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Rational strain design with minimal
phenotype perturbation

BharathNarayanan1,3, DanielWeilandt1,4,MariaMasid 2, LjubisaMiskovic 1 &
Vassily Hatzimanikatis 1

Devising genetic interventions for desired cellular phenotypes remains chal-
lenging regarding time and resources. Kinetic models can accelerate this task
by simulating metabolic responses to genetic perturbations. However,
exhaustive design evaluations with kinetic models are computationally
impractical, especially when targeting multiple enzymes. Here, we introduce a
framework for efficiently scouting the design space while respecting cellular
physiological requirements. The framework employs mixed-integer linear
programming and nonlinear simulations with large-scale nonlinear kinetic
models to devise genetic interventions while accounting for the network
effects of these perturbations. Importantly, it ensures the engineered strain’s
robustness by maintaining its phenotype close to that of the reference strain.
The framework, applied to improve the anthranilate production in E. coli,
devises designs for experimental implementation, including eight previously
experimentally validated targets. We expect this framework to play a crucial
role in future design-build-test-learn cycles, significantly expediting the strain
design compared to exhaustive design enumeration.

Advances in gene editing techniques and the ever-increasing avail-
ability of omics data have spawned intense efforts in metabolism
research. Within the biomedical domain, this has enabled us to glean
broader insights into the metabolic phenotypes of various diseases,
allowing for more informed therapeutic interventions1–3. In bio-
technology, these advances have led to the creation of environmen-
tally friendly, cost-effective bio-foundries using genetically engineered
cellular organisms for optimal production of valuable compounds4.
These metabolic engineering undertakings are typically implemented
as a design-build-test-learn cycle, involving multiple experimentation
stages and fine-tuning strain designs5.

While technological advances have facilitated the genetic
manipulation of organisms, significant challenges remain in deter-
mining the targets and the extent of such manipulations. Since
robustness to changing environmental conditions is essential for the
viability of designed strains, we need to ensure that the genetic

interventions maintain critical cell properties such as the energy
charge and redox potentials6–9. Developing strategies targeting more
than one enzyme is typically necessary to achieve this. Unfortunately,
devising such multi-target strategies by direct experimentation
requires considerable time and resources. One approach to reducing
these costs is to conduct rational metabolic engineering using com-
putational models to narrow down the range of strategies to be
experimentally verified.

In particular, dynamic metabolic models are well suited for this
task since they can capture the temporal evolution of the metabolic
states to environmental and genetic perturbations under real-world
fermentation conditions. However, the lack of available information
about the values of kinetic parameters hampers the development of
thesemodels. Indeed, even forwell-studied organisms suchas E. colior
S. cerevisiae, we can find experimentally obtained values for only a few
parameters in the literature and databases10,11. To infer the values of

Received: 6 December 2022

Accepted: 8 January 2024

Check for updates

1Laboratory of Computational Systems Biology (LCSB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. 2Ludwig Institute
for Cancer Research, Department of Oncology, University of Lausanne, and Lausanne University Hospital (CHUV), Lausanne, Switzerland. 3Present address:
Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK. 4Present address: Lewis-Sigler Institute for Integrative Genomics, Princeton
University, Princeton, NJ 08544, USA. e-mail: ljubisa.miskovic@epfl.ch; vassily.hatzimanikatis@epfl.ch

Nature Communications |          (2024) 15:723 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6470-5083
http://orcid.org/0000-0001-6470-5083
http://orcid.org/0000-0001-6470-5083
http://orcid.org/0000-0001-6470-5083
http://orcid.org/0000-0001-6470-5083
http://orcid.org/0000-0001-7333-8211
http://orcid.org/0000-0001-7333-8211
http://orcid.org/0000-0001-7333-8211
http://orcid.org/0000-0001-7333-8211
http://orcid.org/0000-0001-7333-8211
http://orcid.org/0000-0001-6432-4694
http://orcid.org/0000-0001-6432-4694
http://orcid.org/0000-0001-6432-4694
http://orcid.org/0000-0001-6432-4694
http://orcid.org/0000-0001-6432-4694
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44831-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44831-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44831-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44831-0&domain=pdf
mailto:ljubisa.miskovic@epfl.ch
mailto:vassily.hatzimanikatis@epfl.ch


missing kinetic parameters, researchers have traditionally employed
parameter estimation12–14 and Monte Carlo techniques15–19. Recently,
there have been numerous efforts to use machine learning to accel-
erate the building of these models20–23.

Even when a high-quality kinetic model is available, it is compu-
tationally challenging to determine targets for metabolic engineering
that meet desired design specifications because it requires simulating
the metabolic network’s responses for many putative designs. For
example, to explore all possible strategies formanipulating (increasing
or decreasing) the activities of five enzymes within a middle-sized
metabolic network of 200 reactions (catalyzed by 200 enzymes),
exhaustive enumeration would require performing more than 8:3 �
1010 simulations. Additionally, for all these simulations, wewould need
to analyze whether or not the designed strains meet the specifications
and preserve the robustness of wild-type strains exposed to long-term
evolutionary pressure24. Hence, to perform reliable and comprehen-
sive strain designs, the research community needs systematic,
resource-efficient approaches that leverage the predictive capabilities
of nonlinear kinetic models.

In this work, we report NOMAD (NOnlinear dynamic Model
Assisted rational metabolic engineering Design). This computational
framework scouts the space of candidate metabolic engineering stra-
tegies for those that satisfy the desired design specifications while
preserving the robustness of the original phenotype shaped through
evolutionary pressure and selection. As has been hypothesized and
shown earlier25–27, we achieve this by maintaining their metabolite
concentrations and fluxes close to those of the reference strain. The
rationale of trying to ensure a minimal deviation of the engineered
strain phenotype from that of the reference strain has also been put
forth in a constraint-based modeling approach called MOMA24. In this
work, we go beyondMOMA, which only constrains metabolic fluxes to
stayclose to a reference strain.Our approach, basedonkineticmodels,
allows us to impose constraints not only on fluxes but also on meta-
bolite concentrations and the changes in enzyme levels. This results in
a more accurate representation and design of the studied organisms,
enabling us to capture both their steady-state and dynamic metabolic
behaviors with greater fidelity. Additionally, NOMAD proposes testing
the sensitivity and performance of the designs in nonlinear dynamic
bioreactor simulations thatmimic real-world experimental conditions.
We can then rank the designs and suggest the best performers from
these tests for experimental validation with high confidence. We vali-
date NOMAD through two studies aimed at improving anthranilate
production in previously studied E. coli strains28. We identify two sets
of designs, each comprising five candidate designs, that are robust
across phenotypic and expression uncertainty while providing super-
ior in-silico performance compared with experimentally devised
strategies28. Through its conception, NOMAD lends itself well to the
DBTL (design – build – test – learn) cycle, with every round of iteration
improving the quality of the proposed strain designs. Overall, this
framework has the potential to accelerate the pace at which strain
design breakthroughs are achieved, representing a potent disruptor
within the biomedical and biotechnological domains.

Results
NOMAD for reliable strain designs
The NOMAD workflow consists of three steps (Fig. 1). It starts by
generating a population of putative kinetic models consistent with
experimentally observed omics and cultivation data, physicochemical
laws, network topology, and regulatory interactions. These kinetic
models consist of a systemof nonlinear ordinary differential equations
(ODEs) characterized by a set of kinetic parameters. To generate such
models, we can use traditional kinetic modeling approaches such as
ORACLE15,18,29, K-FIT30, Ensemble Modeling19, MASSPy17, and machine-
learning empoweredmethods such as iSCHRUNK20,22, REKINDLE21, and
RENAISSANCE31.

