
Received 9 August 2023; revised 2 December 2023; accepted 6 December 2023. Date of publication 18 December 2023;
date of current version 19 January 2024. The review of this article was arranged by Associate Editor U. A Khan.

Digital Object Identifier 10.1109/OJSP.2023.3344052

Distributed Adaptive Learning Under
Communication Constraints
MARCO CARPENTIERO 1,2 (Graduate Student Member, IEEE),

VINCENZO MATTA 1,2 (Senior Member, IEEE), AND ALI H. SAYED 3 (Fellow, IEEE)
1Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, I-84084 Fisciano, Italy

2National Inter-University Consortium for Telecommunications (CNIT), Italy
3School of Engineering, École Polytechnique Fédérale de Lausanne EPFL, CH-1015 Lausanne, Switzerland

CORRESPONDING AUTHOR: MARCO CARPENTIERO (e-mail: mcarpentiero@unisa.it)

An earlier version of this paper was presented at ICASSP 2022 [DOI: 10.1109/ICASSP43922.2022.9747154].

ABSTRACT We consider a network of agents that must solve an online optimization problem from continual
observation of streaming data. To this end, the agents implement a distributed cooperative strategy where
each agent is allowed to perform local exchange of information with its neighbors. In order to cope with
communication constraints, the exchanged information must be compressed to reduce the communication
load. We propose a distributed diffusion strategy nicknamed as ACTC (Adapt-Compress-Then-Combine),
which implements the following three operations: adaptation, where each agent performs an individual
stochastic-gradient update; compression, which leverages a recently introduced class of stochastic com-
pression operators; and combination, where each agent combines the compressed updates received from its
neighbors. The main elements of novelty of this work are as follows: i) adaptive strategies, where constant
(as opposed to diminishing) step-sizes are critical to infuse the agents with the ability of responding in
real time to nonstationary variations in the observed model; ii) directed, i.e., non-symmetric combination
policies, which allow us to enhance the role played by the network topology in the learning performance; iii)
global strong convexity, a condition under which the individual agents might feature even non-convex cost
functions. Under this demanding setting, we establish that the iterates of the ACTC strategy fluctuate around
the exact global optimizer with a mean-square-deviation on the order of the step-size, achieving remarkable
savings of communication resources. Comparison against up-to-date learning strategies with compressed
data highlights the benefits of the proposed solution.

INDEX TERMS Distributed optimization, adaptation and learning, diffusion strategies, stochastic quantizers.

I. INTRODUCTION
In the last decades, the steady progress of statistical learning
and network science led to great interest in distributed opti-
mization strategies implemented by multi-agent networks [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]. Primary advantages of
distributed strategies include scalability, possibility of work-
ing with reduced-size and spatially dispersed datasets, and
robustness against failures. Distributed optimization allows
each network agent to overcome its individual limitations
through cooperation with its neighbors, and to deliver su-
perior performance with respect to single-agent strategies
[21], [22].

Several distributed implementations have been proposed
and examined in great detail in previous works. These im-
plementations can be categorized in terms of different at-
tributes. For example, we have distributed gradient descent
and stochastic gradient descent algorithms; constant as op-
posed to diminishing step-size implementations; consensus
and diffusion strategies [21]. In all these cases, distributed
optimization and learning algorithms require exchange of in-
formation among spatially dispersed agents. Accordingly, the
exchanged data must be compressed to reduce the commu-
nication load. For this reason, data compression lies at the
core of any distributed implementation. The main purpose of
this work is to carry out a detailed analysis of the learning

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 5, 2024 321

https://orcid.org/0000-0002-4973-2769
https://orcid.org/0000-0002-2046-4027
https://orcid.org/0000-0002-5125-5519
mailto:mcarpentiero@unisa.it

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

behavior of distributed strategies operating under communi-
cation constraints.

The article is organized as follows. In Section II, we pro-
vide a summary of the related literature, while Section III
contains the background on the distributed optimization prob-
lem and the network graph descriptors. These two sections
can be skipped by the expert reader, who can directly go to
Section IV, where we illustrate the strategy proposed in this
work. Section V introduces the equations and tools necessary
to study the dynamics of the proposed strategy, while in Sec-
tion VI we provide a qualitative illustration for its behavior.
Sections VII and VIII collect the results about mean-square
stability and transient analysis, respectively. In Section IX, we
show the outcomes from a series of numerical experiments,
while conclusions follow in Section X.

II. RELATED WORK
A. DISTRIBUTED QUANTIZATION
The earlier works on quantization for distributed inference
considered: i) network architectures with a single fusion cen-
ter; ii) a static setting where inference is performed in a single
step (e.g., no gradient descent or other iterative algorithms
are used); and iii) known parametric models for the under-
lying distributions of the data. Under this setting, there are
several quantization strategies available in the literature, with
reference to different inferential and learning tasks, such as
decentalized estimation [23], [24], [25], [26], decentralized
detection and classification [27], [28], [29], [30], [31], [32],
[33], [34], also with many useful variations including cross-
layer [35], [36] or censoring approaches [37].

One critical difficulty in data compression for inferential
problems is the lack of knowledge about the underlying data
distributions, which depend on the same unknown parameters
that the agents are trying to learn. This lack of knowledge
complicates severely the tuning of the quantizers’ thresh-
olds, since these thresholds would depend on the unknown
parameters to be estimated. A breakthrough in the solution
to this problem was given by the introduction of stochastic
quantizers in the distributed learning strategies. In the context
of data compression (with single-agent and not for inference
applications) the usage of stochastic quantizers can be dated
back to the seminal works on probabilistic analysis of quantiz-
ers [38] and dithering [39]. In comparison, one of the earliest
appearances of stochastic quantizers in distributed estimation
was provided in [40], which inspired subsequent applications
to distributed learning [41], [42]. These works rely on a uni-
versal, fully data-driven approach, where the thresholds of
the stochastic quantizers do not require knowledge of the
underlying distribution. In fact, these thresholds are randomly
adapted to the measurements observed locally by the agents,
in such a way that the resulting quantizer is unbiased on
average, despite the lack of knowledge about the underlying
distribution. This property is critical to make the inferential
strategies capable of learning well.

B. COMPRESSION FOR DISTRIBUTED OPTIMIZATION
The works mentioned in the previous section refer to static
strategies (where inference is performed in a single step),
in optimization and learning problems there is often the
necessity of employing iterative strategies to converge to
the desired solution. In these settings, the data compres-
sion issue becomes even more critical, since the quan-
tization error can accumulate over successive iterations,
destroying the convergence of the pertinent optimization
algorithms.

This issue motivated the recent introduction of random-
ized quantizers for distributed optimization algorithms such
as gradient descent or stochastic gradient descent algorithms.
One recent solution that attracted attention in this context is
the general class of randomized compression strategies in-
troduced in [43]. This class relies on two properties that are
critical to guarantee proper learning, namely, unbiasedness
and bounded variance.

More specifically, in [43] it was assumed that each agent
broadcasts compressed versions of its locally observed gra-
dients to all other agents in the network. However, calling
upon the theory of predictive quantization (e.g., the sigma-
delta modulation adopted in PCM [44]), we see that the
impact of quantization errors on convergence can be re-
duced by properly leveraging the inherent memory arising
in recursive implementations such as gradient descent im-
plementations. Two canonical paradigms to achieve this goal
are error-feedback management [45], [46], [47], [48] and
differential quantization [49], [50], which, perhaps surpris-
ingly, have been applied to distributed optimization quite
recently.

Under error-feedback management, at each time step: first,
the current gradient plus an error stored from the previous
iteration is compressed; and then, the compression error is
compensated in the subsequent iteration. In comparison, dif-
ferential quantization leverages the memory present in the
iterative algorithm to reduce the error variance, by compress-
ing only the difference between subsequent iterates. For a
fixed bit budget, it is indeed more convenient to compress the
difference (i.e., the innovation) between consecutive samples,
rather than the samples themselves. This is because: i) the
innovation typically exhibits a reduced range as compared
to the entire sample; and ii) owing to the correlation be-
tween consecutive samples, quantizing the entire sample will
waste resources by transmitting redundant information. The
information-theoretic fundamental limits of (non-stochastic)
gradient descent under differential quantization have been re-
cently established in [50].

However, the aforementioned works on error compensation
and differential quantization refer either to a federated learn-
ing scheme where all agents communicate with a fusion center
(as in [49]) or to fully connected networks where each agent
is connected to all other agents. In this work, we focus instead
on the more challenging setting where optimization must be
fully decentralized.

322 VOLUME 5, 2024

C. FULLY DECENTRALIZED COMPRESSED LEARNING
Under the fully decentralized scenario, each agent is respon-
sible for its own inference, which is obtained by successive
steps of local interaction with its neighbors. Typical strate-
gies for fully distributed optimization without compression are
consensus or diffusion strategies [21], [51].

One early characterization of adaptive diffusion with com-
pressed data was provided in [52], where the compression
errors were modeled as noise over the communication chan-
nel. There are other works that address the quantization issue
by focusing on the explicit encoder structure. Some useful
results are available for the case of exact, i.e., non-stochastic
gradient-type algorithms. In [53], uniform quantization of
the iterates is considered for a distributed implementation
of the subgradient descent algorithm. In this scheme, the
agents update locally their state variables by averaging the
state variables received from their neighbors, and then follow
the subgradient descent direction. More recently, additional
convergence results were presented in [54], where random
(dithered) quantization is applied, along with a weighting
scheme to give more or less importance to the analog lo-
cal state and the quantized averaged state of the neighbors.
In [55], the randomized quantizers proposed in [43] are
considered for a distributed gradient descent implementation
using consensus with compressed iterates and an update rule
similar to the one adopted in [54].

The aforementioned works on fully decentralized schemes
rely on the availability of the exact gradient. In the present
work, we focus instead on the adaptive setting where the
agents collect noisy streaming data to evaluate a stochas-
tic instantaneous approximation of the actual gradient, and
must be endowed with online algorithms capable to respond
in real time to drifts in the underlying conditions Useful
communication-constrained implementations that can be ap-
plied to stochastic gradients were recently proposed in [56],
[57]. However, these works rely on symmetric combination
matrices and assume that each individual cost function is
strongly convex. In the next section we explain why it is useful
to overcome these limitations.

D. ADVANCES IN RELATION TO PRIOR WORK
— Diffusion: The Adapt-Compress-Then-Combine (ACTC)
strategy proposed in this work belongs to the family of dif-
fusion strategies [21], while the available works on distributed
optimization under communication constraints focus on con-
sensus strategies [56], [57]. Along with many commonalities,
one fundamental difference between diffusion and consensus
resides in the asynchrony of the latter strategy in the combina-
tion step (where the updated state of an agent is combined with
the previous states of its neighbors) [21]. This asynchrony
has an effect both in terms of stability and learning perfor-
mance. In fact, it has been shown that consensus algorithms
can feature smaller range of stability as compared to diffusion
strategies and a slightly worse learning performance [21]. For
these reasons, in this work we opt for a diffusion scheme.

Starting from the traditional (uncompressed) Adapt-Then-
Combine (ATC) diffusion strategy detailed in [21], we allow
for local exchange of compressed variables by means of
stochastic quantizers. We will see that, thanks to the diffusion
mechanism, the ACTC scheme will be able to adapt and learn
well, and in particular it will outperform previous distributed
quantized strategies based on consensus.

— Adaptation: We focus on a dynamic setting where the
agents are called to learn by continually collecting stream-
ing data from the environment. Under an adaptive setting,
once the distributed learning algorithm starts, we want the
agents to learn virtually forever, by automatically adapting
their behavior in face of nonstationary drifts in the streaming
data. To this end, stochastic gradient algorithms with constant
step-size are necessary. These algorithms have been shown to
tradeoff well learning and adaptation. On the learning side,
each agent resorts to some instantaneous approximation of
the cost function (which is not perfectly known in practice)
and tries to learn with increasing precision by leveraging the
increasing information coming from the streaming data. On
the adaptation side, the constant step-size leaves a persistent
amount of “noise” in the algorithm (the “gradient noise”)
which automatically infuses the algorithm with the ability
of promptly reacting to drifts. In contrast, over diminishing
step-size implementations, the gradient noise is progressively
annihilated over time. As a consequence, diminishing step-
size algorithms learn infinitely better as time progresses under
stationary conditions. At the same time, if the minimizer
changes (e.g., because of drifts in the underlying distribution)
diminishing step-size algorithms get stuck on the previously
computed minimizer, exhibiting a sort of “elephant’s mem-
ory”, i.e., requiring a time to get out from a local minimizer
that is at least proportional to the time the algorithm needed to
approach that minimizer. One example of the distinct behavior
characterizing adaptive and non-adaptive implementations is
offered in Fig. 1. This figure provides a preview of the good
learning/adaptation trade-off offered by the ACTC strategy
proposed in this work: the ACTC strategy converges to a small
error before the drift occurring at time i = 4000, concurrently
ensuring prompt reaction, i.e., fast convergence to a small er-
ror after the drift. In comparison, we see that the non-adaptive
version of the ACTC strategy employing diminishing step-
sizes reacts very slowly, with an error about 20 dB higher than
the error of the adaptive strategy even after 4000 iterations
from the change.

— Left-Stochastic combination policies: In many appli-
cations, the exchange and pooling of information between
agents need not be symmetric. For example, two agents can
be allowed to communicate only in one direction or, even if
bi-directional communication is permitted, two agents might
decide to give different importance to the data they exchange
with each other. As we will explain in the next section, this
general setting is described by a weighted directed graph
associated with a left-stochastic combination matrix. For the
important class of directed graphs, useful optimization algo-
rithms, also for the adaptive case with constant step-size, have

VOLUME 5, 2024 323

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

FIGURE 1. This plot shows the network mean-square-deviation (the error
quantifying the distance of the minimizer of agent k at iteration i from the
correct theoretical minimizer, averaged over all agents in the network
shown in the inset plot) as a function of the iteration i, achieved by two
types of distributed learning strategies operating under communication
constraints. The blue curve refers to the ACTC strategy proposed in this
work, which employs a constant step-size in the stochastic-gradient
update. The red curve refers to a variation of the ACTC strategy that
employs instead a diminishing step-size. We consider a nonstationary
setting where a drift occurs at iteration i = 4000, where the correct
minimizer changes. We see that the strategy with constant step-size (set at
μ = 0.01) is able to adapt to the change and track the drift. In sharp
contrast, the strategy with diminishing step-size (set at μ(i) = 5/(i + 1)
following standard prescriptions in stochastic optimization [21]), while
achieving a lower error before the change, see around i ≈ 2500, requires
an unacceptably long time to converge after the change, since after 4000
iterations from the change it still has an error significantly higher than the
error of the adaptive strategy. The details of the simulation are: regression
problem of Section IX, with dimensionality M = 20 and data generated
according to the example in Fig. 2; uniform averaging combination rule
[21]; randomized quantizer from [43] with 2 bits; ACTC algorithm with
stability parameter ζ = 0.1.

been proposed for the traditional setup without communica-
tion constraints [58], [59], [60]. In contrast, the existing works
on distributed optimization under communication constraints
focus on symmetric and doubly-stochastic combination poli-
cies.

In this work we consider the more general setting of left-
stochastic combination policies, which allow us to represent
a richer variety of distributed interactions, where the net-
work topology plays a fundamental role. For example, the
limiting Perron eigenvector of left-stochastic matrices is not
uniform, a property that can be exploited to compensate
for non-uniform agents’ behavior [21]. Note that, differently
from doubly-stochastic matrices, left-stochastic matrices can
be constructed in practice without requiring any coordination
across the agents.

— Global strong convexity: Convergence of the stochastic
gradient iterates is typically examined under the assumption
that the gradients are Lipschitz and the cost functions are
strongly convex. In the distributed setting, the latter prop-
erty is usually translated into assuming that all the local
cost functions pertaining to the individual agents are strongly
convex [56], [57]. Sometimes the additional assumption of
uniform gradient boundedness is adopted (e.g., in [56]), which

can however hold only approximately in the Lipschitz and
strongly convex setting. For Lipschitz gradient and strongly
convex local functions, without the uniform boundedness ap-
proximation, convergence results were recently obtained for
distributed primal-dual algorithms with compressed commu-
nication [57].

Notably, in the present work we relax the aforementioned
assumptions, since we do not rely on any uniform bounded-
ness approximation, and require only a global cost function
(i.e., a linear combination of the local cost functions) to be
strongly convex. This extension allows us to cover relevant
cases where the individual agents have non-convex costs.
Moreover, global, as opposed to local strong convexity, can be
exploited to implement distributed regularization procedures
where the limitations of the individual agents can be overcome
by cooperation. For example, N − 1 agents might be unable to
learn the true minimizer (local unidentifiability), but they can
nevertheless compensate their limited view by cooperating
with a single farsighted agent. One example of this type will
be considered in Section IX.

E. MAIN CONTRIBUTIONS
The main achievement of this work is the characterization
of the learning behavior of the ACTC strategy, namely, of
an adaptive diffusion strategy for learning under communi-
cation constraints. An essential building block to prove the
result is given by the unifying description and mathematical
tools developed in [14], [21], which allow us to decouple the
learning dynamics over two main components by means of a
suitable network coordinate transformation. These two com-
ponents are: i) a centralized stochastic-gradient component
that converges to a unique solution common to all agents;
ii) a deviation component that dies out as time elapses, and
which takes into account the initial discrepancy between the
trajectories of the individual agents.

Finally, we compare our algorithm against two up-to-date
solutions, namely, the algorithms CHOCO-SGD [56] and
DUAL-SGD [57], showing that both algorithms are outper-
formed by our ACTC strategy. As we will carefully explain in
Section IX: i) the improvement on CHOCO-SGD arises pri-
marily from using a diffusion-type strategy as opposed to the
consensus strategy employed by CHOCO-SGD; and ii) the
improvement on DUAL-SGD arises mainly from the advan-
tage of primal-domain strategies (like the proposed ACTC)
over primal-dual distributed strategies (like DUAL-SGD).

Notation: We use boldface letters to denote random vari-
ables, and normal font letters for their realizations. Capital
letters refer to matrices, small letters to both vectors and
scalars. Sometimes we violate the latter convention, for in-
stance, we denote the total number of network agents by N .
All vectors are column vectors. In particular, the symbol 1L

denotes an L × 1 vector whose entries are identically equal to
1. Likewise, the identity matrix of size L is denoted by IL. For
two matrices X and Y , the notation X ≥ Y signifies that X − Y
is positive semi-definite. In comparison, the notation X � Y
signifies that the individual entries of X − Y are nonnegative.

324 VOLUME 5, 2024

For a vector x, the symbol ‖x‖ denotes the �2 norm of x. For
a matrix X , the �2 induced matrix norm is accordingly ‖X‖.
Other norms will be characterized by adding the pertinent
subscript. For example ‖x‖1 will denote the �1 norm of x, and
‖X‖1 the �1 induced matrix norm (maximum absolute column
sum of X). The symbol ⊗ denotes the Kronecker product. The
symbol ∗ denotes complex conjugation. X� is the transpose
of matrix X , whereas X H is the Hermitian (i.e., conjugate)
transpose of a complex matrix X . The symbol E denotes the
expectation operator. For μ > 0 and a nonnegative function
f (μ), the notation f (μ) = O(μ) signifies that there exist a
constant C > 0 and a value μ0 > 0 such that f (μ) ≤ Cμ for
all μ ≤ μ0.

III. BACKGROUND
We consider a network of N agents solving a distributed op-
timization problem. Each individual agent k = 1, 2, . . . , N is
assigned a local cost or risk function:

Jk (w) : RM → R. (1)

The local cost functions are assumed to satisfy the following
regularity condition.

Assumption 1 (Individual cost function smoothness): For
all w ∈ R

M , each cost function Jk (w) is twice-differentiable
and its Hessian matrix ∇2Jk (w) satisfies the following Lips-
chitz condition, for some positive constants {ηk}:

∇2Jk (w) ≤ ηk IM . (2)

�
In practice, it is seldom the case that the cost functions

are perfectly known to the agents. In contrast, each agent
usually has access to a stochastic approximation of the true
cost function. For example, in the adaptation and learning
theory the cost functions are often modeled as the expected
value of a loss function Lk (w; xk), namely,

Jk (w) = E[Lk (w; xk)], (3)

where the expectation is taken with respect to a random vari-
able xk that can represent, e.g., some training data observed
by agent k. In many scenarios of interest, the statistical char-
acterization of xk is not available to the agents and, hence,
Jk (w) is not known and is rather approximated by the stochas-
tic quantity Lk (w; xk). Moreover, if different data xk,i are
collected over time by agent k, the stochastic approximation
takes the form of an instantaneous approximation Lk (w; xk,i)
depending on time index i.

More generally, whether or not the cost function is de-
fined through (3), in the following treatment we assume that
agent k at time i is able to approximate the true gradient
∇Jk (w) through a stochastic instantaneous approximation
gk,i(w) which, without loss of generality, can be written as
the true gradient plus a gradient noise term nk,i(w), namely,

gk,i(w) = ∇Jk (w) + nk,i(w). (4)

A. CLASSICAL ATC DIFFUSION STRATEGY
The Adapt-Then-Combine (ATC) diffusion strategy is a popu-
lar distributed mechanism that consists of iterated application
of the following two steps, for i = 1, 2, . . .⎧⎪⎨⎪⎩

ψk,i = wk,i−1 − μk gk,i(wk,i−1) [Adapt]

wk,i = ∑N
�=1a�kψ�,i [Combine]

(5)

In (5), agents k = 1, 2, . . . , N evolve over time i by producing
a sequence of iterates wk,i ∈ R

M . The adaptation step is a
self-learning step, where each agent k at time i computes
its own instantaneous stochastic approximation gk,i(·) of the
local gradient ∇Jk (·), evaluated at the previous iterate wk,i−1.
Such an approximation is scaled by a small step-size μk > 0
and used to update the previous iterate wk,i−1 following the
(stochastic) gradient descent. The maximum step-size across
the agents will be denoted by:

μ � max
k=1,2,...,N

μk, (6)

giving rise to the scaled step-sizes:

αk � μk

μ
. (7)

The combination step is a social learning step, where agent k
aims at realigning its descent direction with the rest of the
network by combining its local update ψk,i with the other
agents’ updates scaled by some nonnegative scalars {a�k},
which are referred to as combination weights. The support
graph of the combination matrix A = [a�k] describes the con-
nections between agents, i.e., the topology of a network whose
vertices correspond to the agents, and whose edges represent
directional links between agents. According to this model,
when no communication link exists between agents � and k,
the combination weights a�k and ak� must be equal to zero.
Likewise, when information can flow only from � to k, we
will have a�k > 0 and ak� = 0. In summary, the combination
process is a local process where only neighboring agents in-
teract.

It is useful to introduce the neighborhood of agent k:

Nk � {� = 1, 2, . . . , N : a�k > 0}, (8)

which is a directed neighborhood that accounts for the incom-
ing flow of information from � to k (possibly including the
self-loop � = k).

We will work under the following standard regularity con-
ditions on the network.

