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Leveraging large language models for 
predictive chemistry

Kevin Maik Jablonka1,2,3,4, Philippe Schwaller    5, Andres Ortega-Guerrero    1 & 
Berend Smit    1 

Machine learning has transformed many fields and has recently found 
applications in chemistry and materials science. The small datasets 
commonly found in chemistry sparked the development of sophisticated 
machine learning approaches that incorporate chemical knowledge for 
each application and, therefore, require specialized expertise to develop. 
Here we show that GPT-3, a large language model trained on vast amounts 
of text extracted from the Internet, can easily be adapted to solve various 
tasks in chemistry and materials science by fine-tuning it to answer chemical 
questions in natural language with the correct answer. We compared this 
approach with dedicated machine learning models for many applications 
spanning the properties of molecules and materials to the yield of chemical 
reactions. Surprisingly, our fine-tuned version of GPT-3 can perform 
comparably to or even outperform conventional machine learning 
techniques, in particular in the low-data limit. In addition, we can perform 
inverse design by simply inverting the questions. The ease of use and high 
performance, especially for small datasets, can impact the fundamental 
approach to using machine learning in the chemical and material sciences. 
In addition to a literature search, querying a pre-trained large language 
model might become a routine way to bootstrap a project by leveraging the 
collective knowledge encoded in these foundation models, or to provide a 
baseline for predictive tasks.

One of the fascinating advances in machine learning has been the 
development of large language models (LLMs), so-called foundation 
models1–6. These models are appealing because of their simplicity; given 
a phrase, they return text that completes phrases in natural language 
such that, in many instances, one cannot tell that a machine wrote it.

From a scientific point of view, the most striking examples 
are that these foundation models can write sensible abstracts 
for scientific articles or even code for particular programming 
tasks7–12. Recently, it has been shown that these models can also 

solve relatively simple tabular regression and classification tasks13. 
However, as these models were not explicitly trained on these tasks, 
it is a remarkable result5.

That these models can solve simple tasks they are not trained for 
made us wonder whether they can also answer scientific questions 
for which we do not have an answer. As most chemistry problems can 
be represented in text form, we should be able to train these mod-
els to answer questions that chemists have. For example, ‘If I change 
the metal in my metal–organic framework, will it be stable in water?’  
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metals will form a solid solution or multiple phases. Hence, the ques-
tion we would like to ask is: ‘What is the phase of <composition of the 
high-entropy alloy>?’ and our model should give a text completion 
from the set of possible answers {single phase, multi-phase}.

In Extended Data Table 1, we provide the set of questions and 
answers we used to fine-tune the GPT-3 model. These are questions 
and answers on high-entropy alloys for which the phase has been 
experimentally determined. The model tuning via the OpenAI API 
typically takes a few minutes and gives us a new model, which takes 
as input ‘Sm0.75Y0.25’ and gives as text completion ‘1’, which cor-
responds to single phase. This simple example already gives some 
remarkable results. We selected this example to directly compare its 
performance with the current state-the-art machine learning models 
with descriptors specially developed to mimic the relevant chemistry 
for this application24. In Fig. 2, we show that with only around 50 data 
points, we get a similar performance to the model of ref. 24, which was 
trained on more than 1,000 data points.

Classification
These results made us wonder whether similar results can be obtained 
for other properties. Hence, we looked at a range of very different prop-
erties of molecules, materials and chemical reactions. We focused on 
those applications for which conventional machine learning methods 
have been developed and generally accepted as benchmarks in their 
field. In addition, we also compared our model with the top-performing 
ones on tasks from the Matbench25 suite of benchmarks (Supplemen-
tary Note 6.15).

Extended Data Table 2 compares the performance of a fine-tuned 
GPT-3 model with baselines (which can be found in Supplementary Note 
6). For doing so, we fit the learning curves for the GPT-3 models and for 
the baselines and measure where they intersect, that is, we determine 
the factor of how much more (or fewer) data we would need to make 
the best baseline perform equal to the GPT-3 models in the low-data 
regime of the learning curves. The full learning curves for all models 
can be found in Supplementary Information (Supplementary Note 6).