In the second step of NOMAD, we perform several quality checks
on the kinetic models and identify those that will ensure reliable in-
silico strain design strategies32. In this screening process, we retain
kinetic models that are (i) consistent with experimentally observed
steady-state values ofmetabolic fluxes andmetabolite concentrations,
(ii) locally stable around that steady state; (iii) able to reproduce the
dynamic behavior ofmetabolic responses under industrial production
conditions; (iv) consistent with any available information on studied
phenotype or a piece of expert knowledge; and (v) robust, meaning
that thesemodels resist change and are capable of copingwith various
genetic and environmental perturbations. This phase can be imple-
mented using simulation and analysis tools such as SKiMPy33,
COPASI34, and libRoadRunner35.

In the final step, we use the screened models to design engi-
neering strategies for achieving a chosen metabolic objective, such as
the overproduction of high-value biochemicals. We use Network
Response Analysis26 (NRA) to perform the strain design. NRA casts the
straindesign process as anoptimization problem that uses the outputs
of the kinetic models (“Methods” section) and integrates design con-
straints ranging from the allowable fold changes in concentrations and
fluxes to the extent and number of enzymatic interventions. This way,
we obtain a computationally efficient modus operandi to enumerate
designs and maintain the physiology of the engineered strain close to
the reference physiology through various constraints.

After enumerating alternate strategies, we test their performance
and sensitivity to phenotype and expression variability in fermentation
simulations that emulate real-life conditions. Based on these tests, we
rank the designs and propose the best-performing ones for experi-
mental implementation. Additional NOMAD details are available in the
“Methods” section.

As a case study for testing and validating the NOMAD workflow,
we designed strategies for increasing anthranilate production in E. coli
strainW3110 trpD9223. In an earlier experimental study, the strain was
used as a scaffold for overproducing anthranilate through several
genetic manipulations28. Subsequent subsections cover the results of
the validation studies.

Kinetic models calibrated to E. coli W3110 trpD9923 physiology
We used ORACLE15,16,36,37, implemented in the SKiMPy toolbox33, to
generate a population of 800,000 putative kinetic models that satis-
fied the experimentally observed steady-state behavior of the refer-
ence strain (“Methods” section). However, not all of thesemodelswere
necessarily suitable for strain design due to poor dynamic character-
isticsor poor responses to engineering interventions, necessitating the
process of model screening. We first screened the population of
kinetic models for those with dominant time constants, quantified by
the inverse eigenvalues at the steady state, at least 5× faster than the
doubling time of the cell (“Methods” section). This meant that all
metabolic processes were expected to settle into their steady states
within the doubling time of the cell (“Methods” section).More than 11%
of the generated models (91,852) showed such dynamic character-
istics (Fig. 2a).

Whereas the inverse eigenvalues are a good indicator of the
dynamic of metabolic responses in close vicinity of the steady state,
due to the nonlinear nature of the system, not all models will exhibit
the same dynamic behavior in a batch fermentation setting where
metabolic states change intensely. Therefore, we tested if these
models could reproduce experimentally observed behavior in a batch
reactor. Out of 91,852 models, 212 captured experimentally observed
temporal evolutions of growth, anthranilate, and glucose (Fig. 2b–d).

Next, we evaluated the suitability of these 212 models for strain
design by testing their responses to naturally occurring random per-
turbations in enzyme activities. 10 out of the 212 models proved to be
robust and consistent with the studied strain, exhibiting at least 50%of
the growth of the reference strain (“Methods” section) when subjected
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Fig. 1 | NOMAD overview and required tools for each step.We first integrate
different types of data to build a set of putative kinetic models, represented by a
system of ODEs. Next, we choose models based on dynamic characteristics such as
their stability, ability to reproduce experimental fermentation data, and robustness
to enzymatic interventions. Finally, we use the chosen models to conduct strain

design. This involves solving a MILP optimization problem and enumerating
designs that maintain the engineered strains close to the reference strain, evalu-
ating the performance of these designs, and ranking them for experimental
implementation.
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to these perturbations. These 10models will be collectively referred to
as K_trpD9923. The responses of K_trpD9923 in a batch fermentation
setup show qualitative and quantitative agreement with the experi-
mentally observed time evolutions of growth, anthranilate production,
and glucose consumption (Fig. 2).

Closeness to reference physiology for more reliable designs
Extensive metabolic engineering might steer the engineered strain
towardsmetabolic states with impeded growth or performance as, too
often, the objective of overproduction of a metabolite has a major
tradeoff with the organism’s growth and global biosynthetic pro-
cesses. For example, in efforts to optimize the specific productivity or
yield of target chemicals, metabolic engineering interventions could
inadvertently reduce other cell capabilities, such as ATP production or
redox potential, by redirecting carbon and biosynthetic resources
toward the target pathways and products. Because reference strains
have evolved to maintain healthy and robust physiology, we postulate
that we can engineer a productive strain by redirecting the flux to the
desired objective while remaining as close to the reference state as
possible. Thus, we use the proximity of the metabolic and fluxomic
profile of the engineered strain as a proxy for maintaining a vigorous
phenotype25,26,38. A related concept was also studied in the context of
steady-state flux analysis24. Here, NOMAD uses nonlinear kinetic
models andnetwork responseanalysis (NRA, see “Methods” section) to
implement this concept and constrain the phenotype perturbation
while maximizing productivity.

We examined the impact of the phenotype perturbation con-
straint on the design performance by designing several sets of strains

with an improved yield of anthranilate on glucose for each model in
K_trpD9923. The sets differed by how much the engineered strains
could deviate from the reference strain, quantified through a fold-
deviation of the intracellular metabolite concentrations andmetabolic
fluxes from their values at the reference state. The set of strains closest
to the reference strain could have intracellular concentrations
deviating 2-fold from the reference strain. In contrast, the less con-
strained set could have intracellular concentrations deviating 20-fold
from the reference strain. For all the sets, we allowed up to three
enzyme modifications with a maximum of 5-fold change in their
activities.

Current approaches to strain design using kinetic modeling per-
formametabolic control analysis (MCA)39,40 around the reference state
and rank the target enzymes using the absolute value of the product
flux or yield control coefficient with respect to each enzyme in the
network. This approach does not consider constraints that could
maintain the healthy physiology we discussed above. To understand
the implications of using unconstrainedMCA for strain design, we also
applied a 5-fold change in enzyme activities to the enzymes corre-
sponding to the top 3 anthranilate yield control coefficients for each
kinetic model, without any constraints on concentration and flux
perturbations.

