Abstract

Self-assembled monolayers (SAMs) have displayed great potential for improving efficiency and stability in p-i-n perovskite solar cells (PSCs). The anchoring of SAMs at the conductiv metal oxide substrates and their interaction with perovskite materials must be rationally tailored to ensure efficient charge carrier extraction and improved quality of the perovskite films. Herein, SAMs molecules with different anchoring groups and spacers to control the interaction with perovskite in the p-i-n mixed Sn-Pb PSCs are selected. It is found that the monolayer with the carboxylate group exhibits appropriate interaction and has a more favorable orientation and arrangement than that of the phosphate group. This results in reduced nonradiative recombination and enhanced crystallinity. In addition, the short chain length leads to an improved energy level alignment of SAMs with perovskite, improving hole extraction. As a result, the narrow bandgap (approximate to 1.25 eV) Sn-Pb PSCs show efficiencies of up to 23.1% with an open-circuit voltage of up to 0.89 V. Unencapsulated devices retain 93% of their initial efficiency after storage in N2 atmosphere for over 2500 h. Overall, this work highlights the underexplored potential of SAMs for perovskite photovoltaics and provides essential findings on the influence of their structural modification.|The application of self-assembled monolayer (SAMs) in perovskite solar cells has made the performance of p-i-n structure devices develop rapidly, while the relationship of function group, anchor groups, and spacers often is neglected. It is found that anchoring groups and spacers can affect the coordination between SAMs and perovskite. This work demonstrates different components of perovskites are selective to SAMs. image

Details