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Modern control synthesis methods rely on accurate models
to derive a performant controller. Obtaining a good model
is often a costly step, and has led to a renewed interest in
data-driven synthesismethods. Frequency-response-based
synthesis methods have been proposed, as they rely on
easy-to-obtain frequency-response data and offer flexible
tuning approaches. Such methods formulate the objective
as a minimization over the whole spectrum, which is prob-
lematic as only a finite number of frequency points can be
consideredwhen solving the problemusing numerical solvers.
Most methods require sampling the frequency response to
obtain a trackable formulation, but this sampling process
loses all stability and performance guarantees. By studying
the inter-frequency behavior of such methods, bounds on
the spectrum errors can be derived. Using these bounds, a
novel algorithm is proposed to design a SISO controller us-
ing only a finite number of frequency response data, which
guarantees closed-loop stability and robust performance.
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1 | INTRODUCTION

Modern control synthesis methods rely on accurate models to derive an effective controller. Such models can some-
times be obtained using first principle modeling, but most cases require identifying a more suitable control-relevant
model using input-output trajectories. In general, due to finite input/output data available, noisy measurements and
structural mismatch, the process model cannot be exactly identified. Instead, only an estimate of the process model
can be obtained, with associated error bounds. For example, the framework of identification in H∞ aims to search
for a model and corresponding uncertainty, see [1, 2, 3, 4]. These approaches typically result in a suitable model for
the majority of practical applications, with asymptotic errors that bound the distance from the true process based on
the length of the input/output data. Recently, newer data-driven methods have been developed to give probabilistic
but non-asymptotic errors, e.g., [5, 6, 7] or [8] for a survey. In both cases, quantifying the modeling uncertainty is of
great importance for control design. It should be incorporated in the control design phase, to guarantee performance
for not only the estimated model but also the true underlying process. Model uncertainty can be elegantly described
in the frequency domain [9], and therefore is well suited to be used in combination with frequency domain methods,
such asH∞ control. Recently, data-driven synthesis methods using the frequency-response function (FRF) have found
renewed interest in data-driven methods. With the advent of more readily available computational power that can be
used to automatically tune the controller parameters, multiple FRF-based data-driven synthesis methods have been
proposed, e.g., [10, 11, 12, 13, 14, 15]. In these methods, the problem is formulated as an optimization problem over
the whole frequency range, but to obtain a tractable formulation, it is proposed to sample the frequency spectrum.
This sampling step results in losing all stability and performance certificates. Without careful supervision and possibly
the intervention of an expert, such methods may result in controllers not stabilizing the closed loop. Additionally,
most formulations are not designed to handle model uncertainty directly and require additional effort to guarantee
robust performance. Both problems can be argued as very problematic and major drawbacks of such methods. The
evaluation of stability (and performance) can only occur after tuning and may necessitate restarting with a denser
frequency grid if the tuning procedure proves unsuccessful. Additional certificates should be computed on top of the
synthesis procedure for these reasons, for example, as is done in [16].

This paper proposes a synthesis problem that is robust w.r.t. frequency sampling and model uncertainty, guaran-
teeing performance and robustness. This is achieved by studying the inter-frequency behavior in the SISO case of
the method proposed in [17]. An iterative algorithm is developed which guarantees that the stage cost upper-bounds
the trueH2 orH∞ closed loop norm, even when considering a finite number of frequencies and additive uncertainty
for the process model. This is achieved by first finding sets that encapsulate the true frequency responses and then
constraining these sets to ensure performance and robustness. Furthermore, we show that the proposed formulation
is equivalent to [17] in the limit when the whole spectrum is considered.

This paper is organized as follows: in Sec. 2 preliminaries and a short overview of [17] is provided. In Sec. 3,
developments for the proposed synthesis approach are presented, and the main results are discussed in Sec. 4. Finally,
illustrative examples are given in Sec. 5. Developments and discussions are given for a discrete-time controller, but
extension to continuous time is straightforward.

Notations: The Hermitian transpose of a matrix F is denoted F ∗. The element-wise absolute value of a vector F
is denoted |F |. The set of stable transfer functions bounded on the unit circle is denoted RH∞. If H is a discrete-
or continuous-time transfer-function, then H (j ω ) denotes its FRF at frequency ω. To keep the notations short, the
subscript k will be used to denote a quantity related to j ωk , e.g., Hk = H (j ωk ) . The (complex-valued) unit uncertainty
ball is denoted ∆, with |∆ | ≤ 1.
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2 | PRELIMINARIES

2.1 | Problem description

To control a system, a mathematical representation is first required. It has been noted that first principle models often
describe an idealized version of the system and fail to capture the intricacies encountered in a real process P , and
various methods have been proposed to address this issue. For example, in an idealized setup, the frequency response
function (FRF) can be obtained everywhere and exactly using data-driven approaches, such as [18] which uses the
Behavioral framework to derive the FRF.

In practice, various sources of errors do not allow exact identification of the process model, and an identification
error is present. For example, this could be due to noise corrupting the measurements and finiteness of the data. It
is therefore important to also account for these sources of errors when designing a controller regulating a process.
The field of identification for control has brought forward various methods to obtain a control-relevant model P̂ . An
estimate for the process’s spectrum can then be obtained, for example, using Fourier analysis [19] when using a signal
with bounded 2-norm:

P̂ (j ω ) =
[
N −1∑
k=0

y (k )e−j ωTs k
][
N −1∑
k=0

u (k )e−j ωTs k
]−1

(1)

where N is the number of data points,Ts is the sampling period, and u (k ) and y (k ) represents respectively the inputs
and the outputs at sample k .

Various examples are discussed in [20] to find the identification errors for the asymptotic regime case, and also
highlights that such errors are best described in the frequency domain. In this paper, it is assumed that the identifica-
tion errors can be expressed as

sup
ω∈Ω

|P̂ (j ω ) − P (j ω ) | ≤ α (ρ, d ,N ) . (2)

Here, Ω = (−π/Ts , π/Ts ] represents the frequency spectrum and α (ρ, d ,N ) is a function of intrinsic information of the
system. Specifically, ρ is the spectral norm of the state-transition matrix, d signifies information regarding the process
noise, and N denotes the length of the data. Recent renewed interest has been found in finite data identification in
the non-asymptotic regime. For example, [5] shows how to construct inputs u (k ) such that α in (2) is bounded. The
estimated model and uncertainty might not always be specified exactly as in (2), but can often be converted to this
form. In case the Hankel matrix of the system is first computed, one can also upper bound theH∞ error between the
true system and the computed approximation [21].

