any returned capability to be boxed; doing

so ensures that x cannot be accessed during the extent of the obscur form. Additionally, note

that the cv of an obscur form is always #, which means that obscur forms can only occur under

an enclosure in proper programs.

6.5.2 Reduction

GradCC operational semantics are defined in terms of two reduction relations (Figure 6.9).

The “underlying” relation · −→ · relates two configurations and is an extension of the reduc-

tion relation from ModCC. The “primary” relation · −→e · enforces runtime restrictions of

enclosures. According to · −→e ·, a configuration reduces as it normally would (according to

· −→ ·) iff the redex is permitted in the current restriction; otherwise the configuration reduces

to fail. The redexes for creating a reference, reading to it or writing to it are permitted only if

the involved region is within the current restriction; other redexes are always permitted. These

semantics match the behaviour of Enclosures [Ghosn et al. 2021], which stop the program if it

tries to access memory outside of the currently imposed restriction.

6.5.3 Metatheory

The statement of soundness for GradCC is a bit more involved compared to ModCC, since well-

typed programs may contain capture-unchecked fragments and thus inherently can reduce to

fail. Such a result signals that a capture-unchecked fragment violated a restriction imposed

on it and like in gradual typing systems, such failures should not be prevented. Instead,

in addition to the usual properties ensured by the Progress and Preservation theorems, the

system should also ensure that capture sets allow predicting what capabilities may be accessed,

104

6.5 Formalising Capture-Unchecked Terms

Subtyping Γ ⊢ T <: T

MARKED

Γ⊢ S1 <: S2

Γ⊢ S1
∧# <: S2

∧#

Typing Γ ⊢ t : T

ENCLOSURE

Γ ⊢ t : T Γ⊢C wfr
Γ⊢ encl[C][T] t : T

OBSCUR

Γ ⊢ p : S ∧C ? Γ, x : S ∧{cap} ⊢ t : R

Γ⊢ obscur p asx in t : R

MARK

Γ⊢ p : S ∧C ?

Γ⊢ # p : S ∧#

UNBOX-MARK

Γ ⊢ p :□ S ∧C Γ⊢ q bdq∈C

Γ ⊢ # ⊸p : S ∧C

Figure 6.8: New subtyping and typing rules of GradCC.

as they did in the original CC<:□ system [Boruch-Gruszecki et al. 2023].

The cv function gives us the capabilities referenced by a term. Intuitively, since all access to

program and system resources is mediated via capabilities, it should be possible to use cv of a

term to predict what capabilities it may access. This also ensures that capture sets assigned

in typing are meaningful and indeed allow reasoning about capability access, since typing

assigns capture sets based on cv.

GradCC includes regions and mutable state, corresponding to memory accessible by the real

Gradient program. Therefore, after widening the cv of a program so that it only contains

regions, the resulting capture set gives us an upper bound on the regions accessible by the

program. This property is woven into the standard Progress and Preservation Theorems as

follows.

Theorem 6.3 (Region-Aware Progress). Let σ∼∆ and ∆⊢ t : T such that ∆⊢ cv(t) <: C and

∆⊢ r : Reg∧{cap}
r∈C

. Then either there exists r such that t = r , or (σ; t) −→e fail, or there exist

σ′, t ′ such that (σ; t) −→ (σ′; t ′) and A (σ, t) ⊆ {l | r ∈C ,σ(r) = regionl }.

Theorem 6.4 (Region-Aware Preservation). Let σ∼ ∆ and ∆⊢ t : T such that ∆⊢ cv(t) <: C

and ∆⊢ r : Reg∧{cap}
r∈C

. Then (σ; t) −→ (σ′; t ′) implies that there exists a typing context ∆′

such that σ′ ∼∆,∆′ and ∆,∆′ ⊢ t ′ : T and ∆,∆′ ⊢ cv(t ′) <: C ∪ {l }, where l is the region created

during the reduction, if any.

105

Chapter 6. Gradual Compartmentalization

Reduction (σ; t) −→ (σ; t)

(σ;η[C ? ⊸r]) −→ (σ;η[r ′]) ifσ(r) =□r ′ (OPEN)
(σ;η[encl[C][T]r]) −→ (σ;η[r]) (EXIT)
(σ;η[obscurr asx in t]) −→ (σ;η[[x := r]t]) (OBS)

Eval context η ::= . . . | encl[C][T]η

(σ; t) −→e ((σ; t) | fail)

(σ;η[t]) −→ (σ′;η′[t ′]) A (σ, t) ⊆R(σ,η)

(σ;η[t]) −→e (σ′;η′[t ′])

A (σ, t)⊈R(σ,η)

(σ;η[t]) −→e fail

R(σ,encl[{ri
i }][T]η)≜ {li

i
}∩R(σ,η) if σ(ri) = regionli

i

R(σ, letx = η in t)≜R(σ,η) R(σ, [])≜ {}

A (σ,η[r.ref r ′]) ≜ {l } ifσ(r) = regionl

A (σ,η[!r]) ≜ {l } ifσ(r) = l ▷ ref v
A (σ,η[r := r ′]) ≜ {l } ifσ(r) = l ▷ ref v
A (σ,η[t]) ≜ {} if t is a different redex form

Figure 6.9: GradCC operational semantics.

The above theorems form the intended statement of correctness for GradCC. I attach proofs

of the following theorems in an appendix.

Theorem 6.5 (Preservation). Let σ∼∆ and ∆⊢ t : T . Then (σ; t) −→ (σ′; t ′) implies that there

exists a typing context ∆′ such that σ′ ∼∆,∆′ and ∆,∆′ ⊢ t ′ : T .

Theorem 6.6 (Progress). Let σ∼∆ and ∆⊢ t : T . Then either there exists r such that t = r , or

there exist σ′, t ′ such that (σ; t) −→ (σ′; t ′).

The proofs are carried out for a version of GradCC without the obscur form obscur p asx in t ; I

only provide an intuitive argument for the soundness of the complete system. First, an obscur

form can only be used within the dynamic extent of an encl form, since the cv of an obscur
form is always #. Hence, it is sound to access p immediately within the obscur form even

if it is improper. Second, any capability returned from an obscur form must be boxed (see

(OBSCUR)), which thanks to Capture Tracking ensures x cannot be accessed outside of its

lexical scope [Boruch-Gruszecki et al. 2023]. I expect the complete proof to be straightforward.

106

6.6 Evaluation

6.6 Evaluation

6.6.1 Migrating the Scala XML Library

I migrated scala-xml, the standard Scala XML library [ScalaXML 2023], to a capture-checked

Gradient package. The scala-xml library was chosen since most of its code does not need to

access any system resources, with the primary exceptions being the XML parser (which may

need to resolve DTDs from the filesystem or from the network), and the convenience functions

for, e.g., loading and parsing an XML file. Still, occurences of capabilities in the codebase were

more common than expected:

• code for rendering an XML object into a String was implemented by manipulating

mutable StringBuffer-s,

• some classes representing XML data had mutable fields, contrary to what idiomatic

Scala code would do, and

• some functionality was implemented by calling Java code, e.g., parsing XML.

Migrating the library also revealed the need for the formalism to distinguish between records

and modules and to separate regions from modules. The former allows understanding class

instances as potentially pure records, as opposed to always-impure (tracked) modules; the

latter supports local mutable state.

Despite these difficulties, migrating scala-xml to a capture-checked Gradient package re-

quired few changes to the codebase. The library has 4200 LoC (excluding comments); adding

capture annotations to it required modifying c. 260 LoC and involved no refactoring. Most of

the changed lines (c. 200) are similar to the following example, i.e., the change involves merely

adding a few extra characters.

// before the migration

def buildString(sb: StringBuilder): StringBuilder

// after the migration

def buildString(sb: StringBuilder ^): StringBuilder ^{sb}

Our scala-xml experiment shows that migrating a real-world Scala codebase to a non-ocap,

capture-checked Gradient package is not a significant amount of effort; such migrations are

a valuable intermediate step on the way to migrating a codebase to an ocap module. A full

migration may require significantly refactoring the codebase so that it receives all the devices

it needs as arguments from its callsites, and will likely require the users of the codebase to

adjust their code too. At the same time, ocap modules are more flexible, since they allow their

users to attenuate the authority of capabilities passed to the module (Section 6.3.1).

I attach the migrated sources and a migration report as supplementary material. The report

lists the steps I took to migrate the library, explains how I understand Scala features such

107

Chapter 6. Gradual Compartmentalization

as classes and packages in terms of the formalism I presented, and suggests how to verify I

migrated the library correctly.

6.6.2 Implementing Gradual Compartmentalization

I outline the major steps to extending an existing language with gradual compartmentalization.

Add object capabilities and modules as an extension

The Gradient support for these features was outlined in Section 6.3. To ensure capability safety,

it may be necessary to additionally restrict or tame [Miller 2006] existing language features,

e.g., an implementation of Gradient would need to tame the Scala standard library (potentially

by assigning it appropriate capture signatures) and restrict ocap code from using features

such as Java reflection. The necessary work for the Java case was studied by the authors of

Joe-E [Mettler et al. 2010] and Wyvern [Melicher 2020]. There are many other examples of ocap

extensions for existing languages in the literature, e.g., the Caja extension for Javascript [Miller

et al. 2008], the Emily extension for OCaml [Stiegler 2007; Stiegler and Miller 2006], the CaPerl

extension for Perl [Laurie 2007], and the Oz-E extension for Oz [Spiessens and Van Roy 2005].

Track capabilities in the type system

Gradient uses Capture Tracking to track the authority of objects in their types, as was for-

malised in Section 6.4 and Section 6.5. The most essential reason for tracking capabilities in

types is letting ocap code interact with non-ocap code by using the type system to ensure

system access restrictions can be enforced (Section 6.3).

The non-essential (although still important!) reasons for using Capture Tracking in Gradient

include the borrow safety property (6.3.2), the minimal notational burden imposed by the

approach (Section 6.6.1), and a preexisting Capture Tracking implementation in the Scala

compiler.

Even though Gradient relies on Capture Tracking, another implementation of gradual compart-

mentalization could use a different approach for tracking the authority of objects in their types.

Such approaches already exist in the literature: Lee et al. [2023] show an alternative version of

Capture Tracking without dependent types, and Brachthäuser et al. [2022] show a system for

tracking capabilities in types without subtyping. Naturally, they come with tradeoffs: signa-

tures of capture-polymorphic definitions become more unwieldy without dependent types,

and giving up subtyping means giving up subcapturing and its connection to the capability

derivation hierarchy.

108

6.6 Evaluation

Add support for dynamic capability access restrictions

Gradient’s enclosed block can be implemented via the LITTERBOX framework built for

Enclosures [Ghosn et al. 2021], which relies on hardware support.4 Gradient regions and

devices (Section 6.3.3) directly correspond to Enclosure memory arenas and system call restric-

tions. Relying on hardware support allows Gradient code to impose access restrictions even

across FFI calls to binary code which can forge pointers. Furthermore, compartmentalizing a

real-world application such as a web server via Enclosures has an acceptable performance

cost; depending on the hardware used, the slowdown factor can be as small as 1.02 [Ghosn

et al. 2021].

The access checks of enclosed blocks could be carried out in software, if we disallowed FFI

and accepted worse performance. A special compilation scheme would be necessary, where all

access to system features and mutable state goes through methods which inspect if the access

is currently permissible; checks on access to other objects are not necessary. This scheme

assumes that the only way to invoke system calls from within the language is by accessing

devices (i.e., objects whose methods are language primitives which actually invoke system

calls).

Conclusions

Extending an existing language with gradual compartmentalization is an effort of a similar

magnitude to implementing a new ocap language. Gradual compartmentalization rests on

solid foundations [Mettler et al. 2010; Melicher 2020; Boruch-Gruszecki et al. 2023; Ghosn

et al. 2021]; the tasks necessary for implementing it were studied independently for different

contexts and are well understood.

4Concretely, two backends for Enclosures were implemented, one using Intel VT-x (a widespread virtualization
feature) and another using Intel MPK.

109

7 Background

In this section I describe the existing literature related to Capture Tracking. Given the vast

amount of existing work, the description is necessarily incomplete; if there is something

missing from this section, it is through my own fault.

First, I provide a sweeping overview of the background on which Capture Tracking builds. The

point of the overview is to highlight particular systems and approaches and list their most

salient aspects, i.e., to present, as much as is reasonable, the design space explored in existing

literature. Next, I compare Capture Tracking with its closely related works, and afterwards I do

the same for Gradual Compartmentalization.

7.1 Background

7.1.1 Effects

Effect systems assign effects to terms, in addition to types. The typing judgment in such a

system typically is of the form Γ⊢ t : T |χ, where χ describes the overall effects of evaluating t .

Types of abstractions in such systems need to be augmented with a latent effect, e.g., S →χ T ,

where χ describes the deferred effects of the abstraction’s body. Effects can be seen as dual

to capabilities: the former allow terms to contain arbitrary operations and assign an effect

to each term, while the latter only allow terms to invoke effectful operations by accessing

capabilities bound in the context; capabilities are thus closer to coeffects [see Petricek et al.

2014a] than to effects.

The earliest effect systems I am aware of track reading from, writing to and allocating mutable

references [Gifford and Lucassen 1986; Lucassen and Gifford 1988]. The later system extends

the earlier one with with regions and effect polymorphism. An effect system may include a

notion of subeffecting, first proposed by Talpin and Jouvelot [1992]. Region-based memory

management systems proposed by Tofte and Talpin [1997] (MLKit) and Grossman et al. [2002]

(Cyclone) employ an effect system to ensure that region-associated references captured by

111

Chapter 7. Background

closures are not accessed after the region is deallocated. Some other applications of effect

systems include ensuring safe error handling (“checked exceptions”) [Gosling et al. 2014],

various safety properties in a concurrent setting [Boyapati and Rinard 2001; Gordon 2017],

strong atomicity in a transactional memory setting [Abadi et al. 2008], and purity [Fähndrich

et al. 2006; Hunt and Larus 2007; Pearce 2011]. Wadler and Thiemann [2003] show that there is

a tight connection between effect systems and monads [Moggi 1991]; monads as implemented

in Haskell [Peyton Jones and Wadler 1993] are, for most intents and purposes, an effect system.

Effect handlers [Plotkin and Pretnar 2013] are closely connected to algebraic effects, introduced

by Plotkin and Power [2003]. Algebraic effects can be understood as a restriction on general

monads which, unlike monads, can be freely composed. Effect handlers themselves can be

understood as resumable exceptions, or otherwise as a structured way of exposing delimited

continuations. Koka [Koka 2023; Leijen 2014, 2016] is a language with support for algebraic

effects and effect handlers. It features an effect system based on row polymorphism with

potentially duplicated effects; the system allows masking effects which are local to a particular

subterm, such as internally throwing and handling an exception. Koka is also an example

of a system which tracks divergence as an effect. The Effekt language [Brachthäuser et al.

2020b,a, 2022] features capability-based effect handlers, similar to the ones presented in this

thesis (Section 3.3.5).

Effect quantales [Gordon 2017, 2021] are a generic, effect-polymorphic system of sequential

effects. A sequential effect system [Tate 2013] is an effect system where only particular ef-

fect sequences are allowed to occur; such systems thus feature a degree of flow-sensitivity.

Such a system can be used, for instance, to ensure that synchronization locks are used cor-

rectly. Notably, store-sensitive effect quantales were proposed and used by Bao et al. [2021] to

track mutation and model move semantics. A number of other generic effect systems were

proposed [Marino and Millstein 2009a; Tate 2013; Rytz et al. 2012]

7.1.2 Resource Ownership

Resources are entities whose identity or provenance (i.e., approximate identity) matters. We

may care about what resource may or may not be accessed, or we may care about a resource

being allocated and de-allocated. In most systems, this is tracked with an ownership system,

which restricts how resources may be aliased.

Linear type systems are perhaps the most basic example of a resource ownership system.

Briefly, a linear variable can be used precisely once. They were introduced by Wadler [1990]

as a way to extend a functional programming language with support for local mutable data

without violating referential transparency. Linearity is closely related to uniqueness; Marshall

et al. [2022] present a type system featuring both concepts and gives a detailed account of

their similarities and differences.

Ownership types, as originally proposed, allow objects to encapsulate particular references.

112

7.1 Background

For instance, a linked list can encapsulate references to its nodes, ensuring details about its

internal representation are not leaked. They were originally proposed by Clarke et al. [1998]

and Clarke [2002], based on “Flexible Alias Protection” of Noble et al. [1998]. The property

guaranteed by the original ownership types has been explained as “owners-as-dominators”,

i.e., ensuring that references to the owner should dominate references encapsulated by the

owner in the reachability graph of objects. The literature features a vast amount of works

presenting systems derived from ownership types and using them to solve strikingly diverse

problems such as concurrency control, memory management and conformance to software

architecture specifications [Aldrich et al. 2002]. In particular, they were also used to control

effects [Clarke and Drossopoulou 2002]. Clarke et al. [2013b], Clarke et al. [2013a], and Mycroft

and Voigt [2013] survey the literature on ownership types.

Separate uniqueness was proposed by Haller and Odersky [2010] as heap structuring invariant

where “unique” references form subgraphs disjoint from the rest of the object graph. In

contrast to earlier works on external uniqueness by Clarke and Wrigstad [2003], separate

uniqueness ensures sending unique references across thread boundaries does not need any

additional restrictions imposed on the references.

Rust [Rust 2023] features an ownership discipline which is arguably the most closely related to

linear types. Rust features a memory management scheme where all allocations are owned

by a single entity, either a binding on the stack or another allocation. At any point, there is

only a single unique reference “owning” a particular allocation, thus effectively partitioning

the heap into a tree. Stacked Borrows [Jung et al. 2019] are a system of operational semantics

which accurately formally models memory access guarantees provided by Rust. Jung et al.

[2017] show a more classical formal calculus for Rust, with a particular focus on proving

safety in presence of code using Rust’s unsafe blocks, which are particularly challenging as

they temporarily disable safety checks to allow more flexible code than is otherwise possible.

In contrast, Pearce [2021] shows a more lightweight formal calculus which still captures

most salient aspects of Rust, including its ownership discipline; the publication features a

remarkably detailed description of related work.

Reggio [Arvidsson et al. 2023a,b] is the region-based memory management scheme of Verona.

Reggio regions can be freely created. A single external pointer to a bridge object allocated on

the region is allowed, while a region’s interior can have arbitrary aliasing; effectively, such

regions form a tree. The bridge object can be swapped for a different same-region object.

Regions can be visited via their bridge objects using a push/pop region stack: only the topmost

region can be mutated, other regions on the stack are read-only (which excludes allocations),

regions outside the stack are completely inaccessible. Additionally, a region can only be visited

by a single thread. This scheme enables an absence of data races and cheap exchange of

region ownership. Additionally, each region can have its own memory management scheme,

facilitating a flexible although experimental approach to memory management. The most

salient distinguishing feature of Reggio (perhaps also the most experimental) is that at any

point, only a single Reggio region can be mutated.

113

Chapter 7. Background

Borrowing, broadly speaking, temporarily relaxes the aliasing restrictions otherwise present in

the system. Rust’s borrows are perhaps the most broadly known occurence of the concept. In

Rust, borrowing a reference temporarily disables it and creates a new reference pointing to the

same entity; the original reference is disabled until the borrow goes out of scope. The borrow

can be either mutable or shared (immutable); shared borrows can be duplicated as long as they

all go out of scope simultaneously. At any point, there only exists either a single active1 mutable

reference, or multiple active immutable (“shared”) references. Finally, a borrowed reference

can only be stored in allocations which it outlives. This scheme, reminiscent of fractional

permissions [Boyland 2013], enforces a multiple-reader/single-writer model of concurrency.

Jung et al. [2019] presents operational semantics which account for Rust’s borrowing/aliasing

model.

The linear type system proposed by Wadler [1990] features an early form of borrowing, where a

linear variable standing for mutable data can be temporarily treated as read-only, allowing it to

occur multiple times in a particular subterm. Other examples of systems featuring borrowing

include the works of Boyland and Retert [2005] and Radanne et al. [2020].

Framing is a feature of separation logic [Reynolds 2002; O’Hearn 2019] which is rather similar

to borrowing. Separation logic, a descendant of Floyd-Hoare logic, allows reasoning about

shared mutable data structures, and is built around reasoning about separated (i.e., disjoint)

parts of the heap. To facilitate such reasoning, separation logic allows temporarily framing

away certain unused references, so that local references can be seen as pointing to a separated

heap section.

7.1.3 Capabilities

The capability approach allows controlling access to sensitive functionality. In this model, sen-

sitive operations can only be performed by possessing and invoking an appropriate capability.

A good example of a capability-like entity is a Unix file handle: the primary means through

which a Unix program accesses the disk is by creating and using an appropriate file handle.

Furthermore, the capability model forbids ambient authority: an agent can only gain access

to an existing capability if it receives it from another agent. If Unix was designed following the

capability model, then the only way for a program to create a file handle would be by using

another capability, e.g., by listing the contents of a directory the program already has a handle

for. In addition, programs would need to start with no capabilities by default, and would need

to receive the capabilities they need from their outside context.

The topic of this dissertation revolves around the object capability model, where capabili-

ties are special objects which allow accessing sensitive functionality simply by calling their

methods, and having a capability object is the same as being able to use it.

There is a long line of research into the object capability model. Dennis and Van Horn [1966]

1Technically, borrows can be re-borrowed: the reference from which a borrow is created can itself be a borrow.

114

7.1 Background

discuss how capabilities are used in the security model of a multiprogrammed computer

system, which we would now call a time-sharing system. In particular, the secure entry points

discussed by Dennis and Van Horn bear many similarities to object capabilities, although they

are not objects per se. Morris [1973] explicitly points out that the usual treatment of closures

(specifically, procedures paired together with an environment which cannot be introspected),

as black boxes has multiple benefits for ensuring a program’s correct operation even if one of

its components is faulty, and W7 [Rees 1996] is an early example of a programming language

with built-in support for capabilities.

The seminal thesis of Miller [2006] on the E language was the first to propose “object capa-

bilities” as the name for the technique of identifying capabilities with objects; it provides a

detailed description of the benefits of the capability model and the advantages of unifying

capabilities and objects. The idea of object capabilities predates the work of Miller: anecdotal

information suggests it was previously known in the industry, and some of its most direct

previous occurences in the literature are in the works of Levy [1984] (see Section 10.5, where

identifying objects with capabilities is considered) and Chase et al. [1992] (see the introduction:

“a client must possess an unforgeable object reference for the service, and can only operate on

the service by invoking its methods”).

Capabilities facilitate enforcing the Principle of Least Authority. PoLA is analogous to the

Principle of Least Privilege [Saltzer 1974]. However, the latter is based on an intuitive but

imprecise notion of “Privilege”, whereas, following Miller [2006], “Authority” is defined as all

the effectful operations which may be invoked by a particular object. More broadly, I will also

speak of the authority of an agent or a principal or a process, with the same meaning in mind;

in the object capability model, it is most convenient to unify all of these concepts with objects,

but in practice it does not truly matter if they are technically a distinct sort of entity or not.

PoLA states that any entity’s authority should be restricted to the minimum necessary to carry

out its functionality. The Unix cat program violates PoLA: it executes with all the privileges of

the user invoking the program, even though it only needs to read the contents of a few files

and write to the console. In a capability-safe setting, cat would receive the capabilities it

needs when it is invoked.

The Confused Deputy Problem [Hardy 1988] is another of the original motivating examples for

capabilities [Rajani et al. 2016]; I find the example particularly illustrative and so, I describe it

in detail. The example is based on a real-life situation encountered by Tymshare, a company

providing “commercial timesharing” services, whose operating system had similar protection

structures to Unix. The system included a Compiler, in a particular System Directory. The

Compiler was writing telemetry (information about what compiler features were used) to a log

stored in the System Directory. Since the directory was protected and users could not normally

write to it, the compiler file was marked as having a special “home files license” which let it

write to arbitrary files in the System Directory.

Some users found an “interesting” loophole in the design: they discovered that they could in-

115

Chapter 7. Background

struct the Compiler to overwrite files in the System Directory by telling it to write its debugging

output to those files. They came to know that the System Directory stored a file with billing

information, and they used the loophole to overwrite the file, causing their billing information

to become lost in the process.

What went wrong? The Compiler was the eponymous “Confused Deputy”: it was serving two

masters, the Company and the User. The Company allowed the compiler to write to a sensitive

system location, while the User let the compiler write to their own personal files. This was

expressed as having the Compiler execute with a permission to write to both sorts of locations

indiscriminately, without regard for whose orders the Compiler was acting on.

What is notable about this example is that PoLA alone would not truly prevent it: the Compiler

really had a need to write its telemetry to a file in the System Directory, and the User should

not be able to instruct the Compiler to overwrite this file. Still, the capability model does offer a

natural solution: the Compiler should start with a capability to write its telemetry, and should

receive capabilities to write its (real and debug) output from the User. First, since writing to a

file requires invoking a particular capability, the Compiler needs to explicitly state on whose

authority it is writing its debug output, naturally distinguishing between the two “masters”.

Second, since in a capability setting an agent cannot create a capability they are not allowed

to use, the User would be prevented from creating the capability to write to a file in the System

Directory in the first place.

Numerous ocap dialects were developed for pre-existing languages following the path blazed

by Miller [2006], e.g., the Caja extension for Javascript [Miller et al. 2008], the Emily extension

for OCaml [Stiegler 2007; Stiegler and Miller 2006], the CaPerl extension for Perl [Laurie 2007],

and the Oz-E extension for Oz [Spiessens and Van Roy 2005]. Such dialects focused on taming

[Miller 2006] existing language features to provide an ocap-safe extension, as opposed to

integrating ocap and non-ocap code in a single codebase like gradual compartmentalization

does.

The Wyvern language features object capabilites, including a module model [Melicher et al.

2017] which was used as a building block for Gradient, as well as an effect system for controlling

access to capabilities [Melicher 2020]. Melicher et al. [2017] present a safety theorem for

reasoning about authority of objects by reasoning about the permission (using terminology

of Miller [2006]) to directly access capabilities; using a more sophisticated framework, direct,

rigorously formal reasoning about authority and attenuation is possible [Devriese et al. 2016].

Reference capabilities are a scheme for restricting the authority of object capabilites via their

types. The term was first proposed by Clebsch et al. [2015], although Boyland et al. [2001]

show a similar technique applied in a different context. I present the idea in my own words,

using terminology derived from [Miller 2006]. Reference capabilities quantify capability types

with a permission. Such permissions, much like the ones we know from Unix, describe what

operations can be invoked using the capability. For instance, a permission may only allow read-

only access to a mutable object, or it may only allow reads and writes, but not deallocation.

116

7.2 Related Work: Capturing Types

They were employed in Reggio [Arvidsson et al. 2023a,b] to restrict which objects can be

currently mutated. Gordon et al. present a system of reference capabilities which ensures

an absence of data races and deterministic execution while permitting threads to exchange

references to mutable data [Gordon et al. 2012b,a]; the system was used as the formal basis for

a prototype extension to C♯ validated in practice by a large team at Microsoft.2

7.2 Related Work: Capturing Types

Effects as Capabilities. Establishing effect safety by moderating access to effects via term-

level capabilities is not a new idea [Marino and Millstein 2009b]. It has been proposed as a

strategy to retrofit existing languages with means to reason about effect safety [Choudhury and

Krishnaswami 2020; Liu 2016; Osvald et al. 2016]. Recently, it also has been applied as the core

principle behind a new programming language featuring effect handlers [Brachthäuser et al.

2020a]. Similar to the above prior work, Capture Tracking uses term-level capabilities to restrict

access to effect operations and other scoped resources with a limited lifetime. Representing

effects as capabilities results in a good economy of concepts: existing language features, like

term-level binders, can be reused; programmers are not confronted with a completely new

concept of effects or regions.

Making Capture Explicit. Having a term-level representation of scoped capabilities introduces

the challenge to restrict use of such capabilities to the scope in which they are still live. To

address this issue, effect systems have been introduced [Zhang and Myers 2019; Biernacki

et al. 2020; Brachthäuser et al. 2020b] but those can result in overly verbose and difficult to

understand types [Brachthäuser et al. 2020a]. A third approach, taken by Capture Tracking, is

to make capture explicit in the type of functions.

Hannan [1998] proposes a type-based escape analysis with the goal to facilitate stack allocation.

