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Abstract

We obtain a new formula for the Loewner energy of Jordan curves on the
sphere, which is a Kähler potential for the essentially unique Kähler metric on the
Weil–Petersson universal Teichmüller space, as the renormalised energy of moving
frames on the two domains of the sphere delimited by the given curve.
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1. Introduction

1.1. Background on Weil–Petersson Quasicircles

In [43,58], the second author and S. Rohde introduced the Möbius-invariant
Loewner energy to measure the roundness of Jordan curves on the Riemann sphere
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C ∪ {∞} using the Loewner transform [35]. The original motivation comes from
the probabilistic theory of Schramm–Loewner evolutions, see, e.g., [60] for an
overview. The second author proved in [59] that the Loewner energy is proportional
to the universal Liouville action introduced by L. A. Takhtajan and L.-P. Teo [53].
In particular, the class of finite energy curves corresponds exactly to the Weil–
Petersson class of quasicircles which has already been extensively studied by both
physicists and mathematicians since the eighties, see, e.g., [6,10,18,22,24,30,39,
40,45,48,49,53,55,56,61], and is still an active research area. See the introduction
of [6] (see also the companion papers [7,8] for more on this topic) for a summary
and a list of equivalent definitions of very different nature.

In this article, we sometimes view Jordan curves as curves on S2 ⊂ R
3 and

give new characterisations of the Loewner energy in terms of the moving frames
on S2. Note that in this article, S2 refers to the sphere of radius 1 centred at the
origin in R

3 equipped with the induced round metric g0 from its embedding into
R

3. Therefore, S2 is isometric to ̂C = C ∪ {∞} endowed with the metric

g
̂C

= 4|dz|2
(1 + |z|2)2

by the stereographic projection. To distinguish the two setups, we will let γ denote
a Jordan curve in ̂C and let � denote a Jordan curve in S2. Let us first list a few
equivalent definitions of Weil–Petersson quasicircles that are relevant to this work.

Theorem 1.1. (Cui, [18], Tahktajan-Teo, [53], Shen, [49], Bishop, [6]) Let γ ⊂
C be a Jordan curve, � be the bounded connected component of C \ γ , and let
f : D → � and g : C \D → C \� be biholomorphic maps such that g(∞) = ∞.
The following conditions are equivalent:

(1) There exists a quasiconformal extension of g to C such that the Beltrami coef-

ficient μ = ∂zg

∂zg
: D → D of g|D satisfies

∫

D

|μ(z)|2 |dz|2
(1 − |z|2)2 < ∞.

(2)
∫

D

|∇ log | f ′(z)||2|dz|2 =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 < ∞.

(3)
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

∣

∣

∣

∣

2

|dz|2 < ∞.

(4) The (conformal) welding function ϕ = g−1 ◦ f |S1 satisfies log ϕ′ belongs to
the Sobolev space H1/2(S1).

(5) The curve γ is chord-arc and the unit tangent τ : γ → S1 belongs to H1/2(γ ).
(6) Every minimal surface � ⊂ H

3 	 C × R
∗+ with asymptotic boundary γ has

finite renormalised area, i.e.,

RA(�) = lim
ε→0

(Area(�ε) − Length(∂�ε))

= −2πχ(�) −
∫

�

| Å|2dvol� > −∞, (1.1)

where for all ε > 0, �ε = � ∩ {(z, t) : t > ε} and ∂�ε = � ∩ {(z, t) : t = ε}.
If γ satisfies any of those conditions, γ is called a Weil–Petersson quasicircle.
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The equivalence of (1) and (2) are due to G. Cui, and independently to Takhtajan
and Teo who proved the equivalences (1), (2), (3). In (4), the continuous extension
of f, g to S1 is well-defined by a classical theorem of Carathéodory [13]. The
equivalence between (1) and (4) is proved by Y. Shen. The second condition is
perhaps the simplest one since it corresponds to the condition log | f ′| ∈ W 1,2(D),
the Sobolev space of functions with squared-integrable weak derivatives.

For (5), we recall that a Jordan curve is chord-arc if there exists K < ∞ such
that for all x, y ∈ γ , we have �(x, y) ≤ K |x − y|, where �(x, y) is the length of
the shortest arc joining x to y. We mention that Weil–Petersson quasicircles are not
only chord-arc but even asymptotically smooth, namely, the ratio �(x, y)/|x − y|
tends to 1 as x tends to y. These curves are not necessarily C1, for they allow certain
types of infinite spirals; see Section 6.1 for an explicit construction of such spirals
(also [6,43]). Recall that for any Jordan chord-arc curve γ , a function u : γ → C

belongs to the Sobolev space H1/2(γ ) if and only if
∫

γ

∫

γ

∣

∣

∣

∣

u(z) − u(w)

z − w

∣

∣

∣

∣

2

|dz||dw| < ∞, (1.2)

where |dz| is the arc-length measure.
The equivalence between (1) and (5) was proven by Y. Shen and L. Wu ([52];

see also [28,49–51]), and also by C. Bishop [6]. The last characterisation (6) due to
Bishop [6] using the notion of renormalised area was first investigated for Willmore
surfaces by S. Alexakis and R. Mazzeo [1,2] which has strong motivations arising
from string theory [27]. The integral of the squared trace-free second fundamental
form Å in (6) is the Willmore energy of � which is of particular interest for being
conformally invariant. Amongst the important previous contribution that inspired
this work, we should mention Epstein’s work [20,21].

Not only can we characterise this class of curves qualitatively, as listed above,
but there is an important quantity associated with each element of the class. Indeed,
after appropriate normalisation, the class of Weil–Petersson quasicircles can be
identified with the Weil–Petersson universal Teichmüller space T0(1) via conformal
welding. Takhtajan and Teo [53] showed that T0(1) carries an essentially unique
homogeneous Kähler metric and introduced the universal Liouville action S1. They
showed that S1 is a Kähler potential on T0(1) which is of critical importance for the
Kähler geometry. We take an analytic instead of a Teichmüller theoretic viewpoint,
so we will consider S1 as defined for Weil–Petersson quasicircles instead of their
welding functions. Explicitly, for a Weil–Petersson quasicircle γ ,

S1(γ ) =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 +
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

∣

∣

∣

∣

2

|dz|2

+ 4π log | f ′(0)| − 4π log |g′(∞)|. (1.3)

Theorem 1.2. (Y. Wang, [59]) A Jordan curve γ has finite Loewner energy I L(γ )

if and only if γ is a Weil–Petersson quasicircle. Furthermore, we have

I L(γ ) = 1

π
S1(γ ). (1.4)
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We will therefore use interchangeably the terms “Jordan curve of finite Loewner
energy”; “Weil–Petersson quasicircle”; or simply “Weil–Petersson curve”. As we
did not define explicitly the Loewner energy I L(γ ), readers may consider (1.4) as
its definition. It may not be obvious from the expression of S1 that it is invariant
under Möbius transformations, such as the inversion i : z �→ 1/z, however, it would
follow directly from the definition using Loewner transform in [43]. Provided that
γ separates 0 from ∞, we may choose the biholomorphic functions f and g as
in Theorem 1.1 and assume further that f (0) = 0. Applying the invariance of the
Loewner energy under i, we get

I L(γ ) = I L(i(γ ))

= 1

π

∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

+ 2

z

∣

∣

∣

∣

2

|dz|2

+ 1

π

∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

+ 2

z

∣

∣

∣

∣

2

|dz|2 + 4 log | f ′(0)| − 4 log |g′(∞)|.
(1.5)

Before closing this first introductory section on the Loewner energy, let us mention
two recent works of the second author [12,14]. In the first article in collaboration
with M. Carfagnini, the authors show that up to a universal constant involving
the central charge of SLEκ , for all κ ≤ 4, the Loewner energy is the Onsager–
Machlup functional for the SLEκ loop measure on the space of simple closed
curves. In the second article in collaboration with M. Bridgeman, K. Bromberg,
and F. Vargas-Pallete, there are two fundamental results. The first one asserts that
for any Weil–Petersson quasicircle, the signed volume between the two Epstein
surfaces of the hyperbolic space H

3 is finite. The second theorem shows a new
identity for the Loewner energy in terms of a renormalised volume involving this
sign volume and the integral of the mean curvature if γ is a C5,α regular curve. In
general, the Loewner energy bounds from above this renormalised volume. Such
a result is reminiscent of the previous equivalence shown by C. Bishop with the
renormalised area of minimal surfaces of H

3, but it has the advantage of giving a
quantitative inequality.

1.2. Moving Frames and the Ginzburg–Landau Equations

Moving frames, first introduced by Darboux in the late 19th century to study
curves and surfaces, were later generalised by Élie Cartan and permit to reformulate
astutely a wide class of differential-geometric problems. One now classical such
use of this theory is found in the work of F. Hélein on harmonic maps [29], where
the moving frames pave the way towards new regularity results. We give more
details about this theory in Section 2.

In [34], P. Laurain and R. Petrides suggest a new approach to relate the Loewner
energy to the renormalised energy of moving frames using the Ginzburg–Landau
energy in a minimal regularity setting (which is of independent interest). Although
the Ginzburg–Landau energy is normally used to construct harmonic maps with
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values into S1 under topological constraints where no smooth solutions exist [5], it
should be seen more generally as a way to construct (singular) moving frames on
surfaces. Through this approach, one may hope to link quantitatively the Loewner
energy and the Willmore energy that can also be written in terms of moving frames
[37].

Let � ⊂ C be a simply connected domain, and γ = ∂�. In [34], it was
shown that the Bethuel–Brezis–Hélein [5] analysis carries on for general chord-arc
curves and H1/2 boundary data. Using this delicate analysis [34], they obtained the
following result, which is the most relevant to our present article:

Theorem 1.3. (Laurain–Petrides, [34], Theorem 0.2, Theorem 0.3) Let � ⊂ C

be a bounded simply connected domain such that γ = ∂� is a Weil–Petersson
quasicircle. Then, there exists a harmonic map �u : � \ {p} → S1 with boundary
data τ : � → S1 which is the unit tangent vector of ∂� = �. Let �v = −i �u
and ω = 〈�u, d �v 〉, then there exists a harmonic function μ : � → R such that
ω = ∗ d (G� + μ), and a conformal map f : D → � such that f (0) = p, and

⎧

⎨

⎩

1

r
∂θ f = eμ◦ f �u ◦ f

∂r f = eμ◦ f �v ◦ f.
(1.6)

Furthermore, we have

∫

�

|ω − ∗ dG�|2dx =
∫

�

|∇μ|2dx =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2, (1.7)

where G� is a Green’s function with Dirichlet boundary condition on ∂�.

The other main result of [34] is to identify the renormalised energy in the sense
of Bethuel–Brezis–Hélein as an explicit term involving (1.7).

Remark 1.4. The harmonic function μ is explicitly given by μ = log |∂r f |◦ f −1 =
log

∣

∣
1
r ∂θ f

∣

∣◦ f −1 = log | f ′|◦ f −1. The last identities follow from the conformality
of f . We note that in [34], the point p is a special point such that any biholomorphic
map f with f (0) = p maximizes | f ′(0)| amongst all biholomorphic maps D → �.
This property is equivalent to the fact that limits of minimisers of the Ginzburg–
Landau functional minimise the Bethuel–Brezis–Hélein renormalised energy; refer
to Section 2.2 for more details.

Remark 1.5. In the statement of this theorem, d stands for the standard exterior
differential (for the flat metric), while ∗ is the Hodge operator [33, Section 3.3 p.
131] acting on 1-forms.

We see that the frame energy (1.7) coincides with the first term in (1.3). To
obtain the second half of the Loewner energy involving

∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

∣

∣

∣

∣

2

|dz|2, (1.8)
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we cannot easily use the Ginzburg–Landau equation to construct the moving frames
since that would force us to work on the non-compact domain C \ �. Using the
inversion i will not suffice either. If we choose the biholomorphic map g̃ : D →
i(C \ �) so that g̃ = i ◦ g ◦ i, we have

∫

D

∣

∣

∣

∣

g̃′′(z)
g̃′(z)

∣

∣

∣

∣

2

|dz|2 =
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

+ 2

z

∣

∣

∣

∣

2

|dz|2,

which is in general different from (1.8). To overcome this technicality, we work
directly on S2 to obtain a formula of the Loewner energy in terms of moving frames.

1.3. Main Results

Theorem A. Let � ⊂ S2 ⊂ R
3 be a Weil–Petersson quasicircle, �1,�2 ⊂ S2 be

the two disjoint open connected components of S2 \ �. Fix some j = 1, 2. Then,
for any p j ∈ � j , there exists harmonic moving frames (�u j , �v j ) : � j \ {

p j
} →

U� j × U� j such that the Cartan form ω j = 〈�u j , d �v j 〉 admits the decomposition

ω j = ∗ d
(

G� j + μ j
)

, (1.9)

where G� j : � j \ {

p j
} → R is the Green’s function of the Laplacian �g0 on � j

with Dirichlet boundary condition, and μ j ∈ C∞(� j ) satisfies
{ −�g0μ j = 1 in � j

∂νμ j = kg0 − ∂νG� j on ∂� j ,
(1.10)

where kg0 is the geodesic curvature on � = ∂� j . Define the functional E (that we
call the renormalised energy associated to the frames (�u1, �v1) and (�u2, �v2)) by

E (�) =
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
dvolg0

+ 2
∫

�1

G�1 Kg0 dvolg0 + 2
∫

�2

G�2 Kg0 dvolg0 + 4π, (1.11)

where Kg0 = 1 is the Gauss curvature of the metric g0. Then there exists conformal
maps f1 : D → �1 and (Fig. 1) f2 : D → �2 such that f1(0) = p1, f2(0) = p2
and

I L(�) = 1

π
E (�) + 4 log |∇ f1(0)| + 4 log |∇ f2(0)| − 12 log(2) = 1

π
E0(�).

(1.12)

Notice that in the theorem, we define the functional

E0(�) = E (�) + 4π log |∇ f1(0)| + 4π log |∇ f2(0)| − 12π log(2)

=
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
dvolg0

+ 2
∫

�1

G�1 Kg0 dvolg0 + 2
∫

�2

G�2 Kg0 dvolg0

+ 4π log |∇ f1(0)| + 4π log |∇ f2(0)| + 4π − 12π log(2); (1.13)
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Fig. 1. Harmonic moving frames on the sphere associated to a Weil–Petersson quasicircle

that is, the quantity that appears in the Ginzburg–Landau type renormalised energy.
Refer to Section 2.2 for more details.

Remark 1.10. (1) As previously, d is the exterior derivative on S2 and ∗ is the Hodge
operator associated to the round metric g0 on S2. For more details on d, refer
to Section 2.1.

(2) In the theorem above, we wrote U� j ( j = 1, 2) for the unit tangent bundle.
The function μ j , explicitly given by

μ j = 1

2
log

( |∇ f j |2
2

)

= log |∇ f j | − 1

2
log(2), (1.14)

correspond to the conformal parameter of the conformal maps f1, f2 : D →
S2 ⊂ R

3.
(3) The constant term 4π in the definition of E is arranged so that E (S1) = 0 (see

Remark 3.8). Furthermore, the name renormalised energy is justified by the
following identity

E (�) =
∫

�1

(

|d �u1|2g0
+ |d �v1|2g0

− 2|dG�1 |2g0

)

dvolg0

+
∫

�2

(

|d �u2|2g0
+ |d �v2|2g0

− 2|dG�2 |2g0

)

dvolg0 , (1.15)

where no constant term is involved.
(4) The solution (1.10) to the Dirichlet problem is unique, and so are the moving

frames once the singularities (p1, p2) ∈ �1 × �2 are fixed. See Theorem 4.3
and 4.6. Notice that the geodesic curvature is understood in the distributional
sense here (see Section 6.1 from the appendix for more details). For a definition
of harmonic vector fields, refer to Lemma 4.1.

This theorem corresponds to Theorem 3.6 in the article for smooth curves and
to Theorem 5.5 for general Weil–Petersson quasicircles. The general case follows
essentially from the following result which can also be viewed as a restatement of
Theorem A without any mention of moving frames:
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Theorem B. (See Theorem 5.5) Let � ⊂ S2 be a Weil–Petersson quasicircle and
�1,�2 ⊂ S2 \ � be the two connected components of S2 \ �. For all conformal
maps f1 : D → �1 and f2 : D → �2, we have

I L(�) = 1

π

2
∑

j=1

( ∫

D

|∇ log |∇ f j ||2|dz|2 +
∫

D

log |z||∇ f j |2|dz|2

+ Area(� j ) + 4π log |∇ f j (0)|
)

− 12 log(2) (1.16)

2. Technical Background

Due to the variety of notions used in the article, we review some basic results
related to the geometry of surfaces, harmonic maps, and moving frames.