For molecules, we investigated properties ranging from gaps 
between highest occupied (HOMO) and lowed unoccupied (LUMO) 
molecular orbitals and solubility in water to the performance in organic 
photovoltaics. For materials, we focused on the properties of alloys, 
metal–organic frameworks and polymers. Finally, for reactions,  

Such questions are often impossible to answer using theory or require 
highly sophisticated simulations or experiments.

We will always have very little (experimental) data for chemistry 
and material science applications. Hence, it is important that meaning-
ful results can already be obtained with tens to hundreds of data points. 
We know from previous work on applications on text classification or 
generation that this works particularly well using models from the 
Generative Pre-trained Transformer 3 (GPT-3) family5, which were 
trained by the artificial intelligence company OpenAI. In this work, we 
show that these models—when provided with example data—perform 
surprisingly well for various chemistry questions, even outperforming 
the state-of-the-art machine learning models specifically developed 
for these tasks. It is important to realize that while language mod-
els have been used in chemistry before to predict properties14–17 or 
design molecules18–20, they have conventionally been pre-trained on 
chemistry-specific tasks. In contrast, the models we investigate here 
have been trained on text corpi compiled mainly from the Internet 
but still can adapt to various tasks. Although ref. 8 has probed the 
inherent chemistry knowledge of LLMs, we focus on how those models 
perform when they are fine-tuned—that is, the weights are updated—on  
some task-specific dataset. Note that this task-specific fine-tuning 
makes the models less dependent on the prompt structure than 
in-context learning21,22.

We benchmark our model on various datasets and applications to 
illustrate that these models can answer a wide range of scientific ques-
tions—ranging from the properties of materials, to how to synthesize 
materials and how to design materials (Fig. 1). In selecting these ques-
tions, we included some that have been addressed with machine learn-
ing. This allowed us to benchmark against state-of-the-art machine 
learning approaches specifically developed for these applications.

Language-interfaced fine-tuning for 
classification and regression
Approach
Before discussing the different applications in detail, let us first discuss 
how we fine-tune23 the GPT-3 model in practice for a simple but highly 
non-trivial example. High-entropy alloys have attracted much inter-
est as a novel class of structural metals. Interestingly, one has a sheer 
infinite number of possible combinations of metals. From a practical 
point of view, it is important to know whether a given combination of 
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Fig. 1 | Overview illustration of the datasets and tasks addressed in this work. 
In this work, we benchmark GPT-3 on datasets spanning the chemical space from 
molecules over materials to reactions (Supplementary Note 1). On these datasets, 
we investigate different tasks ranging from classification, that is, predicting 

a class (for example, ‘high’, ‘low’) given a text representation of a molecule, 
material or reaction, to regression, that is, prediction of floating point numbers, 
to inverse design—the prediction of molecules. Metal–organic framework 
rendering created with iRASPA60.
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we considered two key cross-coupling reactions in organic chemistry. 
Extended Data Table 2 shows that in the low-data regime, our GPT-3 
model is typically at least as good as the conventional machine learn-
ing model and often needs fewer data. In the high-data regime, the 
conventional machine learning models often catch up with the GPT-3 
model. This makes sense, as for a given size of the dataset, the need 
for additional data and correlations (inductive biases)26 captured by 
GPT-3 might be less needed.

We have to mention that we did not optimize the fine-tuning of 
the GPT-3 model, that is, we did not try to optimize how a sentence is 
presented to the model; one can envision that specific tokenization 
can have better results for chemical sentences9,16,27,28. Also, we did not 
tune the number of times we show an example to a model (that is, the 
number of epochs or the learning rate).