The nonlinear responses of all these engineered strains showed
that the closeness to the reference strain impacted performance
(Fig. 3, Supplementary Note 1, Supplementary Fig. 1). Indeed, for the
groups closest to the reference phenotype (2-fold and 3-fold devia-
tions), the engineered strains retained the dynamic characteristics of
the reference strain while producing higher anthranilate titers (>15%)

a b

c d

Dynamics Fermentation Robustness

800,000 91,852 212 10

Fig. 2 | Results of the model screening process. a We filtered the 800,000
putative kinetic models down to 10 models that possessed the desired linearized
dynamic characteristics, reproduced experimentally observed fermentation
curves, and proved robust to enzymatic perturbations. b–d Comparison of the
simulated growth (b), anthranilate (c), and glucose (d) responses of the 10 models
with experimental batch fermentation data. The orange solid line and the shaded

region represent themedian and the interquartile rangeof the simulated responses
respectively. The solid circles and error bars are the mean and standard deviation
from the triplicate experiments. The behavior of the 10 kinetic models under batch
fermentation conditions showed close agreement with the experimental data.
Source data are provided as a Source Data file.
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at a modest cost to growth (<16%). Moreover, the titers achieved by
these strains (~0.38 g/L) are only attained by the designs with 10-fold
and 20-fold deviations after more than double (~40 h) their fermen-
tation time.

In contrast, the designs with 10-fold and 20-fold deviations
demonstrated slower dynamics than the reference strain, with lower
mean titers and growth at the end of the production period for the
latter (Fig. 3). In a similar vein, the unconstrained designs (‘MCA’ in
Fig. 3) consistently failed to achieve any semblance of growth or pro-
duction of anthranilate. The likely explanation for this is that, by not
constraining the phenotype perturbation, we pushed the engineered
strains far away from the reference strain while disregarding the net-
work effects of the enzyme modifications. Even when we considered
the targets that had a non-negative impact on growth, the resulting
responses were inferior to the designs generated using NRA (Supple-
mentary Note 2, Supplementary Figs 2–4).

These results suggest that it is judicious to generate designs that
minimize phenotype perturbation while respecting other design spe-
cifications, such asmaximal titer and specificproductivity, for the cost-
effective production of valuable biochemicals.

NOMAD designs include validated experimental targets
We employed NRA26 to engineer strains with a maximized yield of
anthranilate with respect to glucose uptake for K_trpD9923 (“Meth-
ods” section). Using the results of the phenotype perturbation study,
we permitted no more than a 3-fold change in concentrations to
ensure we adhered to the phenotype of the reference strain. In addi-
tion, we allowed three enzymemodificationswith amaximumof 5-fold
upregulation and unrestricted downregulation. There were multiple
designs for each model within 5% of the maximal increase in anthra-
nilate yield. The number of such design alternatives for each model
ranged from 2 to 12. In total, we obtained 70 designs involving 37
enzymes across the 10 models, predicting a 90–158% increase in
anthranilate yield. Out of the 70 designs, 41 were unique by member-
ship, meaning that they contained a unique set of three enzymes to be
targeted. A clustering analysis of the 41 unique designs revealed five
distinct groups of alternative enzymatic manipulations meeting the
design specifications (Fig. 4 and Supplementary Note 3).

We found that 8 out of the 37 enzymes involved in the designs
were validated experimental targets for increasing the flux through the
shikimate pathway41–43. Three out of these 8 enzymes, DDPA, DHQS,
and SHKK, belonged to the shikimate pathway, three belonged to
glycolysis, PGI, PPS, and PYK, and two belonged to the pentose

phosphate pathway, TALA and G6PDH2r (Fig. 4). More specifically,
Patnaik et al. increased the carbonflow through the shikimate pathway
by overexpressing DDPA (aroG) alone and DDPA along with PPS
(ppsa)43. All our designs recommend upregulating DDPA, and one, in
particular, suggests overexpressing both DDPA and PPS, along with
SHKK (aroK). Rodriguez et al. reviewed strategies that sought to
increase the production of aromatic amino acids by either increasing
the availability of the precursors to the shikimate pathway or enhan-
cing the activity within the pathway42. The reviewed strategies directly
targeting the shikimate pathway included the upregulation of DDPA,
DHQS (aroB), or SHKK. Among the experimental strategies that tar-
geted phosphoenolpyruvate (pep) or erythrose-4-phosphate (e4p)
availability were those that inactivated the pyruvate kinases (pykAF),
increased the activity of PPS, knocked out PGI (pgi), or redirected
carbon to the pentose phosphate pathway (PPP) through the upre-
gulation of TALA (talB), TKT (tktA), or G6PDH2r (zwf). NOMADdesigns
contained all previouslymentioned interventions except for TKT, both
in terms of the target enzyme and the direction of thesemanipulations
(whether it was over or under-expression).

Interestingly, although one of the generated designs proposes
PYK downregulation in line with the experimental approach (Fig. 4,
DDPA↑, SHKK↑, PYK↓), another design proposes its upregulation
instead (DDPA↑, PYK↑, GLUDy↓), suggesting the possibility of alter-
native regulation patterns when targeting multiple enzymes
simultaneously.

In addition to encompassing several reported experimental
interventions, NOMAD also suggested targets that can achieve the
same impact on anthranilate production as the expert-proposed can-
didates. Some of them frequently appeared in our designs, such as the
downregulation of GLUDy (11/41 designs) and the upregulation of
GLNS (8/41 designs). In contrast, the upregulation of ENO and ICL
appeared only in one design each.

K_trpD9923models qualitatively capture recombinant behavior
The experimental study by Balderas-Hernandez et al.28 included fer-
mentation data from two overproducing strains, W3110 trpD9923/
pJLaroGfbr andW3110 trpD9923/pJLaroGfbrtktA. Both strains contained a
feedback-resistant version of aroG, while the latter also included the
overexpression of transketolase (tktA). The two strains achievedmean
anthranilate titers of 0.44 g/L and 0.75 g/L, respectively.

We implemented the genetic modifications of these two strains in
K_trpD9923 to evaluate the predictive performance of the kinetic
models against the experimentally observed responses. The

wt 2-fold 
change

3-fold 
change

10-fold 
change

20-fold 
change MCA

ba

Fig. 3 | Impact of limiting phenotype perturbation on resulting designs.Mean
anthranilate (a) and biomass (b) responses of engineered strains under different
allowable fold changes in concentrations with respect to the reference strain (wt).
As we permit a greater deviation from the reference physiology, from 2-fold (solid
blue) to 20-fold (dotted blue) changes in concentrations, we observe a decrease in
the titers of anthranilate and biomass across K_trpD9923 at the end of the

fermentation period of the reference strain (18 h). Furthermore, the completely
unconstrained approach to strain design that uses the top-3 control coefficients
alone (MCA) stifles growth as well as anthranilate production. These results
underline the importance of adhering to the reference physiology when con-
ducting strain design. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-44831-0

Nature Communications |          (2024) 15:723 5



experimental data were extracted from the work by Balderas-
Hernandez et al. using an online tool, Webplotdigitizer44. To simulate
the feedback-resistant version of aroG in W3110 trpD9923/pJLaroGfbr,
we modified the K_trpD9923 models by removing DDPA inhibition by
phenylalanine, creating K_trpD9923_d1. Similarly, to simulate W3110
trpD9923/pJLaroGfbrtktA, we removed DDPA inhibition and increased
the enzyme activities of TKT1 and TKT2, creating the in-silico double
mutant, K_trpD9923_d2. Although the in-silico versions of the two
strains provided lower median titers of anthranilate than those
reported experimentally, they captured the performance trends of
both interventions: K_trpD9923_d2 produced better median titers
(0.35 g/L) than K_trpD9923_d1 (0.33 g/L) which were, in turn, superior
to K_trpD9923 (0.31 g/L) (Fig. 5). Our simulated strains adhered more
closely to the glucose uptake and growth of the reference strain than
those observed in the experimental strains (Supplementary Note 4,
Supplementary Fig. 5). This suggests that the in-silico strains diverted
less carbon toward the shikimate pathway than the experimental
strains did. Upon investigation of K_trpD9923_d2, we found that we
needed tooverexpress additional enzymes in the shikimatepathway to

achieve titers that matched those of the experimental double mutant
(Supplementary Note 5, Supplementary Fig. 6). Interestingly, although
we did not integrate information about the two recombinant strains in
the model-building process, our models could reproduce the experi-
mental observation that the difference in anthranilate titers between
the two engineered strains was more significant than the difference
between the wild-type and W3110 trpD9923/pJLaroGfbr strain.