Assumption 2 (Strongly Connected Network): The network
is strongly connected, which means that, given any pair of
nodes (�, k), a path with nonzero weights exists in both di-
rections, i.e., from � to k and vice versa (the two paths need

VOLUME 5, 2024 325

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

not be the same) and that at least one agent k in the entire
network has a self-loop (akk > 0). �

Assumption 3 (Stochastic combination matrix): For each
agent k = 1, ..., N the following conditions hold:

a�k ≥ 0,
∑
�∈Nk

a�k = 1, a�k = 0 for � /∈ Nk, (9)

which imply that the combination matrix A = [a�k] is a left-
stochastic matrix. �

Under Assumptions 2 and 3, the combination matrix A is
a primitive matrix, and thus satisfies the Perron-Frobenius
theorem, which in particular implies the existence of the Per-
ron vector π = [π1, π2, . . . , πN]�, a vector with all strictly
positive entries satisfying the following relationships:

Aπ = π, 1�
N π = 1. (10)

For later use, it is convenient to introduce the vector p that
mixes the topological information encoded in the Perron
eigenvector with the scaled step-sizes {αk}, namely,

p = [α1π1, α2π2, . . . , αNπN]�. (11)

We are now ready to introduce the global strong convexity
assumption that will be required for our results to hold.

Assumption 4 (Global Strong Convexity): Let pk = αkπk

be the k-th entry of the scaled Perron eigenvector in (11). The
(twice differentiable) aggregate cost function:

J (w) =
N∑

k=1

pkJk (w) (12)

is ν-strongly convex, namely, a positive constant ν exists such
that, for all w ∈ R

M we have:

N∑
k=1

pk∇2Jk (w) ≥ ν IM . (13)

�
We remark that, for Assumption 4 to hold, the local cost

functions are allowed to be non-convex, provided that (13) is
satisfied.

For later use, it is useful to notice that Assumptions 1 and 4
entail a relationship between the Lipschitz constants {ηk} and
the strong convexity constant ν. Specifically, using (2) and
(13) and applying the triangle inequality we can write:

ν ≤
N∑

k=1

pk‖∇2Jk (w)‖ ≤
N∑

k=1

pkηk � η. (14)

The adaptation and learning performance of the ATC strategy
has been examined in great detail in previous works [14], [15],
[21]. The major conclusion stemming from these works is
that, under Assumptions 1–3 (plus some classical assumptions
on the gradient noise — see Assumption 7 further ahead),
the ATC strategy is able to drive each agent toward a close
neighborhood of the minimizer w� of the global cost function
(12). We remark that in the considered framework each cost
function can be different, having a specific minimizer w0

k (or

even multiple minimizers), which may not coincide with the
unique global network minimizer w� of the aggregate cost
function J (w).

We notice also that the structure of (12) allows us to solve
different optimization problems where the objective function
can be expressed as the linear combination of local cost
functions, including the special case where the weights pk

are all uniform, which can be obtained when the step-sizes
are all equal (i.e., αk = 1 for all k) and the combination
matrix is doubly-stochastic (since the Perron eigenvector
of a doubly-stochastic matrix has entries p� = 1/N for all
� = 1, 2, . . . , N). In addition, and remarkably, it was shown
in [21], [62] that the minimizer of (12) corresponds to a Pareto
solution to the multi-objective optimization problem:

min
w

{J1(w), J2(w), . . . , JN (w)}, (15)

where the choice of the weights {pk} drives convergence to a
particular Pareto solution.

IV. ATC WITH COMPRESSED COMMUNICATION
The ATC diffusion scheme (5) is designed under the assump-
tion that agents exchange over the communication channel
their intermediate updates ψk,i. However, in a realistic en-
vironment the information shared by the agents must be
necessarily compressed. This necessity gives rise to at least
two fundamental questions. First, is it possible to design
diffusion strategies that preserve the adaptation and learning
capabilities of the ATC strategy despite the presence of data
compression? Assume the answer to the first question is in the
affirmative. Then it is natural to ask whether there is a limit
on the amount of compression, since it is obviously desirable
for the agents to save as much bandwidth and energy as pos-
sible. Our analysis will give precise elements to address these
important questions. To start with, we introduce a compressed
version of the ATC strategy.

There exist obviously several possibilities to perform data
compression. In order to select one particular strategy, we
need to consider the fundamental limitations of our setting,
in particular: lack of knowledge of the underlying statis-
tical model and correlation across subsequent iterates. As
explained in Section II-A, an excellent tool to overcome these
limitations is stochastic differential quantization, which will
be embedded into the ATC recursion giving rise to the Adapt-
Compress-Then-Combine (ACTC) diffusion strategy, which
can be described as follows.

The time-varying variables characterizing the ACTC recur-
sion are: an intermediate update ψk,i, a quantized state qk,i,
and the current minimizer wk,i. At time i = 0 each agent k
is initialized with an arbitrary state value qk,0 (with finite
second moment). Then, agent k receives the initial states q�,0
from its neighbors � ∈ Nk and computes an initial minimizer
wk,0 = ∑

�∈Nk
a�kq�,0.

Then, for every i > 0, the agents perform the following
four operations. First, each agent k performs locally the same

326 VOLUME 5, 2024

adaptation step as in the ATC strategy:

ψk,i = wk,i−1 − μk gk,i(wk,i−1) [Adapt] (16)

Second, each agent k compresses the difference between the
update ψk,i and the previous quantized state qk,i−1, through a
compression function Qk : RM → R

M :

Qk (ψk,i − qk,i−1) [Compress] (17)

The bold notation for the compression function highlights that
randomized functions are permitted, as we will explain more
carefully in Section IV-A. Then, agent k receives from its
neighbors � ∈ Nk the compressed values Q�(ψ�,i − q�,i−1).
Since the quantization operation acts on differences, the quan-
tized states q�,i must be updated by adding the quantized
difference to the previous value q�,i−1. Specifically, agent k
updates the quantized values corresponding to all � ∈ Nk :

q�,i = q�,i−1 + ζ Q�(ψ�,i − q�,i−1), (18)

where ζ ∈ (0, 1) is a design parameter that will be useful
to tune the stability of the algorithm, as we will carefully
explain in due time. Finally, agent k combines the updated
states corresponding to its neighbors as usual:

wk,i =
∑
�∈Nk

a�kq�,i [Combine] (19)

It is important to remark that, in order to perform the up-
date step in (18), agent k must possess the variables q�,i−1
from its neighbors � ∈ Nk . This might appear problematic at
first glance, since we have just seen that only the differences
Q�(ψ�,i − q�,i−1) are actually received by k from a neighbor-
ing agent �. On the other hand, since at i = 0 agent k knows
the initial quantized states {q�,0}�∈Nk , and since the update
rule in (18) depends on {q�,i−1}�∈Nk and the quantized innova-
tion {Q�(ψ�,i − q�,i−1)}�∈Nk , we conclude that sharing of the
quantized differences along with the initial states {q�,0}�∈Nk

is enough for agent k to implement (18) at every instant i,
by keeping memory only of the last neighboring variables
{q�,i}�∈Nk .

In summary, the ACTC scheme can be compactly described
as in Algorithm 1.

Before concluding this section, we remark that the com-
bination step of the ACTC strategy considers only quantized
variables, even if, in principle, agent k might also combine
its analog state ψk,i in place of the quantized counterpart
qk,i. As a general principle, the more we compress, the less
we spend (even in terms of local processing). In this respect,
showing that the ACTC strategy learns properly by combin-
ing only quantized variables has its own interest. Moreover,
considering only quantized variables gives to the algorithm a
symmetric structure that avoids adding further complexity to
the mathematical formalization that is necessary to support the
analysis.

A. COMPRESSION OPERATORS
In order to implement the ACTC diffusion strategy in Algo-
rithm 1, it is necessary to specify the compression operators

Algorithm 1: ACTC Diffusion Strategy.
1: for i = 1, 2, . . . do
2: for k = 1, 2, . . . , N do
3: Adaptation step

Evaluate the instantaneous stochastic
approximation gk,i(wk,i−1) and compute

ψk,i = wk,i−1 − μk gk,i(wk,i−1). (20)

4: Compression step
– Transmit the compressed difference

Qk (ψk,i − qk,i−1).

– Receive Q�(ψ�,i − q�,i−1) from � ∈ Nk \ {k}
– Decode by computing

q�,i = q�,i−1 + ζ Q�(ψ�,i − q�,i−1), ∀� ∈ Nk .

(21)

5: Combination step

wk,i =
∑
�∈Nk

a�kq�,i. (22)

6: end for
7: end for

Qk (·). We focus on the class of compression operators consid-
ered in the majority of prior works on distributed optimization
and learning [43], [56], [57], [61]. This class is described by
Assumption 5. We remark that our analysis can be readily
extended to other classes, such as the recent variant proposed
in [65].

Assumption 5 (Compression operators): A randomized
compression operator associates to an input x a stochastic
output Q(x) whose distribution is governed by a conditional
probability measure P(·|x) fulfilling the following two condi-
tions:

E
[
Q(x)

] = x [unbiasedness] (23)

E ‖Q(x) − x‖2 ≤ ω ‖x‖2 [bounded variance] (24)

where expectations are relative to P(·|x). �
By “randomized operator” we mean that, given a deter-

ministic input x, the output Q(x) is randomly chosen (two
meaningful ways to perform such random choice will be il-
lustrated in Appendix K).

Two main observations are important to capture the mean-
ing of Assumption 5. The first one concerns the role of
parameter ω, which quantifies the amount of compression.
Small values of ω correspond to small amount of compres-
sion, i.e., finely quantized data. Large values of ω are instead
representative of severe compression. The second observation
concerns properties (23) and (24). It will emerge from the
technical analysis that property (23) enables the possibility
that the quantization errors arising during the ACTC evolution

VOLUME 5, 2024 327

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

average to zero as time elapses. Property (24) will be critical
to guarantee that the variance of the quantization errors does
not blow-up over time.

Remarkably, the class of randomized quantizers introduced
in Assumption 5 is fairly general and flexible, including
a broad variety of compression paradigms. Some of these
paradigms are particularly tailored to our setting, where we
have to compress vectors with possibly large dimensionality
M. For example, one useful paradigm is the sparse compres-
sion paradigm, where a small subset of the M components of
the input vector x is sent with arbitrarily large precision, while
the remaining entries are set to zero. In this context, the cost of
communication is usually evaluated in terms of the reduction
of dimensionality, i.e., in terms of the number of nonzero
components as done, e.g., for the lossless case in the com-
pressed sensing or analog compression framework [63], [64].
Another compression scheme that meets Assumption 5 is the
randomized quantization scheme recently proposed in [43].
Both these popular schemes can be found in earlier works,
see, e.g. [43], [57]. To make the paper self-contained and
for the benefit of the reader we report their description in
Appendix K.

In order to avoid misunderstanding, we stress that in the
forthcoming treatment we will use interchangeably the ter-
minology compression or quantization to indicate a general
compression operator fulfilling Assumption 5. Reference to a
specific class of compression operators, such as the random-
ized quantizers and the randomized sparsifiers illustrated in
Appendix K, will be made when needed (e.g., in Section IX).

Since we focus on a distributed setting, we allow different
agents to employ different compression operators. Accord-
ingly, for a given input x, each agent k generates the stochastic
output Qk (x) according to a probability measure Pk (·|x) sat-
isfying Assumption 5 with compression parameter ωk . The
largest (i.e., worst-case) compression parameter is denoted by:

 � max
k=1,2,...,N

ωk . (25)

As is standard in distributed optimization with data com-
pression, we assume that the compression operators are
memoryless and independent across agents.

Assumption 6 (Conditions on compression operators): Let

ek,i � Qk (δk,i) − δk,i (26)

be the compression error. The compression process is in-
dependent over time and space, i.e., given the past history
formed by all the iterates generated by the ACTC algorithm
before applying the i-th compression step, namely,

hi �
{{

qk, j
}i−1

j=0 ,
{
ψk, j

}i
j=1

}N

k=1
, (27)

the vector Qk (δk,i) depends only on the input δk,i, and is
generated, independently across agents, as:

δk,i
Pk (·|δk,i)−→ Qk (δk,i). (28)

In view of Assumption 5, from these properties we have:

E
[
ek,i | hi

] = E
[
ek,i | δk,i

] = 0, (29)

E
[‖ek,i‖2 | hi

] = E
[‖ek,i‖2 | δk,i

] ≤ ωk‖δk,i‖2, (30)

E
[
e�,ie

�
k,i | hi

] = E
[
e�,ie

�
k,i | δk,i

] = 0, ∀� = k. (31)

�
We will show in the remainder of the article that the mean-

square-error approaches O(μ) for small step-sizes, i.e., the
algorithm is mean-square-error stable even in the presence
of quantization errors and gradient noise. The derivations are
demanding and challenging due to the nonlinear and coupled
nature of the network dynamics, as is clear from the arguments
in the appendices. Nevertheless, when all is said and done, we
arrive at the reassuring conclusion that the diffusion strategy
is able to learn well in quantized/compressed environments.

V. NETWORK ERROR DYNAMICS
In this section we illustrate the main formalism that will be
exploited to conduct our analysis. Since we are interested
in computing the deviation of the ACTC iterates from the
global minimizer w�, it is expedient to introduce the following
centered variables: ⎧⎪⎨⎪⎩

w̃k,i � wk,i − w�

ψ̃k,i � ψk,i − w�

q̃k,i � qk,i − w�

(32)

It is also convenient to rewrite the adaptation step in order
to make explicit the role of the true cost functions Jk (w). To
this end, we must exploit the gradient noise introduced in (4),
which quantifies the discrepancy between the approximate
and true gradients. Exploiting (4), the adaptation step in (20)
can be rewritten as:

ψk,i = wk,i−1 − μk∇Jk (wk,i−1) − μknk,i(wk,i−1). (33)

Examining (33), we see that the gradient noise contains an ad-
ditional source of randomness given by its argument wk,i−1 =∑

�∈Nk
a�kq�,i−1, whose randomness comes accordingly from

the previous-step quantized iterates {q�,i−1}N
�=1. We assume

the following standard regularity properties for the gradient
noise process.

Assumption 7 (Gradient Noise): For all k = 1, 2, . . . , N
and all i > 0, the gradient noise meets the following condi-
tions:

E
[
nk,i(wk,i−1)

∣∣{q�,i−1}N
�=1

] = 0, (34)

E
[‖nk,i(wk,i−1)‖2

∣∣{q�,i−1}N
�=1

] ≤ β2
k ‖w̃k,i−1‖2 + σ 2

k , (35)

for some constants βk and σk . �
The bounded gradient-noise variance is one standard as-

sumption in optimization theory. It is possible to provide some
intuition on (35) as done in [21]. Consider first a bound of the
form:

E
[‖nk,i(wk,i−1)‖2

∣∣{q�,i−1}N
�=1

] ≤ β̄2
k ‖wk,i−1‖2 + σ̄ 2

k , (36)

328 VOLUME 5, 2024

where the non-centered iterate wk,i−1 appears on both sides.
Note that wk,i−1 is a deterministic function of {q�,i−1}N

�=1,
and the expectation is conditioned on {q�,i−1}N

�=1. Therefore,
the value wk,i−1 can be considered fixed, and condition (36)
is a classical boundedness condition where the conditional
variance of the gradient noise is bounded by a constant term
plus a term proportional to the squared norm of the input value
wk,i−1. This condition is met for popular models, including
the regression model and the logistic, or regularized logistic
models — see, e.g., [21]. Then, we obtain (35) from (36) by
applying Jensen’s inequality to get:

‖w̃k,i−1‖2 = ‖wk,i−1 − w�‖2 ≤ 2‖wk,i−1‖2 + 2‖w�‖2

(37)

such that (35) holds with the choices: β2
k = 2β̄2

k and σ 2
k =

σ̄ 2
k + 2β̄2

k ‖w�‖2.
With reference to the actual gradient in (4), from the mean-

value theorem one has (we recall that w̃k,i−1 = wk,i−1 −
w�) [21]:

∇Jk (wk,i−1) = ∇Jk (w�)

+
[∫ 1

0
∇2Jk (w� + tw̃k,i−1)dt

]
w̃k,i−1,

(38)

where the integral of a matrix is intended to operate entrywise.
Introducing the bias of agent k,

bk � αk∇Jk (w�), (39)

and the following random and time-varying matrix defined in
terms of the Hessian of the cost function of agent k:

Hk,i−1 � αk

∫ 1

0
∇2Jk (w� + tw̃k,i−1)dt, (40)

Eq. (38) yields:

μk∇Jk (wk,i−1) = μ
(
bk + Hk,i−1w̃k,i−1

)
. (41)

For notational convenience, the scaled step-size αk has been
embodied in the definitions of the bias and the matrix Hk,i−1.
Likewise, it is useful to introduce the scaled gradient noise
vector:

sk,i � αk nk,i(wk,i−1). (42)

Using now (32), (33) and (41) in the three steps (20)–(22)
from Algorithm 1, the ACTC recursion can be recast in the
form:⎧⎪⎨⎪⎩

ψ̃k,i = (IM − μHk,i−1)w̃k,i−1 − μ sk,i − μ bk

q̃k,i = q̃k,i−1 + ζ Qk (ψ̃k,i − q̃k,i−1)

w̃k,i = ∑
�∈Nk

a�k q̃�,i

(43)

We remark that in the second equation of (43), the argument
of the compression function is expressed in terms of centered
variables by adding and subtracting w�.

In order to assess the goodness of an individual agent’s
estimate wk,i we will focus on the mean-square-deviation:

E‖wk,i − w�‖2 = E‖w̃k,i‖2. (44)

Since the ACTC iterates w̃k,i are convex combinations of
the quantized iterates {̃qk,i}, the characterization of the mean-
square behavior of q̃k,i will enable immediate characterization
of the mean-square behavior of w̃k,i. It is therefore convenient
to incorporate the third step of the ACTC strategy into the first
step, and focus on the behavior of q̃k,i, obtaining:{

ψ̃k,i = (IM − μHk,i−1)
∑

�∈Nk
a�k q̃�,i−μ sk,i−μ bk

q̃k,i = q̃k,i−1 + ζ Qk (ψ̃k,i − q̃k,i−1)

(45)

Moreover, it is convenient to introduce the difference variable:

δk,i � ψ̃k,i − q̃k,i−1 = ψk,i − qk,i−1. (46)

Subtracting q̃k,i−1 from the first equation in (45), we finally
obtain: ⎧⎨⎩

δk,i = (IM − μHk,i−1)
∑

�∈Nk
a�k q̃�,i

− q̃k,i−1 − μsk,i − μ bk

q̃k,i = q̃k,i−1 + ζ Qk (δk,i)
(47)

A. RECURSIONS IN EXTENDED FORM
Since we are interested in a network-oriented analysis, it is
useful to introduce a notation where the N agents’ vectors of
size M × 1 are stacked into the following MN × 1 vectors:

δi �

⎡⎢⎢⎢⎢⎣
δ1,i

δ2,i
...

δN,i

⎤⎥⎥⎥⎥⎦, q̃i �

⎡⎢⎢⎢⎢⎣
q̃1,i

q̃2,i
...

q̃N,i

⎤⎥⎥⎥⎥⎦, si �

⎡⎢⎢⎢⎢⎣
s1,i

s2,i
...

sN,i

⎤⎥⎥⎥⎥⎦, b �

⎡⎢⎢⎢⎢⎣
b1

b2
...

bN

⎤⎥⎥⎥⎥⎦ . (48)

Likewise, it is useful to consider the extended compression
operator Q(·) that applies the compression operation to each
M × 1 block of its input, and stacks the results as follows:

Q(δi) �

⎡⎢⎢⎢⎢⎣
Q1(δ1,i)

Q2(δ2,i)
...

QN (δN,i)

⎤⎥⎥⎥⎥⎦ . (49)

Finally, in order to express the recursion (43) in terms of the
joint evolution of the extended vectors we need to introduce
the extended matrices:

A � A ⊗ IM , Hi−1 � diag{H1,i−1, H2,i−1, ..., HN,i−1},
(50)

where ⊗ denotes the Kronecker product. It is now possible
to describe compactly the ACTC strategy of the individual
agents in (43) as:{
δi = [(IMN − μHi−1)A� − IMN]̃qi−1−μsi−μ b

q̃i = q̃i−1 + ζ Q(δi)
(51)

B. NETWORK COORDINATE TRANSFORMATION
By means of a proper linear transformation of the network
evolution it is possible to separate the two fundamental mech-
anisms that characterize the learning behavior of the ACTC

VOLUME 5, 2024 329

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

strategy. The first mechanism characterizes the coordinated
evolution enabled by the social learning phenomenon. This is
a desired behavior that will be critical to let each individual
agent agree and converge to a small neighborhood of the
global minimizer w�. In comparison, the second mechanism
represents the departure of the agents’ evolution from the co-
ordinated evolution, which arises from the distributed nature
of the system (agents need some time to reach agreement
through successive local exchange of information). We will
see later how the ACTC diffusion strategy blends these two
mechanisms so as to achieve successful learning.

The enabling tool to develop the aforementioned network
transformation is the Jordan canonical decomposition of the
(transposed) combination matrix A [66]:1

A� � V −1JtotV. (52)

The matrix Jtot is the Jordan matrix of A� (equivalently, of A,
since A and A� are similar matrices [66]) arranged in canon-
ical form, i.e., made up of the Jordan blocks corresponding
to the eigenvalues of A as detailed in Appendix A [66]. In
particular, the single2 eigenvalue equal to 1 corresponds to a
1 × 1 block, and the other Jordan blocks can be collected into
the (N − 1) × (N − 1) reduced Jordan matrix J — see (108):

Jtot =
[

1 0

0 J

]
. (53)

The columns of V −1 collect the generalized right-eigenvectors
of A� (hence, generalized left-eigenvectors of A) [67],
[68]. Likewise, the rows of V collect the generalized left-
eigenvectors of A�. Recalling that π is a right-eigenvector of
A, and 1N a left-eigenvector of A, the matrices V and V −1 can
be conveniently block-partitioned as follows:

V =
[
π�

VR

]
, V −1 =

[
1N VL

]
, (54)

where the subscript R is associated with generalized right-
eigenvectors of A. The same applies to subscript L as regards
generalized left-eigenvectors.

We are now ready to detail the network coordinate transfor-
mation relevant to our analysis. To this end, we introduce the
extended matrix:

V � V ⊗ IM , (55)

and the transformed extended vector q̂i:

q̂i � V q̃i =
[

(π� ⊗ IM) q̃i

(VR ⊗ IM) q̃i

]
=
[

q̄i

q̌i

]
. (56)

1More often, the similarity transform in (52) is written as V JtotV −1. We
opt for the alternative form in (52) since, as we will see soon, with this choice
the matrix V will correspond to the direct network coordinate transformation
that will be relevant to our treatment (and its inverse V −1 will be the corre-
sponding inverse transformation).

2The existence of a single (and maximum magnitude) eigenvalue equal to
1 is guaranteed by Assumptions 2 and 3.