2.2 | Related work

RecentH2 andH∞ data-driven control synthesis approaches [12, 13, 17] use an inner-approximation of the synthesis
criterion to design a controller using only the FRF of a system, not requiring a parametric (e.g., state-space) model.
We will give a summary of [17], which extends [12, 13], and serves as a departure point for the method presented in
this paper.

A generalized LTI SISO system, mapping exogenous inputw ∈ R and control input u ∈ R to performance channels
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z ∈ Rnz and measurements y ∈ R is given by:

z = G11w +G12u,

y = G21w +G22u .
(3)

It is assumed that only the FRF of the generalized system

G (j ω ) =
[
G11 (j ω ) G12 (j ω )
G21 (j ω ) G22 (j ω )

]
(4)

is available, where Gi j (j ω ) are FRFs of appropriate size. For simplicity, it is assumed that G has no poles on the unit
circle. The controller is parametrized as K = X /Y , where X and Y are both RH∞ transfer functions. The synthesis
objective is to design an LTI control law u = K y , regulating the effect of the exogenous disturbances w onto the
performance channels z . The closed-loop (using positive feedback) system is given by

Tzw = G11 +G12K (1 − G22K )−1G21 . (5)

Several significant simplifications are made in comparison to [17], as X ,Y , and G22 are treated as scalar transfer
functions. Moreover, G21 = 1, is chosen to greatly simplify the derivations. Then, the closed-loop can be expressed
as

Tzw = G11 +G12X (Y − G22X )−1 = (G11 (Y − G22X ) +G12X ) /(Y − G22X ) (6)

which can be rewritten concisely asTzw = (VY +WX )/Φ where

V = G11 (7)

W = G12 − G11G22 (8)

Φ =Y − G22X (9)

The LFT framework uses the convention of positive feedback and corresponds to use G22 = −P . Under the assump-
tion that the closed-loop system is stable, the norms ofTzw can be expressed using only its FRF:

∥Tzw ∥22 =
Ts
2π

∫
Ω
H (j ω )dω =: J2 (H ) (10a)

∥Tzw ∥2∞ = sup
ω∈Ω

H (j ω ) =: J∞ (H ) (10b)

where H (j ω ) := T ∗zw (j ω )Tzw (j ω ) . Introducing an upper-bound γ (j ω) on H (j ω ) :

T ∗zw (j ω )Tzw (j ω ) ≤ γ (j ω ),
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it can be shown that minimizing the H2 or H∞ norm is equivalent to minimizing [17]

min Jp (γ ) (11a)

subject to

∥VY +WX ∥2 ≤ γΦ∗Φ [ω ∈ Ω (11b)

X /Y stabilizes the closed-loop (11c)

This is a non-linear optimization problem, and the authors of [17] propose to find an inner approximation by substi-
tuting Φ∗Φ by a (linear in optimization variables) lower bound Υ:

Υ ≤ Φ∗Φ,

which is chosen in this case as

Υ(Φ,Φc ) = Φ∗Φc + Φ∗cΦ − Φ∗cΦc = 2ℜ{ΦΦ∗c } − |Φc |2 . (12)

With an appropriate choice of Φc it is shown in [17] that a sufficient condition for stability is Υ ≥ 0. The minimization
problem can therefore be formulated as

min Jp (γ ) (13a)

subject to

∥VY +WX ∥2 ≤ γ · Υ [ω ∈ Ω (13b)

Υ ≥ 0 [ω ∈ Ω (13c)

Remark that (13) is a convex optimization problem, but is semi-infinite ([ω ∈ Ω) and cannot be solved using numerical
solvers. The authors propose to solve the problem at only a finite number of frequencies {ω1, . . . ,ωnf } to obtain a
tractable solution. When carefully selecting a dense grid, the solution of the sampled problem closely approximates
the semi-infinite problem, but no guarantees of robustness or performance can be given. This is illustrated by the
example from Sec. 5.2, when considering a reasonable frequency grid, the resulting controller after optimizing can
fail to stabilize the closed loop.

The main contribution of this paper is the derivation of a variation of the formulation proposed in [17], which
guarantees robustness and performance, even in the casewhere only a finite number of frequencies can be considered
in the numerical optimizer.

3 | DEVELOPMENTS

3.1 | Signposting

We will use as a starting point the formulation proposed in [17] using the SOCP embedding given in (13). Since this
problem can only be solved at a finite number of frequencies and P is unknown, additional care is required. Focusing
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on the frequency interval

Ωk = [ωk , ωk+1 ]

where ωk+1 > ωk , assume that we are given uk such that

∥VY +WX ∥ ≤ uk [ω ∈ Ωk ,

and ℓk such that Υ can be lower-bounded by

0 ≤ ℓk ≤ Υ [ω ∈ Ωk ,

then σk that satisfies the following constraint

∥VY +WX ∥2 ≤ u2k ≤ σk ℓk ≤ σk · Υ

is an upper bound onH (j ω) , i.e,H (j ω ) ≤ σk . This value can be considered as the “local"H∞ bound over the frequency
interval Ωk . If σk is obtained for each frequency interval and the frequency intervals cover the whole spectrum, i.e.,
ω1 = −π/Ts , ωnf = π/Ts and, this can be used to derive upper bounds on the system normTzw : For the H∞ case

J̃∞ (σk ) := max
k

σk ≥ ∥Tzw ∥2∞ . (14)

and for the H2 case:

J̃2 (σk ) :=
Ts
2π

nf −1∑
k=0

(ωk+1 − ωk )σk ≥ ∥Tzw ∥22, (15)

since

(ωk+1 − ωk )σk ≥
ωk+1∫
ωk

sup
ω∈Ωk

H (j ω )dω ≥
ωk+1∫
ωk

H (j ω )dω. (16)

The focus is therefore on deriving the lower and upper bounds, ℓk , uk , as well as the choice of Φc in Υ to guarantee
the stability of the closed loop.