2.1. Zeta-Regularised Determinant of Elliptic Operators

Since the notion plays a central role in the proof of the main theorem, we
remind basic notions related to determinants of the Laplacian, that would hold
true for more general elliptic operators (provided that the spectrum is discrete and
satisfies a Weyl Law). Let (M2, g) be a compact Riemannian surface with (smooth)
boundary. Then, the Laplacian �g is locally defined by

�g = 1√
det(g)

2
∑

i, j=1

∂xi

(
√

det(g)∂x j ( · )
)

,

if gi, j = g(∂xi , ∂x j ) are the coefficients of the metric, det(g) = g1,1g2,2 − g2
1,2,

and

gi, j = (−1)i+ j gi+1, j+1

det(g)
(2.1)

are the coefficient of the inverse matrix of
{

gi, j
}

1≤i, j≤2 ∈ GL2(R) (notice that we

used Z2 indices in formula (2.1)). If dvolg = √
det(g) dx1 ∧ dx2 is the associated

volume form and 〈 · , · 〉 = 〈 · , · 〉g is the scalar product associated to g, we define

L2(M2, dvolg) =
{

u : M2 → R,

∫

M2
|u|2dvolg < ∞

}

,

and the Dirichlet energy is defined for all smooth function u : M2 → R by

E(u) = 1

2

∫

M2
|du|2gdvolg,

where, locally, we have

|du|2g = 〈du, du〉g =
2

∑

i, j=1

gi, j∂xi u · ∂x j u. (2.2)
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On can show that E extends to the Sobolev space

W 1,2(M2) = D ′(M2) ∩
{

u : u ∈ L2(M2, dvolg), E(u) < ∞
}

,

that is a Hilbert space equipped with the norm

‖u‖W1,2(M2) =
√

1

2

∫

M2
|u|2dvolg + E(u, g) =

√

1

2

∫

M2

(

|du|2g + |u|2
)

dvolg.

Notice that W 1,2(M2) does not depend on g by smoothness of this metric (and
neither does L2(M2, dvolg)). Here D ′(M2) stands for the classical space of distri-
butions [46]. We also define

W 1,2
0 (M2) = C∞

c (M2)
W 1,2

as the closure of compactly supported smooth function in the W 1,2 topology, which
is the space of functions that “vanish on the boundary”—this informal interpretation
can be made precise thanks to trace theory. Integrating by parts, one easily checks
that for all u ∈ W 1,2(M2) and ϕ ∈ W 1,2

0 (M2), the following identity is verified:
∫

M2
〈du, dϕ〉gdvolg = −

∫

M2
ϕ �gu dvolg. (2.3)

We say that λ ∈ R is a (Dirichlet) eigenvalue of −�g if there exists an eigenfunction

u ∈ W 1,2
0 (M2) \ {0} such that

−�gu = λ u in M2. (2.4)

By standard elliptic regularity, any eigenfunction u belongs to C∞(M2). Due to
(2.3), we deduce that all eigenvalues are positive. Furthermore, the classical spectral
theorem shows that the set of eigenvalues is discrete, and if we write the eigenvalues
as an increasing sequence (counted with multiplicity)

{

λk = λk(M2, g)
}

k∈N, where

0 < λ1(M2, g) ≤ λ2(M2, g) ≤ · · · ≤ λk(M2, g) → ∞,

the Weyl law shows that

λk 	
k→∞

4π

Volg(M2)
k. (2.5)

In particular, we can define the Minakshisundaram–Pleijel [36]; see also [3, Chapitre
III, E.]) zeta function of �g as

ζ�g (s) =
∞

∑

k=1

1

λs
k

and (2.5) shows that ζ�g (s) is holomorphic on C ∩ {s : Re (s) > 1}. In fact, the
zeta function can be defined on any compact Riemannian manifold (N d , h) (with
or without boundary) by the same formula, and it converges if Re (s) > d/2. For
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example, in the case of the circle S1, the spectrum of the Laplacian is
{

n2
}

n∈N, and
since each non-zero eigenvalue has multiplicity 2 (correspond to the two eigen-
functions cos(n · ) and sin(n · )), we get

ζ∂2
θ
(s) = 2

∞
∑

n=1

1

(n2)s
= 2 ζ(2 s), (2.6)

and we recover the standard zeta function of Riemann. As the classical zeta function,
ζ�g extends meromorphically to C, and one can show that it is in fact holomorphic
in a neighbourhood of s = 0 [15,16]. This is where the regularity of the boundary
is needed to rewrite the zeta function using a Mellin transform and the precise
asymptotic behaviour of the heat kernel at t → 0. Therefore, one can define the
(zeta-regularised) determinant of the Laplacian �g as

detζ
(−�M2,g

) = exp
(

−ζ ′
�g

(0)
)

. (2.7)

Notice that for all s ∈ C such that Re (s) > 1

ζ ′
�g

(s) = −
∞

∑

k=1

log(λk)

λs
k

.

Therefore, we have the formal identity

detζ
(−�M2,g

) = exp
(

−ζ ′
�g

(0)
)

= exp

( ∞
∑

k=1

log (λk)

λs
k

)

|s=0

= exp

( ∞
∑

k=1

log (λk)

)

=
∞
∏

k=1

λk,

which is reminiscent of the Euler formula for the negative powers of the Riemann
zeta function, and justifies the name of determinant of the Laplacian. For example,
using the identity

ζ ′(0) = −1

2
log(2π),

we obtain by (2.6) the explicit value

detζ
(

−�S1,∂2
θ

)

= exp
(−4 ζ ′(0)

) = (2π)2.

In the case of S2, the positive eigenvalues are given by {λn = n(n + 1)}n≥1 and λn

has multiplicity 2n + 1 for all n ≥ 1, which gives the formula

ζ�S2 (s) =
∞

∑

n=1

2n + 1

(n(n + 1))s
,
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that is indeed valid for all s ∈ C such that Re (s) > 1. Let us mention that the values
of determinants on the round spheres have been explicitly computed [42,54]. For
example, we have

detζ
(−�S2

) = �2

(

1

2

) 8
3

2
1
9 e

1
2 = exp

(

1

2
− 4 ζ ′(−1)

)

= A4e
1
6 = 3.195311 · · · ,

where �2 is the Double Gamma function. Here, we used the identity

ζ ′(−1) = 1

12
− log(A),

where A = 1.282427 · · · is the Glaisher–Kinkelin constant [25,26].
Notice that if ϕ : (M2, g) → (N 2, h) is an isometry (ϕ∗h = g), we have

λk(M2, g) = λk(N 2, h) for all k ≥ 1, which implies in particular that

detζ
(−�M2,g

) = detζ
(−�N 2,h

)

. (2.8)

For example, if π : S2 \{N } → C is the stereographic projection and � ⊂ S2 \{N }
is an open subset with smooth boundary ∂� ⊂ S2 \ {N }, we have

detζ
(−��,g0

) = detζ
(−�π(�),g

̂C

)

, (2.9)

where g0 is the round metric on S2 ⊂ R
3 and

g
̂C

= 4|dz|2
(1 + |z|2)2 .

We will repeatedly use formulae (2.8) and (2.9) in Section 3 to transform determi-
nants on the sphere into determinants on planar domains for which computations
are easier. From the computational aspect, it appears that evaluating explicitly the
Loewner energy of a given curve is quite challenging, and the formula expressing
the Loewner energy as zeta-regularised determinants may indicate why. Let us con-
clude this section by listing important additional references, some of which were
useful to write this section [23,38,41,44,47].

2.2. Harmonic Maps and Renormalised Energy of Moving Frames

If (M2, g) is a smooth Riemannian surface and N n is a closed Riemannian
manifold (that we assume to be isometrically embedded into R

d ), we say that
u : M2 → N n is a weak harmonic map provided that it satisfies in the distributional
sense the equation

−�gu = Au(∇u,∇u), (2.10)

where A is the second fundamental form of the embedding ι : N n ↪→ R
d ([29,

Lemme (1.2.4)]), and ∇ is the Levi-Civita connection on N n . Explicitly, if x ∈ N n

there exists an open neighbourhoodU ⊂ N n of x and smooth maps (vn+1, · · · , vd) :
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U → (Rd)d−n such that for all y ∈ U , (vn+1(y), · · · , vd(y)) is an orthonormal
base of (Ty N n)⊥. Then, for all (X, Y ) ∈ Ty N n × Ty N n , we have

Ay(X, Y ) = (∇X Y )⊥ =
d

∑

i=n+1

〈X,∇Y vi 〉vi .

Therefore, (2.10) can be locally rewritten as

−�gu =
2

∑

i, j=1

gi, j Au

(

∂u

∂xi
,

∂u

∂x j

)

, (2.11)

where
{

gi, j
}

1≤i, j≤2 are defined in (2.1). Let us also remind that the second funda-
mental form A satisfies the following symmetry property: for all y ∈ N n and for
all X, Y ∈ Ty N n , Ax (X, Y ) = Ax (Y, X).

In the specific case where N n = Sd−1 ⊂ R
d , it is easy to show that (2.10) is

equivalent to

−�gu = |du|2gu, (2.12)

where |du|2g was defined in (2.2). In this article, we will be concerned with the
construction of unitary harmonic vector fields on S2 with prescribed singularities,
that should be seen as immediate generalisations of harmonic maps with values into
S1 for planar domains of C. Let us recall the most relevant aspects of the classical
Ginzburg–Landau theory. Let � ⊂ C be a domain with smooth boundary (the
theory makes sense for quasi-disks, but it would change little to the presentation).
Due to degree reasons, if h ∈ H1/2(∂�, S1) has non-zero degree, it does not admit
any extension in W 1,2(�, S1). In other words, we have

W 1,2
h (�, S1) = W 1,2(�, S1) ∩ {u : u = h on ∂�} = ∅.

Let us check this fact. One can define the degree of an H1/2 map h : ∂� → S1 as

deg(h) = 1

2π

∫

∂�

h × dh = 1

2π

∫

∂�

h1 dh2 − h2 dh1.

Notice that this integral makes sense (in the distributional sense) thanks to the
H1/2/H−1/2 duality. The fact that for an H1/2 map, the degree is an integer is due to
L. Boutet de Monvel and O. Gabber [19]. If h admits an extension u ∈ W 1,2(�, S1),
we, get by Stokes theorem,

deg(h) = 1

2π

∫

�

d (u1 du2 − u2 du1) = 1

π

∫

�

du1 ∧ du2. (2.13)

However, since |u|2 = 1, we have 〈u, du〉 = 0. Therefore, taking the wedge product
of this equation, we find that

{

0 = (u1 du1 + u2 du2) ∧ du2 = u1 du1 ∧ du2

0 = du1 ∧ (u1 du1 + u2 du2) = u2 du1 ∧ du2.
(2.14)
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Using once more that |u|2 = 1, we deduce that du1 ∧ du2 = 0, which finally
implies by (2.13) that deg(h) = 0.

The Ginzburg–Landau theory consists in constructing harmonic S1-valued maps
with non-zero degree prescribed boundary values. The idea is to minimise the func-
tional

Eε(u) = 1

2

∫

�

|du|2gdvolg + 1

4ε2

∫

�

(1 − |u|2)2dx

amongst maps u : � → C such that u = h on ∂�. By standard minimisation of
Eε, one finds a minimiser uε : � → C satisfying the system of equations

⎧

⎨

⎩

−�uε = 1

ε2 (1 − |uε|2)uε in �

uε = h on ∂�.

By the previous analysis, we know that {Eε(uε)}ε>0 is unbounded as ε → 0, lest
a subsequence converge to a W 1,2 map that extends h (which is impossible by the
previous discussion). The main difficulty of the theory is to extract a limit of uε as
ε → 0, since we know that the limit cannot be regular. Furthermore, on can prove
that if deg(h) = d ≥ 1, then

Eε(uε) 	 π d log

(

1

ε

)

.

A remarkable feature of the minimisers of the Ginzburg–Landau functional is that
one can extract a renormalised energy from the fine asymptotic behaviour of Eε(uε).
Before stating the main theorem, let us define the notion of renormalised energy
according to Bethuel–Brezis–Hélein. Let p1, · · · , pd ∈ � be d distinct points.
Define, for all ε > 0 small enough,

�ε = � \
d

⋃

j=1

Bε(p j ),

and let

Eε = W 1,2(�ε) ∩ {

v : v = h on ∂� and deg
(

v, ∂ Bε(p j )
) = 1 for all 1 ≤ j ≤ d

}

.

F. Bethuel, H. Brezis, and F. Hélein showed ([5, Theorem I.7]) that if vε minimises
the Dirichlet energy E on Eε, then, as ε → 0, the following limit exists and is finite

Wh(p1, · · · , pd) = lim
ε→0

(

1

2

∫

�ε

|∇vε|2dx − π d log

(

1

ε

))

. (2.15)

This quantity is called the renormalised energy associated to h and {p1, · · · , pd}
in the sense of Bethuel–Brezis–Hélein.
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Theorem 2.1. (Bethuel–Brezis–Hélein [4,5]) Let � ⊂ C be a simply connected
domain with smooth boundary γ = ∂�, and h ∈ C∞(∂�, S1) be a map of degree
deg(h) = d ≥ 1. Then, there exists a sequence {εn}n∈N ⊂ (0,∞) such that
εn −→

n→∞ 0 and d distinct points p1, · · · , pd ∈ � such that

⎧

⎨

⎩

uεn −→
n→∞ u0 in Ck

loc(� \ {p1, · · · , pd}) for all k ∈ N

uεn −→
n→∞ u0 in C1,α(�) for all α < 1.

(2.16)

where u0 ∈ W 1,2
loc (� \ {p1, · · · , pd} , S1) is a harmonic map with degree 1 singu-

larities. More precisely, for all 1 ≤ j ≤ d, there exists θ j ∈ R such that

u0(z) = ei θ j
z − p j

|z − p j | + O(|z − p j |2). (2.17)

Furthermore, the following limit exists

lim
ε→0

(

Eε(uε) − π d log

(

1

ε

))

and there exists a universal constant γ ∈ R such that

lim
ε→0

(

Eε(uε) − π d log

(

1

ε

))

= Wh(p1, · · · , pd) + d γ, (2.18)

where Wh(p1, · · · , pd) is the renormalised energy associated to {p1, · · · , pd} and
h, and the configuration Wh(p1, · · · , pd) minimises Wh amongst sets of distinct
points {q1, · · · , qd} ⊂ �.

We see that u0 fails to be in W 1,2 due to a singularity in

z

|z| /∈ W 1,2(D)

near p j (1 ≤ j ≤ d) according to (2.17). This terminology justifies the expression
renormalised energy in the article, since we show that taking the sum of the Bethuel–
Brezis–Hélein renormalised energies on each simply connected domain defined by
a simple curve � (with boundary conditions given by the unit tangent or normal)
yields (up to a constant term) the Loewner energy of � ⊂ S2. Using the special
form of u0 given by Laurain–Petrides’ result Theorem 1.3 (refer to [34] for detailed
argument), let us show how to identify Bethuel–Brezis–Hélein renormalised energy
in the case of a boundary data given by the unit tangent (that has degree 1) as the
“first half”—up to a 2π log | f ′(0)| term—of the Universal Liouville action S1 (see
(1.3)), where we write

S1(γ ) =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 +
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

∣

∣

∣

∣

2

|dz|2

+ 4π log | f ′(0)| − 4π log |g′(∞)|.
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Let � ⊂ C be a simply connected domain and assume that γ = ∂� is a simple
curve of finite Loewner energy. Let τ = h : ∂� → S1 be the unit tangent of ∂�,
and {uε}ε>0 be a sequence of minimisers of Eε. Then, thanks to [34], as in [5,
Section III.1], if g(θ) = eiθ , define, for all ε > 0,

I (δ, ε) = inf
w∈W 1,2

g (B(0,δ),R2)

{

1

2

∫

B(0,δ)

|∇w|2dx + 1

4ε2

∫

B(0,δ)

(1 − |w|2)2dx

}

.

Notice that we have the important invariance

I (δ, ε) = I
(

1,
ε

δ

)

, (2.19)

which permits us to define, for all ε > 0,

I (ε) = I (1, ε). (2.20)

By [5], we know that

(0,∞) → R

t �→ I (ε) − π log

(

1

ε

)

is a decreasing function, which implies in particular that the following limit exists
and is finite:

γ = lim
ε→0

(

I (ε) − π log

(

1

ε

))

< ∞.

This is the constant γ appearing in (2.18). Furthermore, by Theorem IX.3 of [5]
(quoted above in Theorem 2.1; see equation (2.15)), we have

Eε(uε) = π log

(

1

ε

)

+ Wτ (p1) + γ + oε(1), (2.21)

where Wτ (p1) is the renormalised energy defined in (2.15). Up to a translation of
�, we can assume that p1 = 0. We actually only need to know that the limit exists
since we will use another expression of the renormalised energy. Thanks to [5, I.8,
VI.2 and VII.1], we have

1

2

∫

�\B(0,ε)

|∇u0|2dx = π log

(

1

ε

)

+ Wτ (0) + O(ε2). (2.22)

For all p ∈ �, let G p : � → R be the Green’s function of the Laplacian on � such
that

{

�G p = 2πδp in �

G p = 0 on ∂�.

