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Abstract
The reconstruction of images from measured data is an increasing field of research. For
highly under-determined problems, template-based image reconstruction provides a way of
compensating for the lack of sufficient data. A caveat of this approach is that dealing with
different topologies of the template and the target image is challenging. In this paper, we
propose a LDDMM-based image-reconstruction model that resolves this issue by adding a
source term. On the theoretical side, we show that the model satisfies all criteria for being
a well-posed regularization method. For the implementation, we pursue a discretize-then-
optimize approach involving the proximal alternating linearized minimization algorithm,
which is known to converge under mild assumptions. Our simulations with both artificial
and real data confirm the robustness of the method, and its ability to successfully deal with
topology changes even if the available amount of data is very limited.

Keyword Indirect image registration · Inverse problems · LDDMM · Metamorphosis ·
Variational models

1 Introduction

In medical applications such as computed tomography (CT) [31], images are typically
observed via indirect and potentially noisy measurements. Especially when the amount of
measured data is limited, obtaining meaningful reconstructions is challenging. This is, for
instance, the case in limited-angle CT [17, 31], where sparse data is acquired in order to
minimize exposure time of organisms to X-radiation. In such settings, it is inevitable to add
a priori information about the target into the reconstruction process, e.g., in form of a tem-
plate image that is somehow close to the expected reconstruction. Template-based methods,
outlined in more detail below, encode this closeness assumption directly into the reconstruc-
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tion process. Hence, any reconstruction will strongly depend on the chosen template. If a
good template is available, e.g., from an earlier observation, competing methods such as the
filtered backprojection [31] or total-variation (TV) regularization [39] are outperformed by
large margins [10, Sec. 10]. Clearly, template-based methods can also be applied for other
inverse problems such as deblurring or MRI. In the following, we discus indirect image
matching in more detail. The included examples lead us to the proposed model, which is a
simplified extension of the metamorphosis approach proposed in [18].

Indirect image matching
Let � ⊂ R

d be a bounded domain. Image matching refers to the task of transforming
a template image T ∈ L2(�) to match a target image U ∈ L2(�) as closely as possible
regarding some misfit measure. For indirect image matching, the target U is additionally
unknown and only specified to be a solution of the image-reconstruction problem

K ◦ U + nδ = g, (1)

where K : L2(�) → Y is a (not necessarily linear) data acquisition operator (often related
to a physical process) that maps into a Banach space Y , g ∈ Y is the measurement, and
the noise nδ models measurement imperfections. Consequently, one has to jointly solve a
motion estimation problem and an image-reconstruction problem. Various indirect image
matching models have been proposed in the literature [10, 18, 21, 23, 33, 35]. For all models,
the transformation between the template T and the unknown target U can be modeled with
a partial differential equation (PDE). Essentially, the template‘s domain � is deformed by
a diffeomorphism, usually resulting in transformations that appear natural to humans. This
idea originates from the flow of diffeomorphism model [12, 13, 42], in which image pixel
intensities are transported along trajectories determined by diffeomorphism paths. For com-
prehensive overviews, we refer to [27, 49], and for a historic account we refer to [25]. In the
following, we discuss two indirect image matching models in more detail.

As the space of diffeomorphisms has no natural vector space structure, the popular class
of Large Diffeomorphic Deformation Metric Mapping (LDDMM) image matching models
relies on a subset of deformations generated by admissible (smooth) velocity fields v ∈
V:=L2([0, 1], V ) via the ordinary differential equation (ODE)

d
dt ϕ(t, x) = v

(
t, ϕ(t, x)

)
for (t, x) ∈ [0, 1] × �,

ϕ(0, x) = x for x ∈ �.
(2)

In the definition of V , V is an admissible vector space that continuously embeds into
C1,α
0 (�,Rd), 0 < α ≤ 1, namely the closure of C∞

c (�,Rd) with respect to the Hölder
norm ‖ · ‖C1,α . Using the diffeomorphism ϕ, we implicitly define a transformation path
I : [0, 1] × � → R starting from the template T via I (t, ϕ(t, x)) = T (x). From an Eulerian
perspective, we can link this path I to the velocity v directly [10], namely as the (weak)
solution of the transport equation

∂
∂t I (t, x) + v(t, x)∇x I (t, x) = 0 for(t, x) ∈ [0, 1] × �,

I (0, x) = T (x) forx ∈ �.
(3)

We denote the set of feasible tuples (I , v) ∈ L2([0, 1], L2(�)) × V solving this PDE by A.
Given the data g and the template T , a reconstruction can now be defined as R = I (1, ·) =
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T (ϕ−1(1, ·)),1 where I is a minimizer of the variational problem

min
(I ,v)∈AD(

K ◦ I (1, ·), g
) + λE(v). (4)

Here, the data fidelity term D : Y × Y → R≥0 quantifies the misfit of K ◦ I (1, ·) with the
measurements g, and the regularizer E : V → R≥0 enforces the required smoothness of v

[10]. Note that (2) can be simplified by using linearized deformations and a Taylor expansion
around some initial flow field, leading to optical-flow-based transformation models [1, 6, 22,
35].

However, an image transformation model purely based on diffeomorphisms can yield
unsatisfying reconstructions, e.g., if the images have different mass or topological properties
[10]. To resolve this issue, Gris et al. [18] proposed to replace the flow of diffeomorphism
model (3) underlying (4) with the metamorphosis model [28, 38, 43, 44]. In addition to
the transport of pixel intensities, metamorphosis also allows intensity variations along the
trajectories based on a source term ζ ∈ L2([0, 1] × �). Hence, this model can create or
remove objects during the transformation process. To put this into formulas, metamorphosis
paths I are solutions of the transport equation

∂
∂t I (t, x) + v(t, x)∇x I (t, x) = ζ(t, x) for(t, x) ∈ [0, 1] × �,

I (0, x) = T (x) forx ∈ �.
(5)

We denote the set of feasible tuples (I , v, ζ ) ∈ L2([0, 1] × �) × V × L2([0, 1] × �) by B.
From the Lagrangian perspective, I (t, x) can be equivalently defined using the solution ϕ of
(2)via

I
(
t, ϕ(t, x)

) = T (x) +
∫ t

0
ζ(s, ϕ(s, x)) ds for (t, x) ∈ [0, 1] × �. (6)

The relation between (5) and (6) is commonly known as the method of characteristics [15].
Given the data g and the template T , a reconstruction can then be defined as R = I (1, ·),
where I solves

min
(I ,v,ζ )∈BD(

K ◦ I (1, ·), g
) + λ1E1(v) + λ2E2(ζ ). (7)

Here, the additional regularizer E2 : L2([0, 1]×�) → R≥0 enforces the necessary regularity
of ζ .

Proposed model If we take a closer look at (7), we notice that the objective takes only
I (1, ·) into account and is blind to the path I at all other times. Further, it holds that
I (1, ·) = T (ϕ−1(1, ·))+z, where z ∈ L2(�) is defined via z(ϕ(1, x)) = ∫ 1

0 ζ(s, ϕ(s, x)) ds.
Consequently, any reconstruction R consists of a template deformation and some intensity
change z that depends on ζ and ϕ. In (7), we have a complicated regularization of z in
terms of both E1 and E2. To obtain a simpler reconstruction model, we propose to replace the
underlying transformation model (5) in (7) by

d
dt ϕ(t, x) = v

(
t, ϕ(t, x)

)
for (t, x) ∈ [0, 1] × �,

ϕ(0, x) = x for x ∈ �,

I (x) = T
(
ϕ−1(1, x)

) + z(x) for x ∈ �.