The analysis tracks variable reference using a type-and-effect system and annotates every

function type with the set of free variables it captures. The authors leave the treatment of effect

polymorphism to future work. In a similar spirit, Scherer and Hoffmann [2013] present Open

Closure Types to facilitate reasoning about data flow properties such as non-interference.

They present an extension of the simply typed lambda calculus that enhances function types

[Γ0](τ) → τ with the lexical environment Γ0 that was originally used to type the closure.

Brachthäuser et al. [2022] show System C, which mediates between first- and second-class

values with boxes. In their system, scoped capabilities are second-class values. Normally,

second-class values cannot be returned from any scope, but in System C they can be boxed

and returned from some scopes. The type of a boxed second-class value tracks which scoped

capabilities it has captured and accordingly, from which scopes it cannot be returned. System

C tracks second-class values with a coeffect-like environment and uses an effect-like discipline

2This was the team working on the Midori project, as confirmed in personal communication with Colin S.
Gordon. See also https://joeduffyblog.com/2015/11/03/blogging-about-midori/.

117

https://joeduffyblog.com/2015/11/03/blogging-about-midori/

Chapter 7. Background

for tracking captured capabilities, which can in specific cases be more precise than cv. In

comparison, CC<:□ does not depend on a notion of second-class values and deeply integrates

capture sets with subtyping.

Recently, Bao et al. [2021] have proposed to qualify types with reachability sets. Their reach-

ability types allow reasoning about non-interference, scoping and uniqueness by tracking

for each reference what other references it may alias or (indirectly) point to. Their system

formalizes subtyping but not universal polymorphism. However, it relates reachability sets

along a different dimension than CC<:□. Whereas in CC<:□ a subtyping relationship is estab-

lished between a capability c and the capabilities in the type of c, reachability types assume

a subtyping relationship between a variable x and the variable owning the scope where x is

defined. Reachability types track detailed points-to and aliasing information in a setting with

mutable variables, while CC<:□ is a more foundational calculus for tracking references and

capabilities that can be used as a guide for an implementation in a complete programming

language. It would be interesting to explore how reachability and separation can be tracked in

CC<:□.

Capture Polymorphism. Combining effect tracking with higher-order functions immediately

gives rise to effect polymorphism, which has been a long-studied problem.

Similar to the usual (parametric) type polymorphism, the seminal work by Lucassen and

Gifford [1988] on type and effect systems featured (parametric) effect polymorphism by adding

language constructs for explicit region abstraction and application. Similarly, work on region

based memory management [Tofte and Talpin 1997] supports region polymorphism by explicit

region abstraction and application. Recently, languages with support for algebraic effects and

handlers, such as Koka [Leijen 2017] and Frank [Lindley et al. 2017], feature explicit, parametric

effect polymorphism.

It has been observed multiple times, for instance by Osvald et al. [2016] and Brachthäuser et al.

[2020a], that parametric effect polymorphism can become verbose and results in complicated

types and confusing error messages. Languages sometimes attempt to hide the complexity –

they “simplify the types more and leave out ‘obvious’ polymorphism” [Leijen 2017]. However,

this solution is not satisfying since the full types resurface in error messages. In contrast,

Capture Tracking supports polymorphism by reusing existing term-level binders and support

simplifying types by means of subtyping and subcapturing.

Rytz et al. [2012] present a type-and-effect system in which higher-order functions like map

can be assigned simple signatures that do not mention effect variables. As in CC<:□, it is not

necessary to modify the signatures of higher-order functions which only call their argument.

However, in the “argument-relative” system of Rytz et al., it is impossible to reference an effect

of a particular argument. This limits the overall expressivity in their system, compared to

CC<:□ – for instance, it is not possible to type function composition, or in general a function

that returns a value whose effect is relative to its argument. Their system also does not

118

7.2 Related Work: Capturing Types

allow user-defined effects, while CC<:□ allows tracking any variable by annotating it with an

appropriate capture set.

The problem of how to prevent capabilities from escaping in closures is also addressed by

second-class values that can only be passed as arguments but not be returned in results or

stored in mutable fields. Siek et al. [2012] enforce second-class function arguments using a

classical polymorphic effect discipline whereas Osvald et al. [2016] and Brachthäuser et al.

[2020a] present a specialized type discipline for this task. Second-class values cannot be

returned or closed-over by first-class functions. On the other hand, second-class functions

can freely close over capabilities, since they are second-class themselves. This gives rise to

a convenient and light-weight form of contextual effect polymorphism [Brachthäuser et al.

2020a]. While this approach allows for effect polymorphism with a simple type system, it is

also restrictive because it also forbids local returns and retentions of capabilities; a problem

solved by adding boxing and unboxing [Brachthäuser et al. 2022].

Foundations of Boxing.

Contextual modal type theory (CMTT) [Nanevski et al. 2008] builds on intuitionistic modal

logic. In intuitionistic modal logic, the graded propositional constructor [Ψ] A (pronounced

box) witnesses that A can be proven only using true propositions in Ψ. Judgements in CMTT

have two contexts: Γ, roughly corresponding to CC<:□bindings with {cap} as their capture set,

and a modal context∆ roughly corresponding to bindings with concrete capture sets. Bindings

in the modal context are necessarily boxed and annotated with a modality x :: A[¶si] ∈∆. Just

like our definition of captured variables in CC<:□, the definition of free variables by Nanevski

et al. [2008] assigns the empty set to a boxed term (that is, f v(box(Ψ.M)) = {}). Similar to our

unboxing construct, using a variable bound in the modal context requires that the current

context satisfies the modality Ψ, mediated by a substitution σ. Different to CMTT, CC<:□

does not introduce a separate modal context. It also does not annotate modalities on binders,

instead these are kept in the types. Also different to CMTT, in CC<:□ unboxing is annotated

with a capture set and not a substitution.

Comonadic type systems were introduced to support reasoning about purity in existing,

impure languages [Choudhury and Krishnaswami 2020]. Very similar to the box modality

of CMTT, a type constructor ‘Safe’ witnesses the fact that its values are constructed without

using any impure capabilities. The type system presented by Choudhury and Krishnaswami

[2020] only supports a binary distinction between pure values and impure values, however,

the authors comment that it might be possible to generalize their system to graded modalities.

In the present paper, Capture Tracking uses boxing as a practical tool, necessary to obtain

concise types when combining capture tracking with parametric type polymorphism.

Coeffect Systems.

119

Chapter 7. Background

Coeffect systems also attach additional information to bindings in the environment, leading

to a typing judgement of the form Γ@ C ⊢ e : τ. Such systems can be seen as similar in spirit

to CC<:□, where additional information is available about each variable in the environment

through the capture set of its type. Petricek et al. [2014b] show a general coeffect framework

that can be instantiated to track various concepts such as bounded reuse of variables, implicit

parameters and data access. This framework is based on simply typed lambda calculus and its

function types are always coeffect-monomorphic. In contrast, CC<:□ is based on System F<:

(thus supporting type polymorphism and subtyping) and supports capture-polymorphic

functions.

Object Capabilities.

The (object-)capability model of programming [Crary et al. 1999; Boyland et al. 2001; Miller

2006], controls security critical operations by requiring access to a capability. Such a capability

can be seen as the constructive proof that the holder is entitled to perform the critical opera-

tion. Reasoning about which operations a module can perform is reduced to reasoning about

which references to capabilities a module holds.

The Newspeak language [Bracha et al. 2010] features object capabilites. In particular, it features

the platform capability, an object which grants access to the underlying platform and allows

resolving modules and capabilities. The platform capability is similar to the root capability cap:

a CC<:□ value assigned the capture of {cap} has the authority to access arbitrary capabilities,

while capturing the Newspeak platform capability grants access to the entire platform.

The Wyvern language [Melicher et al. 2017] implements the object capability model by distin-

guishing between stateful resource modules and pure modules. Access to resource modules

is restricted and only possible through capabilities. Determining the authority granted by a

module amounts to manually inspecting its type signature and all of the type signatures of

its transitive imports. To support this analysis, Melicher [2020] extends the language with a

fine-grained effect system which tracks access to capabilities in the type of methods.

Figueroa et al. [2016] show an intricately engineered encoding of object capabilities in Haskell,

where a Haskell module needs to possess appropriate capabilities in order to call a monad

transformer’s private operations. The capabilities may be organized into a hierarchy, e.g., a

ReadWrite capability may subsume the Read and Write capabilities. Capabilities may be

shared between modules through encoded friend declarations; a module’s authority may be

determined like in Wyvern.

In CC<:□, one can statically reason about authority of capabilities simply by inspecting what

capture sets capabilities are typed with. Additionally, subcapturing naturally allows defining

capability hierarchies. If we model modules with abstractions, the abstraction’s capture set

directly reflects its authority. Importantly, CC<:□ tracks mention rather than use and does not

include a separate effect system.

120

7.3 Related Work: Gradual Compartmentalization

7.3 Related Work: Gradual Compartmentalization

Compartmentalization solutions exist on a spectrum. They range from static support for

explicit security policies directly within a language’s semantics and types, to dynamic ones

enforced by the operating system on arbitrary code. Each design point presents different

trade-offs between (1) the expressiveness and granularity of user-defined security policies

and (2) the burden put on the programmer to correctly compartmentalize untrusted code. All

solutions aim at limiting untrusted software component’s access to the rest of the application

and system resources.

Neither is Capture Tracking a sui generis concept. Many of the underlying ideas were and are

studied in the literature. This section first explores different compartmentalization approaches

and highlights their trade-offs, and next discusses the literature on tracking capabilities in

types.

7.3.1 Static Compartmentalization

Object capabilities. There is a long history of research on object capabilities. As early as

1973, Morris described various language features which can support local reasoning about

security properties. W7 is an early example of a language with support for capabilities [Rees

1996]. The seminal thesis on the E language [Miller 2006] may have been the first to explicitly

recognize and define the object capability approach, as well as provide a detailed description

of its benefits. E inspired many other works on restricting existing languages to build a

capability-safe subset [Mettler et al. 2010; Miller et al. 2008; Stiegler and Miller 2006; Laurie

2007; Spiessens and Van Roy 2005].

Gradient’s approach to modules is very closely inspired by Wyvern [Melicher et al. 2017], which

itself is inspired by Newspeak modules [Bracha et al. 2010] and their predecessors, such as

MzScheme’s Units [Flatt and Felleisen 1998].

Object capabilities together with a module system enable an application to compartmentalize

its components and control their access to program and system resources in an intuitive and

familiar way. However, they assume that the application’s code is uniformly written assuming

no ambient authority, which is not true of the vast majority of currently existing code.

Programming Languages. Rust allows circumventing its memory safety guarantees within

unsafe blocks. The motivation for this feature is that circumventing the guarantees is oc-

casionally necessary for expresiveness and that the blocks themselves can easily be located

by tooling. In practice, developers make mistakes: Bae et al. [2021] built a tool for automati-

cally scanning the Rust ecosystem for vulnerabilities and identified 264 previously unknown

memory safety bugs (leading to 76 CVEs). Moreover, combining safe and unsafe languages

in a single application can lead to Cross-Language Attacks [Mergendahl et al. 2022], which

121

Chapter 7. Background

would have been prevent by the checks of either language alone, static or dynamic. Preventing

such vulnerabilities is one reason to only allow executing unsafe code if its behaviour can

be dynamically controlled and restricted, as gradual compartmentalization and Gradient

propose.

PCC & Language Virtual Machines. Proof-carrying code (PCC) [Necula 1997; Appel 2001] is

an approach which attaches a formal proof to a software component. The proof is checked

at load-time to ensure the component adheres to the desired security policies. Certain com-

partmentalization solutions, such as domain specific languages (e.g., eBPF [McCanne and

Jacobson 1993]), compiler instrumentation (e.g., NaCl [Yee et al. 2009]), or even language

virtual machines (e.g., WASM [Haas et al. 2017]) can be see as variations of PCC. While such

mechanisms work on the level of bytecode, employing them may still require refactoring

code, e.g., eBPF code is required to terminate [McCanne and Jacobson 1993]. They further

often target specific ecosystems (e.g., web browsers or kernel module subsystems) and require

non-negligible efforts to be adapted to other environments [WASI 2023; WASM-Web 2023;

WASM-JS 2023].

Libraries. RLBox is a library which aids with compartmentalizing a library via NaCl or We-

bAssembly, used to compartmentalize the Firefox rendering process at a very fine granular-

ity [Narayan et al. 2020]. While the library is a very useful fit for isolating libraries which need

little access to program or system resources (such as image manipulation libraries used in

web browsers), the approach shares the issues of NaCl and WebAssembly: Interfacing with

program and system resources is difficult and not verified statically.

7.3.2 Dynamic Compartmentalization

Processes. Processes are the default mechanism to isolate applications in a time-sharing

operating system. They have been used to compartmentalize applications such as web

browsers [Chromium 2023; Mozilla 2023]. They are a clear boundary around untrusted code

that encompasses all of the code’s resources and has a clear interface to the underlying sys-

tem to interpose on system calls.Process-based compartments further have the benefit of

supporting arbitrary, pre-compiled binaries.

Most applications, however, assume a shared heap and stack and the ability to directly call

their libraries. Compartmentalizing existing applications with processes thus requires heavy

refactoring so that untrusted libraries are only directly accessed within a separate process. It

incurs non-negligible overheads to turn direct calls into synchronous inter-process communi-

cation, requires marshalling arguments between processes, and generally increases resource

consumption, either through system metadata or duplication of common code dependencies.

122

7.3 Related Work: Gradual Compartmentalization

OS abstractions. Several solutions [Bittau et al. 2008; Litton et al. 2016; Hsu et al. 2016] extend

operating systems with intra-address-space isolation mechanisms. Light-weight Contexts

(lwC) [Litton et al. 2016] let application create intra-process compartments with limited access

to the program’s resources. Despite being more flexible than processes, such solutions still

require modifying applications. As these are generally implemented at the system-level, they

do not leverage program-specific semantic knowledge and push the burden of compartmen-

talization onto the programmer. The lack of a clear migration path to compartmentalized

applications may in part explain why none of these solutions made its way into mainstream

operating systems.

Hardware Extensions. Application compartmentalization operates at a different spatial and

temporal granularity than processes. As a result, hardware security extensions appeared to

provide hardware-enforced isolation at either (1) finer-granularity (e.g., Mondrian memory at

byte-level [Witchel et al. 2002]), (2) with lower temporal overheads (e.g., Intel Memory Protec-

tion [Intel 2020] or VmFunc in Intel VT-x [Uhlig et al. 2005]) to switch between compartments,

or (3) both (e.g., CHERI [Woodruff et al. 2014]).

Similarly to OS mechanisms, these solutions require either heavily modifying existing ap-

plications, or implementing new software development toolchains [Hedayati et al. 2019;

Vahldiek-Oberwagner et al. 2019; Lind et al. 2017; Ghosn et al. 2021] (i.e., compilers, stan-

dard libraries, runtime environments). The second approach allows leveraging language or

application-specific knowledge to (partially) automate code compartmentalization, reducing

the migration burden. For example, Enclosures [Ghosn et al. 2021] expose a flexible pro-

gramming abstraction. They rely on the compiler and the runtime to bridge the gap between

programming language constructs and hardware entities. The language runtime transparently

create and orchestrates compartment transitions. Enforcing isolation via hardware mecha-

nisms allows Enclosures to support heterogeneous environments. Despite their acceptable

performance overheads, Enclosures only detect policy violations at run-time. This can some-

times lead to a costly trial and error to tune restrictions applied to a particular closure and

slows down the development process.

7.3.3 Tracking Capabilities in Types

Access to capabilities can be tracked with an effect system. For instance, in the region-based

memory management system proposed by Tofte and Talpin [1997], an effect system tracks

access to regions. Indeed, practically any effect system, starting from the seminal work

of Lucassen and Gifford [1988], can be used to track capability access. Such systems were

also integrated with object capabilities, e.g., Wyvern features an effect system which allows

tracking capability access at method granularity.

However, it has been observed multiple times (e.g., by Osvald et al. [2016] and Brachthäuser

et al. [2022]), that the form of polymorphism present in most such systems leads to ver-

123

Chapter 7. Background

bose type signatures, which are arguably the key factor which impeded their broader adop-

tion [Boruch-Gruszecki et al. 2023]. Capture Tracking instead fully relies on intuitive capability-

based reasoning: all capabilities within current scope can always be accessed, without needing

to state so within the type system. The type system instead tracks if capabilities are returned

from scopes that received them, which arguably is also more intuitive: instead of needing to

ask for permission when invoking effectful operations as in effect system, types in Capture

Tracking clarify which objects may be used to access tracked resources and therefore merit

particular attention. In practice, Capture Tracking can be retroactively applied to a codebase

with a relatively small burden (Section 6.6).

Systems which track capture of particular tracked objects were proposed: the type-based

escape analysis of Hannan [1998] and the Open Closure Types of Scherer and Hoffmann [2013].

Neither system features a lightweight polymorphism mechanism similar to Capture Tracking.

Rytz et al. [2012] present a type-and-effect system which allows typing higher-order functions

with simple signatures without effect polymorphism. Compared to Capture Tracking, the

expressivity of the system is limited: it is impossible to type a function whose result’s effect is

relative to the function’s argument, e.g., the function composition operator. Coeffect systems

augment bindings in the typing context with additional information, not unlike how Capture

Tracking augments the type of each bindings with a capture set. Petricek et al. [2014a] show a

general coeffect framework which can be used to track various functionality, including data

access. In contrast to Capture Tracking, this framework is based on simply typed lambda

calculus and does not support coeffect-polymorphic function types.

124

A CC<:□ Proofs

A.1 Proof devices

We extend type well-formedness to environments:

Well-formed environment ⊢ Γwf

⊢ Γwf Γ⊢ T wf

⊢ Γ, x : T wf

⊢ Γwf Γ⊢ T wf

⊢ Γ, X <: T wf
⊢ ;wf

To prove Preservation (??), we relate the typing derivation of a term of the form σ[t] to the

typing derivation for the plug term t inside the store σ. We do so with the following definition:

Matching environment Γ ⊢ σ∼∆

Γ, x : T ⊢ σ∼∆ Γ ⊢ v : T x ̸∈ fv(T)

Γ ⊢ letx = v inσ∼ x : T,∆
Γ ⊢ [] ∼ ·

Definition A.1 (Evaluation context typing (Γ⊢ e : U ⇒ T)). We say that e can be typed as U ⇒ T

in Γ iff for all t such that Γ⊢ t : U , we have Γ⊢ η[t] : T .

Fact 1. If σ[t] is a well-typed term in Γ, then there exists a ∆ matching σ (i.e. such that

Γ ⊢ σ∼∆), finding it is decidable, and Γ,∆ is well-formed.

Fact 2. The analogous holds for η[t].

A.2 Properties of Evaluation Contexts and Stores

In the proof, we use the following metavariables: C ,D for capture sets, R,S for shape types,

P,Q,T,U for types.

125

Appendix A. CC<:□ Proofs

We also denote the capture set fragment of a type as cv(T), defined as cv(R ∧C) =C .

In all our statements, we implicitly assume that all environments are well-formed.

Lemma A.1 (Evaluation context typing inversion). Γ ⊢ η[s] : T implies that for some U we

have Γ⊢ e : U ⇒ T and Γ⊢ s : U .

Proof. By induction on the structure of e. If e = [], then Γ ⊢ s : T and clearly Γ ⊢ [] : T ⇒ T .

Otherwise e = letx = e ′ in t . Proceed by induction on the typing derivation of η[s]. We can

only assume that Γ⊢ η[s] : T ′ for some T ′ s.t. Γ⊢ T ′ <: T .

Case (LET). Then Γ ⊢ e ′[s] : U ′ and Γ, x : U ′ ⊢ t : T ′ for some U ′. By the outer IH, for

some U we then have Γ⊢ e ′ : U ⇒U ′ and Γ⊢ s : U . The former unfolds to ∀s′.Γ⊢ s′ :

U =⇒ Γ⊢ e ′[s′] : U ′. We now want to show that ∀s′.Γ⊢ s′ : U =⇒ Γ⊢ e[s′] : T ′. We

already have Γ⊢ e ′[s′] : U ′ and Γ, x : U ′ ⊢ t : T ′, so we can conclude by (LET).

Case (SUB). Then Γ⊢ η[s] : T ′′ and Γ⊢ T ′′ <: T ′. We can conclude by the inner IH and

(TRANS).

Lemma A.2 (Evaluation context reification). If both Γ ⊢ e : U ⇒ T and Γ ⊢ s : U , then Γ ⊢
η[s] : T .

Proof. Immediate from the definition of Γ⊢ e : U ⇒ T .

Lemma A.3 (Store context reification). If Γ ⊢ σ∼∆ and Γ,∆ ⊢ t : T then Γ ⊢ σ[t] : T .

Proof. By induction on σ.

Case σ= []. Immediate.

Case σ=σ′[letx = v in[]]. Then ∆=∆′, x : U for some U . Since x ̸∈ fv(T) as Γ ⊢ T wf,

by (LET), we have that Γ,∆′ ⊢ letx = v in t and hence by the induction hypothesis for

some U we have that Γ, x : U ⊢ σ′[t] : T . The result follows directly.

The above lemma immediately gives us:

Corollary A.1 (Replacement of term under a store context). If Γ ⊢ σ[t] : T and Γ ⊢ σ∼∆

and Γ,∆ ⊢ t : T , then for all t ′ such that Γ,∆ ⊢ t ′ : T we have Γ ⊢ σ[t ′] : T .

126

A.3 Properties of Subcapturing

A.3 Properties of Subcapturing

Lemma A.4 (Top capture set). Let Γ⊢C wf. Then Γ⊢C <: {cap}.

Proof. By induction on Γ. If Γ is empty, then C is either empty or cap ∈C , so we can conclude

by (SC-SET) or (SC-ELEM) correspondingly. Otherwise, Γ = Γ′, x : S ∧ D and since Γ is well-

formed, Γ′ ⊢ D wf. By (SC-SET), we can conclude if for all y ∈ C we have Γ ⊢ {y} <: {cap}. If

y = x, by IH we derive Γ′ ⊢ D <: {cap}, which we then weaken to Γ and conclude by (SC-VAR).

If y ̸= x, then Γ′ ⊢ {y} wf, so by IH we derive Γ′ ⊢ {y} <: {cap} and conclude by weakening.

Corollary A.2 (Effectively top capture set). Let Γ ⊢ C ,D wf such that cap ∈ D. Then we can

derive Γ⊢C <: D.

Proof. We can derive Γ⊢C <: {cap} by Lemma A.4 and then we can conclude by Lemma A.7

and (SC-ELEM).

Lemma A.5 (Universal capability subcapturing inversion). Let Γ ⊢ C <: D. If cap ∈ C , then

cap ∈ D.

Proof. By induction on subcapturing. Case (SC-ELEM) immediate, case (SC-SET) by repeated

IH, case (SC-VAR) contradictory.

Lemma A.6 (Subcapturing distributivity). Let Γ ⊢ C <: D. Then for all x ∈C we have Γ ⊢ {x} <:

D.

Proof. By inspection of the last subcapturing rule used to derive C <: D . All cases are immedi-

ate. If the last rule was (SC-SET), we have our goal as premise. Otherwise, we have C = {x} and

the goal follows directly.

Lemma A.7 (Subcapturing transitivity). If Γ ⊢ C1 <: C2 and Γ ⊢ C2 <: C3 then Γ ⊢ C1 <: C3.

Proof. By induction on the first derivation.

Case (SC-ELEM). C1 = {x} and x ∈C2, so by Lemma A.6 Γ ⊢ {x} <: C3.

Case (SC-VAR). Then C1 = {x} and x : R ∧C4 ∈ Γ and Γ ⊢ C4 <: C2. By IH Γ ⊢ C4 <: C3 and

we can conclude by (SC-VAR).

Case (SC-SET). By repeated IH and (SC-SET).

Lemma A.8 (Subcapturing reflexivity). If Γ ⊢ C wf, then Γ ⊢ C <: C .

127

Appendix A. CC<:□ Proofs

Proof. By (SC-SET) and (SC-ELEM).

Lemma A.9 (Subtyping implies subcapturing). If Γ ⊢ R1
∧C1 <: R2

∧C2, then Γ ⊢ C1 <: C2.

Proof. By induction on the subtyping derivation. If (CAPT), immediate. If (TRANS), by IH

and subcapturing transitivity Lemma A.7. If (REFL), then C1 = C2 and we can conclude by

Lemma A.8. Otherwise, C1 =C2 = {} and we can conclude by (SC-SET).

A.3.1 Subtyping inversion

Fact 3. Both subtyping and subcapturing are transitive.

Proof. Subtyping is intrisically transitive through (TRANS), while subcapturing admits transi-

tivity as per Lemma A.7.

Fact 4. Both subtyping and subcapturing are reflexive.

Proof. Again, this is an intrinsic property of subtyping by (REFL) and an admissible property

of subcapturing per Lemma A.8.

Lemma A.10 (Subtyping inversion: type variable). If Γ ⊢ U <: X ∧C , then U is of the form

X ′∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ X ′ <: X .

Proof. By induction on the subtyping derivation.

Case (TVAR), (REFL). Follows from reflexivity (4).

Case (CAPT). Then we have U = S ∧C ′ and Γ ⊢ C ′ <: C and Γ ⊢ S <: X .

This relationship is equivalent to Γ ⊢ S ∧{} <: X ∧{}, on which we invoke the IH.

By IH we have S ∧{} = Y ∧{} and we can conclude with U = Y ∧C ′.

Case (TRANS). Then we have Γ ⊢ U <: U and Γ ⊢ U <: X ∧C . We proceed by using the

IH twice and conclude by transitivity (3).

Other rules are impossible.

Lemma A.11 (Subtyping inversion: capturing type). If Γ ⊢ U <: S ∧C , then U is of the form

S′∧C ′ such that Γ ⊢ C ′ <: C and Γ ⊢ S′ <: S.

Proof. We take note of the fact that subtyping and subcapturing are both transitive (3) and

reflexive (4). The result follows from straightforward induction on the subtyping derivation.

128

A.3 Properties of Subcapturing

Lemma A.12 (Subtyping inversion: function type). If Γ ⊢ U <: (∀(x : T1)T2)∧C , then U either

is of the form X ∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ X <: ∀(x : T1)T2, or U is of the form

(∀(x : U1)U2)∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ T1 <: U1 and Γ, x : T1 ⊢ U2 <: T2.

Proof. By induction on the subtyping derivation.

Case (TVAR). Immediate.

Case (FUN), (REFL). Follow from reflexivity (4).

Case (CAPT). Then we have Γ ⊢ C ′ <: C and Γ ⊢ S <: ∀(x : T1)T2.

This relationship is equivalent to Γ ⊢ S ∧{} <: (∀(x : T1)T2)∧{}, on which we invoke the

IH.

By IH S ∧{} might have two forms. If S ∧{} = X ∧{}, then we can conclude with U = X ∧C ′.
Otherwise we have S ∧ {} = (∀(x : U1)U2) ∧ {} and Γ ⊢ T1 <: U1 and Γ, x : T1 ⊢ U2 <: T2.

Then, U = (∀(x : U1)U2)∧C ′ lets us conclude.

Case (TRANS). Then we have Γ ⊢ U <: U ′ and Γ ⊢ U <: (∀(x : T1)T2)∧C . By IH U may

have one of two forms. If U = X ∧C ′, we proceed with Lemma A.10 and conclude by

transitivity (3).

Otherwise U = (∀(x : U1)U2)∧C ′ and we use the IH again on Γ ⊢ U ′ <: (∀(x : U1)U2)∧C ′.
If U = X ∧C ′′, we again can conclude by (3). Otherwise if U = (∀(x : U1)U2)∧C ′′, the IH

only gives us Γ, x : U1 ⊢ U2 <: U2, which we need to narrow to Γ, x : T1 before we can

similarly conclude by transitivity (3).

Other rules are not possible.

Lemma A.13 (Subtyping inversion: type function type). If Γ ⊢ U <: (∀[X <: S]T)∧C , then U

either is of the form X ∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ X <: ∀[X <: S]T , or U is of the form

(∀[X <: R]U ′)∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ T <: U ′ and Γ, X <: T ⊢ R <: S.

Proof. Analogous to the proof of Lemma A.12.

Lemma A.14 (Subtyping inversion: boxed type). If Γ ⊢ U <: (□T)∧C , then U either is of the

form X ∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ X <: □T , or U is of the form (□U ′)∧C ′ and we

have Γ ⊢ C ′ <: C and Γ ⊢ U ′ <: T .

Proof. Analogous to the proof of Lemma A.12.