Now, we know by (2.17) that for δ > 0 small enough, we have the expansion

u0(z) = z

|z|ei H(z) for all z ∈ B(0, δ),
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where H : B(0, δ) → R is a smooth harmonic function. In particular, we deduce
that

|∇u0(z)|2 = 1

|z|2 + O

(

1

|z|
)

.

Therefore, we have the estimate

|∇u0|2 − |∇G0|2 = O

(

1

|z|
)

∈ L1(�). (2.23)

Now, let GD = log |x | be the Dirichlet Green’s function of the unit disk D ⊂ C,
and f : D → � be a conformal map such that f (0) = 0. By conformal invariance
of the Dirichlet energy, we have

{

�(GD ◦ f −1) = 2πδ0 in �

G0 ◦ f −1 = 0 on ∂�,

which shows that G0 = GD ◦ f −1. Now, for all λ > 0, we have for all c ∈ R and
δ > 0 small enough

∫

B(0,1)\B(0,λ δ(1+c δ))

|∇ log |x ||2dx = −2π log(λδ(1 + c δ))

= 2π log

(

1

δ

)

− 2π log(λ) + O(δ). (2.24)

In particular, since we have the Taylor expansion f (z) = f ′(0)z + O(|z|2), we
deduce that there exist c > 0 such that

B(0, 1) \ B
(

0, | f ′(0)|−1δ(1 − c δ)
)

⊂ f −1
(

� \ B(0, δ)
)

⊂ B(0, 1) \ B(0, | f ′(0)|−1δ(1 + c δ))

and by (2.24) that

1

2

∫

B(0,1)\ f −1(B(0,δ))

|∇GD|2dx = π log

(

1

δ

)

+ π log | f ′(0)| + O(δ).

Using the conformal invariance of the Dirichlet energy, we finally deduce that

1

2

∫

�\B(0,δ)

|∇G0|2dx = π log

(

1

δ

)

+ π log | f ′(0)| + O(δ). (2.25)

Finally, by (2.22), (2.23) and (2.25), we deduce that

Wτ (0) = lim
δ→0

{

1

2

∫

�\B(0,δ)

(

|∇u0|2 − |∇G0)|2
)

dx

}

+ π log | f ′(0)|

= 1

2

∫

�

(

|∇ �u0|2 − |∇G0|2
)

dx + π log | f ′(0)|. (2.26)
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Likewise, if χ : ∂� → S1 is the unit normal, since the minimiser vε of Eε for the
Dirichlet boundary data χ is a constant rotation by −π/2 of uε, we deduce that

Eε(uε) + Eε(vε) = 2π log

(

1

ε

)

+ 1

2

∫

�

(

|∇u0|2 + |∇v0|2 − 2|∇G0|2
)

dx

+ 2π log | f ′(0)| + 2γ. (2.27)

Now, recall that by Theorem 1.3, we have

1

2

∫

�

(

|∇u0|2 + |∇v0|2 − 2|∇G0|2
)

dx =
∫

�

|ω − ∗ dG�|2dx

=
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2. (2.28)

Notice that in this identity, G� = G0. Finally, we deduce by (2.27) and (2.28), we
have

Eε(uε) + Eε(vε) = 2π log

(

1

ε

)

+
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2

+ 2π log | f ′(0)| + 2γ + oε(1). (2.29)

Taking the limit as ε → 0, we find the identity

∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 + 2π log | f ′(0)| = lim
ε→0

(

Eε(uε) + Eε(vε) − 2π log

(

1

ε

))

− 2γ,

(2.30)

which indeed corresponds to two terms in (1.3) (up to a 2π log | f ′(0)| factor). Now,
comparing this formula with (1.15) and (2.29), one may justify the terminology
renormalised energy used in the present article. The major difference with [34] is
that we do not use the Ginzburg–Landau equation to construct the relevant moving
frames but construct them via complex analysis methods. The main difficulty is to
show that the new formula for the Loewner energy holds true for Weil–Petersson
curves, which forces us to make a detour via another functional that possesses the
right compactness properties.

Here, we see that the first two terms of the expression of the Loewner energy are
almost equal to (up to this 2π log | f ′(0)| factor mentioned above) the renormalised
energy of the moving frame (u0, v0) : � → S1 × S1, where by moving frame, we
simply mean that 〈u0, v0〉 = 0 identically. In this article, we also consider moving
frames on the sphere. In this case if � ⊂ S2, we say that a couple of unit vector
fields (u0, v0) : � → S2 × S2 is a moving frame if 〈u0, v0〉 = 0 identically, where
〈 · , · 〉 is the restriction of the scalar product of R

3 on S2. In general, moving frames
are sections of the unit bundle of a given Riemannian manifold, but we will not
need any general definition in this article (refer to [29, Chapitre 4] for more details).
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3. Moving Frame Energy via Zeta-Regularised Determinants for Smooth
Curves

The following expression of the Loewner energy will prove to be crucial in this
section:

Theorem 3.1. (Y. Wang [59]) Let α ∈ C∞(S2, R), g = e2αg0 be a metric confor-
mally equivalent to the spherical metric g0 of S2, and � ⊂ S2 be a simple smooth
curve. Let �1,�2 ⊂ S2 be the two disjoint open connected components of S2 \ �.
Then we have

I L(�) = 12 log
detζ (−�S2−,g) detζ (−�S2+,g)

detζ (−��1,g) detζ (−��2,g)
, (3.1)

where S2− (resp., S2+) is the southern hemisphere (resp., the northern hemisphere).

We now use the formula (3.1) expressing the Loewner energy in terms of zeta-
regularised determinants to link the Loewner energy to the renormalised energy of
moving frames on S2. First, let g0 = gS2 be the standard round metric on S2. Let
� ⊂ S2 be a simple smooth1 curve, and let �1,�2 ⊂ S2 the two disjoint open
connected components of S2 \ �. Since we are working on a curved manifold,
we cannot directly use the result of [34] to construct moving frames with the
Ginzburg–Landau method. However, we will construct them directly in Section
4 (see Lemma 4.1 and Theorem 4.3). Therefore, let us assume that (�u1, �v1) :
�1 \ {p1} → U S2 ×U S2 are harmonic vector fields such that �u1 = τ on ∂�1 = �

(where τ is the unit tangent on �), and the 1-form ω = 〈�u1, d �v1〉 satisfies

ω = ∗ d
(

G�1 + μ1
)

in D ′(�1) (3.2)

where G�1 : �1 \ {p1} → R is the Green’s function for the Laplacian on �1 \ {p1}
with Dirichlet boundary condition. Namely, G�1 satisfies

{

�g0 G�1 = 2πδp1 in D ′(�1)

G�1 = 0 on ∂�1,
(3.3)

and μ1 : �1 → R is a smooth function satisfying
{

−�g0μ1 = 1 in �1

∂νμ1 = kg0 − ∂νG�1 on ∂�1.
(3.4)

where kg0 is the geodesic curvature with respect to the round metric g0, and the
normal derivative is taken with respect to the g0.

To fix notations, we recall the following result:

1 It is necessary to assume that the curve is smooth for one will need to recurse to the
Froebenius theorem below. Furthermore, the formula for the Loewner energy using the zeta-
regularised determinants [59] only works for smooth (or at least C3) curves ([53], Corollary
3.12).
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Theorem 3.2. ([32], see also, [31,57]) Let � ⊂ C (resp., � ⊂ S2) be a bounded
simply connected domain such that ∂� is chord-arc, and let g0 be the flat metric on
� (resp., g0 be the round metric on S2). Then for all p ∈ �, there exists a unique
Green’s function G�,p ∈ C∞(� \ {p} , R) with Dirichlet boundary condition.
Furthermore, for every h ∈ H1/2(∂�, R), there exists a unique function u ∈
W 1,2(�, R) such that

{

�g0 u = 0 in �

u = h on ∂�.

Whenever it is clear from context, we will write G�1 for G�1,p1 .

Remark 3.3. The existence of a Green’s function follows from its conformal in-
variance and the uniformisation theorem. Indeed, if � is a Jordan domain, and
f : D → � is a biholomorphic map such that f (0) = p, and GD,0 = log |z|,
then G�,p = GD,0 ◦ f −1. We assume that ∂� is chord-arc so that the trace theo-
rems apply as in [32,57]. The passage from C to S2 is easy using a stereographic
projection and the conformal invariance of Green’s functions.

Now, following Proposition 5.1 of [34], it is not hard to see that their proof
using the Froebenius theorem also works for domains of the sphere, and we get a
conformal diffeomorphism ϕ : (−∞, 0) × ∂ B(0, ρ) → �1 \ {p1} for some ρ > 0
such that

∂sϕ(s, θ) = eG�1◦ϕ+μ1◦ϕ �v1 ◦ ϕ

∂θϕ(s, θ) = eG�1◦ϕ+μ1◦ϕ �u1 ◦ ϕ.

Notice that the Proposition 5.1 of [34] gives a privileged p1 ∈ �1, but we will show
in Theorem 4.3 that p1 can be taken arbitrarily (see also Theorem 5.5). However,
the proof works for an arbitrary harmonic moving frame whose Cartan form admits
an expansion as in (3.2) where μ1 solves (3.4). Since μ1 is defined up to an additive
constant, we can assume that ρ = 1 in the following. We define the conformal map
f1 : D → �1 using the polar coordinates by

f1(r, θ) = ϕ(log(r), θ),

we can continuously extend f1 at z = 0 such that f1(0) = p1.
Now we relate μ1 to f1. Since f1 is conformal, the function G = G�1 ◦ f1 :

D\ {0} → R is harmonic on D\ {0}, satisfies G = 0 on ∂D, so by (3.3), we deduce
that

G = GD,0 = log |z|.
Therefore, we have

⎧

⎪

⎨

⎪

⎩

∂r f1 = 1

r
∂sϕ(log(r), θ) = 1

r
elog(r)+μ1◦ f1 �v1 ◦ f1 = eμ1◦ f1 �v1 ◦ f1

1

r
∂θ f1 = 1

r
∂θϕ(log(r), θ) = eμ1◦ f1 �u1 ◦ f1.

(3.5)
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Since |�u1| = |�v1| = 1, and 〈�u1, �v1〉 = 0, we deduce that

|∂r f1|2 = 1

r2
|∂θ f1|2 = e2μ1◦ f1

〈∂r f1, ∂θ f1〉 = 0,

which shows that the conformal parameter of f is

1

2
|∇ f1|2 = 1

2

(

|∂r f1|2 + 1

r2
|∂θ f1|2

)

= e2μ1◦ f1,

which implies that

μ1 = log |∇ f1| ◦ f −1
1 − 1

2
log(2). (3.6)

In particular, we have

μ1(p1) = log |∇ f1(0)| − 1

2
log(2), (3.7)

where p1 ∈ �1 is the singularity of the moving frame (�u1, �v1) : �1 \ {p1} →
U S2 × U S2.

We can relate the change of metric by f1 to μ1 as follows. If ι : �1 ⊂ S2 ↪→ R
3

is the inclusion map, we have g0|�1
= ι∗gR3 .

As f1 is conformal, we have

f ∗
1 g0|�1

= f ∗
1 ι∗gR3 = (ι ◦ f1)

∗gR3 = 1

2
|∇ f1(z)|2|dz|2 = e2μ1◦ f1(z)|dz|2

= e2μ1◦ f1(z)−2ψ(z) 4|dz|2
(1 + |z|2)2

= e2μ1◦ f1−2ψ((π−1)∗g0)|D, (3.8)

where

ψ(z) = log

(

2

1 + |z|2
)

,

and π−1 : C → S2 \ {N } is the inverse stereographic projection. Writing for
simplicity

gD = 4|dz|2
(1 + |z|2)2 = e2ψ(z)|dz|2 = (π−1)∗g0|D,

we deduce by (3.8) that

g0|�1
= ( f1 ◦ f −1

1 )∗(g0|�1) = ( f −1
1 )∗ f ∗

1 g0|�1
= e2μ1−2ψ◦ f −1

1 ( f −1
1 )∗(gD),

so that (by an abuse of notation for the last identity)

( f −1
1 )∗(gD) = e−2μ1+2ψ◦ f −1

1 g0|�1
= e2α1 g0|�1

(3.9)

where

α1(z) = −μ1(z) + ψ◦ f −1
1 (z).
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Remark 3.4. To summarize, the above discussion shows that the moving frame
(�u1, �v1) satisfying the boundary condition �u1 = τ on �, (3.2), and (3.4) is tightly
related to a conformal map f1 : D → �1 using Froebenius theorem as in [34], in
the way that the moving frame satisfies (3.5). However, we can start directly with
any conformal map f1 and (3.5) gives a moving frame (�u1, �v1) which satisfies (3.2)
and (3.4). This is the approach we take in Section 4 which allows us to relax the
regularity assumption of ∂�1 = �.

Definition 3.5. Define the open subsets S2+, S2− ⊂ S2 by

S2+ = S2 ∩
{

(x, y, z)∈ R
3 : z > 0

}

S2− = S2 ∩
{

(x, y, z)∈ R
3 : z < 0

}

.

Theorem 3.6. Let � ⊂ S2 be a smooth Jordan curve, and let �1,�2 ⊂ S2 the two
disjoint open connected components of S2 \ �. Fix some j = 1, 2. Then, for all
p j ∈ � j and for all harmonic moving frames (�u j , �v j ) : � j \

{

p j
} → U� j ×U� j ,

assume that the Cartan form ω j = 〈�u j , d �v j 〉 admits the decomposition

ω j = ∗ d
(

G� j + μ j
)

,

where G� j : � j \ {

p j
} → R is the Green’s function of the Laplacian �g0 on � j

with Dirichlet boundary condition, and μ j ∈ C∞(� j ) satisfies
{ −�g0μ j = 1 in � j

∂νμ j = kg0 − ∂νG� j on ∂� j ,
(3.10)

where kg0 is the geodesic curvature on � = ∂� j . Define the functional E (that we
call the renormalised energy associated to the frames (�u1, �v1) and (�u2, �v2)) by

E (�) =
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
dvolg0 + 2

∫

�1

G�1 Kg0 dvolg0

+ 2
∫

�2

G�2 Kg0 dvolg0 + 4π.

Then, there exists conformal maps f1 : D → �1 and f2 : D → �2 such that
f1(0) = p1, f2(0) = p2 and

I L(�) = 1

π
E (�) + 4 log |∇ f1(0)| + 4 log |∇ f2(0)| − 12 log(2) = 1

π
E0(�).

Remark 3.7. If W j ( j = 1, 2) is the renormalised energy in the sense of Bethuel–
Brezis–Hélein (see Section 2.2 in the planar case, especially equations (2.15) and
(2.30)) associated to the moving frame (�u j , �v j )—or more precisely, to its boundary
data—(see [5] and [34]), we have

W1 + W2 = E (�) + 2π log |∇ f1(0)| + 2π log |∇ f2(0)|,
since ω1 − ∗ dG�1 = ∗ dμ1.
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Proof of Theorem 3.6. If π−1 : C → S2 \ {N } is the inverse stereographic projec-
tion,

gD = 4|dz|2
(1 + |z|2)2 = e2ψ(z)|dz|2,

and S2− is the southern hemisphere, we deduce that

detζ (−�S2−,g0
) = detζ (−�D,π∗g0) = detζ (−�D,gD) = detζ (−��1,ϕ∗gD)

= detζ (−��1,g1), (3.11)

and by the Alvarez–Polyakov formula (see (1.17) of [41]) and (3.9), we have

log detζ (−�S2−,g0
) − log detζ (−��1,g0)

= log detζ (−��1,g1) − log detζ (−��1,g0)

= − 1

12π

{ ∫

�1

|dα1|2g0
dvolg0 + 2

∫

�1

Kg0α1 dvolg0

+ 2
∫

�

kg0α1 dH 1
g0

+ 3
∫

�

∂να1 dH 1
g0

}

= − 1

12π

{ ∫

�1

|d(−μ1 + θ1)|2g0
dvolg0 + 2

∫

�1

Kg0(−μ1 + θ1)dvolg0

+ 2
∫

�

kg0(−μ1 + θ1)dH
1

g0
+ 3

∫

�

∂ν(−μ1 + θ1)dH
1

g0

}

. (3.12)

Notice that the first identity follows from the conformal invariance of the zeta-
regularised determinants which implies identity (3.11). If we choose� to be oriented
as ∂�1, and

θ1 = ψ ◦ f −1
1 .