(8)

The set of tuples (I , v, z) ∈ L2(�) × V × L2(�) satisfying (8) is denoted by C. Loosely
speaking, we first deform the template T based on ϕ. Afterwards, we modify the pixel

1 Throughout the manuscript, the inverse of ϕ is always with respect to the spatial coordinate only.
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values with the source z. Based on the simplified transformation model (8), we propose the
reconstruction model

min
(R,v,z)∈CD

(
K ◦ R, g

) + λ1E1(v) + λ2E2(z). (9)

Instead of implicitly regularizing z as in (7), we directly regularize it with E2 : L2(�) →
R≥0. To this end, we can rely on any well-established (convex) regularizer for images. The
reconstruction R in (9) is composed of two summands, where one depends on v and the other
on z. Therefore, designing efficient numerical schemes for (8) appears simpler than for (6),
where we have a highly nonlinear dependence of R on ζ . Additionally, the dimensionality of
z is lower than that of ζ as we do not have a time dependence. Since each tuple (v, z) gives
rise to a unique reconstruction Rv,z , we can eliminate the set C from (9) and end up with

min
(v,z)∈V×L2(�)

Jλ,g(v, z):=D(
K ◦ Rv,z, g

) + λ1E1(v) + λ2E2(z), (10)

where the system (8) is implicitly encoded in Rv,z .
Contributions We study the regularizing properties of the proposed model (10), and

develop efficient numerical schemes for solving it. To the best of our knowledge, the only
other template-based reconstruction model with a source term is [18], but their approach
involves a nonlinear coupling between the deformation and the source part. Further, their
regularizer choice is restricted to differentiable ones. The simulations in [18] are based on
L2 regularization for ζ in (7), which in our experiments turned out to be unsuitable for sparse
data. Better regularizers seem to be necessary to avoid reconstruction artifacts related to the
source term in both (7) and (10). Hence, we propose to use TV regularization instead, which
is known to yield good results for CT problems at reasonable computational cost. With this
choice, we obtain meaningful reconstructions even for sparse data, which is a setting that
[18] does not target. Compared to [23], we achieve reconstructions of similar quality, but
with the advantage that topology changes are possible due to z. The detail of reconstructable
structures that are not present in the template T depends on the available amount of data g,
i.e., we cannot reconstruct detailed structures out of nothing. Hence, the proposed method is
most useful if a good template T is available.

Many algorithmic approaches for the flow of diffeomorphism model have been pro-
posed during the last years [2, 20, 26, 34, 40, 47, 48]. For linear forward operators K ,
these approaches can be often extended to the indirect setting (9) without any complicated
modifications. As Lagrangian approaches turned out to be very efficient for indirect image
matching, we decided to adapt the methods developed in [23, 24], which build upon the FAIR
toolbox [30]. Since the problem is non-smooth due to the TV regularization of z, we cannot
deploy their proposed Gauss–Newton–Krylov solver, and we use the iPALM algorithm [37]
instead. Similarly as in [23], the ODE in (8) is solved with an explicit Runge–Kutta method,
which allows one for efficient algorithmic differentiation of (v, z) �→ Rv,z . By construction
of Rv,z , computing its gradient ∇ Rv,z has basically the same cost as for the LDDMM-based
model [23], which does not involve a source term z. Further, the approach does not require
the storage of multiple space-time vector fields or images at intermediate time instances, as
it is often the case when directly solving the PDE (5) with Eulerian methods. We want to
emphasize that the proposed scheme can be implemented matrix-free, which is crucial when
using dense forward operators K such as the Radon transform. Since iPALM has in general
worse convergence rates than second-order methods, we combine it with a Gauss–Newton
solver for v as post-processing step. This can only improve the objective function values, and
in practice we also observed an improved reconstruction quality.
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Outline In Sect. 2, the necessary theoretical background for the flow equation (2) and the
total variation is provided. For the proposed model (10), existence of a minimizer, stability
with respect to the data, and convergence for vanishing noise are established in Sect. 3. In
order to approximate solutions of (10) numerically, we follow a discretize-then-optimize
approach that involves the iPALM algorithm as outlined in Sect. 4. This allows one to easily
exchange the regularizer for v and z if desired. Our implementation builds upon the FAIR
toolbox [30], which allows for a simple extension to other distances and regularizers that are
already implemented as part of the toolbox. Numerical results for the proposed model are
provided in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Preliminaries

In this section, we briefly review the necessary theoretical background. Diffeomorphisms
Recall that the deformations ϕ are induced by (2). For our theoretical investigations, it is
useful to consider different initial times s ∈ [0, 1], i.e., the modified equation

d
dt ϕs,v(t, x) = v

(
t, ϕs,v(t, x)

)
for (t, x) ∈ [0, 1] × �,

ϕs,v(s, x) = x for x ∈ �.
(11)

Here, the subscripts express the dependence on the initial time s and the velocity field v.
This generalization enables us to move back and forth on trajectories ϕs,v(·, x) starting from
arbitrary time instants s, allowing us to rely on a unified theoretical result. The following
theorem is a reformulation of [43, Thms. 1 and 9] and characterizes the solutions of (11).

Theorem 1 Let v ∈ L2([0, T ],V), where V is continuously embedded into C1,α
0 (�,Rd)

for some 0 < α ≤ 1. Given s ∈ [0, T ], there exists a unique global solution
ϕs,v ∈ C([0, T ], C1(�,Rd)) of (11). Further, the solution operator 	s : L2([0, T ],V) →
C([0, T ] × �,Rd) assigning a flow ϕs,v to a velocity field v is continuous with respect to
the weak topology in L2([0, T ],V).

As ϕt,v(0, ϕ0,v(t, x)) = x , we directly get that ϕ0,v(t, ·) is a diffeomorphism for every
t ∈ [0, 1]. Now, let us have a closer look at the solutions of (8). Since ϕ−1

0,v(1, ·) = ϕ1,v(0, ·),
we conclude by Theorem 1 that vi⇀v in L2([0, T ],V) implies ϕ−1

0,vi
(1, ·) → ϕ−1

0,v(1, ·) ∈
C(�,Rd). Further, [14, Thm. 3.1.10] implies that {ϕ−1

0,vi
(1, ·)}i∈N is uniformly bounded in

C1,α(�,Rd). Hence, [32, Cor. 3] implies that T ◦ ϕ−1
0,vi

(1, ·) → T ◦ ϕ−1
0,v(1, ·) in L2(�). If

further zi⇀z in L2(�), this directly implies Rvi ,zi ⇀Rv,z in L2(�).
Total variation The total variation [39] is a popular regularizer in imaging as it tends to

preserve edges and sharp structures, which is in contrast to other techniques such as linear
smoothing or Tikhonov regularization [7]. For any f ∈ L1(�), the distributional gradient
∇ f ∈ C1

c (�,Rd)∗ is given by

∇ f (ψ):= −
∫

�

f divψ dx ∀ψ ∈ C1
c (�,Rd). (12)