3.2 | Linear interpolations

Since the behavior of the FRF can be arbitrarily complex (as long as continuous) between two consecutive frequency
points, a simpler description is required first. The frequencies are restricted to the interval Ωk in this section for
conciseness. Given P̂k and P̂k+1, define the interpolated model P as

P (λ ) = (1 − λ ) P̂k + λ P̂k+1,
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where the linear interpolant λ is defined as

λ (ω ) = ω − ωk+1
ωk+1 − ωk

∈ [0, 1] .

Additionally, define the interpolation error β as

β = sup
ω∈Ωk

|P̂ (j ω ) − P (λ ) | . (17)

which can be computed numerically by evaluating (17) on a dense frequency grid, since P̂ (j ω) is available [ω. In case
it is not possible to obtain P̂ (j ω ) at all frequencies, which is, for example, the case when a periodic input signal is used
and P̂ (j ω ) is only available at a finite number of frequencies, bounds on the interpolation error can be obtained using
only information of an exponential envelope bounding the impulse response, see [22]. Dependency of λ on ω will be
hereafter omitted. Using the triangle inequality, we have

|P − P | ≤ |P − P̂ |︸   ︷︷   ︸
=interpolation error

+ |P̂ − P |︸   ︷︷   ︸
=identification error

≤ β + α . (18)

for all ω ∈ Ωk .
The maximum error δP̂ = β + α from the interpolated model can be used to construct a set P that is guaranteed

to contain the true process model P :

P (j ω ) ⊆ P (λ ) + ∆δP̂ . (19)

Remark If an identification procedure is used which does not give α , or an estimate thereof, one can always use α = 0

to guarantee only stability of the nominal model P̂ .

Similarly, we are interested in quantifying the interpolation error of V ,W . The main difference is that V ,W are
vector-valued functions. Define δV , δW as the interpolation errors of the weights used in the synthesis problem:

V (j ω ) ⊆ V (λ ) + ∆δV , (20)

W (j ω ) ⊆ W (λ ) + ∆δW . (21)

and the structured uncertainty ball as

∆ = blkdiag(∆, . . . ,∆) ∈ Cnz ×nz .

Denoting [T ] j the j th entry of a vectorT , the interpolation errors are defined entry-wise as follows:

[δV ] j = sup
ω∈Ωk

| [V (j ω ) ] j − [V (λ ) ] j |,

and similarly for δW . To compute the different errors, the simplest approach is to numerically compute the interpo-
lation error by sampling the frequency responses on a dense grid (e.g., using 200 − 1000 points between each pair of
frequencies), and take the maximum among those points for the interpolation error.
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Finally, define X (λ ) and Y (λ ) linear interpolations of the controller numerator X and denominator Y . A similar
construction can be done to overbound X andY :

X (j ω ) ⊆ X (λ ) + ∆δX , (22)

Y (j ω ) ⊆ Y (λ ) + ∆δY . (23)

where δX ≥ 0, δY ≥ 0 are bounds on the interpolation errors. For the controller, the numerator and denominator are
not known in advance, and therefore, their interpolation errors cannot be evaluated in advance, but it is nevertheless
desired to express these errors as a function of the controller parameters. Assume that X and Y are parametrized
using a linear combination of proper rational transfer functions Rm (e.g., Laguerre functions):

X =
M∑
m=0

xmRm (z ), Y =
M∑
m=0

ymRm (z ) (24)

where xm , ym are real-valued optimization variables and M is the order of the controller.
Then, the interpolation errors can be bounded using the triangle inequality

���X − X (λ )
��� ≤ M∑

m=0

|xm | δRm =: δX , (25a)

���Y −Y (λ ) ��� ≤ M∑
m=0

|ym | δRm =: δY , (25b)

where

δRm = sup
ω∈Ωk

|Rm (j ω ) − Rm (λ ) |, (26)

and δRm can be obtained by evaluation on a dense grid. For conciseness, the dependence of j ω and λ will be omitted
when possible.

3.3 | Lower bounding Υ

The focus of this section is initially finding a bound ℓ for Υ = 2ℜ{ΦΦ∗c } − |Φc |2. By using the sets defined in the
previous section and (9), it is straightforward to show that

Φ ∈ Y + ∆δY + (P + ∆δP̂ ) (X + ∆δX ) . (27)

Using the fact that

z ∈ ∆(a + b∆) =⇒ z ∈ ∆( |a | + |b | ), (28)

then (27) can be rewritten as

Φ ∈ Y + P X + ∆(δY + |P |δX + |X |δP̂ + δX δP̂ ) . (29)
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With additional bounding using

|H | ≤ (1 − λ ) |Hk | + λ |Hk+1 |

when 0 ≤ λ ≤ 1, and appropriately factoring the different terms, a convex set L can be obtained such that Φ ∈ L :

Lemma 1 The set

L = Hull(p0 + ∆r0, p1 + ∆r1, p2 + ∆r2 ) (30)

where p0, p1, p2 are control points given by

p0 =Yk + P̂kXk , (31a)

p1 = 0.5(Yk +Yk+1 + P̂kYk+1 + P̂k+1Yk ), (31b)

p2 =Yk+1 + P̂k+1Xk+1, (31c)

and the associated radii r0, r1, r2 given by

r0 = δY + δX δP̂ + δX |P̂k | + δP̂ |Xk |, (32a)

r1 = δY + δX δP̂ + 0.5δX ( |P̂k | + |P̂k+1 | ) + 0.5δP̂ ( |Xk | + |Xk+1 | ) (32b)

r2 = δY + δX δP̂ + δX |P̂k+1 | + δP̂ |Xk+1 |, (32c)

is a convex set such that Φ ∈ L .

Proof: The proof is straightforward and is given in the Appendix.
The set L can be interpreted as bounding a Bézier curve [23]

B = (1 − λ )2 (p0 + ∆r0 ) + 2(1 − λ )λ (p1 + ∆r1 ) + λ2 (p2 + ∆r2 )

constructed in such way that Φ ∈ B , with control disks pi + ∆ri instead of control points . An important property is
that the convex hull of the control points bounds Bézier curves. This property also holds for this Bézier curve with
control disks instead of control points:

B ⊆ Hull(p0 + ∆r0, p1 + ∆r1, p2 + ∆r2 ) . (33)

Because any convex combination of the three control disks can be written as

λ0 (p0 + ∆r0 ) + λ1 (p1 + ∆r1 ) + λ2 (p2 + ∆r2 )

for λ0, λ1, λ2 ≥ 0 and λ0 + λ1 + λ2 = 1, and setting λ0 = (1 − λ )2, λ1 = 2(1 − λ )λ, λ2 = λ2 results exactly in B .
Importantly, since B is contained in the convex hull of the control disks, the point p ∈ B with the lowest real

part cannot be less than the lowest real part of the control disks pi + ∆ri . A graphical illustration is given in Fig. 1 to
highlight this fact. This can be used to find a lower bound ℓk of Υ = 2ℜ{ΦΦ∗c } − |Φc |2 over the frequency range Ωk .
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F IGURE 1 Illustrative example of control disks and their convex hull. Additionally, the points with the lowest real
part and with the largest magnitude are indicated using a black dot.