Beyond fine-tuning of OpenAI models
Importantly, we are also not limited to fine-tuning; in Supplementary 
Note 5, we show that we can even achieve good performance with-
out fine-tuning by incorporating examples directly into the prompt 
(so-called in-context learning5,29, that is, learning during inference 
time). This works particularly well with the largest GPT-3 models and 
GPT-4. We are also not limited to using models from OpenAI. In Supple-
mentary Notes 7 and 8, we also show that we could obtain good results 
by fine-tuning the open-source LLM’s parameter-efficient fine-tuning 
techniques on consumer hardware and provide a Python package that 
makes it easy to apply this approach to new problems.

Representation sensitivity
An interesting question is how to represent a molecule or material. Most 
of the literature reports use International Union of Pure and Applied 
Chemistry (IUPAC) names. For machine learning applications, there has 
been a lot of effort to represent a chemical with unique line encodings 
(for example, simplified molecular-input line-entry system (SMILES) 30  

or self-referencing embedded strings (SELFIES)31,32). As the GPT-3 
model has been trained on natural text, one might expect that chemi-
cal names are preferred over line representations such as SMILES or 
SELFIES. Therefore, we investigated different representations for our 
molecular property prediction tasks (see also Supplementary Note 4).  
Interestingly, our results (Supplementary Note 6) show that good 
results are obtained irrespective of the representation. The fact that 
we often get the best performance using the IUPAC name of the mol-
ecule makes fine-tuning GPT-3 for a particular application relatively 
simple for non-specialists.

Regression
A more challenging task than classification is to make a regression 
model, which would allow us to predict the value of a continuous prop-
erty such as the Henry coefficient for the adsorption of a gas in a porous 
material. As we are using a pre-trained language model, performing 
actual regression that predicts real numbers (∈ ℝ) is impossible (with-
out changes to the model architecture and training procedure). How-
ever, in most, if not all, practical applications, the accuracy for which 
we can make predictions is always limited. For example, for the Henry 
coefficient of a material, an accuracy of 1% (or a certain number of 
decimal points) is sufficient for most applications (see Supplementary 
Note 10 for discussion on this error source). Hence, we use molecules 
with Henry coefficients rounded to this accuracy as a training set and 
assume that the GPT-3 model can interpolate these numbers. Of course, 
one could also convert this into a classification problem by making 
tiny bins. For this more challenging regression task, we need more 
data for tuning the GPT-3 model, and we still get a performance that 
can approach the state of the art, but as this approach requires much 
more data, the advantage, except for the ease of training, is less. We 
obtain a similar conclusion for other regression problems (see Sup-
plementary Note 10) and imbalanced classification cases (Supple-
mentary Note 6.8).

Inverse design
One can argue that the ultimate goal of machine learning in chemistry is 
to create a model that can generate molecules with a desired set of prop-
erties. This is also known as inverse design33. Broadly speaking, there 
are two approaches. If we have large datasets, we can train generative 
models such as variational autoencoders34,35 or generative adversarial 
neural networks36,37. Without large datasets, evolutionary techniques 
such as genetic algorithms can generate novel, potentially interesting 
molecules38–41. Those evolutionary methods work best if one can limit 
the underlying chemistry; for example, finding the optimal functional 
group on a material with a well-defined backbone42.

Given that the GPT-3 model can predict the properties of mol-
ecules and materials with a small dataset, trying an inverse design 
strategy is tempting. This would be particularly important in the early 
stages of research; one often has a small set of experimental data points 
and a limited understanding. Yet, we could leverage a fine-tuned GPT-3 
model to generate suggestions for novel materials with similar or even 
better performance. This would be an important step forward. Par-
ticularly as the tuning of such a natural language model is much more 
accessible than the training of conventional machine learning models. 
Here we investigate this setting: Can a fine-tuned GPT-3 propose valid 
molecules that satisfy the constraints or desired properties specified 
in a prompt in natural language? Again, we are illustrating the potential 
for a few case studies.