Therefore, using subscripts with evident notations, we deduce by Theorem 3.1 with
g = g0 and formula (3.12) (see the proof of Theorem 7.3 from [59] for more details)
applied twice that

− π I L(�) = −12π log
detζ (−�S2−,g0

) detζ (−�S2+,g0
)

detζ (−��1,g0) detζ (−��2,g0)

= −12π log
detζ (−��1,g1) detζ (−��2,g2)

detζ (−��1,g0) detζ (−��2,g0)

=
∫

�1

|d(−μ1 + θ1)|2g0
dvolg0 + 2

∫

�1

Kg0(−μ1 + θ1)dvolg0

+ 2
∫

∂�1

kg0(−μ1 + θ1)dH
1

g0
+ 3

∫

∂�1

∂ν(−μ1 + θ1)dH
1

g0

+
∫

�2

|d(−μ2 + θ2)|2g0
dvolg0 + 2

∫

�2

Kg0(−μ2 + θ2)dvolg0
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+ 2
∫

∂�2

kg0(−μ2 + θ2)dH
1

g0
+ 3

∫

∂�2

∂ν(−μ2 + θ2)dH
1

g0
. (3.13)

Notice that provided that � is given with the same orientation of ∂�1, we have

2
∫

∂�1

kg0(−μ1 + θ1)dH
1

g0
+ 2

∫

∂�2

kg0(−μ2 + θ2)dH
1

g0

= 2
∫

�

kg0(−μ1 + θ1 + μ2 − θ2)H
1

g0
. (3.14)

Since Kg0 = 1 = −�g0μ1 on �1, we have
∫

�1

Kg0(−μ1)dvolg0 =
∫

�1

μ1 �g0μ1dvolg0

= −
∫

�1

|dμ1|2g0
dvolg0 +

∫

�

μ1∂νμ1dH 1
g0

= −
∫

�1

|dμ1|2g0
dvolg0 +

∫

�

(

kg0 − ∂νG�1

)

μ1dH 1
g0

(3.15)

by (3.4). Therefore, we deduce that

2
∫

�1

Kg0(−μ1 + θ1)dvolg0 + 2
∫

∂�1

kg0(−μ1 + θ1)dH
1

g0

= −2
∫

�1

|dμ1|2g0
dvolg0 − 2

∫

�

∂νG�1μ1dH 1
g0

+ 2
∫

�1

θ1dvolg0

+ 2
∫

�

kg0θ1dH 1
g0

. (3.16)

Now, we have
∫

�1

|d(−μ1 + θ1)|2g0
dvolg0 =

∫

�1

|d(−μ1 + ψ ◦ f −1
1 )|2g0

dvolg0

=
∫

�1

|dμ1|2g0
dvolg0 − 2

∫

�1

〈dμ1, d(ψ ◦ f −1
1 )〉g0 dvolg0

+
∫

�1

|d(ψ ◦ f −1
1 )|2g0

dvolg0 . (3.17)

Since −�g0μ1 = 1, we deduce that

−2
∫

�1

〈dμ1, d(ψ ◦ f −1)〉g0 dvolg0 = −2
∫

�1

〈dμ1, dθ1〉g0 dvolg0

= 2
∫

�1

θ1�g0μ1dvolg0 − 2
∫

�

θ1∂νμ1dH 1
g0

= −2
∫

�1

θ1dvolg0 − 2
∫

�

kg0θ1dH 1
g0

+ 2
∫

�

∂νG�1θ1dH 1
g0

. (3.18)
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Now, by conformal invariance of the Dirichlet energy, we have
∫

�1

|d(ψ ◦ f −1)|2g0
dvolg0 =

∫

D

|∇ψ |2|dz|2.

Since ψ(z) = log(2) − log(1 + |z|2) and ψ is real, we have

∫

D

|∇ψ |2|dz|2 = 4
∫

D

|∂zψ |2|dz|2 = 4
∫

D

|z|2|dz|2
(1 + |z|2)2 = 4π log(2) − 2π.

(3.19)

Therefore, we get, from (3.16), (3.17), (3.18) and (3.19),
∫

�1

|d(−μ1 + θ1)|2g0
dvolg0 + 2

∫

�1

Kg0 (−μ1 + θ1)dvolg0

+2
∫

∂�1

kg0 (−μ1 + θ1)dH
1

g0

=
∫

�1

|dμ1|2g0
dvolg0 − 2

∫

�1

〈dμ1, dθ1〉g0 dvolg0 +
∫

�1

|dθ1|2g0
dvolg0

−2
∫

�1

θ1dvolg0 − 2
∫

�

kg0θ1dH 1
g0

+ 2
∫

�

∂νG�1θ1dH 1
g0

=
∫

�1

|dμ1|2g0
dvolg0 −

������
2

∫

�1

θ1dvolg0 −�������
2

∫

�

kg0θ1dH 1
g0

+ 2
∫

�

∂νG�1θ1dH 1
g0

+
∫

�1

|dθ1|2g0
dvolg0

−2
∫

�1

|dμ1|2g0
dvolg0 − 2

∫

�

∂νG�1μ1dH 1
g0

+
������
2

∫

�1

θ1dvolg0 +�������
2

∫

�

kg0θ1dH 1
g0

= −
∫

�1

|dμ1|2g0
dvolg0 +

∫

�1

|dθ1|2g0
dvolg0 + 2

∫

�

∂νG�1(−μ1 + θ1)dH
1

g0

= −
∫

�1

|dμ1|2g0
dvolg0 + 2

∫

�

∂νG�1(−μ1 + θ1)dH
1

g0
+ 4π log(2) − 2π. (3.20)

Now, since θ1 = ψ ◦ f −1, and ψ(z) = 0 for all z ∈ S1, we have θ1 = 0 on �.
Therefore, we have

2
∫

�

∂νG�1(−μ1 + θ1)dH
1

g0
= −2

∫

�

∂νG�1μ1dH 1
g0

. (3.21)

Now, since −�g0μ1 = 1 and Kg0 = 1, we have
∫

�1

G�1 Kg0 dvolg0 = −
∫

�1

G�1�g0μ1dvolg0

= −
∫

�1

μ1�g0 G�1 dvolg0 −
∫

�1

(

G�1∂νμ1 − μ1∂νG�1

)

dH 1
g0

= −2πμ1(p1) +
∫

∂�1

μ1∂νG�1 dH 1
g0

, (3.22)
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where we used the Dirichlet condition G�1 = 0 on ∂�1 = �. Therefore, (3.21)
and (3.22) imply that

2
∫

�

∂νG�1(−μ1 + θ1)dH
1

g0
= −2

∫

�1

G�1 Kg0 dvolg0 − 4πμ1(p1). (3.23)

Gathering (3.20) and (3.23) yields

∫

�1

|d(−μ1 + θ1)|2g0
dvolg0 + 2

∫

�1

Kg0(−μ1 + θ1)dvolg0

+ 2
∫

∂�1

kg0(−μ1 + θ1)dH
1

g0

= −
∫

�1

|dμ1|2g0
dvolg0 − 2

∫

�1

G�1 Kg0 dvolg0 − 4πμ1(p1) + 4π log(2) − 2π.

(3.24)

We also have
∫

∂�1

∂ν (−μ1 + θ1) dH 1
g0

+
∫

∂�2

∂ν (−μ2 + θ2) dH 1
g0

= 0. (3.25)

Indeed, we have by the boundary conditions (3.10)

∫

∂�1

∂νμ1dH 1
g0

=
∫

�

kg0 dH 1
g0

−
∫

∂�

∂νG� j dH
1

g0

=
∫

�

kg0 dH 1
g0

−
∫

�1

�g0 G�1 dvolg0

=
∫

�

kg0 dvolg0 − 2π;
∫

∂�2

∂νμ2dH 1
g0

= −
∫

�

kg0 dvolg0 − 2π. (3.26)

We also have by the conformal invariance of the Dirichlet energy

∫

∂�1

∂νθ1dH 1
g0

=
∫

�1

�g0θ1dvolg0 =
∫

D

�ψ |dz|2 =
∫

S1
∂νψ dH 1 = −2π.

(3.27)

Therefore, we finally, get by (3.26) and (3.27),

∫

∂�1

∂ν (−μ1 + θ1) dH 1
g0

+
∫

∂�2

∂ν (−μ2 + θ2) dH 1
g0

= −
(∫

�

kg0 dvolg0 − 2π

)

− 2π −
(

−
∫

�

kg0 dvolg0 − 2π

)

− 2π = 0,

which proves (3.25).
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Finally, we deduce, by (3.13), (3.24) and (3.25), that

− π I L(�) = −
∫

�1

|dμ1|2g0
dvolg0 − 2

∫

�1

G�1 Kg0 dvolg0

− 4πμ1(p1) + 4π log(2) − 2π

−
∫

�2

|dμ2|2g0
dvolg0 − 2

∫

�1

G�2 Kg0 dvolg0 − 4πμ2(p2) + 4π log(2) − 2π

= −
∫

�1

|dμ1|2g0
dvolg0 −

∫

�2

|dμ2|2g0
dvolg0 − 2

∫

�1

G�1 Kg0 dvolg0

− 2
∫

�1

G�2 Kg0 dvolg0

− 4πμ1(p1) − 4πμ2(p2) + 8π log(2) − 4π. (3.28)

Recalling the identity (3.7), we finally deduce that

π I L(�) =
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
dvolg0 + 2

∫

�1

G�1 Kg0 dvolg0

+ 2
∫

�1

G�2 Kg0 dvolg0 + 4π

+ 4π log |∇ f1(0)| + 4π log |∇ f2(0)| − 12π log(2). (3.29)

Now we introduce the functional

E (�) =
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
dvolg0 + 2

∫

�1

G�1 Kg0 dvolg0

+ 2
∫

�2

G�2 Kg0 dvolg0 + 4π. (3.30)

We deduce that

I L(�) = 1

π
E (�) + 4 log |∇ f1(0)| + 4 log |∇ f2(0)| − 12 log(2). (3.31)

This concludes the proof of the theorem. ��

Remark 3.8. We check that equality (3.31) holds for the equator S1. Using the
definition (1.3) with the conformal maps f, g being the identity maps, we see that
I L(S1) vanishes.

Let us first check that

E (S1) = 0

with the marked points p1 = S = (0, 0,−1) and p2 = N = (0, 0, 1). This identity
justifies the term 4π in the definition of E as we remarked earlier.
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For this, since Kg0 = 1 on �1 = S2−, after making a stereographic projection
π : S2 \ {N } → C sending S to 0, we find that

∫

S2−
GS2− Kg0 dvolg0 =

∫

D

GD(z)
4|dz|2

(1 + |z|2)2 =
∫

D

4 log |z|
(1 + |z|2)2 |dz|2

= 8π

∫ 1

0

r log r

(1 + r2)2 dr

= 8π

[

− 1

2(1 + r2)
log(r) + 1

2
log(r) − 1

4
log(1 + r2)

]1

0

= −2π log(2). (3.32)

We take f1 = π−1|D which is consistent with f1(0) = p1 = S. By (3.4) we
have ∂νμ = −1 on S1 and −�g0μ = 1 in S2− which translates to

−�μ(z) = 4

(1 + |z|2)2 in D.

We deduce by a direct verification that μ(z) = − log(1+|z|2). (This is easy to guess
since by (3.6), μ can be computed from the conformal factor of f1.) Therefore, we
have by the conformal invariance of the Dirichlet energy

∫

S2−

∣

∣

∣ω − ∗dGS2−

∣

∣

∣

2

g0
dvolg0 =

∫

S2−
|dμ|2g0

dvolg0

=
∫

D

|∇μ(x)|2dx =
∫

D

∣

∣

∣

∣

2x

1 + |x |2
∣

∣

∣

∣

2

dx

= 8π

∫ 1

0

r3

(1 + r2)2 dr

= 8π

∫ 1

0

(

r

1 + r2 − r

(1 + r2)2

)

dr

= 8π

[

1

2
log(1 + r2) + 1

2

1

1 + r2

]1

0

= 8π

(

1

2
log(2) − 1

4

)

= 4π log(2) − 2π. (3.33)

Finally, by (3.32) and (3.33), we have
∫

S2−
|ω − ∗ dGS2−|2g0

dvolg0 + 2
∫

S2−
GS2− Kg0 dvolg0 + 2π

= (4π log(2) − 2π) − 4π log(2) + 2π = 0.

Applying the same computation to �2 = S2+ with f2 = − f1 : D → S2+ which
is consistent with the choice p2 = N = f2(0), we obtain the claimed identity
E (S1) = 0.
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Now we show that

4 log |∇ f1(0)| + 4 log |∇ f2(0)| − 12 log(2) = 0. (3.34)

Since the inverse stereographic projection is given by

f1(z) = π−1(z) =
(

2 Re (z)

1 + |z|2 ,
2 Im (z)

1 + |z|2 ,
−1 + |z|2
1 + |z|2

)

,

we compute directly that

|∇ f1(0)| = |∇ f2(0)| = 2
√

2

which concludes the proof of (3.34) and shows the identity (3.31) for the circle S1.

4. Construction of Harmonic Moving Frames for Weil–Petersson Curves

In the previous section, we showed that in the case of smooth curves, the
Loewner energy was equal to a renormalised Dirichlet energy of a specific harmonic
moving frame. In this section, we will directly construct harmonic moving frames
satisfying appropriate boundary conditions for arbitrary Weil–Petersson quasicir-
cles. In the next section, we will show that Theorem 3.6 holds for non-smooth
curves.

Before stating the main theorem of this section, we recall an easy lemma on
harmonic vector fields.

Lemma 4.1. Let � ⊂ R
3 be a smooth surface, �n : � → S2 its unit normal, and

g = ι∗gR3 be the induced metric. Assume that �u : � → S2 is a smooth critical
point of the Dirichlet energy amongst S2-valued maps such that 〈�u, �n 〉 = 0. Then
�u satisfies the following Euler-Lagrange equation:

−�g �u = |d �u |2g �u + (

2〈d �u, d �n 〉g + 〈�u,�g �n 〉) �n, (4.1)

and we say that �u is a harmonic vector field. If U� is the unitary tangent bundle
of �, and (�u, �v) : � → U� → U� ⊂ S2 × S2 are harmonic vector fields such
that 〈�u, �v 〉 = 0, we see that (�u, �v) is a harmonic moving frame.

Proof. We proceed as in Lemme (1.4.10) of [29] , taking variations �X that also
satisfy 〈 �X , �n 〉 = 0. ��
Remark 4.2. On can also recover the equation as in [29, Exemple (1.2.7)]. Indeed,
if �u : � → S2 were a critical point of the Dirichlet energy, we would only get the
standard harmonic map equation (2.12). However, due to the constraint that �u is a
vector field, there is an additional normal component. Using that T ⊥

�u(x)
S2 = R �u(x),

we deduce that there exists λ1, λ2 ∈ R such that

�g �u = λ1 �u + λ2 �n. (4.2)
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Since |�u |2 = 1, taking the Laplacian of this equation, we deduce that 〈�g �u, �u 〉 =
−|d �u |2g . Likewise, as �u is a vector field, we have

0 = �g (〈�u, �n 〉) = 〈�g �u, �n 〉 + 2〈d �u, d �n 〉g + 〈�u,�g �n 〉.
Therefore, using once more that 〈�u, �n 〉 = 0, taking the product of (4.2) shows that

{

λ1 = 〈�g �u, �u〉 = −|d �u |2g
λ2 = 〈�g �u, �n 〉 = − (

2〈d �u, d �n 〉g + 〈�u,�g �n 〉)

and finally, (4.2) is equivalent to

−�g �u = |d �u |2g �u + (〈d �u, d �n 〉g + 〈�u,�g �n 〉) �n. (4.3)

The following result is the same as Theorem 3.6, but for a general Weil–
Petersson quasicircle:

Theorem 4.3. Let � ⊂ S2 a Weil–Petersson quasicircle and let �1,�2 be the two
open connected components of S2 \ �. For j = 1, 2 and for all p j ∈ � j , there
exists a harmonic moving frame (�u j , �v j ) : � j \ {

p j
} → U� j × U� j such that

the Cartan form ω j = 〈�u j , d �v j 〉 admits the decomposition

ω j = ∗ d
(

G� j + μ j
)

, (4.4)

where G� j = G� j ,p j : � j \ {

p j
} → R is the Green’s function of the Laplacian

�g0 on � j with Dirichlet boundary condition and singularity p j ∈ � j , and μ j ∈
C∞(� j ) satisfies

{ −�g0μ j = 1 in � j

∂νμ j = kg0 − ∂νG� j on ∂� j ,
(4.5)

where kg0 is the geodesic curvature on � = ∂� j .

Remark 4.4. The Neumann condition for μ j (1 ≤ j ≤ 2) is understood in the
sense of distributions, since the geodesic curvature is only in H−1/2(�) in general
(see the appendix for more details).

Proof. Rather than using the moving frame that comes from a Ginzburg–Landau
type minimisation as in [34]—that would have had to be carried in the geometric
setting of domains of S2—we directly use the uniformisation theorem and the
geometric formula of [59] (that does not require any regularity on the curve �) to
construct the relevant moving frame. We now construct the moving frame on �1.
The construction for �2 is similar.

Step 1. Definition of (�u1, �v1) and μ1.
Let π : S2 \ {N } → C be the standard stereographic projection and assume

without loss of generality that N ∈ �2. Let � = π(�1) ⊂ C be the image domain
and γ = π(�) ⊂ C be the image curve. Thanks to the uniformisation theorem,
there exists a univalent holomorphic map f : D → � such that f (0) = π(p1).
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Now, let f1 = π−1 ◦ f : D → �1. Notice that f1(0) = p1. Explicitly, we have

f1(z) = π−1( f (z)) =
(

2 Re ( f (z))

1 + | f (z)|2 ,
2 Im ( f (z))

1 + | f (z)|2 ,
−1 + | f (z)|2
1 + | f (z)|2

)

.