Based on this, the total variation of f ∈ L1(�,R) is introduced as

TV( f ):= sup
{∇ f (ψ) : ψ ∈ C1

c (�,Rd), ‖ψ‖∞ ≤ 1
}
, (13)

and the functions of bounded variation are defined as

BV(�):={
f ∈ L1(�) : TV( f ) < ∞}

. (14)
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Equipped with the norm ‖ f ‖BV :=‖ f ‖L1(�) + TV( f ), BV(�) becomes a Banach space.
A function μ : B(�) → R

d on the Borel σ -algebra B(�) is called a vector-valued Radon
measure if every coordinate function μi : B(�) → R is a Radon measure. We denote by
M(�,Rd) the space of vector-valued finite Radon measures. Due to the Riesz–Markov–
Kakutani representation theorem, it holds C0(�,Rd)∗ ∼= M(�,Rd), where C0(�,Rd)

denotes the continuous functions vanishing at infinity. Hence, we can equipM(�,Rd) with
the associated weak* convergence. For f ∈ BV (�,Rd) it holds

|∇ f (ψ)| ≤ TV( f )‖ψ‖∞ ∀ψ ∈ C1
c (�,Rd), (15)

and since C1
c (�,Rd) is dense and continuously embedded in C0(�,Rd), the gradient ∇ f

can be uniquely extended to a continuous linear functional on C0(�,Rd) using the Hahn–
Banach theorem. Therefore, we can associate a unique measure D f ∈ M(�,Rd) to ∇ f
such that

∇ f (ψ) =
d∑

i=1

∫

�

ψi dD fi ∀ψ ∈ C1
c (�,Rd). (16)

Hence, BV(�) consists of those functions f ∈ L1(�) having a distributional gradient that is
a finite Radon measures. Note that the domain of TV can be extended to L p(�), p ∈ [1,∞),
via

TV( f ):=
{
TV( f ) for f ∈ BV (�),

+∞ for f ∈ L p(�)\BV (�).
(17)

It is well-known that this extension is proper, convex and (weakly) lower semi-continuous
(lsc) [7, Lem. 6.105]. Furthermore, we have for p ≤ d

d−1 the continuous embedding
BV(�) ↪→ L p(�) as well as the Poincaré–Wirtinger inequality ‖P0 f ‖p ≤ TV( f ), where
P0 f := f − |�|−1

∫
�

f dx . More precisely, P0 is the projection onto the complement of the
subspace �0 of the constant functions. The projection onto �0 itself is denoted by Q0. Con-
sequently, TV( f ) is coercive in the sense that ‖P0 fn‖p → ∞ implies TV( fn) → ∞. This
can be used to prove coercivity of functionals involving TV regularization, provided that the
remaining terms are coercive with respect to ‖Q0 fn‖p .

3 Regularizing Properties

Here, we study the regularizing properties of the reconstruction model (10) following the
considerations in [23, Sec. 3] and making the necessary modifications due to additional
source term z.General case Throughout this section, we assume that V fulfills the regularity
requirements from Theorem 1, i.e., V ↪→ C1,α

0 (�,Rd) for some 0 < α ≤ 1. Regarding
the data fidelity term D, the forward operator K , and the regularizers E1, E2, we make the
following assumptions:

1. The operator K : L2(�) → Y is continuous and weak-weak-continuous, i.e., xn⇀x in
L2(�) implies K (xn)⇀K (x) in Y .

2. The functionalD(·, g) is weakly lsc for all g ∈ Y and D( f , ·) is continuous for all f ∈ Y .
3. If D( f , g) = 0, then it holds that f = g.
4. There existsC > 0 such that it holds |D( f , h)−D( f , g)| ≤ CD(g, h) for all f , g, h ∈ Y .
5. For fixed g ∈ Y , any bounded sequence { fn}n∈N ⊂ L2(�) and any sequence {zn}n∈N ⊂

L2(�) with ‖zn‖2 → ∞ it holds that D(K ( fn + zn), g) + E2(zn) → ∞. Further, for
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{vn}n∈N ⊂ V with ‖vn‖V → ∞ it holds that E1(vn) → ∞. This can be interpreted as
coercivity in v and z.

6. The regularizers E1 and E2 are weakly lsc.

Remark 1 These conditions readily imply that if { fn}n∈N, {gn}n∈N are sequences in Y with
fn⇀ f and gn → g, then lim infn→∞ D( fn, g) = lim infn→∞ D( fn, gn). Further, it is easy
to verify that Conditions 1-4 are fulfilled if D is a metric and K a bounded linear operator.

First, we prove existence of a minimizer for (10).

Theorem 2 (Existence of minimizers) For any λ1, λ2 > 0 and g ∈ Y , the problem (10) has
a minimizer.

Proof Let {vn, zn}n∈N ⊂ V × L2(�) be a minimizing sequence for (10). As E1(vn) ≤
J (v0, z0)/λ1 holds for alln ∈ N, the sequence {vn}n∈N is bounded inV byCondition 5.Hence,
there exists a subsequence, also denoted with {vn}n∈N, such that vn⇀v∗ for some v∗ ∈ V . By
Theorem 1 and the discussion thereafter, the sequence fn :=T ◦ϕ−1

0,vn
(1, ·) converges strongly

in L2(�) to f :=T ◦ ϕ−1
0,v∗(1, ·) and is thus bounded. By Condition 5, we conclude that also

{zn}n∈N is bounded. Therefore,we can extract aweakly convergent subsequence, also denoted
with {zn}n∈N, with limit z∗ ∈ L2(�). As K is weak-weak-continuous (Condition 1), we
obtain K (Rvn ,zn )⇀K (Rv∗,z∗). SinceD(·, g), E1 and E2 are all weakly lsc, we get J (v∗, z∗) ≤
lim infn→∞ J (vn, zn) = infv,z J (v, z). Hence, (v∗, z∗) is a minimizer for (10). ��

Note that (10) is non-convex. Hence, we cannot expect uniqueness of the minimizer. If
K is nonlinear, it appears sensible to require that it is completely continuous, i.e., that it
maps weakly convergent sequences to strongly convergent ones. In this case, we can relax
the constraints for D by considering operators that are only lsc. Next, we provide a result
regarding the continuous dependence of minimizers for (10) on the data g ∈ Y .

Theorem 3 (Dependence on the data) Consider a sequence gn → g in Y . For each n ∈ N, let
(vn, zn) ∈ V × L2(�) be a minimizer of the functional Jn :=Jλ,gn , where λ = (λ1, λ2). Then,
there exists a subsequence of {vn, zn}n∈N that converges weakly to a minimizer of J :=Jλ,g.