As we see, the transformed vector q̂i has been partitioned
in two blocks: an M × 1 vector q̄i and an M(N − 1) × 1
vector q̌i. These two vectors admit a useful physical in-
terpretation. Vector q̄i is a linear combination, through the
Perron weights, of the N vectors composing q̃i, i.e., of the
vectors corresponding to all agents. As we will see, such
combination reflects a “coordinated” evolution that will apply
to all agents. In contrast, vector q̌i is representative of the
departure of the individual agent’s behavior from the coor-
dinated behavior. In the following, we will sometimes refer
to q̄i as the coordinated-evolution component, and to q̌i as
the network-error component. It is worth noticing that the
coordinated-evolution component q̄i is real-valued, whereas
the network-error component q̌i is in general complex-valued,
since the matrix VR can contain complex-valued eigenvectors.

In order to highlight the role of the aforementioned two
components on the individual agents, we can apply the inverse
transformation V−1 to q̂i, obtaining:

q̃k,i = q̄i + ([VL]k ⊗ IM)︸ ︷︷ ︸
�Tk

q̌i, (57)

where [VL]k denotes the k-th row of matrix VL. Equation
(57) reveals that agent k progresses over time by combining
the coordinated evolution q̄i (which is equal for all agents)
and a perturbation vector Tk q̌i, which quantifies the specific
discrepancy of agent k (since matrix Tk depends on k) from
the coordinated behavior. From the distributed optimization
perspective, the goal is to reach agreement among all agents
and, hence, it is necessary that the perturbation term is washed
out as time elapses, letting all agents converge to the same
coordinated behavior. Establishing that this is the case will be
the main focus of our analysis.

For later use, it is convenient to introduce also the trans-
formed versions of δi, si and b:

δ̂i � Vδi =
[

(π� ⊗ IM)δi

(VR ⊗ IM)δi

]
=
[
δ̄i

δ̌i

]
, (58)

ŝi � Vsi =
[

(π� ⊗ IM)si

(VR ⊗ IM)si

]
=
[

s̄i

ši

]
, (59)

b̂ � Vb =
[

(π� ⊗ IM)b

(VR ⊗ IM)b

]
=
[

0

b̌

]
. (60)

The zero entry in the transformed bias vector arises from the
fact that, in view of (39), we have:

(π� ⊗ IM)b =
N∑

k=1

πkbk =
N∑

k=1

pk ∇Jk (w�) = 0, (61)

since the Perron-weighted sum of the gradients computed at
the limit point w� corresponds to the exact minimizer of the
global cost function in (12).

330 VOLUME 5, 2024

VI. QUALITATIVE ILLUSTRATION
The learning behavior of the ACTC strategy will be character-
ized by studying the time evolution of the transformed vector
q̂i introduced in (56). In particular, since we are interested in
mean-square-errors, it is particularly convenient to work in
terms of the average energy operator defined in Appendix A2
— see (114). Applying the energy operator to q̂i, we obtain
the average energy vector:

P[̂qi] =
[
E‖q̄i‖2

P[q̌i]

]
, (62)

where P[q̌i] is an (N − 1) × 1 vector. Theorem 3 reported in
Appendix B establishes that the energy vectors evolve accord-
ing to the following inequality recursion:

P[̂qi] � T P[̂qi−1] + x. (63)

In (63):
� T is a matrix that admits the following representation:

T �
[

1 − μζ ν O(1)1�
N−1

0 E

]
︸ ︷︷ ︸

T0

+ O(μ2)1N1
�
N , (64)

where E is a matrix independent of μ, introduced in
(153).

� x is a vector with entries proportional to μ2, which are
determined by the three sources of error present in the
system, namely, the gradient noise, the bias, and the
compression error — see (155) for a detailed description.

By inspection of (64), we see that the transfer matrix T can
be written as the sum of an upper-diagonal matrix T0 and a
rank-one perturbation of order μ2. It is tempting to conclude
from (64) that the rank-one perturbation can be neglected as
μ → 0. Were the matrix T0 independent of μ, this conclusion
would be obvious. However, since T0 does depend upon μ,
proving that for small μ the recursion in (63) can be examined
by replacing T with T0 is not necessarily true. We will be able
to show that this is actually the case, but to this end we need
to carry out the demanding technical analysis reported in the
appendices.

Nevertheless, to gain insight on how recursion (63) is rel-
evant to the mean-square behavior of the ACTC strategy, let
us simply assume for now that we can replace T with T0 and
examine instead the recursion:

P[̂qi] � T0 P[̂qi−1] + x. (65)

The upper-diagonal structure of T0 implies that the evolution
relating the network error components P[q̌i−1] to P[q̌i] takes
place only through matrix E . Accordingly, such matrix will be
referred to as the network error matrix. In particular, matrix E
is critical to characterize the network transient, which is the
phase of the learning process necessary for the agents to reach
a coordinated evolution that drives them to converge to a small
neighborhood of the true minimizer w�.

By developing the inequality recursion (65), we would ar-
rive at the following inequality:

P[̂qi] � T i
0 P[̂q0] +

i−1∑
j=0

T j
0 x. (66)

Assume that T0 is stable. Then, from (66) we would have:

lim sup
i→∞

P[̂qi] = lim sup
i→∞

[
E‖q̄i‖2

P[q̌i]

]

� (I − T0)−1x �
[

O(1/μ) O(1/μ)1�
N−1

0 O(1)1N−11
�
N−1

] [
x̄

x̌

]
, (67)

where we exploited the upper triangular shape of T0 from
(64) to evaluate the inverse (I − T0)−1 [66]. Since all the
entries of x scale as μ2, from (67) we obtain the following
important conclusion regarding the mean-square stability of
the ACTC strategy. The limit superior of E‖q̄i‖2 scales as
O(μ), whereas the limit superior of P[q̌i] is a higher-order
correction scaling as O(μ2). In other words, for sufficiently
small step-sizes the learning behavior of the ACTC strategy
is dominated by the coordinated-evolution component, while
the network-error component becomes negligible.

Further insights can be obtained by contrasting (67) with
the behavior of the classical ATC diffusion strategy, which
operates without compression. In this case, the (1,2)-block of
(I − T0)−1 is O(1) in place of O(1/μ) [14], [21]. This implies
that for the ATC strategy the network-error component x̌ in-
duces on the coordinated-evolution term only a higher-order
O(μ2) correction. Therefore, the term E‖q̄i‖2 is influenced
only by the component x̄. Moreover, for the ATC strategy
the component x̄ is the same gradient-noise term that would
characterize a centralized evolution. In contrast, the compo-
nent x̌ is a network-error term arising from propagation of the
gradient noise across the network.

Let us see what happens instead for the ACTC strategy.
Examining (67), we see that the term E‖q̄i‖2 is influenced
by both components x̄ and x̌. As can be verified by (155)
and Table 2, in addition to the gradient noise terms, these
components contain the bias and the compression parameters.
We conclude that, for the ACTC strategy, backpropagation
of the compression error lets additional components of the
gradient noise and the bias seep into the ACTC evolution,
determining an increase of the mean-square-deviation. The
qualitative arguments illustrated in this section will be made
rigorous in the theorems presented in the next two sections
and in the pertinent appendices.

VII. MEAN-SQUARE STABILITY
In order to state the theorem establishing mean-square sta-
bility, it is necessary to introduce a useful function that will
be critical to evaluate the mean-square stability of the ACTC
strategy. Following the canonical Jordan decomposition illus-
trated in Appendix A, we denote by λn the eigenvalue of A
associated with the n-th Jordan block of A (with the eigenval-
ues being ordered in descending order of magnitude — see

VOLUME 5, 2024 331

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

TABLE 1. Useful Symbols Used Throughout the Article.

TABLE 2. Useful Matrices and Vectors Appearing in Lemmas 2, 3, and 4. The Symbols Used in the Present Table are Defined in Table 1.

(105) in Appendix A), by Ln the dimension of this block, and
by B the number of blocks. Let

an � 2|λ2|
1 − |λ2|

1

|λ2| − |λn|2 , 2 ≤ n ≤ B. (68)

We note that an ≥ 2 and introduce the function:

γ (A) �
B∑

n=2

|λ2|
|λ2| − |λn|2

(
aLn+1

n − 1

(an − 1)2
− Ln + 1

an − 1

)
. (69)

Theorem 1 (Mean-Square Stability): Let

ζ <
1

16�̌γ (A)
, (70)

and let

μ <
2

ζ (η + ν)
, μ < μ�, (71)

with μ� being the positive3 root of the equation:

μ2

(
1 + σ 2

12

ν2

)
ϕ + μζ

1 + 16�̄ϕ

ν
− 1

φ
= 0, (72)

where

ϕ � γ (A)

1 − 16 ζ �̌ γ (A)
, (73)

�̄ and �̌ are defined in Table 1, and φ is a positive scalar that
embodies the constants appearing in the μ2-terms of matrices
Ts, Tδ and Tq in Table 2. The evaluation of φ is rather cumber-
some and is detailed in Appendix F. Then the ACTC strategy
is mean-square stable, namely,

lim sup
i→∞

E‖wk,i − w�‖2 < ∞. (74)

3Equation (72) is in the form aμ2 + bμ − c = 0, where a, b and c are
positive. Thus, the equation admits two real-valued roots of opposite sign.

332 VOLUME 5, 2024

Moreover, in the small step-size regime the mean-square-
deviation is of order μ, namely,

lim sup
i→∞

E‖wk,i − w�‖2 = O(μ) as μ → 0. (75)

�
Proof: See Appendix I.

A. INSIGHTS FROM THEOREM 1
Conditions (70) and (71) reveal how the parameter ζ and
the step-size μ are used to control the mean-square stability
of the ACTC algorithm. Regarding ζ , this parameter is not
present (i.e., ζ = 1) in the classical ATC algorithm, which
operates without compression. However, Eq. (70) shows that
in the presence of compression the value ζ = 1 does not grant
stability in general. In particular, Eq. (70) pertains to the
stability of the matrix E introduced in (153) (see Lemma 6
in Appendix G), whereas Eq. (71) controls the stability of the
matrix T introduced in (151) (see Lemma 7 in Appendix H).

Examining the structure of γ (A) in (69), we see that the
RHS of (70) depends on two main elements, namely, i) a
constant �̌ that contains the compression parameters ωk ; ii)
the eigenstructure of A, and particularly the second largest
magnitude eigenvalue λ2. Let us examine in detail the role
played by each of these elements.

Regarding the quantization constant �̌, we see that poorer
resolutions (i.e., higher values of �̌) go against stability, an
effect that can be compensated by choosing smaller values for
ζ . This means that ζ is useful to compensate for the quantiza-
tion error that seeps into the recursion of the individual agent’s
errors.

Regarding the eigenstructure of A, its fundamental role for
mean-square stability is summarized by the function γ (A) in
(69). This function provides an accurate stability threshold by
capturing the full eigenstructure of A through the eigenvalues
λn, the size and the number of Jordan blocks. In this way,
we are given the flexibility of providing accurate stability
thresholds for different types of combination matrices. Let us
illustrate these useful features in relation to existing results.

A detailed stability analysis of the classical (i.e., uncom-
pressed) ATC diffusion strategy under the general assump-
tions considered in this work was originally carried out
in [14], [21]. Such analysis relies on a more general Jor-
dan decomposition (with arbitrary ε replacing the ones on
the superdiagonal) which provides a sufficient condition for
mean-square stability. One feature of this sufficient condition
is that the stability range for μ scales exponentially as ε−N ,
with ε < 1, a condition that becomes stringent for large-scale
networks.

The stability analysis conducted in this work is different.
Our analysis is conducted in the transformed (complex) z-
domain exploiting the formalism of resolvent matrices. This
turns out to be a powerful approach that allows us to get
a necessary and sufficient condition for mean-square stabil-
ity that accounts for the entire eigenspectrum of A through
the function γ (A) in (69). We will now explain how such

eigenstructure plays a role for different types of combination
matrices, and how the actual conditions for stability are in fact
milder than the aforementioned exponential scaling.

Diagonalizable Matrices: For simplicity, let us consider the
case that, excluding λ1 = 1, all the remaining eigenvalues are
equal, namely, λn = λ2 for n > 1. Note that this yields an =
const . in (68). If A is diagonalizable, we have B = N and Ln =
1 for all n > 1, which, using (69), yields:

γ (A) ∝ N, (76)

i.e., γ (A) scales linearly with N .4

“Very” Non-Diagonalizable Matrices: Consider the oppo-
site case where B = 2 and Ln = N − 1, namely, apart from
the first Jordan block (i.e., the one associated with the single
eigenvalue λ1 = 1), we have only another block associated
with λn = λ2. Under this setting, we see from (69) that γ (A)
grows exponentially with N as:

γ (A) ∼
(

2

(1 − |λ2|)2

)N

. (77)

Typical Non-Diagonalizable Matrices: The exponential scal-
ing observed in (77) is clearly not desirable for stability, since,
in light of (70), it would significantly reduce the stability
range.

However, typical non-diagonalizable matrices adopted in
distributed optimization applications seldom feature the ex-
treme eigenstructure described above. As a matter of fact, if
we perform the Jordan decomposition of typical combination
matrices, we see that the size of the Jordan blocks is usually
modest, and in any case it does not increase linearly with N .
This means that the exponents in (69) would be determined by
the maximum Jordan block size, and not by the network size.

We note also that larger values of |λn|, and particularly of
|λ2|, go against the stability of the network error matrix E ,
which means that ζ is useful to regulate the stability when
the network component evolves more slowly, i.e., when |λ2|
is closer to 1. In the latter case, the threshold in (77) is par-
ticularly penalized. However, taking into account the fact that
for typical combination matrices many eigenvalue magnitudes
are considerably smaller than the second largest magnitude,
the stability thresholds obtained through (69) are expected to
be significantly less restrictive than (77).

In summary, the network error convergence depends upon
the eigenstructure of A and the quantizer’s resolution. While
the role of the eigenstructure of A (and, hence, of the network
connectivity) is common to the standard ATC strategy, one
distinguishing feature of the ACTC strategy is represented
by the fact that the spectral radius of E increases due to the
presence of the additional factor �̌. This means that the agree-
ment among agents slows down due to backpropagation of the

4We remark that, in the case of diagonalizable A, the linear scaling is a
tight estimate, since a known result about rank-one perturbations of diagonal
matrices allows us to evaluate the spectral radius in an exact manner as the
sum of the spectral radius of the unperturbed matrix plus N times the size of
the perturbation [69].

VOLUME 5, 2024 333

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

quantization error. However, and remarkably, this slowdown
does not preclude the possibility of accurate performance
given sufficient time for learning. Paralleling classical coding
results from Shannon’s theory, we could say that the price
of compression is not the impossibility of learning, rather a
slowdown in the convergence.

VIII. TRANSIENT ANALYSIS
The next result refines the mean-square stability result in The-
orem 1 by characterizing the learning dynamics of the ACTC
strategy, i.e., the transient phases of the algorithm before it
converges to the steady state. Preliminarily, we recall the main
differences, in terms of convergence behavior, between di-
minishing and constant step-sizes for traditional (i.e., without
compression) stochastic gradient algorithms.

Under stationary conditions, algorithms with diminishing
step-size converge to the correct minimizer as the number
of iterations i grows. In particular, the mean-square-error
converges to zero at the rate O(1/i). In comparison, under
stationary conditions, algorithms with constant step-size con-
verge to a small steady-state error on the order of the step-size.
The mean-square-error reaches the steady-state error at a ge-
ometric rate ρi for some positive ρ < 1. In Section II-D we
have already explained why, under nonstationary conditions,
tolerating a small error in place of a vanishing error is reward-
ing in terms of adaptation.

In the next theorem we provide a convergence analysis
for the ACTC strategy by obtaining an upper bound on the
mean-square-error of each individual agent, which holds for
any finite number of iterations i. The analysis reveals that,
despite the compression constraint, the steady-state error is
reached at a geometric rate. Specifically, we establish that the
convergence is ruled by the superposition of two terms that
vanish geometrically with i at different rates, highlighting the
presence of two transient phases.

Theorem 2 (ACTC Learning Behavior): Let

ρcen � (1 − μζ ν)2, (78)

where ν is the global strong convexity constant in (13), and
assume that

ζ <
1

16�̌γ (A)
. (79)

Let ρ(E) be the spectral radius of the matrix E in (153). Under
assumption (79) we have ρ(E) < 1, and we set ε > 0 such
that:

ρnet = ρ(E) + ε < 1. (80)

Using the definitions of the compression factor
 in (25),
of the entries {π�} of the Perron eigenvector in (10), of the
scaled step-sizes {α�} in (7), and of the gradient-noise vari-
ances {σ 2

� } in (35), in the small-μ regime the evolution of the
mean-square-deviation of the individual agent k can be cast in
the form, for all i > 0:

E‖wk,i − w�‖2 ≤ O(1) ρi
net + O(1) ρi

cen + O(μ) ρi/4
cen

+μζ

(∑N
�=1 π� α2

�σ
2
�

2ν
+ cq
 (1 +
)

)
+ O(μ3/2), (81)

where the Big-O terms depend in general on the particular
agent k, except for the O(1) term multiplying ρi

cen, and cq is a
positive constant independent of μ and i. �

Proof: See Appendix J.
Thanks to (81), we arrive at a sharp and revealing de-

scription of the learning behavior of compressed diffusion
strategies over adaptive networks. In fact, the individual terms
arising in (81) admit the following physical interpretation:

O(1) ρi
net︸ ︷︷ ︸

network convergence to
the centralized solution

+ O(1) ρi
cen︸ ︷︷ ︸

convergence of the
centralized solution

+ O(μ) ρi/4
cen︸ ︷︷ ︸

higher-order correction
relative to the transient phase

+

steady-state error︷ ︸︸ ︷
μζ

⎛⎜⎜⎝
∑N

�=1 π� α2
�σ

2
�

2ν︸ ︷︷ ︸
uncompressed ACTC

+ cq
 (1+
)︸ ︷︷ ︸
compression loss

⎞⎟⎟⎠+ O(μ3/2), (82)

which allows us to examine closely the distinct learning
phases as detailed in the following remarks.

— Transient Phases: First, we notice that the network rate
ρnet depends only on the stability parameter ζ , and on the
network connectivity properties through the eigenspectrum
of the combination matrix A. As a result, we see that for
sufficiently small μ we have that ρcen > ρnet. Accordingly, for
small step-sizes μ, the transient associated with the conver-
gence of the network solution toward the centralized solution
dies out earlier (Phase I). After this initial transient, a second
transient dominates (Phase II), which is relative to the slower
(since ρcen > ρnet) process that characterizes the convergence
of the centralized solution to the steady state. Remarkably,
these two distinct phases of adaptive diffusion learning have
already been identified in the context of adaptive learning over
networks without communication constraints [14], [15].

— Compression Loss: We see from (81) that, after transient
Phase II, the ACTC strategy reaches a steady-state mean-
square-deviation that is upper bounded by the quantity:

μζ

(∑N
�=1 π� α2

�σ
2
�

2ν
+ cq
 (1 +
)

)
+ O(μ3/2). (83)

Once we set a prescribed convergence rate ρcen, the product
μζ is determined from (78) as μζ = (1 − ρ

1/2
cen)/ν, such that,

using (83) and neglecting higher-order corrections, we can
introduce the error:

MSDACTC � 1 − ρ
1/2
cen

ν

(∑N
�=1 π� α2

�σ
2
�

2ν
+ cq
 (1 +
)

)
,

(84)

which provides an upper bound (in the regime of small step-
sizes) on the steady-state mean-square-deviation for a given
convergence rate ρcen. We see that MSDACTC is composed
of two main terms. The first term does not depend on the

334 VOLUME 5, 2024

amount of compression, and is proportional to an average
over the Perron weights {π�} of the scaled gradient noise
powers {α2

�σ
2
� }, further divided by the global strong convexity

constant ν. The second term on the RHS of (84) is the com-
pression loss, which is in fact an increasing function of the
compression factor
. The limiting case
 = 0 corresponds
to the setting without compression, i.e., to the ACTC diffusion
strategy in Algorithm 1 where the compression operator is
the identity operator, yielding, for small step-sizes, the excess
error arising from compression:

E � MSDACTC − MSDunc. ACTC = 1 − ρ
1/2
cen

ν
cq
 (1 +
),

(85)

where we referred to the strategy with
 = 0 as to the uncom-
pressed ACTC.

Moreover, from Algorithm 1 it is readily seen that the
uncompressed ACTC strategy with ζ = 1 coincides with the
classical ATC strategy. This implies that Eq. (85) holds also
for the ATC strategy, namely, we can write:

MSDACTC − MSDATC = E. (86)

— Equation (86) for Relevant Compression Operators:
Choosing as compression operators the randomized quan-
tizers examined in Appendix K1, we can obtain an explicit
connection between the mean-square-deviation and the bit-
rate. In fact, from (315) we can write:

 (1 +
) ≤ 2M

(2rmin − 1)2
, (87)

where we denoted by rmin the minimum bit-rate across
agents. From (85) and (87) we conclude that the increase in
mean-square-deviation from the uncompressed to the standard
ACTC is upper bounded as:

E ≤ 1 − ρ
1/2
cen

ν

2 cqM

(2rmin − 1)2
, (88)

which reveals the following remarkable analogy with the
fundamental laws of high-resolution quantization: for small
step-sizes, the excess of mean-square-deviation due to quanti-
zation scales exponentially with the bit-rate as 2−2rmin [44].

Likewise, from (320) in Appendix K2, we know that for the
randomized sparsifier the maximum compression parameter is
given by:

 = M

Smin
− 1, (89)

where Smin is the minimum number of transmitted compo-
nents across agents. Substituting (89) into (85) yields:

E ≤ 1 − ρ
1/2
cen

ν
cq

(
M

Smin

)2

. (90)

We see from (90) that the excess error due to compression is
given by the sparsification error (M/Smin)2, which quantifies
the discrepancy between the vector dimensionality M and the

reduced dimensionality Smin corresponding to the (minimum)
number of transmitted components.

IX. ILLUSTRATIVE EXAMPLES
The ACTC diffusion strategy can be applied to learning
problems that can be solved using stochastic gradient approx-
imations, such as regression problems involving quadratic
risks or classification problems involving logistic risks. More
broadly, the cost Jk (w) can represent the expected loss com-
puted by using estimation or decision functions arising from
complex learning architectures, such as a multi-layer neural
network, with the parameter w representing the neural net-
work weights. For our technical results to hold, we assume
that the cost functions fulfill classical smoothness/convexity
conditions. As is typical in optimization theory, when these as-
sumptions are not met, the learning algorithms offer different
types of guarantees, for example, convergence of the gradients
in place of convergence of the iterates — see, e.g., [51], [61].