We then evaluated the performance of the NOMAD designs by
comparing their performance in fermentation simulations against
those of K_trpD9923_d1 and K_trpD9923_d2. The superior median
anthranilate titers attained by the NOMAD designs (0.42 g/L) com-
pared to the in-silico versions of the two strains suggested that the
strains W3110 trpD9923/pJLaroGfbr and W3110 trpD9923/pJLaroGfbrtktA
could be further improved (Fig. 5).

Prioritizing NOMAD designs for robust implementation
We cannot know, a priori, which kinetic model from a population of
models most accurately represents a cell’s physiology. We thus con-
ducted a two-stage screening process to ensure that the engineering

Shikimate 
pathway

Pentose
phosphate 
pathway

Glutamine
synthesis

Glycolysis

Krebs 
cycle

Upregulated
Downregulated

Designs

Target Enzym
es

III III IV V

Fig. 4 | Clustering analysis of the 41 unique NRA designs from K_trpD9923
reveals 5 distinct routes for overproducing anthranilate. Each design contains a
unique set of enzymes to be targeted. SHKK Shikimate kinase, CHORS Chorismate
synthase, DHQS 3-dehydroquinate synthase, CHORM Chorismate mutase, ANS
Anthranilate synthetase, ANPRT Anthranilate phosphoribosyltransferase, DDPA 3-
deoxy-D-arabino-heptulosonate 7-phosphate synthetase, GND Phosphogluconate
dehydrogenase, PFK_3 Phosphofructokinase (s7p), RPI Ribose-5-phosphate iso-
merase, G6PDH2r Glucose 6-phosphate dehydrogenase, NADH5 NADH dehy-
drogenase, SUCDi Succinate dehydrogenase (irreversible), HEX1 Hexokinase, PGK

Phosphoglycerate kinase, PYKPyruvate kinase, PGMPhosphoglyceratemutase, PGI
Glucose-6-phosphate isomerase, PPS Phosphoenolpyruvate synthase, GAPD
Glyceraldehyde-3-phosphate dehydrogenase, FBA Fructose-bisphosphate aldolase,
PFK Phophofructokinase, TPI Triose-phosphate isomerase, FBP Fructose-bispho-
sphatase, ENO Enolase, PSERT Phosphoserine transaminase, GLUDy Glutamate
dehydrogenase, GLNS Glutamine synthetase, ACONTa Aconitase, AKGDH
2-Oxogluterate dehydrogenase, ICDHyr Isocitrate dehydrogenase, FUM Fumarate
mutase, ICL Isocitrate lyase, ME2 Malic enzyme (NADP). Source data are provided
as a Source Data file.
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strategies we proposed for experimental implementation remain
consistent across the range of phenotypes these models represent. In
the first stage, we selected designs based on their expected perfor-
mance across all the K_trpD9923 models NRA. In the second stage, we
subjected these designs to more rigorous performance and sensitivity
tests in a bioreactor setting. The preliminary screening, using log-
linear approximations, mitigates the computational cost associated
with nonlinear simulations.

We evaluated the 41 unique designs for each of the models in
K_trpD9923 using NRA, ranked them, and selected the top five designs
with the highest mean predicted increase in anthranilate yield (~93%)
for further scrutiny (Supplementary Note 6, Supplementary Fig. 7,
Supplementary Table 1). Interestingly, all these designs belong to
Cluster III in Fig. 4 and suggest redirecting carbon to the shikimate
pathway by upregulating DDPA and increasing glutamate availability
for glutamine synthesis by downregulating GLUDy (Supplementary
Note 6, Supplementary Fig. 7). Four of the designs also balance the
availability of pep and e4p by targeting glycolysis (HEX1, PYK, PGI) or
the pentose phosphate pathway (GND). The fifth design increases the
enzymeactivity of ANS, which is responsible for anthranilate synthesis.

We then subjected these five designs to nonlinear batch fermen-
tation simulations that closelymimic real-world conditions (“Methods”
section). Based on the evaluation results, we retained four designs that
balance the availability of pep and e4p (Supplementary Note 6, Sup-
plementary Fig. 8). Due to the consistent presenceofDDPA andGLUDy
in all top designs, we evaluated the performance of designs when
perturbing only these two enzymes. The results showed comparable
anthranilate titers to the triple mutants, highlighting their significance
in redirecting carbon toward anthranilate production (Supplementary
Note 7, Supplementary Fig. 9). The results of the in-silico validation
studies underline one of the key features of NOMAD: it is only through
the use of nonlinear simulations that we could conduct such quality
checks andglean insights into the applicability of the different designs.

Multi-strain model calibration improves quantitative accuracy
While the K_trpD9923 models successfully captured the qualitative
trends of the experimental strains W3110 trpD9923/pJLaroGfbr and
W3110 trpD9923/pJLaroGfbrtktA, they fell short in quantitatively repro-
ducing their experimental titers (Fig. 5). To enhance the quantitative
accuracyof ourmodels and provide refineddesigns for overproducing
anthranilate, we developed kinetic models by integrating additional
data on the physiology of recombinant strains.

We first generated 4,000,000 putative kinetic models using
ORACLE and filtered them based on their linearized dynamics

(“Methods” section).We then screened the remainingmodels basedon
their ability to match the experimentally observed growth, glucose
uptake, anthranilate titer, and dynamics of W3110 trpD9923, as well as
the anthranilate titer of W3110 trpD9923/pJLaroGfbr (“Methods” sec-
tion). The screening yielded 35 models that could accurately repro-
duce the behavior of these two strains (Fig. 6a). The 35 models also
outperformed K_trpD9923 in reproducing the anthranilate titer of
W3110 trpD9923/pJLaroGfbrtktA, achieving median titers of 0.65 g/L.
This value is significantly closer to the experimentally obtained titers
of 0.75 g/L compared to K_trpD9923_d2, which predicted a titer of
0.35 g/L. These results demonstrate the benefit of integrating addi-
tional information into the models when accessible.

Among these 35 models, 13 accurately reproduced the experi-
mentally observed anthranilate titers for all three strains (Fig. 6b). We
refer to these 13 models as eK_trpD9923, where ‘e’ stands for
enhanced. The in-silico implementations ofW3110 trpD9923/pJLaroGfbr

and W3110 trpD9923/pJLaroGfbrtktA strains are labeled as
eK_trpD9923_d1 and eK_trpD9923_d2, respectively.