A direct computation show that

∂z f1 = f ′
(

(1 − f
2
)

(1 + | f |2)2 ,
−i(1 + f

2
)

(1 + | f |2)2 ,
2 f

(1 + | f |2)2

)

.

Now, by analogy with the construction in Section 3 (see also [34], Proposition 5.1),
define μ1 : �1 → R and �u1 : �1 → U S2 and �v1 : �1 → U S2 by

⎧

⎨

⎩

∂r f1 = eμ1◦ f1 �v1 ◦ f1

1

r
∂θ f1 = eμ1◦ f1 �u1 ◦ f1.

Then, we have from direct computations

e2μ1◦ f1 = |∂r f1|2 = 1

r2 |∂θ f1|2 = 2|∂z f1|2 = 4| f ′(z)|2
(1 + | f (z)|2)2 .

Therefore, we deduce if μ = μ1 ◦ f1 that

μ(z) = log | f ′(z)| − log
(

1 + | f (z)|2
)

+ log(2). (4.6)

Since ∂z = 1

2
(∂x − i ∂y), we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂r f1 = cos(θ)∂x f1 + sin(θ)∂y f1 = Re

(

z

|z|
)

Re (∂z f1) − Im

(

z

|z|
)

Im (∂z f1)

1

r
∂θ f1 = − sin(θ)∂x f1 + cos(θ)∂y f1 = −Im

(

z

|z|
)

Re (∂z f1) − Re

(

z

|z|
)

Im (∂z f1) .

By the elementary identities for all a, b ∈ C

{

Re (a)Re (b) + Im (a)Im (b) = Re (ab)

Re (a)Im (b) + Im (a)Re (b) = −Im (ab),

we deduce that
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂r f1 = Re

(

z

|z|∂z f1

)

= Re

(

z

|z| f ′(z)
(

(1 − f (z)2)

(1 + | f (z)|2)2 ,
i(1 + f (z)2)

(1 + | f (z)|2)2 ,
2 f (z)

(1 + | f (z)|2)2

))

1

r
∂θ f1 = −Im

(

z

|z|∂z f1

)

= Im

(

z

|z| f ′(z)
(

(1 − f (z)2)

(1 + | f (z)|2)2 ,
i(1 + f (z)2)

(1 + | f (z)|2)2 ,
2 f (z)

(1 + | f (z)|2)2

))

.
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More generally, if ϕ : C → C is a smooth complex function, we have

∂θϕ = −Im (z) (∂z + ∂z) ϕ + Re (z) i (∂z − ∂z) ϕ = i (z ∂zϕ − z ∂zϕ) . (4.7)

Since

|∂z f1| = 1

r
|∂θ f1| = 2| f ′(z)|

1 + | f (z)|2 ,

we deduce that
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�v1 ◦ f1 = Re

(

z f ′(z)
|z f ′(z)|

(

(1 − f (z)2)

(1 + | f (z)|2) ,
i(1 + f (z)2)

(1 + | f (z)|2) ,
2 f (z)

(1 + | f (z)|2)
)

)

�u1 ◦ f1 = Im

(

z f ′(z)
|z f ′(z)|

(

(1 − f (z)2)

(1 + | f (z)|2) ,
i(1 + f (z)2)

(1 + | f (z)|2) ,
2 f (z)

(1 + | f (z)|2)
)

)

.

(4.8)

Notice that

F(z) =
(

(1 − f (z)2), i(1 + f (z)2), 2 f (z)
)

is a holomorphic null vector, i.e. 〈F(z), F(z)〉 = 0 (notice that here, 〈 · , · 〉 is the
real scalar product on R

3, extended by linearity on C
3), so we see directly since

|�u1| = |�v1| = 1 that

〈�u1, �v1〉 = 0.

Step 2. Verification of the system (4.5).
Part 1. Equation on �1 for μ1.
Since μ = μ1 ◦ f1, the equation −�g0μ1 = 1 is equivalent to

−�μ = e2μ (4.9)

Thanks to the explicit expression in (4.6), and by harmonicity of log | f ′|, we have

−�μ = 4 ∂z

(

f ′(z) f ′(z)
1 + | f (z)|2

)

= 4

( | f ′(z)|2
1 + | f (z)|2 − | f ′(z)|2| f (z)|2

(1 + | f (z)|2)2

)

= 4| f ′(z)|2
(1 + | f (z)|2)2 = e2μ.

Recalling that

g
̂C

= 4|dz|2
(1 + |z|2)2 = (π−1)∗g0,

we deduce that

4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 = f ∗g

̂C
= f ∗((π−1)∗g0) = (π−1 ◦ f )∗g0 = f ∗

1 g0.
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Therefore, (4.9) can be rewritten as

−� f ∗
1 g0(μ1 ◦ f1) = 1

or by conformal invariance of the Dirichlet energy

−�g0μ1 = 1. (4.10)

Part 2. Boundary conditions.
If h : C → R is a smooth function, we have

∂νh = x
√

x2 + y2
∂x h + y

√

x2 + y2
∂yh = Re (z)

|z| (∂z + ∂z) h + Im (z)

|z| i (∂z − ∂z) h

= 2 Re

(

z

|z|∂zh

)

. (4.11)

This implies since μ(z) = log | f ′(z)| − log(1 + | f (z)|2) + log(2) by (4.6) that

∂zμ(z) = 1

2

f ′′(z)
f ′(z)

− f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2 ,

and

∂νμ = 2 Re

(

z

|z|∂zμ

)

= Re

(

z
f ′′(z)
f ′(z)

− 2z
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

)

on ∂D in the distributional sense. We will comment on it in Remark 5.6. Recall that
the geodesic curvature on ∂�1 is given (see [17]) by

kg0 = 〈�u1, ∂θ �v1〉. (4.12)

From (4.8) it is natural to define

ϕ(z) = z f ′(z)
|z f ′(z)|

(

(1 − f (z)2)

(1 + | f (z)|2) ,
i(1 + f (z)2)

(1 + | f (z)|2) ,
2 f (z)

(1 + | f (z)|2)
)

= χ(z)ψ(z),

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

χ(z) = z f ′(z)
|z f ′(z)| = exp

(

1

2
log

(

z f ′(z)
)

− 1

2
log

(

z f ′(z)
)

)

ψ(z) =
(

1 − f (z)2

1 + | f (z)|2 ,
i(1 + f (z)2)

1 + | f (z)|2 ,
2 f (z)

1 + | f (z)|2
)

,

(4.13)

so that �v1 ◦ f1 = Re (ϕ) and �u1 ◦ f1 = Im (ϕ). Then, we compute
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂zχ = −1

2

(

f ′′(z)
f ′(z)

+ 1

z

)

χ

∂zχ = 1

2

(

f ′′(z)
f ′(z)

+ 1

z

)

χ.

(4.14)
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We also get
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂zψ = − f ′(z) f (z)

1 + | f (z)|2 ψ + 2 f ′(z)
1 + | f (z)|2 (− f (z), i f (z), 1)

∂zψ = − f ′(z) f (z)

1 + | f (z)|2 ψ.

(4.15)

Since 〈ψ,ψ〉 = 0, we have 〈∂zψ,ψ〉 = 〈∂zψ,ψ〉 = 0. In particular, we have

〈(− f (z), i f (z), 1), ψ〉
= 1

1 + | f (z)|2
〈

(− f (z), i f (z), 1), (1 − f (z)2, i(1 + f (z)2), 2 f (z))
〉 = 0, (4.16)

while
〈

(− f (z), i f (z), 1),
(

1 − f (z)
2
,−i

(

1 + f (z)
2
)

, 2 f (z)
)〉

= − f (z) + f (z)| f (z)|2 + f (z) + f (z)| f (z)|2 + 2 f (z) = 2 f (z)(1 + | f (z)|2),
so that

〈(− f (z), i f (z), 1), ψ〉 = 2 f (z). (4.17)

Therefore, we deduce, by (4.15), (4.16), and (4.17), that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

〈ϕ, ϕ〉 = 〈∂zϕ, ϕ〉 = 〈∂zϕ, ϕ〉 = 〈ψ,ψ〉 = 〈∂zψ,ψ〉 = 〈∂zψ,ψ〉 = 0

〈∂zψ,ψ〉 = 2 f ′(z) f (z)

1 + | f (z)|2

〈∂zψ,ψ〉 = − 2 f ′(z) f (z)

1 + | f (z)|2 .

(4.18)

The identities (4.14) and (4.18) imply that

z ∂zϕ − z ∂zϕ = −
(

Re

(

z
f ′′(z)
f ′(z)

)

+ 1

)

ϕ + χ(z) (z ∂zψ − z ∂zψ) ,

and since |χ |2 = 1 and |ψ |2 = 2, we have

〈z ∂zϕ − z ∂zϕ, ϕ + ϕ〉 = −2

(

Re

(

z
f ′′(z)
f ′(z)

)

+ 1

)

+ χ(z)
(

z
(

χ(z)〈∂zψ,ψ〉 + χ(z)〈∂zψ,ψ〉
)

−z
(

χ(z)〈∂zϕ, ϕ〉 + χ(z)〈∂zψ,ψ〉
))

= −2

(

Re

(

z
f ′′(z)
f ′(z)

)

+ 1

)

+ 2z
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2 + 2z

f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

= −2 − 2 Re

(

z
f ′′(z)
f ′(z)

− 2z
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

)

,
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so that

kg0 = 〈�u, ∂θ �v〉 = −〈∂θ �u, �v〉 = −〈∂θ Im (ϕ), Re (ϕ)〉 = −Im (〈∂θϕ, Re (ϕ)〉)
= −1

2
Im (〈i (z∂zϕ − z∂z) , ϕ + ϕ〉) = −1

2
Re (〈z∂zϕ − z∂zϕ, ϕ + ϕ〉)

= Re

(

z
f ′′(z)
f ′(z)

− 2z
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

)

+ 1 = ∂νμ + 1 = ∂νμ + ∂νGD,

(4.19)

which concludes the proof that μ1 solves the system (4.5) by the conformal invari-
ance of the Green’s function (we denoted for simplicity GD = GD,0 = log | · |).

Step 3. Verification that (�u1, �v1) is a harmonic moving frame.
Now, thanks to Lemma 4.1 and (4.1), the maps �u1 and �v1 are unit harmonic

moving frames if and only if they satisfy in the distributional sense (refer to Theorem
4.6 for the proof of this equivalence) the system (writing �u = �u1◦ f1 and �v = �v1◦ f1
for simplicity)

{ −��u = |∇�u|2 �u + (2〈∇ �u,∇�n 〉 + 〈�u,��n 〉) �n
−��v = |∇�v|2�v + (2〈∇�v,∇�n 〉 + 〈�v,��n 〉) �n,

(4.20)

where �n : D → S2 is the same map as f1 but viewed as the Gauss map associated
to the branched minimal immersion of the disk from D into R

3 with Weierstrass
data ( f, dz). It is given by

�n(z) =
(

2 Re ( f (z))

1 + | f (z)|2 ,
2 Im ( f (z))

1 + | f (z)|2 ,
−1 + | f (z)|2
1 + | f (z)|2

)

.

By a direct computation, we see that the Gauss map satisfies the following equations

|∇�n(z)|2 = 8| f ′(z)|2
(1 + | f (z)|2)2 ;

−��n = |∇�n |2�n.

In particular, the previous equation (4.20) must reduce to
{ −��u = |∇�u |2 �u + 2〈∇ �u,∇�n 〉�n

−��v = |∇�v |2�v + 2〈∇�v,∇�n 〉�n.
(4.21)

However, since 〈�u,��n 〉 = |∇�n |2〈�u, �n 〉 = 0, we deduce that−〈��u, �n 〉 = 2〈∇ �u,∇�n 〉,
and since |∇ �u |2 = 1, we also get (by taking the Laplacian of |�u |2 = 1) that
−〈��u, �u 〉 = |∇�u |2 �u. Therefore, we need only check that

〈��u, �v 〉 = 〈��v, �u 〉 = 0 (4.22)

to show that �u and �v satisfy the equations (4.21). Recall from (4.13) that �u = Re (ϕ)

and �v = Im (ϕ), we deduce that

��u = Re (�ϕ), ��v = Im (�ϕ)
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and we have
⎧

⎪

⎨

⎪

⎩

〈Re (�ϕ), Im (ϕ)〉 = 1

2
Im (〈�ϕ, ϕ〉) − 1

2
Im (〈�ϕ, ϕ〉)

〈Im (�ϕ), Re (ϕ)〉 = 1

2
Im (〈�ϕ, ϕ〉) + 1

2
Im (〈�ϕ, ϕ〉).

(4.23)

Therefore, the equations (4.22) are equivalent to

Im (〈�ϕ, ϕ〉) = Im (〈�ϕ, ϕ〉) = 0. (4.24)

Using (4.15), (4.16) and (4.18), we get

〈�ϕ, ϕ〉 = −4〈∂zϕ, ∂zϕ〉

= −4

〈

−1

2

(

f ′′(z)
f ′(z)

+ 1

z

)

ϕ − f ′(z) f (z)

1 + | f (z)|2 (− f (z), i f (z), 1) ,

(

1

2

(

f ′′(z)
f ′(z)

+ 1

z

)

− f ′(z) f (z)

1 + | f (z)|2
)

ϕ

〉

= 0, (4.25)

which implies in particular that Im (〈�ϕ, ϕ〉) = 0. Then, we compute

〈∂zϕ, ϕ〉 =
〈(

1

2

(

f ′′(z)
f ′(z)

+ 1

z

)

− f ′(z) f (z)

1 + | f (z)|2
)

ϕ, ϕ

〉

=
(

(

f ′′(z)
f ′(z)

+ 1

z

)

− 2
f ′(z) f (z)

1 + | f (z)|2
)

. (4.26)

Therefore, we have

1

4
〈�ϕ, ϕ〉 = ∂z〈∂zϕ, ϕ〉 − 〈∂zϕ, ∂zϕ〉 = ∂z〈∂zϕ, ϕ〉 − |∂zϕ|2,

where we used ∂zϕ = ∂zϕ. By (4.26), we deduce that

∂z〈∂zϕ, ϕ〉 = −2
| f ′(z)|2

1 + | f (z)|2 + 2
| f ′(z)|2| f (z)|2
(1 + | f (z)|2)2 = − 2| f ′(z)|2

(1 + | f (z)|2)2 ,

so that

〈�ϕ, ϕ〉 = − 8| f ′(z)|2
(1 + | f (z)|2)2 − 4|∂zϕ|2 ∈ R,

which implies that

Im (〈�ϕ, ϕ〉) = 0. (4.27)

Therefore, we deduce that (4.24) holds, which implies that �u and �v solve the equa-
tions (4.21).

Step 4. Proof of the decomposition ω1 = ∗ d(G�1 + μ1).
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Recall that, �u = �u1 and �v = �v1, and let

ω = 〈�u, d �v 〉 = 〈�u, ∂ �v 〉 + 〈�u, ∂ �v 〉.
Recall that since ∗ dx = dy and ∗ dy = −dx , we have

∗ dz = ∗ (dx + i dy) = dy − i dx = −i(dx + i dy) = −i dz

∗ dz = i dz.

Therefore, ω = ∗ d (μ + G) (where we write for simplicity G = GD = log | · |)
if and only if

〈�u, ∂ �v 〉 + 〈�u, ∂ �v 〉 = ∗ (

∂ (μ + G) + ∂ (μ + G)
) = −i ∂(μ + G) + i ∂(μ + G),

which is equivalent to the identity

〈�u, ∂ �v 〉 = −i ∂ (μ + G) . (4.28)

We have, by (4.14) and (4.15)

∂z �v = ∂zRe (ϕ) = 1

2

(

∂zϕ + ∂zϕ
) = 1

2

(

−1

2

(

f ′′(z)
f ′(z)

+ 1

z

)

ϕ − f ′(z) f (z)

1 + | f (z)|2 ϕ

+ 2 f ′(z)
1 + | f (z)|2 χ(z)(− f (z), i f (z), 1) + 1

2

(

f ′′(z)
f ′(z)

+ 1

z

)

ϕ − f ′(z) f (z)

1 + | f (z)|2 ϕ

)

= − i

2

(

f ′′(z)
f ′(z)

+ 1

z

)

Im(ϕ) − 1

2

f ′(z) f (z)

1 + | f (z)|2 Re(ϕ)

+ f ′(z)
1 + | f (z)|2 χ(z) (− f (z), i f (z), 1) .