To illustrate the behavior of the ACTC algorithm and to
highlight a number of interesting phenomena in a structured
manner, we find it convenient to focus on the following
distributed regression problem. We consider N agents inter-
connected through a network satisfying Assumptions 2 and
3. At time i, agent k observes data dk,i ∈ R and regressors
uk,i ∈ R

M , which obey the linear regression model:

dk,i = u�
k,iw

� + vk,i k = 1, . . . , N, (91)

where w� ∈ R
M is an unknown (deterministic) parameter vec-

tor and vk,i ∈ R acts as noise. We assume that processes {uk,i}
and {vk,i} have mean equal to zero, are independent both over
time and space (i.e., across the agents), with second-order
statistics given by, respectively:

Ru,k = E[uk,iu
�
k,i], Ev2

k,i = σ 2
v,k . (92)

The goal is to to estimate the unknown w�, which, by applying
straightforward manipulations to (91), can be seen to obey the
relationship:

rdu,k = Ru,kw
�, (93)

where rdu,k = E[dk,iuk,i]. In principle, each agent could per-
form estimation of w� by solving the optimization problem:

min
w∈RM

E
(
dk,i − u�

k,iw
)2

, (94)

which in turn corresponds to adopting the following quadratic
loss and cost functions:

Lk (w; {dk,i, uk,i}) = (dk,i − u�
k,iw)2, (95)

Jk (w) = E
[
Lk (w; {dk,i, uk,i})

]
. (96)

There are several reasons why the agents can be interested
in solving the regression problem in a cooperative fashion.
First of all, it was shown in [21] that, under suitable design,
cooperation is beneficial in terms of inference performance.
Even more remarkably, in many cases the local regression
problem (94) can be ill-posed if the agents’ regressors do

VOLUME 5, 2024 335

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

FIGURE 2. Left plot. ACTC network mean-square-deviation in (99) as a function of the iteration i, for different values of the bit-rate r. We consider the
distributed regression problem of Section IX, with dimensionality M = 50, Gaussian regressors uk,i with diagonal matrices and variances drawn as
independent realizations from a uniform distribution in (1, 4), and Gaussian disturbances vk,i with variances drawn as independent realizations from a
uniform distribution in (0.25, 1). The ACTC algorithm is run with stability parameter ζ = 0.25, and with equal step-sizes μk = μ = 4 × 10−3. All agents use
the randomized quantizer in Appendix K1 with bit-rate r. The inset plot shows the network topology, on top of which we build a Metropolis combination
matrix to run the ACTC algorithm. All nodes have a self-loop, not shown in the figure. The mean-square-deviations are estimated by means of 102 Monte
Carlo runs. Right plot. Same setting of the left plot, with the randomized sparsifier in Appendix K2 in place of the randomized quantizers.

not contain sufficient information. This is an issue classically
known as collinearity, which basically implies that the regres-
sion covariance matrix Ru,k is singular, and many w exist that
solve (94). This behavior can be easily grasped by noticing
that

∇Jk (w) = 2(Ru,kw − rdu,k), (97)

and, examining (93), we see that if Ru,k is not invertible,
w� is a solution to the optimization problem, but not the
only one. Accordingly, reliable inference about w is impaired
by collinearity. Technically, when the regression covariance
matrix of agent k is singular, the cost function Jk (w) is not
strongly convex, and the true w� is one among the minimizers
of (94).

However, if we now replace (94) with its global counter-
part:

min
w∈RM

E

[
N∑

k=1

pk
(
dk,i − u�

k,iw
)2]

, (98)

it is readily seen that a single agent with a non-singular Ru,k

(i.e., with a strongly convex cost function) is able to enable
successful inference. Notably, such a minimal requirement
is sufficient to our ACTC strategy to solve the regression
problem in a distributed way and under communication con-
straints.

A. ROLE OF COMPRESSION DEGREE
In Fig. 2, we examine the learning performance of the ACTC
strategy as a function of the iteration i. The left plot refers to
the randomized quantizer described in Appendix K1, whereas
the right plot refers to the randomized sparsifier in Ap-
pendix K2. In both plots, different curves refer to different

communication budgets, namely, number of bits for the ran-
domized quantizer and number of transmitted components for
the randomized sparsifier.

The simulations were run under the following setting.
The regression problem has dimensionality M = 50. The co-
variance matrices Ru,k are all diagonal, and the associated
regressors’ variances are drawn as independent realizations
from a uniform distribution with range (1, 4). The noise
variances σ 2

v,k are drawn as independent realizations from a
uniform distribution with range (0.25, 1). The network is made
of N = 10 agents, connected through the topology displayed
in Fig. 2, and with Metropolis combination policy. Under this
setting, we run the ACTC algorithm with stability parameter
ζ = 0.25, and with equal step-sizes μk = μ = 4 × 10−3. All
errors are estimated by means of 102 Monte Carlo runs. For
the example pertaining to randomized quantizers, all agents
use the same number of bits r. For the example pertaining
to randomized sparsifiers, all agents use the same number of
transmitted components S.

As a first performance index, we examine the network
ACTC learning performance, i.e., the mean-square-deviation
averaged over all agents:

1

N
E‖wi − w�‖2. (99)

The behavior observed in Fig. 2 summarizes sharply the es-
sential characteristics of the ACTC algorithm, as captured
by Theorem 2: i) for all quantizer’s resolutions (left plot)
and for all levels of sparsity (right plot), the mean-square-
deviation has a transient that is essentially governed by the
predicted rate ρcen = (1 − μζ ν)2 (dashed line); ii) some
higher-order discrepancies are absorbed in an initial (much

336 VOLUME 5, 2024

FIGURE 3. Difference between the network mean-square-deviation of the
ACTC strategy and the mean-square-deviation of the uncompressed
strategies, estimated over 5 × 103 Monte Carlo runs. The label
“uncompressed ACTC” stems for the ACTC strategy in Algorithm 1 with
Q(x) = x, whereas “ATC” stems for the classical ATC in [21]. The dashed
curve is obtained by depicting a curve proportional to (2r − 1)−2, with
proportionality constant set so as to match the second point of the
uncompressed ACTC curve. The relevant parameters of the ACTC strategy
and of the distributed regression problem are set as in the left plot in
Fig. 2, but for the dimensionality M = 10.

faster) transient; iii) the ACTC errors corresponding to differ-
ent communication budgets (number of bits for the quantizers
and number of components for the sparsifiers) converge to dif-
ferent steady-state error values, approaching the performance
of the ATC (i.e., uncompressed) strategy as the number of bits
or components increases.

With reference to the same setting of the left plot in Fig. 2,
but for a smaller dimensionality M = 10, in Fig. 3 we display
the excess of mean-square-deviation of the ACTC strategy
with respect to the uncompressed ACTC. We remark that the
curves in Fig. 3 do not represent mean-square-deviations, but
the difference between the mean-square-deviation attained by
the ACTC diffusion strategy, and the mean-square-deviation
that would be attainable in the absence of data compression by
the uncompressed ACTC and the classical ATC. Accordingly,
such excess error summarizes only the effect of data com-
pression, and is therefore expected to reduce as the bit-rate
increases (while the overall mean-square-deviation cannot
vanish since we are in a stochastic-gradient environment). We
see that the curves scale with the number of bits as (2r − 1)−2.
This result is in perfect accordance with (88). Moreover, we
see that the uncompressed ACTC strategy features a slight
increase in mean-square-deviation with respect to the ATC
strategy. This difference is due to the higher-order terms
O(μ3/2), which are in general different for the two strategies.
In particular, lower values of the stabilization parameter ζ

that is required by the ACTC strategy (and is instead equal
to 1 for the ATC strategy) typically entails a slight increase in
the mean-square-deviation that is incorporated in the O(μ3/2)

FIGURE 4. ACTC mean-square-deviation of the individual agents achieved
using r = 2 bits, under the same setting of the left plot in Fig. 2. The inset
plot zooms in on the faster initial transient needed by the agents to reach
a coordinated evolution.

correction.5 Such small increase becomes visible only when
comparable to the quantization error, i.e., when the quanti-
zation error becomes negligible. In the particular example of
Fig. 3, this happens when the quantization error is ≈ −55 dB.

In Fig. 4, we continue by examining the performance of the
individual agents. In accordance with our results, all agents
behave similarly, both in terms of transient and steady-state
behavior. As shown by (81), initial discrepancies between the
agents (see the inset plot) are absorbed into a faster network
transient, after which all agents act in a coordinated manner,
and converge to the steady-state value.

Finally, in Fig. 5 we examine the joint role of the step-size
μ and of the stabilizing parameter ζ . Again, the theoretical
predictions are confirmed, since we see that by keeping the
product μζ constant, all curves behave equally in terms of
rate (1 − μζ ν)2 and steady-state error, with ζ playing some
role only in the faster initial network transient (see inset plot).

It is useful to evaluate the saving, in terms of bits, achieved
with the ACTC strategy. To this end, we must recall that the
randomized quantizers in Appendix K1 compress finely (say,
with machine precision 32 bits) the norm of the vectors to
be quantized, send one additional bit for the sign of each
entry, and then apply random quantization with r bits to each
entry — see (311). Accordingly, given a dimensionality M, a
number of iterations imax, and a number of quantization bits r,
the overall bit expense of each agent is:

rtot = (32 + M × (r + 1)) imax. (100)

Applying this formula to the setting of the left plot in Fig. 2,
we see that, for the time necessary to enter reliably the steady

5These types of higher-order differences among similar forms of dis-
tributed implementations are commonly encountered in the pertinent lit-
erature, for example, when one compares the ATC strategy against the
Combine-Then-Adapt strategy or against the consensus strategy [21].

VOLUME 5, 2024 337

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

FIGURE 5. Network mean-square-deviation of the ACTC strategy, for
different (μ, ζ) pairs guaranteeing the same value of the product μζ (and,
hence, the same value of convergence rate ρcen). The simulation setting is
the same as in the left plot in Fig. 2. The inset plot highlights the impact of
ζ on the faster initial transient needed by the agents to reach a
coordinated evolution.

state (imax ≈ 2500), and referring to the coarser scheme that
uses only 2 bits, we get:

r(tot)
ACTC = (32 + 50 × 2) × 2500 = 455 kbit. (101)

This value should be compared against the expense required
by the plain ATC strategy, where each entry of the vector to
be quantized is represented by 32 bits, yielding:

r(tot)
ATC = 32 × 50 × 2500 = 4 Mbit, (102)

implying a remarkable gain of about one order of magnitude
in terms of bit rate. This gain should be evaluated in relation to
the loss, in terms of mean-square-deviation, arising from data
compression. Inspecting the left plot in Fig. 2, we see that we
loose ≈ 4 dB, which is definitely tolerable, especially in the
light of the remarkable bit-rate savings.

Similar comments apply to the ACTC strategy with ran-
domized sparsifiers considered in the right plot in Fig. 2.
Here we see that 4 dB are lost with respect to the plain ATC
strategy by approximately halving the number of transmitted
components.

B. UNIDENTIFIABLE PROBLEM
We now move on to consider the challenging case where only
one agent (say, agent 1) has a locally identifiable regression
problem.

Technically, the regressors’ matrix Ru,1 is invertible,
whereas the remaining matrices Ru,k , for k > 1, are singular.
In particular, agents k = 2, 3, . . . , N solve a regression prob-
lem with two linearly dependent features. In the following,
agent 1 will be referred to as “farsighted agent”, whereas the
other agents as “singular agents”. Moreover, we assume that
all agents have the same regressor and noise variances σ 2

u and

FIGURE 6. ACTC network mean-square-deviation in (99) as a function of
the iteration i, for the case of a doubly-stochastic combination matrix
obtained with the Metropolis rule. We consider the distributed regression
problem of Section IX-B with N − 1 singular agents having locally
unidentifiable regression problems, and one farsighted agent having a
locally well-posed regression problem. The dimensionality is M = 10, and
the parameters of the Gaussian regressors uk,i and of the Gaussian
disturbances vk,i are drawn as in Fig. 2, but for the fact that the regressors’
matrices of the singular agents have two equal columns (which yields local
unidentifiability at these agents). The ACTC algorithm is run with stability
parameter ζ = 0.8, and with equal step-sizes μk = μ = 5 × 10−3. All agents
use the randomized quantizer in Appendix K1 with bit-rate r = 3. All errors
are estimated by means of 102 Monte Carlo runs.

σ 2
v , and we consider equal step-sizes at all agents, such that

the vector p coincides with the Perron eigenvector.
Under this setting the local cost functions of the singular

agents are not strongly convex, whereas the aggregate cost
function in (98) is strongly convex, with constant ν given by:

ν = 2p1σ
2
u , (103)

where p1 is the entry of the Perron eigenvector corresponding
to the farsighted agent.

In Fig. 6, we consider a doubly-stochastic combination pol-
icy, namely, the Metropolis rule. Five main conclusions arise.
First, agent 1 in isolation is able to learn fairly well, with a
steady-state error ≈ −26 dB, while the other agents, when in
isolation, are unable to learn properly, with steady-state errors
≈ 18 dB.6 Second, when organized into a network, all agents
are able to learn properly and even with only 3 bits per itera-
tion. Third, after the initial network transient, an intermediate
transient arises (with convergence rate shown in dashed blue
line), which comes before the final transient leading to the
coordinated evolution (with rate shown in dashed black line).
The intermediate transient can be shown to represent the time
needed by the singular agents to align with the farsighted
one.7 Fourth, despite the fact that N − 1 agents have a singular

6Actually, these errors depend on the initial conditions since the singular
agents have a continuum of minimizers.

7This further transient is not visible in our formulas, since it is absorbed
in the upper-bound corresponding to the slower transient dominated by
(1 − μ ζ ν)2. By examining the considered example, it is possible to evaluate
analytically this transient, but the analysis is beyond the scope of this work.

338 VOLUME 5, 2024

FIGURE 7. ACTC network mean-square-deviation in (99) as a function of
the iteration i, for a left-stochastic combination matrix obtained through
the Metropolis-Hastings procedure to match a target Perron vector that
optimizes the (unquantized) ATC performance. In order to match the
convergence rate ρcen corresponding to Fig. 6, we here used ζ = 0.8, and
equal step-sizes μk = μ = 16 × 10−3, while leaving all other system
parameters unchanged.

regressors’ matrix, they contribute to accelerate convergence
to the steady state. However, we see that the cooperative
steady-state performance is equivalent to the individual (i.e.,
non-cooperative) performance of the farsighted agent. We will
now show that this conclusion is not a general conclusion, and
depends on the particular combination policy.

To this end, in Fig. 7 we consider the same setting of Fig. 6,
but for the choice of the combination policy, which is now
left-stochastic. Specifically, we use the Metropolis-Hastings
rule to construct a combination matrix with a target Perron
eigenvector — see the procedure explained in [21, p. 630].
The target Perron eigenvector is chosen so as to minimize the
steady-state error of the unquantized ATC strategy. Clearly,
this does not guarantee that we are choosing the best Per-
ron eigenvector for the ACTC strategy, but we will now see
that this turns out to be a meaningful choice. In fact, we
see from Fig. 7 that, with the optimized combination policy,
network cooperation achieves a twofold goal. As in the case
of a doubly-stochastic policy, cooperation is beneficial to the
singular agents. Moreover, it is also beneficial to the farsighted
agent, which is now able to improve on the steady-state per-
formance achieved without cooperation.

In summary, the conducted experiments lead to a re-
vealing conclusion as regards the role of topology on the
learning performance. By suitable design of the combination
matrix, the regularization action played by agent 1 makes
the singular agents capable of contributing more fully to
the optimization problem, allowing all agents to achieve a
mean-square-deviation that outperforms the non-cooperative
performance achievable by the farsighted agent in isolation.

Finally, the convergence behavior of the ACTC strategy
is visually illustrated in Fig. 8, with reference to a simple

FIGURE 8. Illustrative example of time evolution of the individual agents’
iterates for the ACTC strategy.

example with dimensionality M = 2, and N = 20 agents. Let
us consider first the case where the N agents are all singular
(red squares). In this case, we see that, moving from the
initial iterates (blue circles), the singular agents follow wrong
paths converging around the wrong point (4.5, 1.5) = w�. In
contrast, the ACTC strategy (green circles) allows all agents to
converge well to a small neighborhood of the true minimizer,
after an initial transient where they need to coordinate with
each other.

C. COMPARISON WITH EXISTING STRATEGIES
As we have illustrated in Section II-A, the present work
generalizes the existing works on compressed distributed im-
plementations under several aspects, including left-stochastic
combination policies, lack of local strong convexity, diffusion
strategies. For this reason, the existing theoretical results can-
not cover the challenging setting considered in the present
work, which required instead a significant additional effort.
Nevertheless, even if formulated and studied under alternative
settings, some of the existing algorithms can be practically
applied to our setting. In particular, we select from the existing
algorithms two particular up-to-date implementations that, as
far as we know, constitute the actual benchmark performance,
namely, CHOCO-SGD [56] and its dual version, DUAL-
SGD [57]. Notably, the latter two algorithms have more tuning
parameters than our algorithm. Even if the necessity itself of
tuning more parameters might be considered a disadvantage
of these strategies, in order to ensure a fair comparison we
performed a fine tuning of all the parameters to guarantee best
performance of CHOCO-SGD and DUAL-SGD. The shaded
areas shown in Fig. 9 correspond to the range of mean-square-
deviations spanned by a subset of the parameters explored
during the tuning phase.

VOLUME 5, 2024 339

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

FIGURE 9. Comparison of the proposed ACTC strategy against known
strategies, namely, CHOCO-SGD [56] and DUAL-SGD [57]. The shaded areas
correspond to the best subsets of tuning parameters of CHOCO-SGD and
DUAL-SGD explored during our experiments. The ACTC algorithm is run
with stability parameter ζ = 0.8, and with equal step-sizes
μk = μ = 1.25 × 10−2. All agents use the randomized quantizer in
Appendix K1 with bit-rate r = 2. The network topology is the same shown
in the left plot of Fig. 2. The regression problem has dimensionality
M = 10, with all other parameters being set as in Fig. 2.

Fig. 9 displays the comparison involving the proposed
ACTC strategy and the aforementioned two strategies. Re-
markably, for the same value of the transient time, the ACTC
strategy outperforms both CHOCO-SGD and DUAL-SGD
at steady state. In particular, we see that DUAL-SGD per-
forms appreciably worser than the implementations in the
primal domain. This conclusion is in perfect agreement with
was shown in [70] for the uncompressed case. In fact, the
core of DUAL-SGD is a primal-dual distributed strategy of
Arrow-Hurwicz type, which was shown in [70, Corollary 3]
to converge, despite being a distributed cooperative strategy, at
most to the non-cooperative performance. In contrast, both the
ACTC and CHOCO-SGD strategies are able to exploit fully
the distributed cooperation, which explains the performance
improvement exhibited in Fig. 9.8

We move on to examine the improvement of the proposed
ACTC strategy on the existing CHOCO-SGD strategy. Also
in this case, this improvement can be neatly explained in the
light of known behavior observed in the uncompressed case,
since the improvement matches well similar gains achievable
when using diffusion (as ACTC does) as opposed to consensus
(as CHOCO-SGD does). In fact, as observed in distributed
optimization without compression [21], diffusion strategies
can outperform consensus strategies, and, remarkably, from
our experiments we observe the same behavior when these
types of strategies are called to operate under communication
constraints.

8In [57], with reference to a regularized logistic regression example, it
is shown that DUAL-SGD and CHOCO-SGD perform similarly, but this
comparison is in terms of function values and not in terms of iterates.

X. CONCLUSION
We considered a network of agents tasked to solve a certain
distributed optimization problem from continual aggregation
of streaming observations. Fundamental features of our set-
ting are adaptation, local cooperation and data compression.
By adaptation we mean that the agents must be able to react
promptly to drifts in the operational conditions, so as to adapt
their inferential solution quickly. In this regard, stochastic-
gradient algorithms with constant step-size become critical.
By local-cooperation we mean that each individual agent is
allowed to implement a distributed algorithm by exchang-
ing information with its neighbors. Finally, data compression
comes from the need of communicating information at a finite
rate, owing to energy/bandwidth constraints.

We introduced a novel strategy nicknamed as Adaptive-
Compress-Then-Combine (ACTC), whose core is an adaptive
diffusion strategy properly twinned with a differential stochas-
tic compression strategy. Our analysis is conducted under
the challenging setting where: i) communication is allowed
to be unidirectional (i.e., over directed graphs); and ii) the
cost functions at the individual agents are allowed to be
non-convex, provided that a global cost function obtained
as linear combination of the local cost functions is strongly
convex. We obtained the following main results. First, we
established that the proposed ACTC scheme is mean-square
stable, and in particular that each individual agent is able to
infer well the value of the parameter to be estimated, with a
mean-square-deviation vanishing proportionally to the step-
size. Second, we characterized the learning behavior of each
individual agent, obtaining analytical solutions that highlight
the existence of two main transient phases, one (faster) rela-
tive to convergence of all agents to a coordinated evolution,
the other (slower) relative to convergence of the coordinated
estimate to the steady-state solution. Notably, these distinct
learning phases were shown to emerge in diffusion strategies
without data compression [14]. Therefore, our result implies
that these distinct phases are preserved despite the presence
of compressed data, for any degree of compression. More-
over, there are also distinguishing features arising from data
compression, and the obtained analytical solutions are able
to reflect well the role of the compression degree (e.g., in
terms of quantization bits or sparsity level) in the final learning
behavior. A remarkable conclusion stemming from our anal-
ysis is that, for sufficiently small step-sizes, small errors are
achievable for any compression degree. This behavior brings
an interesting analogy with classical information-theoretic re-
sults: the information-rate limitation does not preclude the
possibility of learning, but involves a reduction in the speed
of convergence.

Another useful parallel can be drawn with the recently
introduced paradigm of exact diffusion [71], [72], where no
compression is present, and the true (i.e., non stochastic) gra-
dient is available. Under this paradigm, diffusion strategies
with constant step-size μ are enriched with an error com-
pensation step, which allows them to attain a zero, rather
than O(μ), mean-square-deviation [71], [72]. Inspired by the

340 VOLUME 5, 2024

structure of the ACTC diffusion strategy in Algorithm 1, it
could be worth including in the exact diffusion algorithm the
parameter ζ and a general nonlinearity Qk (·), and tuning these
two quantities to speed up convergence.

There is still a lot of work to be done in the context of dis-
tributed adaptive learning under communication constraints.
One advance regards a steady-state performance analysis
aimed at obtaining exact formulas for the mean-square-
deviation. Another advance concerns the generalization of
the analysis to quantizers that do not fulfill the unbiasedness
assumption. A further contribution is to extend results avail-
able under non-convex environments [73], [74], [75] to the
case of compressed data. Under such setting, the traditional
difficulties arising from the lack of convexity (e.g., the evo-
lution of the stochastic-gradient iterates, their mean-square
stability and steady-state performance) will be complicated by
the complexity arising from the introduction of the nonlinear
compression operator. Finally, we are currently investigating
open problems where the techniques and results of the present
work can be exploited, regarding the trade-off between net-
work attributes and communication resources (i.e., how to
perform jointly the design of the topology and the allocation
of the communication budget to maximize the performance)
and the analysis of other classes of compression operators
that do not assume high-precision representation of some vari-
ables.