129

Appendix A. CC<:□ Proofs

A.3.2 Permutation, weakening, narrowing

Lemma A.15 (Permutation). Permutating the bindings in the environment up to preserving

environment well-formedness also preserves type well-formedness, subcapturing, subtyping

and typing.

Let Γ and ∆ be the original and permutated context, respectively. Then:

1. If Γ ⊢ T wf, then ∆ ⊢ T wf.

2. If Γ ⊢ C1 <: C2, then ∆ ⊢ C1 <: C2.

3. If Γ ⊢ U <: T , then ∆ ⊢ U <: T .

4. If Γ ⊢ t : T , then ∆ ⊢ t : T .

Proof. As usual, order of the bindings in the environment is not used in any rule.

Lemma A.16 (Weakening). Adding a binding to the environment such that the resulting envi-

ronment is well-formed preserves type well-formedness, subcapturing, subtyping and typing.

Let Γ and ∆ be the original and extended context, respectively. Then:

1. If Γ ⊢ T wf, then ∆ ⊢ T wf.

2. If Γ ⊢ C1 <: C2, then ∆ ⊢ C1 <: C2.

3. If Γ ⊢ U <: T , then ∆ ⊢ U <: T .

4. If Γ ⊢ t : T , then ∆ ⊢ t : T .

Proof. As usual, the rules only check if a variable is bound in the environment and all versions

of the lemma are provable by straightforward induction. For rules which extend the environ-

ment, such as (ABS), we need permutation. All cases are analogous, so we will illustrate only

one.

Case (ABS). WLOG we assume that ∆= Γ, x : T . We know that Γ ⊢ λ
(
y : U

)
t ′ : ∀(y : U)U .

and from the premise of (ABS) we also know that Γ, y : U ⊢ t ′ : U .

By IH, we have Γ, y : U , x : T ⊢ t ′ : U . Γ, x : T, y : U is still a well-formed environment (as

T cannot mention y) and by permutation we have Γ, x : T, y : U ⊢ t ′ : U . Then by (ABS)

we have Γ, x : T ⊢ λ
(
y : U

)
t ′ : ∀(y : U)U , which concludes.

Lemma A.17 (Type binding narrowing).

130

A.3 Properties of Subcapturing

1. If Γ ⊢ S′ <: S and Γ, X <: S,∆ ⊢ T wf, then Γ, X <: S′,∆ ⊢ T wf.

2. If Γ ⊢ S′ <: S and Γ, X <: S,∆ ⊢ C1 <: C2, then Γ, X <: S′,∆ ⊢ C1 <: C2.

3. If Γ ⊢ S′ <: S and Γ, X <: S,∆ ⊢ T1 <: T2, then Γ, X <: S′,∆ ⊢ T1 <: T2.

4. If Γ ⊢ S′ <: S and Γ, X <: S,∆ ⊢ t : T , then Γ, X <: S′,∆ ⊢ t : T .

Proof. By straightforward induction on the derivations. Only subtyping considers types to

which type variables are bound, and the only rule to do so is (TVAR), which we prove below. All

other cases follow from IH or other narrowing lemmas.

Case (TVAR). We need to prove Γ, X <: S′,∆ ⊢ X <: S, which follows from weakening the

lemma premise and using (TRANS) together with (TVAR).

Lemma A.18 (Term binding narrowing).

1. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ T wf, then Γ, x : U ′,∆ ⊢ T wf.

2. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ C1 <: C2, then Γ, x : U ′,∆ ⊢ C1 <: C2.

3. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ T1 <: T2, then Γ, x : U ′,∆ ⊢ T1 <: T2.

4. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ t : T , then Γ, x : U ′,∆ ⊢ t : T .

Proof. By straightforward induction on the derivations. Only subcapturing and typing con-

sider types to which term variables are bound. Only (SC-VAR) and (VAR) do so, which we prove

below. All other cases follow from IH or other narrowing lemmas.

Case (VAR). We know that U = R ∧C and Γ, x : R ∧C ,∆ ⊢ x : R ∧{x}. As Γ ⊢ U ′ <: U , from

Lemma A.11 we know that U ′ = R ′ ∧C ′ and that Γ ⊢ R ′ <: R. We need to prove that

Γ, x : R ′ ∧C ′,∆ ⊢ x : R ∧{x}. We can do so through (VAR), (SUB), (CAPT), (SC-ELEM) and

weakening Γ ⊢ R ′ <: R.

Case (SC-VAR). Then we know that C1 = {y} and that y : T ∈ Γ, x : U ,∆ and that Γ, x :

U ,∆ ⊢ cv(T) <: C2.

If y ̸= x, we can conclude by IH and (SC-VAR).

Otherwise, we have T = U . From Lemma A.11 we know that Γ ⊢ cv(U ′) <: cv(U),

and from IH we know that Γ, x : U ′,∆ ⊢ cv(U) <: C2. By (SC-VAR) to conclude it is

enough to have Γ, x : U ′,∆ ⊢ cv(U ′) <: C2, which we do have by connecting two previous

conclusions by weakening and Lemma A.7.

131

Appendix A. CC<:□ Proofs

A.4 Substitution

A.4.1 Term Substitution

We will make use of the following fact:

Fact 5. If x : T ∈ Γ and ⊢ Γwf, then Γ=∆1, x : T,∆2 and ∆1 ⊢ T wf and so x ̸∈ fv(T).

Lemma A.19 (Term substitution preserves subcapturing). If Γ, x : P,∆ ⊢ C1 <: C2 and Γ ⊢ D <:

cv(P), then Γ, [x := D]∆ ⊢ [x := D]C1 <: [x := D]C2.

Proof. Define θ≜ [x := D]. By induction on the subcapturing derivation.

Case (SC-ELEM). Then C1 = {y} and y ∈ C2. Inspect if y = x. If no, then our goal is

Γ,θ∆ ⊢ {y} <: θC2. In this case, y ∈ θC2, which lets us conclude by (SC-ELEM). Otherwise,

we have θC2 = (C2 \{x})∪D , as x ∈C2. Then our goal is Γ,θ∆ ⊢ D <: (C2 \{x})∪D , which

can be shown by (SC-SET) and (SC-ELEM).

Case (SC-VAR). Then C1 = {y} and y : S ∧C3 ∈ Γ, x : P,∆ and Γ, x : P,∆ ⊢ C3 <: C2.

Inspect if y = x. If yes, then our goal is Γ,θ∆ ⊢ D <: θC2. By IH we know that Γ,θ∆ ⊢
θC3 <: θC2. As x = y , we have P = S ∧C3 and therefore based on an initial premise of the

lemma we have Γ ⊢ D <: C3. Then by weakening and IH, we know that Γ,θ∆ ⊢ θD <:

θC3, which means we can conclude by Lemma A.7.

Otherwise, x ̸= y , and our goal is Γ,θ∆ ⊢ C1 <: θC2. We inspect where y is bound.

Case y ∈ dom(Γ). Then note that y ̸∈C3 by 5. By IH we have Γ,θ∆ ⊢ θC3 <: θC2.

We can conclude by (SC-VAR) as [x := D]C3 =C3 and y : P ∧C3 ∈ Γ,θ∆.

Case y ∈ dom(∆). Then y : θ(P ∧ C3) ∈ Γ,θ∆ and we can conclude by IH and

(SC-VAR).

Case (SC-SET). Then C1 = {y1, . . . , yn} and we inspect if x ∈C1.

If not, then for all y ∈C1 we have θ{y} = {y} and so we can conclude by repeated IH on

our premises and (SC-SET).

If yes, then we know that: ∀ y ∈C1.Γ, x : P,∆ ⊢ {y} <: C2. We need to show that Γ,θ∆ ⊢
θC1 <: θC2. By (SC-SET), it is enough to show that if y ′ ∈ θC1, then Γ,θ∆ ⊢ {y ′} <: θC2.

For each such y ′, there exists y ∈C1 such that y ′ ∈ θ{y}. For this y , from a premise of

(SC-SET) we know that Γ, x : P,∆ ⊢ {y} <: θC2 and so by IH we have Γ,θ∆ ⊢ θ{y} <: θC2.

Based on that, by Lemma A.7 we also have Γ,θ∆ ⊢ {y ′} <: θC2. which is our goal.

Lemma A.20 (Term substitution preserves subtyping). If Γ, x : P,∆ ⊢ U <: T and Γ ⊢ y : P,

then Γ, [x := y]∆ ⊢ [x := y]U <: [x := y]T .

Proof. Define θ≜ [x := y]. Proceed by induction on the subtyping derivation.

132

A.4 Substitution

Case (REFL), (TOP). By same rule.

Case (CAPT). By IH and Lemma A.22 and (CAPT).

Case (TRANS), (BOXED), (FUN), (TFUN). By IH and re-application of the same rule.

Case (TVAR). Then U = Y and T = S and Y <: S ∈ Γ, x : U ,∆ and our goal is Γ,θ∆ ⊢
θY <: θ(S). Note that x ̸= Y and inspect where Y is bound. If Y ∈ dom(Γ), we have

Y <: S ∈ Γ,θ∆ and since x ̸∈ fv(S) (5), θ(S) = S. Then, we can conclude by (TVAR).

Otherwise if Y ∈ dom(∆), we have Y <: θS ∈ Γ,θ∆ and again we can conclude by (TVAR).

Lemma A.21 (Term substitution preserves typing). If Γ, x : P,∆ ⊢ t : T and Γ ⊢ x ′ : P, then

Γ, [x := x ′]∆ ⊢ [x := x ′]t : [x := x ′]T .

Proof. Define θ≜ [x := x ′]. Proceed by induction on the typing derivation.

Case (VAR). Then t = y and y : S ∧C ∈ Γ, x : P,∆ and T = S ∧{y} and our goal is Γ,θ∆ ⊢ y :

θ(S ∧{y}).

If y = x, then P = S ∧C and θ(S ∧{x}) = S ∧{x ′}. Our goal is Γ,θ∆ ⊢ x ′ : S ∧{x ′} and we can

conclude by (VAR).

Otherwise, y ̸= x and we inspect where y is bound.

If y ∈ dom(Γ), then x ̸∈ fv(S ∧C) and so θ(S ∧{z}) = S ∧{z} and we can conclude by (VAR).

Otherwise, y ∈ dom(∆), so y : θ(S ∧C) ∈ Γ,θ∆ and we can conclude by (VAR).

Case (SUB). By IH, Lemma A.20 and (SUB).

Case (ABS). Then t =λyQt ′,T = (∀(y : Q)T ′)∧cv(t) and Γ, x : P,∆, y : Q ⊢ t ′ : T ′.
By IH, we have that Γ,θ∆, y : θQ ⊢ θt ′ : θT ′. We note that cv(θt) = θcv(t), which lets us

conclude by (ABS).

Case (TABS). Similar to previous rule.

Case (APP). Then t = z1 z2 and Γ, x : P,∆ ⊢ z1 : (∀(y : Q)T ′)∧C and Γ, x : P,∆ ⊢ z1 : Q and

T = [y := z2]T ′.
By IH we have Γ,θ∆ ⊢ θz1 : θ((∀(y : Q)T ′)∧C) and Γ,θ∆ ⊢ θz2 : θQ.

Then by (APP) we have Γ,θ∆ ⊢ θ(z1 z2) : [y := θz2]θT ′.
As y ̸= x and y ̸= x ′, we have [y := θz2]θT ′ = θ([y := z2]T ′), which concludes.

Case (TAPP). Similar to previous rule.

Case (BOX). Then t =□z and Γ, x : P,∆ ⊢ z : S ∧C and T =□S ∧C .

By IH, we have Γ,θ∆ ⊢ θz : θS ∧θC . If x ̸∈C , we have θC =C and C ⊆ dom(Γ,θ∆) which

lets us conclude by (BOX). Otherwise, θC = (C \ {x})∪ {y} As Γ ⊢ y : U , θC ⊆ dom(Γ,θ∆),

which again lets us conclude by (BOX).

133

Appendix A. CC<:□ Proofs

Case (UNBOX). Analogous to the previous rule. Note that we just swap the types in the

premise and the conclusion.

Case (LET). Then t = let y = s in t ′ and Γ, x : P,∆ ⊢ s : Q and Γ, x : P,∆, y : Q ⊢ t ′ : T . By

the IH, we have Γ,θ∆⊢ θs : θQ and Γ,θ∆, y : θQ ⊢ θt ′ : θT .

Then by (LET) we also have Γ,θ∆ ⊢ θ(let y = s in t ′) : θT , which concludes.

A.4.2 Type Substitution

Lemma A.22 (Type substitution preserves subcapturing). If Γ, X <: S,∆ ⊢ C <: D and Γ ⊢
R <: S then Γ, [X := R]∆ ⊢ C <: D.

Proof. Define θ≜ [X := R]. Proceed by induction on the subcapturing derivation.

Case (SC-SET), (SC-ELEM). By IH and same rule.

Case (SC-VAR). Then C = {y}, y : S′∧C ′ ∈ Γ, X <: S,∆, y ̸= X . Inspect where y is bound. If

y ∈ dom(Γ), we have y : S′ ∧C ′ ∈ Γ,θ∆. Otherwise, by definition of substition we have

y : θS′∧C ′ ∈ Γ,θ∆. In both cases we can conclude by (SC-VAR), since y is still bound to a

type whose capture set is C ′.

Lemma A.23 (Type substitution preserves subtyping). If Γ, X <: S,∆ ⊢ U <: T and Γ ⊢ R <: S,

then Γ, [X := R]∆ ⊢ [X := R]U <: [X := R]T .

Proof. Define θ≜ [X := R]. Proceed by induction on the subtyping derivation.

Case (REFL), (TOP). By same rule.

Case (CAPT). By IH and Lemma A.22 and (CAPT).

Case (TRANS), (BOXED), (FUN), (TFUN). By IH and re-application of the same rule.

Case (TVAR). Then U = Y and T = S′ and Y <: S′ ∈ Γ, X <: S,∆ and our goal is Γ, X <:

S,∆ ⊢ θY <: θS′. If Y = X , by lemma premise and weakening. Otherwise, inspect where

Y is bound. If Y ∈ dom(Γ), we have Y <: S′ ∈ Γ,θ∆ and since X ̸∈ fv(S′) (5), θS′ = S′.
Then, we can conclude by (TVAR). Otherwise if Y ∈ dom(∆), we have Y <: θS′ ∈ Γ,θ∆

and we can conclude by (TVAR).

Lemma A.24 (Type substitution preserves typing). If Γ, X <: S,∆ ⊢ t : T and Γ ⊢ R <: S, then

Γ, [X := R]∆ ⊢ [X := R]t : [X := R]T .

134

A.5 Main Theorems – Soundness

Proof. Define θ≜ [X := R]. Proceed by induction on the typing derivation.

Case (VAR). Then t = y , y : S′∧C ∈ Γ, X <: S,∆, y ̸= X , and our goal is Γ,θ∆ ⊢ y : θS′∧{y}.

Inspect where y is bound. If y ∈ dom(Γ), then y : S′ ∧C ∈ Γ,θ∆ and X ̸∈ fv(S′) (5). Then,

θ(S′∧C) = S′∧C and we can conclude by (VAR). Otherwise, y : θS′∧C ∈ Γ,θ∆ and we can

directly conclude by (VAR).

Case (ABS), (TABS). In both rules, observe that type substitution does not affect cv and

conclude by IH and rule re-application.

Case (APP). Then we have t = x y andΓ, X <: S,∆ ⊢ x : (∀(z : U)T0)∧C and T = [z := y]T0.

We observe that θ[z := y]T0 = [z := y]θT0 and θt = t and conclude by IH and (APP).

Case (TAPP). Then we have t = x [S′] and Γ, X <: S,∆ ⊢ x : (∀[Z <: S′]T0) ∧C and T =
[Z := S′]T0.

We observe that θ[Z := S′]T0 = [Z := θS′]θT0. By IH, Γ,θ∆ ⊢ x : (∀[Z <: θS′]T0) ∧ C ,

Then, we can conclude by (TAPP).

Case (BOX). Then t = □ y and Γ, X <: S,∆ ⊢ y : S′ ∧C and T = □S′∧C , and our goal is

Γ,θ∆ ⊢ y : □θ(S′∧C).

Inspect where y is bound. If y ∈ dom(Γ), then y : S′∧C ∈ Γ,θ∆ and X ̸∈ fv(S′) (5) . Then,

θ(S′ ∧C ′) = S′ ∧C ′ and we can conclude by (BOX). Otherwise, y : θS′ ∧C ∈ Γ,θ∆ and we

can directly conclude by (BOX).

Case (UNBOX). Proceed analogously to the case for (BOX) – we just swap the types in the

premise and in the consequence.

Case (SUB). By IH and Lemma A.23.

Case (LET). Then t = let y = s in t ′ and Γ, x : P,∆ ⊢ s : Q and Γ, x : P,∆, y : Q ⊢ t ′ : T . By

the IH, we have Γ,θ∆⊢ θs : θQ and Γ,θ∆, y : θQ ⊢ θt ′ : θT .

Then by (LET) we also have Γ,θ∆ ⊢ θ(let y = s in t ′) : θT , which concludes.

A.5 Main Theorems – Soundness

A.5.1 Preliminaries

As we state Preservation (Theorem A.1) in a non-empty environment, we need to show canoni-

cal forms lemmas in such an environment as well. To do so, we need to know that values cannot

be typed with a type that is a type variable, which normally follows from the environment

being empty. Instead, we show the following lemma:

Lemma A.25 (Value typing). If Γ ⊢ v : T , then T is not of the form X ∧C .

135

Appendix A. CC<:□ Proofs

Proof. By induction on the typing derivation.

For rule (SUB), we know that Γ ⊢ v : U and Γ ⊢ U <: T . Assuming T = X ∧ C , we have a

contradiction by Lemma A.10 and IH.

Rules (BOX), (ABS), (TABS) are immediate, and other rules are not possible.

Lemma A.26 (Canonical forms: term abstraction). If Γ ⊢ v : (∀(x : U)T) ∧C , then we have

v =λ
(
x : U ′) t and Γ ⊢ U <: U ′ and Γ, x : U ⊢ t : T .

Proof. By induction on the typing derivation.

For rule (SUB), we observe that by Lemma A.12 and by Lemma A.25, the subtype is of the

form (∀(y : U ′′)T ′) ∧C ′ and we have Γ ⊢ U <: U ′′. By IH we know that v = λ
(
x : U ′) t and

Γ ⊢ U ′′ <: U ′ and Γ, x : U ′′ ⊢ t : T . By (TRANS) we have Γ ⊢ U <: U ′ and by narrowing we have

Γ, x : U ⊢ t : T , which concludes.

Rule (ABS) is immediate, and other rules cannot occur.

Lemma A.27 (Canonical forms: type abstraction). If Γ ⊢ v : (∀[X <: S]T)∧C , then we have

v =λ
[

X <: S′] t and Γ ⊢ S <: S′ and Γ, X <: S ⊢ t : T .

Proof. Analogous to the proof of Lemma A.26.

Lemma A.28 (Canonical forms: boxed term). If Γ ⊢ v : (□T)∧C , then v =□x and Γ ⊢ x : T .

Proof. Analogous to the proof of Lemma A.26.

Lemma A.29 (Variable typing inversion). If Γ ⊢ x : S ∧C , then x : S′∧C ′ ∈ Γ and Γ ⊢ S′ <: S and

Γ⊢ {x} <: C for some C ′ and S′.

Proof. By induction on the typing derivation.

Case (SUB). Then Γ⊢ x : S′′ ∧C ′′ and Γ⊢ S′′ ∧C ′′ <: S ∧C . By the IH we have Γ⊢ x : S′ ∧C ′

and Γ ⊢ S′ <: S′′ and Γ ⊢∧ x <: C ′′. Then by Lemma A.11 we have Γ ⊢ S′′ <: S and

Γ⊢C ′′ <: C , which lets us conclude by (TRANS) and transitivity of subcapturing. Case

(VAR). Then Γ ⊢ x : S ∧ C ′ and C = {x}. We can conclude with S′ = S by (REFL) and

reflexivity of subcapturing.

Lemma A.30 (Variable lookup inversion). If we have both Γ ⊢ σ∼∆ and x : S ∧C ∈ Γ,∆, then

σ(x) = v implies that Γ,∆ ⊢ v : S ∧C .

Proof. By structural induction on σ. It is not possible for σ to be empty.

Otherwise, σ=σ′[let y = v in[]] and for some U we have both ∆=∆′, y : U and Γ,∆′ ⊢ v : U .

If y ̸= x, we can proceed by IH as x can also be typed in Γ,∆′, after which we can conclude by

weakening. Otherwise, U = S ∧C and we can conclude by weakening.

136

A.5 Main Theorems – Soundness

Lemma A.31 (Term abstraction lookup inversion). If Γ ⊢ σ∼∆ and Γ,∆ ⊢ x : (∀(z : U)T)∧C

and σ(x) =λ
(
z : U ′) t , then Γ,∆ ⊢ U <: U ′ and Γ,∆, z : U ⊢ t : T .

Proof. A corollary of Lemma A.30 and Lemma A.26.

Lemma A.32 (Type abstraction lookup inversion). If Γ ⊢ σ∼∆ and Γ,∆ ⊢ x : (∀[Z <: U]T)∧C

and σ(x) =λ
[

Z <: U ′] t , then Γ,∆ ⊢ U <: U ′ and Γ,∆, Z <: U ⊢ t : T .

Proof. A corollary of Lemma A.30 and Lemma A.27.

Lemma A.33 (Box lookup inversion). If Γ ⊢ σ ∼ ∆ and σ(x) = □ y and Γ,∆ ⊢ x : □T , then

Γ,∆ ⊢ y : T .

Proof. A corollary of Lemma A.30 and Lemma A.28.

A.5.2 Soundness

In this section, we show the classical soundness theorems.

Theorem A.1 (Preservation). If we have Γ ⊢ σ∼∆ and Γ,∆ ⊢ t : T , thenσ[t] −→σ[t ′] implies

that Γ,∆ ⊢ t ′ : T .

Proof. We proceed by inspecting the rule used to reduce σ[t].

Case (APPLY). Then we have t = η[x y] and σ(x) =λ (z : U) s and t ′ = η[[z := y]s].

By Lemma A.1, for some Q we have Γ,∆ ⊢ e : Q ⇒ T and Γ,∆ ⊢ x y : Q. The typing

derivation of x y must start with an arbitrary number of (SUB) rules, followed by (APP).

We proceed by induction on the number of (SUB) rules. In both base and inductive

cases we can only assume that Γ,∆⊢ x y : Q ′ for some Q ′ such that Γ,∆⊢Q ′ <: Q.

In the inductive case, Γ,∆⊢ x y : Q ′ is derived by (SUB), so we also have some Q ′′ such

that Γ,∆⊢ x y : Q ′′ and Γ,∆⊢Q ′′ <: Q ′. We have Γ,∆⊢Q ′′ <: Q by (TRANS), so we can

conclude by using the inductive hypothesis on Γ,∆⊢ x y : Q ′′.

In the base case, Γ,∆⊢ x y : Q ′ is derived by (APP), so for some Q ′′ we have Γ,∆⊢ x : ∀(z :

U ′)Q ′′ and Γ,∆⊢ y : U ′ and Q ′ = [z := y]Q ′′. By Lemma A.31, we have Γ,∆, z : U ′ ⊢ s : Q ′′.
By Lemma A.21, we have Γ,∆⊢ [z := y]s : [z := y]Q ′′, and since Q ′ = [z := y]Q ′′, by (SUB)

we have Γ,∆⊢ [z := y]s : Q.

To conclude that t ′ = η[[z := y]s] can be typed as T , we use Lemma A.2.

Case (TAPPLY), (OPEN). As above.

Case (RENAME). Then we have t = η[letx = y in s] and t ′ = η[[x := y]s].

137

Appendix A. CC<:□ Proofs

Again, by Lemma A.1 for some Q we have Γ,∆⊢ e : Q ⇒ T and Γ,∆⊢ letx = y in s : Q.

We again proceed by induction on number of (SUB) rules at the start of the typing

derivation for letx = y in s, again only assuming that we can type the plug as some Q ′

such that Q ′ <: Q. The inductive case proceeds exactly as before.

In the base case, (LET) was used to derive that Γ,∆ ⊢ letx = y in s : Q ′. The premises

are Γ,∆ ⊢ y : U and Γ,∆, x : U ⊢ s : Q ′ and x ̸∈ fv(Q ′). By Lemma A.21, we have Γ,∆ ⊢
[x := y]s : [x := y]Q ′. Because x ̸∈ fv(Q ′), [x := y]Q ′ =Q ′, which means that we can again

conclude by (SUB) and Lemma A.2.

Case (LIFT). Then we have t = η[letx = v in s] and t ′ = letx = v inη[s].

Again, by Lemma A.1 for some Q we have Γ,∆⊢ e : Q ⇒ T and Γ,∆⊢ letx = v in s : Q.

We again proceed by induction on number of (SUB) rules at the start of the typing

derivation for letx = v in s, again only assuming that we can type the plug as some Q ′

such that Q ′ <: Q. The inductive case proceeds exactly as before.

In the base case, (LET) was used to derive that Γ,∆⊢ letx = v in s : Q ′. The premises are

Γ,∆⊢ v : U and Γ,∆, x : U ⊢ s : Q ′ and x ̸∈ fv(Q ′).

By weakening of typing, we also have Γ,∆, x : U ⊢ e : Q ⇒ T . Then by (SUB) and

Lemma A.2 we have Γ,∆, x : U ⊢ η[s] : T . Since Γ,∆⊢ T wf, by Barendregt x ̸∈ fv(T), so

by (LET) we have Γ,∆⊢ letx = v inη[s] : T , which concludes.

Definition A.2 (Proper configuration). We say that a term form σ[t] is a canonical configura-

tion (of the entire term into store context σ and the plug t) if t is not of the form letx = v in t ′.

Fact 6. Every term has a corresponding proper configuration, and finding it is decidable.

Lemma A.34 (Extraction of bound value). If Γ,∆ ⊢ x : T and Γ ⊢ σ∼∆ and x ∈ dom(∆), then

σ(x) = v.

Proof. By structural induction on ∆. If ∆ is empty, we have a contradiction. Otherwise,

∆=∆′, z : T ′ and σ=σ′[letz = v in[]] and Γ,∆′, z : T ′ ⊢ v : T ′. Note that ∆ is the environment

matching σ and can only contain term bindings. If z = x, we can conclude immediately, and

otherwise if z ̸= x, we can conclude by IH.

Theorem A.2 (Progress). If ⊢ σ[η[t]] : T and σ[η[t]] is a proper configuration, then either

η[t] = a, or there exists σ[t ′] such that σ[η[t]] −→σ[t ′].

Proof. Since σ[η[t]] is well-typed in the empty environment, there clearly must be some

∆ such that ⊢ σ∼∆ and ∆ ⊢ η[t] : T . By Lemma A.1, we have that ∆ ⊢ t : P for some P . We

proceed by induction on the derivation of this derivation.

138

A.5 Main Theorems – Soundness

Case (VAR). Then t = x.

If e is non-empty, η[x] = η′[let y = x in t ′] and we can step by (RENAME); otherwise,

immediate.

Case (ABS), (TABS), (BOX). Then t = v .

If η is non-empty, η[v] = η′[letx = v in t ′] and we can step by (LIFT); otherwise,

immediate.

Case (APP). Then t = x y and ∆ ⊢ x : (∀(z : U)T0)∧C and ∆ ⊢ y : U .

By Lemma A.34 and Lemma A.26, σ(x) = λ
(
z : U ′) t ′, which means we can step by

(APPLY).

Case (TAPP). Then t = x [S] and ∆ ⊢ x : (∀[Z <: S]T0)∧C .

By Lemma A.34 and Lemma A.27, σ(x) = λ
[
z <: S′] t ′, which means we can step by

(TAPPLY).

Case (UNBOX). Then t =C ⊸x and ∆ ⊢ x : □S ∧C .

By Lemma A.34 and Lemma A.28, σ(x) =□ y , which means we can step by (OPEN).

Case (LET). Then t = letx = s in t ′ and we proceed by IH on s, with η[letx = [] in t ′] as

the evaluation context.

Case (SUB). By IH.

A.5.3 Consequences

Lemma A.35 (Capture prediction for answers). If Γ ⊢ σ[a] : S ∧C , then Γ ⊢ σ[a] : S ∧cv(σ[a])

and Γ ⊢ cv(σ[a]) <: C .

Proof. By induction on the typing derivation.