Therefore, using (4.16), (4.17), (4.18), and 〈�u, �v〉 = 0, we deduce that

〈�u, ∂z �v 〉 = 〈Im (ϕ), ∂zRe (ϕ)〉 = − i

2

(

f ′′(z)
f ′(z)

+ 1

z

)

+ i

2

f ′(z)
1 + | f (z)|2 〈(− f (z), i f (z), 1), ψ〉

= − i

2

(

f ′′(z)
f ′(z)

− 2 f ′(z) f (z)

1 + | f (z)|2 + 1

z

)

,

and this concludes the proof of (4.28) since by (4.6)

∂z(μ(z) + log |z|) = ∂z

(

log | f ′(z)| − log(1 + | f (z)|2) − 1

2
log(2) + log |z|

)

= 1

2

(

f ′′(z)
f ′(z)

− 2 f ′(z) f (z)

1 + | f (z)|2 + 1

z

)

.

This last identity concludes the proof of the theorem. ��
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Finally, we will establish the uniqueness of distributional solutions of the system
(4.3) with appropriate boundary conditions (4.5). This is the exact analog of Remark
I.1 of [5]. First, we need to define explicit maps that yield trivialisations of vector
fields on simply connected domains of the sphere. Let �1 ⊂ S2 be as Theorem 4.3.
Using the stereographic projection π : S2 \ {N } → C, we have one holomorphic
chart z on S2 \ {N }, and for a domain �1 ⊂ S2 \ {N }, it yields a trivialisation
T �1 → � × C, where � = π(�1).

More explicitly, let X : � → R
3 be a vector field such that 〈X, �n 〉 = 0, where

�n : � → S2 is the unit normal given by

π−1(z) = �n(z) =
(

2 Re (z)

1 + |z|2 ,
2 Im (z)

1 + |z|2 ,
−1 + |z|2
1 + |z|2

)

.

Now, we introduce the function ψ : C → C
3, given by

ψ(z) =
(

1 − z2

1 + |z|2 ,
i(1 + z2)

1 + |z|2 ,
2z

1 + |z|2
)

,

and we easily check that

〈ψ,ψ〉 = 0 |ψ |2 = 〈ψ,ψ〉 = 2. (4.29)

Therefore, we deduce that (�u1, �u2) defined as follows is a tangent unit moving
frame (orthogonal to �n )

�u1(z) = Re (ψ(z)), �u2(z) = Im (ψ(z)).

The trivialisation map on �1 ⊂ S2 \ {N } is then given by

T �1 → � × C

(z, v) �→ (z, 〈v, �u1(z)〉 + i 〈v, �u2(z)〉), (4.30)

while the trivialisation map of sections is given by

��1 : �(T �1) → C∞(�1, C)

X �→ 〈X, �u1〉 + i 〈X, �u2〉. (4.31)

Notice that for all tangent vector field X , we have 〈X, �n 〉 = 0, which implies that
there exists real functions λ1, λ2 : �1 → R such that

X = λ1�u1 + λ2 �u2.

Remark 4.5. Using the next Theorem 4.6, it is easy to check that (�u j , �v j ) ( j = 1, 2)
are harmonic vector fields since by (4.13) and (4.14), we have

−�χ =
∣

∣

∣

∣

f ′′(z)
f ′(z)

+ 1

z

∣

∣

∣

∣

2

χ = |∇χ |2χ,

i.e. χ : D → S1 is a harmonic map with values into S1.
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Theorem 4.6. Under the conditions of Theorem 4.3, let �∗
1 = �1 \ {p1} and

�u ∈ W 1,2
loc (�∗

1, U�1) ∩ W 1,1(�1, U�1) be a unit vector field in �1, and let �u0 =
��1(�u) : �1 → S1. Then �u is a harmonic vector field on �1, i.e.

−�g0 �u = |d �u |2g0
�u + (

2〈d �u, d �n 〉g0 + 〈�u,�g0 �n 〉) �n

if and only if �u0 is a harmonic map with values into S1, i.e.

−�g0 �u0 = |d �u0|2g0
�u0.

In particular, for all degree 1 boundary data h ∈ H1/2(∂�1, S1) and p ∈ �1,
there exists a unique unit vector-field �u ∈ W 1,2

loc (�∗
1, U�1)∩ W 1,1(�1, U�1) such

that �u = �−1
�1

(h) on ∂�1 and such that �u0 = ��1(�u) satisfies in the distributional
sense

div (�u0 × ∇�u0) = 0 in D ′(�1).

Remark 4.7. If �u0 : � → S1, writing locally �u0 = eiϕ for some real-valued
function ϕ, we deduce that �u0 is harmonic if and only if

−��u0 =
(

|∇ϕ|2 − i (�ϕ)
)

�u0 = |∇�u0|2 �u0.

Therefore, �u0 is harmonic as a map with values into S1 if and only if ϕ is harmonic,
i.e. �ϕ = 0.

Proof of Theorem 4.6. By making a stereographic projection, thanks to the confor-
mal invariance of the harmonic equation, we deduce that for all unit vector-field
�u ∈ �(T �∗

1) is given in � = πN (�1) as

�u = λ1 Re (ψ) + λ2 Im (ψ), (4.32)

where

ψ(z) =
(

1 − z2

1 + |z|2 ,
i(1 + z2)

1 + |z|2 ,
2z

1 + |z|2
)

.

Furthermore, we have λ2
1 + λ2

2 = 1, which implies that there exists a measurable
function ϕ such that λ1 + iλ2 = e−iϕ . In particular, we can rewrite (4.32) as

�u = cos(ϕ) Re (ψ) − sin(ϕ) Im (ψ) = Re (e−iϕ) Re (ψ) + Im (e−iϕ) Im (ψ)

= Re
(

eiϕψ
)

,

where we used the identity Re (a) Re (b) + Im (a) Im (b) = Re (a b) valid for all
a, b ∈ C. If

�v = sin(ϕ)Re (ψ) + cos(ϕ)Im (ψ) = Im (eiϕψ),
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we immediately have 〈�u, �v 〉 = 0, and since |�u |2 = |�v |2 = 1, while−��n = |∇�n |2�n,
we get

〈��u, �u 〉 = −|∇�u |2
〈��u, �n 〉 = −2〈∇ �u,∇�n 〉 − 〈�u,��n 〉 = −2〈∇ �u,∇�n 〉,

and similar formulae for �v. Therefore, we deduce that (�u, �v) solves the system
{ −��u = |∇�u |2 �u + 2〈∇ �u,∇�n 〉�n in �

−��v = |∇�v |2�v + 2〈∇�v,∇�n 〉�n in �,

if and only if

〈��u, �v 〉 = 〈��v, �u 〉 = 0.

Now, we compute

��u = Re
(

(i �ϕ − |∇ϕ|2)eiϕψ
)

+ 2 Re
(

ieiϕ∇ϕ · ∇ψ
)

+ Re
(

eiϕ�ψ
)

= −(�ϕ)Im (eiϕψ) − |∇ϕ|2Re (eiϕψ) + Re
(

eiϕ�ψ
)

= −(�ϕ) �v − |∇ϕ|2 �u + 2 Re
(

ieiϕ∇ϕ · ∇ψ
)

+ Re (eiϕ�ψ)

��v = (�ϕ) �u − |∇ϕ|2 �u + 2 Im
(

ieiϕ∇ϕ · ∇ψ
)

+ Im (eiϕ�ψ).

We have since 〈∇ϕ, ϕ〉 = 0 the identity

〈

Re (ieiϕ∇ϕ · ∇ψ), �v
〉

= Re

〈

ieiϕ∇ϕ · ∇ψ,
eiϕψ − e−iϕψ

2i

〉

= −1

2
Re

(∇ϕ · 〈∇ψ,ψ〉)

〈

Im (ieiϕ∇ϕ · ∇ψ), �u
〉

= Im

〈

ieiϕ∇ϕ · ∇ψ,
eiϕψ + e−iϕψ

2

〉

= 1

2
Re

(∇ϕ · 〈∇ψ,ψ〉)

〈Re (eiϕ�ψ), �v 〉 = Re

〈

eiϕ�ψ,
eiϕψ − e−iϕψ

2i

〉

= 1

2
Im

(

e2iϕ〈�ψ,ψ〉
)

− 1

2
Im 〈�ψ,ψ〉

〈Im (eiϕ�ψ), �u〉 = 1

2
Im

(

e2iϕ〈�ψ,ψ〉
)

+ 1

2
Im 〈�ψ,ψ〉.

In particular, we have

〈��u, �v 〉 = −(�ϕ) − Re
(∇ϕ · 〈∇ψ,ψ〉) + 1

2
Im

(

e2iϕ〈�ψ,ψ〉
)

− 1

2
Im 〈�ψ,ψ〉

〈��v, �u〉 = (�ϕ) + Re
(∇ϕ · 〈∇ψ,ψ〉) + 1

2
Im

(

e2iϕ〈�ψ,ψ〉
)

+ 1

2
Im 〈�ψ,ψ〉.
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Summing those equations and substracting the first one to the second one yields
the system

⎧

⎨

⎩

Im
(

e2iϕ〈�ψ,ψ〉
)

= 0

2(�ϕ) + 2 Re
(∇ϕ · 〈∇ψ,ψ〉) + Im 〈�ψ,ψ〉 = 0.

(4.33)

We will show that for all smooth real-valued function ϕ : � → R

Re
(∇ϕ · 〈∇ψ,ψ〉) = 〈�ψ,ψ〉 = Im 〈�ψ,ψ〉 = 0, (4.34)

which will imply that (�u, �v) solves the system (4.33) if and only if �ϕ = 0, or ϕ

is harmonic.
Now, we compute

∂zψ = − z

1 + |z|2 ψ + 2

1 + |z|2 (−z, i z, 1)

∂zψ = − z

1 + |z|2 ψ.

We have

∇ϕ · ∇ψ = 2 ∂zϕ · ∂zψ + 2 ∂zϕ · ∂zψ

= −2
z∂zϕ

1 + |z|2 ψ + 4

1 + |z|2 (−z∂zϕ, i z∂zϕ, ∂zϕ) − 2
z∂zϕ

1 + |z|2 ψ

= −4 Re

(

z∂zϕ

1 + |z|2
)

ψ + 4

1 + |z|2 (−z∂zϕ, i z∂zϕ, ∂zϕ).

Then we have

1

4
�ψ = ∂2

zzψ = −1 + |z|2
(1 + |z|2)2 ψ − 2

(1 + |z|2)2 (−z2, i z2, z). (4.35)

Now, notice that

〈

(−z2, i z2, z), ψ
〉

= 1

1 + |z|2
〈

(−z2, i z2, z),
(

1 − z2, i(1 + z2), 2z
)〉

= 1

1 + |z|2
(

−z2(1 − z2) + z2(1 + z2) + 2z2
)

= 0,

which implies as 〈ψ,ψ〉 = 0 and by (4.35) that

〈�ψ,ψ〉 = 0. (4.36)

Now, we have

〈(−z2, i z2, z), ψ〉 = 1

1 + |z|2
(

−z2(1 − z2) + z2(1 + z2) + 2|z|2
)

= 2|z|2.
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Since |ψ |2 = 〈ψ,ψ〉 = 2, we deduce that

〈�ψ,ψ〉 = 4

(

2(−1 + |z|2)
(1 + |z|2)2 − 4|z|2

(1 + |z|2)2

)

= − 8

1 + |z|2 ∈ R. (4.37)

We now compute

〈(−z, i z, 1), ψ〉 = 1

1 + |z|2
(

−z(1 − z2) + z(1 + z2) + 2z
)

= 2z.

which shows since |ψ |2 = 2 that

〈∂zψ,ψ〉 = − 2z

1 + |z|2 + 4z

1 + |z|2 = 2z

1 + |z|2 ;

〈∂zψ,ψ〉 = − 2z

1 + |z|2 .

Therefore, we have

∇ϕ · 〈∇ψ,ψ〉 = 2 ∂zϕ · 〈∂zψ,ψ〉 + 2 ∂zϕ · 〈∂zψ,ψ〉 = 4 z ∂zϕ

1 + |z|2 − 4 z ∂zϕ

1 + |z|2

= 8i Im

(

z ∂zϕ

1 + |z|2
)

∈ iR,

and this immediately implies that

Re (∇ϕ · 〈∇ψ,ψ〉) = 0. (4.38)

Finally, we deduce by (4.36), (4.37) and (4.38) that (4.34) holds and that the system
(4.33) holds if and only if �ϕ = 0. If �u = g�1 = ��1(g) for some g : ∂�1 =
� → S1, then we have

λ1 + iλ2 = g,

or

e−iϕ = g on �.

In particular, the function �u0 = e−iϕ : �1 \ {p1} → S1 is a harmonic map on
�1 \ {p1} satisfying �u0 = h on �. Now, notice that provided �u ∈ W 1,1(�1), one
can rewrite the equation distributionally as

div (�u × ∇�u ) = 2〈∇ �u,∇�n 〉�n × �u.

In particular, since u0 is harmonic, we deduce that

div (�u0 × ∇�u0) = ∂

∂x1

(

�u0 × ∂ �u0

∂x1

)

+ ∂

∂x2

(

�u0 × ∂ �u0

∂x2

)

= 0.

By Theorem I.5 and Remark I.1 of [5], we deduce that �u0 is the unique harmonic
function with a singularity at p1 such that �u0 = h on ∂�1. This concludes the proof
of the theorem. ��
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5. Proof of the Main Theorems for Non-smooth Curves

In order to extend Theorem 3.6 to the non-smooth setting, we will obtain another
formula for E0 in terms of conformal maps and that holds true for any closed simple
curve of finite Loewner energy. Using this additional formula, the convergence
result will be easily obtained.

Under the preceding notations, if � ⊂ S2 Weil–Petersson quasicircle, from
Remark 3.4, thanks to Theorem 4.3, there exists harmonic moving frames (�u1, �v1)

and (�u2, �v2) on �1 and �2 with arbitrary singularities p1 and p2, respectively, such
that

E (�) =
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
dvolg0

+ 2
∫

�1

G�1 Kg0 dvolg0 + 2
∫

�2

G�2 Kg0 dvolg0 + 4π.

where ω j = 〈�u j , d �v j 〉 = ∗ d(G� j + μ j ) in D ′(� j ) for j = 1, 2, and μ j satisfies
(3.10). We saw in Theorem 3.6 that in the case of smooth curves, there exists
conformal maps f1 : D → �1 and f2 : D → �2 such that

I L(�) = 1

π
E (�) + 4 log |∇ f1(0)| + 4 log |∇ f2(0)| − 12 log(2) = 1

π
E0(�).

In this section, we generalise this result to curves of finite Loewner energy. Now, if
π : S2 \ {p2} → C is a stereographic projection, since f j : D → � j is conformal
and π is also conformal, we deduce that π◦ f j : D → π(� j ) ⊂ R is also conformal.
Therefore, these maps are biholomorphic or anti-biholomorphic, so up to a complex
conjugate (which is an isometry), we can assume that they are holomorphic. Notice
that � = π(�1) is bounded, while π(�2) = C \ � is unbounded. Therefore, if
i : C \ {0} → C \ {0} is the inversion, we let g = π ◦ f2 ◦ i : C \ D → C \ � and
f = π ◦ f1 : D → �. From (1.3) and (1.4), if γ = π(�), we have

I L(�) = I L(γ ) =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 +
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

∣

∣

∣

∣

2

|dz|2

+ 4π log | f ′(0)| − 4π log |g′(∞)|. (5.1)

Indeed, since f2(0) = p2, we have g(∞) = ∞, so that the functions f , g satisfy
the needed conditions to apply Theorem 1.1.

Now, with the previous notations, define the functional

E0(�) = E (�) + 4π log |∇ f1(0)| + 4π log |∇ f2(0)| − 12π log(2).

Definition 5.1. Let γ be a Jordan curve with finite Loewner energy. Let f : D → �,
g : C \ D → C \ � be biholomorphic maps such that g(∞) = ∞, we define the
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third universal Liouville action S3 by

S3(γ ) =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

∣

∣

∣

∣

2

|dz|2

+
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

|g(z)|2
1 + |g(z)|2 + 2

z

∣

∣

∣

∣

2

|dz|2

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π

+ 4π log | f ′(0)| − 4π log |g′(∞)| − 4π log(1 + | f (0)|2).
Remark 5.2. (1) One may wonder about the origin of this formula. It will be made

clear in the proof of the next theorem where we explicitly rewrite E0 with the
help of the conformal maps f and g defined above.

(2) We call this quantity S3 since a functional called S2 was defined in [53] as the
log-determinant of the Grunsky operator associated with the curve γ (up to a
factor − 1

12 ).

The goal of this section is to show the identity

π I L = S1 = S3 = E0. (5.2)

The third equality is straightforward and is proved in Theorem 5.3, and the
proof of the whole identity is completed in Theorem 5.5.

Theorem 5.3. Let � ⊂ S2 be a simple curve of finite Loewner energy. Then we
have

E0(�) = S3(�).

Proof. If � ⊂ S2 is a curve of finite Loewner energy �1 and �2 the two connected
components of S2 \ �, and f1 : D → �1, f2 : D → �2 are the conformal maps
associated to � in the definition of E with f j (0) = p j for j = 1, 2. Now, recall
from (3.6) that

log |∇ f1| = 1

2
log(2) + μ1 ◦ f1.