APPENDIX A
COLLECTION OF USEFUL BACKGROUND RESULTS
1. JORDAN REPRESENTATION
Let Jtot be the matrix associated with the canonical Jordan
decomposition of the combination matrix A, which can be
represented as [66]:

Jtot = diag{J1, J2, . . . , JB}, (104)

where B is the number of Jordan blocks. As usual, the in-
dividual blocks can have different size, and the unspecified
off-diagonal terms arising after block-diagonal concatenation
are automatically set to zero. For n = 1, 2, . . . , B, we denote
by λn the eigenvalue associated with block Jn, and, without
loss of generality, we assume that the eigenvalues are sorted
in descending order of magnitude, namely,

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λB|. (105)

Each Jordan block takes on the form:

Jn �

⎡⎢⎢⎢⎢⎢⎣
λn 1

. . .
. . .
. . . 1

λn

⎤⎥⎥⎥⎥⎥⎦ , (106)

and can be accordingly written as:

Jn = λnILn + ULn , (107)

where Ln is the dimension of the n-th block, and ULn is a
square matrix of size Ln that has all zero entries, but for the
first diagonal above the main diagonal, which has entries equal
to 1.

In view Assumptions 2 and 3, the combination matrix A
has a unique largest magnitude eigenvalue that is λ1 = 1, i.e.,
the first Jordan block is J1 = 1. The remaining B − 1 Jordan
blocks can be conveniently arranged in the reduced matrix:

J = diag{J2, . . . , JB}. (108)

Moreover, letting

� � diag{λ2IL2 , λ3IL3, . . . , λBILB}, (109)

and

U � diag{UL2 ,UL3 , . . . ,ULB}, (110)

we end up with the following useful representation:

J = � + U . (111)

2. ENERGY OPERATORS
Definition 1 (Energy Vector Operator): Let x1, x2, . . . , xN be
N vectors of size M × 1, and let

x =

⎡⎢⎢⎢⎢⎣
x1

x2
...

xN

⎤⎥⎥⎥⎥⎦ (112)

be the block vector of size MN × 1 obtained by concatenating
these vectors. The energy vector operator, P : CMN → R

N , is
defined as:

P[x] =

⎡⎢⎢⎢⎢⎣
‖x1‖2

‖x2‖2

...

‖xN‖2

⎤⎥⎥⎥⎥⎦ . (113)

�
For a random vector x, we introduce the following average

energy operator:

P[x] = EP[x] =

⎡⎢⎢⎣
E‖x1‖2

...

E‖xN‖2

⎤⎥⎥⎦ . (114)

The block-matrix counterpart of operator P[·] is defined as
follows.

Definition 2 (Norm Matrix Operator): Let {Xkn}, with k =
1, 2, . . . , K and n = 1, 2, . . . , N , a doubly-indexed sequence
of M × M matrices, and consider the MK × MN matrix X
whose (k, n)-block is {Xkn}. The norm matrix operator, P̄ :

VOLUME 5, 2024 341

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

C
MK×MN → R

K×N , is defined as:

P̄[X] �

⎡⎢⎢⎣
‖X11‖ . . . ‖X1N‖

...
...

‖XK1‖ . . . ‖XKN‖

⎤⎥⎥⎦ . (115)

�
The operators (113) and (115) are equipped with several

useful properties. We now list those properties that will be ex-
ploited in the forthcoming proofs, and refer the reader to [14]
for the proof of these properties.

Property 1 (Energy Vector Operator and Norm Matrix Op-
erator Properties): Let x and y be two block column vectors
of size MN × 1 constructed as in Definition 1, and let X and
Y be two block matrices of size MK × MN constructed as in
Definition 2. The following properties hold.

P1) Nonnegativity: P[x] � 0, P̄[X] � 0.
P2) Scaling: For any scalar a ∈ C, P[ax] = |a|2 P[x] and

P̄[aX] = |a| P̄[X].
P3) Convexity: given a set of L vectors {x(1), . . . , x(L)}

having the same structure of x, and a set of convex
coefficients {a1, . . . , aL}, then

P[a1x(1) + ... + aLx(L)] � a1P[x(1)] + ... + aLP[x(L)].
(116)

P4) Additivity under orthogonality: Let x and y be two
block column random vectors of size MN × 1 con-
structed as in Definition 1. If blocks xk and yk are
orthogonal for all k = 1, 2, . . . , N , namely if

E

[
xH

k yk

]
= 0, (117)

then we have that:

P[x + y] = P[x] + P[y]. (118)

P5) Relation to Euclidean norm: 1�
N P[x] = ‖x‖2.

P6) Linear transformations: Applying the energy operator
to the linear transformation Y x we obtain:

P[Y x] � ‖P̄[Y]‖∞ P̄[Y] P[x] (119)

� ‖P̄[Y]‖2
∞ 1K1

�
N P[x]. (120)

P7) Stable Kronecker Jordan operator: Consider the ex-
tended version J = J ⊗ IM of the reduced Jordan
matrix J = � + U in (111). Then, for any two block
column vectors x′ and y′ of size M(N − 1) × 1 con-
structed as in Definition 1, we have that:

P
[
Jx′ + y′] �

(
��∗

|λ2| + 2U

1 − |λ2|
)

P[x′]

+ 2

1 − |λ2|P[y′]. (121)

For the benefit of the reader, we note that this property
was not stated in this form in [14]. Equation (121) is
readily obtained from [14, Eq. (198)] by exploiting the
diagonal structure of �.

3. REPRESENTATION IN TRANSFORMED NETWORK
COORDINATES
Before proving all the pertinent lemmas and theorems, it is
useful to write down the ACTC strategy in terms of the trans-
formed variables introduced in Section V-B. Regarding the
transformed quantized vector q̂i, applying definition (56) in
the second step of (51), we readily get:

q̂i = Ṽqi = q̂i−1 + ζ VQ
(
V−1 δ̂i

)
. (122)

We note in passing that the term VQ(V−1 δ̂i) reflects well the
inherent nonlinear behavior of the compression operators. In
fact, the linear transformation V and the nonlinear operator
Q(·) do not commute and, hence, the direct and inverse net-
work transformation, V and V−1, do not compensate perfectly
with each other.

Let us switch to the transformed quantization-error vector
δ̂i, and focus accordingly on the first step in (51). We introduce
the extended Jordan matrix:

Jtot � Jtot ⊗ IM , (123)

which, in view of (52), allows us to write the extended com-
bination matrix A in (50) as:

A� = V−1JtotV. (124)

Therefore, in view of (51) we can write:

(IMN − μHi−1)A� − IMN = V−1 (Jtot − μGi−1 − IMN)V,

(125)

where we introduced the matrix:

Gi � VHi A
�V−1. (126)

Substituting now (125) into the first step of (51) and applying
the network transformation, we get:

δ̂i = Vδi = (Jtot − IMN − μGi−1)̂qi−1 − μ ŝi − μ b̂. (127)

Furthermore, by using (50) and (55) in (126), the matrix Gi−1

can be written as:

Gi−1 = (V ⊗ IM)Hi−1(A� ⊗ IM)(V −1 ⊗ IM)

= (V ⊗ IM)Hi−1(A�V −1 ⊗ IM), (128)

where we used the property of the Kronecker product (X ⊗
Z)(Y ⊗ Z) = XY ⊗ Z , holding for any three matrices X,Y, Z
with compatible dimensions. Exploiting now the partitioned
structure of V and V −1 in (54), we can write:

V ⊗ IM =
[
π� ⊗ IM

VR ⊗ IM

]
, (129)

A�V −1 ⊗ IM =
[
1N ⊗ IM A�VL ⊗ IM

]
, (130)

where in the last matrix we used the equality A�1N = 1N ,
holding since A is a left-stochastic matrix. Using (129) and
(130) in (128) we obtain the following block-decomposition

342 VOLUME 5, 2024

for Gi:

Gi =
[

G11,i G12,i

G21,i G22,i

]
, (131)

where

G11,i =
N∑

k=1

πk Hk,i, (132)

G12,i = (π� ⊗ IM)Hi (A�VL ⊗ IM), (133)

G21,i = (VR ⊗ IM)Hi (1N ⊗ IM), (134)

G22,i = (VR ⊗ IM)Hi (A�VL ⊗ IM). (135)

Combining now (127) with (131), we obtain:[
δ̄i

δ̌i

]
=
[
−μG11,i−1 −μG12,i−1

−μG21,i−1 J − IM(N−1) − μG22,i−1

]

×
[

q̄i−1

q̌i−1

]
− μ

[
s̄i

ši

]
− μ

[
0

b̌

]
. (136)

We conclude this section with a lemma that will be repeatedly
used in the forthcoming proofs.

Lemma 1 (Characterization of Gi): The blocks of matrix
Gi in (131) satisfy the following bounds. First, the M × M
symmetric matrix G11,i in (132) fulfills the bounds:

νIM ≤ G11,i ≤ ηIM , (137)

where ν is the global-strong-convexity constant introduced in
(13) and η is the average Lipschitz constant in (14).

Second, a positive constant σ12 exists such that:

‖G12,i‖ ≤ σ12. (138)

Finally, the matrices P̄[G21,i] and P̄[G22,i] obtained by ap-
plying the norm matrix operator to the matrices in (134) and
(135), have bounded norm, in particular we have:

‖P̄[G21,i]‖∞ ≤ σ21, ‖P̄[G22,i]‖∞ ≤ σ22, (139)

for some positive constants σ21, and σ22.
Proof: The proof relies basically on the properties of the

matrices Hk,i, which arise from Assumptions 1 and 4. Let us
focus on (137). Using (13) and (40) in (132) we readily obtain:

G11,i =
N∑

k=1

pk

∫ 1

0
∇2Jk (w� + tw̃k,i)dt ≥ νIM , (140)

which proves the lower bound in (137). The upper bound is
obtained by observing that:

‖G11,i‖ ≤
N∑

k=1

pk

∥∥∥∥∫ 1

0
∇2Jk (w� + tw̃k,i)dt

∥∥∥∥
≤

N∑
k=1

pk

∫ 1

0

∥∥∇2Jk (w� + tw̃k,i)
∥∥ dt ≤ η, (141)

where the first inequality is the triangle inequality, the inter-
mediate inequality is the mean-value inequality, and the last
inequality follows by (14).

We continue by proving (138) and (139). First, we note that
G12,i, G21,i, and G22,i have the following common structure:

(X ⊗ IM)diag{H1,i, H2,i, . . . , HN,i}(Y ⊗ IM), (142)

for a suitable choice of the matrices X and Y , having made
explicit the definition of Hi in (50). The bound in (138)
follows readily from the Lipschitz property in (2). Regarding
(139), we observe that we can write:

(X ⊗ IM)diag{H1,i, H2,i, . . . , HN,i}

=

⎡⎢⎢⎢⎢⎣
x11H1,i x12H2,i · · · x1N HN,i

x21H1,i x22H2,i · · · x2N HN,i
...

...

xN1H1,i xN2H2,i · · · xNN HN,i

⎤⎥⎥⎥⎥⎦ . (143)

Therefore, for �, �′ = 1, 2, . . . , N , the (�, �′)-block of the
matrix (X ⊗ IM)diag{H1,i, H2,i, . . . , HN,i}(Y ⊗ IM) can be
written as:

N∑
k=1

x�k yk�′ Hk,i, (144)

showing that each M × M block of G21,i or G22,i is a linear
combination of the matrices Hk,i. Now, by applying the Lips-
chitz property in (2) to the individual matrices Hk,i in (40) we
see that each of these matrices has bounded norm. Applying
the norm matrix operator to G21,i or G22,i, we conclude that
all entries of P̄[G21,i] and P̄[G22,i] are bounded, and, hence, so
are ‖P̄[G21,i]‖∞ and ‖P̄[G22,i]‖∞, which concludes the proof
of the lemma. �

APPENDIX B
AUXILIARY RESULTS
In this appendix we collect four auxiliary results (Lemmas 2,
3, 4, and Theorem 3) that will be used to prove Theorems 1
and 2. In order to facilitate the reading, each of these results is
proved in a separate appendix.

As we explained before, it is instrumental to work in terms
of the quantized iterates qk,i and, more precisely, in terms
of the transformed vectors q̂i = V q̃i. In order to characterize
the mean-square evolution of the transformed vectors, it is
particularly convenient to adopt the formalism of the energy
operators introduced in Appendix A2.

In particular, when we apply the average energy operator in
(114) to one of our transformed vectors, e.g., to q̂i in (56), we
obtain the following block decomposition:

P[̂qi] =

⎡⎢⎣E‖q̄i‖2

P[q̌i]

⎤⎥⎦ , (145)

where P[q̌i] is an (N − 1) × 1 vector. Examining the time
evolution of the energy vectors in (145) is critical because the

VOLUME 5, 2024 343

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

individual agents’ errors E‖qk,i‖2 can be related to these en-
ergy vectors through the inverse network transformation V−1

in (57). In particular, we will be able to show that the quantity
E‖q̄i‖2 plays a dominant role in determining the (common) in-
dividual agents’ steady-state mean-square behavior, whereas
the quantity P[q̌i] plays the role of a network error quantity
that dies out during the transient phase.

We start with three lemmas that characterize the interplay
over time (in terms of energy) of three main quantities in the
network transformed domain: the gradient noise ŝi in (59), the
quantization error δ̂i in (58), and the quantized iterates q̂i in
(56).

The first lemma relates the gradient noise to the quantized
iterates.

Lemma 2 (Gradient Noise Energy Transfer): The average
energy of the transformed gradient noise extended vector ŝi

evolves over time according to the following inequality:

P[μ ŝi] � Ts P[̂qi−1] + xs, (146)

where the transfer matrix Ts and the driving vector xs =
[x̄s, x̌s]� are defined in Table 2.

Proof: See Appendix C.
The second lemma relates the quantization error to the

quantized iterates and to the gradient noise. �
Lemma 3 (Quantization Error Energy Transfer): The av-

erage energy of the transformed quantization-error extended
vector δ̂i evolves over time according to the following inequal-
ity:

P[̂δi] � Tδ P[̂qi−1] + P[μ ŝi] + xδ, (147)

where the transfer matrix Tδ and the driving vector xδ =
[x̄δ, x̌δ]� are defined in Table 2.

Proof: See Appendix D. �
The third lemma relates the quantized iterates to the quan-

tization error and the gradient noise.
Lemma 4 (Quantized Iterates Energy Transfer): Let

μζ <
2

η + ν
, (148)

where ν is the global-strong-convexity constant introduced in
(13) and η is the average Lipschitz constant in (14). Let

� =

⎡⎢⎣ �̄

�̌1N−1

⎤⎥⎦ , (149)

where the constants �̄ and �̌ are defined in Table 1. Then, the
average energy of the transformed extended vector q̂i evolves
over time according to the following inequality:

P[̂qi] � Tq P[̂qi−1]

+ ζ 2�1�
N P[̂δi] + ζ 2 P[μ ŝi] + xq, (150)

where the transfer matrix Tq and the driving vector xq =
[x̄q, x̌q]� are defined in Table 2.

Proof: See Appendix E. �

Combining Lemmas 2, 3, and 4 we arrive at a recursion on
the quantized iterates q̂i, as stated in the next theorem. Unless
otherwise specified, all matrices, vectors and constants in the
statement of the theorem can be found in Tables 1 and 2.

Theorem 3 (Recursion on Quantized Iterates): Let

T =

⎡⎢⎣τ τ121
�
N−1

0 E

⎤⎥⎦
︸ ︷︷ ︸

T0

+ vμ,ζ 1
�
N , (151)

where:

τ � 1 − μζ ν, τ12 � 16 ζ 2 �̄ + μζ
σ 2

12

ν
, (152)

E = E0 + 16 ζ 2 �̌1N−11
�
N−1, (153)

and

vμ,ζ = φ

⎡⎣ μ2 ζ 2

μ2 ζ 1N−1

⎤⎦ , (154)

with φ being a positive scalar that embodies the constants
appearing in the μ2-terms of the transfer matrices Ts, Tδ and
Tq in Table 2. The evaluation of φ is rather cumbersome and
is detailed in Appendix F. Let also

x =
[

x̄

x̌

]
= xq + ζ 2�1�

N (xδ + xs) + ζ 2xs, (155)

where the driving vectors xs, xδ and xq are defined in Table 2.
Then, the average energy of the extended vector q̂i obeys the
following inequality:

P[̂qi] � T P[̂qi−1] + x. (156)

Proof: See Appendix F. �

APPENDIX C
PROOF OF LEMMA 2
Proof: Each component of si in (42) fulfills the following
chain of inequalities:

E ‖sk,i‖2 = α2
k E ‖nk,i(wk,i−1)‖2

(a)≤ α2
k β2

k E ‖w̃k,i−1‖2 + α2
k σ 2

k

= α2
k β2

k E

∥∥∥ ∑
�∈Nk

a�k q̃�,i−1

∥∥∥2 + α2
k σ 2

k

(b)≤ α2
k β2

k

N∑
�=1

a�kE ‖̃q�,i−1‖2 + α2
k σ 2

k

≤ α2
k β2

k E ‖̃qi−1‖2 + α2
k σ 2

k

= α2
k β2

k E ‖V−1 Ṽqi−1‖2 + α2
k σ 2

k

(c)≤ α2
k β2

k ‖V −1‖2
E ‖̂qi−1‖2 + α2

k σ 2
k

344 VOLUME 5, 2024

(d)= α2
k β2

k ‖V −1‖2 1�
N P[̂qi−1] + α2

k σ 2
k , (157)

where (a) follows by (35); (b) follows by Jensen’s in-
equality since the weights {a�k} are convex; (c) exploits
the fact that q̂i−1 = Ṽqi−1 and the equality ‖V−1‖=‖(V ⊗
IM)−1‖=‖V −1‖; and (d) follows by property P5) of the en-
ergy operators.

Recalling that the transformed gradient noise vector ŝi is
equal to (V ⊗ IM)si, the �-th block ŝ�,i, for � = 1, 2, . . . , N ,
is:

ŝ�,i =
N∑

k=1

v�k sk,i, (158)

where v�k is the (�, k)-entry of matrix V . It is useful to exam-
ine separately the coordinated-evolution component s̄i = ŝ1,i

and the remaining components ŝ�,i, for � = 2, 3, . . . , N . To
this end, we exploit the block decomposition of matrix V in
(54). Regarding s̄i, since v1k = πk , from (158) we have that:

E‖s̄i‖2 = E‖̂s1,i‖2 = E

∥∥∥∥∥
N∑

k=1

πk sk,i

∥∥∥∥∥
2

≤
N∑

k=1

πk E‖sk,i‖2

≤ ‖V −1‖2

(
N∑

k=1

πk α2
k β2

k

)
1�

N P[̂qi−1] +
N∑

k=1

πk α2
k σ 2

k ,

(159)

where the first inequality is Jensen’s inequality with con-
vex weights {πk}, whereas the second inequality comes from
(157). Likewise, for � = 2, 3, . . . , N , from (158) we can
write:

E‖̂s�,i‖2 = N2
E

∥∥∥∥∥ 1

N

N∑
k=1

v�k sk,i

∥∥∥∥∥
2

≤N
N∑

k=1

|v�k|2 E‖sk,i‖2

≤ N ‖V −1‖2

(
N∑

k=1

|v�k|2 α2
k β2

k

)
1�

N P[̂qi−1]

+ N
N∑

k=1

|v�k|2 α2
k σ 2

k , (160)

where the first inequality is Jensen’s inequality with uni-
form weights 1/N , whereas the second inequality comes from
(157). Finally, by introducing the “squared” counterpart of the
complex matrix VR, whose entries, for � = 1, 2, . . . , N − 1
and k = 1, 2, . . . , N are:

[V2R]�k = ∣∣[VR]�k
∣∣2, (161)

and recalling the definition of the diagonal matrices Cα , Cβ ,
and Cσ in Table 1, from (159) and (160) it is readily seen
that the claim in (146) has been in fact proved, with the
characterization of matrix Ts and of the quantities x̄s and x̌s

as given in Table 2. �

APPENDIX D
PROOF OF LEMMA 3
Proof: Applying the average energy operator P[·] to (136),
we obtain:

E‖δ̄i‖2 = μ2
E ‖s̄i‖2 + μ2

E
∥∥G11,i−1q̄i−1 + G12,i−1q̌i−1

∥∥2

(162)

P[δ̌i] = μ2P[ši] + P
[
(J−IM(N−1) − μ G22,i−1)q̌i−1

− μG21,i−1q̄i−1 − μ b̌
]
, (163)

where the energy terms corresponding to the gradient noise
are additive in view of property (34) and property P4) of the
energy operator.

Let us consider the second term on the RHS of (162), for
which we can write:

‖G11,i−1q̄i−1 + G12,i−1q̌i−1‖2

≤ 2‖G11,i−1q̄i−1‖2 + 2‖G12,i−1q̌i−1‖2

≤ 2σ 2
11‖q̄i−1‖2 + 2σ 2

12‖q̌i−1‖2

= 2σ 2
11‖q̄i−1‖2 + 2σ 2

121
�
N−1P[q̌i−1], (164)

where the first inequality is an application of Jensen’s inequal-
ity, the second inequality comes from (137) and (138), and the
final equality comes from property P5) of the energy operator
P[·]. Taking expectations in (164) and using the result in (162)
we obtain:

E‖δ̄i‖2 ≤ 2 μ2 σ 2
11E‖q̄i−1‖2

+ 2 μ2 σ 2
121

�
N−1P[q̌i−1] + μ2

E ‖s̄i‖2. (165)

Let us move on to examine (163). First of all, we appeal to
the Jordan matrix representation in (111) to write:

J − IM(N−1) = (� − IN−1) ⊗ IM + U ⊗ IM � D + U.