Proof As (vn, zn) minimizes Jn , it holds

λ1E1(vn) + λ2E2(zn) ≤ Jn(vn, zn) ≤ Jn(0, 0)

= D(
K (R0,0), gn

) + C → D(
K (R0,0), g

) + C, (18)

where the convergence follows by continuity ofD in its second entry (Condition 1). Similarly
as in Theorem 2, we choose a subsequence of {vn}n∈N with limit v∗ such that fn :=T ◦
ϕ−1
0,vn

(1, ·) converges strongly in L2(�) to f :=T ◦ ϕ−1
0,v∗(1, ·), i.e., { fn}n∈N is bounded. By

Condition 4, it holds that

D(
K ( fn + zn), g

) ≤ D(
K ( fn + zn), gn

) + CD(g, gn). (19)

Now, Condition 5 implies that also {zn}n∈N is bounded. Hence, we may extract a weakly
convergent subsequence {vn, zn}n∈N with limit (v∗, z∗) ∈ V × L2(�) and Rvn ,zn ⇀Rv,z in
L2(�). By incorporation of (19), we get that it holds

D(
K (Rv∗,z∗), g

) ≤ lim inf
n→∞ D(

K (Rvn ,zn ), g
) ≤ lim inf

n→∞ D(
K (Rvn ,zn ), gn

)
. (20)
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Now, let (ṽ, z̃) ∈ V×L2(�) be arbitrary. By utilizing (20) and theweak lower semi-continuity
of E1 and E2, we have

J (v∗, z∗) ≤ lim inf
n→∞ Jn(vn, zn) ≤ lim inf

n→∞ Jn(ṽ, z̃). (21)

The continuity of D implies D(K (Rṽ,z̃), gn) → D(K (Rṽ,z̃), g). Thus, it holds that

J (v∗, z∗) ≤ lim inf
n→∞ Jn(ṽ, z̃) = J (ṽ, z̃), (22)

which concludes the proof. ��
Weconclude our investigationwith a convergence result for vanishing noise, provided that we
use an appropriate parameter choice rule λ = γ (δ). This enables us to approximate solutions
of (1).

Theorem 4 (Convergence for vanishing noise) Let T ∈ L2(�), g ∈ Y and assume that there
exists (v̂, ẑ) ∈ V×L2(�) with K (Rv̂,ẑ) = g. Further, assume that γi : R>0 → R>0, i = 1, 2,
satisfy γi (δ) → 0, δ/γ1(δ) → 0 for δ → 0 and γ2(δ)/γ1(δ) → c > 0. Choose a sequence
{δn}n∈N ⊂ R>0 that converges to zero, and a sequence {gn}n∈N ⊂ Y withD(g, gn) ≤ δn. Fur-
thermore, let (vn, zn) be a minimizer of Jn :=Jλn ,gn with λn :=(λ1,n, λ2,n) = (γ1(δn), γ2(δn))

for each n ∈ N. Then there exists a subsequence of {vn, zn}n∈N that converges weakly to a
point (v∗, z∗) with K (Rv∗,z∗) = g.

Proof For every n ∈ N, it holds that

E1(vn) + λ2,n

λ1,n
E2(zn) ≤ 1

λ1,n
Jn(vn, zn) ≤ 1

λ1,n
Jn(v̂, ẑ)

≤ 1

λ1,n
D(g, gn) + E1(v̂) + λ2,n

λ1,n
E2(ẑ)

≤ δn

λ1,n
+ E1(v̂) + λ2,n

λ1,n
E2(ẑ). (23)

Hence, {vn}n∈N and {E2(zn)}n∈N are bounded. Further, D(K (Rvn .zn ), gn) is bounded, which
as in Theorem 3 implies that {zn}n∈N is bounded. Therefore, {vn, zn}n∈N is bounded and
possesses a weakly convergent subsequence (without relabeling) with limit (v∗, z∗), for
which the following estimate holds true

D(
K (Rv∗,z∗), g

) ≤ lim inf
n→∞ D(

K (Rvn ,zn ), g
)

≤ lim inf
n→∞ D(

K (Rvn ,zn ), gn
) ≤ lim inf

n→∞ Jn(vn, zn)

≤ lim inf
n→∞ Jn(v̂, ẑ) ≤ lim

n→∞ δn + λ1,nE1(v̂) + λ2,nE2(ẑ) = 0. (24)

Finally, by using Condition 3, we deduce K (Rv∗,z∗) = g. ��
Specific Setting In our numerical experiments, we work with 2D images, i.e., � =

(0, 1)2 ⊂ R
2, and we choose E2(z):=TV(z). Further, the data fidelity term D is chosen for

all examples with synthetic data as D( f , g) = 1
2‖ f − g‖2, and the regularizer for v as

E1(v):=1

2

∫ T

0

∫

�

‖Bv(t, x)‖2 dx dt, (25)

where B is a differential operator such that Condition (5) is satisfied, i.e., E1 is coercive in v.
Since the Sobolev space V = H3

0 (�,R2) can be continuously embedded intoC1,0.5(�,R2),

123



Journal of Scientific Computing (2024) 98 :57 Page 9 of 24 57

we have to choose a matrix B that encodes all third-order derivatives in space. We want to
remark that our numerical approach in Sect. 4 works for any regularizers of the form (25),
even if it is not coercive.

Now, the specification of problem (10) reads

min
(v,z)∈V×L2(�)

1

2
‖K ◦ Rv,z − g‖2 + λ1

2

∫ T

0

∫

�

‖Bv(t, x)‖2 dx dt + λ2TV(z). (26)

In case that K : L2(�) → Y is linear, bounded and does not vanish for constant functions, the
assumptions underlying our theoretical investigations in the previous paragraph are satisfied:

• As K is linear and bounded, it is also continuous and weak-weak-continuous.
• Due to the norm properties, D is weakly lsc and continuous in both entries. Further,

Condition 3 and 4 also follow from the norm properties.
• We show Condition 5 explicitly. Due to our choice of B, the regularizer E1 is coercive.

Hence, it remains to show the first part of the condition. Let { fn}n be bounded and let
‖zn‖ → ∞. Then, either ‖P0zn‖ → ∞ or ‖Q0zn‖ → ∞. In the first case, we have that
E2(zn) → ∞ and the claim follows by positivity of D. For the second one, we get due
to linearity of K that

K ( fn + zn) = K ( fn + P0zn) + K (Q0zn), (27)

where the first term remains bounded. Since ‖K (Q0zn)‖ → ∞ due to the assumption
that K does not vanish for constant functions, we conclude ‖K ( fn + zn)− g‖ → ∞ and
the claim follows by positivity of E2.

• The regularizers E1 and E2 are chosen such that they are weakly lsc.

Remark 2 Although this is not covered theoretically, we use a normalized-cross-correlation-
based distance DNCC : Y\{0} × Y\{0} → [0, 1] given by

DNCC( f , g) = 1 − 〈 f , g〉2
‖ f ‖2Y ‖g‖2Y

(28)

for our numerical experiments with real data as proposed in [23]. This modification is nec-
essary as the gray value scale between template and target is often different for real data. It
holds that DNCC( f , g) = 0 only implies f = cg with c ∈ R, i.e., Condition 3 is violated.
Further, we do not have the required coercivity with respect to z (Condition 5). Hence, this
setup is not covered by our theory. Nevertheless, our numerical experiments indicate that
DNCC combined with E1 = TV leads to good reconstructions.