Case (SUB). Then Γ ⊢ σ[a] : S′∧C ′ and Γ ⊢ S′∧C ′ <: S ∧C . By IH, Γ ⊢ σ[a] : S′∧cv(σ[a])

and Γ ⊢ cv(σ[a]) <: C ′. By Lemma A.11, we have that Γ ⊢ C ′ <: C and Γ ⊢ S′ <: S.

To conclude we need Γ ⊢ σ[a] : S ∧ cv(σ[a]) and Γ ⊢ cv(σ[a]) <: C , which we

respectively have by subsumption and Lemma A.7.

Case (VAR), (ABS), (TABS), (BOX). Then σ is empty and C = cv(a). One goal is immediate,

other follows from Lemma A.8.

Case (LET). Then σ= letx = v inσ′ and Γ, x : U ⊢ σ′[a] : S ∧C and x ̸∈C .

By IH, Γ, x : U ⊢ σ′[a] : S ∧cv(σ′[a]) and Γ, x : U ⊢ cv(σ′[a]) <: C .

139

Appendix A. CC<:□ Proofs

By Lemma A.19, we have Γ ⊢ [x := cv(v)](cv(σ′[a])) <: [x := cv(v)]C .

By definition, [x := cv(v)](cv(σ′[a])) = cv(letx = v inσ′[a]), and we also already know

that x ̸∈C .

This lets us conclude, as we have Γ ⊢ cv(letx = v inσ′[a]) <: C .

Other rules cannot occur.

Lemma A.36 (Capture prediction for terms). Let ⊢ σ∼∆ and ∆ ⊢ t : S ∧C .

Then η[t] −→∗ η[σ′[a]] implies that ∆ ⊢ cv(σ′[a]) <: C .

Proof. By preservation, ⊢ σ′[a] : S ∧C , which lets us conclude by Lemma A.35.

A.6 Correctness of boxing

A.6.1 Relating cv and stores

We want to relate the cv of a term of the form σ[t] with cv(t) such that, for some definition of

‘resolve’, we have:

cv(σ[t]) = resolve(σ,cv(t))

Let us consider term of the form σ[t] and a store σ of the form letx = v inσ′. There are two

rules that could be used to calculate cv(letx = v inσ′):

cv(letx = v in t) = cv(t) if x ∉ cv(t)

cv(letx = s in t) = cv(s)∪cv(t)\x

Observe that since we know that x is bound to a value, we can reformulate these rules as:

cv(letx = v in t) = [x := cv(v)]cv(t)

Which means that we should be able to define ‘resolve’ with a substitution. We will call this

substitition a store resolver, and we define it as:

resolver(letx = v inσ) = [x := cv(v)]◦ resolver(σ)

resolver([]) = i d

Importantly, note that we use composition of substitutions. We have:

resolver(letx = a inlet y = x in[]) ≡ [x := {a}, y := {a}]

140

A.6 Correctness of boxing

With the above, we define resolve as:

resolve(σ,C) = resolver(σ)(C)

This definition satisfies our original desired equality with cv:

Fact 7. For all terms t of the form σ[s], we have cv(t) = resolve(σ,cv(s))

A.6.2 Relating cv and evaluation contexts

We now relate cv to evaluation contexts e. First, note that by definition of cv we have:

Fact 8. For all terms t of the form letx = s in t ′ such that s is not a value, we have cv(t) =
cv(s)∪cv(t ′) \ x.

Accordingly, we extend cv to evaluation contexts (cv(e)) as follows:

cv(letx = e in t) = cv(e)∪cv(t) \ x

cv([]) = {}

We then have:

Fact 9. For all terms t of the form η[s] such that s is not a value, we have cv(t) = cv(e)∪cv(s).

A.6.3 Relating cv to store and evaluation context simultaneously

Given our definition of ‘resolve’ and cv(e), we have:

Fact 10. Let σ[η[t]] be a term such that t is not a value. Then:

cv(σ[η[t]]) = resolve(σ,cv(e)∪cv(t))

The proof proceeds by induction on σ and e, using 7 and 9.

A.6.4 Correctness of cv

Definition A.3 (Platform environment). Γ is a platform environment if for all x ∈ dom(Γ) we

have x : S ∧{cap} ∈ Γ for some S.

Lemma A.37 (Inversion of subcapturing under platform environment). If Γ is a platform

environment and Γ⊢C <: D, then either C ⊆ D or cap ∈ D.

Proof. By induction on the subcapturing relation. Case (SC-ELEM) trivially holds. Case (SC-

SET) holds by repeated IH. In case (SC-VAR), we have C = {x} and x : S ∧C ′ ∈ Γ. Since Γ is a

141

Appendix A. CC<:□ Proofs

platform environment, we have C ′ = {cap}, which means that the other premise of (SC-VAR)

is Γ ⊢ {cap} <: D. Since Γ is well-formed, cap ̸∈ dom(Γ), which means that we must have

cap ∈ D .

Lemma A.38 (Strengthening of subcapturing). If Γ,Γ′ ⊢C <: D and C ⊆ dom(Γ), then we must

have Γ⊢C <: D.

Proof. First, we consider that if cap ∈ D, we trivially have the desired goal. If cap ̸∈ D, we

proceed by induction on the subcapturing relation. Case (SC-ELEM) trivially holds and case

(SC-SET) holds by repeated IH.

In case (SC-VAR), we have C = {x}, x : S ∧C ′ ∈ Γ,Γ′. This implies that Γ = Γ1, x : S ∧C ′,Γ2 (as

x ̸∈ dom(Γ)). Since Γ,Γ′ is well-formed, we must have Γ1 ⊢ C ′ wf. Since we already know

cap ̸∈ D, then we must also have cap ̸∈ C ′, which then leads to C ′ ⊆ dom(Γ1). This in turn

means that by IH and weakening we have Γ⊢C ′ <: D , and since we also have x : S ∧C ′ ∈ Γ, we

can conclude by (SC-VAR).

Then we will need to connect it to subcapturing, because the keys used to open boxes are

supercaptures of the capability inside the box. We want:

Lemma A.39. Let Γ be a platform environment, Γ⊢σ∼∆ and Γ,∆⊢C1 <: C2.

Then resolve(σ,C1) ⊆ resolve(σ,C2).

Proof. By induction on σ. If σ is empty, we have resolve(σ,C1) =C1, likewise for C2, and we

can conclude by Lemma A.37.

Otherwise, σ= σ′[letx = v in[]] and ∆= ∆′, x : Sx
∧Dx for some Sx . Let θ = resolver(σ). We

proceed by induction on the subcapturing derivation. Case (SC-ELEM) trivially holds and case

(SC-SET) holds by repeated IH.

In case (SC-VAR), we have C1 = {y} and y : Sy
∧D y ∈ Γ,∆ for some Sy , and Γ,∆⊢ D y <: C2. We

must have Γ,∆′ ⊢ D y wf and so we can strengthen subcapturing to Γ,∆′ ⊢ D y <: C2, which

by IH gives us resolver(σ′)(D y) ⊆ resolver(σ′)(C2). By definition we have θ = resolver(σ) =
resolver(σ′)◦ [x := cv(v)]. Since by well-formedness x ̸∈ D y , we now have:

θD y ⊆ θC2

By Lemma A.30 and Lemma A.35, we must have Γ,∆ ⊢ cv(v) <: D y . Since Γ,∆ ⊢ cv(v) wf,

we can strengthen this to Γ,∆ ⊢ cv(v) <: D y . By outer IH this gives us resolver(σ′)(cv(v)) ⊆
resolver(σ′)(D y). Since x ∉ cv(v)∪D y , we have:

θcv(v) ⊆ θD y

142

A.6 Correctness of boxing

Which means we have θcv(v) ⊆ θC2 and we can conclude by θcv(v) = θ{x}, since:

θ{x} = (resolver(σ′)◦ [x := cv(v)])({x}) = resolver(σ′)(cv(v))

θcv(v) = resolver(σ′)(cv(v)) (since x ̸∈ cv(v))

A.6.5 Core lemmas

Lemma A.40 (Program authority preservation). Let Ψ[t] be a well-typed program such that

Ψ[t] −→Ψ[t ′]. Then cv(t ′) ⊆ cv(t).

Proof. By inspection of the reduction rule used.

Case (APPLY). Then t =σ[η[x y]] and t ′ =σ[η[[z := y]s]]. Note that our goal is then:

resolver(σ)(cv(e)∪cv([z := y]s)) ⊆ resolver(σ)(cv(e)∪cv(x y))

If we have x ∈ dom(Ψ), then Ψ(x) = λ(z : U) s. By definition of platform, the lambda

is closed and we have fv(s) ⊆ {z}, which in turn means that cv([z := y]s) ⊆ {y} ⊆ cv(x y).

This satisfies our goal.

Otherwise, we have x ∈ dom(σ) and σ(x) = λ(z : U) s. Since x is bound in σ, we have

resolver(σ)(cv(λ(z : U) s) ∪ {y}) ⊆ resolver(σ)(cv(x y))). Since cv([z := y]s) ⊆ cv(λ(z :

U) s)∪ {y}, our goal is again satisfied.

Case (TAPPLY). Analogous reasoning.

Case (OPEN). Then t =σ[η[C ⊸x]] and t ′ =σ[η[z]]. We must have x ∈ dom(σ) and

σ(x) =□z, since all values bound in a platform must be closed and a box form cannot

be closed. Since Ψ[t] is a well-typed program, there must exist some Γ,∆ such that Γ is

a platform environment and ⊢Ψ[σ] ∼ Γ,∆.

If z ∈ dom(σ), then by Lemma A.30 and Lemma A.33 we have Γ,∆⊢ z : Sz
∧C for some Sz .

By straightforward induction on the typing derivation, we then must have Γ,∆⊢ {z} <: C .

Then by Lemma A.39 we have resolver(σ)({z}) ⊆ resolver(σ)(C), which lets us conclude

by an argument similar to the (APPLY) case.

Otherwise, z ∈ dom(Ψ). Here we also have Γ,∆⊢ {z} <: C , which implies we must have

z ∈C , so we have cv(z) ⊆ cv(C ⊸x) and can conclude by a similar argument as in the

(APPLY) case.

Case (RENAME), (LIFT). The lemma is clearly true since these rules only shift subterms

143

Appendix A. CC<:□ Proofs

of t to create t ′.

Lemma A.41 (Single-step used capability prediction). Let Ψ[t] be a well-typed program such

that Ψ[t] −→Ψ[t ′]. Then the primitive capabilities used during this reduction are a subset of

cv(t):

{ x | x ∈ used(Ψ[t] −→∗Ψ[t ′]), x ∈ dom(Ψ) } ⊆ cv(t)

Proof. By inspection of the reduction rule used.

Case (APPLY). Then t =σ[η[x y]]. If x ∈ dom(σ), the lemma trivially holds. Otherwise,

x ∈ dom(Ψ) \ dom(σ). From the definition of cv, we have {x} \ dom(σ) ⊆ cv(t). Since x is

bound in Ψ, we then have x ∈ cv(t), which concludes.

Case (TAPPLY). Analogous reasoning.

Case (OPEN), (RENAME), (LIFT). Hold trivially, since no capabilities are used by reducing

using these rules.

Theorem A.3 (Used capability prediction). Let Ψ[t] −→∗Ψ[t ′], where Ψ[t] is a well-typed

program. Then the primitive capabilities used during the reduction are a subset of the authority

of t :

{ x | x ∈ used(Ψ[t] −→∗Ψ[t ′]), x ∈ dom(Ψ) } ⊆ cv(t)

Proof. By the IH, Single-step program trace prediction and authority preservation.

A.7 Avoidance

Here, we restate 4.3 and prove it.

Lemma A.42. Consider a term letx = s in t in an environment Γ such that Γ ⊢ s : R ∧Cs is the

most specific typing for s in Γ and Γ, x : R ∧Cs ⊢ t : T is the most specific typing for t in the

context of the body of the let, namely Γ, x : R ∧Cs . Let T ′ be constructed from T by replacing x

with Cs in covariant capture set positions and by replacing x with the empty set in contravariant

capture set positions. Then for every type U avoiding x such that Γ, x : S ∧Cs ⊢ T <: U , we have

Γ ⊢ T ′ <: U .

Proof. We will construct a subtyping derivation showing that T ′ <: U . Proceed by structural

induction on the subtyping derivation for T <: U . Since T ′ has the same structure as T , most

of the subtyping derivation carries over directly except for the subcapturing constraints in

(CAPT).

144

A.7 Avoidance

In this case, in covariant positions, whenever we have CT <: CU for a capture set CT from T

and a capture set CU from U , we need to show that that ⊢ [x :=Cs]CT <: CU . Conversely, in

contravariant positions, whenever we have CU <: CT , we need to show that CU <: [x := {}]CT .

For the covariant case, since x ∈ CT but not in CU , by inverting the subcapturing relation

CT <: CU , we obtain Cs <: CU . Hence [x :=Cs]CT <: CU , as desired.

The more difficult case is the contravariant case, when we have CU <: CT . Here, however, we

have that CU <: [x := {}]CT by structural induction on the subcapturing derivation as x never

occurs on the left hand side of the subcapturing relation as U avoids x.

145

B ModCC Proofs

B.1 Proof devices

We define environment well-formedness ⊢ Γwf in the natural way – empty environment is

well-formed; we have Γ, x : T iff ⊢ Γwf and Γ ⊢ T wf.

Definition B.1 (Evaluation context typing (Γ ⊢ η : U ⇒ T)). We say that η can be typed as

U ⇒ T in Γ iff for all t such that Γ⊢ t : U , we have Γ⊢ η[t] : T .

Fact 11. If η[t] is a well-typed term in Γ, then there exist U ,T such that Γ ⊢ η : U ⇒ T and

finding them is decidable.

When a module is created, our reduction rules introduce an alias for a region’s location, e.g., if

σ ∋ l 7→mod(l ′) { f = r }, then l ′ and l .reg are aliases for the same region. Accordingly, to prove

the correctness of our reduction rules we need to keep track of such aliases. We extend the

syntax typing contexts Γ,∆ and allow them to contain aliases p ≡ q . We add rules for path

equivalence and rules for using path equivalence during subcapturing:

Subcapturing Γ⊢C <: C

SC-ALIAS

∆⊢ p ≡ q

∆⊢ [x := p]C <: [x := q]C

Path equivalence Γ⊢ p ≡ q

∆ ∋ p ≡ q

∆⊢ p ≡ q

∆⊢ p ≡ q

∆⊢ q ≡ p

∆⊢ p1 ≡ p2 ∆⊢ p2 ≡ p3

∆⊢ p1 ≡ p3

147

Appendix B. ModCC Proofs

Store entry typing ∆⊢ l 7→ e ∼∆

∆(ri) → Ti
i

∆′ = l . fi ≡ ri
i

∆⊢ l 7→ { fi = ri
i
} ∼ l : { fi : Ti

i
},∆′

∆⊢ l : Reg∧{cap} ∆(ri) →Ui
i

Ti = [l := x.reg]Ui
i

∆′ = l ≡ l0.reg, l . fi ≡ ri
i

∆⊢ l0 7→mod(l) { fi = ri
i
} ∼ l0 :µx {reg : Reg∧{cap}, fi : Ti

i
},

∆⊢ v : T

∆⊢ l0 7→ v ∼ l0 : T
∆⊢ l 7→ regionl ∼ l : Reg∧{cap}

∆⊢ v : T

∆⊢ l0 7→ l ▷ ref v ∼ l0 : Ref[T]∧{l }

σ∼∆, where σ= li 7→ ei
i
, means:

1. ∆⊢ li 7→ ei ∼∆i
i

and ∆=∆i
i
.

2. If ei is a record or a module, then for some Ti we have ∆ = ∆′, li : Ti ,∆′′ and for all

r ∈ bodies(ei), we have ∆′ ⊢ r bd.

B.2 Properties of Evaluation Contexts and Stores

In the proof, we use the following metavariables: v, w for values, C ,D for capture sets, R,S for

shape types, P,Q,T,U for types.

We also denote the capture set fragment of a type as cv(T), defined as cv(S ∧C) =C .

In all our statements, we implicitly assume that all typing environments are well-formed.

Lemma B.1 (Evaluation context typing inversion). Let Γ ⊢ η[u] : T . Then there exists U such

that we have Γ⊢ η : U ⇒ T and Γ⊢ u : U .

Proof. By induction on the structure of η. If η= [], then Γ⊢ u : T and clearly Γ⊢ [] : T ⇒ T .

Otherwise η= letx = η′ in t . Proceed by induction on the typing derivation of η[u]. We can

only assume that Γ⊢ η[u] : T ′ for some T ′ s.t. Γ⊢ T ′ <: T .

Case (LET). Then Γ⊢ η′[u] : U ′ and Γ, x : U ′ ⊢ t : T ′ for some U ′. By the outer IH, for some

U we then have Γ⊢ η′ : U ⇒U ′ and Γ⊢ u : U . The former unfolds to ∀u′.Γ⊢ u′ : U =⇒
Γ⊢ η′[u′] : U ′. We now want to show that ∀u′.Γ⊢ u′ : U =⇒ Γ⊢ η[u′] : T ′. We already

have Γ⊢ η′[u′] : U ′ and Γ, x : U ′ ⊢ t : T ′, so we can conclude by (LET).

Case (SUB). Then Γ⊢ η[u] : T ′′ and Γ⊢ T ′′ <: T ′. We can conclude by the inner IH and

(TRANS).

148

B.3 Properties of Subcapturing

Lemma B.2 (Evaluation context reification). If both Γ ⊢ η : U ⇒ T and Γ ⊢ u : U , then we have

Γ ⊢ η[u] : T .

Proof. Immediate from the definition of Γ⊢ η : U ⇒ T .

B.3 Properties of Subcapturing

Lemma B.3 (Universal capability subcapturing inversion). Let Γ ⊢ C <: D. If cap ∈ C , then

cap ∈ D.

Proof. By induction on subcapturing. Cases (SC-ELEM) and (SC-ALIAS) immediate, cases

(SC-SET) and (SC-TRANS) by the IH, other cases contradictory.

Lemma B.4 (Subcapturing reflexivity). If Γ ⊢ C wf, then Γ ⊢ C <: C .

Proof. By (SC-SET) and (SC-ELEM).

Lemma B.5 (Subtyping implies subcapturing). If Γ ⊢ S1
∧C1 <: S2

∧C2, then Γ ⊢ C1 <: C2.

Proof. By induction on the subtyping derivation. Case (CAPT) is immediate. Case (TRANS)

follows from the IH. Case (REFL) follows from Lemma B.4. Otherwise, C1 =C2 = {} and we can

conclude by (SC-SET).

B.3.1 Permutation, weakening, narrowing

Lemma B.6 (Permutation). Permutating the bindings in the environment up to preserving

environment well-formedness also preserves type well-formedness, subcapturing, subtyping

and typing.

Let Γ and ∆ be the original and permutated context, respectively. Then:

1. If Γ ⊢ T wf, then ∆ ⊢ T wf.

2. If Γ ⊢ C1 <: C2, then ∆ ⊢ C1 <: C2.

3. If Γ ⊢ U <: T , then ∆ ⊢ U <: T .

4. If Γ ⊢ t : T , then ∆ ⊢ t : T .

Proof. As usual, order of the bindings in the environment is not used in any rule.

149

Appendix B. ModCC Proofs

Lemma B.7 (Weakening). Adding a binding to the environment such that the resulting envi-

ronment is well-formed preserves type well-formedness, subcapturing, subtyping and typing.

Let Γ and ∆ be the original and extended context, respectively. Then:

1. If Γ ⊢ T wf, then ∆ ⊢ T wf.

2. If Γ ⊢ C1 <: C2, then ∆ ⊢ C1 <: C2.

3. If Γ ⊢ U <: T , then ∆ ⊢ U <: T .

4. If Γ ⊢ t : T , then ∆ ⊢ t : T .

Proof. As usual, the rules only check if a variable is bound in the environment and all versions

of the lemma are provable by straightforward induction. For rules which extend the environ-

ment, such as (ABS), we need permutation. All cases are analogous, so we will illustrate only

one.

Case (ABS). WLOG we assume that ∆= Γ, x : T . We know that Γ ⊢ λ
(
y : U

)
t ′ : ∀(y : U)U .

and from the premise of (ABS) we also know that Γ, y : U ⊢ t ′ : U .

By the IH, we have Γ, y : U , x : T ⊢ t ′ : U . Γ, x : T, y : U is still a well-formed environment

(as T cannot mention y) and by permutation we have Γ, x : T, y : U ⊢ t ′ : U . Then by (ABS)

we have Γ, x : T ⊢ λ
(
y : U

)
t ′ : ∀(y : U)U , which concludes.

Lemma B.8 (Term binding narrowing).

1. If Γ ⊢ U ′ <: U and (Γ, x : U ,∆)(p) → T , then (Γ, x : U ′,∆)(p) → T ′ and Γ, x : U ′,∆⊢ T ′ <:

T for some T ′.

2. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ T wf, then Γ, x : U ′,∆ ⊢ T wf.

3. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ C1 <: C2, then Γ, x : U ′,∆ ⊢ C1 <: C2.

4. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ T1 <: T2, then Γ, x : U ′,∆ ⊢ T1 <: T2.

5. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ t : T , then Γ, x : U ′,∆ ⊢ t : T .

Proof. The first variant is proven by inspecting the form of p.

If p = y : If y ̸= x then y is still bound at the same type and we can conclude with T ′ = T .

Otherwise, T =U and T ′ =U ′ and we can conclude by weakening Γ⊢U ′ <: U .

150

B.3 Properties of Subcapturing

If p = q. f0: If y ̸= x then y is still bound at the same type and we can conclude with T ′ = T .

Otherwise, by Lemma B.14 we know that either U ′ =U , which lets us trivially conclude, or

we know that U = { f : U f
f

}∧C and U ′ = { f ′ : T ′
f ′

f ′
}∧C and Γ⊢ T ′

f <: T f
f . Since f0 ∈ f , we

also have T =U f0 and T ′ =U ′
f0

and Γ⊢ T ′
f0
<: T f0 . We can weaken the latter to conclude.

Other variants are proven by straightforward induction on the derivations. Only subcapturing

and typing consider types to which term variables are bound. Only (SC-PATH) and (PATH) do

so, which we prove below. All other cases follow from the IH or other narrowing lemmas.

Case (SC-PATH). Then C1 = {p} and (Γ, x : U ,∆)(p) → S ∧C2. We can conclude by lookup

narrowing and (SC-TRANS).

Case (PATH). Then t = p and T = S ∧ {p} and (Γ, x : U ,∆)(p) = S ∧C . We can conclude by

lookup narrowing and (SUB)&(CAPT).

B.3.2 Subtyping inversion

Fact 12. Both subtyping and subcapturing are transitive.

Proof. By (TRANS) and (SC-TRANS) respectively.

Fact 13. Both subtyping and subcapturing are reflexive.

Proof. This is an intrinsic property of subtyping by (REFL) and an admissible property of

subcapturing per Lemma B.4.

Lemma B.9 (Subcapturing inversion: unaliased variable). Let Γ⊢C1 <: C2 and Γ ∋ x : S ∧D

such that x ∈C1 \C2 and x has no aliases in Γ. Then Γ⊢ D <: C2.

Proof. By induction on the subcapturing derivation.

Case (SC-PATH). Then C1 = {p} and Γ(x) → R ∧C2, which implies that C2 = D and lets us

conclude by reflexivity (13).

Case (SC-SET). Then we have Γ⊢ {x} <: C2 as a premise, and we can conclude by invoking

the IH on it.

Case (SC-TRANS). Then Γ ⊢ C1 <: C3 <: C2. If x ∈ C3, we can conclude by the IH on

Γ ⊢ C3 <: C2. Otherwise, we can conclude by using the IH on both premises and (SC-

TRANS).

Case (SC-ALIAS), (SC-MEM), (SC-ELEM). Contradictory.

151

Appendix B. ModCC Proofs

Lemma B.10 (Subtyping inversion: capturing type). If Γ ⊢ U <: S ∧C , then U is of the form

S′∧C ′ such that Γ ⊢ C ′ <: C and Γ ⊢ S′ <: S.

Proof. We take note of the fact that subtyping and subcapturing are both transitive (12)

and reflexive (13). The result follows from a straightforward induction on the subtyping

derivation.

Lemma B.11 (Subtyping inversion: function type). If Γ ⊢ U <: (∀(x : T1)T2)∧C , then U is of

the form (∀(x : U1)U2)∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ T1 <: U1 and Γ, x : T1 ⊢ U2 <: T2.

Proof. By induction on the subtyping derivation.

Case (FUN), (REFL). Follow from reflexivity (13).

Case (CAPT). Then we have Γ ⊢ C ′ <: C and Γ ⊢ S <: ∀(x : T1)T2.

This relationship is equivalent to Γ ⊢ S ∧{} <: (∀(x : T1)T2)∧{}, on which we invoke the IH.

By the IH, we have S ∧{} = (∀(x : U1)U2)∧{} and Γ ⊢ T1 <: U1 and Γ, x : T1 ⊢ U2 <: T2. Then,

U = (∀(x : U1)U2)∧C ′ lets us conclude.

Case (TRANS). Then we have Γ ⊢ U <: U ′ and Γ ⊢ U ′ <: (∀(x : T1)T2)∧C . By the IH, we

have U ′ = (∀(x : U ′
1)U ′

2) ∧CU ′ and Γ ⊢ T1 <: U ′
1 and Γ, x : T1 ⊢ T2 <: U ′

2. We use the IH

again on Γ ⊢ U <: (∀(x : U ′
1)U ′

2)∧CU ′ . Then U = (∀(x : U1)U2)∧CU and Γ⊢U ′
1 <: U1 and

Γ, x : U ′
1 ⊢U2 <: U ′

2. By narrowing we have Γ, x : T1 ⊢U2 <: U ′
2, which lets us conclude by

transitivity (12).

Other rules are not possible.

Lemma B.12 (Subtyping inversion: boxed type). If Γ ⊢ U <: □T ∧C , then U is of the form

□U ′∧C ′ and we have Γ ⊢ C ′ <: C and Γ ⊢ U ′ <: T .

Proof. Analogous to the proof of Lemma B.11.

Lemma B.13 (Subtyping inversion: unit type). If Γ ⊢ U <: Unit ∧C , then U is of the form

Unit∧C ′ and we have Γ ⊢ C ′ <: C .

Proof. Analogous to the proof of Lemma B.11.

Lemma B.14 (Subtyping inversion: record type). If Γ⊢U <: µxx { fi : T fi

i
}∧C then for some

C ′ we have Γ⊢C ′ <: C and either

1. U is of the form { f j : U f j

j
}∧C ′ and both |µxx | = 0 and Γ⊢U fi <: T fi

i
or

2. U = µxx { fi : T fi

i
}∧C .

152

B.3 Properties of Subcapturing

Proof. By induction on the subtyping derivation.

Case (REC). Then C = {} and |µxx | = 0 and U = { f j : U f j

j
} and Γ⊢U fi <: T fi

i
. The first

conclusion holds.

Case (REFL). Then the second conclusion holds.

Case (CAPT). Then U = S ∧C ′ and Γ⊢C ′ <: C and Γ⊢ S <:µxx { fi : T fi

i
}. We can conclude

by the IH on the latter subtyping derivation, with the same conclusion as the one returned

by the IH.

Case (TRANS). Then Γ⊢U <: U ′ and Γ⊢U ′ <: µxx { fi : T fi

i
}∧C . We proceed by the IH on

the latter derivation.

If U ′ = { f j : U f j

j
}∧C ′: we invoke the IH on the other premise of (TRANS).

If U = { fk : U fk

k
}∧C ′′: the second conclusion holds by subtyping transitivity.

If U =U ′: the second conclusion holds.

If U ′ = µxx { fi : T fi

i
} ∧C : Then we can conclude by the IH on the other premise of

(TRANS), with the same conclusion as the one returned by the IH.

Lemma B.15 (Typing inversion: variable at a non-record type). Let Γ⊢ x : S ∧C such that S is

not of the form µy y { fi : Ti
i
}. Then there exist C ′ and S′ such that Γ ∋ x : S′ ∧C ′ and Γ ⊢ S′ <: S

and also if x is unaliased in Γ, then Γ⊢C ′ <: C unless x ∈C .

Proof. By induction on the typing derivation.