(166)

Then, the following chain of inequalities holds:

P
[
(J − IM(N−1) − μG22,i−1)q̌i−1 − μG21,i−1q̄i−1 − μ b̌

]
= P

[
(D + U − μG22,i−1)q̌i−1 − μG21,i−1q̄i−1 − μ b̌

]
(a)� 2 P[D q̌i−1]

+ 2 P
[
(U − μG22,i−1)q̌i−1 − μG21,i−1q̄i−1 − μ b̌

]
(b)� 2 P[D q̌i−1] + 8 P[U q̌i−1]

+ 8μ2 P[G22,i−1q̌i−1] + 8μ2 P[G21,i−1q̄i−1] + 8μ2 P[b̌]

(c)� 2 ‖P̄[D]‖∞ P̄[D] P[q̌i−1] + 8 ‖P̄[U]‖∞ P̄[U] P[q̌i−1]

+ 8μ2 ‖P̄[G21,i−1]‖2
∞ 1N−1P[q̄i−1]

+ 8μ2 ‖P̄[G22,i−1]‖2
∞ 1N−11

�
N−1P[q̌i−1] + 8μ2 P[b̌]

(d)� 8(IN−1 + U)P[q̌i−1]

VOLUME 5, 2024 345

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

+ 8μ2 ‖P̄[G21,i−1]‖2
∞ 1N−1P[q̄i−1]

+ 8μ2 ‖P̄[G22,i−1]‖2
∞ 1N−11

�
N−1P[q̌i−1] + 8μ2 P[b̌]

(e)� 8(IN−1 + U)P[q̌i−1] + 8 μ2σ 2
211N−1P[q̄i−1]

+ 8 μ2σ 2
221N−11

�
N−1P[q̌i−1] + 8 μ2P[b̌], (167)

where (a) follows by the convexity property P3) of the energy
operator applied with weights 1/2; (b) follows by the same
property applied with weights 1/4; (c) follows by property
P6) of the energy operator, respectively in form (119) as
regards the first two terms, and in form (120) as regards the
remaining terms; (d) follows by observing that, due to the
peculiar shape of D and U, one has the identities:

‖P̄[D]‖∞ = ‖IN−1 − �‖ = max
n=2,3,...,N

|1 − λn(A)|, (168)

P̄[D] � ‖IN−1 − �‖ IN−1, (169)

‖P̄[U]‖∞ = 1, P̄[U] = U, (170)

and by the inequality:

max
n=2,3,...,N

|1 − λn(A)| ≤ 1 + |λ2| < 2. (171)

Finally, the inequality in (e) follows by the bounds in (139).
Taking expectations in (167) and then using (163) we get:

P[δ̌i] � 8 μ2σ 2
211N−1P[q̄i−1] + 8(IN−1 + U)P[q̌i−1]

+ 8 μ2σ 2
221N−11

�
N−1P[q̌i−1] + μ2 P[ši] + 8 μ2P[b̌].

(172)

Examining jointly (165) and (172), we see that we have in fact
proved (147), with the matrix Tδ and the quantities x̄δ and x̌δ

as given in Table 2. �

APPENDIX E
PROOF OF LEMMA 4
We start with an auxiliary lemma that will be then used to
prove Lemma 4.

Lemma 5 (Quantized State Decomposition): Let

�̄ � ‖V −1‖2 max
k=1,2,...,N

π2
k ωk, (173)

�̌ � ‖V −1‖2 max
�=2,3,...,N
k=1,2,...,N

|v�k|2 ωk, (174)

where v�k is the (�, k)-entry of the transformation matrix V in
(54). Then, for any ζ ∈ (0, 1) we have that:

P[̂qi] � P[̂qi−1 + ζ δ̂i] + ζ 2�1�
N P[̂δi], (175)

where

� �

⎡⎢⎣ �̄

�̌1N−1

⎤⎥⎦ . (176)

Proof: Adding and subtracting ζ δ̂i in (122), and recalling
that δi = V−1̂δi we can write:

q̂i = q̂i−1 + ζ δ̂i︸ ︷︷ ︸
x

+ ζ V (Q (δi) − δi)︸ ︷︷ ︸
y

. (177)

Now, we observe that:

E

[
Q(δi)

∣∣∣̂qi−1, δ̂i

]
(a)= E

[
Q(δi)

∣∣∣̂qi−1, δ̂i, δi

]
(b)= E

[
Q(δi)

∣∣∣δi

]
(c)= δi, (178)

where (a) holds because δi is a deterministic function of δ̂i,
while (b) and (c) follow from (29), once noting that q̂i−1 and
δ̂i are deterministic functions of the past history hi defined in
(27). Using (178) in (177) we conclude that:

E

[
xHy

]
= 0, (179)

which allows us to apply property P4) of the energy operator
in (177), yielding:

P
[̂
qi

] = P
[̂
qi−1 + ζ δ̂i

]
+ ζ 2P [V (Q (δi) − δi)] .

(180)

On the other hand, we can write:

V (Q(δi) − δi)

=

⎡⎢⎢⎣
v11IM . . . v1N IM

...

vN1IM . . . vNN IM

⎤⎥⎥⎦
⎡⎢⎢⎣

Q1(δ1,i) − δ1,i
...

QN (δN,i) − δN,i

⎤⎥⎥⎦

=

⎡⎢⎢⎣
∑N

k=1 v1k
(
Qk (δk,i) − δk,i

)
...∑N

k=1 vNk
(
Qk (δk,i) − δk,i

)
⎤⎥⎥⎦ . (181)

The expected energy of the �-th block in (181) is:

E

∥∥∥∥∥
N∑

k=1

v�k
(
Qk (δk,i) − δk,i

)∥∥∥∥∥
2

(a)=
N∑

k=1

|v�k|2 E
∥∥Qk (δk,i) − δk,i

∥∥2

(b)≤
N∑

k=1

|v�k|2 ωk E ‖δk,i‖2, (182)

where (a) follows from (31) and (b) from (30). Recalling that
the first row of matrix V is the (transposed) Perron eigenvec-
tor, the first entry (� = 1) in (182) can be upper bounded by:

max
k=1,2,...,N

π2
k ωk E‖δi‖2 = E‖V−1 δ̂i‖2 ≤ �̄E‖̂δi‖2, (183)

where the last inequality follows by the definition of �̄ in
(173). Likewise, the other entries (� = 1) in (182) can be

346 VOLUME 5, 2024

upper bounded by:

max
�=2,3,...,N
k=1,2,...,N

|v�k|2 ωk E‖δi‖2 ≤ �̌E‖̂δi‖2, (184)

having used the definition of �̌ in (174). The claim of the
lemma follows by joining (180), (182), (183) and (184), and
using property P5) of the energy operator. �

Proof of Lemma 4: The first term on the RHS in (175) can
be represented in block form as follows:

P[̂qi−1 + ζ δ̂i] =

⎡⎢⎣E‖q̄i−1 + ζ δ̄i‖2

P[q̌i−1 + ζ δ̌i]

⎤⎥⎦ . (185)

Let us start by examining the first block in (185). Exploiting
the block decomposition in (136) we can write:

q̄i−1 + ζ δ̄i =
= (IM − μζ G11,i−1)q̄i−1 − μζG12,i−1q̌i−1 − μζ s̄i.

(186)

First of all, using (34) we have the equality:

E‖q̄i−1 + ζ δ̄i‖2 = μ2ζ 2
E‖s̄i‖2

+ E‖(IM − μζ G11,i−1)q̄i−1 − μζG12,i−1q̌i−1‖2. (187)

Let us now examine the spectral radius of IM − μζ G11,i−1.
Using (137) we can write:

‖IM − μζ G11,i−1‖2 ≤ max
{
(1 − μζη)2, (1 − μζν)2} .

(188)

We have the following chain of equivalent relationships:9

(1 − μζν)2 > (1 − μζη)2

�
(μζν)2 − 2μζν > (μζη)2 − 2μζη

�
μζν2 − 2ν > μζη2 − 2η

�
μζ
(
η2 − ν2) < 2 (η − ν)

�
Eq. (148), (189)

9Condition (148) is not the tightest condition one can use to guarantee
stability of IM − μζG11,i−1. Some examples of how to get a better constant
can be found in [14], [21], and, with straightforward algebra, we can get the
refined upper bound ‖IM − μζ G11,i−1‖ ≤ 1 − μζν + 1/2(μζη)2. However,
in our analysis the additional O(μ2) term is expected to bring little informa-
tion. In fact, as we will see in Lemma 7 further ahead, a number of O(μ2)
terms will be collected into a large correction constant φ that characterizes
the stability analysis, with a stability threshold μ� being usually smaller
than the factor 2/(η + ν) that will be obtained from our characterization of
IM − μζG11,i−1.

where the last implication is true because ν ≤ η in view of
(14). Since all implications in (189) hold in both directions,
we have in fact proved that:

‖IM − μζ G11,i−1‖2 ≤ (1 − μζν)2. (190)

Moreover, since ν ≤ η, we also have:

2

η + ν
<

1

ν
, (191)

which, using (148), implies that 1 − μζν > 0, finally yield-
ing, in view of (190):

‖IM − μζ G11,i−1‖ ≤ 1 − μζν. (192)

This upper bound will be useful in characterizing the last term
in (187), which can be manipulated as follows, for 0 < t < 1:

‖(IM − μζ G11,i−1)q̄i−1 − μζG12,i−1q̌i−1‖2

=
∥∥∥∥(1 − t)

IM − μζ G11,i−1

1 − t
q̄i−1 − t

μζG12,i−1

t
q̌i−1

∥∥∥∥2

≤ ‖(IM − μζ G11,i−1)q̄i−1‖2

1 − t
+ μ2ζ 2 ‖G12,i−1q̌i−1‖2

t

≤ (1 − μζν)2 ‖q̄i−1‖2

1 − t
+ μ2ζ 2σ 2

12
‖q̌i−1‖2

t

= (1 − μζν)‖q̄i−1‖2 + μζ
σ 2

12

ν
‖q̌i−1‖2, (193)

where the first inequality is an application of Jensen’s inequal-
ity, whereas the second inequality follows by setting t = μζν,
and by using (138). Taking expectations in (193) and using the
result in (187) we get:

E‖q̄i−1 + ζ δ̄i‖2 ≤ (1 − μζν)E‖q̄i−1‖2

+ μζ
σ 2

12

ν
E‖q̌i−1‖2 + μ2ζ 2

E‖s̄i‖2.

(194)

We continue by examining the second block in (185). Using
the block decomposition in (136) we can write:

q̌i−1 + ζ δ̌i = (1 − ζ)q̌i−1

+ ζ

⎛⎜⎝−μ G21,i−1q̄i−1 + (J − μ G22,i−1)q̌i−1 − μ b̌︸ ︷︷ ︸
y

−μ ši

⎞⎟⎠ ,

(195)

and, using (34) along with property P4) of the energy operator,
we get:

P[q̌i−1 + ζ δ̌i] = μ2ζ 2P[ši] + P[(1 − ζ)q̌i−1 + ζy].
(196)

On the other hand, by the convexity property P3) of the energy
operator we have:

P[(1 − ζ)q̌i−1 + ζy] � (1 − ζ)P[q̌i−1] + ζP[y]. (197)

VOLUME 5, 2024 347

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

Making explicit the definition of y in (195), we can write the
following chain of inequalities:

P[y] = P
[
Jq̌i−1 − μ G21,i−1q̄i−1 − μ G22,i−1q̌i−1 − μ b̌

]
(a)�
(

��∗

|λ2| + 2U

1 − |λ2|
)

︸ ︷︷ ︸
�

P[q̌i−1]

+ 2μ2

1 − |λ2|P
[
G21,i−1q̄i + G22,i−1q̌i + b̌

]
(b)� �P[q̌i−1] + 2μ2

1 − |λ2|
× (3‖P̄[G21,i−1]‖2

∞ 1N−1‖q̄i−1‖2

+ 3‖P̄[G22,i−1]‖2
∞ 1N−11

�
N−1P[q̌i−1] + 3P[b̌]

)
(c)� �P[q̌i−1] + 6μ2

1 − |λ2|
× (σ 2

211N−1‖q̄i−1‖2 + σ 2
221N−11

�
N−1P[q̌i−1] + P[b̌]

)
,

(198)

where step (a) applies property P7) of the energy operator,
step (b) applies property P3) with weights 1/3 and property
P6), and step (c) uses (139).

Letting

E0 =
(

(1 − ζ)IN−1 + ζ
��∗

|λ2|
)

+ 2ζ

1 − |λ2| U, (199)

taking expectations in (198), and using the result in (197) and
then in (195), we obtain:

P[q̌i−1 + ζ δ̌i] � μ2ζ
6 σ 2

21

1 − |λ2| 1N−1 E‖q̄i−1‖2

+
(

E0 + μ2ζ
6 σ 2

22

1 − |λ2|1N−11
�
N−1

)
P[q̌i−1]

+ μ2ζ
6

1 − |λ2|P[b̌] + μ2ζ 2P[ši]. (200)

Calling upon Lemma 5 along with (194) and (200), we see
that (150) holds true, with the matrix Tq and the quantities x̄q

and x̌q as given in Table 2. �

APPENDIX F
PROOF OF THEOREM 3
Proof: In (150), we can replace P[̂δi] with the RHS of (147)
to get an inequality that relates P[̂qi] to P[̂qi−1] and P[μ ŝi].
Replacing now P[μ ŝi] with the RHS of (146) we get the
inequality recursion in (156), with the driving vector x defined
in (155) and with the matrix T replaced by the matrix:

Ttmp = Tq + ζ 2�1�
N Tδ + ζ 2 (�1�

N + IN
)

Ts. (201)

The claim of the theorem will be proved if we show that the
matrix Ttmp is upper bounded by the matrix T appearing in
(151).

The term Tq can be upper bounded as:

Tq �

⎡⎢⎢⎣ 1 − μζ ν μ ζ
σ 2

12

ν
1�

N−1

φ(q) μ2 ζ 1N−1 E0 + φ(q) μ2 ζ 1N−11
�
N−1

⎤⎥⎥⎦ ,

(202)

where for brevity we introduced the bounding constant φ(q).
Likewise, concerning the term involving Ts we can write:(

�1�
N + IN

)
Ts � φ(s)μ2 1N1

�
N , (203)

where φ(s) is a suitable constant.
Regarding the term involving Tδ , by exploiting Table 2 we

have:

�1�
N Tδ =

[
�̄ �̄1�

N−1

�̌1N−1 �̌1N−11
�
N−1

][
[Tδ]11 [Tδ]12

[Tδ]21 [Tδ]22

]

�
[

0 8 �̄1�
N−1 (IN−1 + U)

0 8 �̌1N−11
�
N−1 (IN−1 + U)

]
+φ(δ)μ2 1N1

�
N

�

⎡⎢⎣0 16 �̄1�
N−1

0 16 �̌1N−11
�
N−1

⎤⎥⎦+ φ(δ)μ2 1N1
�
N , (204)

where we used the bound:

1�
N−1(IN−1 + U) � 21�

N−1, (205)

and where φ(δ) is a suitable constant that upper bounds the
terms of order μ2.

If we now introduce the maximal constant

φ = max
{
φ(s), φ(δ), φ(q)} , (206)

and the rank-one perturbed version of E0:

E = E0 + 16 ζ 2 �̌1N−11
�
N−1, (207)

by using (202), (203), and (204) in (201), we end up with the
following bound:

Ttmp �

⎡⎢⎣τ τ121
�
N−1

0 E

⎤⎥⎦+ vμ,ζ 1
�
N , (208)

where the quantities τ , τ12, and vμ,ζ are defined in (152) and
(154), respectively. The claim of the theorem now follows
from the definition of T in (151). �

APPENDIX G
STABILITY OF E
Lemma 6 (Stability of E): Let

an � 2|λ2|
(1 − |λ2|)

1

|λ2| − |λn|2 . (209)

348 VOLUME 5, 2024

We note that an ≥ 2. Let further

γ (A) �
B∑

n=2

|λ2|
|λ2| − |λn|2

(
aLn+1

n − 1

(an − 1)2
− Ln + 1

an − 1

)
. (210)

Then, the matrix E defined in (153) has spectral radius less
than 1 if, and only if:

ζ <
1

16�̌γ (A)
. (211)

Proof: We introduce the resolvent of matrix E :

RE (z) = (zIN−1 − E)−1, (212)

which is well-posed for z distinct from the eigenvalues of E .
The stability of E will be proved if we show that zIN−1 − E
is invertible for all |z| ≥ 1. To this end, we examine first the
resolvent of the unperturbed matrix E0 in Table 1 — see also
(199), namely,

RE0 (z) = (zIN−1 − E0)−1. (213)

Since E0 is upper triangular and all its diagonal elements are
positive values strictly less than one, we conclude that E0

is stable, which further implies that the resolvent RE0 (z) is
bounded for |z| ≥ 1.

We continue by relating the resolvent of E to the resolvent
of the unperturbed matrix E0. Exploiting the structure of E in
(207), we see that E is given by E0 plus an additive rank-one
perturbation. Since we have shown that in the range of interest
|z| ≥ 1 the matrix zIN−1 − E0 is invertible, we can apply the
Sherman-Morrison identity to zIN−1 − E , obtaining [66]:

RE (z)=RE0 (z)+16 ζ 2�̌
RE0 (z)1N−11

�
N−1RE0 (z)

1 − 16 ζ 2 �̌1�
N−1RE0 (z)1N−1

,

(214)

where the identity holds if, and only if, the denominator on
the RHS of (214) is not zero. In particular, if the denominator
is zero zIN−1 − E is not invertible. Therefore, to prove that
zIN−1 − E is invertible, we must examine the behavior of the
complex scalar function:

gE (z) � 1�
N−1RE0 (z)1N−1, (215)

over the entire range |z| ≥ 1. To this end, it is critical to
characterize the resolvent of E0. Exploiting (109), (110), and
(111), we can represent E0 as:

E0 = diag (E2, E3, . . . , EB) , (216)

where, for n = 2, 3, . . . , B, we introduced the Ln × Ln matri-
ces:

En =
(

(1 − ζ) + ζ
|λn|2
|λ2|

)
︸ ︷︷ ︸

rn

ILn + 2ζ

1 − |λ2|︸ ︷︷ ︸
un

ULn . (217)

By computing the inverse of the block-diagonal matrix
zIN−1 − E0 as the block-diagonal matrix of the individual

inverse matrix-blocks, we have that:

RE0 (z) = diag
(
RE2 (z),RE3 (z), . . . ,REB (z)

)
. (218)

On the other hand, for Jordan-type matrices like zIN−1 − En,
the inverse is known to be in the form:

REn (z) = 1

z − rn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
un

z − rn
. . .

(
un

z − rn

)Ln−1

0 1 . . .

(
un

z − rn

)Ln−2

...
. . .

. . .
...

0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(219)

Using (218) and (219) in (215), we obtain:

gE (z) =
B∑

n=2

1

z − rn

Ln−1∑
j=0

(Ln − j)

(
un

z − rn

) j

. (220)

Applying the triangle inequality in (220) we get:

|gE (z)| ≤
B∑

n=2

1

|z − rn|
Ln−1∑
j=0

(Ln − j)

(
un

|z − rn|
) j

. (221)

In view of the reverse triangle inequality we have:

|z − rn| ≥ ∣∣ |z| − rn
∣∣ = |z| − rn ≥ 1 − rn, (222)

where the last inequality holds because |z| ≥ 1 in the consid-
ered range, whereas the equality follows by considering also
that rn ≤ 1. Using (222) in (221) we can write the following
inequality (in the range |z| ≥ 1):

|gE (z)| ≤
B∑

n=2

1

1 − rn

Ln−1∑
j=0

(Ln − j)

(
un

1 − rn

) j

= gE (1).

(223)

Equation (223) implies that a sufficient condition for the sta-
bility of E is:

16 ζ 2 �̌gE (1) < 1. (224)

We now show this is also a necessary condition by reductio ad
absurdum. Assume that (224) is violated, namely that (we rule
out the equality since it obviously correspond to instability):

16ζ 2�̌gE (1) > 1. (225)

Were (225) true, there would certainly exist one value z� ∈ R,
with z� > 1, such that the denominator on the RHS of (214)
is equal to zero. This is because the function gE (z) is analytic
over the domain |z| ≥ 1 and, in particular, it is continuous on
the real axis and vanishes as z → ∞. This implies that (224)
is a necessary and sufficient condition for the stability of E .

Let us now recast (224) in a more explicit form. To this end,
we introduce the quantity:

an = un

1 − rn
= 2|λ2|

(1 − |λ2|)
1

|λ2| − |λn|2 , (226)

VOLUME 5, 2024 349

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

which is readily verified to be greater than or equal to 2. The
inner summation in (223) can be written as:

Ln−1∑
j=0

(Ln − j)a j
n = aLn+1

n − 1

(an − 1)2
− Ln + 1

an − 1
, (227)

where the equality follows from standard results on geometric
series. Using (227) in (223), and making explicit the definition
of rn, we have that:

gE (1) = γ (A)

ζ
, (228)

where γ (A) is defined in (210). In view of (214), (215), and
(224), Eq. (228) implies that the matrix E is stable if, and only
if, Eq. (211) is verified. �

APPENDIX H
STABILITY OF T
Lemma 7 (Stability of T): Let

ζ <
1

16�̌γ (A)
, μ <

2

ζ (η + ν)
, (229)

and let μ� be the positive root of the equation:

μ2

(
1 + σ 2

12

ν2

)
ϕ + μζ

1 + 16�̄ϕ

ν
− 1

φ
= 0, (230)

where

ϕ � γ (A)

1 − 16 ζ �̌ γ (A)
. (231)

Then, the matrix T in (151) has spectral radius less than 1 if,
and only if, μ < μ�.

Proof: The matrix T0 in (151) is stable since τ < 1 in view
of the second inequality in (229), and E is stable in view of the
first inequality in (229) and Lemma 6. Then, the eigenvalues
of T0 lie all strictly within the unit disc, and, hence, the resol-
vent RT0 (z) exists. Accordingly, considering the resolvent of
matrix T :

RT (z) = (zIN − T)−1, (232)

and exploiting the structure of T in (151) (i.e., T0 plus an
additive rank-one perturbation), from the Sherman-Morrison
identity we have [66]:

RT (z) = RT0 (z) + RT0 (z) vμ,ζ 1
�
N RT0 (z)

1 − 1�
N RT0 (z) vμ,ζ

, (233)

where the formula is valid if, and only if, the denominator on
the RHS of (233) is not zero. Moreover, if the denominator is
zero, then (zIN − T) is not invertible. Therefore, the stability
of T will be proved if we show that the denominator on the
RHS of (233) is not zero over the range |z| ≥ 1. To this end,
we will now examine the resolvent of the unperturbed matrix
T0.

From (151) we see that T0 is block upper-triangular, which
implies that we can compute the inverse RT0 (z) = (zIN −

T0)−1 as:

RT0 (z) =

⎡⎢⎢⎢⎣
1

z − τ

τ121
�
N−1RE (z)

z − τ

0 RE (z)

⎤⎥⎥⎥⎦ , (234)

and, exploiting the definition of vμ,ζ in (154) we get:

gT (z) � 1�
N RT0 (z) vμ,ζ = φμ2 ×

(
ζ 2

z − τ

+ ζ τ121
�
N−1RE (z)1N−1

z − τ
+ ζ1�

N−1RE (z)1N−1

)
. (235)

Using (214) and (215), we have the following identity:

1�
N−1RE (z)1N−1 = gE (z) + 16 ζ 2 �̌

g2
E (z)

1 − 16 ζ 2 �̌ gE (z)

= gE (z)

1 − 16 ζ 2 �̌ gE (z)
, (236)

which, applied in (235), yields:

gT (z) = φμ2
{

ζ 2

z − τ

+ ζ

(
τ12

z − τ
+ 1

)
gE (z)

1 − 16 ζ 2 �̌ gE (z)

}
. (237)

Accordingly, by triangle inequality we have that:

|gT (z)| ≤ φμ2

×
{

ζ 2

|z − τ | + ζ

(
τ12

|z − τ | + 1

) |gE (z)|
|1 − 16 ζ 2 �̌ gE (z)|

}

≤ φμ2
{

ζ 2

|z| − τ
+ ζ

(
τ12

|z| − τ
+ 1

) |gE (z)|
1 − 16 ζ 2 �̌ |gE (z)|

}
.