If we choose E2 = ‖ · ‖2
L2(�)

instead, we can derive the same theoretical results as for

D( f , g) = ‖ f −g‖2. In this case, Condition 4 and 5 are obsolete, as they are only required to
infer boundedness of z ∈ L2(�) from the boundedness of the objective, which now follows
directly. The remaining conditions are met by DNCC, except for Condition 3. Hence, the
convergence in Theorem 4 holds only up to a scalar.

4 Numerical Approach

In this section, we present a numerical scheme for solving (26). Our approach is based on
the Lagrangian method developed in [23, 24] as well as the iPALM algorithm [4, 37]. The
actual implementation relies upon the FAIR toolbox [29].
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So far, we have not specified the differential operator B in (26). As our approach is guided
by the modular framework of [23, 24], we could use curvature regularization, defined by
B = ∇x , or diffusion regularization, where B = �x . These choices correspond to the H1 and
H2 semi-norm, respectively. However, they do not satisfy the coercivity requirement, i.e.,
Condition 5. Instead, we use the H3 semi-norm, which has been proposed in [23]. Although
our theoretical investigations for (26) in Sect. 3 only hold for the 2D case, we provide the
algorithm in general form, and also deploy it for 3D images later. In the following, we briefly
sketch the components of our approach.

4.1 Discretization

We pursue a discretize-then-optimize strategy. By partitioning every coordinate in m blocks
of length h X = 1/m, the domain (0, 1)d is split into md equally sized cubes. Then, the
template T ∈ L2(�) and the source z ∈ L2(�) are both sampled at the cell-centered
nodes xc ∈ R

md
, resulting in discrete versions T(xc) and z(xc) ∈ R

md
, respectively. Their

values are interpolated by cubic B-splines if off grid values are required. Further, the time
domain [0, 1] is uniformly partitioned into mt units of length ht = 1/mt . Then, the velocity
v : [0, 1] × � → R

d is sampled over cell-centered locations in space and at the nodes in
time, resulting in a discrete velocity vector v ∈ R

N with N = d · (mt + 1) · md .
Lagrangian solver for Rv,z In order to compute the solution map (v, z) �→ Rv,z, we

need to solve the flow equation (11). Here, every function ϕs,v(·, x0) : [0, 1] → � can be
interpreted as a trajectory of some particle with position x0 at initial time s. We computeRv,z
as follows:

1. Computing the characteristics: For numerically solving (11), we employ a fourth order
Runge–Kutta scheme (RK4). Since we require ϕ1,v(0, ·), we solve (11) backwards in
time with Nt equidistant steps of size �t = − 1

Nt
and initial condition ϕ1,v(1, xc) = xc.

To simplify the notation, the remaining discussion is instead based on the explicit Euler
scheme

ϕ1,v(tk+1, xc) = ϕ1,v(tk, xc) + �t I
(
v, tk, ϕ1,v(tk, xc)

)
, (29)

where k = 0, . . . , Nt − 1 and tk = 1 − k�t . Here, I interpolates the velocity at time
tk and transformed positions ϕ1,v(tk, xc). This is necessary as the points ϕ1,v(tk, xc) are
in general not on the grid. Note that the time discretization parameters Nt and mt differ
in general: The first determines the accuracy of the ODE solver, whereas the second is
related to the discretization.

2. Deforming the template T : Based on the output ϕ1,v(0, xc) of the RK4-scheme, we can
evaluate the template T at the deformed grid using interpolation.

3. Computing Rv,z: Finally, we add the source term z and the deformed template T , i.e.,
Rv,z(xc) = T ◦ ϕ1,v(0, xc) + z(xc).

Note that actually all steps of this procedure are independent of the forward operator K , the
data fidelity term D and the chosen regularizers E1, E2. Further, the gradient ∇vRv,z can be
explicitly computed within the Runge–Kutta scheme, which is important for computational
efficiency.

Forward operator Let us denote by K : R
md → R

M , M ∈ N, a finite-dimensional,
Fréchet differentiable approximation of the operator K : L2(�,R) → Y . With the applica-
tion to CT in mind, we discuss a discretization of the d-dimensional Radon transform. More

123



Journal of Scientific Computing (2024) 98 :57 Page 11 of 24 57

generally, if a discretization K of some operator K is given, we can simply insert it into the
model (26).

For given θ ∈ S
n−1 and s ∈ R, the Radon transform of f : Rd → R is defined pointwise

by

R f (θ, s) =
∫

θ⊥
f (sθ + y) dy, (30)

where θ⊥ is the orthogonal complement of span{θ} [31, Chap. 2]. The Radon transform is
linear and thus also Fréchet differentiable. For f ∈ L2(�), the value R( f ) ∈ Y is a function
that maps from the cylinder Sd−1×R toR.We discretize this cylinder as follows: Take p ∈ N

directions in S
d−1. For simplicity, we say that we take one measurement in each direction.

Furthermore, we take the interval (0, 1) instead of R, and split it into q ∈ N equally sized
cells of length 1/q , as we have also done with �. Depending on the dimension d and the
diameter of �, the intervals length requires adjustment. Then, the data is sampled at cell-
centered points yc for each angle, resulting in vectors gi(yc) ∈ R

q , i = 1, . . . , p, and the
entire data vector is represented as g ∈ R

M with M = p · q . A discrete Radon transform is
implemented for both CPUs and GPUs as part of the ASTRA toolbox [36, 45, 46].

Data fidelity term and regularizers We discretize the data fidelity term D(x, y) =
1
2‖x − y‖22 using the midpoint-rule for numerical integration, which results in

DSSD(x, y) = 1

2
hY (x − y)T (x − y) (31)

with hY = 1/q and x, y ∈ R
M , see also [29, Chap. 6.2]. As we consider the Radon transform

for few directions θ ∈ S
n−1 only, we disregard the necessary modifications related to the

integration over the unit sphere. Similarly, the discretization of the regularizer E1 is given by

E1(v) = 1

2
ht h

d
Xv

TBTBv, (32)

where B is a finite-difference counterpart of the chosen differential operator B. To mitigate
boundary effects caused by the discretization of B, we pad the spatial domain and impose
zero Neumann boundary conditions. For the TV regularizer, the norm is again discretized
based on the midpoint-rule and the gradient is replaced by a finite difference counterpart,
resulting in

TV(z) = hd
X

md∑

i=1

‖(∇h X (z))i‖. (33)

In our experiments, we employ backward differences and the boundary is extended by 0. To
this end, we denote by z ∈ ⊗d

i=1 R
m the tensor representation of z ∈ R

md
. For any i =

1, ..., md , zi corresponds to z(i) = zi1,...,id with ik = 1, ...m. Then, it holds that (∇h X (z))i =
(∂k z(i))

d
k=1 with

(∂k z(i)) =
{

1
hx

(
zi1,..,ik+1,..,id − z(i)

)
if ik < m,

0 else.
(34)
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4.2 iPALM

Putting all parts from Sect. 4.1 together, we obtain the discrete problem

min
(v,z)∈RN ×Rmd

DSSD
(
K(Rv,z), g

) + λ1

2
ht h

d
Xv

TBTBv + λ2hd
X

d·md∑

i=1

‖(∇h X (z))i‖. (35)