Designs from enhanced models provide superior performance
We used eK_trpD9923 and eK_trpD9923_d2 to generate designs that
produced at least 95%of themaximal anthranilate yield for eachmodel
(“Methods” section). For eK_trpD9923, there were 123 such designs
involving 34 unique enzyme targets. Bioreactor simulations of these
123 designs showed a higher median anthranilate titer (0.78 g/L) than
the two experimental strains (Fig. 7a).

For eK_trpD9923_d2, 36 designs encompassed 14 different
enzymes, with 13 designs being unique by membership. The decrease
in the number of unique designs compared to the designs from
eK_trpD9923 suggests that there were few remaining ways to augment
theperformance of thedoublemutant.We implemented these designs
in bioreactor simulations and found that the mean anthranilate titer
(1.16 g/L) was significantly superior to that attained by eK_trpD9923_d2
(0.71 g/L) (Fig. 7b). The designs also had a 6% increase in productivity
(0.032 g/L/h vs. 0.03 g/L/h) when compared to eK_trpD9923_d2
despite reaching 90% of their maximal titers at a mean of 33 h as
opposed to 21 h.

We performed a clustering analysis on the designs devised with
eK_trpD9923 and eK_trpD9923_d2, which unveiled two distinct groups
of designs sharing common characteristics in the former and three
such groups in the latter (Supplementary Note 8, Supplementary
Figs 10 and 11).

Following this, we conducted a two-stage design screening, as
outlined in the “Methods” section. We ultimately selected the top 5

Fig. 5 | Performance of K_trpD9923 models implementing modifications of
recombinant strains. a Simulated responses of W3110 trpD9923 (wt, orange),
W3110 trpD9923/pJLaroGfbr (black) and W3110 trpD9923/pJLaroGfbrtktA (red) when
they are implemented in K_trpD9923. For comparison, we provide the responses of
the implemented NOMAD designs (blue). The bold lines and shaded regions
represent the median and interquartile ranges of the responses across the 10
kinetic models. b Experimentally recorded data for the three strains. The solid
circles and error bars represent the mean and standard deviations of the triplicate

experiments. The models capture the experimentally observed trends, with the
overexpression of tktA resulting in a superior anthranilate titer compared to the
targeting of aroG alone. NOMAD designs provide a superior titer of anthranilate
when comparedwith the in-silico implementation of the experimental designs. The
temporal evolutions of extracellular glucose and biomass of the in-silico strains
displayed inpanel are provided in SupplementaryNote 4. Source data are provided
as a Source Data file.
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designs as the most robust candidates for experimental implementa-
tion (Supplementary Note 9, Supplementary Figs 12 and 13, Supple-
mentary Table 2). In the case of eK_trpD9923, all five designs
recommended the upregulation of ANS and DDPA, differing primarily
in their choice of the third enzyme, which included FBA, GAPD, PGK,
G6PDH2r, and PGL. These five designs also outperformed the designs
devised using K_trpD9923 when the latter were implemented in
eK_trpD9923 (Supplementary Note 10, Supplementary Fig. 14). For
eK_trpD9923_d2, the top 5 designs all featured ANS upregulation,
coupled with one of the following combinations of interventions:
DHQS and GLUDy, DHQS and AKGDH, DDPA and GAPD, DDPA and
FBA, or DDPA and PGL. Expert knowledge can be employed to conduct
a comparative analysis of the suggested designs and further refine the
selection of designs for experimental implementation to enhance the
performance of strains W3110 trpD9923 and W3110 trpD9923/
pJLaroGfbrtktA.

Discussion
Rational strain design using kinetic models is one of the holy grails of
metabolic engineering since it obviates the need for expensive, high-
throughput experiments and provides a structured approach to strain
design. NOMAD provides a systematic framework to achieve this by
using a first-principles-led approach to build quality kinetic models
and then conduct rational strain design using a judicious choice of
design specifications and constraints.

Although several frameworks exist to produce kineticmodels that
are representative of steady-state behavior, we demonstrate that

carefully choosing models based on their dynamics is also essential.
Through our multi-step screening process, we use fundamental engi-
neering principles to obtain high-quality kinetic models in the first
study that not only reproduce the dynamics of the reference strain but
also capture the trends observed while implementing experimental
engineering strategies.

The usual approach for acquiring a collection of high-quality
kinetic models involves creating a large pool of candidate models and
then pruning them based on several established criteria. However, this
process can be quite burdensome. Alternatively, one could aim to
improve the incidence of high-quality models during the generation
phase itself. We have developed several machine-learning techniques
to achieve this goal, including iSCHRUNK20,22, REKINDLE21, and
RENAISSANCE31. The last two methods have proven particularly
effective by using stratified sampling to produce high-quality models
within kinetic spaces that satisfy the aforementioned criteria.

Using the first case study, we have also shown that it is strongly
recommended to maintain the phenotype of the engineered strains
close to the reference strain. Because we have access to efficient,
accurate, and well-established tools for predicting metabolic respon-
ses for small perturbations, such as Network Response Analysis26, we
retain prediction accuracy without too much perturbing the physiol-
ogy. In thismanner, NOMADovercomes the limited accuracy posed by
log-linear approximations by using smaller, more constrained steps
that provide more robust results in a nonlinear setting. Such a philo-
sophyof cautiously improving the systemperformance is similar to the
windsurfer approach45 in systems and control theory. In the broader

Fig. 7 | Performance of NOMAD designs implemented in enhanced models.
a Predicted temporal evolution of anthranilate titers of the NOMAD designs (blue)
generated using enhanced models of the reference strain - eK_trpD9923. The solid
lines and shaded regions denote the median and interquartile ranges, respectively.
The designs attained a median titer (0.78 g/L) that was higher than those of the
reference strain - trpD9923 (orange), and the in silico implementation of the two

experimentally implemented strains,W3110 trpD9923/pJLaroGfbr (black) andW3110
trpD9923/pJLaroGfbrtktA (red). b Anthranilate curves of the designs for improving
the performance of the in-silico implementation ofW3110 trpD9923/pJLaroGfbrtktA -
eK_trpD9923_d2. These designs attained a median titer of 1.16 g/L, superior to the
simulated titers of the three experimental strains and the NOMAD designs from
eK_trpD9923. Source data are provided as a Source Data file.

Fig. 6 | Impact ofmulti-strain data integration onmodel accuracy. Anthranilate
titers from a the 35 models calibrated on data from two strains – W3110 trpD9923
andW3110 trpD9923/pJLaroGfbr, and b the 13 models calibrated on all three strains,
including W3110 trpD9923/pJLaroGfbtktA. Simulation results are denoted by solid
lines (median) and shaded regions (interquartile range) for W3110 trpD9923
(orange), W3110 trpD9923/pJLaroGfbr (black), and W3110 trpD9923/pJLaroGfbrtktA

(red). Results of the triplicate experiments are denoted by solid circles (mean) and
error bars (standard deviation) for W3110 trpD9923 (circle), W3110 trpD9923/
pJLaroGfbr (cross), and W3110 trpD9923/pJLaroGfbrtktA (triangle). Incorporating
additional data improves accuracy in capturing the experimental behavior of all
three strains. Source data are provided as a Source Data file.
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context of design-build-test-learn cycles, it might be advantageous to
make incremental but reliable improvements, use experimental data
to calibrate models further, and then conduct another computational
study to design subsequent strains.