Since by construction Φ ∈ L , it is clear that if ℓk satisfies

ℓk ≤ min
|∆|≤1

2ℜ{(pi + ∆ri )Φ∗c } − |Φc |2,

where i ∈ {1, 2, 3}, then this implies that ℓk ≤ Υ. The worst case over all |∆ | ≤ 1 is given by ∆riΦc = −ri |Φc | since
ri ≥ 0, and therefore a lower bound of Υ can be formulated as

ℓk ≤ 2ℜ{p0Φ∗c } − 2r0 |Φc | − |Φc |2, (34a)

ℓk ≤ 2ℜ{p1Φ∗c } − 2r1 |Φc | − |Φc |2, (34b)

ℓk ≤ 2ℜ{p2Φ∗c } − 2r2 |Φc | − |Φc |2 . (34c)

It should be noted that ri depends on the absolute values of the optimization variables. For example in (34a),

r0 = δY + δX · (δP̂ + |P̂k | ) + δP̂ |Xk | =
M∑
m=0

δRm ·
(
|ym | + |xm | · (δP̂ + |P̂k | )

)
+ δP̂ |Xk | .

using the definition of δX , δY given in (25), and therefore (34a) is not a linear inequality. Instead, (34a) can be imple-
mented in a convex fashion, e.g., using the 1-norm cone [24]:

∥ 2 |Φc | d0 ∥1 ≤ 2ℜ{p0Φ∗c } − |Φc |2 − ℓk , (35)

where d0 = [δP̂Xk , δR0 y0, amx0, . . . , δRm ym , amxm ]⊤ and am = δRm (δP̂ + |P̂k | ) . A similar construction can be ob-
tained for (34b)–(34c). In practice, appropriate modeling languages for convex optimization, e.g., [25], recognize 34
as a conic constraint and do not require the transformation (35).

3.4 | Upper-bounddingVY +WX

A similar approachwill be used to construct an upper bound on ∥VY +WX ∥ . A setQ can be constructed, guaranteeing
that the vectorVY +WX is located inside:

VY +WX ∈ Q.
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The set

Q = Hull(q0 + ∆s0, q1 + ∆s1, q2 + ∆s2 ), (36)

where the (vector-valued) control disk centers are given by

q0 =VkYk +WkXk , (37a)

q1 = 0.5(VkYk+1 +Vk+1Yk +WkXk+1 +Wk+1Xk ), (37b)

q2 =Vk+1Yk+1 +Wk+1Xk+1, (37c)

with their associated radii by

s0 = δV δY + δV |Yk | + δY |Vk | + δW δX + δW |Xk | + δX |Wk |, (38a)

s2 = δV δY + δV |Yk+1 | + δY |Vk+1 | + δW δX + δW |Xk+1 | + δX |Wk+1 |, (38b)

s1 = 0.5 · (s0 + s2 ) . (38c)

is a convex set such that WY +WX ∈ Q. For conciseness, the derivation of pi , si are given in Appendix A as the
derivation is similar to L given in Lemma 1.

The set Q is a convex combination of control disks qi +∆si , and the distance of the furthest point of Q from the
origin must be achieved on the boundary of one of the control disks. This is equivalent to finding the smallest uk such
that

∥ |q0 | + s0 ∥ ≤ uk (39a)

∥ |q1 | + s1 ∥ ≤ uk (39b)

∥ |q2 | + s2 ∥ ≤ uk (39c)

holds since |qi + ∆si | ⪯ |qi | + si where ⪯ denotes the element-wise inequality. The constraints (39) is convex, but
auxiliary variables di are required to implement it using standard optimization cones [24]:

∥ di ∥ ≤ uk (40a)

|qi | + si ⪯ di (40b)

Similar to (34), appropriate convex modeling languages can be used to implement these constraints easily.

4 | MAIN RESULTS

4.1 | Computing Φc

In (34), a condition on the lower bound is derived but requires a choice of Φc . In this section, we will describe the
recommended choice of Φc , which will guarantee the stability of the closed-loop.
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Given a stabilizing controller Kc = Xc/Yc where Xc ,Yc ∈ RH∞ coprime, compute the sets

Xc (j ω ) ⊆ X c (λ ) + ∆δXc , (41)

Yc (j ω ) ⊆ Y c (λ ) + ∆δYc . (42)

where δXc , δYc are computed analogously to (25). Compute the set Lc and its associated control disks overbounding
Yc + PXc in a similar fashion as was done for L . If 0 < Lc , choose Φc as the point inside this convex hull closest to
the origin:

Φc = argmin
p∈Lc

|p |2 (43)

This choice is made as it guarantees a solution to the optimization problem proposed later in Algorithm 1 and can be
used to show that this algorithm converges monotonically. The point Φc can be computed using basic geometry and
does not require solving an optimization problem:

1. Compute the closest points p to the origin of each control disk of Lc ,
2. Compute the segment tangent to the boundary of each pair of control disks and compute the closest points p on

each segment to the origin,
3. Among all those points, select the point p closest to the origin, i.e., the point with the lowest magnitude.

If 0 ∈ Lc , this may indicate a severe undersampling of the frequency responses. This is the case in the example given
in Sec. 5.2, where a very coarse frequency grid with only 20 frequency points is taken to describe the FRF of a system
of order 10. Moreover, a resonance peak is not sampled at all, leading to a significant conservatism and ultimately to
0 ∈ Lc . Since the controller Kc was assumed to be stabilizing and Xc ,Yc coprime, then

0 <Yc + (P̂ + ∆α )Xc ,

as otherwise there would exist a ∆ such that at least one of the sensitivity function

S =
Yc

Yc + (P̂ + ∆α )Xc

, T =
(P̂ + ∆α )Xc

Yc + (P̂ + ∆α )Xc

,

is not finite as the denominator is zero at some frequency but not the numerator sinceXc ,Yc are coprime and cannot be
both zero simultaneously; therefore, the closed-loop is unstable. This contradicts the assumption that Kc is stabilizing.
In the limit |ωk+1 −ωk | → 0, the set Lc reduces to Lc =Yc + (P̂ +∆α )Xc as all interpolation errors vanish. It is always
possible to increase the number of frequency points until 0 < Lc holds. In general, it is recommended to have sufficient
frequency points where the phase or magnitude of P is rapidly changing and similarly when the magnitude ofV orW
rapidly changes.