Molecular photoswitches are organic molecules with extended 
aromatic systems that make them responsive to light. Upon radiation, 
they switch reversibly between different isomers (which changes some 
properties, such as dipole moments). This reversible switching makes 
them interesting molecules for applications ranging from sensing to 
drug discovery. These molecules are complex, making sufficiently 
accurate predictions using first-principles theory very expensive. 
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Fig. 2 | Accuracy of our GPT-3 model for predicting solid-solution 
formation in high-entropy alloys. The figure compares the model’s accuracy 
as a function of the number of training points. The dashed horizontal line 
indicates the performance reported in ref. 24 using random forest (RF) with 
a dataset of 1,252 points and 10-fold cross-validation, that is, corresponding 
to a training set size of around 1,126 points. The dotted line shows the 
performance of a simple rule-based baseline ‘if present in the composition, 
classify as single phase, else multi-phase’. The yellow line we obtained using 
the Automatminer25, which uses as input the chemical composition. The 
Automatminer then returns the best featurization and model among those 
that are implemented using automated machine learning with genetic 
programming (as implemented in the TPOT package61). We additionally tested 
a neural network, CrabNet (red line, default settings)62, that performs well 
using compositions as input. The blue line is the performance of our GPT-3 
model (with error bands showing s.e.m.). This figure shows that we reach 
similar accuracy to the model of ref. 24 with as little as around 50 data points. 
In addition, we also investigated a separate training and test set, for which the 
learning curve is shown in green. In this case, we tested on only compounds 
for which we could not find an exact match with a Google search. The learning 
curves for other metrics can be found in Supplementary Note 6.13.
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Yet, it is important to have some guidance to identify promising mol-
ecules, and machine learning models have been developed for this.  
One of the important properties of these photoswitches is the wave-
length at which there is a maximum in the adsorption spectrum for the 
E and Z isomers. Hence, we fine-tuned GPT-3 with the same data used by 
ref. 43. As we have shown above, we can fine-tune GPT-3 to accurately 
answer questions like ‘What is the pi–pi* transition wavelength of 
CN1C(/N=N/C2=CC=CC=C2)=C(C)C=C1C?’.

For GPT-3, inverse design is as simple as training the model with 
question and completion reversed. That is, answer the question ‘What 
is a photoswitch with transition wavelengths of 324 nm and 442 nm, 
respectively’ with a text completion that should be a SMILES string of 
a meaningful molecule. This approach should be contrasted with the 
approach used by ref. 43, in which a library of molecules is generated, 
and their machine learning model (a Gaussian process regression) is 
used to evaluate the transition wavelengths of each material. If one 
has a lot of knowledge about the system, one can design large specific 
libraries that contain many promising molecules, including molecules 
with transition wavelengths of 324.0 nm and 442 nm. But, such a brute 
force technique is not what we understand as inverse design, as it, 
by definition, cannot predict a molecule that we did not include in  
our library.

A simple test to see whether our model can generate new struc-
tures is to ask it to generate molecules with transition wavelengths 
similar to those from the dataset reported by ref. 43. Extended Data 
Fig. 1 shows a representative sample of the molecules generated by 
the model. As expected, many molecules come from the training set 
(coloured orange in the figure). Importantly, many molecules are not in 
the training set, and, interestingly, some are not even in the PubChem 
database of known chemicals. In Fig. 3, we show that for the molecules, 
the transition wavelength is within a mean absolute percentage error 
of around 10%. Note that as the Gaussian process regression (GPR) 
model of ref. 43 was shown to perform comparably to, if not better 
than, more costly density functional theory simulations, we chose to 
use their model to compute the transition wavelengths for the gener-
ated molecules.

It is interesting to quantify how novel our newly generated mol-
ecules are. We compare these molecules to those collected in ref. 43. We 
quantify the similarity by computing the distance between molecular 
fingerprints. Figure 4 visualizes this by laying out the resulting approxi-
mate nearest-neighbour graph in two dimensions. The orange and 
green spheres represent molecules from the ref. 43 dataset, the blue 
spheres show the novel ones, and the pink ones are not part of the 
PubChem database. As expected, we find many new structures that 
are derivatives of molecules in the ref. 43 database. However, we also 
find branches that are not part of the library of ref. 43, indicating that 
the model generated novel kinds of compounds.