In the following, we deploy the inertial proximal alternating linearized minimization
(iPALM) algorithm [4, 37] for solving (35). This scheme can solve generic problems of
the form

min
x,y∈E1×E2

�(x, y):=G1(x) + G2(y) + H(x, y), (36)

where E1, E2 are Euclidean spaces, H ∈ C1(E1 × E2) and Gi ∈ �0(Ei ), i = 1, 2, namely
the proper, convex, and lsc functions on Ei . The corresponding iterations are given by

x̄k = xk + αk(xk − xk−1)

xk+1 = proxσ 1
k G1

(
x̄k − 1

σ 1
k

∇x H(x̄k, yk)
)

ȳk = yk + αk(yk − yk−1)

yk+1 = proxσ 2
k G2

(
ȳk − 1

σ 2
k

∇y H(xk+1, ȳk)
)
,

(37)

where proxτ f (x) = argminy
1
2‖x − y‖22 + τ f (y) is the proximal mapping of f . The step-

sizes σ 1
k , σ 2

k > 0 are chosen according to the respective partial Lipschitz-constants of ∇ H ,
and αk > 0 is an inertia parameter, which helps to escape from local minima and boosts
the convergence speed. In [37], the convergence of the iterations (37) is proven under the
assumption that the objective has the Kurdyka-łojasiewicz (KL) property. Among others, this
property holds for semi algebraic functions, which include real polynomials, the ‖ · ‖p-norm
with rational, non-negative p, indicator-functions of semi-algebraic sets, as well as functions
of the form x �→ sup{g(x, y) : y ∈ S}, where S is semi-algebraic and g is a semi-algebraic
function, see [4]. Furthermore, compositions of semi-algebraic functions are semi-algebraic.

Theorem 5 ([37, Thm. 4.1]) Let E1, E2 be Euclidean spaces, H ∈ C1(E1 × E2), and Gi ∈
�0(Ei ), i = 1, 2, such that � in (36) has the KL property. Further, let all functions have finite
infima. Assume that ∇ H is locally Lipschitz continuous and that both xi �→ ∇xi H(x1, x2) are
globally Lipschitz, where the constants L1(x2), L2(x1) possibly depend on the fixed variable
and are bounded on compact sets. Finally, assume

σ 1
k = 1 + 2αk

2(1 − αk)
L1(yk) and σ 2

k = 1 + 2αk

2(1 − αk)
L2(xk+1) (38)

and αk < 0.5 for every k ∈ N. If the sequence generated by (37) is bounded, then it converges
to a critical point.

Remark 3 Although this is not supported by Theorem 5, it turned out that choosing αk =
(k − 1)/(k − 2), σ 1

k = L1(yk) and σ 2
k = L2(xk+1) works very well in practice [37].

Unfortunately, the Lipschitz-moduli L(xk), L(yk) are often unknown or difficult to compute.
Instead, a backtracking scheme can be used to ensure this condition, see [37] for details.
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Next, we want to apply iPALM to problem (35). Both regularizers and the data fidelity
term have the KL property since they are computed via composition of an affine function and
a permissible norm function. Further, the operation (v, z) �→ Rv,z is polynomial in (v, z)
for every component as the RK4 scheme and linear interpolators provide a composition of
polynomial functions. Hence, the objective in (35) has the KL property. We propose to use
the splitting

H : RN × R
md → R, (v, z) �→ DSSD

(
K(Rv,z), g

)
, (39)

G1 : RN → R, v �→ λ1

2
ht h

d
Xv

TBTBv, (40)

G2 : Rmd → R, z �→ λ2hd
X

∑

i

‖(∇h X (z))i‖. (41)

The partial gradients of H are given by

∇vH(v, z) = hY
(
K(Rv,z) − g

)T
∂K(Rv,z)

∂

∂v
Rv,z, (42)

∇zH(v, z) = hY
(
K(Rv,z) − g

)T
∂K(Rv,z), (43)

where ∂K refers to the Fréchet-derivative of the operator K. If K is linear, its derivative
coincides with the operator itself. The derivative ∂

∂vRv,z of the solution map is given by

∂

∂v
Rv,z = ∇xT

(
ϕ1,v(0, xc)

) ∂

∂v
ϕ1,v(0, xc). (44)

Here, ∇xT is the gradient of the interpolated template T . The derivative ∂
∂vϕ1,v(0, xc) can be

computed recursively within the ODE solver for (11). Exemplary, we obtain for the explicit
Euler scheme (29) that

∂

∂v
ϕ1,v(tk+1, xc) = ∂

∂v
ϕ1,v(tk, xc) + �t

∂

∂v
I
(
v, tk, ϕ1,v(tk, xc)

)

+ �t
∂

∂ϕ
I
(
v, tk, ϕ1,v(tk, xc)

) ∂

∂v
ϕ1,v(tk, xc) (45)

for all k = 0, . . . , Nt − 1, see also [30].
Further, we require the proximal mappings of G1 and G2. For G1, it holds that

proxσ1G1
(v) = argminx∈RN

1

2σ1
‖x − v‖2 + 1

2
γ ht h

d
Xx

TBTBx, (46)

where the minimum is determined by the linear system of equations (Id+σ1γ ht hd
XB

TB)x =
v. This system is sparse and efficiently solvable with a preconditioned conjugate gradient
method. Regarding G2, we need to compute proxσ2 TV with the discrete TV (33). As outlined
in [7], this can be done using the primal dual hybrid gradient method [9].

The step-sizes in the iPALM scheme (37) are chosen as the partial Lipschitz con-
stants of ∇vH(v, z) and ∇zH(v, z), respectively. For a linear K, it holds ∇zH(v, z) =
hYKTK(f(Rv,z) − g). Hence, z → ∇zH(v, z) is Lipschitz with L2(v) = hY ‖KTK‖ for
every v. Unfortunately, an upper bound for L1 cannot be derived explicitly. Hence, we have
to rely on backtracking instead.

Remark 4 (Normalized-cross-correlation-based distance) For DNCC, we use the discretiza-
tion

DNCC(x, y) = 1 − (x�y)2

‖x‖2‖y‖2 , (47)
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for which the derivative is given by

∂

∂x
DNCC(x, y) = −2

(x�y)y
‖x‖2‖y‖2 + 2

(x�y)2x
‖x‖4‖y‖2 . (48)

Incorporating (48), we can perform the according gradient steps in the iPALM scheme (37).
Then, also a line search for estimating the Lipschitz constant with respect to z is needed. As
discussed in Remark 2,DNCC should be paired with an L2-regularizer for the source variable
to get theoretical guarantees.Then,weobtainE2(z) = ‖z‖2

L2(�)
,whichwediscretize similarly

as DSSD, namely as

G2 : Rmd → R, z → 1

2
h XzT z. (49)

This results in the proximal operator

proxσ G2
(z) = argminx∈Rmd

1

2σ
‖x − z‖2 + 1

2
h XxT x = 1

1 + σ/h X
z. (50)

Multi-level approach and post-processing Due to the non-convexity of (35), we have
to cope with local minima. To avoid being trapped in one, we follow a multi-level strategy
[30], which also helps to reduce the computational cost. Its different levels refer to different
resolutions of the template and the target. We apply iPALM at each level, starting with the
coarsest resolution. Each computedminimizer is bilinearly interpolated to the next finer scale
to serve as initialization.