4.2 | Proof of stability

Boundedness of the FRF does not imply stability, and therefore it is important to show that the presented synthesis
approach, when using the choice of Φc presented in (43), also embeds a guarantee of closed-loop stability. This will
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be achieved using the sets L and Lc derived in the previous section: since these sets are by construction guaranteed
to containY + PX andYc + PXc respectively, it will be shown that the winding number ofY + PX must be equal to
the winding number ofYc + PXc . Finally, stability can be deduced using a theorem given in [17].

The previous section focused only on the interval ω ∈ Ωk . The different values pi , ri , pi , si ,Lc ,Φc must be com-
puted for each frequency interval and will hereafter be denoted respectively pi k , ri k , pi k , si k ,Lck ,Φck , to explicitly
indicate their association with the frequency interval.

Theorem 1 Given a stabilizing controller Kc = Xc/Yc where Xc ,Yc ∈ RH∞, the closed-loop system with the controller
K = X /Y where X ,Y ∈ RH∞ is also stable if for all k ∈ {1, 2, . . . , nf − 1} there exists ℓk ≥ 0 such that (34) holds, with
Φck , 0 as given in (43).

Proof: Using Theorem 1 presented in [17], it is sufficient to show that the FRF of Y + PX and Yc + PXc have the
same winding number to prove that K is stabilizing the closed-loop. To proceed, we propose to compute the phase
difference between both FRFs. The difference in angle can be bounded for ω ∈ Ωk by

|∡{ (Yc + PXc )∗ (Y + PX ) } | = |∡{ (Yc + PXc )∗ΦckΦ
∗
ck (Y + PX ) } |

≤ |∡{ (Yc + PXc )∗Φck } | + |∡{ (Y + PX )Φ∗ck } |

sincemultiplying a by a positive valueΦckΦ
∗
ck

does not change the angle. If the (absolute value of the) phase difference
is always less than π , this implies that both FRFs must have the same winding number (see Appendix B for a proof).
This will be proved by showing that each term of the right hand side of the above inequality is less than π/2.

The set L , which can be described using the convex combination of pi k +∆ri k , i = {1, 2, 3}, satisfies by construc-
tion

Y + PX ∈ L

for ω ∈ Ωk . If (34) holds with ℓk ≥ 0, then Υ ≥ 0 and

ℜ{(Y (j ω ) + P (j ω )X (j ω ) )Φ∗ck } ≥
1

2
|Φck |2 > 0.

Therefore |∡{ (Y +PX )Φ∗
ck
} | < π/2, since any complex number with a strictly positive real part has an angle between

(− π
2 ,

π
2 ) . Now it remains to choose Φck such that (Yc + PXc )Φ∗ck has also strictly positive real part. If Φck , 0 is

chosen as given in (43), then multiplying (Yc + PXc ) by Φ∗
ck
, rotates (and scales) Lck and its convex hull into the

right-half plane as it is illustrated in Fig. 2. In particular, any point z ∈ Lck will also have a positive real part after
multiplication by Φ∗

ck
and

ℜ{Φ∗ck z } ≥ ℜ{Φ
∗
ckΦck } = |Φck |2 > 0 [z ∈ Lck .

as Φck is chosen as the point in Lck with the lowest magnitude. Since we have constructed the set Lck such that
Yc (j ω ) + P (j ω )Xc (j ω ) ∈ Lck holds, it is therefore also guaranteed that

ℜ{(Yc (j ω ) + P (j ω )Xc (j ω) )Φ∗ck } > 0
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holds for all ω ∈ Ωk and |∡{ (Yc + PXc )∗Φck } | < π/2. Therefore, using Theorem 1 in [17], the controller K = X /Y
must also stabilize the closed loop. ■

Remark For a stable system, a possible choice is always Xc = 0 andYc = 1. It is reasonable to assume knowledge of
such a stabilizing controller for unstable systems to collect input-output trajectories for identification.

4.3 | Iterative algorithm and Asymptotic behavior

Similar to [17], an inner approximation of the original problem around some Xc ,Yc was performed to obtain a convex
formulation. We propose employing an iterative scheme to converge to a local minimum, summarized in Algorithm 1.

Data:
{
P̂ , α , {ω1, . . . ,ωnf }, V , W , Xc , Yc , ε

}
Set J̃pred ←∞
while true do

1) Compute the control disks pi k , ri k , pi k , si k as a function of the controller parameters.
2) Compute Φck for every frequency interval Ωk .
3) Solve the following convex optimization problem:

min
X ,Y ,σk ,ℓk ,uk

J̃p (σk )

subject to, for every frequency interval Ωk :

u2k ≤ σk ℓk , ℓk ≥ 0

∥ |qi k | + si k ∥ ≤ uk [i ∈ {1, 2, 3}

ℓk ≤ 2ℜ{pi kΦ∗ck } − 2ri k |Φck | − |Φck |2 [i ∈ {1, 2, 3}

if J̃pred − J̃p (σk ) ≤ ε then
return K = X /Y , J̃p (σk )

else
4) Set Xc ← X ,Yc ←Y , J̃pred ← J̃p (σk )

end
end

Algorithm 1: Iterative algorithm returning a controller K = X /Y with closed-loop performance at least J̃p (σk )

F IGURE 2 Multiplying by Φ∗c , where Φc , 0 is the closest point to the origin inside Lc , rotates (and scales) the
set into the right-half plane
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With the choice of Φc presented in (43), X = Xc ,Y =Yc is by construction a solution to the optimization problem
in Algorithm 1. It should be noted that X = Xc ,Y = Yc is always possible after iteration 1, due to step 4. Since the
inner-approximation was chosen as Υ ≤ Φ∗Φ, we have

ℓk ≤ min
z ∈Lc

2ℜ{zΦ∗c } − |Φc |2 ≤ min
z ∈Lc

|z |2 . (45)

The z minimizing the right-most hand-side of the equation in (45) is none else than the recommended Φc in (43)
at the next iteration, as L corresponds to Lc of the next iteration due to step 4. Simple substitution shows that
{Xc ,Yc ,σk , ℓk , uk } is a possible solution to the optimization problem at the next iteration, and therefore the stage
cost J̃p (σk ) is not increasing. This means Algorithm 1 will converge monotonically.