We have, by conformal invariance of the Dirichlet energy,
∫

D

|∇ log |∇ f1||2 |dz|2 =
∫

D

|∇(μ1 ◦ f1)|2 |dz|2 =
∫

�1

|dμ1|2g0
dvolg0 . (5.3)

Since f1 is conformal and f1(0) = p1, we have

G�1 ◦ f1(z) = G�1,p1 ◦ f1(z) = GD,0(z) = log |z|.
A change of variable gives

2
∫

�1

G�1 dvolg0 =
∫

D

log |z||∇ f1|2|dz|2. (5.4)
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Finally, we deduce by (5.3) and (5.4) that

E0(�) =
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
dvolg0 + 2

∫

�1

G�1 Kg0 dvolg0

+ 2
∫

�2

G�2 Kg0 dvolg0 + 4π

+ 4π log |∇ f1(0)| + 4π log |∇ f2(0)| − 12π log(2)

=
∫

D

|∇ log |∇ f1||2|dz|2 +
∫

D

|∇ log |∇ f2||2|dz|2 +
∫

D

log |z||∇ f1|2|dz|2

+
∫

D

log |z||∇ f2|2|dz|2 + 4π

+ 4π log |∇ f1(0)| + 4π log |∇ f2(0)| − 12π log(2). (5.5)

Up to a rotation of S2, we can assume that p2 = N and if π : S2 \ {N } → C

is the standard stereographic projection, let

f = π ◦ f1 : D → �

g̃ = π ◦ f2 : D → C \ �

which we assume without loss of generality to be biholomorphic (up to a complex
conjugation). Now, since

f1(z) = π−1( f (z)) =
(

2 Re ( f (z))

1 + | f (z)|2 ,
2 Im ( f (z))

1 + | f (z)|2 ,
−1 + | f (z)|2
1 + | f (z)|2

)

,

a computation shows that

∂z f1 = f ′
(

(1 − f
2
)

(1 + | f |2)2 ,
−i(1 + f

2
)

(1 + | f |2)2 ,
2 f

(1 + | f |2)2

)

,

which implies that

|∂z f1|2 = | f ′|2
(1 + | f |2)4

(

|1 − f 2|2 + |1 + f 2|2 + 4| f |2
)

= 2| f ′|2
(1 + | f |2)2 .

We deduce that

|∇ f1|2 = 4|∂z f1|2 = 8| f ′|2
(1 + | f |2)2 . (5.6)

Therefore, we have

log |∇ f1| = log | f ′| − log(1 + | f |2) + 3

2
log(2),

so that

4π log |∇ f1(0)| = 4π log | f ′(0)| − 4π log
(

1 + | f (0)|2
)

+ 6π log(2) (5.7)
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Since � = f (D) is bounded, we have
∫

D

| f ′(z)|2 | f (z)|2|dz|2
(1 + | f (z)|2)2 ≤ 1

4

∫

D

| f ′(z)|2|dz|2 = 1

4
Area(�) < ∞. (5.8)

Therefore, (5.8) implies that ∇ log |∇ f1| ∈ L2(D) and
∫

D

|∇ log |∇ f1||2|dz|2 =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

∣

∣

∣

∣

2

|dz|2 < ∞, (5.9)

while (5.6) implies that
∣

∣

∣

∣

∫

D

log |z||∇ f1|2|dz|2
∣

∣

∣

∣

= −
∫

D

log |z| 8| f ′(z)|2|dz|2
(1 + | f (z)|2)2 < ∞, (5.10)

which is finite by (5.8) and the smoothness of f in D. Since the function g̃ : D →
C \ � is unbounded at 0, we need to check that

∫

D

∣

∣

∣

∣

∣

g̃′′(z)
g̃′(z)

− 2
g̃′(z)g̃(z)

1 + |̃g(z)|2
∣

∣

∣

∣

∣

2

|dz|2 =
∫

D

∣

∣

∣

∣

g̃′′(z)
g̃′(z)

− 2
g̃′(z)
g(z)

|̃g(z)|2
1 + |̃g(z)|2

∣

∣

∣

∣

2

|dz|2 < ∞.

For this, as g̃ is univalent and g̃(0) = ∞, we deduce that g̃ admits the following
meromorphic expansion at z = 0 for some a ∈ C \ {0} and a0, a1 ∈ C

g̃(z) = a

z
+ a0 + a1z + O(|z|2). (5.11)

Therefore, we have, by a direct computation,

g̃′′(z)
g̃′(z)

− 2
g̃′(z)
g̃(z)

|̃g(z)|2
1 + |̃g(z)|2 = −a0

a
+

(

a2
0

a2 − 4a1

a

)

z − z

|a|2
+ O(|z|2) ∈ L∞

loc(D). (5.12)

Since � is a Weil–Petersson quasicircle, we deduce by estimates similar to (5.8)
and (5.9) that ∇ log |̃g′| ∈ L2(D \ D(0, ε)) and g̃′ ∈ L2(D \ D(0, ε)) for all ε > 0
and we finally deduce that

∫

D

∣

∣

∣

∣

g̃′′(z)
g̃′(z)

− 2
g̃′(z)
g̃(z)

|̃g(z)|2
1 + |̃g(z)|2

∣

∣

∣

∣

2

|dz|2 < ∞.

Now, if g = g̃ ◦ i : C \ D → C \ �, we compute and

g̃′′(z)
g̃′(z)

− 2
g̃′(z)
g̃(z)

|̃g(z)|2
1 + |̃g(z)|2 = − 1

z2

(

g′′(1/z)

g′(1/z)
− 2

g′(1/z)

g(1/z)

|g(1/z)|2
1 + |g(1/z)|2 + 2z

)

.

A change of variable shows that
∫

D

∣

∣

∣

∣

g̃′′(z)
g̃′(z)

− 2
g̃′(z)
g̃(z)

|̃g(z)|2
1 + |̃g(z)|2

∣

∣

∣

∣

2

|dz|2

=
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

|g(z)|2
1 + |g(z)|2 + 2

z

∣

∣

∣

∣

2

|dz|2 (5.13)
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Furthermore, we directly get that
∫

D

log |z| |̃g′(z)|2|dz|2
(1 + |̃g(z)|2)2 =

∫

D

log |z| |g′(1/z)|2
(1 + |g(1/z)|2)2

|dz|2
|z|4

=
∫

C\D
log

(

1

|z|
) |g′(z)|2|dz|2

(1 + |g(z)|2)2

= −
∫

C\D
log |z| |g′(z)|2|dz|2

(1 + |g(z)|2)2 . (5.14)

Now, notice that

|∇ f2|2 = 8|g′(z)|2
(1 + |g(z)|2)2 = 8

|a|2 + O(|z|),
which implies that

log |∇ f2| = 3

2
log(2) − log |a|.

Furthermore, the expansion (5.11) shows that as |z| → ∞, we have

g(z) = az + O(1),

so that |a| = |g′(∞)|, and

4π log |∇ f2(0)| = −4π log |g′(∞)| + 6π log(2). (5.15)

Finally, we deduce, by (5.7) and (5.15), that

4π log |∇ f1(0)| + 4π log |∇ f2(0)| − 12π log(2)

= 4π log | f ′(0)| − 4π log |g′(∞)| − 4π log
(

1 + | f (0)|2
)

. (5.16)

Gathering (5.5), (5.9), (5.10), (5.13), (5.14), and (5.16), we finally deduce that

E0(�) =
∫

D

|∇ log |∇ f1||2|dz|2 +
∫

D

|∇ log |∇ f2||2|dz|2 +
∫

D

log |z||∇ f1|2|dz|2

+
∫

D

log |z||∇ f2|2|dz|2 + 4π

+ 4π log |∇ f1(0)| + 4π log |∇ f2(0)| − 12π log(2)

=
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

∣

∣

∣

∣

2

|dz|2

+
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

|g(z)|2
1 + |g(z)|2 + 2

z

∣

∣

∣

∣

2

|dz|2

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π

+ 4π log | f ′(0)| − 4π log |̃g′(∞)| − 4π log(1 + | f (0)|2)
= S3(�)

which concludes the proof of the theorem. ��
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Remark 5.4. If � = S1, then we can take f = IdD and g = Id
C\D, and we compute

S3(�) =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

∣

∣

∣

∣

2

|dz|2

+
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

|g(z)|2
1 + |g(z)|2 + 2

z

∣

∣

∣

∣

2

|dz|2

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π

+ 4π log | f ′(0)| − 4π log |g′(∞)| − 4π log(1 + | f (0)|2)

= 8
∫

D

|z|2|dz|2
(1 + |z|2)2 + 16

∫

D

log |z| |z|2|dz|2
(1 + |z|2)2 + 4π

= 16π

∫ 1

0

r3dr

(1 + r2)2 + 32π

∫ 1

0

r log(r)dr

(1 + r2)2 + 4π

= 16π

(

1

4
(2 log(2) − 1)

)

+ 32π

(

−1

4
log(2)

)

+ 4π

= 0

as expected.

In the next theorem, we finally complete the proof of (5.2) by showing that
π I L(�) = S3(�).

Theorem 5.5. Let � ⊂ S2 be a closed simple curve of finite Loewner energy. Then
we have

I L(�) = 1

π
E0(�),

whereE0 is defined in (1.12). Furthermore, if �1,�2 ⊂ S2\� are the two connected
components of S2 \ �, for all conformal maps f1 : D → �1 and f2 : D → �2, we
have (Fig. 2)

I L(�) = 1

π

2
∑

j=1

(∫

D

|∇ log |∇ f j ||2|dz|2 +
∫

D

log |z||∇ f j |2|dz|2 + Area(� j )

+4π log |∇ f j (0)|) − 12 log(2)

Proof. By Theorem 3.6, we have the identity I L(�) = 1
π
E0(�) for all smooth �,

and by the preceding Theorem 5.3, we have E0(�) = S3(�) for any Jordan curve
� of finite Loewner energy. Therefore, we will prove that I L = 1

π
S3 which will

imply our result.
We now let �1,�2 ⊂ S2 \ � be the two connected components of S2 \ �,

and f1 : D → �1, f2 : D → �2 be the two conformal maps associated to
�1 and �2, and let p1 = f1(0) and p2 = f2(0). Up to a rotation on S2 (which
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Fig. 2. Spherical formula for the Loewner energy with respect to conformal maps

does not change any of the energies considered), we can assume that p2 = N . If
π : S2 \ {N } → C is the standard stereographic projection, let γ = π(�), and �

the bounded component of C \ γ and define f = π ◦ f1 : D → π(�1) = � and
g = π ◦ f2 ◦ i : C \ D → C \ � such that (using Theorem 5.3)

E0(�) = S3(γ ) =
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

∣

∣

∣

∣

2

|dz|2

+
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

|g(z)|2
1 + |g(z)|2 + 2

z

∣

∣

∣

∣

2

|dz|2

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π

+ 4π log | f ′(0)| − 4π log |g′(∞)| − 4π log(1 + | f (0)|2). (5.17)

Now, let {γn}n∈N be a sequence of smooth curves converging uniformly to a simple
curve γ , and fn : D → C be a sequence of biholomorphic maps such that fn(0) =
0, f ′

n(0) = 1 and fn(D) = �n , where �n is the bounded component of C \ γn .
Thanks to Corollary A.4 of [53] and Theorem 8.1 [59], the following convergence
result holds:

lim
n→∞

∫

D

∣

∣

∣

∣

f ′′
n (z)

f ′
n(z)

− f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 = 0.

Here f : D → � is a univalent function such that f (0) = 0 and f ′(0) = 1.
Therefore, we deduce that

I L(�n) −→
n→∞ I L(�). (5.18)
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In particular, for any sequence of holomorphic maps gn : C \ D → C \ �n such
that gn(∞) = ∞, since

S1(�n) = π I L(�n) =
∫

D

∣

∣

∣

∣

f ′′
n (z)

f ′
n(z)

∣

∣

∣

∣

2

|dz|2 +
∫

C\D

∣

∣

∣

∣

g′′
n (z)

g′
n(z)

∣

∣

∣

∣

2

|dz|2

+ 4π log | f ′
n(0)| − 4π log |g′

n(∞)|

=
∫

D

∣

∣

∣

∣

f ′′
n (z)

f ′
n(z)

∣

∣

∣

∣

2

|dz|2 +
∫

C\D

∣

∣

∣

∣

g′′
n (z)

g′
n(z)

∣

∣

∣

∣

2

|dz|2 − 4π log |g′
n(∞)|,

we deduce that

∫

C\D

∣

∣

∣

∣

g′′
n (z)

g′
n(z)

∣

∣

∣

∣

2

|dz|2 − 4π log |g′
n(∞)| −→

n→∞

∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

∣

∣

∣

∣

2

|dz|2 − 4π log |g′(∞)|
(5.19)

for all univalent function g : C \ D → C \ � such that g(∞) = ∞. Now, if
γ = π(�) ⊂ C, let {εn}n∈N ⊂ (0,∞) such that εn −→

n→∞ 0, and define

fn : D → C

z �→ f ((1 − εn)z)/(1 − εn).

Then γn = fn(S1) is smooth and uniformly converges to γ . Furthermore, we have

∫

D

∣

∣

∣

∣

f ′′
n (z)

f ′
n(z)

− f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 −→
n→∞ 0. (5.20)

which implies that

I L(γn) = 1

π
S1(γn) −→

n→∞
1

π
S1(γ ) = I L(γ ).

Now, we need to show the result f ′
n −→

n→∞ f ′ in L2(D) strongly. Notice that since

f ′ is smooth in D, we have by construction f ′
n −→

n→∞ f ′ almost everywhere. Fur-

thermore, a linear change of variable shows that
∫

D

| f ′
n(z)|2|dz|2 =

∫

D

| f ′((1 − εn)z))|2|dz|2

= 1

(1 − εn)2

∫

D(0,1−εn)

| f ′(w)|2|dw|2 −→
n→∞

∫

D

| f ′(w)|2|dw|2.

By Brezis–Lieb lemma ([11]), since f ′
n −→

n→∞ f ′ almost everywhere and
∥

∥ f ′
n

∥

∥

L2(D)
−→
n→∞

∥

∥ f ′∥
∥

L2(D)
, we deduce that

f ′
n −→

n→∞ f ′ strongly in L2(D). (5.21)
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Therefore, we also get the convergence

f ′
n

fn

| fn|2
1 + | fn|2 −→

n→∞
f ′

f

| f |2
1 + | f |2 in L2(D)

which finally shows by (5.20) that

∫

D

∣

∣

∣

∣

f ′′
n (z)

f ′
n(z)

− 2
f ′
n(z)

fn(z)

| fn(z)|2
1 + | fn(z)|2

∣

∣

∣

∣

2

|dz|2

−→
n→∞

∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

∣

∣

∣

∣

2

|dz|2
∫

D

log |z| 4| f ′
n(z)|2|dz|2

(1 + | fn(z)|2)2 −→
n→∞

∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 . (5.22)

Finally, we also have fn(0) = f (0) and

4π log | f ′
n(0)| = 4π log | f ′(0)| + 4π log(1 − εn) −→

n→∞ 4π log | f ′(0)|. (5.23)

Therefore, if �n = fn(D), and gn : C\D → C\�n is any univalent map such that
gn(∞) = ∞, since γn −→

n→∞ γ uniformly, we can assume without loss of generality

that g′
n(∞) −→

n→∞ g′(∞). Furthermore, by Corollary A.4 of [53], we also get

lim
n→∞

∫

C\D

∣

∣

∣

∣

g′′
n (z)

g′
n(z)

− g′′(z)
g(z)

∣

∣

∣

∣

2

= 0 (5.24)

lim
n→∞

∫

C\D

∣

∣

∣

∣

(

g′′
n (z)

g′
n(z)

− 2
g′

n(z)

gn(z)
+ 2

z

)

−
(

g′′(z)
g′(z)

− 2
g′(z)
g(z)

+ 2

z

)∣

∣

∣

∣

2

|dz|2 = 0.

(5.25)

As previously, we have

g′
n

gn

1

1 + |gn|2 −→
n→∞

g′

g

1

1 + |g|2 in L2(C \ D)

g′
n

1

1 + |gn|2 −→
n→∞ g′ 1

1 + |g|2 in L2(C \ D) (5.26)

Therefore, (5.24) and (5.26) imply that

∫

C\D

∣

∣

∣

∣

g′′
n (z)

g′
n(z)

− 2
g′

n(z)

gn(z)

|gn(z)|2
1 + |gn(z)|2 + 2

z

∣

∣

∣

∣

2

|dz|2

−→
n→∞

∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

|g(z)|2
1 + |g(z)|2 + 2

z

∣

∣

∣

∣

2

|dz|2
∫

C\D
log |z| 4|g′

n(z)|2|dz|2
(1 + |gn(z)|2)2

−→
n→∞

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 . (5.27)
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Finally, we deduce by (5.17), (5.22), (5.23) and (5.27) that

S3(γn) −→
n→∞ S3(γ )

which concludes the proof of the theorem by (5.18), Theorem 3.6 and Theorem
5.3. ��
Remarks 5.6. Notice that we can also directly express the Loewner energy using
moving frames. First, we trivially have

I L(�) = 1

π

{

2
∑

i=1

∫

�i

|ωi − ∗ dG�i |2g0
+ 2

∫

�i

G�i Kg0 dvolg0 + Area(�i )

}

+ 4 log |∇ f1(0)| + 4 log |∇ f2(0)| − 12 log(2).