(238)

where we used the known inequality |z − τ | ≥ | |z| − τ |
(which turns into |z − τ | ≥ |z| − τ since |z| ≥ 1 over the con-
sidered range and τ < 1 in view of (229)) and the fact that,
since (211) is verified by hypothesis, the denominator of the
last fraction in (238) is positive in view of (223) and (228). On
the other hand, we know from (223) that |gE (z)| ≤ gE (1) in
the range |z| ≥ 1, which, applied in (238), allows us to write:

|gT (z)| ≤ gT (1)

= φμ2
{

ζ 2

1 − τ
+ ζ

(
τ12

1 − τ
+ 1

)
gE (1)

1 − 16 ζ 2 �̌ gE (1)

}
.

(239)

Reasoning as done in the proof of Lemma 6, a necessary and
sufficient condition for the stability of T is:

gT (1) < 1. (240)

350 VOLUME 5, 2024

To this aim, let us apply (152), (228), and (231) in (239), to
obtain:

gT (1) = φ

{
μ2

(
1 + σ 2

12

ν2

)
ϕ + μζ

1 + 16�̄ϕ

ν

}
. (241)

In view of (241), inequality (240) is true if, and only if, the
(positive) step-size μ is smaller than the positive root of the
equation in (230), and the proof of the lemma is complete. �

1. BOUNDS ON THE POWERS OF T
The stability established in Lemma 7 allows to conclude that
the matrix powers T i can be uniformly bounded with respect
to i. However, the bound would depend on the matrix T , and,
in particular, would depend on the step-size μ. Since we are
interested in characterizing the small-μ behavior of the ACTC
mean-square-deviation, it is essential to establish how such
bound behaves as μ → 0. To this end, Lemma 7 alone does
not provide enough information, and we need to resort to the
powerful framework of Kreiss stability [76].

Preliminarily, it is necessary to introduce the concept of
Kreiss constant. Given the resolvent RX (z) associated with
a matrix X , the Kreiss constant relative to X is defined as
follows [76]:

KX � sup
z∈C:|z|>1

(|z| − 1) ‖RX (z)‖, (242)

and it is useful to bound (from above and from below) the
norm of matrix powers as follows:

KX ≤ sup
i≥0

‖X i‖ ≤ NeKX , (243)

where e is Euler’s number. In the next lemma we exploit the
Kreiss constant to characterize the small-μ behavior of the
powers of T .

Lemma 8 (Bound on the Powers of T:) Let

ζ <
1

16�̌γ (A)
, μ < min

{
2

ζ (η + ν)
, μ�

}
, (244)

where μ� is the positive root of the equation in (230). Then
we have that:

sup
i≥0

‖T i‖1 ≤ K (μ), (245)

where K (μ) is a function of μ, independent of i, with:

K (μ) = O(1) as μ → 0. (246)

Proof: Let us evaluate a bound on the Kreiss constant as-
sociated with matrix T . Accordingly, we will examine the
behavior of the function

f (z) = (|z| − 1)‖RT (z)‖1, (247)

over the range |z| ≥ 1. We have seen in the proof of Lemma 7
— see the argument following (233) — that under (244) it is
legitimate to use the representation in (233). Applying now
the triangle inequality to (233) we have:

‖RT (z)‖1 ≤ ‖RT0 (z)‖1 + ‖RT0 (z)‖2
1 × ‖vμ,ζ1

�
N ‖1

|1 − 1�
N RT0 (z) vμ,ζ |

≤ ‖RT0 (z)‖1 + O(μ2)
‖RT0 (z)‖2

1

1 − gT (1)
, (248)

where the O(μ2) term comes from the behavior of the per-
turbation vector vμ,ζ in (154), whereas the bound involving
the term gT (1) comes from (235) and (239). Therefore, from
(247) and (248) we conclude that:

f (z) ≤ (|z| − 1)‖RT0 (z)‖1 + O(μ2)
(|z| − 1)‖RT0 (z)‖2

1

1 − gT (1)
.

(249)

Let us examine the behavior of ‖RT0 (z)‖1. Exploiting the
structure in (234) and applying the triangle inequality, we can
write:

‖RT0 (z)‖1 ≤max

{
1

|z − τ | ,
Nτ12‖RE (z)‖1

|z − τ | +‖RE (z)‖1

}
.

(250)

First, we examine the resolvent of matrix E . Since by assump-
tion Eq. (211) is verified, the spectral radius of E is strictly less
than 1 in view of Lemma 6. This implies that all eigenvalues
of E lie strictly inside in the unit disc, which in turn guarantees
the existence of a constant CE such that [66]:

sup
z∈C:|z|>1

‖RE (z)‖1 = CE < ∞. (251)

Moreover, the stability of E implies that all powers of E are
bounded, which, in view of the lower bound in (243), implies
the existence of a finite Kreiss constant:10

sup
z∈C:|z|>1

(|z| − 1)‖RE (z)‖1 = K ′
E < ∞. (252)

We remark that both constants CE and K ′
E are independent of

μ, since so is matrix E .
Let us focus on the second term in (249). Using (250), we

can write:

(|z| − 1)‖RT0 (z)‖2
1 ≤ (|z| − 1)

× max

{
1

|z − τ |2 ,

(
Nτ12‖RE (z)‖1

|z − τ | + ‖RE (z)‖1

)2
}

.

(253)

Let us examine the first argument of the maximum in (253).
Applying, as done before, the inequality |z − τ | ≥ |z| − τ , we
can write:

|z| − 1

|z − τ |2 ≤ |z| − 1

|z| − τ︸ ︷︷ ︸
≤1 since τ<1

× 1

|z|−τ︸ ︷︷ ︸
≤1/(1−τ)
since|z|≥1

≤ 1

1 − τ
= 1

μζ ν
, (254)

where the equality comes from the definition of τ in (152).

10We use the symbol K ′
E in place of KE since we are working with the

�1-norm, while the definition of Kreiss constant uses the �2-norm.

VOLUME 5, 2024 351

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

Let us switch to the analysis of the second term in (253),
which, by expanding the square, yields:

N2τ 2
12

|z| − 1

|z − τ |2︸ ︷︷ ︸
≤1/(μζν)
see (254)

‖RE (z)‖2
1︸ ︷︷ ︸

≤C2
E ,see (251)

+ (|z| − 1) ‖RE (z)‖2
1︸ ︷︷ ︸

≤CE K ′
E ,see (251) and (252)

+ 2Nτ12
|z| − 1

|z − τ |︸ ︷︷ ︸
≤1

‖RE (z)‖2
1︸ ︷︷ ︸

≤C2
E

≤ N2τ 2
12C2

E

μζ ν
+ CE K ′

E + 2Nτ12C2
E = O(1/μ). (255)

Using (254) and (255) in (253), we conclude that:

sup
z∈C:|z|>1

(|z| − 1) ‖RT0 (z)‖2
1 = O(1/μ). (256)

Reasoning along the same lines we can show that:

sup
z∈C:|z|>1

(|z| − 1) ‖RT0 (z)‖1 = O(1). (257)

Applying now (256) and (257) in (249), we get:

f (z) = O(1) + O(μ)

1 − gT (1)
, (258)

which implies, in view of (242), the existence of a function
K (μ) such that, under assumption (244), we are allowed to
write:

sup
i≥0

‖T i‖1 ≤ K (μ) = O(1) + O(μ)

1 − gT (1)
. (259)

From the properties of gT (1) examined in Lemma 7, we know
that gT (1) < 1 in the range of μ permitted by (244), and
gT (1) → 0 as μ → 0, which implies the claim of the lemma
(246). �

APPENDIX I
PROOF OF THEOREM 1
Proof: Developing the recursion in (156) we have:

P[̂qi] � T iP[̂q0] + (IN − T)−1x, (260)

and by application of the triangle inequality:

E‖̂qi‖2 =‖P[̂qi]‖1 ≤ ‖T i‖1 ‖P[̂q0]‖1+‖(IN − T)−1x‖1,

(261)

where the first equality comes from the definition of average
energy operator in (114). In view of Lemma 7, under the
assumptions of the theorem the matrix T has spectral radius
strictly less than 1, which, in view of (261), implies:

lim sup
i→∞

E‖̂qi‖2 ≤ ‖(IN − T)−1x‖1 < ∞. (262)

On the other hand, from the network coordinate transforma-
tion in (56), we have q̃i = V−1̂qi, which, in view of (262),
implies:

lim sup
i→∞

E‖̃qk,i‖2 < ∞, (263)

where we used the fact that the squared norm of the extended
vector q̃i is the sum of the norms of the N individual vectors
‖̃qk,i‖2. The claim in (74) follows from the fact that w̃k,i is a
convex combination of {̃q�,i}�∈Nk — see (43).

We move on to prove (75), for which we need to examine
the small-μ behavior of (IN − T)−1 in (260). To this end, let
us specialize (233) to the case z = 1:

(IN − T)−1 = RT (1) = (IN − T0)−1

+ (IN − T0)−1 vμ,ζ 1
�
N (IN − T0)−1

1 − 1�
N (IN − T0)−1 vμ,ζ

. (264)

On the other hand, specializing (234) to the case z = 1, it is
immediate to see that:

(IN − T0)−1 �

⎡⎢⎣O(1/μ) O(1/μ)1�
N−1

0 O(1)1N−1 1
�
N−1

⎤⎥⎦ . (265)

Therefore we can write:

(IN − T0)−1 vμ,ζ �

⎡⎢⎣ O(μ)

O(μ2)1N−1

⎤⎥⎦ , (266)

1� (IN − T0)−1 �
[
O(1/μ) O(1/μ)1�

N−1

]
, (267)

which further implies:

(IN − T0)−1 vμ,ζ 1
�
N (IN − T0)−1 �⎡⎢⎣ O(1) O(1)1�

N−1

O(μ)1N−1 O(μ)1N−1 1
�
N−1

⎤⎥⎦ . (268)

Combining now (265) and (268) we obtain:

(IN − T)−1 =

⎡⎢⎣ O(1/μ) O(1/μ)1�
N−1

O(μ)1N−1 O(1)1N−1 1
�
N−1

⎤⎥⎦ . (269)

On the other hand, examining the entries of vector x in (155)
with the help of Table 2 we readily see that:

x � O(μ2)1N . (270)

Combining (260) with (270) we get:

‖(IN − T)−1x‖1 = O(μ), (271)

which completes the proof. �

APPENDIX J
PROOF OF THEOREM 2
In the following, we make repeated use of the following
known equality, holding for any two nonzero scalars with

352 VOLUME 5, 2024

a = b:

i−1∑
j=0

a jbi−1− j = bi−1
i−1∑
j=0

(a/b) j = bi−1 1 − (a/b)i

1 − (a/b)

= bi − ai

b − a
. (272)

Proof: In view of assumption (79), we can use Lemma 8 in
(261) to conclude that, for all i ≥ 1, and for sufficiently small
μ:

‖P[̂qi]‖1 ≤ K (μ)‖P[̂q0]‖1 + ‖(IN − T)−1x‖1 = O(1),
(273)

where K (μ) is O(1) in view of (246) while the order of
magnitude of ‖(IN − T)−1 x‖1 is O(μ) in view of (271).

Let us develop the recursion in (156) by separating the role
of the unperturbed matrix T0 and the rank-one perturbation
vμ,ζ 1

�
N in (151), yielding:

P[̂qi] � T0 P[̂qi−1] + vμ,ζ 1
�
N P[̂qi−1] + x

� T0 P[̂qi−1] + O(μ2)1N , (274)

where the second term on the RHS is O(μ2) because so are
vμ,ζ and x, while

1�
N P[̂qi−1] = ‖P[̂qi−1]‖1, (275)

which is O(1) in view of (273). Developing the recursion in
(274) we have:

P[̂qi] � T i
0P[̂q0] + O(μ2) (IN − T0)−1 1N

� T i
0P[̂q0] +

⎡⎢⎣ O(μ)

O(μ2)1N−1

⎤⎥⎦ , (276)

where the estimate of the last term comes from (265).
Let us now evaluate the i-th power of T0. Since T0 is block

upper-triangular, its i-th power admits the representation [14]:

T i
0 =

⎡⎢⎣τ i τ121
�
N−1 (τ IN−1 − E)−1(τ iIN−1 − Ei)

0 Ei

⎤⎥⎦ ,

(277)

where we note that in the small-μ regime the matrix (τ IN−1 −
E)−1 is certainly well-defined and has nonnegative entries,
since as μ → 0 we have τ = 1 − μζ ν > ρ(E) (and since E
has nonnegative entries). Therefore, in the small-μ regime we
can write:

τ121
�
N−1(τ IN−1 − E)−1(τ iIN−1 − Ei)

� τ121
�
N−1(τ IN−1 − E)−1 τ i. (278)

Considering the evolution of the first component E‖q̄i‖2 of
P[q̌i] as dictated by (276), from (277) and (278) we get:11

E‖q̄i‖2 ≤ O(1) τ i + O(μ). (279)

Likewise, exploiting (276), (277), and (278) to get the evo-
lution relative to the network-error component we can write:

P[q̌i] � EiP[q̌0] + O(μ2)1N−1, (280)

which allows us to write [66]:

E‖q̌i‖2 ≤ O(1) ρi
net + O(μ2), (281)

where by definition ρnet = ρ(E) + ε < 1.
We now exploit the exponential bounds in (279) and (281)

to get a new recursion that would allow us to obtain refined
estimates of both the transient and the steady-state errors. To
this end, we revisit the norm on the LHS of (193), and manage
to obtain a better bound by computing explicitly the norm and
then applying the Cauchy-Schwarz inequality, yielding:

‖(IM − μζG11,i−1)q̄i−1 − μζG12,i−1q̌i−1‖2

= ‖(IM − μζG11,i−1)q̄i−1‖2 + μ2ζ 2‖G12,i−1q̌i−1‖2

− 2μζ
[
(IM − μζG11,i−1)q̄i−1

]� G12,i−1q̌i−1

≤ (1 − μζν)2 ‖q̄i−1‖2 + μ2ζ 2 σ 2
12 ‖q̌i−1‖2

+ 2μζ‖(IM − μζG11,i−1)q̄i−1‖ × ‖G12,i−1q̌i−1‖
≤ (1 − μζν)2 ‖q̄i−1‖2 + μ2ζ 2 σ 2

12 ‖q̌i−1‖2

+ 2μζ (1 − μζν)σ12‖q̄i−1‖ × ‖q̌i−1‖. (282)

Taking expectations and applying the Cauchy-Schwarz in-
equality for random variables, we obtain:

E‖(IM − μζG11,i−1)q̄i−1 − μζG12,i−1q̌i−1‖2

≤ (1 − μζν)2
E‖q̄i−1‖2 + μ2ζ 2 σ 2

12 E‖q̌i−1‖2

+ 2μζ (1 − μζν)σ12

√
E‖q̄i−1‖2 × E‖q̌i−1‖2

≤ (1 − μζν)2
E‖q̄i−1‖2 + μ2ζ 2 σ 2

12 E‖q̌i−1‖2

+ O(μ)
√(

O(1) τ i + O(μ)
) (

O(1) ρi
net + O(μ2)

)
≤ (1 − μζν)2

E‖q̄i−1‖2 + μ2ζ 2 σ 2
12 E‖q̌i−1‖2

+ O(μ)
(
O(1) τ i/2 + O(

√
μ)
) (

O(1) ρ
i/2
net + O(μ)

)
= (1 − μζν)2

E‖q̄i−1‖2 + μ2ζ 2 σ 2
12 E‖q̌i−1‖2

+ O(μ2) τ i/2 + O(μ) ρ
i/2
net + O(μ5/2)︸ ︷︷ ︸

χi

, (283)

where we applied (279) and (281), along with the inequality√
a + b ≤ √

a + √
b for a, b ≥ 0.

11The quantity 1N−1(τ IN−1 − E)−1 is O(1) as μ → 0. This can be seen,
e.g., by noticing that (τ IN−1 − E)−1 → RE (1) as μ → 0, and we have al-
ready shown that RE (1) is bounded.

VOLUME 5, 2024 353

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

Using (283), we can rearrange the first row of the transfer
matrix Tq and of the vector xq appearing in Lemma 4, obtain-
ing a new matrix T ′

q and a new vector x′
q defined by:

[T ′
q]11 = τ 2, [T ′

q]12 = μ2ζ 2 σ 2
12 1

�
N−1, x̄′

q =

⎡⎢⎣x̄q + χi

x̌q

⎤⎥⎦ ,

(284)

which allows us to replace the matrix T appearing in Theo-
rem 3 with a matrix T ′ of the following form:

T ′ =

⎡⎢⎣τ 2 τ ′
12 1

�
N−1

0 E

⎤⎥⎦
︸ ︷︷ ︸

T ′
0

+O(μ2)1N 1�
N , (285)

where we defined:

τ ′
12 = 16 ζ 2 �̄, (286)

with the μ2-term appearing in [T ′
q]12 being conveniently em-

bodied in the overall O(μ2) rank-one perturbation. Likewise,
we construct a new driving vector x′ by replacing xq in (155)
with x′

q in (284). Replacing now T and x with T ′ and x′ in the
recursion (156), we get:

P[̂qi] � T ′
0 P[̂qi−1] + O(μ2)1N 1�

N P[̂qi−1]︸ ︷︷ ︸
E‖q̄i‖2+E‖q̌i‖2

+x′

� T ′
0 P[̂qi−1] + O(μ2)

(
O(1) τ i + O(1) ρi

net + O(μ)
)︸ ︷︷ ︸

χ ′
i

1N

+

⎡⎢⎣x̄ + χi

x̌

⎤⎥⎦ , (287)

where in the last step we used (279) and (281). Developing
the recursion in (287) we get:

P[̂qi] � (T ′
0)i P[̂q0] +

i−1∑
j=0

χ ′
i− j (T ′

0) j1N

+
i−1∑
j=0

(T ′
0) j

⎡⎢⎣χi− j

0

⎤⎥⎦+ (IN − T ′
0)−1

⎡⎢⎣x̄

x̌

⎤⎥⎦ . (288)

Applying now (277) (with τ 2 in place of τ , and τ ′
12 in place

of τ12), and reasoning as done to obtain the bound in (278),
we conclude that the first row of matrix (T ′

0)i can be upper
bounded as:

(T ′
0)i �

⎡⎢⎣O(1) τ 2i 1�
N

not needed

⎤⎥⎦ . (289)

Moreover, we can evaluate (IN − T ′
0)−1 through (234) applied

with τ 2 in place of τ , and τ ′
12 in place of τ12, obtaining:

(IN − T ′
0)−1 =

⎡⎢⎢⎢⎣
1

1 − τ 2

τ ′
12 1

�
N−1 (IN−1 − E)−1

1 − τ 2

0 (IN−1 − E)−1

⎤⎥⎥⎥⎦ .

(290)

Using (289) and (290) in (288), we can obtain an inequality
recursion on the first entry of P[̂qi]:

E‖q̄i‖2 ≤ O(1) τ 2i
E‖̂q0‖2 + O(1)

i−1∑
j=0

τ 2 j χi− j

+ x̄

1 − τ 2
+ τ ′

12 1
�
N−1 (IN−1 − E)−1

1 − τ 2
x̌, (291)

where we have ignored the term χ ′
i , since comparing this term

against the term χi in (283), we see that χ ′
i is dominated by

χi as μ → 0 and, hence, can be formally embodied into χi

through the Big-O notation. Applying the definition of χi in
(283) we can write:

i−1∑
j=0

τ 2 j χi− j = O(μ2)
i−1∑
j=0

τ 2 jτ (i− j)/2

+ O(μ)
i−1∑
j=0

τ 2 jρ
(i− j)/2
net + O(μ5/2)

i−1∑
j=0

τ 2 j

≤ O(μ2)
τ i/2

τ 1/2 − τ 2
+ O(μ)

τ 2i

τ 2 − ρ
1/2
net

+ O(μ5/2)

1 − τ 2
, (292)

where in the last inequality we exploited the geometric sum-
mation in (272).

Now we examine the small-μ behavior of the three terms
appearing on the RHS of (292). The first term is O(μ) τ i/2,
since we have that:

lim
μ→0

μ

τ 1/2 − τ 2
= lim

μ→0

μ

(1 − μζν)1/2 − (1 − μζν)2
= 2

3ζν
.

(293)

The second term on the RHS of (292) is O(μ) τ 2i, since:

lim
μ→0

τ 2 − ρ
1/2
net = 1 − ρ

1/2
net > 0. (294)

Finally, the third term is O(μ3/2) since:

1

1 − τ 2
= 1

μζ ν

1

2 − μζ ν
= 1

μζ ν

(
1

2
+ O(μ)

)
. (295)

As a result, we can use (292) in (291) and substitute the
estimated orders of the aforementioned three terms to obtain:

E‖q̄i‖2 ≤ O(1) τ 2i + O(μ) τ i/2 + O(μ3/2)

+ x̄

1 − τ 2
+ τ ′

12 1
�
N−1 (IN−1 − E)−1

1 − τ 2
x̌. (296)

354 VOLUME 5, 2024

It remains to examine the small-μ behavior of the last two
terms in (296). Exploiting the definition of x in (155), the
small-μ behavior of the components of x in Table 2, and the
definitions of �̄ and �̌ in Table 1, we can write:

x̄ = ζ 2x̄s + ζ 2�̄
(
x̄s + 1�

N−1(x̌s + x̌δ)
)

≤ μ2 ζ 2

(
N∑

k=1

πkα
2
k σ 2

k + κ1

)
, (297)

where κ1 is a suitable constant (i.e., independent of μ) and

is the maximum compression factor in (25). Using (295), the
first fraction on the RHS of (296) is bounded as:

x̄

1 − τ 2
≤ μζ

(∑N
k=1 πkα

2
k σ 2

k

2ν
+ κ1

2ν

)
+ O(μ2). (298)

Using similar arguments we can bound the last term in (296).
From (286) and (155) we get:

τ ′
12 ≤ κ2 ζ 2
, x̌ � (κ3 + κ4
) μ21N−1, (299)

for some constants κ2, κ3, and κ4. Using now (295) and (299),
the last term in (296) can be upper bounded by μζ κ5
(1 +

) + O(μ2), for a suitable constant κ5. Joining this represen-
tation with (297), we can finally write (296) as:

E‖q̄i‖2 ≤ O(1) τ 2i + O(μ) τ i/2 + O(μ3/2)

+ μζ

(∑N
k=1 πkα

2
k σ 2

k

2ν
+ cq
 (1 +
)

)
, (300)

where cq is a constant independent of μ.
It remains to characterize the behavior of the mean-square-

deviation at an individual agent k. To this end, we evaluate the
individual entry of the extended vector q̃i though (57), which
allows us to write:

E‖qk,i‖2 = E‖q̄i‖2 + E‖Tk q̌i‖2 + 2E[q̄�
i Tk q̌i]

≤ E‖q̄i‖2 + E‖Tk q̌i‖2 + 2
∣∣E[q̄�

i Tk q̌i]
∣∣

≤ E‖q̄i‖2 + ‖Tk‖2
E‖q̌i‖2

+ 2‖Tk‖
√
E‖q̄i‖2 E‖q̌i‖2, (301)

where we resorted again to the Cauchy-Schwarz inequality for
random variables. Now, from (300) we can write E‖q̄i‖2 ≤
O(1) τ 2i + O(μ), which, used along with (281), yields:√

E‖q̄i‖2 E‖q̌i‖2

≤
√(

O(1)τ 2i + O(μ)
) (

O(1)ρi
net + O(μ2)

)
≤ O(1)τ iρ

i/2
net + O(μ1/2)ρi/2

net︸ ︷︷ ︸
O(1)ρi/2

net

+ O(μ)τ i︸ ︷︷ ︸
≤O(μ)τ i/2

+ O(μ3/2). (302)

Further noticing that from (281) we can write E‖q̌i‖2 ≤
O(1) ρ

i/2
net + O(μ2), the claim of the theorem follows by using

(300) and (302) in (301). �

APPENDIX K
COMPRESSION OPERATORS
1. RANDOMIZED QUANTIZERS FROM [43]
� The Euclidean norm ‖x‖ of the input vector x is rep-

resented with high resolution h, e.g., with machine
precision. Then, each entry xm of x is separately quan-
tized.