This approach requires multi-level versions of the operator K and a method for down-
sampling the measurements g. If these are not available, iPALM can still be performed with
only one scale. For the 2D Radon transform, multi-level versions of the operator K can be
obtained with any backend that takes the discretization of the measurement geometry as an
input. More precisely, assume that the number of grid cells used to discretize � ⊂ R

2 at the
finest level is m = 2l , l ∈ N. In our experiments, we set the number of cells for discretizing
the measurement domain (0, 1) at level k ≤ l to q(k) = 1.5 · 2k and the length of each
cell to h(k)

Y = 1/q(k). Then, a multilevel representation of each measurement gi , i ≤ p, at

cell-centered grid points y j = ( j − 1/2)h(k−1)
Y is given by

g(k−1)
i (y j ) =

(
g(k)

i (y j ) + g(k)
i

(
y j + h(k)

Y

))
/4, (51)

where the denominator arises from averaging over two neighboring grid points and dividing
the edge length of the image domain � in each coordinate direction in half.

Additionally, after applying iPALM, we deploy the second-order inexact Gauss–Newton
method from [23, 24] for refining the velocity v. This method utilizes the same discretization
and Lagrangian solver that is used for iPALM. Due to the linearity of K and the structure
of DSSD, we can indeed fix z and consider the data g̃ = g − K(z) within the corresponding
LDDMM Gauss–Newton scheme for v. We observed that this can compensate the slower
convergence rate of iPALM. Finally, note the described modifications can also be applied
within the setting of Remark 4.

Remark 5 There is a vast literature on alternating minimization and forward-backward
schemes with variable metrics [3, 5, 11, 16, 41], which attempt to improve the conver-
gence speed. For the iPALM scheme (37), our simulations indicate that an adaption of the
metric is most promising for v. To pursue this idea further, we choose a different splitting
of (35) and add G1 to H instead. Hence, G1 = 0 and proxG1

= Id is independent of the
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Fig. 1 Reconstruction for a cartoon like image with 10 measurement angles using our model (26) and the
L2-TV model (52) as a baseline comparison. The reconstruction R obtained with (26) can be decomposed
into a deformation and a source part

chosen metric for the coordinate v. There are different strategies for constructing metrics
such that convergence guarantees can be obtained, e.g., minimize-maximize strategies [11]
or sparse approximations of the Hessian [3]. For a small benchmark, we deployed the same
metric for v as proposed in [23], and solved (35) with a variable metric version of PALM, i.e.,
without the inertia steps. The sufficient decrease of the objective with respect to v is ensured
with the same Armijo line search as in [23]. Experimentally, this has led to similar results
as our post-processing scheme. A more thorough comparison of the approaches could be an
interesting direction of future research.

5 Numerical Examples

Here, we present numerical results for our model (26), discretized and solved numerically
as described in Sect. 4. The code for all experiments is available on Github.2 Since we are
mainly interested in a proof-of-concept, we only investigate CT and leave other inverse
problems for future work. Our examples mostly rely on synthetic data generated from target
images U of size 128 × 128 with range [0, 1]. A corresponding sinogram g is obtained by
applying the Radon transform with ten equally distributed angles in [0, 180] to U. Then,
we add 5% Gaussian noise to get g. Further, we also include one example with real data
from a CT scanner. For all examples, we use a time-dependent velocity field v with a single

2 https://github.com/anttop/FAIR.m.
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time point, and 5 steps in the Runge–Kutta method that solves the associated Eq. (11). The
multi-level procedure starts with resolution 32 × 32 at the coarsest scale. Throughout this
section, all parameters are optimized via grid search.

For the first experiment, the template T is chosen as the Shepp-Logan phantom and the
targetU is a diffeomorphically deformed version of Twith an additional small white square,
see Fig. 1. As TV regularization favors constant areas, this image pair is well-suited for our
model (26), and an almost perfect reconstruction is expected. Due to the additional structure,
a good reconstruction with purely diffeomorphic approaches such as [10, 23] is impossible.
The regularization parameter λ1 splits into λ1 = [λ11, λ21, λ31] for the spatial, temporal and
L2(�,R) regularization of v, respectively. We have chosen λ1 = [0.001, 0.001, 10−6] and
λ2 = 0.1. Recall that the reconstruction R can be decomposed into a deformation part
T(ϕ−1(1, xc)) and a source part z. We observe that the main structure is reconstructed as
deformation of the template T, whereas z reconstructs the additional square, see Fig. 1. This
is indeed the expected behavior for properly chosen parameters. As comparison, we included
a reconstruction with the standard L2-TV model [39], i.e., the solution of

min
R

‖K(R) − g‖22 + λTV(R), (52)

where we have chosen λ = 0.1 based on a grid search. For (52), we observe the typical
reconstruction artifacts related to the Radon transform, i.e., rays crossing the reconstruction.
If we increase λ to avoid these artifacts, the reconstruction looses details. Last, we also
included a reconstruction with E2 = ‖ · ‖2 and λ2 = 0.0001 instead of E2 = TV. This
regularization has been investigated for the metamorphosis model (7) in [18]. As expected,
we get similar artifacts as in (52) with small λ.

In our second experiment, we deal with a pair of images that contain finer details. More
precisely, we have chosen an artificial brain image [19] as template T, which is diffeo-
morphically deformed into the target U [23]. Further, we added a structure in U to get a
non-diffeomorphic setting. We also varied the smoothness of this structure, which leads to
two sub-experiments. In the first one, we added a circle with constant intensity and in the
second one a 2D Gaussian. The obtained results for (26) with λ1 = [0.001, 0.1, 10−6] and
λ2 = 0.2 are depicted in Fig. 2. Note that we increased the contrast for the error maps in
order to improve the visibility. Our method is able to reconstruct all the major structures in
U. Most of the errors occur at the boundaries of the structures, which is partially due to the
employed interpolation. Similarly as reported in [23], our approach struggles with the swirl in
the middle of U. This is most likely due to the large, almost non-diffeomorphic deformation
and the limited amount of data. If we compare the z for the two sub-experiments, we observe
that the reconstruction of the Gaussian is worse, which is not surprising as TV-regularization
favors piece-wise constant images. In absence of topological changes, [23] demonstrated
that a LDDMM-based approach without the source term can yield satisfactory results. A
reconstruction with our method for U without the additional structure is provided in Fig. 3.
For λ1 = [0.001, 0.001, 10−5] and λ2 = 1, the reconstruction consists only of a deformation
part. However, if λ2 is chosen too small, artifacts related to the source z appear.

Next, we comment on the robustness with respect to parameter changes. As the compara-
tive examples in Fig. 3 and 7 show, the choice of parameters significantly impacts the quality
of the reconstruction. For the images from Fig. 2, the influence of the parameter choice in
terms of SSD error and SSIM value is provided in Table 1. Some corresponding recon-
structions are given in Fig. 4. Changing each parameter by an order of magnitude leads to
clearly visible changes in the reconstruction, see Fig. 4. In particular, too large regularization
parameters can repress the effect of their respective component. In contrast, changes on a
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Fig. 2 Artifical brain image with data from 10 equally distributed angles in [0, 180]. The first target contains
an additional circle, which is well-suited for TV regularization of z. The second one contains an additional
2D Gaussian, which is more challenging for this setting

smaller scale lead to robust reconstruction results. For the other examples from this section,
we observed a similar behavior, although the precise scale depends on the underlying set of
images.