Case (SUB). Then Γ⊢ x : S′′∧C ′′ and Γ⊢ S′′∧C ′′ <: S ∧C . By the IH we have Γ⊢ x : S′∧C ′ and

Γ⊢ S′ <: S′′. and also if x is unaliased in Γ, then Γ⊢C ′ <: C ′′ unless x ∈C ′′. By Lemma B.10

we have Γ⊢ S′′ <: S and Γ⊢C ′′ <: C . We conclude that Γ⊢ S′ <: S by (TRANS).

We proceed to proving that if x is unaliased in Γ, then Γ⊢C ′ <: C unless x ∈C . If x ∈C ,

we can immediately conclude. Otherwise, if x ∈C ′′, we can conclude by Lemma B.9 on

Γ⊢C ′′ <: C . Otherwise, we have Γ⊢C ′ <: C ′′, which lets us conclude by (SC-TRANS).

Case (PATH). Then Γ(x) → S ∧C ′ and C = {x}. The former can only be derived if Γ ∋ x : S ∧C ′,
so we can conclude with S′ = S by (REFL).

Case (PACK). Impossible, since we must have Γ⊢ S ∧C wf and we assumed S is not a record

type.

Case (UNPACK). We have S = [y := x]S′ and Γ⊢ x : µy S′ ∧C . Then Γ⊢ µy S′ ∧C wf, which

means that S′ must be a record type, which contradicts the assumption that S is not a

record type.

153

Appendix B. ModCC Proofs

Other cases impossible because of the form of x.

Lemma B.16 (Typing inversion: variable at a record type). Let Γ⊢ x :µy y { fi : T fi

i
}∧C . Then

Γ ∋ x : S ∧ C ′ such that if x is unaliased in Γ then Γ ⊢ C ′ <: C unless x ∈ C , and also S =
µy ′y ′

{ f j : U f j

j
} and:

Γ⊢ [y ′ := x
y ′

]U fi <: [y := x y]T fi

i

Proof. By induction on the typing derivation.

Case (PATH). Then we note that x ∈C and conclude by reflexivity (13).

Case (PACK). Then |µy y | = 1 and Γ ⊢ x : ([y := x]{ fi : T fi

i
}) ∧ C . By the IH, we have

Γ ∋ x : µy ′y ′
{ f j : U f j

j
}∧C ′ and Γ⊢ [y ′ := x

y ′
]U fi <: [y := x]T fi

i

, which lets us immediately

conclude.

Case (UNPACK). Then µy y { fi : T fi

i
} = [y ′′ := x]{ fi : T ′

fi

i
} and Γ⊢ x :µy ′′ { fi : T ′

fi

i
}∧C . By the

IH we have Γ ∋ x :µy ′y ′
{ f j : U f j

j
}∧C ′ and Γ⊢ [y ′ := x

y ′
]U fi <: [y ′′ := x]T ′

fi

i

. The latter type

is equal to [y ′ := x
y ′

][y ′′ := x]T ′
fi

for all i , which lets us conclude.

Case (SUB). Then Γ⊢ x : U and Γ⊢U <:µy y { fi : T fi

i
}∧C . By Lemma B.14, one of two cases

holds:

If U = { f j : U f j

j
}∧C ′, then |µy y | = 0 and Γ⊢C ′ <: C and Γ⊢U fi <: T fi

i
. The types do

not have a recursive qualifier, we can almost conclude by the IH & (TRANS) except for

the subcapturing conclusion. From the IH we know that if x is unaliased in Γ, then

Γ⊢C ′′ <: C ′ unless x ∈C ′, where x : R ∧C ′′ ∈ Γ for some R. If x ∉C ′, we can conclude

by transitivity (13). Otherwise, we conclude by Lemma B.9.

If U =µy y { fi : T fi

i
}∧C , then we can conclude by the IH.

Other cases impossible because of the form of x.

Lemma B.17 (Typing inversion: variable). Let Γ ⊢ x : µy y S ∧C . Then there exist C ′ and S′

such that Γ ∋ x : µy ′y ′
S′ ∧C ′ and Γ⊢ [y := x y]S′ <: [y ′ := x

y ′
]S and if x is unaliased in Γ, then

Γ⊢C ′ <: C unless x ∈C .

Proof. If S is a record type, we can conclude by Lemma B.16 and (REC). Otherwise we can

conclude by Lemma B.15.

154

B.4 Substitution

B.4 Substitution

We will make use of the following fact:

Fact 14. If x : T ∈ Γ and ⊢ Γwf, then Γ=∆1, x : T,∆2 and ∆1 ⊢ T wf and so x ̸∈ fv(T).

Lemma B.18 (Term substitution preserves lookup). If (Γ, x : P,∆)(p) → S ∧C and Γ ⊢ x ′ : P

and x has no aliases in Γ, x : P,∆, then (Γ, [x := x ′]∆)([x := x ′]p) → S′ ∧C ′ such that Γ, [x :=
x ′]∆⊢C ′ <: [x := x ′]C and Γ, [x := x ′]∆⊢ S′ <: [x := x ′]S.

Proof. Define θ≜ [x := x ′]. Proceed by induction on the lookup derivation.

If p = y and Γ, x : P,∆ ∋ y : S ∧C , we proceed by inspecting where y is bound.

If y ∈ dom(Γ): Then Γ, [x := x ′]∆ ∋ y : S ∧C and we can conclude by reflexivity (13).

If y = x: Then P = S ∧C . By Lemma B.17 on Γ⊢ x ′ : P , Γ ∋ x ′ : S′∧C ′ and Γ⊢ S′ <: S and

Γ⊢C ′ <: C unless x ′ ∈C . Since we have both x ′ ∉C (as Γ, x : P,∆ is well-formed) and

x ′ ∈ dom(Γ), therefore we can conclude.

If y ∈ dom(∆): Then θ∆ ∋ y : θS ∧θC and we can conclude by reflexivity (13).

If p = q. f and (Γ, x : P,∆)(q) → µzz { fi : T fi

i
} ∧ D and S ∧ C = [z := q z]T f : By the IH we

have (Γ,θ∆)(θq) → U ∧ D ′ and Γ,θ∆ ⊢ D ′ <: θD and Γ,θ∆ ⊢ D ′ <: θ(µzz { fi : T fi

i
}). By

Lemma B.14, we then have either S′ = θ(µzz { fi : T fi

i
}), or S′ = { f j : T ′

f j

j
} and |µzz | = 0

and Γ,θ∆⊢ T ′
fi
<: T fi

i
. In the first case, we have (Γ,θ∆)(q. f) → [z := q z]T f , and we can

conclude by reflexivity (13). In the second case, we have (Γ,θ∆)(q. f) → T ′
f , and since

already we know that Γ,θ∆⊢ T ′
f <: T f we can conclude.

Lemma B.19 (Term substitution preserves subcapturing). If Γ, x : P,∆ ⊢ C1 <: C2 and Γ ⊢
x ′ : P and x has no aliases in Γ, x : P,∆, then Γ, [x := x ′]∆ ⊢ [x := x ′]C1 <: [x := x ′]C2.

Proof. Define θ≜ [x := x ′]. By induction on the subcapturing derivation.

Case (SC-PATH). Then we can conclude by Lemma B.18, the IH and (SC-TRANS).

Case (SC-ELEM). Then C1 = {x} and x ∈ C2. This implies that x ′ ∈ θC2, which lets us

conclude by (SC-ELEM).

Case (SC-MEM). Then we can conclude by Lemma B.18 and the IH.

Case (SC-SET), (SC-TRANS). Then we can conclude by the IH.

Lemma B.20 (Term substitution preserves subtyping). If Γ, x : P,∆ ⊢ U <: T and Γ ⊢ x ′ : P

and x has no aliases in Γ, x : P,∆, then Γ, [x := y]∆ ⊢ [x := y]U <: [x := y]T .

155

Appendix B. ModCC Proofs

Proof. Define θ≜ [x := y]. Proceed by induction on the subtyping derivation.

Case (REFL), (TOP). By same rule.

Case (CAPT). By the IH and Lemma B.19 and (CAPT).

Case (TRANS), (BOXED), (FUN), (REC) . By the IH and re-application of the same rule.

Lemma B.21 (Term substitution preserves typing). If Γ, x : P,∆ ⊢ t : T and Γ ⊢ x ′ : P. and x

has no aliases in Γ, x : P,∆, then Γ, [x := x ′]∆ ⊢ [x := x ′]t : [x := x ′]T .

Proof. Define θ≜ [x := x ′]. Proceed by induction on the typing derivation.

Case (SUB). By the IH, Lemma B.20 and (SUB).

Case (ABS). Then t =λ(y : Q) t ′ and T = (∀(y : Q)T ′)∧(cv(t)⊖ y) and Γ, x : P,∆, y : Q ⊢ t ′ : T ′.
By the IH, we have Γ,θ∆, y : θQ ⊢ θt ′ : θT ′. Since y ̸= x and y ̸= x ′, we have θ(cv(t)⊖ y) =
cv(θt)⊖ y , which lets us conclude by (ABS).

Case (APP). Then t = z1 z2 and Γ, x : P,∆ ⊢ z1 : (∀(y : Q)T ′)∧C and Γ, x : P,∆ ⊢ z1 : Q and

T = [y := z2]T ′.
By the IH we have Γ,θ∆ ⊢ θz1 : θ((∀(y : Q)T ′)∧C) and Γ,θ∆ ⊢ θz2 : θQ.

Then by (APP) we have Γ,θ∆ ⊢ θ(z1 z2) : [y := θz2]θT ′.
Since y ̸= x and y ̸= x ′, we have [y := θz2]θT ′ = θ([y := z2]T ′), which concludes.

Case (BOX). Then t =□ y and Γ, x : P,∆ ⊢ z : S ∧C and T =□S ∧C .

By the IH, we have Γ,θ∆ ⊢ θy : θS ∧θC . Then we can conclude by Lemma B.18 and (BOX).

Case (UNBOX). Analogous to the previous rule.

Case (LET). Then t = let y = s in t ′ and Γ, x : P,∆ ⊢ s : Q and Γ, x : P,∆, y : Q ⊢ t ′ : T .

By the IH, we have Γ,θ∆⊢ θs : θQ and Γ,θ∆, y : θQ ⊢ θt ′ : θT .

Then by (LET) we also have Γ,θ∆ ⊢ θ(let y = s in t ′) : θT , which concludes.

Case (PATH) . Then we can conclude by Lemma B.18 and (PATH) & (SUB) & (CAPT).

Case (PACK) .

Then t = p and T =µy y ({ fi : Ti
i
})∧C and Γ, x : P,∆⊢ p : [y := p]{ fi : Ti

i
}∧C .

By the IH, Γ,θ∆⊢ θp : ([y := θp]θ{ fi : Ti
i
})∧θC .

By (PACK), Γ,∆⊢ θp :µy θ{ fi : Ti
i
}∧θC , which concludes.

Case (UNPACK) . Analogous to (PACK).

Case (UNIT) . Immediate.

156

B.5 Main Theorems – Soundness

Case (MODULE) . Then t =mod(q) { fi = pi
i
} and T =µy { fi : [q := y.reg]Ui

i
}∧{cap}

and Γ, x : P,∆⊢ pi : Ui
i
. By the IH we have Γ,θ∆⊢ θpi : θUi

i
, and by (MODULE)

we have Γ,θ∆⊢ θt =mod(θq) { fi = θpi
i
} :µy { fi : [θq := y.reg]θUi

i
}∧{cap}.

We note that [θq := y.reg]θUi = θ[q := y.reg]Ui and we can conclude.

Case (REGION), (REF), (READ), (WRITE), (RECORD) . In all these subcases we can conclude

by using the IH on the premises and re-using the same typing rule.

B.5 Main Theorems – Soundness

B.5.1 Preliminaries

Lemma B.22 (Canonical forms: term abstraction). If Γ ⊢ v : (∀(x : U)T)∧C , then we have

v =λ(x : U ′) t and Γ ⊢ U <: U ′ and Γ, x : U ⊢ t : T .

Proof. By induction on the typing derivation.

For rule (SUB), we observe that by Lemma B.11, the subtype is of the form (∀(y : U ′′)T)∧C ′′

and we have Γ ⊢ U <: U ′′. By the IH we know that v = λ(x : U ′) t and Γ ⊢ U ′′ <: U ′ and

Γ, x : U ′′ ⊢ t : T . By (TRANS) we have Γ ⊢ U <: U ′ and by narrowing we have Γ, x : U ⊢ t : T ,

which concludes.

Rule (ABS) is immediate, and other rules cannot occur.

Lemma B.23 (Canonical forms: boxed term). If Γ ⊢ v : □T ∧C , then v = □x and Γ ⊢ x : U

and Γ⊢U <: T for some U such that cap ̸∈ cv(U).

Proof. Analogous to the proof of Lemma B.22.

Lemma B.24 (Canonical forms: unit). If Γ ⊢ v : Unit∧C , then v = ().

Proof. Analogous to the proof of Lemma B.22.

Lemma B.25 (Store typing inversion: records and modules). Let σ∼∆ and

∆ ∋ l :µxx { fi : Ti
i
}∧C . Then σ(l) is a record or a module with fields fi

i
whose respective bodies

are ri
i . In addition we have ∆⊢ ri : [x := l

x
]Ti

i
.

Proof. Define U ≜ µxx { fi : Ti
i
} ∧ C . The store typing could only have been derived if σ(l)

is either a record or a module. If σ(l) is a record, then we have ∆ ⊢ σ(l) : U and we can

conclude by straightforward induction on this derivation. Otherwise, σ(l) =mod(l0) { fi = ri
i
}

and U =µx { fi : Ti
i
}∧C and we also have∆⊢ ri : T ′

i

i
and Ti = [l0 := x.reg]T ′

i

i
and∆ ∋ l0 ≡ l .reg.

Then by (SC-ALIAS) we can derive ∆⊢ ri : [l0 := l .reg]T ′
i

i
, which lets us conclude.

157

Appendix B. ModCC Proofs

Lemma B.26 (Typing inversion: stored records and modules). Let σ∼∆ and

∆ ⊢ r : µxx { fi : T fi

i
}∧C . Then ∆ ⊢ l 7→ e ∼ ∆′ and ∆′ ⊆ ∆ and σ(r) = σ(l) = e, and also ∆′ ∋ l :

µy y { f j : T f j

j
}∧C ′ and if ∆⊢C <: {} then C ′ = {}. Finally, e is a record or a module with fields fi

i

whose respective bodies are ri
i . In addition we have ∆⊢ ri : [x := r x]Ti

i
.

Proof. Define U ≜µxx { fi : Ti
i
}∧C . Proceed by induction on the typing derivation.

Case (SUB). Then ∆ ⊢ r : S′ ∧C ′ and ∆ ⊢ S′ ∧C ′ <: U . By Lemma B.14, either S′ ∧C ′ = U ,

in which case we can trivially conclude by the IH, or |µxx | = 0 and ∆ ⊢ C ′ <: C and

S′ = { f ′
j : T ′

f ′
j

j
} and ∆⊢ T ′

fi
<: T fi

i
, where T fi

i = Ti
i
.

By the IH, we have ∆ ⊢ l 7→ e ∼ ∆′ and σ(r) = σ(l) = e and ∆ ∋ l : µy y { f j : T f j

j
}∧C ′′ and

if ∆⊢ C ′ <: {} then C ′′ = {}. We now show that if ∆⊢ C <: {}, then C ′′ = {}. If it is so, then

∆⊢C ′ <: {} by transitivity (12), which gives us C ′′ = {} by the above implication, as desired.

Further by the IH, e is a record or a module with fields f ′
j

j
whose respective bodies are

r f ′
j

j . Since we know that ∆⊢ T ′
fi
<: T fi

i
, i.e., we can index T ′

f ′
j

j
with all of fi

i
, we implicitly

also know that fi
i ⊆ f ′

j

j
. Therefore, the IH also gives us∆⊢ r fi : T ′

fi

i
, where r fi

i = ri
i . Then

by (SUB) we have ∆⊢ r fi : T fi

i
. Since |µxx | = 0, we have T fi = [x := r x]T fi

i
, which lets us

conclude.

Case (PATH). Proceed by induction on the lookup derivation.

If r = l , then also ∆ ∋ l : U . Then we can nearly conclude by Lemma B.25. We need to

show that if ∆⊢C <: {}, then C = {}. Since we already have store entry typing, either

C = {cap} or C = {}; the former is contradictory and the latter is immediate.

If r = r ′. f , then ∆(r ′) →µy y { f ′
i : T ′

f ′
i

i
}∧C ′, f ∈ f ′

i

i
and [y := r ′y

]T ′
f =U .

By the IH, σ(r ′) is a record or a module with fields f ′
i

i
whose respective bodies are r f ′

i

i

and we have∆⊢ r f ′
i

: [y := r ′y
]T ′

f ′
i

i
, as well asσ(r ′. f ′

i) =σ(r f ′
i
)

i
. Then we can conclude

by the IH on ∆⊢ r f : U , since in particular σ(r f) =σ(r ′. f) (and therefore by definition

of store lookup, for all f ′ s.t. the LHS is defined we have σ(r f . f ′) =σ(r ′. f . f ′)).

If ∆⊢ r ′ ≡ r , then ∆(r) →U and σ(r ′) =σ(r) and we can conclude by the IH.

Lemma B.27 (Typing inversion: stored path). Let σ ∼ ∆ and ∆ ⊢ r : S ∧C where S is not a

record type. Then there exist l and ∆′ such that σ(r) =σ(l) = e and ∆′ ⊆∆ and ∆⊢ l 7→ e ∼∆′

and ∆′ ∋ l : S′∧C ′ and ∆⊢ S′ <: S and if C = {}, then C ′ = {}.

Proof. We start with an induction on an ordered pair of (1) the size of the prefix of σ in which

158

B.5 Main Theorems – Soundness

the root of r may be bound and (2) the depth of the typing derivation for r . In the base case,

the root of r is the first binding in σ and the derivation depth is 1. The typing derivation could

only have been derived with (PATH), and we inspect the form of r .

Case r = l . Then C = {l } and ∆ ∋ l : S ∧C ′ for some S ∧C ′. Then since σ∼∆, we must have

σ(l) = e for some e such that ∆⊢ l 7→ e ∼∆′ and ∆′ ∈∆. By inspecting the rules of store

entry typing we must have l : T ∈∆′ for some T ; since ∆ ∋ l : S ∧C ′, we have T = S ∧C ′. By

(REFL) we have ∆⊢ S <: S and we already have l ∈C , which lets us conclude.

Case r = r ′. f . Then∆(r ′) →µxx { fi : Ti
i
}∧C ′ and f ∈ fi

i
. This leads to a contradiction, since

by (PATH) and Lemma B.26 there must be a binding in σ that precedes the root of r ′.

In the inductive case, we proceed with case analysis on the typing derivation for r .

Case (SUB). Then∆⊢ r : S′′∧C ′′ and we can conclude by the IH and transitivity of subtyping

(12).

Case (PATH). As before, we inspect the form of r .

Case r = l . Same as before.

Case r = r ′. f . Then as before, ∆(r ′) → µxx { fi : T fi

i
}∧C ′ and f ∈ fi

i
. Then by (PATH)

and Lemma B.26 σ(r ′) is a record or a module with a field f whose body is r f and we

have ∆⊢ r f : [x := r ′x]T f . Since σ∼∆, the root of r f must be bound before the root of

r , which means we can conclude by the induction hypothesis.

Lemma B.28 (Store lookup inversion: reference’s content). Let σ∼∆ and ∆⊢ r : Ref[S]∧C .

Then σ(r) = l ▷ refv implies that ∆⊢ v : S.

Proof. By Lemma B.34, for some l0 we have ∆ ⊢ l0 7→ l ▷ ref v ∼ l0 : Ref[S′] ∧ C ′ and ∆ ⊢
Ref[S′] <: Ref[S]. The subtyping could only have been derived with (SUB), which means that

S′ = S. Therefore as a premise of store entry typing, we have ∆⊢ v : S as desired.

Lemma B.29 (Store lookup inversion: term abstraction). If σ∼∆ and ∆ ⊢ r : (∀(z : U)T)∧C

and σ(r) = l ▷λ(z : U ′) t , then ∆ ⊢ U <: U ′ and ∆, z : U ⊢ t : T .

Proof. A corollary of Lemma B.34 and Lemma B.22.

Lemma B.30 (Store lookup inversion: box). If σ ∼ ∆ and σ(r) = □r ′ and ∆ ⊢ r : □T , then

∆ ⊢ r ′ : U and ∆⊢U <: T for some U such that cap ̸∈ cv(U).

Proof. A corollary of Lemma B.34 and Lemma B.23.

Lemma B.31 (Store lookup inversion: untracked value). If σ∼∆ and σ(r) = v and ∆⊢ r : S,

then ∆⊢ v : S.

159

Appendix B. ModCC Proofs

Proof. By Lemma B.34, for some l we have σ(l) =σ(r) = v and ∆ ∋ l : R and

∆ ⊢ l 7→ v ∼ l : R and ∆ ⊢ R <: S. Then by store entry typing we must have ∆ ⊢ v : R and by

(SUB) & (CAPT) we can derive ∆⊢ v : S, as desired.

Lemma B.32 (Capture binding equivalence for location-rooted path aliases). If σ ∼ ∆ and

∆⊢ p ≡ q and ∆(p) → Sp
∧Cp and ∆(q) → Sq

∧Cq , then ∆⊢Cp <: Cq and vice versa.

Proof. By induction on the derivation of path equivalence. The cases for transitivity and

symmetricity follow from the IH. Otherwise, ∆ ∋ p ≡ q , in which case we know that the path

equivalence was added via the store entry typing rule for a record or module. For a record, we

have Cp =Cq and Sp = Sq , which lets us conclude by reflexivity. For a module, if p is of the

form l .reg, we can conclude the same way. Otherwise, we have Cp = [l ′ := l .reg]Cq , where

l is the location of the module and l ′ is the location of the region packed with the module.

Then we also have ∆ ∋ l ≡ l ′.reg, which lets us conclude by (SC-ALIAS). Store typing only

introduces path aliases for records and modules, and store entry typing rules for both records

and modules clearly ensure the property holds. Record fields are bound at the same type as

their contents and module fields have one path replaced with its alias.

Lemma B.33 (Subcapturing inversion: location-rooted path). Let σ ∼ ∆ and ∆ ⊢ C1 <: C2.

Then r ∈C1 and ∆(r) → S ∧D imply that ∆⊢ D <: C2 unless C2 contains r or its alias.

Proof. By induction on the subcapturing derivation.

Case (SC-TRANS). Then ∆⊢C1 <: C3 <: C2. We invoke the IH on C1 <: C3 and inspect its

conclusion.

If ∆⊢ D <: C3: then we can conclude by (SC-TRANS).

If C3 contains r ′, which is either r or its alias: Then by Lemma B.32 we have ∆(p) → S′∧

D ′ such that ∆⊢ D <: D ′. By the IH on C3 <: C2, one of two cases holds.

If ∆⊢ D ′ <: C2: Then also ∆⊢ D <: C2 by transitivity (13), which concludes.

If C2 contains r ′ or its alias: Then we can conclude, since r ′ is itself either r or its

alias.

Case (SC-ALIAS). Then C2 must contain l or its alias: either p = l and q is the alias, or q is

an unrelated path and C2 contains l .

Case (SC-SET). By the IH on the ∆⊢ {l } <: D premise.

Case (SC-PATH), (SC-ELEM). Immediate.

Lemma B.34 (Typing inversion: location-rooted path). If σ∼∆ and ∆⊢ r : S ∧C and ∆(r) →
R ∧D, then ∆⊢ D <: C unless C contains r or its alias.

160

B.5 Main Theorems – Soundness

Proof. By induction on the typing derivation.

Case (SUB). Then ∆ ⊢ r : S′ ∧ C ′ and ∆ ⊢ S′ ∧ C ′ <: S ∧ C . By Lemma B.10 we also have

∆⊢C ′ <: C . By the IH one of two cases holds.

If ∆⊢ D <: C ′: Then we can conclude by transitivity (13).

If C ′ contains r or its alias: Then we can conclude by Lemma B.33.

Case (PATH). Then D = {r }, which concludes.

Case (PACK), (UNPACK). In both cases we can conclude by the IH, since in the premise r is

typed at the same capture set.

Other rules cannot occur because of the form of r .

B.5.2 Soundness

In this section, we show the classical soundness theorems.

Theorem B.1 (Preservation). Let σ∼∆ and ∆⊢ t : T . Then (σ, t) −→ (σ′, t ′) implies that there

exists a typing context ∆′ such that σ′ ∼∆,∆′ and ∆,∆′ ⊢ t ′ : T .

Proof. We proceed by inspecting the rule used to reduce (σ, t).

Case (APPLY). Then we have t = η[r r ′] and σ′ =σ and t ′ = η[[x := r ′]t] and σ(r) = l ▷λ(x :

U) t .

By Lemma B.1, for some Q we have ∆⊢ η : Q ⇒ T and ∆⊢ r r ′ : Q. Based on the term form,

the typing derivation of r r ′ must start with an arbitrary number of (SUB) rules, followed

by (APP). Therefore, we proceed by structural induction on said typing derivation. In both

the base and the inductive cases we can only assume that ∆⊢ r r ′ : Q ′ for some Q ′ such

that ∆⊢Q ′ <: Q.

In the inductive case, ∆⊢ r r ′ : Q ′ is derived by (SUB), so we also have some Q ′′ such that

∆⊢ r r ′ : Q ′′ and ∆⊢Q ′′ <: Q ′. We have ∆⊢Q ′′ <: Q by (TRANS), so we can conclude by

using the inductive hypothesis on ∆⊢ x y : Q ′′.

In the base case, ∆ ⊢ r r ′ : Q ′ is derived by (APP), so for some C and Q ′′ we have ∆ ⊢
r : (∀(z : U ′)Q) ∧ C ′′ and ∆ ⊢ r ′ : U ′ and Q ′ = [x := r ′]Q ′′. Since σ ∼ ∆ and ∆ ⊢ r ′ : U ′,
clearly U ′ cannot be a type variable. Then by Lemma B.29, we have ∆, z : U ′ ⊢ s : Q ′′. By

Lemma B.21, we have ∆⊢ [x := r ′]s : [x := r ′]Q ′′, and since Q ′ = [x := r ′]Q ′′, by (SUB) we

have ∆⊢ [x := r ′]s : Q.

We pick an empty ∆′ and conclude that ∆⊢ (t ′ = η[[x := r ′]s]) : T with Lemma B.2.

161

Appendix B. ModCC Proofs

Case (OPEN). As above.

Case (GET). Then we have t = η[!r] and σ′ =σ and t ′ = η[v] and σ(r) = l ▷ ref v .

Again, by Lemma B.1 we have ∆ ⊢ η : Q ⇒ T and ∆ ⊢ !r : Q As in the (APPLY) case, we

proceed by induction, only working with a Q ′ such that Q ′ <: Q. The inductive case

remains the same.

In the base case for (READ) we have ∆ ⊢ r : Ref[S] ∧ {cap} and Q ′ = S. By Lemma B.28

we also have ∆ ⊢ v : S. Then we can conclude that ∆ ⊢ η[v] with an empty ∆′ with

Lemma B.2.

Case (SET). Then we have t = η[r := r ′] and σ = [r 7→ σ(r ′)]σ and t ′ = η[()]. We also

implicitly know that σ(r ′) = v for some v , or otherwise [r 7→ σ(r ′)]σ would not be a

syntactically valid store.

Again, by Lemma B.1 we have ∆ ⊢ η : Q ⇒ T and ∆ ⊢ r := r ′ : Q. As in the (APPLY) case,

we proceed by induction, only working with a Q ′ such that Q ′ <: Q. The inductive case

remains the same.

In the base case for rule (WRITE), we have Q ′ =Unit and ∆⊢ l : Ref[S]∧{cap} and ∆⊢ y : S.

By Lemma B.15 we have l : R ∧D ∈∆ and∆⊢ R <: Ref[S] for some D,R . Since the subtyping

relation had to be derived with (REFL), in fact we have R = Ref[S]. Based on the σ ∼ ∆

premise, we also have σ(l) = l0▷ ref w and ∆⊢ w : S and ∆⊢σ(l) ∼ Ref[S]∧D such that

D = {cap}.

By Lemma B.31 we have∆⊢ (σ(y) = v) : S. Then we can derive∆⊢ l▷ref w ∼ Ref[S]∧{cap},

and since we already have σ∼∆ this gives us σ′ ∼∆.

To conclude, we pick an empty ∆′, observe that we have ∆⊢ () : Unit and Unit =Q ′ and

∆⊢Q ′ <: Q, and derive that ∆⊢ η[()] : T with (SUB) and Lemma B.2.