� One bit is used to encode the sign of xm.
� Then, we encode the absolute value of the m-th entry

xm. Since ‖x‖ is transmitted with high precision, we can
focus on the scaled value:

ξm � |xm|
‖x‖ ∈ [0, 1]. (303)

The interval [0, 1] is partitioned into L equal-size inter-
vals — see the illustrative example in Fig. 10. The size
of each interval is:

ϑ � 1

L
, (304)

such that the intervals’ endpoints can be accordingly
represented as:

y0 = 0, y1 = ϑ, y2 = 2ϑ, . . . , yL = 1. (305)

In order to avoid confusion, we stress that the quanti-
zation scheme will require to transmit one of the L + 1
indices corresponding to the endpoints. This differs from
classical quantization schemes where the index of the
interval (instead of the endpoint) is transmitted. Accord-
ingly, the bit-rate r is equal to:

r = log2(L + 1) ⇔ L = 2r − 1. (306)

� In view of (305), the index of the (lower) endpoint of the
interval the scaled entry ξm belongs to, is computed as:

j(ξm) =
⌊

ξm

ϑ

⌋
, (307)

and the corresponding endpoint is:

y(ξm) = j(ξm) ϑ. (308)

Then, we randomize the quantization operation since we
choose randomly to transmit the lower endpoint index
j(ξm) or the upper endpoint index j(ξm) + 1. Specifi-
cally, the probability of transmitting one endpoint index
is proportional to the distance of ξm from that endpoint.
In other words, the closer we are to one endpoint, the
higher the probability of transmitting that endpoint will
be. Formally, the random transmitted index jtx(ξm) is:

jtx(ξm) =
⎧⎨⎩ j(ξm) + 1, with prob.

ξm − y(ξm)

ϑ
j(ξm), otherwise.

(309)
� Once the index jtx(ξm) is received, the unquantized value

ξm is rounded to the lower or upper endpoint depending
on the realization of the transmitted index jtx(ξm), and
then the information about the norm ‖x‖ and the sign of

VOLUME 5, 2024 355

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

FIGURE 10. Sketch of the randomized quantizer described in Appendix K1, for the case where the bit-rate is r = 2.

xm is recovered, finally yielding the m-th component of
the quantized vector Q(x):

[Q(x)]m = ‖x‖ sign(xm) jtx(ξm) ϑ, m = 1, 2, . . . , M.

(310)

� Accounting for the h bits spent for representing the norm
‖x‖ and the single bit for representing the sign of each of
the M entries of x, the total bit-rate is:

h + M (r + 1). (311)

It was shown in [43] that the value of the compression factor
ω can be computed as:

ω = min

{
M

L2
,

√
M

L

}
. (312)

Equation (312) provides useful insight on the practical mean-
ing of ω for the considered type of quantizers. We see that, for
fixed dimensionality M, the parameter ω decays exponentially
fast with the number of bits (≈ 2−2r), whereas for fixed num-
ber of bits it grows as

√
M. Finally, a useful bound exploited in

our analysis is obtained as follows. Note that we have either:

M

L2
≤ 1 ⇒ ω = M

L2
⇒ ω + ω2 ≤ 2 ω = 2M

L2
, (313)

or

M

L2
> 1 ⇒ ω =

√
M

L
⇒ ω + ω2 ≤ 2 ω2 = 2M

L2
. (314)

In summary, in both cases we can write:

ω (1 + ω) ≤ 2M

L2
≤ 2M

(2r − 1)2
. (315)

2. RANDOMIZED SPARSIFIERS FROM [57]
Another popular compression operator fulfilling Assump-
tion 5 is the randomized sparsifier, which selects S entries
of the vector x ∈ R

M , and transmits only these components.
The decoder sets the remaining entries to 0. Moreover, the
transmitted entries are scaled by M/S since, as we promptly
show, such scaling makes the quantizer unbiased.

Formally, letting em be the standard basis vector in R
M ,

having m-th entry equal to 1 and the remaining entries equal
to 0, we have:

Q(x) = M

S

M∑
m=1

xmem tm (316)

where tm is a random variable equal to 1 if the m-th entry is
transmitted, and 0 otherwise. Since the transmitted entries are
chosen uniformly at random, we have that:

p � P[tm = 1] = E[tm = 1] = S

M
. (317)

Accordingly, the expectation of Q(x) is:

E[Q(x)] = M

S

M∑
m=1

xmem E[tm]︸ ︷︷ ︸
p=S/M

=
M∑

m=1

xmem = x. (318)

Likewise, the mean-square-error is evaluated as:

E‖Q(x) − x‖2 = E

∥∥∥∥∥M

S

M∑
m=1

xmem tm −
M∑

m=1

xmem

∥∥∥∥∥
2

= E

∥∥∥∥∥
M∑

m=1

xmem

(
M

S
tm − 1

)∥∥∥∥∥
2

= E

M∑
m=1

x2
m

(
M

S
tm − 1

)2

=
M∑

m=1

x2
mE

[(
M

S
tm − 1

)2
]

= ‖x‖2

[
p

(
M

S
− 1

)2

+ (1 − p)

]
, (319)

which, using (317), with straightforward algebra gives:

E‖Q(x) − x‖2 =
(

M

S
− 1

)
‖x‖2. (320)

REFERENCES
[1] M. Carpentiero, V. Matta, and A. H. Sayed, “Adaptive diffusion with

compressed communication,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Singapore, May 2022, pp. 5672–5676.

[2] U. A. Khan, W. U. Bajwa, A. Nedić, M. G. Rabbat, and A. H.
Sayed, “Optimization for data-driven learning and control,” Proc. IEEE,
vol. 108, no. 11, pp. 1863–1868, Nov. 2020.

[3] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asyn-
chronous deterministic and stochastic gradient optimization algo-
rithms,” IEEE Trans. Autom. Control, vol. 31, no. 9, pp. 803–812,
Sep. 1986.

[4] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods
for nondifferentiable optimization,” SIAM J. Optim., vol. 12, no. 1,
pp. 109–138, 2001.

356 VOLUME 5, 2024

[5] A. Nedić and A. Ozdaglar, “Cooperative distributed multi-agent opti-
mization,” in Convex Optimization in Signal Processing and Commu-
nications, Y. Eldar and D. Palomar Eds., Cambridge, U.K.: Cambridge
Univ. Press, 2010, pp. 340–386.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2010.

[7] S. Lee and A. Nedić, “Distributed random projection algorithm for
convex optimization,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2,
pp. 221–229, Apr. 2013.

[8] C. Xi and U. A. Khan, “Distributed subgradient projection algorithm
over directed graphs,” IEEE Trans. Autom. Control, vol. 62, no. 8,
pp. 3986–3992, Aug. 2016.

[9] C. Xi, V. S. Mai, R. Xin, E. Abed, and U. A. Khan, “Linear convergence
in optimization over directed graphs with row-stochastic matrices,”
IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3558–3565, Oct. 2018.

[10] M. G. Rabbat and A. Ribeiro, “Multiagent distributed optimization,” in
Cooperative and Graph Signal Processing, P. Djuric and C. Richard,
Eds. New York, NY, USA: Elsevier, 2018, pp. 147–167.

[11] M. Nokleby and W. U. Bajwa, “Stochastic optimization from distributed
streaming data in rate-limited networks,” IEEE Trans. Signal Inf. Pro-
cess. Netw., vol. 5, no. 1, pp. 152–167, Mar. 2019.

[12] A. H. Sayed, S. Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks,” IEEE Signal Pro-
cess. Mag., vol. 30, no. 3, pp. 155–171, May 2013.

[13] A. H. Sayed, “Adaptive networks,” Proc. IEEE, vol. 102, no. 4,
pp. 460–497, Apr. 2014.

[14] J. Chen and A. H. Sayed, “On the learning behavior of adaptive net-
works — Part I: Transient analysis,” IEEE Trans. Inf. Theory, vol. 61,
no. 6, pp. 3487–3517, Jun. 2015.

[15] J. Chen and A. H. Sayed, “On the learning behavior of adaptive net-
works — Part II: Performance analysis,” IEEE Trans. Inf. Theory,
vol. 61, no. 6, pp. 3518–3548, Jun. 2015.

[16] M. H. DeGroot, “Reaching a consensus,” J. Amer. Statist. Assoc.,
vol. 69, no. 345, pp. 118–121, 1974.

[17] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, Sep. 2004.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[19] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE,
vol. 98, no. 11, pp. 1847–1864, Nov. 2010.

[20] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. IEEE, vol. 106, no. 5, pp. 953–976, May 2018.

[21] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Found. Trends Mach. Learn., vol. 7, no. 4/5, pp. 311–801, 2014.

[22] V. Matta and A. H. Sayed, “Estimation and detection over adaptive
networks,” in Cooperative and Graph Signal Processing, P. Djuric and
C. Richard, Eds., New York, NY, USA: Elsevier, 2018, pp. 69–106.

[23] Wai-Man Lam and A. R. Reibman, “Design of quantizers for decen-
tralized estimation systems,” IEEE Trans. Commun., vol. 41, no. 11,
pp. 1602–1605, Nov. 1993.

[24] J. A. Gubner, “Distributed estimation and quantization,” IEEE Trans.
Inf. Theory, vol. 39, no. 4, pp. 1456–1459, Jul. 1993.

[25] S. Marano, V. Matta, and P. Willett, “Asymptotic design of quantizers
for decentralized MMSE estimation,” IEEE Trans. Signal Process.,
vol. 55, no. 11, pp. 5485–5496, Nov. 2007.

[26] P. Venkitasubramaniam, L. Tong, and A. Swami, “Quantization for
maximin ARE in distributed estimation,” IEEE Trans. Signal Process.,
vol. 55, no. 7, pp. 3596–3605, Jul. 2007.

[27] M. Longo, T. D. Lookabaugh, and R. M. Gray, “Quantization for de-
centralized hypothesis testing under communication constraints,” IEEE
Trans. Inf. Theory, vol. 36, no. 2, pp. 241–255, Mar. 1990.

[28] J. N. Tsitsiklis„ “Decentralized detection,” Adv. Stat. Signal Process.,
vol. 2, pp. 297–344, 1993.

[29] R. Viswanathan and P. K. Varshney, “Distributed detection with multi-
ple sensors Part I. Fundamentals,” Proc. IEEE, vol. 85, no. 1, pp. 54–63,
Jan. 1997.

[30] R. S. Blum, S. A. Kassam, and H. V. Poor, “Distributed detection with
multiple sensors Part II. Advanced topics,” Proc. IEEE, vol. 85, no. 1,
pp. 64–79, Jan. 1997.

[31] J.-F. Chamberland and V. V. Veeravalli, “Decentralized detection in sen-
sor networks,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 407–416,
Feb. 2003.

[32] V. Saligrama, M. Alanyali, and O. Savas, “Distributed detection
in sensor networks with packet losses and finite capacity links,”
IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4118–4132,
Nov. 2006.

[33] T. S. Han and S. Amari, “Statistical inference under multiterminal data
compression,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2300–2324,
Oct. 1998.

[34] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem [mul-
titerminal source coding],” IEEE Trans. Inf. Theory, vol. 42, no. 3,
pp. 887–902, May 1996.

[35] G. Mergen, V. Naware, and L. Tong, “Asymptotic detection perfor-
mance of type-based multiple access over multiaccess fading chan-
nels,” IEEE Trans. Signal Process., vol. 55, no. 3, pp. 1081–1092,
Mar. 2007.

[36] S. Marano, V. Matta, L. Tong, and P. Willett, “A likelihood-based
multiple access for estimation in sensor networks,” IEEE Trans. Signal
Process., vol. 55, no. 11, pp. 5155–5166, Nov. 2007.

[37] C. Rago, P. Willett, and Y. Bar-Shalom, “Censoring sensors: A
low-communication-rate scheme for distributed detection,” IEEE
Trans. Aerosp. Electron. Syst., vol. 32, no. 2, pp. 554–568,
Apr. 1996.

[38] B. Widrow, “A study of rough amplitude quantization by means of
Nyquist sampling theory,” IRE Trans. Circuit Theory, vol. 3, no. 4,
pp. 266–276, Dec. 1956.

[39] R. M. Gray and T. G. Stockham, “Dithered quantizers,” IEEE Trans.
Inf. Theory, vol. 39, no. 3, pp. 805–812, May 1993.

[40] Z.-Q. Luo, “Universal decentralized estimation in a bandwidth con-
strained sensor network,” IEEE Trans. Inf. Theory, vol. 51, no. 6,
pp. 2210–2219, Jun. 2005.

[41] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4,
pp. 56–69, Jul. 2006.

[42] S. Marano, V. Matta, and P. Willett, “Nearest-Neighbor distributed
learning by ordered transmissions,” IEEE Trans. Signal Process.,
vol. 61, no. 21, pp. 5217–5230, Nov. 2013.

[43] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Neural Inf. Process. Syst., Long Beach, CA, USA, Dec. 2017,
pp. 1707–1718.

[44] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. New York, NY, USA: Springer Science, 2001.

[45] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-Bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in Proc. Conf. Int. Speech Commun. Assoc., Singapore, 2014,
pp. 1058–1062.

[46] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quan-
tized sgd and its applications to large-scale distributed optimization,”
in Proc. Int. Conf. Mach. Learn., Stockholm, Sweden, 2018, pp. 5235–
5333.

[47] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
Memory,” in Proc. Neural Inf. Process. Syst., Montréal, Canada, 2018,
pp. 4447–4458.

[48] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error feed-
back Fixes signSGD and other gradient compression schemes,” in Proc.
Int. Conf. Mach. Learn., Long Beach, CA, USA, 2019, pp. 3252–3261.

[49] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R.
Pedarsani, “FedPAQ: A communication-efficient federated learning
method with periodic averaging and quantization,” in Proc. Int. Conf.
Artif. Intell. Statist., Palermo, Italy, 2020, pp. 2021–2031.

[50] C.-Y. Lin, V. Kostina, and B. Hassibi, “Differentially quantized gradi-
ent descent,” in Proc. IEEE Int. Symp. Inf. Theory, Melbourne, VIC,
Australia, 2021, pp. 1200–1205.

[51] A. H. Sayed, Inference and Learning from Data: Volume 3. Cambridge,
U.K.: Cambridge Univ. Press, 2022.

[52] X. Zhao, S.-Y. Tu, and A. H. Sayed, “Diffusion adaptation over
networks under imperfect information exchange and non-stationary
data,” IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3460–3475,
Jul. 2012.

[53] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “Distributed
subgradient methods and quantization effects,” in Proc. IEEE Conf.
Decis. Control, Cancun, Mexico, 2008, pp. 4177–4184.

VOLUME 5, 2024 357

CARPENTIERO ET AL.: DISTRIBUTED ADAPTIVE LEARNING UNDER COMMUNICATION CONSTRAINTS

[54] T. Doan, S. T. Maguluri, and J. Romberg, “Convergence rates of dis-
tributed gradient methods under random quantization: A stochastic
approximation approach,” IEEE Trans. Autom. Control, vol. 66, no. 10,
pp. 4469–4484, Oct. 2021.

[55] A. Reisidazeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “An exact
quantized decentralized gradient descent algorithm,” IEEE Trans. Sig-
nal Process., vol. 67, no. 19, pp. 4934–4947, Oct. 2019.

[56] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic
optimization and gossip algorithms with compressed communication,”
in Proc. Int. Conf. Mach. Learn., Long Beach, CA, USA, 2019,
pp. 3478–3487.

[57] D. Kovalev, A. Koloskova, M. Jaggi, P. Richtárik, and S. U. Stich, “A
linearly convergent algorithm for decentralized optimization: Sending
less bits for free!,” in Proc. Int. Conf. Artif. Intell. Statist., San Diego,
CA, USA, Apr. 2021, pp. 4087–4095.

[58] M. I. Qureshi, R. Xin, S. Kar, and U. A. Khan, “S-ADDOPT: Decen-
tralized stochastic first-order optimization over directed graphs,” IEEE
Control Syst. Lett., vol. 5, no. 3, pp. 953–958, Jul. 2021.

[59] M. I. Qureshi, R. Xin, S. Kar, and U. A. Khan, “Push-SAGA: A de-
centralized stochastic algorithm with variance reduction over directed
graphs,” IEEE Control Syst. Lett., vol. 6, pp. 1202–1207, 2022.

[60] S. Pu and A. Nedić, “Distributed stochastic gradient tracking methods,”
Math. Program., vol. 187, pp. 409–457, 2021.

[61] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep
learning with arbitrary communication compression,” in Proc. Int. Conf.
Learn. Representations, Addis Ababa, Ethiopia, 2020, pp. 1–22.

[62] J. Chen and A. H. Sayed, “Distributed Pareto optimization via dif-
fusion strategies,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2,
pp. 205–220, Apr. 2013.

[63] Y. Wu and S. Verdú, “Rényi information dimension: Fundamental lim-
its of almost lossless analog compression,” IEEE Trans. Inf. Theory,
vol. 56, no. 8, pp. 3721–3748, Aug. 2010.

[64] G. Alberti, H. Bölcskei, C. D. Lellis, G. Koliander, and E. Riegler,
“Lossless analog compression,” IEEE Trans. Inf. Theory, vol. 65, no. 11,
pp. 7480–7513, Nov. 2019.

[65] N. Michelusi, G. Scutari, and C. -S. Lee, “Finite-bit quantization for dis-
tributed algorithms with linear convergence,” IEEE Trans. Inf. Theory,
vol. 68, no. 11, pp. 7254–7280, Nov. 2022.

[66] R. A. Horn and C. R. Johnson, Matrix Analysis. New York, NY, USA:
Cambridge Univ. Press, 1985.

[67] G. H. Golub and J. H. Wilkinson, “Ill-conditioned eigensystems and the
computation of the Jordan canonical form,” SIAM Rev., vol. 18, no. 4,
pp. 578–619, 1976.

[68] R. Bronson, Matrix Methods: An Introduction. Houston: Gulf Profes-
sional Publishing, 1991.

[69] J. Moro, J. V. Burke, and M. L. Overton, “On the Lidskii-Vishik-
Lyusternik perturbation theory for eigenvalues of matrices with arbi-
trary Jordan structure,” SIAM J. Matrix Anal. Appl., vol. 18, no. 4,
pp. 793–817, Oct. 1997.

[70] Z. J. Towfic and A. H. Sayed, “Stability and performance limits of
adaptive primal-dual networks,” IEEE Trans. Signal Process., vol. 63,
no. 11, pp. 2888–2903, Jun. 2015.

[71] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning–Part I: Algorithm development,”
IEEE Trans. Signal Process., vol. 67, no. 3, pp. 708–723, Feb. 2019.

[72] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning–Part II: Convergence analysis,”
IEEE Trans. Signal Process., vol. 67, no. 3, pp. 724–739, Feb. 2019.

[73] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex envi-
ronments — Part I: Agreement at a linear rate,” IEEE Trans. Signal
Process., vol. 69, pp. 1242–1256, 2021.

[74] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environ-
ments — Part II: Polynomial escape from saddle-points,” IEEE Trans.
Signal Process., vol. 69, pp. 1257–1270, 2021.

[75] S. Vlaski and A. H. Sayed, “Second-order guarantees of stochastic
gradient descent in non-convex optimization,” IEEE Trans. Autom. Con-
trol, vol. 67, no. 12, pp. 6489–6504, Dec. 2022.

[76] L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Be-
havior of Nonnormal Matrices and Operators. New Jersey, NJ, USA:
Princeton Univ. Press, 2005.

MARCO CARPENTIERO (Graduate Student
Member, IEEE) received the B.Sc. and M.Sc.
degrees (cum laude) in information engineering
in 2018 and 2020, respectively, from the
University of Salerno, Fisciano, Italy, where
he is currently working toward the Ph.D. degree
in information engineering with the Department
of Information and Electrical Engineering and
Applied Mathematics. His research interests
include in the field of signal processing, focusing
on adaptation and learning over networks,

distributed inference, and remote sensing.

VINCENZO MATTA (Senior Member, IEEE) is
currently a Full Professor in telecommunications
with the Department of Information and Electrical
Engineering and Applied Mathematics (DIEM),
University of Salerno, Fisciano, Italy. He is the
author of more than 140 articles published in inter-
national journals and proceedings of international
conferences. His research interests include adap-
tation and learning over networks, social learning,
statistical inference on graphs, and security in com-
munication networks. Dr. Matta is an Associate

Editor for the IEEE OPEN JOURNAL OF SIGNAL PROCESSING. He was the
Senior Area Editor of the IEEE SIGNAL PROCESSING LETTERS, and an
Associate Editor for IEEE TRANSACTIONS ON SIGNAL AND INFORMATION

PROCESSING OVER NETWORKS, the IEEE SIGNAL PROCESSING LETTERS, and
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. He was a
member of the Sensor Array and Multichannel Technical Committee of the
Signal Processing Society (SPS), and was an IEEE SPS Steering Committee
Representative on the IEEE TRANSACTIONS ON SIGNAL AND INFORMATION

PROCESSING OVER NETWORKS.

ALI H. SAYED (Fellow, IEEE) is currently the
Dean of Engineering at EPFL, Switzerland, where
he also leads the Adaptive Systems Laboratory.
He was a Distinguished Professor and the Chair
of electrical engineering, University of Califor-
nia, Los Angeles, Los Angeles, CA, USA. He
is a member of the U.S. National Academy of
Engineering (NAE) and The World Academy of
Sciences (TWAS). He was the President of the
IEEE Signal Processing Society in 2018 and 2019.
His work has been recognized with several awards

including the 2022 IEEE Fourier Technical Field Award, the 2020 IEEE
Norbert Wiener Society Award, and several Best Paper Awards. He is a Fellow
of EURASIP, and AAAS.

Open Access funding provided by ‘Università degli Studi di Salerno’ within the CRUI CARE Agreement

358 VOLUME 5, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