In generating these molecules, we adjusted the so-called softmax 
temperature in the sampling step of GPT-3 models. This temperature 
is conventionally used to generate more natural text. If we set this 
temperature to zero, we will generate text with the most frequently 
used words. We can increase the temperature to make the text more 
natural, making it more likely that less commonly used synonyms 
are chosen. For chemistry, if we aim to complete a SMILES starting 
with carbon, the zero-temperature solution would always complete 
the symbol that most commonly follows carbon (‘(’ in the QMugs 
dataset). In contrast, too-high temperatures would randomly choose  
any element.

The impact of this temperature parameter is shown in Fig. 3. At low 
temperatures, the generated molecules often come from the training 
set and only show a low diversity. Across all temperatures, the gen-
erated molecules seem synthesizable, as judged by a low synthetic 
accessibility (SA) score44. Increasing the temperature gives us more 
diverse and novel structures, but one can also expect more structures 
that make no chemical sense, that is, are invalid.

Stretching the limits
The results on the photoswitches illustrate the potential of LLMs for 
chemistry. To obtain more insight into whether we can trust these 
GPT-3 predictions, we carried out some experiments where we tried 
to stretch the limits.

We have already seen that we can obtain good results independent 
of how we represent a molecule (IUPAC names, SMILES or SELFIES), 
but can GPT-3 interpret an abstract representation of molecules we 
invented? A previous study45 developed a machine learning approach 
to design dispersants using a coarse-grained approach. This dispersant 
was a linear copolymer with four monomer types and a chain length 
between 16 and 48 units, giving a chemical design space of 58 million 
different dispersants. One important goal in this work was to find 
dispersants with the right binding free energy, that is, which poly-
mer length and which monomer sequence is optimal. As there is no 
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Fig. 3 | Photoswitch inverse design metrics as a function of temperature. 
The fraction of valid SMILES indicates the fraction of generated SMILES that 
can successfully be parsed using RDKit (note that it does not plateau at 0, but 
approximately 0.1)63. We then determine the fraction of those that are already 
part of the training set and find that at low temperature GPT-3 tends to restate 
molecules from the training set. To quantitatively capture the similarity of the 
distribution of the generated molecules to the ones from the training set, we 
compute the Fréchet ChemNet distance64, which quantifies both diversity and 
distribution match51 and goes through a minimum at intermediate temperatures. 
For quantifying how well the generated molecules match the desired transition 
wavelengths, we use the GPR models reported by ref. 43 to predict the transition 
wavelengths. The dashed horizontal lines indicate those models’ mean absolute 
error (MAE). Across all temperatures, we found high average synthesizability 
(synthetic accessibility, SA, score44 smaller than 3). Error bands indicate s.e.m.
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way the GPT-3 model knows about the properties or representations 
of the coarse-grained polymers, it is interesting to see if we can get 
any sensible result if we ask the question ‘What is the adsorption free 
energy of coarse-grained dispersant AAAABBBBDDDDAAAACCCC’ or 
as inverse design, ‘Give me a structure of a coarse-grained dispersant 
with a free energy of 17’. Interestingly, for the prediction of the adsorp-
tion free energy, the GPT-3 model outperforms the models developed 
by ref. 45. In addition, it can also successfully carry out the inverse 
design and generate monomer sequences that give the desired com-
position and, with a mean percentage error of around 22%, the desired 
adsorption free energy (the approximation of the ground truth we use 
already has a mean percentage error of around 9%, see Supplementary  
Note 11.1 for details).

In the case of the photoswitches, we have seen that the GPT-3 
model can generate new molecules that are quite different from the 
training set. To explore in detail how far we can stretch the limits of 
what new molecules we can generate, we choose an application for 
which quantum calculations are known to predict the experimental 
values sufficiently accurately. The HOMO–LUMO gap is such an appli-
cation. The HOMO–LUMO gap is relevant, for instance, in electronic 
applications that aim to excite a molecule at a specific energy. This  
HOMO–LUMO gap can be predicted accurately using semi-empirical 
quantum mechanics (GFN2-xTB46), which is computationally afford-
able enough for us to compute for all generated molecules (Supple-
mentary Note 77). Moreover, the QMugs dataset47,48 has listed these 
HOMO–LUMO calculations for 665,000 molecules.