Case (LIFT). Then we have t = η[v] and σ′ =σ, l 7→ v and t ′ = η[l].

Again, by Lemma B.1 for some Q we have ∆⊢ η : Q ⇒ T and ∆⊢ v : Q. As in the (APPLY)

case, we proceed by induction, only working with a Q ′ such that Q ′ <: Q. The inductive

case for rule (SUB) remains the same.

In the base case, we have ∆⊢ v : Q ′. We inspect the form of v .

If v is not a record form: we pick ∆′ = l : Q ′. We can derive both σ′ ∼ ∆,∆′ and

∆,∆′ ⊢ η[l] : T , the latter via weakening, (SUB) and Lemma B.2, which concludes.

If v is a record form: then the last typing rule was (RECORD) and we have v = { fi = ri
i
}

and∆⊢ ri : Si
∧Ci

i
and Q ′ = { fi : Ti

i
}∧(

⋃
i Ci). By Lemma B.34 we have∆(ri) → S′

i
∧C ′

i

i

such that ∆⊢ S′
i <: Si

i
and for each i we have ∆⊢C ′

i <: Ci unless Ci contains ri or its

162

B.5 Main Theorems – Soundness

alias.

We pick ∆′ = { fi : S′
i
∧C ′

i

i
}∧(

⋃
i Ci), li ≡ ri

i
and we derive σ′ ∼∆,∆′ by extending σ∼∆

via the record store entry typing rule. We can derive ∆,∆′ ⊢ l : Q ′ via (SUB) & (CAPT)

& (REC), which leads to ∆,∆′ ⊢ η[l] : T via weakening, (SUB) & Lemma B.2, which

concludes.

Case (RENAME). Then we have t = η[letx = r in t] and σ′ =σ and t ′ = η[[x := r]t].

Again, by Lemma B.1 for some Q we have ∆ ⊢ η : Q ⇒ T and ∆ ⊢ letx = r in t : Q. As in

the (APPLY) case, we proceed by induction, only working with a Q ′ such that Q ′ <: Q. The

inductive case remains the same.

In the base case, (LET) was used to derive that ∆ ⊢ letx = r in t : Q ′. The premises are

∆⊢ r : U and ∆, x : U ⊢ s : Q ′ and x ̸∈ fv(Q ′).

By Lemma B.21, we have ∆ ⊢ [x := r]s : [x := r]Q ′.

Because x ̸∈ fv(Q ′), we also have [x := r]Q ′ =Q ′, which means that we conclude with an

empty ∆′ by (SUB) and Lemma B.2.

Case (ALLOC). Then we have t = η[r.ref r ′] and σ′ =σ, l 7→ (e = l ′▷ refσ(r ′)) and t ′ = η[l],

where σ(r) = regionl ′

Once again, by Lemma B.1 for some Q we have ∆⊢ η : Q ⇒ T and ∆⊢ r.ref r ′ : Q. As in

the (APPLY) case, we proceed by induction, only working with a Q ′ such that Q ′ <: Q. The

inductive case remains the same.

In the base case, (REF) was used to derive ∆ ⊢ r.ref r ′ : Q ′, which means we have Q ′ =
Ref[S]∧{r } and ∆⊢ r : Reg∧{cap} and ∆⊢ r ′ : S.

We pick ∆′ = l : Q ′. By Lemma B.31, we have ∆⊢σ(r ′) : S. This lets us derive ∆, l : Q ′ ⊢ l 7→
e ∼ l : Q ′ by weakening, and since we already have σ∼ ∆, this gives us σ′ ∼ ∆,∆′. Since

∆⊢Q ′ <: Q, by weakening, (SUB) and Lemma B.2 we also have ∆, l : Q ′ ⊢ η[l] : T , which

concludes.

Case (MALLOC). Then t = η[mod(r) { fi = ri
i
}] and σ′ =σ, l 7→ (e =mod(l ′) { fi = ri

i
}) and

t ′ = η[l], where σ(r) = regionl ′ .

Once again, by Lemma B.1 for some Q we have ∆⊢ η : Q ⇒ T and∆⊢mod(r) { fi = ri
i
} : Q.

As in the (APPLY) case, we proceed by induction, only working with a Q ′ such that Q ′ <: Q.

The inductive case remains the same.

In the base case, ∆⊢mod(r) { fi = ri
i
} : Q ′ was derived with (MODULE); we have

Q ′ =µx {reg : Reg∧{cap}, fi : Ti
i
}∧{cap} and ∆, x : Q ′ ⊢ ri : Ui

i
and Ti = [r := x.reg]Ui

i
.

We pick ∆′ = l : Q ′, l ′ ≡ l .reg, l . fi ≡ ri
i
. To derive ∆,∆′ ⊢ l 7→ e ∼ ∆′ we need to show

163

Appendix B. ModCC Proofs

∆,∆′ ⊢ ri : [r := l]Ui
i
. Since we have we have σ(r) = regionl , either r = l or r aliases l in σ.

In the former case, it suffices to weaken ∆⊢ ri : Ui
i
. In the latter case, since we have σ∼∆

we must also have ∆⊢ r ≡ l and we can derive ∆⊢ ri : [r := l]Ui
i

via (SUB) & (SC-ALIAS).

In either case we can derive ∆,∆′ ⊢ l 7→ e ∼∆′, and since we already have σ∼∆ this gives

us σ′ ∼∆,∆′.

As before, we have ∆⊢Q ′ <: Q, and therefore by weakening & (SUB) & Lemma B.2 we also

have ∆, l : Q ′ ⊢ η[l] : T , which concludes.

Lemma B.35 (Store extraction: non-module). Let σ∼∆ and ∆⊢ r : S ∧C . Then:

• If S is of the form Reg, then σ(r) = regionl

• If S is of the form Ref[S], then σ(r) = l ▷ refv

• If S is of the form ∀(x : U)T , then σ(r) =λ(x : U ′) t

• If S is of the form □T , then σ(r) =□r ′

• If S is of the form Unit, then σ(r) = ()

Proof. The first two points follow immediately from inverting the store entry typing derivation

resulting from Lemma B.34.

Other points follow from inverting the store entry typing derivation resulting from Lemma B.34

and the Subtyping Inversion (Lemma B.11, Lemma B.12, Lemma B.13) and Canonical Form

(Lemma B.22, Lemma B.23, Lemma B.24) Lemmas.

Lemma B.36 (Impurity of regions). Let σ∼∆ and ∆⊢ l : S. Then S is not of the form Reg.

Proof. Assume that S = Reg. By Lemma B.34, we must have ∆ ∋ l : S′ ∧C ′ and ∆⊢ S′ <: S and

∆ ⊢ C ′ <: {} for some type S′ ∧C ′. The subtyping relationship must have been derived with

(REFL), which means that S′ = Reg. Then since σ ∼ ∆, we must have C ′ = {cap}, which is a

contradiction since we cannot derive that ∆⊢ {cap} <: {}.

Theorem B.2 (Progress). Let σ∼∆ and ∆⊢ t : T . Then either there exists r such that t = r , or

there exist σ′, t ′ such that (σ, t) −→ (σ′, t ′).

Proof. Our t must be of the form η[u] for some η, u such that u is not of the form letx =
u1 inu2. By Lemma B.1, we then have ∆⊢ u : U for some U . We proceed by induction on this

derivation.

Case (PATH). Then u = r . If η ̸= [], we can step by (RENAME); otherwise, t = r and we can

conclude.

164

B.5 Main Theorems – Soundness

Case (SUB). By the induction hypothesis.

Case (UNIT), (ABS), (BOX), (RECORD). Then u = v and we can step by (LIFT).

Case (APP). Then t = r r ′ and ∆ ⊢ r : (∀(z : U)T0)∧C and ∆ ⊢ r ′ : U . By Lemma B.35 and

Lemma B.22 we have σ(r) =λ(z : U ′) t ′, which means we can step by (APPLY).

Case (UNBOX). Then t = C ⊸r and ∆ ⊢ r : (□S ∧C) ∧ C . By Lemma B.35 Lemma B.23,

σ(r) =□r ′, which means we can step by (OPEN).

Case (LET). Contradictory.

Case (REF). Then t = r.ref r ′ and ∆⊢ r : Reg∧{cap} and ∆⊢ r ′ : S. By Lemma B.35 we have

σ(r) = regionl . We proceed by case analysis on the form of S. If S = Reg, then this is

a contradiction by Lemma B.36. If S is a record type, then by Lemma B.26 σ(r ′) must

be a value—a record form—since store entry typing only assigns pure types to records.

Otherwise σ(r ′) is a value by Lemma B.35, which means we can step by (ALLOC).

Case (READ). Then t = !r and ∆ ⊢ r : Ref[S]∧ {cap}. Then by Lemma B.35 we have σ(r) =
l ▷ ref v , which means we can step by (GET).

Case (WRITE). Then t = r := r ′ and ∆⊢ r : Ref[S]∧{cap} and ∆⊢ r ′ : S. Then by Lemma B.35

we haveσ(l) = l▷ref v and by an identical argument as in the (REF) case we haveσ(l ′) = w ,

which means we can step by (SET).

Case (MODULE). Then t =mod(r) { fi = ri
i
} and ∆⊢ r : Reg∧{cap}. By Lemma B.35 we have

σ(r) = regionl , which lets us step by (MALLOC).

165

C GradCC Proofs

Figure C.1 shows all the typing rules of GradCC.

In the following proofs, we use a “logic variable” convention. A variable may be used in a

position such that some instantiations of the variable don’t fit the appropriate domain; doing

so implicitly narrows what the variable ranges over. For instance, if we state that Γ⊢C ?1 <: C ?2

for some Γ and C ?1 and C ?2, then we implicitly mean that there exist C1 and C2 such that

C ?1 = C1 and C ?2 = C2: the capture descriptors must be capture sets, since subcapturing is

only defined for the latter.

C.1 Properties of Evaluation Contexts and Stores

Lemma C.1 (Evaluation context typing inversion). Let Γ ⊢ η[u] : T . Then we have Γ⊢ η : U ⇒
T for some U , such that Γ⊢ u : U .

Proof. We start exactly as in Lemma B.1, by induction on the structure of η. If η = [], then

Γ⊢ u : T and clearly Γ⊢ [] : T ⇒ T . Otherwise, proceed by induction on the typing derivation

of η[u], as before We can only assume that Γ⊢ η[u] : T ′ for some T ′ s.t. Γ⊢ T ′ <: T . Old cases

remain the same; there is a single new case.

Case (ENCLOSURE) . Then η[u] = encl[C][T ′]η′[u]. By the outer IH, we have Γ⊢ η′ : U ⇒
T ′∧D for some D : for all u′, Γ⊢ u′ : U implies that Γ⊢ η′[u′] : T ′.

We want to show Γ ⊢ encl[C][T ′]η′ : U ⇒ T , i.e., that for all u′, Γ ⊢ u′ : U implies that

Γ⊢ η[u′] : T . This goal follows from Γ⊢ η′ : U ⇒ T ′∧D , (SUB) & (ENCL) .

Lemma C.2 (Evaluation context reification). If both Γ ⊢ η : U ⇒ T and Γ ⊢ u : U , then we have

Γ ⊢ η[u] : T .

Proof. As before, immediate from the definition of Γ⊢ η : U ⇒ T .

167

Appendix C. GradCC Proofs

Typing Γ ⊢ t : T

ENCLOSURE

Γ ⊢ t : T Γ⊢C wfr
Γ⊢ encl[C][T] t : T

MARK

Γ⊢ p : S ∧C ?

Γ⊢ # p : S ∧#

UNIT

Γ ⊢ () : Unit

PATH

Γ(p) → S ∧ C ?

Γ ⊢ p : S ∧{p}

UNPACK

Γ⊢ p :µx { f : T }∧ C ?

Γ⊢ p : ([x := p]{ f : T })∧ C ?

PACK

Γ⊢ p : ([x := p]{ f : T })∧ C ?

Γ⊢ p :µx { f : T }∧ C ?

ABS
Γ, x : U ⊢ t : T Γ⊢U wf

Γ ⊢ λ(x : U) t : (∀(x : U)T)∧(cv(t) ⊖̇x)

APP

Γ ⊢ p : ∀(x : U)T ∧ C ? Γ ⊢ q : U

Γ ⊢ p q : [z := q]T

LET
Γ ⊢ s : T Γ, x : T ⊢ t : U x ̸∝̇ fv(U)

Γ ⊢ letx = s in t : U

SUB
Γ ⊢ t : T Γ ⊢ T <: U Γ ⊢ U wf

Γ ⊢ t : U

REGION

Γ⊢ region : Reg∧{cap}

BOX

Γ ⊢ p : S ∧ C ? Γ⊢ q bdq∈̇ C ?

Γ ⊢ □ p :□ S ∧ C ?

UNBOX

Γ ⊢ p :□ S ∧ C ? Γ⊢ q bdq∈̇ C ?

Γ ⊢ C ⊸p : S ∧C

UNBOX-MARK

Γ ⊢ p :□ S ∧C Γ⊢ q bdq∈C

Γ ⊢ # ⊸p : S ∧C

REF

Γ ⊢ p : Reg∧ C ? Γ⊢ p : S

Γ ⊢ p.ref p : S ∧{p}

READ

Γ ⊢ p : Ref[S]∧ C ?

Γ ⊢ !p : S

WRITE

Γ ⊢ p : Ref[S]∧ C ? Γ ⊢ q : S

Γ ⊢ p := q : Unit

RECORD

Γ⊢ pi : Si
∧ C ?i

i

Γ⊢ { fi = pi
i
} : { fi : Si

∧ C ?i

i
}∧(

⋃̇
i C ?i)

MODULE

Γ⊢ q : Reg∧ C ? Γ⊢ pi : Ui
i

Ti = [q := x.reg]Ui
i

Γ⊢mod(q) { fi = pi
i
} :µx {reg : Reg∧{cap}, fi : Ti

i
}∧{cap}

Figure C.1: Full GradCC typing rules. Faded rules are unchanged. Shaded-name rules are new.

168

C.2 Properties of Cast Subcapturing

C.2 Properties of Cast Subcapturing

The previous proofs carry through without adjustments for the lemmas in this subsection,

since they describe properties of subcapturing, a relation on capture sets and not capture

descriptors.

Lemma C.3 (Universal capability subcapturing inversion). Let Γ ⊢ C <: D. If cap ∈ C , then

cap ∈ D.

Proof. The same as for Lemma B.3.

Lemma C.4 (Subcapturing reflexivity). If Γ ⊢ C wf, then Γ ⊢ C <: C .

Proof. The same as for Lemma B.4.

Lemma C.5 (Subtyping implies subcapturing). If Γ ⊢ S1
∧C1 <: S2

∧C2, then Γ ⊢ C1 <: C2.

Proof. The same as for Lemma B.5.

C.2.1 Permutation, weakening, narrowing

Lemma C.6 (Permutation). Permutating the bindings in the environment up to preserving

environment well-formedness also preserves type well-formedness, subcapturing, subtyping

and typing.

Let Γ and ∆ be the original and permutated context, respectively. Then:

1. If Γ ⊢ T wf, then ∆ ⊢ T wf.

2. If Γ ⊢ C1 <: C2, then ∆ ⊢ C1 <: C2.

3. If Γ ⊢ U <: T , then ∆ ⊢ U <: T .

4. If Γ ⊢ t : T , then ∆ ⊢ t : T .

Proof. The order of the bindings in the environment is still not used in any rule.

Lemma C.7 (Weakening). Adding a binding to the environment such that the resulting envi-

ronment is well-formed preserves type well-formedness, subcapturing, subtyping and typing.

Let Γ and ∆ be the original and extended context, respectively. Then:

1. If Γ ⊢ T wf, then ∆ ⊢ T wf.

2. If Γ ⊢ C1 <: C2, then ∆ ⊢ C1 <: C2.

169

Appendix C. GradCC Proofs

3. If Γ ⊢ U <: T , then ∆ ⊢ U <: T .

4. If Γ ⊢ t : T , then ∆ ⊢ t : T .

Proof. The same as previously.

Lemma C.8 (Term binding narrowing).

1. If Γ ⊢ U ′ <: U and (Γ, x : U ,∆)(p) → T , then (Γ, x : U ′,∆)(p) → T ′ and Γ, x : U ′,∆⊢ T ′ <:

T for some T ′.

2. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ T wf, then Γ, x : U ′,∆ ⊢ T wf.

3. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ C1 <: C2, then Γ, x : U ′,∆ ⊢ C1 <: C2.

4. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ T1 <: T2, then Γ, x : U ′,∆ ⊢ T1 <: T2.

5. If Γ ⊢ U ′ <: U and Γ, x : U ,∆ ⊢ t : T , then Γ, x : U ′,∆ ⊢ t : T .

Proof. The same as previously.

C.2.2 Subtyping inversion

Fact 15. Both subtyping and subcapturing are transitive.

Proof. By (TRANS) and (SC-TRANS) respectively.

Fact 16. Both subtyping and subcapturing are reflexive.

Proof. This is an intrinsic property of subtyping by (REFL) and an admissible property of

subcapturing per Lemma B.4.

Lemma C.9 (Subcapturing inversion: unaliased variable). Let Γ⊢C1 <: C2 and Γ ∋ x : S ∧D

such that x ∈C1 \C2 and x has no aliases in Γ. Then Γ⊢ D <: C2.

Proof. The same as for Lemma B.9.

Lemma C.10 (Subtyping inversion: capturing type). If Γ ⊢ U <: S ∧ C ? , then U is of the form

S′∧ C ?′ such that either C ?′ =C ? = # or Γ ⊢ C ?′ <: C ? and Γ ⊢ S′ <: S.

Proof. The same as for Lemma B.10, except for the new (MARKED) case which is analogous to

the (CAPT) case except we conclude that C ?′ =C ? = #.

170

C.2 Properties of Cast Subcapturing

Lemma C.11 (Subtyping inversion: function type). If Γ ⊢ U <: (∀(x : T1)T2) ∧ C ? , then U

is of the form (∀(x : U1)U2) ∧ C ?′ and we have either C ?′ =C ? = # or Γ ⊢ C ?′ <: C ? and

Γ ⊢ T1 <: U1 and Γ, x : T1 ⊢ U2 <: T2.

Proof. The same as for Lemma B.11, with identical adjustments for the new (MARKED) case as

in Lemma C.10.

Lemma C.12 (Subtyping inversion: boxed type). If Γ ⊢ U <: □T ∧ C ? , then U is of the form

□U ′∧ C ?′ and we have either C ?′ =C ? = # or Γ ⊢ C ?′ <: C ? and Γ ⊢ U ′ <: T .

Proof. The same as for Lemma B.12, with identical adjustments for the new (MARKED) case as

in Lemma C.10.

Lemma C.13 (Subtyping inversion: unit type). If Γ ⊢ U <: Unit∧ C ? , then U is of the form

Unit∧ C ?′ and we have either C ?′ =C ? = # or Γ ⊢ C ?′ <: C ? .

Proof. The same as for Lemma B.13, with identical adjustments for the new (MARKED) case as

in Lemma C.10.

Lemma C.14 (Typing inversion: variable at a non-record type). Let Γ⊢ x : S ∧ C ? such that

S is not of the form µy y { fi : Ti
i
}. Then there exist C ?′ and S′ such that Γ ∋ x : S′ ∧ C ?′ and

Γ ⊢ S′ <: S and also if x is unaliased in Γ, then Γ⊢ C ?′ <: C ? unless x ∈ C ? or C ?′ =C ? = # .

Proof. The same as for Lemma B.15; the lemma statement needed to change to account for

the changes in Lemma C.10.

Lemma C.15 (Typing inversion: variable at a record type). Let Γ ⊢ x : µy y { fi : T fi

i
} ∧ C ? .

Then Γ ∋ x : S ∧ C ?′ such that if x is unaliased in Γ, then Γ ⊢ C ?′ <: C ? unless x ∈ C ? or

C ?′ =C ? = # , and also S =µy ′y ′
{ f j : U f j

j
} and:

Γ⊢ [y ′ := x
y ′

]U fi <: [y := x y]T fi

i

Proof. The same as for Lemma B.16; the lemma statement needed to change to account for

the changes in Lemma C.10.

Lemma C.16 (Typing inversion: variable). Let Γ⊢ x :µy y S ∧ C ? . Then there exist C ?′ and S′

such that Γ ∋ x :µy ′y ′
S′∧ C ?

′
and Γ⊢ [y := x y]S′ <: [y ′ := x

y ′
]S and if x is unaliased in Γ, then

Γ⊢ C ?′ <: C ? unless x ∈ C ? or C ?′ =C ? = # .

Proof. The same as for Lemma B.17; the lemma statement needed to change to account for

changes in Lemma C.14 and Lemma C.15.

171

Appendix C. GradCC Proofs

C.3 Substitution

Substitution of marked paths is defined as follows:

[x := p] y = p if x = y

[x := p] y = y if x ̸= y

[x := z. f ′] y . f = z. f ′. f if x = y

[x := z. f ′] y . f = y . f if x ̸= y

[x := z. f ′] # y . f = # z. f ′. f if x = y

[x := z. f ′] # y . f = # y . f if x ̸= y

[x := # p] r = [x := p]r otherwise

This definition naturally extends to terms just like regular substitution. Moreover, we define

substition of marked paths over capture descriptors as follows:

[x := p] # = #

[x := y . f] {p} = {[x := y . f]p}

[x := # p] C ? = [x := p]C ?

Lemma C.17 (Term substitution preserves lookup). If (Γ, x : P,∆)(p) → S ∧ C ? and Γ⊢ x ′ : P

and x has no aliases in Γ, x : P,∆, then (Γ, [x := x ′]∆)([x := x ′]p) → S′ ∧ C ?
′

such that Γ, [x :=
x ′]∆⊢ C ?′ <: [x := x ′] C ? and Γ, [x := x ′]∆⊢ S′ <: [x := x ′]S.

Proof. The same as for Lemma B.18.

Lemma C.18 (Term substitution preserves subcapturing). If Γ, x : P,∆ ⊢ C ? 1 <: C ? 2 and

Γ⊢ x ′ : P and x has no aliases in Γ, x : P,∆, then Γ, [x := x ′]∆ ⊢ [x := x ′] C ?1 <: [x := x ′] C ?2 .

Proof. The same as for Lemma B.19.

Lemma C.19 (Term substitution preserves subtyping). If Γ, x : P,∆ ⊢ U <: T and Γ ⊢ x ′ : P

and x has no aliases in Γ, x : P,∆, then Γ, [x := y]∆ ⊢ [x := y]U <: [x := y]T .

Proof. The same as for Lemma B.20, except for the new (MARKED) case, which follows imme-

diately from the IH.

Lemma C.20 (Term substitution preserves typing). If Γ, x : P,∆ ⊢ t : T and Γ ⊢ x ′ : P. and x

has no aliases in Γ, x : P,∆, then Γ, [x := x ′]∆ ⊢ [x := x ′]t : [x := x ′]T .

Proof. The same as for Lemma B.21, except for three new cases.

Case (MARK) , (UNBOX-MARK) . By the IH.

172

C.4 Main Theorems – Soundness

Case (ENCLOSURE) . By the IH on the typing premiseand the IH on the well-formed

restriction premise.

C.4 Main Theorems – Soundness

C.4.1 Preliminaries

Lemma C.21 (Canonical forms: term abstraction). If Γ ⊢ v : (∀(x : U)T)∧ C ? , then we have

v =λ(x : U ′) t and Γ ⊢ U <: U ′ and Γ, x : U ⊢ t : T .

Proof. The same as for Lemma B.22.

Lemma C.22 (Canonical forms: boxed term). If Γ ⊢ v : □T ∧ C ? , then v =□x and Γ ⊢ x : U

and Γ⊢U <: T for some U such that cap ̸∈ cv(U).

Proof. The same as for Lemma B.23.

Lemma C.23 (Canonical forms: unit). If Γ ⊢ v : Unit∧ C ? , then v = ().

Proof. The same as for Lemma B.24.

Lemma C.24 (Store typing inversion: records and modules). Let σ∼∆ and

∆ ∋ l : µxx { fi : Ti
i
} ∧ C ? . Then σ(l) is a record or a module with fields fi

i
whose respective

bodies are ri
i . In addition we have ∆⊢ ri : [x := l

x
]Ti

i
.

Proof. The same as for Lemma B.25.

Lemma C.25 (Typing inversion: stored records and modules). Let σ∼∆ and

∆ ⊢ r : µxx { fi : T fi

i
} ∧ C ? . Then ∆ ⊢ l 7→ e ∼ ∆′ and ∆′ ⊆ ∆ and σ(r) = σ(l) = e, and also

∆′ ∋ l :µy y { f j : T f j

j
}∧ C ?′ and if ∆⊢ C ? <: {} then C ?′ = {}. Finally, e is a record or a module

with fields fi
i

whose respective bodies are ri
i . In addition we have ∆⊢ ri : [x := r x]Ti

i
.

Proof. The same as for Lemma B.26.

Lemma C.26 (Typing inversion: stored path). Let σ ∼ ∆ and ∆ ⊢ r : S ∧ C ? where S is not a

record type. Then there exist l and ∆′ such that σ(r) =σ(l) = e and ∆′ ⊆∆ and ∆⊢ l 7→ e ∼∆′

and ∆′ ∋ l : S′∧ C ?′ and ∆⊢ S′ <: S and if C ? = {}, then C ?′ = {}.

Proof. The same as for Lemma B.34.

173

Appendix C. GradCC Proofs

Lemma C.27 (Store lookup inversion: reference’s content). Let σ∼∆ and ∆⊢ r : Ref[S]∧ C ? .

Then σ(r) = l ▷ refv implies that ∆⊢ v : S.

Proof. The same as for Lemma B.28.

Lemma C.28 (Store lookup inversion: term abstraction). If σ∼∆ and ∆ ⊢ r : (∀(z : U)T)∧ C ?

and σ(r) = l ▷λ(z : U ′) t , then ∆ ⊢ U <: U ′ and ∆, z : U ⊢ t : T .

Proof. The same as for Lemma B.29.

Lemma C.29 (Store lookup inversion: box). If σ ∼ ∆ and σ(r) = □r ′ and ∆ ⊢ r : □T , then

∆ ⊢ r ′ : U and ∆⊢U <: T for some U such that cap ̸∈ cv(U).

Proof. The same as for Lemma B.30.

Lemma C.30 (Store lookup inversion: untracked value). If σ∼∆ and σ(r) = v and ∆⊢ r : S,

then ∆⊢ v : S.

Proof. The same as for Lemma B.31.

Lemma C.31 (Capture binding equivalence for location-rooted path aliases). If σ ∼ ∆ and

∆ ⊢ p ≡ q and ∆(p) → Sp
∧ C ?p and ∆(q) → Sq

∧ C ?q , then either (C ?p =C ?q = #) or (∆ ⊢
C ?p <: C ?q and vice versa).

Proof. The same as for Lemma B.32.

Lemma C.32 (Subcapturing inversion: location-rooted path). Let σ ∼ ∆ and ∆ ⊢ C1 <: C2.

Then r ∈C1 and ∆(r) → S ∧D imply that ∆⊢ D <: C2 unless C2 contains r or its alias.

Proof. The same as for Lemma B.33.

Lemma C.33 (Typing inversion: location-rooted path). If σ ∼ ∆ and ∆ ⊢ r : S ∧ C ? and

∆(r) → R ∧ D? , then ∆⊢ D? <: D? unless (C ? contains r or its alias) or C ? = D? = # .

Proof. The same as for Lemma B.34.

174

C.4 Main Theorems – Soundness

C.4.2 Soundness

Theorem C.1 (Preservation). Let σ∼∆ and ∆⊢ t : T . Then (σ, t) −→ (σ′, t ′) implies that there

exists a typing context ∆′ such that σ′ ∼∆,∆′ and ∆,∆′ ⊢ t ′ : T .

Proof. The same as for Theorem B.1 in all the old cases. There is one new case for rule (EXIT),

which can be easily concluded by nested induction (like in the other cases), the base case of

which induction (for rule (ENCLOSURE)) can be concluded by (SUB) & Lemma B.2.

Lemma C.34 (Store extraction: non-module). Let σ∼∆ and ∆⊢ r : S ∧ C ? . Then:

• If S is of the form Reg, then σ(r) = regionl

• If S is of the form Ref[S], then σ(r) = l ▷ refv

• If S is of the form ∀(x : U)T , then σ(r) =λ(x : U ′) t

• If S is of the form □T , then σ(r) =□r ′

• If S is of the form Unit, then σ(r) = ()

Proof. The same as for Lemma B.35.