It is tempting to assume that the strain design process with high-
quality models is seamless. On the contrary, we have shown that
avoiding the inherent combinatorial explosion when conducting
unguided and unbiased rational strain design is not trivial. We achieve
this by judiciously framing an optimization problem around control
coefficients to enumerate multiple routes to achieve the design
objective efficiently. In this manner, NOMAD balances between accu-
racy (offered by nonlinear simulations) and computational efficiency
(associated with log-linear kinetics) and provides a scalable and com-
putationally efficient way to constrain the network effects of the pro-
posed changes while achieving the desired metabolic objective.
Although NOMAD ranks the designs using a defined set of quantitative
criteria, experts working on the problem often possess valuable bio-
logical expertise that allows them to prioritize among the top solu-
tions. A mathematical model may not readily capture their insights,
knowledge, and experience. Nevertheless, NOMAD offers a limited
number of suggestions that satisfy constraints that are not easy to
account for by conceptual design alone.

The enhanced models developed in the second case study effec-
tively reproduced anthranilate production in all three experimental
strains. Moreover, they enabled us to propose reliable targets for
further improving the double mutant strain. This study demonstrated
that the quality of the models significantly improves with the inte-
gration of data from multiple physiologies. It also underscored the
importance of extensive datasets for developing highly accurate
metabolic models. Indeed. even for sophisticated modeling techni-
ques, suchdatasets are essential for unraveling the complex, nonlinear
nature of metabolic responses.

Overall, NOMAD presents a versatile, modular framework whose
concepts are applicable regardless of the model size, the type of
kinetic mechanisms used, or the framework used to build the putative
models. In doing so, it paves the way for accelerating the use of kinetic
models in strain design endeavors.

Methods
Generating kinetic models of E. coli strain W3110 trpD9923
As a proof of concept of theNOMAD framework,we usekineticmodels
to propose rational design strategies for the overproduction of
anthranilate in E. coli W3110 trpD9923. This strain accumulates
anthranilate due to a loss of anthranilate phosphoribosyltransferase
(ANPRT) activity leading to tryptophan auxotrophy. We require
knowledge of the reaction mechanisms and the parameters that
characterize each mechanism to build such kinetic models. The com-
plexity of the metabolic network coupled with physiological and
parametric uncertainty, renders this a challenging task. We used the
ORACLE framework15,16,29,36,46 to overcome these challenges and
develop a set of putative kineticmodels representing the strain for two
case studies. In the first study, we developed kinetic models
K_trpD9923 that were calibrated using the data acquired on the
reference strain alone. In the second study, we developed kinetic
models eK_trpD9923 that were calibrated using data derived from the
experimentally observed behavior of the reference and two recombi-
nant strains. We generated the models through the following steps:
1. Reducedmodel generation: Tobuild a kineticmodel,wefirst need

stoichiometric information about the metabolic network. We
used redGEM47 and lumpGEM48 to create a reduced model of
E. coli and then removed the ANPRT reaction to mimic the non-
sense mutation in trpD9923. We retained all reactions belonging
to the core subsystems – glycolysis, pentose phosphate pathway
(PPP), the Krebs cycle, anaplerotic reactions, the shikimate path-
way, and glutamine synthesis, and added a single reaction for

growth by lumping the biosynthetic reactions. The resulting net-
work had 196 reactions (with 81 transport reactions) and 159
metabolites, spread across 2 compartments, the cytoplasm and
the periplasm.

2. Data integration – metabolomics, fluxomics & thermodynamics:
Before generating samples of steady-state concentrations and
fluxes for the two studies, we integrated exo-metabolomic and
exo-fluxomic information obtained at the start of the exponential
phase for the reference W3110 trpD9223 strain28. Since no lag-
phasewasobserved in this strain, this corresponded to the startof
the fermentation process itself. For the glucose uptake rate and
the growth rate, we fitted analytical batch fermentation curves to
the experimental data28. We used information on the M9minimal
medium content to constrain the extracellular metabolite
concentrations. In addition to this, we integrated general
metabolomics and thermodynamics data49–51.
In the second study, our primary objective was to enhance the
quantitative accuracy of our predictions. To achieve this, we
constructed improved kinetic models by integrating additional
information derived from the experimental strains. Before
embarking on this endeavor, we sought to comprehend why the
models in the first study failed to capture the titers for W3110
trpD9923/pJLaroGfbrtktA accurately. In experiments, this strain
produced anthranilate titers (0.75 g/L) that were 150% and 75%
higher than W3110 trpD9923 (0.31 g/L) and W3110 trpD9923/
pJLaroGfbr (0.44 g/L), respectively, indicating that transketolase
activity had a significant impact on anthranilate production. In
comparison, the kinetic models of the strain, K_trpD9923_d2,
were relatively insensitive to tktA overexpression as evinced by
their reduced titers (0.35 g/L). Our analysis revealed the root
cause of this poor response is that TKT1 and TKT2 are close to
thermodynamic equilibrium. It is well known in the literature that
enzymes that operate near equilibrium do not exert significant
control over metabolic fluxes18. We incorporated this insight
whenbuildingmodels in the second study andensured thatTKT2
was displaced away from equilibrium by forcing its Gibbs free
energy to be at least 1.25 kcal/mol.

3. Sampling of steady-state concentrations and fluxes: We used
thermodynamics-basedfluxbalance analysis (TFA)52 implemented
in pyTFA53 to generate 4000 steady-state samples that resulted in
at least 80% of the maximal growth for both studies. These
samples contain fluxes, concentrations, and thermodynamic
variables associated with each reaction (ΔG00,ΔG0). Incorporating
thermodynamic information in TFA guarantees that the sampled
fluxes and concentrations adhere to the second law of
thermodynamics.

4. Data integration – kinetic reaction mechanisms: Depending on
the stoichiometry of each reaction in the metabolic network, we
assigned a reaction mechanism (Supplementary Note 11, Supple-
mentary Data 1). The primary mechanisms we used were the
Generalized Reversible Hill54, and Convenience kinetics55, both of
which capture enzymesaturation.Weusedmass action kinetics to
model periplasm to extracellular transports. Considering the
importance of regulatory networks within the cell, we also mod-
eled four types of allosteric regulation: (i) competitive inhibition,
(ii) uncompetitive inhibition, (iii) mixed inhibition, and (iv) acti-
vation.Weobtained regulatory information fromanearlier kinetic
modeling study56. Considering the focus of our work on anthra-
nilate production through the shikimate pathway, we also added
the inhibition of aroGbyphenylalanine57 and the inhibition ofANS
by tryptophan58. Overall, we incorporated regulatory information
for 31 reactions, including interactions for 5 reactions in the Shi-
kimate pathway (Supplementary Note 11, Supplementary Data 2).

5. Kinetic model generation: With the stoichiometry and reaction
mechanisms at hand, we needed to determine the kinetic
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parameter sets that characterize the system of ODEs using the
ORACLE framework15.Webuilt putative kineticmodels for thefirst
case study by generating sets of kinetic parameters around each
of the 4000 steady-state samples. ORACLE ensures that the
sampled kinetic parameters are consistent with the steady-state
concentrations and the thermodynamic displacements of each
reaction. Each combination of a steady-state profile and its
associated kinetic parameter set constituted one kinetic model.
During sampling, we pruned the kineticmodels for linear stability
and retained 200 models per steady state whose Jacobian matrix
had all negative eigenvalues. In this manner, we generated
800,000 kinetic models that were locally stable around the
reference steady states.