This local minimum can be detected by computing the difference in stage cost J̃pred− J̃p (σk ) between the current
iteration and the last iteration. If this difference is smaller than a chosen value ε, e.g., around the numerical solver
precision or user-defined tolerance, it is safe to assume that the algorithm converged to a local minimum or saddle
point.

Remark Constraints will be automatically satisfied for frequencies [−ωk+1, −ωk ] if they are satisfied for [ωk , ωk+1 ].
It is therefore sufficient to consider only the half-spectrum, corresponding to ω1 = 0, ωnf = π/Ts

Remark Different steps have been taken to over-bound the behavior between two consecutive frequencies. When
the spectrum is sampled densely, i.e., lim |ωk+1 − ωk | → 0 [k (and α → 0), it is straightforward to show that the origi-
nal formulation (13) is retrieved: p0 = p1 = p2 = Φ, q0 = q1 = q2 =VY +WX and the interpolations errors si = 0, ri = 0.
In this case, Φc also corresponds to the choice proposed in [17]. Simple back-substitution results in ∥VY +WX ∥2 ≤ γΥ,
Υ ≥ 0, which is none other than the original problem considering the whole frequency spectrum.

Remark One can naturally increase the number of frequency points to reduce the conservatism introduced by over-
bounding the various sets. Asymptotically, doubling the number of frequency points reduces by a factor of four the
magnitude of the errors ri , si . The optimization problem is formulated as a SOCP, and can be solved very efficiently,
even for a large number of frequencies.

Remark It is shown in [26] that sufficiently increasing the controller orderM will result in a controller arbitrarily close
to the global optimum of (11). This is also the case for Alg. 1, as long as the frequency spectrum is sampled sufficiently
densely.

5 | NUMERICAL EXAMPLES

Three examples are used to demonstrate the usefulness of the proposed approach. First, a practical example is given
using a real servomechanism. The second example showcases a situation where [17] fails even when considering a
reasonable number of frequencies, but the proposed method still yields a performant controller. Despite employing
several (over-)bounding steps, the final example illustrates that the suggested approach outperformed a comparable
method.

5.1 | Servomechanism example

The proposed approach is demonstrated in a real experimental setup. The setup consists of a Servomechanism, where
torque can be applied using aDCmotor. A pseudo-randombinary signal is applied to the system’s input and 10 periods
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each of lengthN = 991 are recorded. The signal is generated using a quadratic residue code, see [19]. The input-output
dataset is split into 10 different sets. Part of the input-output data is shown in Fig. 3.

F IGURE 3 Excerpt input-output experimental data.

For each period p , the FRF P̂i (j ωk ) can be computed at frequencies ωk = 2πk /N , k = 0, . . . ,N − 1 using the FFT
algorithm. The model G is then computed as

P (j ωk ) = E[P̂i (j ωk ) ],

where E the expected value, and associated variance

Var[P (j ωk ) ] = E
[ (
P̂i (j ωk ) − E[P̂i (j ωk ) ]

)2]
.

To be on the safe side, the identification error α = α (j ωk ) for the interval ωk ≤ ω < ωk+1 is taken as three times
standard deviation:

α (j ω ) = 3 · max
{√

Var[P̂ (j ωk ) ],
√
Var[P̂ (j ωk+1 ) ]

}
Since periodic data is used as input, information of P̂ (e j ω ) outside frequencies ωk is not available. Nevertheless, given
the impulse response g of P such that

|gk | ≤ Cρk , k ≥ 0,

it is shown in [22] that the error between the linearly interpolated frequency response and the underlying process is
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bounded by

β ≤ 1

2

Cρ (ρ + 1)
(1 − ρ )3

(
ωk+1 − ωk

2Ts

)2
.

Applying an impulse directly to the system’s input and measuring the output for obtaining the impulse response
is a potential approach. However, this can result in saturation and should be avoided. Instead, we propose to apply a
step-reference signal to the system and record the output y . An estimate for the impulse response gk is then given
by

gk = (yk − yk −1 )/d ,

where d is the amplitude of the step reference. An exponential envelope for the impulse response can be derived and
is illustrated in Fig. 4. The coefficients C = 4.413, ρ = 0.980 are obtained by minimizing the following optimization

F IGURE 4 Best fit of envelope bounding the impulse response.

problem:

argmin
C , ρ

Cρ (ρ + 1)/(1 − ρ )3

subject to:

|gk | ≤ Cρk [k ≥ 0

C ≥ 0, 0 ≤ ρ < 1.

The design objective is to minimize the two-norm of

Tzw =


[

1/(z − 0.9) · S
5 · U

]
2

,
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and corresponds to the generalized system

G (j ω ) =


1/(z − 0.9) −P/(z − 0.9)

0 5

1 −P

 .
The associated vectorsV ,W are

V =

[
1/(z − 0.9)

0

]
,W =

[
0

5

]
.

A controller K = X /Y parametrized using the pulse basis Rm = z −m :

X =
M∑
m=0

xmz
−m ,Y =

M∑
m=0

xmz
−m

is used to close the loop. To ensure zero steady-state error for a step signal, an integrator is added to the controller
by adding a constraintY (z = 1) = 0 to the optimization problem. The order of the controller is taken as M = 10, and,
since the system is open-loop stable, Xc = 0,Yc = 1 is used.

The problem is solved at the frequencies obtained from the FFT. Closed-loop tracking performance is shown in
Fig. 5, where the reference is a square waveform, along with the closed-loop response resulting from the synthesis
method proposed in [17] only considering the nominal model P̂ .

F IGURE 5 Tracking of a square waveform on the actual system.