In Supplementary Note 11.3, we show that with the training of only 
500 samples, we can get a reasonable estimate of the HOMO–LUMO 
gap of the molecules in the QMugs dataset. Also, by reverting the ques-
tion, we have our model trained for inverse design. In Supplementary 
Note 11.3, we show that by asking the model ‘What is a molecule with a 
HOMO–LUMO gap of 3.5 eV’, we get similar to the photoswitches—a set 
of novel molecules. These novel molecules are not part of our training 
set and not even part of the QMugs dataset.

We now conduct some experiments on a dummy task to test how 
well the GPT-3 model can extrapolate to HOMO–LUMO gaps for which 
it has not received any training. To mimic this situation, we retrained 
our inverse design model using a dataset that has only molecules with 

HOMO–LUMO gaps smaller than 3.5 eV, and subsequently query the 
model with a question that requires the GPT-3 model to extrapolate 
(and, for example, to find that very small molecules are associated with 
large HOMO–LUMO gaps; a task we selected for only demonstration 
purposes and that can be exploited by generating small molecules).  
We do this by asking more than 1,000 times the question: ‘What is a mol-
ecule with a HOMO–LUMO gap of <XX>’, where each time we slightly 
change the value of the HOMO–LUMO gap, that is, we sample XX from 
a Gaussian centred at 4 eV. Interestingly, the GPT-3 model does pro-
vide structures with a distribution of which our quantum calculations 
confirm that a meaningful fraction has a HOMO–LUMO gap >4.0 eV. 
Again, this is a remarkable result. In our training set, there was not a 
single molecule with a bandgap >3.5 eV, which shows that the GPT-3 
model can make extrapolations. We can do a similar experiment for 
the photoswitches, for which we might have a library of photoswitches 
whose transition wavelengths are all below 350 nm. For practical appli-
cations, however, it can often be essential to have adsorption at larger 
wavelengths. In this case, we can successfully use a fine-tuned GPT-3 
model to generate photoswitch molecules that adsorb at lower energy 
(Supplementary Fig. 75, which we also validated with time-dependent 
density functional theory in Supplementary Note 11.2.2).

These findings inspired us to do an inverse design experiment to 
design molecules with properties that take us far from the training set49. 
We are interested in molecules that have a HOMO–LUMO gap >5 eV. 
From the distribution of HOMO–LUMO gaps in the QMugs database 
(Fig. 5), we see that the average bandgap is around 2.58 eV. Only a hand-
ful of molecules in this database have a HOMO–LUMO gap above 5 eV.

Hence, this is a challenging inverse design problem, as only a few 
materials in the database have the desired properties. Here our experi-
ment is the quantum calculation, and we typically assume that we can 
evaluate hundreds to thousands of materials in a reasonable time. 
From a machine learning point of view, a set of thousands of materials 
is in a very low-data regime. However, from an experimental point of 
view, this is a large but sometimes doable effort. Of course, this is a 
somewhat arbitrary limit, and in Supplementary Fig. 83, we also give 
data for fewer experiments.

We start with the training using a set of hundreds of molecules 
randomly selected from the QMugs dataset (blue distribution in  
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Fig. 4 | TMAP visualization of the generated photoswitches and the training 
set. The tree map (TMAP) algorithm builds a nearest-neighbour graph, which is 
then embedded in two dimensions. Therefore, similar molecules are connected 
with an edge. We colour the points depending on whether they are part of the 
original dataset of ref. 43 but not generated (green) or part of the dataset and 
generated by our model (orange). Our models can also generate molecules that 
have not been part of the photoswitch dataset (note that the model was only 