Lemma C.35 (Impurity of regions). Let σ∼∆ and ∆⊢ l : S. Then S is not of the form Reg.

Proof. The same as for Lemma B.36.

Theorem C.2 (Progress). Let σ∼∆ and ∆⊢ t : T . Then either there exists r such that t = r , or

there exist σ′, t ′ such that (σ, t) −→ (σ′, t ′).

Proof. Our t must be of the form η[u] for some η, u such that u is not of the form letx =
u1 inu2 nor of the form encl[C][T]u′. By Lemma B.1, we then have ∆⊢ u : U for some U . We

proceed as in Theorem B.2 by induction on this derivation, which has 3 new cases.

Case (MARK) . The same as the (PATH) case.

Case (UNBOX-MARK) . The same as the (UNBOX) case.

Case (ENCLOSURE) . Contradictory.

175

Bibliography

Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. 2008. Semantics of Transactional

Memory and Automatic Mutual Exclusion. ACM SIGPLAN Notices 43, 1 (Jan. 2008), 63–74.

https://doi.org/10.1145/1328897.1328449 ,→ page 112

Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Connecting Software

Architecture to Implementation. In Proceedings of the 24th International Conference on

Software Engineering (ICSE ’02). Association for Computing Machinery, New York, NY, USA,

187–197. https://doi.org/10.1145/581339.581365 ,→ page 113

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The

Essence of Dependent Object Types. In A List of Successes That Can Change the World:

Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Sam Lindley, Conor

McBride, Phil Trinder, and Don Sannella (Eds.). Springer International Publishing, Cham,

249–272. https://doi.org/10.1007/978-3-319-30936-1_14 ,→ pages 49, 95, and 96

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of Path-Dependent Types.

ACM SIGPLAN Notices 49, 10 (Oct. 2014), 233–249. https://doi.org/10.1145/2714064.

2660216 ,→ page 100

A.W. Appel. 2001. Foundational Proof-Carrying Code. In Proceedings 16th Annual IEEE Sympo-

sium on Logic in Computer Science. 247–256. https://doi.org/10.1109/LICS.2001.932501

,→ page 122

Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou, James Noble,

Matthew J. Parkinson, and Tobias Wrigstad. 2023a. Reference Capabilities for Flexible

Memory Management. Proceedings of the ACM on Programming Languages 7, OOPSLA2

(Oct. 2023), 270:1363–270:1393. https://doi.org/10.1145/3622846 ,→ pages 3, 113, and 117

Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou, James Noble,

Matthew J. Parkinson, and Tobias Wrigstad. 2023b. Reference Capabilities for Flexible Mem-

ory Management: Extended Version. Technical Report. https://doi.org/10.1145/3622846

arXiv:2309.02983 [cs] ,→ pages 3, 113, and 117

Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie

Weirich. 2008. Engineering formal metatheory. In Proceedings of the 35th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,

177

https://doi.org/10.1145/1328897.1328449
https://doi.org/10.1145/581339.581365
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/2714064.2660216
https://doi.org/10.1145/2714064.2660216
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1145/3622846
https://doi.org/10.1145/3622846

Bibliography

California, USA, January 7-12, 2008, George C. Necula and Philip Wadler (Eds.). ACM, 3–15.

https://doi.org/10.1145/1328438.1328443 ,→ page 33

Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim. 2021. Rudra:

Finding Memory Safety Bugs in Rust at the Ecosystem Scale. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles (SOSP ’21). Association for Com-

puting Machinery, New York, NY, USA, 84–99. https://doi.org/10.1145/3477132.3483570

,→ page 121

Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. 2021.

Reachability Types: Tracking Aliasing and Separation in Higher-Order Functional Programs.

Proceedings of the ACM on Programming Languages 5, OOPSLA (Oct. 2021), 139:1–139:32.

https://doi.org/10.1145/3485516 ,→ pages 50, 112, and 118

Erik Barendsen and Sjaak Smetsers. 1996. Uniqueness Typing for Functional Languages with

Graph Rewriting Semantics. Mathematical Structures in Computer Science 6, 6 (Dec. 1996),

579–612. https://doi.org/10.1017/S0960129500070109 ,→ page 8

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development,

Coq’Art:The Calculus of Inductive Constructions. ,→ page 33

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2017. Handle with Care:

Relational Interpretation of Algebraic Effects and Handlers. Proc. ACM Program. Lang. 2,

POPL (Dec. 2017), 8:1–8:30. https://doi.org/10.1145/3158096 ,→ page 37

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by

Day, Labels by Night: Effect Instances via Lexically Scoped Handlers. In Proceedings of the

Symposium on Principles of Programming Languages. ACM, New York, NY, USA. ,→ pages 39,

45, 46, 70, and 117

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge: Splitting

Applications into Reduced-Privilege Compartments. In 5th USENIX Symposium on Net-

worked Systems Design & Implementation, NSDI 2008, April 16-18, 2008, San Francisco,

CA, USA, Proceedings, Jon Crowcroft and Michael Dahlin (Eds.). USENIX Association, 309–

322. http://www.usenix.org/events/nsdi08/tech/full{\T1\textbackslash}_papers/bittau/

bittau.pdf ,→ page 123

Corrado Böhm and Alessandro Berarducci. 1985. Automatic Synthesis of Typed λ-Programs

on Term Algebras. Theoretical Computer Science 39 (1985), 135–154. https://doi.org/10.

1016/0304-3975(85)90135-5 ,→ pages 34 and 63

Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, Ondřej Lhoták,

and Martin Odersky. 2021. Tracking Captured Variables in Types. https://doi.org/10.48550/

arXiv.2105.11896 arXiv:2105.11896 [cs] ,→ pages 4, 25, and 27

Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondřej Lhoták, and Jonathan

Brachthäuser. 2023. Capturing Types. ACM Transactions on Programming Languages and

178

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/3477132.3483570
https://doi.org/10.1145/3485516
https://doi.org/10.1017/S0960129500070109
https://doi.org/10.1145/3158096
http://www.usenix.org/events/nsdi08/tech/full{\T1\textbackslash }_papers/bittau/bittau.pdf
http://www.usenix.org/events/nsdi08/tech/full{\T1\textbackslash }_papers/bittau/bittau.pdf
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.48550/arXiv.2105.11896
https://doi.org/10.48550/arXiv.2105.11896

Bibliography

Systems 45, 4 (Nov. 2023), 21:1–21:52. https://doi.org/10.1145/3618003 ,→ pages 4, 49, 85,

105, 106, 109, and 124

Aleksander Boruch-Gruszecki, Radosław Waśko, Yichen Xu, and Lionel Parreaux. 2022. A

Case for DOT: Theoretical Foundations for Objects with Pattern Matching and GADT-style

Reasoning. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (Oct. 2022),

179:1526–179:1555. https://doi.org/10.1145/3563342 ,→ page 100

Chandrasekhar Boyapati and Martin Rinard. 2001. A Parameterized Type System for Race-Free

Java Programs. In Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA ’01). Association for Computing

Machinery, New York, NY, USA, 56–69. https://doi.org/10.1145/504282.504287 ,→ page 112

John Boyland. 2013. Fractional Permissions. In Aliasing in Object-Oriented Programming.

Types, Analysis and Verification, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.).

Springer, Berlin, Heidelberg, 270–288. https://doi.org/10.1007/978-3-642-36946-9_10

,→ page 114

John Boyland, James Noble, and William Retert. 2001. Capabilities for Sharing. In ECOOP

2001 — Object-Oriented Programming (Lecture Notes in Computer Science), Jørgen Lindskov

Knudsen (Ed.). Springer, Berlin, Heidelberg, 2–27. https://doi.org/10.1007/3-540-45337-7_

2 ,→ pages 116 and 120

John Tang Boyland and William Retert. 2005. Connecting Effects and Uniqueness with Adop-

tion. ACM SIGPLAN Notices 40, 1 (Jan. 2005), 283–295. https://doi.org/10.1145/1047659.

1040329 ,→ page 114

Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot Mi-

randa. 2010. Modules as Objects in Newspeak. In ECOOP 2010 – Object-Oriented Program-

ming (Lecture Notes in Computer Science), Theo D’Hondt (Ed.). Springer, Berlin, Heidelberg,

405–428. https://doi.org/10.1007/978-3-642-14107-2_20 ,→ pages 84, 120, and 121

Jonathan Immanuel Brachthäuser and Philipp Schuster. 2017. Effekt: Extensible Algebraic

Effects in Scala (Short Paper). In Proceedings of the International Symposium on Scala

(Vancouver, BC, Canada). ACM, New York, NY, USA. https://doi.org/10.1145/3136000.

3136007 ,→ page 44

Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-

Gruszecki. 2022. Effects, Capabilities, and Boxes: From Scope-Based Reasoning to Type-

Based Reasoning and Back. Proceedings of the ACM on Programming Languages 6, OOPSLA1

(April 2022), 76:1–76:30. https://doi.org/10.1145/3527320 ,→ pages 49, 50, 70, 108, 112, 117,

119, and 123

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020a. Effects as

Capabilities: Effect Handlers and Lightweight Effect Polymorphism. Proc. ACM Program.

Lang. 4, OOPSLA, Article 126 (Nov. 2020). https://doi.org/10.1145/3428194 ,→ pages 2, 6, 7,

44, 50, 112, 117, 118, and 119

179

https://doi.org/10.1145/3618003
https://doi.org/10.1145/3563342
https://doi.org/10.1145/504282.504287
https://doi.org/10.1007/978-3-642-36946-9_10
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1145/1047659.1040329
https://doi.org/10.1145/1047659.1040329
https://doi.org/10.1007/978-3-642-14107-2_20
https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3428194

Bibliography

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020b. Effekt:

Capability-Passing Style for Type- and Effect-safe, Extensible Effect Handlers in Scala.

Journal of Functional Programming (2020). https://doi.org/10.1017/S0956796820000027

,→ pages 2, 112, and 117

Jeffrey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche Baker-Harvey. 1992.

Lightweight Shared Objects in a 64-Bit Operating System. In Conference Proceedings on

Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’92). Asso-

ciation for Computing Machinery, New York, NY, USA, 397–413. https://doi.org/10.1145/

141936.141969 ,→ page 115

Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering Purity with Comonads

and Capabilities. Proc. ACM Program. Lang. 4, ICFP, Article 111 (Aug. 2020), 28 pages.

https://doi.org/10.1145/3408993 ,→ pages 117 and 119

Partha Das Chowdhury, Mohammad Tahaei, and Awais Rashid. 2022. Better Call Saltzer &

Schroeder: A Retrospective Security Analysis of SolarWinds & Log4j. CoRR abs/2211.02341

(2022). https://doi.org/10.48550/arXiv.2211.02341 arXiv:2211.02341 ,→ pages 84 and 88

Chromium. 2023. Chromium sandboxing documentation. https://chromium.googlesource.

com/chromium/src/+/refs/heads/main/docs/design/sandbox.md ,→ page 122

Dave Clarke and Sophia Drossopoulou. 2002. Ownership, Encapsulation and the Disjointness

of Type and Effect. In Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications (OOPSLA ’02). Association for Com-

puting Machinery, New York, NY, USA, 292–310. https://doi.org/10.1145/582419.582447

,→ page 113

Dave Clarke, James Noble, Tobias Wrigstad, David Hutchison, Takeo Kanade, Josef Kittler,

Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C.

Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y.

Vardi, and Gerhard Weikum (Eds.). 2013a. Aliasing in Object-Oriented Programming. Types,

Analysis and Verification. Lecture Notes in Computer Science, Vol. 7850. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-36946-9 ,→ pages 2, 3, and 113

Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013b. Ownership Types:

A Survey. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification,

Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). Springer, Berlin, Heidelberg, 15–58.

https://doi.org/10.1007/978-3-642-36946-9_3 ,→ pages 2, 3, and 113

Dave Clarke and Tobias Wrigstad. 2003. External Uniqueness Is Unique Enough. In ECOOP

2003 – Object-Oriented Programming (Lecture Notes in Computer Science), Luca Cardelli

(Ed.). Springer, Berlin, Heidelberg, 176–200. https://doi.org/10.1007/978-3-540-45070-2_9

,→ page 113

180

https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1145/141936.141969
https://doi.org/10.1145/141936.141969
https://doi.org/10.1145/3408993
https://doi.org/10.48550/arXiv.2211.02341
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://doi.org/10.1145/582419.582447
https://doi.org/10.1007/978-3-642-36946-9
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-540-45070-2_9

Bibliography

David Gerard Clarke. 2002. Object Ownership & Containment. Thesis. UNSW Sydney. https:

//doi.org/10.26190/unsworks/8187 ,→ page 113

David G. Clarke, John M. Potter, and James Noble. 1998. Ownership Types for Flexible Alias

Protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA ’98). Association for Computing

Machinery, New York, NY, USA, 48–64. https://doi.org/10.1145/286936.286947 ,→ pages 8

and 113

Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. 2015. Deny

Capabilities for Safe, Fast Actors. In Proceedings of the 5th International Workshop on

Programming Based on Actors, Agents, and Decentralized Control - AGERE! 2015. ACM Press,

Pittsburgh, PA, USA, 1–12. https://doi.org/10.1145/2824815.2824816 ,→ page 116

William R. Cook. 2009. On Understanding Data Abstraction, Revisited. In Proceedings of the

24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA ’09). Association for Computing Machinery, New York, NY, USA,

557–572. https://doi.org/10.1145/1640089.1640133 ,→ page 7

Coq. 2004. The Coq proof assistant reference manual. LogiCal Project. http://coq.inria.fr

Version 8.0. ,→ page 33

Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich. 2018. Capabilities: Effects

for Free. In Formal Methods and Software Engineering (Lecture Notes in Computer Science),

Jing Sun and Meng Sun (Eds.). Springer International Publishing, Cham, 231–247. https:

//doi.org/10.1007/978-3-030-02450-5_14 ,→ page 5

Karl Crary, David Walker, and Greg Morrisett. 1999. Typed Memory Management in a Calculus

of Capabilities. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (San Antonio, Texas, USA) (POPL ’99). Association for Com-

puting Machinery, New York, NY, USA, 262–275. https://doi.org/10.1145/292540.292564

,→ page 120

Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for Multiprogrammed

Computations. Commun. ACM 9, 3 (1966), 143–155. ,→ pages 83, 114, and 115

Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Ca-

pabilities with Logical Relations and Effect Parametricity. In 2016 IEEE European Sympo-

sium on Security and Privacy (EuroS&P). 147–162. https://doi.org/10.1109/EuroSP.2016.22

,→ page 116

Sophia Drossopoulou, James Noble, Mark S. Miller, and Toby Murray. 2016. Permission and

Authority Revisited towards a Formalisation. In Proceedings of the 18th Workshop on Formal

Techniques for Java-like Programs (FTfJP’16). Association for Computing Machinery, New

York, NY, USA, 1–6. https://doi.org/10.1145/2955811.2955821 ,→ page 60

181

https://doi.org/10.26190/unsworks/8187
https://doi.org/10.26190/unsworks/8187
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/1640089.1640133
http://coq.inria.fr
https://doi.org/10.1007/978-3-030-02450-5_14
https://doi.org/10.1007/978-3-030-02450-5_14
https://doi.org/10.1145/292540.292564
https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1145/2955811.2955821

Bibliography

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R. Larus,

and Steven Levi. 2006. Language Support for Fast and Reliable Ressage-Based Communica-

tion in Singularity OS. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference

on Computer Systems 2006 (EuroSys ’06). Association for Computing Machinery, New York,

NY, USA, 177–190. https://doi.org/10.1145/1217935.1217953 ,→ page 112

Ismael Figueroa, Nicolas Tabareau, and Éric Tanter. 2016. Effect Capabilities for Haskell:

Taming Effect Interference in Monadic Programming. Science of Computer Programming

119 (April 2016), 3–30. https://doi.org/10.1016/j.scico.2015.11.010 ,→ page 120

Matthew Flatt and Matthias Felleisen. 1998. Units: Cool Modules for HOT Languages. In

Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and

Implementation (PLDI ’98). Association for Computing Machinery, New York, NY, USA,

236–248. https://doi.org/10.1145/277650.277730 ,→ page 121

Matthew Fluet, Greg Morrisett, and Amal Ahmed. 2006. Linear Regions Are All You Need. In

Programming Languages and Systems (Lecture Notes in Computer Science), Peter Sestoft

(Ed.). Springer, Berlin, Heidelberg, 7–21. https://doi.org/10.1007/11693024_2 ,→ page 42

Joseph Fourment and Yichen Xu. 2023. A Mechanized Theory of the Box Calculus. Technical

Report. EPFL. 7 pages. https://infoscience.epfl.ch/record/302949 ,→ page 58

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard Bugnion. 2021.

Enclosure: Language-Based Restriction of Untrusted Libraries. In Proceedings of the 26th

ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA,

255–267. https://doi.org/10.1145/3445814.3446728 ,→ pages 84, 104, 109, and 123

David K. Gifford and John M. Lucassen. 1986. Integrating Functional and Imperative Pro-

gramming. In Proceedings of the 1986 ACM Conference on LISP and Functional Program-

ming - LFP ’86. ACM Press, Cambridge, Massachusetts, United States, 28–38. https:

//doi.org/10.1145/319838.319848 ,→ page 111

Colin S. Gordon. 2017. A Generic Approach to Flow-Sensitive Polymorphic Effects. In 31st

European Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 13:1–13:31. https://doi.org/10.4230/LIPIcs.

ECOOP.2017.13 ,→ page 112

Colin S. Gordon. 2020. Designing with Static Capabilities and Effects: Use, Mention, and Invari-

ants (Pearl). In 34th European Conference on Object-Oriented Programming (ECOOP 2020)

(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and

Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

10:1–10:25. https://doi.org/10.4230/LIPIcs.ECOOP.2020.10 ,→ pages 5 and 50

182

https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1016/j.scico.2015.11.010
https://doi.org/10.1145/277650.277730
https://doi.org/10.1007/11693024_2
https://infoscience.epfl.ch/record/302949
https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/319838.319848
https://doi.org/10.1145/319838.319848
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.4230/LIPIcs.ECOOP.2017.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10

Bibliography

Colin S. Gordon. 2021. Polymorphic Iterable Sequential Effect Systems. ACM Transactions on

Programming Languages and Systems 43, 1 (April 2021), 4:1–4:79. https://doi.org/10.1145/

3450272 ,→ page 112

Colin S. Gordon, Matthew Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.

2012a. Uniqueness and Reference Immutability for Safe Parallelism (Extended

Version). (Oct. 2012). https://www.microsoft.com/en-us/research/publication/

uniqueness-and-reference-immutability-for-safe-parallelism/ ,→ page 117

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. 2012b.

Uniqueness and Reference Immutability for Safe Parallelism. ACM SIGPLAN Notices 47, 10

(Oct. 2012), 21–40. https://doi.org/10.1145/2398857.2384619 ,→ page 117

James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, and Alex Buckley. 2014. The Java Language

Specification: Java SE 8 Edition. Pearson Education. ,→ page 112

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.

2002. Region-Based Memory Management in Cyclone. In Proceedings of the ACM SIGPLAN

2002 Conference on Programming Language Design and Implementation (Berlin, Germany)

(PLDI ’02). Association for Computing Machinery, New York, NY, USA, 282–293. https:

//doi.org/10.1145/512529.512563 ,→ pages 2, 8, 42, and 111

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman,

Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the Web up to Speed with We-

bAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI 2017). Association for Computing Machinery, New York,

NY, USA, 185–200. https://doi.org/10.1145/3062341.3062363 ,→ page 122

Philipp Haller and Martin Odersky. 2010. Capabilities for Uniqueness and Borrowing.

In ECOOP 2010 – Object-Oriented Programming (Lecture Notes in Computer Science),

Theo D’Hondt (Ed.). Springer, Berlin, Heidelberg, 354–378. https://doi.org/10.1007/

978-3-642-14107-2_17 ,→ page 113

John Hannan. 1998. A Type-Based Escape Analysis for Functional Languages. Journal of Func-

tional Programming 8, 3 (May 1998), 239–273. https://doi.org/10.1017/S0956796898003025

,→ pages 117 and 124

Norman Hardy. 1985. KeyKOS Architecture. ACM SIGOPS Operating Systems Review 19, 4 (Oct.

1985), 8–25. https://doi.org/10.1145/858336.858337 ,→ page 2

Norm Hardy. 1988. The Confused Deputy: (Or Why Capabilities Might Have Been Invented).

ACM SIGOPS Operating Systems Review 22, 4 (Oct. 1988), 36–38. https://doi.org/10.1145/

54289.871709 ,→ pages 88 and 115

Norman Hardy. 2023. The KeyKOS System. http://cap-lore.com/CapTheory/upenn/ ,→ page 2

183

https://doi.org/10.1145/3450272
https://doi.org/10.1145/3450272
https://www.microsoft.com/en-us/research/publication/uniqueness-and-reference-immutability-for-safe-parallelism/
https://www.microsoft.com/en-us/research/publication/uniqueness-and-reference-immutability-for-safe-parallelism/
https://doi.org/10.1145/2398857.2384619
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1017/S0956796898003025
https://doi.org/10.1145/858336.858337
https://doi.org/10.1145/54289.871709
https://doi.org/10.1145/54289.871709
http://cap-lore.com/CapTheory/upenn/

Bibliography

John Hatcliff and Olivier Danvy. 1994. A Generic Account of Continuation-Passing Styles. In

Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Portland, Oregon, USA) (POPL ’94). Association for Computing Machinery, New

York, NY, USA, 458–471. https://doi.org/10.1145/174675.178053 ,→ page 15

Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L. Scott, Kai

Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation for High-Throughput Data Plane

Libraries. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA,

USA, July 10-12, 2019, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX Association, 489–504.

https://www.usenix.org/conference/atc19/presentation/hedayati-hodor ,→ page 123

Raphael Hiesgen, Marcin Nawrocki, Thomas C. Schmidt, and Matthias Wählisch. 2022. The

Race to the Vulnerable: Measuring the Log4j Shell Incident. CoRR abs/2205.02544 (2022).

https://doi.org/10.48550/arXiv.2205.02544 arXiv:2205.02544 ,→ page 88

Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer. 2016. Enforcing

Least Privilege Memory Views for Multithreaded Applications. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). Association

for Computing Machinery, New York, NY, USA, 393–405. https://doi.org/10.1145/2976749.

2978327 ,→ page 123

Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the Software Stack. ACM

SIGOPS Operating Systems Review 41, 2 (April 2007), 37–49. https://doi.org/10.1145/

1243418.1243424 ,→ page 112

Intel 2020. Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel. ,→ page 123

Java. 2021. JEP 411: Deprecate the Security Manager for Removal. https://openjdk.org/jeps/

411 ,→ page 86

Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019. Stacked Borrows: An

Aliasing Model for Rust. Proceedings of the ACM on Programming Languages 4, POPL (Dec.

2019), 41:1–41:32. https://doi.org/10.1145/3371109 ,→ pages 113 and 114

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Se-

curing the Foundations of the Rust Programming Language. Proceedings of the ACM on

Programming Languages 2, POPL (Dec. 2017), 66:1–66:34. https://doi.org/10.1145/3158154

,→ page 113

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In Proceedings of the

International Conference on Functional Programming (Boston, Massachusetts, USA). ACM,

New York, NY, USA, 145–158. ,→ page 45

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,

Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,

Harvey Tuch, and Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In

184

https://doi.org/10.1145/174675.178053
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://doi.org/10.48550/arXiv.2205.02544
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1243418.1243424
https://openjdk.org/jeps/411
https://openjdk.org/jeps/411
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154

Bibliography

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP

’09). Association for Computing Machinery, New York, NY, USA, 207–220. https://doi.org/

10.1145/1629575.1629596 ,→ page 2

Koka. 2023. The Koka Programming Language. https://koka-lang.github.io/koka/doc/index.

html ,→ page 112

John Launchbury and Amr Sabry. 1997. Monadic State: Axiomatization and Type Safety. In Pro-

ceedings of the Second ACM SIGPLAN International Conference on Functional Programming

(Amsterdam, The Netherlands) (ICFP ’97). Association for Computing Machinery, New York,

NY, USA, 227–238. https://doi.org/10.1145/258948.258970 ,→ page 8

Ben Laurie. 2007. Safer Scripting Through Precompilation. In Security Protocols (Lecture

Notes in Computer Science), Bruce Christianson, Bruno Crispo, James A. Malcolm, and

Michael Roe (Eds.). Springer, Berlin, Heidelberg, 289–294. https://doi.org/10.1007/

978-3-540-77156-2_36 ,→ pages 108, 116, and 121

Edward Lee, Kavin Satheeskumar, and Ondřej Lhoták. 2023. Dependency-Free Capture Track-

ing. In Proceedings of the 25th ACM International Workshop on Formal Techniques for

Java-like Programs (FTfJP 2023). Association for Computing Machinery, New York, NY, USA,

39–43. https://doi.org/10.1145/3605156.3606454 ,→ page 108

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. Electronic

Proceedings in Theoretical Computer Science 153 (June 2014), 100–126. https://doi.org/10.

4204/EPTCS.153.8 arXiv:1406.2061 ,→ pages 2, 70, and 112

Daan Leijen. 2016. Algebraic Effects for Functional Programming.

(Aug. 2016). https://www.microsoft.com/en-us/research/publication/

algebraic-effects-for-functional-programming/ ,→ pages 2 and 112

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of

the Symposium on Principles of Programming Languages. ACM, New York, NY, USA, 486–499.

https://doi.org/10.1145/3009837.3009872 ,→ pages 7 and 118

Henry M. Levy. 1984. Capability-Based Computer Systems. Digital Press. https://homes.cs.

washington.edu/{~}levy/capabook/index.html ,→ page 115

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis Aublin,

Florian Kelbert, Tobias Reiher, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Christof

Fetzer, and Peter R. Pietzuch. 2017. Glamdring: Automatic Application Partitioning for

Intel SGX. In 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara,

CA, USA, July 12-14, 2017, Dilma Da Silva and Bryan Ford (Eds.). USENIX Association,

285–298. https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind

,→ page 123

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In Proceedings of

the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,

185

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://koka-lang.github.io/koka/doc/index.html
https://koka-lang.github.io/koka/doc/index.html
https://doi.org/10.1145/258948.258970
https://doi.org/10.1007/978-3-540-77156-2_36
https://doi.org/10.1007/978-3-540-77156-2_36
https://doi.org/10.1145/3605156.3606454
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.4204/EPTCS.153.8
https://www.microsoft.com/en-us/research/publication/algebraic-effects-for-functional-programming/
https://www.microsoft.com/en-us/research/publication/algebraic-effects-for-functional-programming/
https://doi.org/10.1145/3009837.3009872
https://homes.cs.washington.edu/{~}levy/capabook/index.html
https://homes.cs.washington.edu/{~}levy/capabook/index.html
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind

Bibliography

Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,

500–514. https://doi.org/10.1145/3009837.3009897 ,→ pages 7 and 118

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattacharjee,

and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstraction for Safety and Per-

formance. In Proceedings of the 12th USENIX Conference on Operating Systems Design and

Implementation (OSDI’16). USENIX Association, USA, 49–64. ,→ page 123

Fengyun Liu. 2016. A Study of Capability-Based Effect Systems. Master’s thesis. infoscience.

epfl.ch/record/219173 ,→ pages 6, 50, and 117

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In Proceedings of the 15th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’88).

Association for Computing Machinery, New York, NY, USA, 47–57. https://doi.org/10.1145/

73560.73564 ,→ pages 2, 111, 118, and 123

Daniel Marino and Todd Millstein. 2009a. A Generic Type-and-Effect System. In Proceedings

of the 4th International Workshop on Types in Language Design and Implementation (TLDI

’09). Association for Computing Machinery, New York, NY, USA, 39–50. https://doi.org/10.