For the second study, we generated 1000 sets of kinetic para-
meters for each steady state, yielding a total of 4,000,000 locally
stablemodels.We sampledmoremodels in the second than in the first
study to increase the probability of finding models that could repro-
duce the behavior of all three strains in a batch fermentation setting.

Screening kinetic models
Once the initial set of kinetic models is available, we screen them to
find the ones that are representative of the dynamic characteristics
of the reference strain. The screening process follows four con-
secutive criteria to evaluate the models: (i) physiologically relevant
linearized dynamics, (ii) robustness to perturbations in a nonlinear
context, (iii) ability to reproduce experimentally observed temporal
data, and (iv) robustness to enzymatic perturbations. In each step,
we increase the robustness and quality of themodels that satisfy the
requisite criteria. More specifically, during the screening process,
we screen for:
1. Linearized dynamics: We built each kinetic model from the initial

set around a steady-state consistent with the integrated experi-
mental data. However, not all of thesemodels necessarily capture
the experimentally observed dynamics of the metabolic network.
To identify models with physiologically relevant dynamic proper-
ties, we assume that: (i) any experimentally observable steady
state is locally stable; and (ii) since metabolic reactions occur at a
timescale of seconds and milliseconds, metabolic processes
should settle before the cell division, which is at a timescale of
minutes and hours.
To this end, we first linearize the models around their steady
states, and estimate the time constants using the eigenvalues of
the Jacobian. To compute the Jacobian, we need the kinetic
parameters computed by a kinetic modeling technique and the
steady-state concentrations in the metabolic network. These
concentrations can beobtained by integrating the set of ODEs till
they reach a steady state as done by MASSpy17 or Ensemble
Modeling (EM)19, or directly from the constraint-based models
used to build the kinetic models as in pyTFA53. We then use the
calculated eigenvalues and time constants to screen the models.
A necessary condition for local linear stability of the system
around the steady state is that its Jacobian has eigenvalues with
negative real parts, i.e., Re ðλiÞ<0,8i, implying that all infinitesi-
mal perturbations to the system will eventually return to the
original state of the system. However, our interest extends
beyond whether the perturbed system will return to its original
state but also how quickly it will do so. Therefore, in addition to
screening based on local stability, we also use the dominant time
constant of the model, τd (Eq. 1), to screen for models with
physiologically relevant dynamics.

τd =
1

min
i

jRe ðλiÞj ð1Þ

Metabolic processes occur on different time scales, ranging from
milliseconds to minutes, and the dominant time constants
depend heavily on the organism. Metabolic responses to per-
turbations should settle down before cell division. According to
the dynamical systems theory, these responses should reach
99.3% of their original steady states within 5 dominant time
constants. Therefore, to have a model whose responses settle by
the doubling time, its dominant time constants should be five
times smaller than the doubling time.
The reference strain, E. coli W3110 trpD9923, had a maximal in-
silico growth rate of 0.32/h, corresponding to a doubling time of
130min. For building K_trpD9923 in the first study, we chose
kineticmodelswith a dominant timeconstant of less than 24min.
Models thatmeet this conditionwill likely return to 99.5%of their
steady-state value within the doubling time when subjected to
small perturbations (Supplementary Note 12). We set the time
constant threshold for the enhanced models, eK_trpD9923, at
43min, indicating that models meeting this criterion would
return to 95% of their steady-state values within the doubling
time. This relaxed constraint expanded the selection of models
available for matching the experimentally observed behavior of
the three strains.

2. Nonlinear response to concentration perturbations: The preced-
ing linear stability analysis provides information on how the net-
workwill respond to infinitesimally smallperturbations. However,
in actual fermentation settings, the cells traverse different phases,
such as the lag and exponential phases, during which there are
significant fluctuations in concentration profiles. Before using the
chosen kinetic models for strain design, we want them to be
robust to such large-scale concentration changes. In the presence
of experimental fermentation data, we can directly verify the
robustness of our models by checking if they can reproduce the
fermentation curves. However, in the absence of such temporal
data, we can verify the robustness of the models using their
nonlinear responses to randomly applied concentration perturba-
tions. To do this, we apply a ‘k-fold’ perturbation to the steady-
state concentrations of each kinetic model and integrate the
system of ODEs to verify whether or not the perturbations are
damped out before the cell’s doubling time. We repeat this ‘n-
times’ and select thosemodels for which all the perturbedmodels
return to the original steady state within the physiological
timescale of the cell.
This step was unnecessary for both studies as we had ample
fermentation data to calibrate our models.

3. Reproduction of batch fermentation data: NOMAD integrates
information on the temporal evolution of key metabolite con-
centrations, when available, by selecting models that reproduce
the data within reasonable bounds. We first integrate all known
information about the inoculum and the fermentation medium
and run batch fermentation simulations using themodels that are
selected in the previous step. We then choose those models that
can accurately capture experimental fermentation data, which is
available in the form of growth curves, secretions, and uptakes.
In thefirst study,wecalibratedmodels to reproduce the behavior
of the reference strain, W3110 trpD9923, in batch fermentation
experiments. We integrated inoculum information provided in
the experimental work28 and ran nonlinear simulations for each
model that passed the screening based on linearized dynamics.
We then chose those models within 5% and 10% of the final
steady-state values of growth and extracellular anthranilate,
respectively, whose fermentation times were less than 20h.
Including fermentation time in the pruning ensured that the
models adhered to the experimentally observed dynamics of the
strain in addition to the final titers.
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The kinetic models in the second study were calibrated on data
from the reference strain, W3110 trpD9923, and from the two
overproducing strains, W3110 trpD9923/pJLaroGfbr and W3110
trpD9923/pJLaroGfbrtktA. We integrated inoculum and medium
data and simulated all three strains using the models that passed
the screening based on linearized dynamics. For the two
recombinant strains, we removed the inhibition of DDPA by
phenylalanine by setting the inhibition constants to arbitrarily
large numbers. Furthermore, we modeled tktA overexpression
by applying a 10-fold increase to the activities of TKT1 and TKT2.
We first selected models that could reproduce the behavior of
W3110 trpD9923 and W3110 trpD9923/pJLaroGfbr using the fol-
lowing criteria: (i) the simulated final growth and anthranilate
titers of the reference strain should be within 10% and 20% of
their experimental values (1.29 g/L and 0.31 g/L), (ii) the simu-
lated anthranilate titers of the recombinant strains should be
within 12.5% of those recorded experimentally (0.44 g/L). The
models that passed this screening were further filtered for those
that could produce anthranilate titers that were at least 90% of
the experimentally reported values for W3110 trpD9923/
pJLaroGfbrtktA (0.75 g/L) when the double mutant was imple-
mented in-silico.

4. Robustness to enzymatic interventions: The end goal of the fra-
mework is to provide targets for enzymatic interventions that
enable us to achieve a given metabolic output. Not all the models
that are selected in the previous screening steps are equally
robust to enzymatic interventions - some can veer significantly
from their behavior, showing little to no growth, while others can
retain their reference growth level. Hence, to determine the
robustness of each kineticmodel to such interventions we apply a
‘k-fold’ perturbation to the maximal velocities of the different
reactions and study the growth of the resulting strain. We repeat
this ‘n’ times and choose thosemodels for which all the perturbed
strains demonstrate satisfactory growth. This final screening step
ensures that the models are not only representative of the refer-
ence strain but also suitable for enzymatic interventions.