For our third experiment, see Fig. 5, we have chosen two X-ray images that are not diffeo-
morphic to each other and contain some noise structures. Finding the correct deformation for
this pair is challenging as the deformation is relatively large and irregular. In this experiment,
we compare the third-order regularizer (λ1 = [0.5, 0.1, 10−6], λ2 = 1) with the curvature
one from [24] (λ1 = [6, 6], λ2 = 1), which imposes less regularity on v. For both choices,
we observe that the model struggles to bend the hand to correctly match the target. This is
most noticeable at the right corner of the palm and at some of the fingers. For the third-order
regularizer, we also notice that the fingers are not spread sufficiently from each other. The
additional or disappearing structures are very fine, such as the noise beside the hands or the
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Fig. 3 Diffeomorphic counterpart to Fig. 2, where U does not contain an additional structure

Fig. 4 Reconstructions of an artificial brain image with various parameters. Drastic changes lead to artifacts
(4a–b), whereas smaller ones lead to similar reconstructions (4c–d) as in Fig. 5d

slight change in intensity on the edges of the bones. Hence, these are not well-suited for
TV regularization and not reconstructed by our method. However, even if we would use a
different E2, it is questionable if the amount of data suffices to reconstruct these structures.
More precisely, reconstructing fine details without sufficient data or an appropriate prior is in
general impossible. Nevertheless, this experiment shows that our model (26) allows to align
image pairs with large deformations between them, even under the presence of noise.

In our last synthetic experiment, we demonstrate that our method is in principal also
applicable to 3D CT reconstruction problems, see Fig. 6. To this end, we use an image pair
from [30] and the same 10 simulated 2D measurements as in [23], which correspond to an
rotation around the third coordinate axis with angles equally distributed in [0, 180]. Due
to the problem size, we use curvature regularization on v with λ1 = [0.07, 0.07] for the
spatial and temporal components, respectively, and for the source zwe use the regularization
parameter λ2 = 0.01. Overall, we obtain a satisfying reconstruction with a SSIM of 0.9060,
which is significantly better than the SSIM of 0.8807 obtained by [23].

In our final experiment, we tackle real CT data from a lotus root cross-section [8]. Since
the recorded data is dense, the underlying target U can be reconstructed via filtered back-
projection. Retroactively, we deformed the computed target U and removed a hole in the
lotus root to obtain a template T with a different topology, see Fig. 7. To get a sparse setting,
we subsampled g with 12 uniformly distributed angles in [0, 180]. As we are already dealing
with real data, no additional noise is added. Unfortunately, the intensity range of the given
sinogram does not match the range of our Radon transform operator K. Therefore, DSSD is
no sensible choice for comparing the real data with the simulated data K(R). Instead, we
useDNCC, which is invariant to the scaling of the images’ intensity, see Remark 2. Although
our theoretical results in Sect. 3 do not apply in this setting, we obtain satisfying numerical

123



Journal of Scientific Computing (2024) 98 :57 Page 19 of 24 57

Ta
bl
e
1

SS
D
-e
rr
or
an
d
SS

IM
fo
rv
ar
io
us

pa
ra
m
et
er
sw

ith
th
e
im

ag
es
fr
om

Fi
g.
2.
Fo

rg
re
at
er
cl
ar
ity
,t
he

de
fo
rm

at
io
n
re
gu
la
ri
za
tio

n
pa
ra
m
et
er
is
ch
os
en

as
λ

=
λ
1
[0.

00
1,
0.
1,
10

−6
]

λ
1
λ
2

0.
02

0.
2

2
20

0.
01

SS
D
:0

.0
07
3
SS

IM
:0

.2
8

SS
D
:0

.0
06
6
SS

IM
:0

.3
0

SS
D
:0

.0
06
1
SS

IM
:0

.3
1

SS
D
:0

.0
05
4
SS

IM
:0

.3
4

0.
1

SS
D
:0

.0
01
9
SS

IM
:0

.4
4

SS
D
:0

.0
00
7
SS

IM
:0

.5
4

SS
D
:0

.0
01
1
SS

IM
:0

.5
1

SS
D
:0

.0
01
3
SS

IM
:0

.5
0

1
SS

D
:0

.0
02
7
SS

IM
:0

.4
2

SS
D
:0

.0
00
8
SS

IM
:0

.5
4

SS
D
:0

.0
01
2
SS

IM
:0

.5
1

SS
D
:0

.0
01
2
SS

IM
:0

.5
1

10
SS

D
:0

.0
04
2
SS

IM
:0

.3
7

SS
D
:0

.0
01
7
SS

IM
:0

.4
9

SS
D
:0

.0
01
6
SS

IM
:0

.5
1

SS
D
:0

.0
02

0
SS

IM
:0

.4
8

10
0

SS
D
:0

.0
05
7
SS

IM
:0

.3
2

SS
D
:0

.0
02
8
SS

IM
:0

.4
4

SS
D
:0

.0
03
3
SS

IM
:0

.4
5

SS
D
:0

.0
03
3
SS

IM
:0

.4
5

123



57 Page 20 of 24 Journal of Scientific Computing (2024) 98 :57

Fig. 5 Reconstruction of a human hand [30] with measurements for 10 angles in [0, 180]. The underlying
deformation is relatively large and the images are non-diffeomorphic. Especially the small noise structures
outside of the bone areas are hard to reconstruct

Fig. 6 Reconstruction of a 3D volume using only ten measurement directions. Each image depicts a slice of
the volume along the third coordinate axis

results using λ1 = [0.01, 0.01, 10−6] and λ2 = 0.001, see Fig. 7. More precisely, our method
manages to find the main deformation and the additional hole. In this real data setting, we
also investigate how a reconstruction with E2 = ‖ · ‖2 instead of E2 = TV performs. Here,
our theoretical results from Sect. 3 hold again. To this end, we included two reconstructions
corresponding to λ2 = 0.1 and λ2 = 0.01, respectively. In the first reconstruction, we have
almost no artifcats, but can also only guess the new hole. For the second one, the hole can be
clearly seen, but the artifcats are much stronger. Either way, the results are inferior to those
generated with E2 = TV.
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Fig. 7 Reconstructions for data obtained by a CT scanner, namely 12 measurements with angles equally
distributed in [0, 180]

6 Conclusions

In this paper, we extended the reconstruction model from [23] to also cope with topology
changes. On the theoretical side, we were able to carry over all of the previous results.
Compared to [18], we utilize a simplified metamorphosis approach, which allows one to use
non-convex regularizers at lower computational cost. The chosen TV regularization enabled
us to obtain satisfying reconstructions even for very limited data without suffering from the
typical artifacts. So far, our experiments are a proof-of-concept. In the future, we also want
to work with larger real data. To this end, it could be necessary to use more sophisticated
(maybe even problem-tailored) regularization methods for z or different data termsD, which
can be incorporated into our model without much effort. Again, we stress that the method
can be easily extended to higher dimensions and other forward operators K. Even without
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the scope of real data, this seems to be a natural direction of future research as our method
is designed in a modular way.
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