trained on 92 molecules from this database). In some cases, those molecules 
have been reported before and are part of the PubChem database (blue) or 
are not part of the PubChem database (pink). From this figure, we see that the 
generated molecules sometimes substitutions for molecules in the dataset. In 
other cases, newly generated molecules introduce a completely new scaffold. 
For this visualization, we used the TMAP65 algorithm on photoswitch molecules 
described using MinHash fingerprint with 2,048 permutations66.
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Fig. 5). These selected molecules will have bandgap distribution similar 
to the QMugs dataset. We then query for HOMO–LUMO gaps, now 
around 1,000 times requesting a molecule with a bandgap taken from 
a normal distribution with shifted mean (mean 4.0 eV, s.d. 0.2 eV). We 
evaluated these new molecules (green curve in Fig. 5), which indeed 
shows a shift of the distribution to higher HOMO–LUMO gaps. In the 
next iteration, we retrain the model with the new data and query again 
higher HOMO–LUMO gaps. Figure 5 shows that we have achieved our 
aim after four iterations.

Concluding remarks
Our results raise a very important question: how can a natural lan-
guage model with no prior training in chemistry outperform dedi-
cated machine learning models, as we were able to show in the case 
of high-entropy alloys in Fig. 2 and for various molecule, material 
and chemical reaction properties in Extended Data Table 2? To our 
knowledge, this fundamental question has no rigorous answer. The 
fact that we get good results independent of the chemical represen-
tation illustrates that these language models are very apt at extract-
ing correlations from any text15. For example, we found promising 
results using both conventional chemical names and entirely hypo-
thetical representations. In both cases, the model could quantitatively 
correlate the pattern of repeating units correctly to different kinds  
of properties.

Of course, if we say that the GPT-3 model is successful, it implies 
only that we have established that the GPT-3 model has identified cor-
relations in the current training data that can be successfully exploited 
to make predictions. However, this does not imply that the correlations 
are always meaningful or related to cause–effect relationships. Hence, 
our research does not stop here. The next step will be to use GPT-3 to 
identify these correlations and ultimately get a deeper understanding. 
In this context, we argue that GPT-3 is only a tool to make more effective 
use of the knowledge scientists have collected over the years. It is also 
important to mention that while the training corpus contains chemistry 
information, many, if not most, scientific articles and results (including 

all failed or partially successful experiments50) have not been seen by 
GPT-3. Hence, one can expect an even more impressive performance 
if these data are added to the training data.

As we show in this Article, a machine learning system built using 
GPT-3 works impressively well for a wide range of questions in chemis-
try—even for those for which we cannot use conventional line represen-
tations such as SMILES. Compared with conventional machine learning, 
it has many advantages. GPT-3 can be used for many different applica-
tions. Each application uses the same approach, in which the training 
and use of the model are based on questions formulated in natural 
language. This raises the bar for future machine learning studies, as any 
new models should at least outperform this simple approach instead.

The other important practical point is that using a GPT-3 model in 
a research setting is similar to a literature search. It will allow chemists 
to leverage the chemical knowledge we have collected. GPT-3 has been 
designed to discover correlations in text fragments, and the fact that 
these correlations are extremely relevant to chemistry opens many 
possibilities for chemists and material scientists alike.

Methods
For all the results shown in the main text, we used the smallest ada 
variant of GPT-3 available via the OpenAI API. For fine-tuning, we used 
the same setting for all case studies (8 epochs, learning rate multiplier 
of 0.02). Error bands show, if not otherwise indicated, the standard 
error of the mean.

Data efficiency comparison
To compare the data-efficiency of the GPT-3 models with our baselines, 
we fitted all learning curves to power laws (−a exp(−bx + c)). We then 
used these power laws to find where the best-performing baseline 
shows the same performance as the best GPT-3-based approach at 
the first learning curve point (that performs better than random, as 
measured using the Cohen’s kappa (κ) metric).

Validity checks
To check the validity of the generated SMILES we use the is_valid 
method from the Guacamol package51, which effectively considers a 
SMILES as valid if it can be parsed using RDKit.