5.2 | Parametric example

In the previous example, the closed loop using the formulation proposed in [17] results in a stable closed loop. To
illustrate the benefits over the original formulation, a system P̂ whose frequency response is shown in Fig. 6 is taken
as an example, which has one unstable pole, and associated uncertainty α = 0.25. For reproducibility, the poles p
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zeros z and gain g of this transfer function are listed below:

z = [0.12 + 1.05j , 0.12 − 1.05j , 0.81, 0.33, −0.94 + 0.45j , −0.94 − 0.45j , −0.32 + 0.04j , −0.32 − 0.04j , −0.88, −0.8]

p = [0.08 + 0.850j , 0.08 − 0.85j , 0.61, 0.4, −0.79 + 0.49j , −0.79 − 0.49j , −0.30, −0.4, −0.84, −0.82, 1.4], g = 1

Possible realizations of the transfer function for P = P̂ + α∆, where ∆ here represents a stable system with
∥∆∥∞ ≤ 1, are also shown in Fig. 6. The frequency grid is chosen as nf linearly spaced points between 0 and π (Ts = 1).

F IGURE 6 Magnitude response of nominal model P̂ and possible values of P ∈ P̂ + ∆α .

Since the system is open-loop unstable, an initial controller is required. This controller is chosen as Xc = 0.75,Yc = 1.
The synthesis objective is to minimize the closed-loop norm withV = 0.1/(z − 0.9)3,W = 0. It should be noted

that this example is chosen to highlight situations where [17] performs particularly poorly. Only the sensitivity S is
minimized, and the weighing filterV has a large magnitude at low frequencies.

Since the system has one unstable pole, due to the waterbed effect, the sensitivity S will have a large magnitude
at high frequencies, in this case, peaks around 40dB, resulting in instability when the inter-frequency behavior is not
accounted for. First, a comparison is made when only using the nominal model, that is, α = 0 since [17] cannot directly
handle robust performance. The stability of the closed-loop after tuning is reported in Table 1 using a varying number
of frequencies and the controller order M = 4. In Table 1, one additional frequency point is added to the frequency
set for nf = 20 to satisfy 0 < Hull(Lc ) .

TABLE 1 Closed-loop stability with M = 4 after tuning using a different number of frequency points, with α = 0.
S = stable, U = unstable

nf 20(+1) 50 100 250 500 1000

Proposed S S S S S S

[17] U U U U U S

The convex optimization problem in Alg. 1 is solved using the numerical solver Clarabel [27]. As can be observed,
a significant advantage is that stability is guaranteed regardless of the number of frequencies.

Using the same example, we show that conservatism due to the different steps vanishes quickly. Synthesis per-
formance with controller order M = 10 and α = 0.25 is reported in Table 2. To compute the norm of the closed-loop,
200 realizations of ∆ are taken, and ∥Tzw ∥∞ corresponds to the worst-case H∞ norm. As can be seen, the value of
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J̃∞ (σk ) is always higher than the worst-case norm and correctly serves as a certificate for robust performance. The
proposed method is solved for increasing numbers of frequency points nf

TABLE 2 Closed-loop stability with controller order M = 10 after tuning using a different number of frequency
points, with α = 0.25.

nf 20(+1) 50 100 250 500 1000√
J̃∞ (σk ) 24.55 2.656 1.435 1.166 1.117 1.095

∥Tzw ∥∞ 3.834 1.923 1.273 1.132 1.105 1.092

The closed-loop singular values forTzw =V /(1 + (P̂ + ∆α )K ) are shown in Fig. 7. As can be seen, the computed
upper bound is above all possible realizations ofTzw .

F IGURE 7 Singular value of the closed-loop

5.3 | Conservatism due to overbounding

To showcase that, even though multiple overbounding steps have been taken, the conservatism introduced is small
compared to other approaches, the proposedmethod is compared to [28] using their proposed example. The objective
is to match the open loop to a reference loop Ld , and is formulated as minimizing

nf∑
k=1

��P̂ (j ωk )K (x , j ωk ) − Ld (j ωk )
��2 , (46)

whereK (x , z ) = x0+x1z −1 using nf linearly spaced frequenciesωk between 0 and theNyquist frequency. Additionally,
a modulus margin of Mm = 0.5 must be guaranteed.

In [28], only the numerator can be tuned. For the sake of comparison, this choice is also made here and achieved
using

X = x1 + x2z −1, Y = 1.

In this case, the modeling error is not considered (α = 0), and the interpolation errors β are computed numerically.
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The modulus margin condition is equivalent to

∥MmS ∥∞ ≤ 1,

where S the closed-loop sensitivity, and can be enforced using the proposed formulation by adding a constraint
J̃∞ (σk ) ≤ 1 and usingV = 1,W = 0 in the optimization problem. The objective (46) is minimized, instead of J̃∞ (σk ) .
This problem is solved for increasing values of nf , and results are reported in Tab. 3. As can be seen, the proposed
formulation can handle a much lower number of frequency points without adding significant conservatism.

TABLE 3 Controller parameters obtained after tuning

[28] With guarantees [28] No guarantees Proposed

nf x1 x2 x1 x2 x1 x2

50 Infeasible 12.02 −10.08 12.02 −10.09

102 Infeasible 12.02 −10.09 12.02 −10.09

103 11.03 −10.99 12.01 −10.09 12.01 −10.08

104 11.39 −10.98 12.01 −10.09 12.01 −10.08

6 | CONCLUSION

We have presented an optimization-based method for designing structured controllers minimizing the H2 or H∞
norm of the closed-loop. The proposed approach is specifically designed to utilize a limited number of frequency
points during synthesis, which distinguishes it from the bulk of other frequency-function-based methods. With care-
ful overbounding, stability, and robust performance are guaranteed, even when considering only a finite number of
frequencies and uncertainty in the dynamics of the process. Three examples are presented to demonstrate the appli-
cability of the proposed method and highlight its advantages compared to similar methods.
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Appendices

A | Derivation of bounding sets

The derivations of the sets L and Q are shown in this appendix for completeness. The focus is on first deriving a set
B such that Φ ∈ B which can be factored as

B = (1 − λ )2 (p0 + ∆r0 ) + 2(1 − λ )λ (p1 + ∆r1 ) + λ2 (p2 + ∆r2 ),

Using as starting point (29):

Φ ∈ Y + P X + ∆ · (δY + |P |δX + |X |δP̂ + δX δP̂ )

the derivation will be split in two parts, between factors being multiplied by ∆, and factors not being multiplied by ∆.
ExpandingY (λ ) + P (λ )X (λ ) results in