1145/1481861.1481868 ,→ page 112

Daniel Marino and Todd D. Millstein. 2009b. A Generic Type-and-Effect System. In Proceedings

of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in Languages Design and

Implementation, Savannah, GA, USA, January 24, 2009, Andrew Kennedy and Amal Ahmed

(Eds.). ACM, 39–50. https://doi.org/10.1145/1481861.1481868 ,→ pages 5, 50, and 117

Daniel Marshall, Michael Vollmer, and Dominic Orchard. 2022. Linearity and Uniqueness:

An Entente Cordiale. In Programming Languages and Systems (Lecture Notes in Computer

Science), Ilya Sergey (Ed.). Springer International Publishing, Cham, 346–375. https://doi.

org/10.1007/978-3-030-99336-8_13 ,→ pages 2 and 112

Guillaume Martres. 2023. Type-Preserving Compilation of Class-Based Languages. (Jan. 2023).

https://doi.org/10.5075/epfl-thesis-8218 arXiv:2307.05557 [cs] ,→ page 96

Conor Mcbride and Philip Wadler. 2019. Doo Bee Doo Bee Doo. (2019), 54. http://homepages.

inf.ed.ac.uk/slindley/papers/frankly-draft-february2019.pdf ,→ page 37

Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-

tecture for User-level Packet Capture. In Proceedings of the Usenix Winter 1993

Technical Conference, San Diego, California, USA, January 1993. USENIX Associa-

tion, 259–270. https://www.usenix.org/conference/usenix-winter-1993-conference/

bsd-packet-filter-new-architecture-user-level-packet ,→ page 122

Darya Melicher. 2020. Controlling Module Authority Using Programming Language Design.

Ph. D. Dissertation. Carnegie Mellon University. ,→ pages 2, 83, 108, 109, 116, and 120

186

https://doi.org/10.1145/3009837.3009897
infoscience.epfl.ch/record/219173
infoscience.epfl.ch/record/219173
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.5075/epfl-thesis-8218
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-february2019.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-february2019.pdf
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet

Bibliography

Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. 2017. A Capability-

Based Module System for Authority Control. In 31st European Conference on Object-Oriented

Programming (ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 20:1–20:27. https://doi.org/10.4230/LIPIcs.ECOOP.2017.20 ,→ pages 72, 83, 84,

116, 120, and 121

Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. 2022. Cross-Language Attacks.

Proceedings 2022 Network and Distributed System Security Symposium (2022). https://doi.

org/10.14722/ndss.2022.24078 ,→ page 121

Adrian Mettler, David A. Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented Subset of

Java. In Network and Distributed System Security Symposium, Vol. 10. 357–374. ,→ pages 108,

109, and 121

Mae Milano, Joshua Turcotti, and Andrew C. Myers. 2022. A Flexible Type System for Fear-

less Concurrency. In Proceedings of the 43rd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI 2022). Association for Comput-

ing Machinery, New York, NY, USA, 458–473. https://doi.org/10.1145/3519939.3523443

,→ page 3

Mark Miller. 2006. Robust Composition: Towards a Unifed Approach to Access Control and

Concurrency Control. Ph. D. Dissertation. Johns Hopkins University. https://jscholarship.

library.jhu.edu/handle/1774.2/873 ,→ pages 2, 3, 5, 60, 83, 84, 88, 90, 91, 108, 115, 116, 120,

and 121

Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2008. Safe

Active Content in Sanitized JavaScript. Google Inc. Technical Report. https:

//google-code-archive-downloads.storage.googleapis.com/v2/code.google.com/

google-caja/caja-spec-2008-06-06.pdf ,→ pages 108, 116, and 121

J. C. Mitchell and R. Harper. 1988. The Essence of ML. In Proceedings of the 15th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’88). Association for

Computing Machinery, New York, NY, USA, 28–46. https://doi.org/10.1145/73560.73563

,→ page 95

Eugenio Moggi. 1991. Notions of Computation and Monads. Information and computation 93,

1 (1991), 55–92. ,→ page 112

James H. Morris. 1973. Protection in Programming Languages. Commun. ACM 16, 1 (Jan.

1973), 15–21. https://doi.org/10.1145/361932.361937 ,→ pages 83, 115, and 121

Mozilla. 2023. Firefox sandboxing documentation. https://wiki.mozilla.org/Security/Sandbox

,→ page 122

Alan Mycroft and Janina Voigt. 2013. Notions of Aliasing and Ownership. In Aliasing in

Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble,

187

https://doi.org/10.4230/LIPIcs.ECOOP.2017.20
https://doi.org/10.14722/ndss.2022.24078
https://doi.org/10.14722/ndss.2022.24078
https://doi.org/10.1145/3519939.3523443
https://jscholarship.library.jhu.edu/handle/1774.2/873
https://jscholarship.library.jhu.edu/handle/1774.2/873
https://google-code-archive-downloads.storage.googleapis.com/v2/code.google.com/google-caja/caja-spec-2008-06-06.pdf
https://google-code-archive-downloads.storage.googleapis.com/v2/code.google.com/google-caja/caja-spec-2008-06-06.pdf
https://google-code-archive-downloads.storage.googleapis.com/v2/code.google.com/google-caja/caja-spec-2008-06-06.pdf
https://doi.org/10.1145/73560.73563
https://doi.org/10.1145/361932.361937
https://wiki.mozilla.org/Security/Sandbox

Bibliography

and Tobias Wrigstad (Eds.). Springer, Berlin, Heidelberg, 59–83. https://doi.org/10.1007/

978-3-642-36946-9_4 ,→ pages 2, 3, and 113

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual Modal Type

Theory. ACM Trans. Comput. Logic 9, 3, Article 23 (June 2008), 49 pages. https://doi.org/10.

1145/1352582.1352591 ,→ page 119

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner,

Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain Isolation in the Firefox

Renderer (Extended Version). Technical Report arXiv:2003.00572. arXiv. https://doi.org/10.

48550/arXiv.2003.00572 arXiv:2003.00572 [cs] ,→ page 122

George C. Necula. 1997. Proof-Carrying Code. In Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’97). Association for

Computing Machinery, New York, NY, USA, 106–119. https://doi.org/10.1145/263699.

263712 ,→ page 122

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter Joosen,

Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012. You Are What You Include:

Large-Scale Evaluation of Remote Javascript Inclusions. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security (CCS ’12). Association for Comput-

ing Machinery, New York, NY, USA, 736–747. https://doi.org/10.1145/2382196.2382274

,→ page 83

James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection. In ECOOP’98 — Object-

Oriented Programming (Lecture Notes in Computer Science), Eric Jul (Ed.). Springer, Berlin,

Heidelberg, 158–185. https://doi.org/10.1007/BFb0054091 ,→ pages 8 and 113

Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro

Stucki. 2017. Simplicitly: Foundations and Applications of Implicit Function Types. Proc.

ACM Program. Lang. 2, POPL, Article 42 (Dec. 2017), 29 pages. https://doi.org/10.1145/

3158130 ,→ page 6

Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward

Lee, and Ondřej Lhoták. 2021. Safer Exceptions for Scala. In Scala Symposium, Chicago,

USA. https://dl.acm.org/doi/10.1145/3486610.3486893 ,→ pages 49 and 50

Martin Odersky and Guillaume Martres. 2020. Extension Methods. Scala 3 Language Reference

Page. https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html ,→ page 65

Peter O’Hearn. 2019. Separation Logic. Commun. ACM 62, 2 (Jan. 2019), 86–95. https:

//doi.org/10.1145/3211968 ,→ page 114

Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016.

Gentrification Gone Too Far? Affordable 2nd-Class Values for Fun and (Co-)Effect. In

188

https://doi.org/10.1007/978-3-642-36946-9_4
https://doi.org/10.1007/978-3-642-36946-9_4
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.48550/arXiv.2003.00572
https://doi.org/10.48550/arXiv.2003.00572
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1007/BFb0054091
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3158130
https://dl.acm.org/doi/10.1145/3486610.3486893
https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968

Bibliography

Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA 2016). ACM, New York, NY, USA,

234–251. https://doi.org/10.1145/2983990.2984009 ,→ pages 6, 8, 50, 117, 118, 119, and 123

Lionel Emile Vincent Parreaux. 2020. Type-Safe Metaprogramming and Compilation Tech-

niques for Designing Efficient Systems in High-Level Languages. Ph. D. Dissertation. EPFL,

Lausanne. https://doi.org/10.5075/epfl-thesis-10285 ,→ page 1

David J. Pearce. 2011. JPure: A Modular Purity System for Java. In Compiler Construction

(Lecture Notes in Computer Science), Jens Knoop (Ed.). Springer, Berlin, Heidelberg, 104–123.

https://doi.org/10.1007/978-3-642-19861-8_7 ,→ page 112

David J. Pearce. 2021. A Lightweight Formalism for Reference Lifetimes and Borrowing in

Rust. ACM Transactions on Programming Languages and Systems 43, 1 (April 2021), 3:1–3:73.

https://doi.org/10.1145/3443420 ,→ page 113

Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014a. Coeffects: A Calculus of Context-

Dependent Computation. ACM SIGPLAN Notices 49, 9 (Aug. 2014), 123–135. https://doi.

org/10.1145/2692915.2628160 ,→ pages 111 and 124

Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014b. Coeffects: A Calculus of Context-

Dependent Computation. In Proceedings of the International Conference on Functional

Programming (Gothenburg, Sweden). ACM, New York, NY, USA, 123–135. https://doi.org/

10.1145/2628136.2628160 ,→ page 120

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative Functional Programming. In

Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’93). Association for Computing Machinery, New York, NY, USA, 71–84.

https://doi.org/10.1145/158511.158524 ,→ page 112

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press. ,→ pages 33 and 60

Gordon Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied

Categorical Structures 11, 1 (Feb. 2003), 69–94. https://doi.org/10.1023/A:1023064908962

,→ pages 2, 44, and 112

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods

in Computer Science Volume 9, Issue 4 (Dec. 2013). https://doi.org/10.2168/LMCS-9(4:

23)2013 ,→ pages 2, 44, and 112

Dimitri Racordon, Denys Shabalin, Daniel Zheng, Dave Abrahams, and Brennan Saeta. 2022.

Implementation Strategies for Mutable Value Semantics. Journal of Object Technologies 21,

2 (2022), 2–1. https://doi.org/10.5381/jot.2022.21.2.a2. ,→ page 3

Gabriel Radanne, Hannes Saffrich, and Peter Thiemann. 2020. Kindly Bent to Free Us.

Proceedings of the ACM on Programming Languages 4, ICFP (Aug. 2020), 103:1–103:29.

https://doi.org/10.1145/3408985 ,→ page 114

189

https://doi.org/10.1145/2983990.2984009
https://doi.org/10.5075/epfl-thesis-10285
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1145/3443420
https://doi.org/10.1145/2692915.2628160
https://doi.org/10.1145/2692915.2628160
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/158511.158524
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.5381/jot.2022.21.2.a2.
https://doi.org/10.1145/3408985

Bibliography

Vineet Rajani, Deepak Garg, and Tamara Rezk. 2016. On Access Control, Capabilities, Their

Equivalence, and Confused Deputy Attacks. In 2016 IEEE 29th Computer Security Foun-

dations Symposium (CSF). 150–163. https://doi.org/10.1109/CSF.2016.18 ,→ pages 88

and 115

Marianna Rapoport and Ondřej Lhoták. 2019. A Path To DOT: Formalizing Fully-Path-

Dependent Types. arXiv:1904.07298 [cs] (April 2019). arXiv:1904.07298 [cs] http://arxiv.org/

abs/1904.07298 ,→ pages 96 and 100

Jonathan A. Rees. 1996. A Security Kernel Based on the Lambda-Calculus. Technical Report.

https://dspace.mit.edu/handle/1721.1/5944 ,→ pages 83, 115, and 121

J.C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In

Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. 55–74. https:

//doi.org/10.1109/LICS.2002.1029817 ,→ page 114

Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object types (DOT).

In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,

Amsterdam, The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis

Smaragdakis (Eds.). ACM, 624–641. https://doi.org/10.1145/2983990.2984008 ,→ page 49

Rust. 2023. The Rust Programming Language. https://www.rust-lang.org/ ,→ pages 2, 3,

and 113

Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight Polymorphic Effects.

In ECOOP 2012 – Object-Oriented Programming (Lecture Notes in Computer Science),

James Noble (Ed.). Springer, Berlin, Heidelberg, 258–282. https://doi.org/10.1007/

978-3-642-31057-7_13 ,→ pages 112, 118, and 124

Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in Continuation-Passing

Style. In LISP AND SYMBOLIC COMPUTATION. 288–298. ,→ page 15

Jerome H. Saltzer. 1974. Protection and the Control of Information Sharing in Multics. Com-

mun. ACM 17, 7 (July 1974), 388–402. https://doi.org/10.1145/361011.361067 ,→ pages 83

and 115

Sandboxdb. 2023. Sandboxdb.org. https://sandboxdb.org ,→ page 86

Scala. 2022a. Scala 3 API: scala.util.boundary. https://www.scala-lang.org/api/3.3.0/scala/

util/boundary\protect\T1\textdollar.html ,→ page 69

Scala. 2022b. Scala 3: Capture Checking. https://dotty.epfl.ch/docs/reference/experimental/

cc.html ,→ pages 9, 51, and 65

Scala. 2022c. The Scala 3 compiler, also known as Dotty. https://dotty.epfl.ch ,→ page 51

190

https://doi.org/10.1109/CSF.2016.18
http://arxiv.org/abs/1904.07298
http://arxiv.org/abs/1904.07298
https://dspace.mit.edu/handle/1721.1/5944
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/2983990.2984008
https://www.rust-lang.org/
https://doi.org/10.1007/978-3-642-31057-7_13
https://doi.org/10.1007/978-3-642-31057-7_13
https://doi.org/10.1145/361011.361067
https://sandboxdb.org
https://www.scala-lang.org/api/3.3.0/scala/util/boundary\protect \T1\textdollar .html
https://www.scala-lang.org/api/3.3.0/scala/util/boundary\protect \T1\textdollar .html
https://dotty.epfl.ch/docs/reference/experimental/cc.html
https://dotty.epfl.ch/docs/reference/experimental/cc.html
https://dotty.epfl.ch

Bibliography

ScalaXML. 2023. Scala XML: the standard Scala XML library. https://github.com/scala/

scala-xml ,→ page 107

Gabriel Scherer and Jan Hoffmann. 2013. Tracking Data-Flow with Open Closure Types. In

Logic for Programming, Artificial Intelligence, and Reasoning (Lecture Notes in Computer

Science), Ken McMillan, Aart Middeldorp, and Andrei Voronkov (Eds.). Springer, Berlin,

Heidelberg, 710–726. https://doi.org/10.1007/978-3-642-45221-5_47 ,→ pages 117 and 124

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Lan-

guages. In Scheme and Functional Programming Workshop. https://www.

semanticscholar.org/paper/Gradual-Typing-for-Functional-Languages-Siek/

b7ca4b0e6d3119aa341af73964dbe38d341061dd ,→ pages 84 and 101

Jeremy G. Siek, Michael M. Vitousek, and Jonathan D. Turner. 2012. Effects for Funargs. CoRR

abs/1201.0023 (2012). arXiv:1201.0023 http://arxiv.org/abs/1201.0023 ,→ page 119

Fred Spiessens and Peter Van Roy. 2005. The Oz-E Project: Design Guidelines for a Secure

Multiparadigm Programming Language. In Multiparadigm Programming in Mozart/Oz

(Lecture Notes in Computer Science), Peter Van Roy (Ed.). Springer, Berlin, Heidelberg, 21–40.

https://doi.org/10.1007/978-3-540-31845-3_3 ,→ pages 108, 116, and 121

Marc Stiegler. 2007. Emily: A High Performance Language for Enabling Secure Coopera-

tion. In Fifth International Conference on Creating, Connecting and Collaborating through

Computing (C5 ’07). 163–169. https://doi.org/10.1109/C5.2007.13 ,→ pages 108 and 116

Marc Stiegler and Mark Miller. 2006. How Emily Tamed the Caml. Hewlett Packard Labs Tech

Report. https://www.hpl.hp.com/techreports/2006/HPL-2006-116.pdf ,→ pages 108, 116,

and 121

Nicolas Alexander Stucki. 2023. Scalable Metaprogramming in Scala 3. Ph. D. Dissertation.

EPFL, Lausanne. https://doi.org/10.5075/epfl-thesis-8257 ,→ page 1

Jean-Pierre Talpin and Pierre Jouvelot. 1992. Polymorphic Type, Region and Effect Inference.

Journal of Functional Programming 2, 3 (July 1992), 245–271. https://doi.org/10.1017/

S0956796800000393 ,→ page 111

Ross Tate. 2013. The Sequential Semantics of Producer Effect Systems. In Proceedings of the

40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’13). Association for Computing Machinery, New York, NY, USA, 15–26. https:

//doi.org/10.1145/2429069.2429074 ,→ page 112

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Information

and Computation 132, 2 (Feb. 1997), 109–176. https://doi.org/10.1006/inco.1996.2613

,→ pages 8, 41, 111, 118, and 123

R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson, S.M. Bennett, A.

Kagi, F.H. Leung, and L. Smith. 2005. Intel Virtualization Technology. Computer 38, 5 (May

2005), 48–56. https://doi.org/10.1109/MC.2005.163 ,→ page 123

191

https://github.com/scala/scala-xml
https://github.com/scala/scala-xml
https://doi.org/10.1007/978-3-642-45221-5_47
https://www.semanticscholar.org/paper/Gradual-Typing-for-Functional-Languages-Siek/b7ca4b0e6d3119aa341af73964dbe38d341061dd
https://www.semanticscholar.org/paper/Gradual-Typing-for-Functional-Languages-Siek/b7ca4b0e6d3119aa341af73964dbe38d341061dd
https://www.semanticscholar.org/paper/Gradual-Typing-for-Functional-Languages-Siek/b7ca4b0e6d3119aa341af73964dbe38d341061dd
http://arxiv.org/abs/1201.0023
https://doi.org/10.1007/978-3-540-31845-3_3
https://doi.org/10.1109/C5.2007.13
https://www.hpl.hp.com/techreports/2006/HPL-2006-116.pdf
https://doi.org/10.5075/epfl-thesis-8257
https://doi.org/10.1017/S0956796800000393
https://doi.org/10.1017/S0956796800000393
https://doi.org/10.1145/2429069.2429074
https://doi.org/10.1145/2429069.2429074
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1109/MC.2005.163

Bibliography

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter Dr-

uschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isolation with Protection

Keys (MPK). In 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara,

CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Associ-

ation, 1221–1238. https://www.usenix.org/conference/usenixsecurity19/presentation/

vahldiek-oberwagner ,→ page 123

Verse. 2023. The Verse Language Reference. https://dev.epicgames.com/documentation/

en-us/uefn/verse-language-reference ,→ page 2

Philip Wadler. 1990. Linear Types Can Change the World!. In Programming Concepts and

Methods, Vol. 3. 5. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

24c850390fba27fc6f3241cb34ce7bc6f3765627 ,→ pages 2, 8, 112, and 114

Philip Wadler. 2015. A Complement to Blame. In 1st Summit on Advances in Programming

Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 32),

Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Mor-

risett (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 309–

320. https://doi.org/10.4230/LIPIcs.SNAPL.2015.309 ,→ pages 84 and 101

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Pro-

gramming Languages and Systems (Lecture Notes in Computer Science), Giuseppe Castagna

(Ed.). Springer, Berlin, Heidelberg, 1–16. https://doi.org/10.1007/978-3-642-00590-9_1

,→ pages 84 and 101

Philip Wadler and Peter Thiemann. 2003. The Marriage of Effects and Monads. ACM Transac-

tions on Computational Logic 4, 1 (Jan. 2003), 1–32. https://doi.org/10.1145/601775.601776

,→ pages 2 and 112

WASI. 2023. Webassembly: WASI. https://github.com/WebAssembly/WASI ,→ page 122

WASM-JS. 2023. Webassembly: JavaScript API. https://webassembly.github.io/spec/js-api/

index.html ,→ page 122

WASM-Web. 2023. Webassembly: Web API. https://webassembly.github.io/spec/web-api/

index.html ,→ page 122

Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian Memory Protection. In

Proceedings of the 10th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS X). Association for Computing Machinery, New

York, NY, USA, 304–316. https://doi.org/10.1145/605397.605429 ,→ page 123

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, Jonathan Ander-

son, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton, and Michael Roe. 2014.

The CHERI Capability Model: Revisiting RISC in an Age of Risk. In 2014 ACM/IEEE 41st

International Symposium on Computer Architecture (ISCA). 457–468. https://doi.org/10.

1109/ISCA.2014.6853201 ,→ page 123

192

https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://dev.epicgames.com/documentation/en-us/uefn/verse-language-reference
https://dev.epicgames.com/documentation/en-us/uefn/verse-language-reference
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=24c850390fba27fc6f3241cb34ce7bc6f3765627
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=24c850390fba27fc6f3241cb34ce7bc6f3765627
https://doi.org/10.4230/LIPIcs.SNAPL.2015.309
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1145/601775.601776
https://github.com/WebAssembly/WASI
https://webassembly.github.io/spec/js-api/index.html
https://webassembly.github.io/spec/js-api/index.html
https://webassembly.github.io/spec/web-api/index.html
https://webassembly.github.io/spec/web-api/index.html
https://doi.org/10.1145/605397.605429
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/ISCA.2014.6853201

Bibliography

A. K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and

Computation 115, 1 (Nov. 1994), 38–94. https://doi.org/10.1006/inco.1994.1093 ,→ page 99

Yichen Xu and Martin Odersky. 2023. Formalizing Box Inference for Capture Calculus. https:

//doi.org/10.48550/arXiv.2306.06496 arXiv:2306.06496 [cs] ,→ page 68

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki

Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client: A Sandbox for Portable,

Untrusted X86 Native Code. In 2009 30th IEEE Symposium on Security and Privacy. 79–93.

https://doi.org/10.1109/SP.2009.25 ,→ page 122

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-Safe Effect Handlers via Tunneling.

Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 5:1–5:29. https:

//doi.org/10.1145/3290318 ,→ pages 37, 44, and 117

193

https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.48550/arXiv.2306.06496
https://doi.org/10.48550/arXiv.2306.06496
https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3290318

Aleksander Boruch-Gruszecki | CV
Rue de Verdeaux 17b – 1020 Renens VD – Switzerland

I +41 78 233 05 75 • # aleksander.boruch-gruszecki@epfl.ch
§ abgruszecki

Education
EPFL (Swiss Federal Institute of Technology) Lausanne
Pursuing a Ph.D. in Computer Science 2018–Present
Wrocław University of Science and Technology Wrocław
M.Sc. in Computer Science 2012–2017
Languages: English (bilingual) Polish (mother tongue)
Research interests: Programming languages and type systems. I am particularly interested in developing
formal foundations for PL features which are intuitive to the users.

Publications
○ Aleksander Boruch-Gruszecki, Radosław Waśko, Yichen Xu, Lionel Parreaux. 2022. A case for DOT:

theoretical foundations for object-oriented pattern matching and GADT-style reasoning. Proceedings
of the ACM on Programming Languages 6 (OOPSLA2 2022), 1526-1555.
(DOI: https://doi.org/10.1145/3563342)
I have significantly contributed to the writing. I am the main author of the described implementation.
I have supervised the projects of Radosław Waśko and Yichen Xu included as part of this paper, and I
have been the driving force behind organizing our work into a publication.

○ Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, Ondřej
Lhoták. 2021. Safer Exceptions for Scala. Proceedings of the 12th ACM SIGPLAN International
Symposium on Scala (SCALA 2021), 1-11. (DOI: https://doi.org/10.1145/3486610.3486893)
I have significantly contributed to the writing and the design of the presented formal system.

○ Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, Ondřej Lhoták, Martin
Odersky. 2021. Tracking Captured Variables in Types. arXiv 2021 preprint.
(DOI: https://doi.org/10.48550/arXiv.2105.11896)
I have significantly contributed to the writing, the design of the presented formal system and the
mechanized proof of soundness.

○ Martin Odersky, Aleksander Boruch-Gruszecki, Edward Lee, Jonathan Immanuel Brachthäuser, Ondřej
Lhoták. 2022. Scoped Capabilities for Polymorphic Effects. arXiv 2022 preprint.
(DOI: https://doi.org/10.48550/arXiv.2207.03402).
I have significantly contributed to the writing, the design of the presented formal system. I am the
author of the attached proof of soudness.

○ Lionel Parreaux, Aleksander Boruch-Gruszecki, Paolo G. Giarrusso. 2019. Towards Improved GADT
Reasoning in Scala. Proceedings of the Tenth ACM SIGPLAN Symposium on Scala (SCALA 2019),
12-16. (DOI: https://doi.org/10.1145/3337932.3338813)
The paper discusses an approach independently discovered by me and Lionel Parreaux. I have
significantly contributed to the writing.

1/2

195

Presentations, Invitations
○ (2022) Effects, Capabilities and Boxes. Conference talk, OOPSLA.
○ (2022) A case for DOT. Conference talk, OOPSLA.
○ (2021) Safer Exceptions for Scala. Conference talk, SCALA.
○ (2018, 2019) Google Compiler Summit, Munich.
○ (2018) GADTs in Scala. Industry talk, Typelevel Summit, Lausannne.

Experience
Teaching Assistanship. .

CS-452: Foundations of Software (2020, 2021, 2022)
CS-206: Parallelism and Concurency (2020)
CS-210: Functional Programming (2019)
MATH-106(e): Analysis II (2019)
Industry. .

Bright IT Wrocław
Scala Software Developer 2014–2018
○ Developed a Scala database-querying library.
○ Developed an XSLT-like DSL for transforming XML with Scala.
○ Developed a JS library for web form scripting/validation that runs both in the browser and on the JVM.

2/2

196

	Abstract (English/Français)
	Contents
	Introduction
	Preliminaries
	Contributions

	The Capture Tracking Approach
	Key Aspects of Capture Tracking
	Capability Hierarchy
	Function Types
	Capture-Checking Closures
	Subtyping and Subcapturing
	Escape Checking

	The SCC Calculus
	Preliminaries
	Subcapturing
	Subtyping
	Typing
	Well-Formedness
	Reduction

	Metatheory
	Conclusion

	Impure Type Variables: CF<:
	The CF<: Calculus
	Syntax of Terms and Types
	Preliminaries
	Operational Semantics
	Subcapturing
	Subtyping
	Typing
	Well-Formedness

	Metatheory
	Mechanization

	Evaluation
	Data Structures in CF<: - List
	Abort
	Non-Local Returns
	Regions
	Effect Handlers

	Boxing Capabilities: CC<:
	Introduction
	Key Aspects of Capture Tracking in CC<:
	Capture Tunneling

	The CC<: Calculus
	Subcapturing
	Subtyping
	Typing
	Well-Formedness
	Operational Semantics

	Metatheory
	Predicting Used Capabilities
	Correctness of Boxing

	Examples
	Church-Encoded Lists
	Stack Allocation
	Collections

	Why Boxes?
	Scoped Capabilities
	Dynamic Semantics of Scoped Capabilities
	Metatheory

	Conclusion

	Polymorphism and Capture Tracking
	Deferred Closures
	Abstracting Over Arguments
	Mutable State
	Conclusions

	Gradual Compartmentalization
	Introduction
	Background and Motivation
	Gradient
	Object Capabilities
	Capture Tracking
	Runtime-Assisted Graduality

	Base Formalism
	Syntax
	Subcapturing
	Subtyping
	Typing
	Reduction
	Metatheory

	Formalising Capture-Unchecked Terms
	Changes to the System
	Reduction
	Metatheory

	Evaluation
	Migrating the Scala XML Library
	Implementing Gradual Compartmentalization

	Background
	Background
	Effects
	Resource Ownership
	Capabilities

	Related Work: Capturing Types
	Related Work: Gradual Compartmentalization
	Static Compartmentalization
	Dynamic Compartmentalization
	Tracking Capabilities in Types

	CC<: Proofs
	Proof devices
	Properties of Evaluation Contexts and Stores
	Properties of Subcapturing
	Subtyping inversion
	Permutation, weakening, narrowing

	Substitution
	Term Substitution
	Type Substitution

	Main Theorems – Soundness
	Preliminaries
	Soundness
	Consequences

	Correctness of boxing
	Relating cv and stores
	Relating cv and evaluation contexts
	Relating cv to store and evaluation context simultaneously
	Correctness of cv
	Core lemmas

	Avoidance

	ModCC Proofs
	Proof devices
	Properties of Evaluation Contexts and Stores
	Properties of Subcapturing
	Permutation, weakening, narrowing
	Subtyping inversion

	Substitution
	Main Theorems – Soundness
	Preliminaries
	Soundness

	GradCC Proofs
	Properties of Evaluation Contexts and Stores
	Properties of Cast Subcapturing
	Permutation, weakening, narrowing
	Subtyping inversion

	Substitution
	Main Theorems – Soundness
	Preliminaries
	Soundness

	Bibliography
	Curriculum Vitae