Alternatively, we have

I L(�) = 1

2π

∫

�1

(

|d �u1|2g0
+ |d �v1|2g0

− 2|dG�1 |2g0

)

dvolg0

+ 1

2π

∫

�2

(

|d �u2|2g0
+ |d �v2|2g0

− 2|dG�2 |2g0

)

dvolg0

+ 4 log |∇ f1(0)| + 4 log |∇ f2(0)| − 12 log(2),

which is (up to the second line involving the conformal maps f1 and f2) very
reminiscent of the Ginzburg–Landau renormalised energy ([5, Chapter VIII]).

To see this equality, since �u1, �v1 and �n are unitary, we have

|d �u1|2g0
= |〈d �u1, �v1〉|2g0

+ |〈d �u1, �n 〉|2g0
= |ω1|2g0

+ |〈d �n , �u1〉|2g0

|d �v1|2g0
= |ω1|2g0

+ |〈d �n, �v1 〉|2g0

|d �u1|2g0
+ |d �v1|2g0

= 2|ω1|2g0
+ |d �n |2g0

= 2|ω1|2g0
+ 2.

Then, integrating by parts and using that G�1 = 0 on ∂�1, we deduce by Stokes
theorem—and the equation (that follows from (4.10))

d
(

ω1 − ∗ dG�1

) = −Kg0 dvolg0 ,

where Kg0 = 1 is the Gauss curvature of the sphere—that

1

2

∫

�1

(

|d �u1|2g0
+ |d �v1|2g0

− 2|dG�1 |2g0

)

dvolg0

=
∫

�1

(

|ω1|2g0
− |dG�1 |2g0

)

dvolg0 + Areag0(�1)

=
∫

�1

〈ω1 − ∗ dG�1 , ω1 + ∗ dG�1〉g0 dvolg0 + Areag0(�1)

=
∫

�1

|ω1 − ∗ dG�1 |2g0
dvolg0 + 2

∫

�1

(ω1 − ∗ dG�1) ∧ dG�1 + Areag0(�1)

=
∫

�1

|ω1 − ∗ dG�1 |2g0
dvolg0 − 2

∫

�1

G�1d(ω1 − ∗ dG�1) + Areag0(�1)

=
∫

�1

|dμ1|2g0
dvolg0 + 2

∫

�1

G�1 Kg0 dvolg0 + Areag0(�1)
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which implies since Areag0(S2) = 4π that

1

2

∫

�1

(

|d �u1|2g0
+ |d �v1|2g0

− 2|dG�1 |2g0

)

dvolg0

+ 1

2

∫

�1

(

|d �u2|2g0
+ |d �v2|2g0

− 2|dG�2 |2g0

)

dvolg0

=
∫

�1

|dμ1|2g0
dvolg0 +

∫

�2

|dμ2|2g0
+ 2

∫

�1

G�1 Kg0 dvolg0

+ 2
∫

�2

G�2 Kg0 dvolg0 + 4π.

Notice that it gives another explanation for the factor 4π in the definition of E .
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6. Appendix

In this appendix, we provide more details on the geodesic curvature for Weil–Petersson
quasicircles and show a consequence of Theorem 5.5 which is an identity on univalent
functions associated to a Weil–Petersson quasicircle.

6.1. Properties of the Geodesic Curvature for Weil–Petersson Quasicircles

Lemma 6.1. Let H = C∩{z : Im (z) > 0} be the Poincaré half-plane, and f : H → C be a
univalent holomorphic map, � = f (H), and assume that γ = ∂� is a simple curve of finite
Loewner energy. Then the geodesic curvature kg0 of γ is given in the distributional sense by

kg0 = Im

(

f ′′(z)
f ′(z)

)

for all z ∈ ∂∞H = R. (6.1)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. The geodesic curvature is given by

kg0 = 〈∂x �u, �v〉,

if (�u, �v) is the Cartesian frame given by (in the following formulae, f is seen as a R
2-valued

function)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�u = ∂x f

|∂x f | =
(

Re

(

f ′(z)
| f ′(z)|

)

, Im

(

f ′(z)
| f ′(z)|

))

= f ′(z)
| f ′(z)|

�v = ∂y f

|∂y f | =
(

−Im

(

f ′(z)
| f ′(z)|

)

, Re

(

f ′(z)
| f ′(z)|

))

= i
f ′(z)

| f ′(z)| .

Define �uz = f ′(z)
| f ′(z)| . Then we have

∂z �uz = ∂z

(

f ′(z)
| f ′(z)|

)

= f ′′(z)
| f ′(z)| − 1

2

f ′′(z)
| f ′(z)| = 1

2

f ′′(z)
| f ′(z)| = 1

2

f ′′(z)
f ′(z) �uz

∂z �uz = ∂z

(

f ′(z)
| f ′(z)|

)

= −1

2

f ′(z)2 f ′′(z)
| f ′(z)|3 = −1

2

(

f ′′(z)
f ′(z)

)

�uz .

Therefore, we deduce that

∂zRe

(

f ′(z)
| f ′(z)|

)

= 1

2

(

∂z

(

f ′(z)
| f ′(z)|

)

+ ∂z

(

f ′(z)
| f ′(z)|

)

)

= 1

4

f ′′(z)
f ′(z)

(�uz − �uz
)

= i

2

f ′′(z)
f ′(z) Im

(

f ′(z)
| f ′(z)|

)

∂zIm

(

f ′(z)
| f ′(z)|

)

= − i

2

(

1

2

f ′′(z)
| f ′(z)| + 1

2

f ′′(z)
| f ′(z)|

)

= − i

4

f ′′(z)
f ′(z)

(�uz + �uz
)

= − i

2

f ′′(z)
f ′(z) Re

(

f ′(z)
| f ′(z)|

)

.

Therefore, we have

∂x Re

(

f ′(z)
| f ′(z)|

)

= 2 Re

(

∂zRe

(

f ′(z)
| f ′(z)|

))

= −Im

(

f ′′(z)
f ′(z)

)

Im

(

f ′(z)
| f ′(z)|

)

∂x Im

(

f ′(z)
| f ′(z)|

)

= Im

(

f ′′(z)
f ′(z)

)

Re

(

f ′(z)
f ′(z)

)

,

so that ∂x �u = Im

(

f ′′(z)
f ′(z)

)

�v, and

kg0 = 〈∂x �u, �v〉 = Im

(

f ′′(z)
f ′(z)

)

,

which concludes the proof of the lemma. ��
Lemma 6.2. Let γ ⊂ C be a Weil–Petersson quasicircle. Then the geodesic curvature
kg0 : S1 → R is a tempered distribution of order at most 2. More precisely, we have
kg0 ∈ H−1/2(S1).
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Proof. Either using the Poincaré half-plane H and the formula (6.1) or (4.19), we get

kg0 = Re

(

z
f ′′(z)
f ′(z)

)

+ 1. (6.2)

Now, if 0 < ε < 1 and fε : D → � is defined by

fε(z) = 1

1 − ε
f ((1 − ε)z) z ∈ D,

we have (see [59], Lemma 8.2)

lim
ε→0

∫

D

∣

∣

∣

∣

f ′′
ε (z)

f ′
ε(z)

− f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 = 0,

which is equivalent by trace theory to

lim
ε→0

∥

∥log | f ′
ε| − log | f ′|∥∥H1/2(S1)

= 0,

lim
ε→0

∥

∥arg( f ′
ε) − arg( f ′)

∥

∥

H1/2(S1)
= 0.

Using the equivalent semi-norm for Hs spaces given by

‖u‖Hs (S1) =
⎛

⎝

∑

n∈Z
|n|2s |an |2

⎞

⎠

1
2

, if u(z) =
∑

n∈Z
anzn,

we deduce that

lim
ε→0

∥

∥∂θ log( f ′
ε) − ∂θ log( f ′)

∥

∥

H−1/2(S1)
= 0.

Since

f ′′(z)
f ′(z) = 1

ieiθ
∂θ log( f ′(z)),

we deduce that
f ′′
f ′ ∈ H−1/2(S1), which concludes the proof of the lemma by (6.2).

��
Remark 6.3. For other considerations related to trace spaces, see [7] and Definition 5 of [9].

Proposition 6.4. (See also [6]) For all ε > 0, let D+(0, ε) = H ∩ {z : |z| < ε}, where
H = C ∩ {z : Im (z) > 0} is the Poincaré half-plane. For ε > 0 small enough, the map
f : D+(0, ε) → C defined by

f (z) = z ei log log(z),

where log(z) is the principal value of the logarithm on H, is an immersion and log | f ′| ∈
W 1,2(D+(0, ε)). In particular, the curve γ : (−ε, ε) → C such that γ (t) = tei log log(t)

for all t ∈ (−ε, ε) is a part of a Weil–Petersson quasicircle.2 Furthermore, its geodesic
curvature kg0 is given by

kg0 = − 1

t (1 + log2(t))
+ p.v.

∫ ε

−ε

dt

t log(t)
.

2 Beware that the log function here is defined as the trace of our continuous determination
of the logarithm on the upper-half plane and is not the standard log function on (0, ∞).
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Proof. We compute

f ′(z) = ei log log(z) + i

log(z)
ei log log(z) =

(

1 + i

log(z)

)

ei log log(z)

f ′′(z) = − i

z log2(z)
ei log log(z) + i

z log(z)

(

1 + i

log(z)

)

ei log log(z).

Therefore, we have

f ′′(z)
f ′(z) = − i

z log(z)(i + log(z))
+ i

z log(z)
= i

−1 + i + log(z)

z log(z)(i + log(z))
.

Notice that the following identity holds:

|i + log(z)|2 = | log |z| + i(1 + arg(z))|2 = log2 |z| + (1 + arg(z))2.

Therefore, we deduce that

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

= (log |z| − 1)2 + (1 + arg(z))2

|z|2 log2 |z|(log2 |z| + (1 + arg(z))2

≤ 1

log2 |z| + −2 log |z| + 1

log4 |z| ≤ 2

|z|2 log4 |z| + 2

|z|2 log2 |z| ,

and

∫

D(0, 1
2 )

∣

∣

∣

∣

f ′′(z)
f ′(z)

∣

∣

∣

∣

2

|dz|2 ≤ 4π

∫ 1
2

0

dr

r log4(r)
+ 4π

∫ 1
2

0

dr

r log2(r)

= 4π

log(2)
+ 4π

3 log2(2)
< ∞,

which shows that γ is a Weil–Petersson quasicircle. Then, we have by Lemma 6.1 for z ∈ R

kg0 = Im

(

f ′′(z)
f ′(z)

)

= 1 − log |z| + log2 |z|
|z| log |z|(1 + log2 |z|) = − 1

|z|(1 + log2 |z|) + 1

|z| log |z| ,

which concludes the proof of the proposition. ��

Remark 6.5. In particular, we see that there exists curves whose geodesic curvature is a
distribution of order 1. This curve is an example of spiral mentioned earlier in the introduction.

6.2. A Consequence of Theorem 5.5

The new identity of π I L = S3 from Theorem 5.3 and Theorem 5.5 provides a new identity
about holomorphic univalent maps of the plane.
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Lemma 6.6. Let γ ⊂ C be a closed simple curve with finite Loewner energy. We have

4 Re
∫

D

(

f ′′(z)
f ′(z) − 2

f ′(z)
f (z)

+ 2

z

) (

f ′(z)
f (z)

1

1 + | f (z)|2 − 2

z

)

|dz|2

+ 4
∫

D

∣

∣

∣

∣

f ′(z)
f (z)

1

1 + | f (z)|2 − 1

z

∣

∣

∣

∣

2

|dz|2

+ 4 Re
∫

C\D

(

g′′(z)
g′(z) − 2

g′(z)
g(z)

+ 2

z

) (

g′(z)
g(z)

1

1 + |g(z)|2
)

|dz|2

+ 4
∫

C\D

∣

∣

∣

∣

g′(z)
g(z)

1

1 + |g(z)|2
∣

∣

∣

∣

2

|dz|2

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π = 0,

where f and g are univalent maps as in Definition 5.1.

Proof. Recall the definition of S3(γ ) in Definition 5.1:

S3(γ ) =
∫

D

∣

∣

∣

∣

∣

f ′′(z)
f ′(z) − 2

f ′(z)
f (z)

| f (z)|2
1 + | f (z)|2

∣

∣

∣

∣

∣

2

|dz|2

+
∫

C\D

∣

∣

∣

∣

∣

g′′(z)
g′(z) − 2

g′(z)
g(z)

|g(z)|2
1 + |g(z)|2 + 2

z

∣

∣

∣

∣

∣

2

|dz|2

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π

+ 4π log | f ′(0)| − 4π log |g′(∞)| (6.3)

and that π I L (γ ) = S1(γ ) = S3(γ ) from Theorem 5.5. Using the identity (1.5), we obtain

S3(γ ) = S3(i(γ ))

=
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

+ 2

z
+ 2

f ′(z)
f (z)

1

1 + | f (z)|2 − 2

z

∣

∣

∣

∣

2

|dz|2

+
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

+ 2

z
+ 2

g′(z)
g(z)

1

1 + |g(z)|2
∣

∣

∣

∣

2

|dz|2 + 4π log

∣

∣

∣

∣

f ′(0)

g′(∞)

∣

∣

∣

∣

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π

=
∫

D

∣

∣

∣

∣

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

+ 2

z

∣

∣

∣

∣

2

|dz|2 +
∫

C\D

∣

∣

∣

∣

g′′(z)
g′(z)

− 2
g′(z)
g(z)

+ 2

z

∣

∣

∣

∣

2

|dz|2

+ 4π log

∣

∣

∣

∣

f ′(0)

g′(∞)

∣

∣

∣

∣

+ 4 Re
∫

D

(

f ′′(z)
f ′(z)

− 2
f ′(z)
f (z)

+ 2

z

) (

f ′(z)
f (z)

1

1 + | f (z)|2 − 2

z

)

|dz|2
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+ 4 Re
∫

C\D

(

g′′(z)
g′(z)

− 2
g′(z)
g(z)

+ 2

z

) (

g′(z)
g(z)

1

1 + |g(z)|2
)

|dz|2

+ 4
∫

D

∣

∣

∣

∣

f ′(z)
f (z)

1

1 + | f (z)|2 − 1

z

∣

∣

∣

∣

2

|dz|2 + 4
∫

C\D

∣

∣

∣

∣

g′(z)
g(z)

1

1 + |g(z)|2
∣

∣

∣

∣

2

|dz|2

+ 2
∫

D

log |z| 4| f ′(z)|2|dz|2
(1 + | f (z)|2)2 |dz|2 − 2

∫

C\D
log |z| 4|g′(z)|2|dz|2

(1 + |g(z)|2)2 + 4π. (6.4)

Comparing (6.3) and (6.4), we get the claimed identity. ��
Let us check the formula in the case γ = S1. In this case, we have f (z) = z, and g(z) = z,
and the sum in Lemma 6.6 simplifies to

4
∫

D

∣

∣

∣

∣

1

z

1

1 + |z|2 − 1

z

∣

∣

∣

∣

2
|dz|2 + 4

∫

C\D

∣

∣

∣

∣

1

z

1

1 + |z|2
∣

∣

∣

∣

2
|dz|2 + 2

∫

D

4 log |z||dz|2
(1 + |z|2)2

− 2
∫

C\D
4 log |z||dz|2
(1 + |z|2)2 + 4π. (6.5)

First, we have

∫

D

∣

∣

∣

∣

1

z

1

1 + |z|2 − 1

z

∣

∣

∣

∣

2
|dz|2 =

∫

D

∣

∣

∣

∣

z

1 + |z|2
∣

∣

∣

∣

2
|dz|2 =

∫

D

|z|2|dz|2
(1 + |z|2)2 , (6.6)

and an immediate change of variable z �→ 1

z
shows that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫

C\D

∣

∣

∣

∣

1

z

1

1 + |z|2
∣

∣

∣

∣

2
|dz|2 =

∫

D

|z|2|dz|2
(1 + |z|2)2

∫

C\D
log |z||dz|2
(1 + |z|2)2 = −

∫

D

log |z||dz|2
(1 + |z|2)2 .

(6.7)

By previous computations (Remark 3.8), we have
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫

D

4|z|2|dz|2
(1 + |z|2)2 = 4π log(2) − 2π

∫

D

4 log |z||dz|2
(1 + |z|2)2 = −2π log(2),

(6.8)

which shows, by (6.6), (6.7) and (6.8), that the sum (6.5) is equal to

2
∫

D

4|z|2|dz|2
(1 + |z|2)2 + 4

∫

D

4 log |z||dz|2
(1 + |z|2)2 + 4π

= 2 (4π log(2) − 2π) + 4 (−2π log(2)) + 4π = 0,

as expected.
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