(1 − λ )Yk + λYk+1 + ( (1 − λ ) P̂k + λ P̂k+1 ) ( (1 − λ ) Xk + λ Xk+1 ),

and can be factored as

(1 − λ )2 · (Yk + P̂kXk ) + 2(1 − λ )λ · 0.5(Yk +Yk+1 + P̂kXk+1 + P̂k+1Xk ) + λ2 · (Yk+1 + P̂k+1Xk+1 )

and from this last expression, coefficients p0, p1, p2 can be read off. Similarly, it is desired to factor the variable λ in

δY + |P |δX + |X |δP̂ + δX δP̂ (47)

which is multiplied by the uncertainty ∆. This is not possible due to the absolute value in |X | and |P |. Using the
inequality,

|X (λ ) | ≤ (1 − λ ) |Xk | + λ |Xk+1 |

as 0 ≤ λ ≤ 1, and similarly for |P | , (47) can be bounded by

δY + |P |δX + |X |δP̂ + δX δP̂ ≤ δY + ( (1 − λ ) |P̂k | + λ |P̂k+1 | )δX + ( (1 − λ ) |Xk | + λ |Xk+1 | )δP̂ + δX δP̂ .

The right-hand side of the last expression can be rearranged to result in

(1 − λ )2 · (δY + δX δP̂ + |Xk |δP̂ + |P̂k |δX )

+ 2(1 − λ )λ · 0.5(2δY + 2δX δP̂ + δP̂ ( |Xk | + |Xk+1 | ) + δX ( |P̂k | + |P̂k+1 | ) )

+ λ2 · (δY + δX δP̂ + δX |P̂k+1 | + δP̂ |Xk+1 | )

from which coefficients r0, r1, r2 can be read off. The set B is not convex, but taking the convex hull of the control
disks pi + ∆ri results in the desired set L .
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A similar derivation should be carried out to find a set Q such that

VY +WX ∈ Q.

First, it is desired to find a Bézier curve such that

B ′ = (1 − λ )2 · (q0 + ∆s0 ) + 2(1 − λ )λ · (q1 + ∆s1 ) + λ2 · (q2 + ∆s2 )

andVY +WX ∈ B ′. From definitions (20)–(23), a candidate set is

(V + ∆δV ) (Y + ∆δY ) + (W + ∆δW ) (X + ∆δX ),

and can be rearranged using (28) as

V Y +W X + ∆(δV |Y | + |V |δY + δV δY ) + ∆(δW |X | + |W |δX + δW δX ) . (48)

ExpandingV (λ )Y (λ ) +W (λ ) X (λ ) results in

( (1 − λ )Vk + λVk+1 ) ( (1 − λ )Yk + λYk+1 ) + ( (1 − λ )Wk + λWk+1 ) ( (1 − λ ) Xk + λ Xk+1 )

and can be factored as

(1 − λ )2 · (VkYk +WkXk ) + 2(1 − λ )λ · 0.5(VkYk+1 +Vk+1Yk +WkXk+1 +Wk+1Xk ) + λ2 · (Vk+1Yk+1 +Wk+1Xk+1 )

and q0, q1, q2 can be read of this last expression. Similarly, the factors on the first line of (48) being multiplied by ∆

can be bounded by

δV |Y | + |V |δY + δV δY ⪯ δV ( (1 − λ ) |Yk | + λ |Yk+1 | ) + ( (1 − λ ) |Vk | + λ |Vk+1 | )δY + δV δY ,

where ⪯ indicates the element-wise inequality. The right-hand side can then be factored as

(1 − λ )2 · (δV δY + δV |Yk | + δY |Vk | )

+ 2(1 − λ )λ · 0.5(2δV δY + δV |Yk | + δY |Vk | + δV |Yk+1 | + δY |Vk+1 | )

+ λ2 · (δV δY + δV |Yk+1 | + δY |Vk+1 | ) . (49)

Finally, the factors on the second line of (48) begin multiplied by ∆ can be bounded by

δW |X | + |W |δX + δW δX ⪯ δW ( (1 − λ ) |Xk | + λ |Xk+1 | ) + ( (1 − λ ) |Wk | + λ |Wk+1 | )δX + δW δX .
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The right-hand side of this last expression can be factored as

(1 − λ )2 · (δW δX + δW |Xk | + δX |Wk | )

+ 2(1 − λ )λ · 0.5(2δW δX + δW |Xk | + δX |Wk | + δW |Xk+1 | + δX |Wk+1 | )

+ λ2 · (δW δX + δW |Xk+1 | + δX |Wk+1 | ), (50)

and s0, s1, s2 can be identified from (49) and (50). The set B ′ is not convex, but taking the convex hull of the control
disks qi + ∆si results in the desired set Q.

B | Winding numbers

For a function in polar coordinates f = r (t )e j φ (t ) , the argument not restricted to the interval [−π, π ) of this function
is denoted arg{f (t ) } = φ (t ) . Given two regular closed-curves

C1 : [0, 1] → C/{0}, C2 : [0, 1] → C/{0}

with respective polar representation

(r1,φ1 ) : [0, 1] → R+ × R

(r2,φ2 ) : [0, 1] → R+ × R

such that r1, r2,φ1,φ2 are continuous functions on the unit interval, then

Lemma 2 if

|φ1 (t ) − φ2 (t ) | ̸≡ π mod 2π, [t ∈ [0, 1] (51)

thenwno{C1} = wno{C2}.

Proof: Without any loss of generality, assume that φ1 (0) = φ2 (0) = 0, then

|φ1 (t ) − φ2 (t ) | < π

sinceφ1 andφ2 continuous functions, and (51) prevent this difference from taking values equal to, and therefore larger
than, π . The winding number (wno) of the two curves satisfies

wno{C1} =
1

2π
arg{C1 (1) } =

1

2π
φ1 (1)

wno{C2} =
1

2π
arg{C2 (1) } =

1

2π
φ2 (1)
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and the difference can be bounded by

| wno{C1} − wno{C2} | =
1

2π
|φ1 (1) − φ2 (1) | <

π

2π

or equivalently

| wno{C1} − wno{C2} | < 0.5.

Since the winding number is an integer and, similarly, the difference between two winding numbers is also an integer,
the only integer strictly smaller (in magnitude) than 0.5 is 0. Therefore, both curves have the same winding number,
which concludes this proof. ■
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