GPT-J model
We also performed some of our experiments by fine-tuning the 
GPT-J-6B model52,53 (which has been trained on the Pile dataset54) on 
consumer hardware using 8-bit quantization55 and 8-bit optimizers56 
in addition to the low-rank adaptation (LoRA) technique57.

Data availability
All data used in this work was obtained from public sources and can 
be downloaded from GitHub (https://github.com/kjappelbaum/
gptchem)58.

Code availability
All code created in this work is available on GitHub. The gptchem reposi-
tory (https://github.com/kjappelbaum/gptchem)58 contains all experi-
ments with the OpenAI API. The chemlift repository (https://github.
com/lamalab-org/chemlift)59 contains an implementation supporting 
open-source LLMs.
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Extended Data Fig. 1 | Molecule Cloud for randomly generated photoswitch 
molecules. Molecule Cloud generated using the tool reported by Ertl and 
Rohde67. Aquamarine background indicates samples from molecules in  
the database reported by Griffiths et al.43 that our model did not generate,  
coral indicates the molecules our model generated and that are part of  

Griffiths et al43’s database, light steel blue background indicates samples  
that are generated by our model and that are not part of the database of  
Griffiths et al.43 but part of the PubChem database. Pale violet-red background 
indicates molecules that our model generated but that are part neither of 
PubChem nor the database of Griffiths et al.43.
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Extended Data Table 1 | Example prompts and completions for predicting the phase of high-entropy alloys

These models have been trained using a self-supervised approach, that is, to predict the next token given an input text sequence. This implies we offer the list of questions and answers as 
one large string. The program learns that in our string ‘###’ indicates the end of a prompt and ‘@@@’ the end of a completion. Here, we used the fact that learning one character is cheaper and 
easier, hence 0=multi-phase.
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Extended Data Table 2 | Data-efficiency comparison of best-performing GPT-3-based approaches with best-performing 
baselines

For the best comparison, we also split into (pre-trained) deep-learning (DL)-based baselines (here, MolCLR68, ModNet69, CrabNet62, and TabPFN70) and baselines not using (pre-trained) 
deep-learning approaches (n-Gram, Gaussian Process Regression, XGBoost, random forests, automated machine learning optimized for materials science25) on hand-tuned feature sets. 
For the analysis in this table, we fit the learning curves for the GPT-3 models and for the baselines and measure where the learning curves intersect, that is, we determine the factor of how 
much more (or less) data we would need to make the best baseline perform equal to the GPT-3 models in the low-data regime of the learning curves. Full learning curves for all models can 
be found in Supplementary Note 6. In parentheses, we mention the baseline we considered for each case study. In doing so, we use the following acronyms: t for TabPFN70, m for MolCLR68, 
n for n-Gram, g for GPR71, x for XGBoost72 on molecular descriptors such as fragprints71, xmo for XGBoost model similar to the one in Moosavi et al.73, xj for an XGBoost model similar to the 
one in Jablonka et al.45, mo for the atom-centered model from Moosavi et al.74, c for CrabNet62, prf for the random forest model reported by Pei et al.24, a for automatminer25, mod for ModNet69, 
drfp for differentiable reaction fingerprints75 as input for a GPR71. For the case studies on reaction datasets, we did not consider a deep learning baseline. There are several caveats to this 
analysis. First, focusing on the low-data regime might not always be the most relevant perspective. Second, we only focus on the binary classification setting in this table. Third, we focus on 
the F1 macro score for this table (all cases are class-balanced). Fourth, we consider the performance of the GPT-3 model for ten training data points as a reference. We provide more details in 
Supplementary Note 6. The version of GPT-3 we utilized in this work has been trained on data up to Oct 2019 that mostly comes from web scraping (Common Crawl76 and WebText77) along 
with books corpora and Wikipedia. Structured datasets, however, have not been part of the training. Also, note that our approach works well on representations that have not been used for 
the original datasets (for example, SELFIES, InChI). For the case studies on reaction datasets, we did not consider a deep learning baseline, hence the corresponding values have been omitted 
in the table. For computing the table, we utilized data reported in Refs. 78–88.
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