When building models for the first study, we applied a 10% nor-
mally distributed perturbation to the maximal velocities of each
reaction in the network and then integrated the system of ODEs in a
batch reactor setting. We repeated this process 50 times for each
kinetic model and chose those models that displayed at least 50% of
the experimentally observed biomass for all 50 perturbations.

We skipped the screening based on random perturbations for the
kinetic models in the second study, eK_trpD9923, as they had already
proved their ability to withstand different engineering interventions.

This multi-step filtering process produces a population of robust,
representative kinetic models that are adequate for rational strain
design.

Robust strain design using kinetic models
We use the screened kinetic models to conduct rational strain design
with a given objective to be attained. For both case studies, the
objective was to maximize the increase in yield of anthranilate with
respect to glucose uptake. The strain design process can be divided
into the following steps:
1. Generating design alternatives using Network Response Analysis:

One approach to strain design would be to exhaustively simulate
all possible combinations of target enzymes along with the
degrees of up or down regulations applied to them. The arduous
nature of this task and the computational cost involved provide a
strong case for a more judicious approach to choosing enzymatic
targets.
One possibility would be to use Metabolic Control Analysis
(MCA)39,40,59, i.e., to calculate the log-linear sensitivities of the

production pathway to system parameters and to then use the
enzymes with the top control coefficients as the candidates to be
tested in a nonlinear setting. However, this approach has its
drawbacks. An increase in enzyme activity affects not only the
targetflux/metabolite but alsoother components of thenetwork,
potentially causing a significant deviation from the reference
physiology, or the accumulation of toxic metabolites. This
situation is further complicated when targeting multiple
enzymes simultaneously. A starting point to overcome such
deleterious effects would be to use heuristics and expert
knowledge and eliminate from contention those targets that
are known to have undesirable network effects.
To provide a more systematic and efficient approach to dictate
such choices and constraints, a constraint-based MCA method
called Network Response Analysis (NRA) was developed26. In
NRA, we frame the strain design objective as a mixed-integer
linear optimization problem built around the control coeffi-
cients, and the reference steady-state profiles of concentrations
and fluxes. In addition, we supply design constraints such as the
allowable fold-change in fluxes, concentrations, and enzyme
activities, and the number of allowable enzymatic interventions.
In this way, NRA provides two distinct advantages. First, it
ensures the reliability and robustness of designs by controlling
the deviation from the reference phenotype through the
imposed constraints. Second, by using an optimization problem,
NRA provides a computationally efficient and scalable approach
to straindesignby avoiding the combinatorial explosion inherent
when we seek multiple enzymatic targets.
With these features in mind, we use NRA to enumerate designs
for each of the chosen kinetic models that achieve the desired
objective within a certain threshold. In this manner, we can
generate hundreds of designs across all the kinetic models. The
detailed formulation of the NRA problem is available in Supple-
mentary Note 13, Supplementary Tables 3–5.
We generated designs for the models in the first study,
K_trpD9923, under the following constraints: (i) a maximum of
3-fold change in concentrations and 5-fold change in enzyme
activities, (ii) a maximum of 3 enzymatic interventions, and (iii) a
maximum of 20% reduction in growth rate. We set the objective
to maximize the increase in anthranilate yield with respect to
glucose uptake, with respect to that of the reference strain, and
enumerated all designs within 5% of the maximal objective for
each kinetic model.
In the second study, except for two changes, we retained the
aforementioned parameters when generating designs using
eK_trpD9923 and eK_trpD9923_d2. First, we increased the allow-
able fold changes in enzyme activity to 10; this corresponds to
the fold changes that we applied to the maximal velocities of
TKT1 and TKT2 while constructing eK_trpD9923_d2. Second, we
compensated for the relaxed constraint on enzyme activities by
reducing the permissible fold changes in concentrations to 2.5.
This combination ensured thatwedid not perturb the system too
far from its reference state while generating designs using NRA.
For eK_trpD9923_d2, we first simulated the double mutant and
recorded the steady-state concentrations and fluxes nine hours
into fermentation when the strain was mid-way through the
exponential growth phase. We then calculated the control
coefficients at this steady state before using them to generate
designs through NRA.

2. Two-stage ranking of designs: The product of the previous step is
an aggregate of putative designs generated using each kinetic
model. Designs generated using one model need not necessarily
perform well when applied to other models. Therefore, we rank
designs by the robustness of their performance across the
phenotypic variation covered by the population of models. The
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ranking is performed in two stages. First, we rank the designs
based on their NRA-predicted performance across all models.
Next, we assess the performance and robustness of the top-
rankeddesigns in nonlinear simulations.Thedesigns that farewell
in this second stage are then proposed for experimental
implementation.

Robustness can be characterized in many ways – the reappear-
ance of the same design by membership across different models, or
the highest predicted objective when the design is enforced across
different models, etc. The criteria to define robustness can vary with
the objective that we seek to attain.

For both studies in the presented work, we first extracted those
designs that were unique by membership and used log-linear
approximations of the kinetic models in NRA to assess their robust-
ness across the models. We implemented each design in every kinetic
model by setting the minimal log fold change in the activity levels of
the associated enzymes to be 1e-6. We then maximized the increase in
anthranilate yield with respect to glucose under the same constraints
as those used to generate all the putative designs. Finally, we chose the
5 designs with the highest mean objective value across the models for
further analysis.

After ranking and selecting the most robust designs in the first
stage, we proceed to verify them in silico using a batch fermentation
setup. We also investigate how sensitive the designs are to any
uncertainties that may arise during experimental implementation. It is
imperative to carry out this step since the designs’ performance in the
previous stage was evaluated using a log-linear approximation of the
system,whichwasonly taken at the reference steady state. By verifying
the proposed designs in a nonlinear setup, we can gain a better
understanding of how well the log-linear approximations perform in a
nonlinear environment. Once we complete the design verification and
analysis, we identify the most promising designs for experimental
implementation.

For both case studies, we first analyzed the performance of the
top 5 designs in a batch fermentation setting using the NRA-predicted
enzyme fold changes specific to each model. For the inoculum and
medium,we integrated the same information aswas done in themodel
screening step. For the sensitivity analysis, wefirst calculated themean
NRA-suggested fold changes for each enzyme for a given design. We
then applied a ±50% uniformly distributed perturbation to the mean
fold changes for (i) all 3 enzymes, (ii) each enzyme individually while
keeping the other two enzymes at the mean NRA-suggested fold
changes. To obtain a statistical estimate of the sensitivities, we did this
10 times for each of the 10 models and tracked the mean of the 100
responses for each design.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data extracted from the experimental work by Balderas-Hernandez et
al.28 are available in the GitHub [https://github.com/EPFL-LCSB/
NOMAD]. Source data are provided with this paper.

Code availability
The code was implemented in Python 3.6. The commercial solver IBM
ILOGCPLEXOptimizer was used to solve theMILP problems. The code
uses the SKiMPy and pyTFA packages, which rely on SUNDIALs and
COBRApy, respectively. The code and data required to reproduce
results are publicly available at GitHub [https://github.com/EPFL-
LCSB/NOMAD]. A snapshot of the code, providing the exact version
used in this study, is available through Zenodo [https://zenodo.org/
records/10362313]60.
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